
List of Slides

1 Title
2 Chapter 11: Object oriented design
3 Chapter aims
4 Section 2: Example:Age history revisited
5 Aim
6 Age history revisited
7 Design: object oriented design
9 Age history revisited

10 Age history revisited
11 Design: object oriented design: noun identification
12 Identifying the classes
16 Identifying the classes
17 Designing the class interfaces
18 Designing the class interfaces
21 Designing the class interfaces
22 Design: object oriented design: encapsulation

0-0

24 The AgeHistory class
25 Operating environment: standard input
26 Standard API: System : in
27 Package
28 Package: java.util
29 Class: importing classes
32 Standard API: Scanner
37 The AgeHistory class
38 Code clarity: comments: multi-line comments
39 The AgeHistory class
40 The AgeHistory class
45 Stubbing Date and Person
46 Class: stub
47 Person.java
48 Date.java
49 Stubbing Date and Person
50 Stubbing Date and Person
51 The Date class

0-1

52 Variable: of a class type: null reference
54 The Date class
56 Class: objects: may be mutable or immutable
57 The Date class
58 Variable: final variables
59 The Date class
62 The Person class
63 The Person class
64 Standard API: System : getProperty()
65 Standard API: System : getProperty() : line.separator
66 The Person class
70 The Person class
71 Method: returning a value: multiple returns
72 The Person class
73 Trying it
74 Trying it
75 Coursework: ShapeShift
76 Section 3: Example:Greedy children

0-2

77 Aim
78 Greedy children
79 Greedy children
80 Identifying the classes
81 Designing the class interfaces
82 Designing the class interfaces
83 Designing the class interfaces
85 Designing the class interfaces
86 Designing the class interfaces
87 Method: constructor methods: more than one
88 Designing the class interfaces
89 The IceCreamParlour class
91 The IceCreamParlour class
92 The IceCreamParlour class
93 The IceCreamParlour class
94 The GreedyChild class
95 Variable: final variables: class constant
96 The GreedyChild class

0-3

97 The GreedyChild class
98 The GreedyChild class
99 Standard API: Math : random()

100 The GreedyChild class
101 The GreedyChild class
102 Method: return with no value
103 The GreedyChild class
104 The GreedyChild class
105 Method: accessor methods
106 Method: mutator methods
107 The GreedyChild class
108 The GreedyChildren class
109 The GreedyChildren class
110 Method: changing parameters does not affect arguments: but referenced
112 The GreedyChildren class
113 The GreedyChildren class
116 Trying it
117 Type: String : conversion: from object: null reference

0-4

119 Coursework: StudentsCalling
120 Section 4: Example:Greedy children gone wrong
121 Aim
122 Variable: of a class type: holding the same reference as some other v
129 Greedy children gone wrong
130 Greedy children gone wrong
131 Greedy children gone wrong
132 Trying it
133 Concepts covered in this chapter

0-5

Title

Java Just in Time

John Latham

November 13, 2018

November 13, 2018 Java Just in Time - John Latham Page 1(0/0)

Chapter 11

Object oriented design

November 13, 2018 Java Just in Time - John Latham Page 2(0/0)

Chapter aims

• Take second look at OO technology introduced in previous chapter

– but see how we approach program design with OO from the start.

• First revisit AgeHistory2

– add extra feature of person name as well as birthday

– have textual user interface rather than command line arguments.

• Then a model of greedy children eating ice cream

– e.g. basis of simple computer game

– has mutable objects

– accessor methods and mutator methods.

November 13, 2018 Java Just in Time - John Latham Page 3(0/0)

Section 2

Example:

Age history revisited

November 13, 2018 Java Just in Time - John Latham Page 4(0/0)

Aim

AIM: To introduce the principles of object oriented design.

We also meet Scanner , standard input, Java’s package

structure and import statement, the null reference, final

variables, multiple return statements, the line separator

system property, and take a look at making stubs of

classes and using multi-line comments.

November 13, 2018 Java Just in Time - John Latham Page 5(0/0)

Age history revisited

• Previous chapter used AgeHistory2 to introduce and motivate Java

object oriented programming

– would not really write first without OO and then convert!

• Here look at object oriented design

– how approach program development using OO from beginning.

November 13, 2018 Java Just in Time - John Latham Page 6(0/0)

Design: object oriented design

• Developing in object oriented programming language requires use of

object oriented design.

• Start by identifying classes

– examine requirements statement

– problems inherently involve interactions between ‘real world’ objects

– modelled in our program – by creating objects

∗ instances of the classes we identify.

November 13, 2018 Java Just in Time - John Latham Page 7(0/0)

Design: object oriented design

• An object is entity with some

– object state – maybe changes over time

– object behaviour – probably based on its state.

• Think about state and behaviour of objects in problem.

• Decide how to model

– behaviour via instance methods

– state via instance variables.

• May need class variables and class methods too.

November 13, 2018 Java Just in Time - John Latham Page 8(0/0)

Age history revisited

Coffee

time:

Why do you think the pieces of code making up a Java

program are called classes?

A program is required that will print out, on the standard output, the

age history of any number of people. Each person has a name

and a birth date. The age history of a person consists of a

statement of their birth on their birth date, followed by a statement

of their age on each of their birthdays which have occurred before

the present date. Finally it ends with a statement saying what age

they will be on their next birthday, including the present date, if

their birthday is today. However, if the person has not yet been

born, or is born on the present date then their age history consists

merely of a statement stating or predicting their birth.

November 13, 2018 Java Just in Time - John Latham Page 9(0/0)

Age history revisited

The program shall be interactive with a textual user interface. It shall

prompt for the present date, to be entered by the user as three

integers in the order day, month then year. Then it shall prompt for

the number of persons, which is to be entered as an integer. Then,

for each person, it shall prompt for his or her name, to be entered

as a string, and date of birth, to be entered as three integers in the

order day, month then year. Then it shall produce the age history

for that person.

The program is allowed to assume that the number of persons and

components of dates are entered as strings representing legal

integers. If the entered number of persons is less than one, the

program will quietly do nothing more.

November 13, 2018 Java Just in Time - John Latham Page 10(0/0)

Design: object oriented design: noun identification

• Analyse requirements statement – decide what classes to have.

• One way: noun identification

– list all nouns and noun phrases

– objects inherent in solution usually appear as nouns in problem

description.

∗ Some nouns will be objects at run time

∗ some will be classes.

– Not all nouns found will be a class or object

∗ also sometimes need classes not appearing as nouns in

requirements.

– But generally good starting point.

November 13, 2018 Java Just in Time - John Latham Page 11(0/0)

Identifying the classes

Noun Usage in requirements Class, object or

how/what?

age A number int

age history An effect on the output A String with many lines

birth An event to be reported Part of age history

birth date A date belonging to a

person

An object, instance

variable of a person

birthday An event to be reported Part of age history

component of date Strings entered by the

user

Become values of in-

stance variables of Date

date of birth Same as birth date -

November 13, 2018 Java Just in Time - John Latham Page 12(0/0)

Identifying the classes

Noun Usage in requirements Class, object or

how/what?

date Used for present date,

birth dates and birth-

days

A class

day Part of a date, a num-

ber

Instance variable in

date objects

integer Standard stuff int

month Part of a date, a num-

ber

Instance variable in

date objects

name A string belonging to a

person

Instance variable of a

person

number Standard stuff int

November 13, 2018 Java Just in Time - John Latham Page 13(0/0)

Identifying the classes

Noun Usage in requirements Class, object or

how/what?

person Many people inherent

in problem

A class

present date A date An object

program Standard stuff A class to contain the

main method

standard output Standard stuff Via

System.out.println()

statement An effect on the output Via

System.out.println()

string Standard stuff String

November 13, 2018 Java Just in Time - John Latham Page 14(0/0)

Identifying the classes

Noun Usage in requirements Class, object or

how/what?

textual user interface User interaction with

program

Via standard input

today Same as present date -

user The real person using

the program

Via standard input and

standard output

year Part of a date, a num-

ber

Instance variable in

date objects

November 13, 2018 Java Just in Time - John Latham Page 15(0/0)

Identifying the classes

• Three classes:

Class list for AgeHistory

Class Description

AgeHistory The main class containing the main method. It will interact

with the user and make instances of Date and Person .

Date An instance of this will represent a date.

Person An instance of this will represent a person.

November 13, 2018 Java Just in Time - John Latham Page 16(0/0)

Designing the class interfaces

• The main method creates a Date for present date

– where stored?

– A prevalent object oriented programming design principle:

∗ putting the logic where the data is.

– So store (reference to) present date in class variable in Date class.

• Main method then creates Person object for each person

– including a Date object for person’s birth date.

• For each person obtain age history and print it out

– have instance method in Person class

∗ returns age history as String

– need to access present date from Date class.

November 13, 2018 Java Just in Time - John Latham Page 17(0/0)

Designing the class interfaces

Public method interfaces for class AgeHistory.

Method Return Arguments Description

main String[] The main method for the program.

November 13, 2018 Java Just in Time - John Latham Page 18(0/0)

Designing the class interfaces

Public method interfaces for class Date.

Method Return Arguments Description

setPresentDate Date A class method: sets the present

date to be the one given. This

is ignored if the present date has

already been been set.

getPresentDate Date A class method: returns

the present date as set by

setPresentDate() .

Constructor int, int, int Constructs a date representing

the given day, month and then

year values.

November 13, 2018 Java Just in Time - John Latham Page 19(0/0)

Designing the class interfaces

Public method interfaces for class Date.

Method Return Arguments Description

toString String Returns the day/month/year representa-

tion of the date.

equals boolean Date Returns true if and only if this object rep-

resents the same date as the given other

date.

lessThan boolean Date Returns true if and only if this object repre-

sents a date earlier than that represented

by the given other date.

addYear Date Returns a new date, one year on from this

one.

November 13, 2018 Java Just in Time - John Latham Page 20(0/0)

Designing the class interfaces

Public method interfaces for class Person.

Method Return Arguments Description

Constructor String, Date Constructs a person with the

given name and birth date.

ageHistory String Returns the age history of this per-

son as a string with new lines in it.

• Check design for correct encapsulation.

November 13, 2018 Java Just in Time - John Latham Page 21(0/0)

Design: object oriented design: encapsulation

• A principle of object oriented design – encapsulation

– in order to use a class, need only know about public methods

(inc constructor methods)

∗ what they mean

∗ not how they work

∗ not what instance variables there are.

• Design principle – putting the logic where the data is

– all code about objects behaviour appears in their class

∗ not sprinkled around the program.

November 13, 2018 Java Just in Time - John Latham Page 22(0/0)

Design: object oriented design: encapsulation

• Encapsulation is form of abstraction

– abstraction: ignore unnecessary detail.

∗ Use a class without knowing how it works

∗ design details of one class

without being concerned with details of other classes.

November 13, 2018 Java Just in Time - John Latham Page 23(0/0)

The AgeHistory class

• Can make new instances of our own classes.

• Also can make instances of many API classes

– e.g. Scanner .

November 13, 2018 Java Just in Time - John Latham Page 24(0/0)

Operating environment: standard input

• As well as standard output, programs have standard input

– allows text data to be entered into program as it runs.

• In command line interface input is typically typed on keyboard.

November 13, 2018 Java Just in Time - John Latham Page 25(0/0)

Standard API: System: in

• System class has class variable out

– E.g. System.out.println()

• Also in

– contains reference to an object representing standard input.

• Java standard input not easy to use

– typically access via something else

– e.g. Scanner .

November 13, 2018 Java Just in Time - John Latham Page 26(0/0)

Package

• Hundreds of classes in Java API

– even more ‘around the world’.

• Grouped into collections of related classes: packages.

• Packages also grouped – hierarchy.

• E.g. package groups java and javax .

November 13, 2018 Java Just in Time - John Latham Page 27(0/0)

Package: java.util

• Package group java has package util (and many others)

– full name is java.util – dot used as path item separator.

• java.util contains many utility classes

– e.g. Scanner

• Unique fully qualified name

– e.g. java.util.Scanner

∗ Scanner in util package in java package group.

• Can refer to a class via fully qualified name

– e.g.

java.util.Scanner inputScanner = new java.util.Scanner(System.in);

November 13, 2018 Java Just in Time - John Latham Page 28(0/0)

Class: importing classes

• At start of source file can have import statements

– reserved word import

followed by fully qualified name of class

then semi-colon(;).

• Imported classes can be referred to just by class name – don’t have to

keep using fully qualified name.

– E.g.

import java.util.Scanner;

...

Scanner inputScanner = new Scanner(System.in);

November 13, 2018 Java Just in Time - John Latham Page 29(0/0)

Class: importing classes

• Can import all classes in a package using *

– e.g.

import java.util.*;

• Considered lazy – better to import exactly what is needed

– helps show precisely what is used by importing class.

• Also ambiguity issue:

– two different packages may have classes with same name. . . .

November 13, 2018 Java Just in Time - John Latham Page 30(0/0)

Class: importing classes

• But, every Java program has automatic import

for all classes in package java.lang

– e.g. System is really java.lang.System

– e.g. Integer is really java.lang.Integer

– etc..

• I.e., all classes implicitly have

import java.lang.*;

November 13, 2018 Java Just in Time - John Latham Page 31(0/0)

Standard API: Scanner

• Since Java 5.0 – java.util.Scanner : simple features to read input data.

• Can pass System.in to constructor method:

import java.util.Scanner;

...

Scanner inputScanner = new Scanner(System.in);

...

• Want line of text, or read an integer:

String line = inputScanner.nextLine();

...

int aNumber = inputScanner.nextInt();

// Skip past anything on the same line following the number.

inputScanner.nextLine();

...

November 13, 2018 Java Just in Time - John Latham Page 32(0/0)

Standard API: Scanner

• System.in gets bytes from standard input.

• Scanner turns bytes into characters (char)

– has variety of instance methods to scan characters into lines / tokens

∗ separated by white space: e.g. space, tab, end of line.

November 13, 2018 Java Just in Time - John Latham Page 33(0/0)

Standard API: Scanner

Public method interfaces for class Scanner (some of them).

Method Return Arguments Description

nextLine String Returns all the text from the current point in

the character stream up to the next end of

line, as a String .

nextInt int Skips any spaces, tabs and end of lines and

then reads characters which represent an

integer, and returns that value as an int. It

does not skip spaces, tabs or end of lines

following those characters. The characters

must represent an integer, or a run time er-

ror will occur.

November 13, 2018 Java Just in Time - John Latham Page 34(0/0)

Standard API: Scanner

Public method interfaces for class Scanner (some of them).

Method Return Arguments Description

nextBoolean boolean Similar to nextInt() except for a

boolean value.

nextByte byte Similar to nextInt() except for a byte

value.

nextDouble double Similar to nextInt() except for a

double value.

nextFloat float Similar to nextInt() except for a float

value.

nextLong long Similar to nextInt() except for a long

value.

November 13, 2018 Java Just in Time - John Latham Page 35(0/0)

Standard API: Scanner

Public method interfaces for class Scanner (some of them).

Method Return Arguments Description

nextShort short Similar to nextInt() except for a short

value.

• Can also change what is used to separate tokens.

November 13, 2018 Java Just in Time - John Latham Page 36(0/0)

The AgeHistory class

001: import java.util.Scanner;

• Next comes comment

– copy and edit some text from requirements statement. . .

November 13, 2018 Java Just in Time - John Latham Page 37(0/0)

Code clarity: comments: multi-line comments

• Java permits multi-line comments

– start with /*

– end with */

– these symbols and all text between is ignored by compiler.

• Can have such a comment on one line, with code either side

– not often useful, especially with 80 chararacter line limit.

November 13, 2018 Java Just in Time - John Latham Page 38(0/0)

The AgeHistory class

Coffee

time:

One use of multi-line comments is to ‘comment out’ a

section of code during development, perhaps because it

is not completed yet. Do you think we can nest multi-line

comments in Java, that is, have such a comment inside

another one? Can we have single line comments inside

a multi-line comment?

November 13, 2018 Java Just in Time - John Latham Page 39(0/0)

The AgeHistory class

003: /* Program to print out the history of any number of named peop le’s ages.

004:

005: The age history of a person consists of a statement of their bi rth on their

006: birth date, followed by a statement of their age on each of the ir birthdays

007: which have occurred before the present date. Finally it ends with a

008: statement saying what age they will be on their next birthday , including

009: the present date, if their birthday is today. However, if the person has

010: not yet been born, or is born on the present date then their age history

011: consists merely of a statement stating or predicting their b irth.

012:

November 13, 2018 Java Just in Time - John Latham Page 40(0/0)

The AgeHistory class

013: It first prompts for the present date, to be entered by the use r as three

014: integers in the order day, month then year. Then it prompts fo r the number

015: of persons, which is to be entered as an integer. Then, for eac h person, it

016: prompts for his or her name, to be entered as a string, and date of birth,

017: to be entered as three integers in the order day, month then ye ar. Then it

018: produces the age history for that person.

019: */

020: public class AgeHistory

021: {

022: public static void main(String[] args)

023: {

024: // For interaction with the user.

025: Scanner inputScanner = new Scanner(System.in);

026:

November 13, 2018 Java Just in Time - John Latham Page 41(0/0)

The AgeHistory class

027: // The Date class needs to be told the present date.

028: System.out.print("Enter today’s date as three numbers, dd mm yyyy: ");

029: int day = inputScanner.nextInt();

030: int month = inputScanner.nextInt();

031: int year = inputScanner.nextInt();

032: Date.setPresentDate(new Date(day, month, year));

033:

034: // Now find out how many people there are.

035: System.out.print("Enter the number of people: ");

036: int noOfPeople = inputScanner.nextInt();

037: // Skip to the next line of input

038: // or else first name will be blank!

039: inputScanner.nextLine();

040:

November 13, 2018 Java Just in Time - John Latham Page 42(0/0)

The AgeHistory class

041: // For each person...

042: for (int personNumber = 1; personNumber <= noOfPeople; personNumbe r++)

043: {

044: // Obtain name and birthday.

045: System.out.print("Enter the name of person " + personNumbe r + ": ");

046: String personName = inputScanner.nextLine();

047: System.out.print("Enter his/her birthday (dd mm yyyy): ") ;

048: int birthDay = inputScanner.nextInt();

049: int birthMonth = inputScanner.nextInt();

050: int birthYear = inputScanner.nextInt();

051: // Skip to next line, or else next name will be blank!

052: inputScanner.nextLine();

053:

November 13, 2018 Java Just in Time - John Latham Page 43(0/0)

The AgeHistory class

054: Date birthDate = new Date(birthDay, birthMonth, birthYear);

055: Person person = new Person(personName, birthDate);

056: System.out.println(person.ageHistory());

057: } // for

058: } // main

059:

060: } // class AgeHistory

November 13, 2018 Java Just in Time - John Latham Page 44(0/0)

Stubbing Date and Person

Console Input / Output

$ javac AgeHistory.java

AgeHistory.java:32: cannot find symbol

symbol : class Date

location: class AgeHistory

Date.setPresentDate(new Date(day, month, year));

ˆ

AgeHistory.java:32: cannot find symbol

symbol : variable Date

location: class AgeHistory

Date.setPresentDate(new Date(day, month, year));

ˆ

AgeHistory.java:54: cannot find symbol

symbol : class Date

location: class AgeHistory

Date birthDate = new Date(birthDay, birthMonth, birthYear);

...

$ _ Run

November 13, 2018 Java Just in Time - John Latham Page 45(0/0)

Class: stub

• Often produce stubs for classes not yet implemented

when developing programs with several classes

– just some/all public items

– empty/almost empty bodies for methods.

– Any non-void methods written as single return statement

∗ yield some temporary value.

– Bare minimum to allow classes developed so far to compile.

• Develop stubs into full class code later.

November 13, 2018 Java Just in Time - John Latham Page 46(0/0)

Person.java

001: public class Person

002: {

003: public Person(String s, Date d) {}

004: public String ageHistory() { return "An age history"; }

005: } // class Person

November 13, 2018 Java Just in Time - John Latham Page 47(0/0)

Date.java

001: public class Date

002: {

003: public Date(int d, int m, int y) {}

004: public static void setPresentDate(Date d) {}

005: } // class Date

November 13, 2018 Java Just in Time - John Latham Page 48(0/0)

Stubbing Date and Person

Coffee

time:

Are you surprised that Java lets us put the body of a

method on the same line as its heading? That may be

fine for stubs which will be thrown away shortly, but do

you think it is appropriate for proper code? Ever?

• Can now compile and even run the program!

• Can check AgeHistory works before developing other classes.

November 13, 2018 Java Just in Time - John Latham Page 49(0/0)

Stubbing Date and Person

Console Input / Output

$ javac AgeHistory.java

$ _

$ java AgeHistory

Enter today’s date as three numbers, dd mm yyyy: 01 07 2019

Enter the number of people: 0

$ _

$ java AgeHistory

Enter today’s date as three numbers, dd mm yyyy: 01 07 2019

Enter the number of people: 2

Enter the name of person 1: John

Enter his/her birthday (dd mm yyyy): 24 4 1959

An age history

Enter the name of person 2: Lizzy

Enter his/her birthday (dd mm yyyy): 1 7 1989

An age history

$ _ Run

November 13, 2018 Java Just in Time - John Latham Page 50(0/0)

The Date class

• Main difference from previous is class variable to store present date

– plus class methods to set and access it.

November 13, 2018 Java Just in Time - John Latham Page 51(0/0)

Variable: of a class type: null reference

• When create object

often store reference returned by constructor method in a variable.

• E.g.

Point p1 = new Point(75, 150);

• But what if don’t want to refer to an object (yet)?

– Special reference value – the null reference

– is reference, but does not refer to an object.

– Written using reserved word null.

• E.g.

Point p2 = null;

November 13, 2018 Java Just in Time - John Latham Page 52(0/0)

Variable: of a class type: null reference

• We have two Point variables – p1, p2

– but (at run time) only one Point object.

• Suppose Point has instance methods getX() and getY() .

• Then this is okay:

System.out.println(p1.getX());

• But next code will cause run time error

(exception called NullPointerException):

System.out.println(p2.getX());

because no object referenced by p2, so attempt to follow reference fails.

November 13, 2018 Java Just in Time - John Latham Page 53(0/0)

The Date class

001: // Representation of a date.

002: public class Date

003: {

004: // Class variable to hold the present date.

005: private static Date presentDate = null;

006:

007:

008: // Class method to set the present date.

009: // This does nothing if it has already been set.

010: public static void setPresentDate(Date requiredPresentDate)

011: {

012: if (presentDate == null)

013: presentDate = requiredPresentDate;

014: } // setPresentDate

015:

November 13, 2018 Java Just in Time - John Latham Page 54(0/0)

The Date class

016:

017: // Class method to obtain the present date.

018: public static Date getPresentDate()

019: {

020: return presentDate;

021: } // getPresentDate

• As before, we intend Date instances to be immutable objects.

November 13, 2018 Java Just in Time - John Latham Page 55(0/0)

Class: objects: may be mutable or immutable

• When design a class decide whether its instances are

– immutable objects

∗ once constructed the object state cannot be changed

– or mutable objects

∗ state can be changed after construction.

November 13, 2018 Java Just in Time - John Latham Page 56(0/0)

The Date class

Coffee

time:

Do you think it was appropriate for us to decide that our

Date objects should be immutable? For example, sup-

pose you are planning to go on holiday on the 20th July,

but the tour operator has to change your departure date

to the 21st of July due to a flight cancellation. Has the

date known as 20th July itself changed to become the

21st of July? Or are those two dates still distinct, but in-

stead, the details of your holiday have changed?

• Simplest way to ensure immutable objects:

– declare all instance variables as final variables. . .

November 13, 2018 Java Just in Time - John Latham Page 57(0/0)

Variable: final variables

• Can write reserved word final as modifier on a variable

– means value cannot be altered once has been assigned.

• An instance variable declared as final variable

– must have value by time object has finished being constructed

∗ either by assigning value in variable declaration

∗ or assignment statement inside constructor method.

November 13, 2018 Java Just in Time - John Latham Page 58(0/0)

The Date class

024: // Instance variables: the day, month and year of a date.

025: private final int day, month, year;

• Rest same as previously:

028: // Construct a date -- given the required day, month and year.

029: public Date(int requiredDay, int requiredMonth, int requiredYear)

030: {

031: day = requiredDay;

032: month = requiredMonth;

033: year = requiredYear;

034: } // Date

035:

036:

November 13, 2018 Java Just in Time - John Latham Page 59(0/0)

The Date class

037: // Compare this date with a given other one, for equality.

038: public boolean equals(Date other)

039: {

040: return day == other.day && month == other.month && year == other.yea r;

041: } // equals

042:

043:

044: // Compare this date with a given other one, for less than.

045: public boolean lessThan(Date other)

046: {

047: return year < other.year

048: || year == other.year

049: && (month < other.month

050: || month == other.month && day < other.day);

051: } // lessThan

052:

053:

November 13, 2018 Java Just in Time - John Latham Page 60(0/0)

The Date class

054: // Return the day/month/year representation of the date.

055: public String toString()

056: {

057: return day + "/" + month + "/" + year;

058: } // toString

059:

060:

061: // Return a new Date which is one year later than this one.

062: public Date addYear()

063: {

064: return new Date(day, month, year + 1);

065: } // addYear

066:

067: } // class Date

November 13, 2018 Java Just in Time - John Latham Page 61(0/0)

The Person class

• Person instances are also immutable objects.

001: // Representation of a person.

002: public class Person

003: {

004: // The name and birthday of a person.

005: private final String name;

006: private final Date birthDate;

007:

008:

009: // Construct a person -- given the required name and birthday .

010: public Person(String requiredName, Date requiredBirthDate)

011: {

012: name = requiredName;

013: birthDate = requiredBirthDate;

014: } // Person

November 13, 2018 Java Just in Time - John Latham Page 62(0/0)

The Person class

• The ageHistory() instance method returns String with new lines in it.

• For portability use platform dependent line separator.. . .

November 13, 2018 Java Just in Time - John Latham Page 63(0/0)

Standard API: System: getProperty()

• The class method System.getProperty()

gives access to various system property values

– e.g. Java version, platform, user home directory, . . .

– takes name of property as method parameter

– returns corresponding String value.

November 13, 2018 Java Just in Time - John Latham Page 64(0/0)

Standard API: System: getProperty():
line.separator

• System.getProperty() maps "line.separator"

onto the line separator for platform in use.

• E.g.

String lineSep = System.getProperty("line.separator");

November 13, 2018 Java Just in Time - John Latham Page 65(0/0)

The Person class

• Store (reference to) line separator in conveniently named variable

– use that instead of "\n"

– (also provide facility to change it – resuse this code in a later example

which needs "\n" regardless of platform).

017: // The correct line separator for this platform.

018: private static String NLS = System.getProperty("line.separator");

019:

020: // Override the default line separator.

021: public static void setLineSeparator(String requiredLineSeparator)

022: {

023: NLS = requiredLineSeparator;

024: } // setLineSeparator

025:

November 13, 2018 Java Just in Time - John Latham Page 66(0/0)

The Person class

026:

027: // Return the age history of this person.

028: public String ageHistory()

029: {

030: Date presentDate = Date.getPresentDate();

031:

032: // Deal with cases where the person has just been born

033: // or is not yet born.

034: if (presentDate.equals(birthDate))

035: return name + " was, or will be, born today!";

036: else if (presentDate.lessThan(birthDate))

037: return name + " will be born on " + birthDate;

November 13, 2018 Java Just in Time - John Latham Page 67(0/0)

The Person class

038: else // The person was born before today.

039: {

040: // Start with the event of birth.

041: String result = name + " was born on " + birthDate;

042:

043: // Now we will go through the years since birth but before toda y.

044: // We keep track of the birthday we are considering.

045: Date someBirthday = birthDate.addYear();

046: int ageOnSomeBirthday = 1;

047: while (someBirthday.lessThan(presentDate))

048: {

049: result += NLS + name + " was " + ageOnSomeBirthday

050: + " on " + someBirthday;

051: someBirthday = someBirthday.addYear();

052: ageOnSomeBirthday++;

053: } // while

November 13, 2018 Java Just in Time - John Latham Page 68(0/0)

The Person class

054:

055: // Now deal with the next birthday.

056: if (someBirthday.equals(presentDate))

057: result += NLS + name + " is " + ageOnSomeBirthday + " today!";

058: else

059: result += NLS + name + " will be " + ageOnSomeBirthday

060: + " on " + someBirthday;

061:

062: return result;

063: } // else

064: } // ageHistory

065:

066: } // class Person

November 13, 2018 Java Just in Time - John Latham Page 69(0/0)

The Person class

• Generating age history done in Person

– because about persons.

• Printing age history to standard output done in AgeHistory

– because is what this program needs.

• Another program might want to do something different with age histories

– can use Person class without needing to change it

∗ because achieved good encapsulation.

• Guide: putting the logic where the data is.

November 13, 2018 Java Just in Time - John Latham Page 70(0/0)

Method: returning a value: multiple returns

• Use return statement to say what value returned from non-void method

– causes execution to end,

control transfers back to code that called method.

• Often last statement in method

– but can have one or more anywhere in method.

• Java compiler checks:

– No path through method not ending with return statement.

– No code in method that can never be reached due to earlier

return statement.

November 13, 2018 Java Just in Time - John Latham Page 71(0/0)

The Person class

Coffee

time:

Does the above ageHistory() instance method satisfy

those rules?

November 13, 2018 Java Just in Time - John Latham Page 72(0/0)

Trying it

• Not a full set of tests.

Console Input / Output

$ java AgeHistory

Enter today’s date as three numbers, dd mm yyyy: 01 07 2019

Enter the number of people: 1

Enter the name of person 1: Joey

Enter his/her birthday (dd mm yyyy): 01 07 2019

Joey was, or will be, born today!

$ _ Run

Console Input / Output

$ java AgeHistory

Enter today’s date as three numbers, dd mm yyyy: 01 07 2019

Enter the number of people: 1

Enter the name of person 1: Abi

Enter his/her birthday (dd mm yyyy): 2 07 2019

Abi will be born on 2/7/2019

$ _ Run

November 13, 2018 Java Just in Time - John Latham Page 73(0/0)

Trying it

Console Input / Output

$ java AgeHistory

Enter today’s date as three numbers, dd mm yyyy: 01 07 2019

Enter the number of people: 2

Enter the name of person 1: John

Enter his/her birthday (dd mm yyyy): 24 4 1959

John was born on 24/4/1959

John was 1 on 24/4/1960

John was 2 on 24/4/1961

(... lines removed to save space.)

John will be 61 on 24/4/2020

Enter the name of person 2: Lizzy

Enter his/her birthday (dd mm yyyy): 1 7 1989

Lizzy was born on 1/7/1989

Lizzy was 1 on 1/7/1990

...

$ _ Run

November 13, 2018 Java Just in Time - John Latham Page 74(0/0)

Coursework: ShapeShift

(Summary only)

Write a program to create and process two-dimensional shapes.

November 13, 2018 Java Just in Time - John Latham Page 75(0/0)

Section 3

Example:

Greedy children

November 13, 2018 Java Just in Time - John Latham Page 76(0/0)

Aim

AIM: To reinforce object oriented design, particularly with

mutable objects. We also meet multiple construc-

tor methods, class constants, the return statement

with no value, accessor methods, mutator methods,

the dangers of method parameters which are refer-

ences, converting the null reference to a string, and

Math.random() .

November 13, 2018 Java Just in Time - John Latham Page 77(0/0)

Greedy children

• Tongue-in-cheek model of greedy children scoffing ice cream.

A program is required that will provide a very simple model of the

behaviour of greedy children visiting ice cream parlours. Each

greedy child has a name and a fixed capacity, which is an amount

of ice cream he or she can hold. This capacity can either be

specified, or be chosen as a random number up to some

maximum. A child also has an amount of ice cream currently in the

stomach. This starts off as being zero, but increases through eating,

up to his or her capacity. Children can visit ice cream parlours and

attempt to eat an amount of ice cream. Being greedy, they may

well attempt to eat more than they have room left for, in which

case they end up spilling the excess ice cream down their T-shirt! A

child keeps track of how much ice cream he or she has spilt, which

is initially zero.

November 13, 2018 Java Just in Time - John Latham Page 78(0/0)

Greedy children

Ice cream parlours have a name and an amount of ice cream,

initially zero. They can accept deliveries of ice cream, which

increases their stock level. They also can serve ice cream to greedy

children, which reduces their stock level. Greedy children ask for

an amount of ice cream, which they will attempt to eat, unless the

parlour’s stock level is less than that amount, in which case the

children are served with as much ice cream as is left.

The program should demonstrate the simple model by creating some

children and parlours, and have some deliveries made, and

children served, etc.. As this is done, reports should be produced

on the standard output, enabling the user of the program to follow

the events. In this sense then, the main method of the program will

tell a little story, and can be made to tell a different story by

changing the code.

November 13, 2018 Java Just in Time - John Latham Page 79(0/0)

Identifying the classes

• Analyse requirements:

Class list for GreedyChildren

Class Description

GreedyChildren The main class containing the main method. It will

make instances of IceCreamParlour and GreedyChild .

IceCreamParlour An instance of this will represent an ice cream parlour.

GreedyChild An instance of this will represent a greedy child.

November 13, 2018 Java Just in Time - John Latham Page 80(0/0)

Designing the class interfaces

Public method interfaces for class GreedyChildren.

Method Return Arguments Description

main String[] The main method for the program.

November 13, 2018 Java Just in Time - John Latham Page 81(0/0)

Designing the class interfaces

Public method interfaces for class IceCreamParlour.

Method Return Arguments Description

Constructor String Construct an ice cream parlour with

the given String name.

acceptDelivery double Accept an ice creamdelivery of the

given amount, which increases the

stock level.

November 13, 2018 Java Just in Time - John Latham Page 82(0/0)

Designing the class interfaces

Public method interfaces for class IceCreamParlour.

Method Return Arguments Description

tryToServe double double Attempt to serve the given amount of

ice cream, and return the amount actu-

ally served. This is the amount asked for,

or as much as the parlour can provide if

the stock is too low. The stock level is re-

duced by the amount returned.

toString String Returns a representation of the ice

cream parlour, showing name and stock

level.

November 13, 2018 Java Just in Time - John Latham Page 83(0/0)

Designing the class interfaces

Public method interfaces for class GreedyChild.

Method Return Arguments Description

Constructor String, double Construct a greedy child with the

given String name and double

stomach capacity.

Constructor String Construct a greedy child with the

given String name and a ran-

domly chosen stomach capac-

ity.

enterParlour IceCreamParlour This child enters the given par-

lour, implicitly leaving any parlour

s/he is already in.

November 13, 2018 Java Just in Time - John Latham Page 84(0/0)

Designing the class interfaces

Public method interfaces for class GreedyChild.

Method Return Arguments Description

leaveParlour This child leaves the parlour s/he is

currently in, if any, so that s/he is not

in any parlour afterwards.

eat double If this child is in a parlour, s/he at-

tempts to eat ice cream, served

by that parlour. The amount de-

sired is the given double. The served

amount adds to his/her stomach

contents, with any excess being spilt

once s/he is full. The method has no

effect if s/he is not in a parlour.

November 13, 2018 Java Just in Time - John Latham Page 85(0/0)

Designing the class interfaces

Public method interfaces for class GreedyChild.

Method Return Arguments Description

toString String Returns a representation of the greedy

child, showing name, capacity, contents,

spillage and which parlour the child is cur-

rently in.

• Also fixed maximum value for when stomach capacity chosen randomly.

• Two constructor methods for GreedyChild ?

November 13, 2018 Java Just in Time - John Latham Page 86(0/0)

Method: constructor methods: more than one

• A class can have many constructor methods

– as long as types of method parameters different

– so compiler knows which one to use.

November 13, 2018 Java Just in Time - John Latham Page 87(0/0)

Designing the class interfaces

Coffee

time:

Look at the interface descriptions above and decide

which classes will be used to make mutable objects.

November 13, 2018 Java Just in Time - John Latham Page 88(0/0)

The IceCreamParlour class

001: /* Ice cream parlours have a name and an amount of ice cream, in itially zero.

002: They can accept deliveries of ice cream, which increases the ir stock level.

003: They also can serve ice cream to greedy children, which reduc es their stock

004: level. Greedy children ask for an amount of ice cream, which t hey will

005: attempt to eat, unless the parlour’s stock level is less than that amount,

006: in which case the children are served with as much ice cream as is left.

007: */

November 13, 2018 Java Just in Time - John Latham Page 89(0/0)

The IceCreamParlour class

008: public class IceCreamParlour

009: {

010: // The name of the parlour.

011: private final String name;

012:

013: // The amount of ice cream in stock.

014: private double iceCreamInStock = 0;

Coffee

time:

What is the significance of us making one of these in-

stance variables be a final variable, but not the other?

Are instances of IceCreamParlour mutable objects?

November 13, 2018 Java Just in Time - John Latham Page 90(0/0)

The IceCreamParlour class

017: // Construct an ice cream parlour -- given the required name.

018: public IceCreamParlour(String requiredName)

019: {

020: name = requiredName;

021: } // IceCreamParlour

• Simplicity: ignore checking negative delivery amounts, etc..

024: // Accept delivery of ice cream.

025: public void acceptDelivery(double amount)

026: {

027: iceCreamInStock += amount;

028: } // acceptDelivery

November 13, 2018 Java Just in Time - John Latham Page 91(0/0)

The IceCreamParlour class

031: // Serve ice cream. Attempt to serve the amount desired

032: // but as much as we can if stock is too low.

033: // Return the amount served.

034: public double tryToServe(double desiredAmount)

035: {

036: double amountServed = desiredAmount;

037: if (amountServed > iceCreamInStock)

038: amountServed = iceCreamInStock;

039:

040: iceCreamInStock -= amountServed;

041: return amountServed;

042: } // tryToServe

November 13, 2018 Java Just in Time - John Latham Page 92(0/0)

The IceCreamParlour class

045: // Return a String giving the name and state.

046: public String toString()

047: {

048: return name + " has " + iceCreamInStock + " in stock";

049: } // toString

050:

051: } // class IceCreamParlour

November 13, 2018 Java Just in Time - John Latham Page 93(0/0)

The GreedyChild class

001: /* Each greedy child has a name and a fixed stomach size, which is an amount

002: of ice cream he or she can hold. This capacity can either be spe cified, or

003: be chosen as a random number up to some maximum. A child also ha s a current

004: stomach contents which starts off as being zero, but increas es, through

005: eating, up to his or her stomach size. Children can visit ice c ream

006: parlours and attempt to eat an amount of ice cream. Being gree dy, they may

007: well attempt to eat more than they have room left for, in which case they

008: end up spilling the excess ice cream down their T-shirt! A chi ld keeps

009: track of how much ice cream he or she has spilt, initially zero .

010: */

011: public class GreedyChild

012: {

November 13, 2018 Java Just in Time - John Latham Page 94(0/0)

Variable: final variables: class constant

• A class variable declared as final variable also known as

class constant.

• E.g. PI in Math class:

public static final double PI = 3.14159265358979323846;

• Convention – class constant names use only capital letters

– words separated by underscores ().

November 13, 2018 Java Just in Time - John Latham Page 95(0/0)

The GreedyChild class

013: // When a GreedyChild is created with no given capacity

014: // a random one is chosen up to this maximum.

015: public static final double MAXIMUM_RANDOM_STOMACH_SIZE = 20.0;

November 13, 2018 Java Just in Time - John Latham Page 96(0/0)

The GreedyChild class

017: // The name of the child.

018: private final String name;

019:

020: // The amount of ice cream the child can hold before being full .

021: private final double stomachSize;

022:

023: // The total amount of ice cream that the child has spilt by

024: // attempting to eat after being full. Initially zero.

025: private double tShirtStainSize = 0;

026:

027: // The amount of ice cream currently in the child’s stomach.

028: // Initially zero.

029: private double stomachContents = 0;

030:

031: // The ice cream parlour the child is currently in,

032: // or null if s/he is not in one.

033: private IceCreamParlour currentParlour = null;

November 13, 2018 Java Just in Time - John Latham Page 97(0/0)

The GreedyChild class

036: // Construct a greedy child -- given the required name and siz e.

037: public GreedyChild(String requiredName, double requiredStomachSize)

038: {

039: name = requiredName;

040: stomachSize = requiredStomachSize;

041: } // GreedyChild

November 13, 2018 Java Just in Time - John Latham Page 98(0/0)

Standard API: Math: random()

• Standard class java.lang.Math has class method random

– no method arguments

– returns double r, such that: 0.0 ≤ r < 1.0

• Pseudo randomly chosen

– approximately uniform distribution of random numbers.

November 13, 2018 Java Just in Time - John Latham Page 99(0/0)

The GreedyChild class

044: // Construct a greedy child -- given the required name

045: // with a randomly chosen size.

046: public GreedyChild(String requiredName)

047: {

048: name = requiredName;

049: stomachSize = Math.random() * MAXIMUM_RANDOM_STOMACH_SI ZE;

050: } // GreedyChild

November 13, 2018 Java Just in Time - John Latham Page 100(0/0)

The GreedyChild class

053: // Enter an ice cream parlour.

054: public void enterParlour(IceCreamParlour parlourEntered)

055: {

056: currentParlour = parlourEntered;

057: } // enterParlour

058:

059:

060: // Leave an ice cream parlour.

061: public void leaveParlour()

062: {

063: currentParlour = null;

064: } // leaveParlour

November 13, 2018 Java Just in Time - John Latham Page 101(0/0)

Method: return with no value

• A void method may have return statements with no return value

just return

– cause execution of method to end

– control transfer to code that called method.

• Permits single entry, multiple exit design

– method starts at beginning

– various exits

∗ depending on conditions.

November 13, 2018 Java Just in Time - John Latham Page 102(0/0)

The GreedyChild class

067: // Attempt to eat a given amount of ice cream from the current p arlour.

068: // No effect if no parlour. Otherwise parlour attempts to ser ve that amount.

069: // Excess is spilt once full.

070: public void tryToEat(double amountDesired)

071: {

072: if (currentParlour == null)

073: return;

074:

075: double amountServed = currentParlour.tryToServe(amountDesire d);

076: double roomLeft = stomachSize - stomachContents;

077: if (amountServed <= roomLeft)

078: stomachContents += amountServed;

079: else

080: {

081: stomachContents = stomachSize;

082: tShirtStainSize += amountServed - roomLeft;

083: } // if

084: } // tryToEat

November 13, 2018 Java Just in Time - John Latham Page 103(0/0)

The GreedyChild class

087: // The correct line separator for this platform.

088: private static final String NLS = System.getProperty("line.separator");

089:

090:

091: // Return a String giving the name and state.

092: public String toString()

093: {

094: return name + " is " + stomachContents + "/" + stomachSize + " full"

095: + " and has spilt " + tShirtStainSize + NLS

096: + "(currently in " + currentParlour + ")";

097: } // toString

098:

099: } // class GreedyChild

Coffee

time:

In toString() above, what do you think will happen when

currentParlour contains the null reference, null?

November 13, 2018 Java Just in Time - John Latham Page 104(0/0)

Method: accessor methods

• An accessor method – public instance method

– reveals some/all of object state

– without changing it.

• E.g. getXyz() for instance variable xyz

– however perhaps for class with good encapsulation

might not want to reveal instance variables. . .

• More general idea:

– reveals some feature of the object which might or might not be

directly implemented as single instance variable.

November 13, 2018 Java Just in Time - John Latham Page 105(0/0)

Method: mutator methods

• A mutator method – public instance method

– alters some/all of object state.

• E.g. setXyz() for instance variable xyz .

• More general idea: changes value of some feature which might or might

not be directly implemented as single instance variable.

• Obvious(?): only mutable objects have mutator methods.

November 13, 2018 Java Just in Time - John Latham Page 106(0/0)

The GreedyChild class

Coffee

time:

Which instance methods in IceCreamParlour and

GreedyChild are accessor methods and which are

mutator methods?

November 13, 2018 Java Just in Time - John Latham Page 107(0/0)

The GreedyChildren class

001: /* This program demonstrates the simple model of greedy chil dren eating at ice

002: cream parlours. It creates some children and parlours, has d eliveries made

003: to the parlours, and children served at them. As this is done, it reports

004: on the standard output, enabling the user of the program to fo llow the

005: events. So the main method tells a story, and can easily be alt ered to tell

006: a different one.

007: */

008: public class GreedyChildren

009: {

November 13, 2018 Java Just in Time - John Latham Page 108(0/0)

The GreedyChildren class

010: // Private helper method to make a delivery and report it.

011: private static void deliver(IceCreamParlour parlour, double amount)

012: {

013: System.out.println(parlour);

014: System.out.println("accepts delivery of " + amount);

015: parlour.acceptDelivery(amount);

016: System.out.println("Result: " + parlour);

017: System.out.println();

018: } // deliver

• Note: above takes reference to an IceCreamParlour object

– object gets altered!

November 13, 2018 Java Just in Time - John Latham Page 109(0/0)

Method: changing parameters does not affect

arguments: but referenced objects can be changed

• Java uses call by value

– method parameters obtain only value from method argument

– so method cannot effect calling environment

via method parameters of primitive type.

• But for method parameters of reference type:

– method can following reference and change state of object.

– often what we want, but

November 13, 2018 Java Just in Time - John Latham Page 110(0/0)

Method: changing parameters does not affect

arguments: but referenced objects can be changed

• E.g. assume changeState() is instance method in SomeClass ,

alters some instance variables:

public static void changeSomething(SomeClass object, SomeType value)

{

object.changeState(value); // This really changes the obj ect referred to.

object = null; // This has no effect outside of this method.

...

} // changeSomething

...

SomeClass variable = new SomeClass();

changeSomething(variable, someValueOfSomeType);

• First line has had impact outside of method

– but second line has not.

November 13, 2018 Java Just in Time - John Latham Page 111(0/0)

The GreedyChildren class

021: // Private helper method to have a child eat at a parlour.

022: private static void eat(GreedyChild child, double amount,

023: IceCreamParlour parlour)

024: {

025: System.out.println(child);

026: System.out.println("is entering " + parlour);

027: child.enterParlour(parlour);

028: System.out.println(child);

029: System.out.println("is eating " + amount);

030: child.tryToEat(amount);

031: System.out.println("Result: " + child);

032: System.out.println();

033: } // eat

November 13, 2018 Java Just in Time - John Latham Page 112(0/0)

The GreedyChildren class

036: // The main method tells the ‘story’.

037: public static void main(String[] args)

038: {

039: System.out.println("Greedy children:");

040: GreedyChild child1 = new GreedyChild("Bloated Basil", 20);

041: System.out.println(child1);

042: System.out.println("Making child with random capacity le ss than "

043: + GreedyChild.MAXIMUM_RANDOM_STOMACH_SIZE);

044: GreedyChild child2 = new GreedyChild("Cautious Catherine");

045: System.out.println(child2);

046: GreedyChild child3 = new GreedyChild("Lanky Larry", 4);

047: System.out.println(child3);

048: System.out.println();

049:

November 13, 2018 Java Just in Time - John Latham Page 113(0/0)

The GreedyChildren class

050: System.out.println("Ice cream parlours:");

051: IceCreamParlour parlour1 = new IceCreamParlour("Glacial Palacial");

052: System.out.println(parlour1);

053: IceCreamParlour parlour2 = new IceCreamParlour("Nice ’n’ Icey");

054: System.out.println(parlour2);

055: IceCreamParlour parlour3 = new IceCreamParlour("Dreamy Creamy Cup");

056: System.out.println(parlour3);

057: System.out.println();

058:

059: System.out.println("Deliveries:");

060: System.out.println();

061: deliver(parlour1, 50);

062: deliver(parlour2, 10);

063: deliver(parlour3, 30);

November 13, 2018 Java Just in Time - John Latham Page 114(0/0)

The GreedyChildren class

064: System.out.println("Eating:");

065: System.out.println();

066: eat(child1, 15, parlour1);

067: eat(child2, 1, parlour1);

068: eat(child3, 2, parlour1);

069: eat(child1, 8, parlour2);

070: eat(child2, 1, parlour2);

071: eat(child3, 2, parlour2);

072: eat(child1, 10, parlour3);

073: eat(child2, 1, parlour3);

074: eat(child3, 2, parlour3);

075: } // main

076:

077: } // class GreedyChildren

November 13, 2018 Java Just in Time - John Latham Page 115(0/0)

Trying it

Console Input / Output

$ java GreedyChildren

Greedy children:

Bloated Basil is 0.0/20.0 full and has spilt 0.0

(currently in null)

Making child with random capacity less than 20.0

Cautious Catherine is 0.0/14.61935574753314 full and has s pilt 0.0

(currently in null)

Lanky Larry is 0.0/4.0 full and has spilt 0.0

(currently in null)

Ice cream parlours:

Glacial Palacial has 0.0 in stock

Nice ’n’ Icey has 0.0 in stock

Dreamy Creamy Cup has 0.0 in stock

...

$ _ Run

• Note null reference printed as null .

November 13, 2018 Java Just in Time - John Latham Page 116(0/0)

Type: String: conversion: from object: null

reference

• An operand of concatenation which is object reference

has toString() instance method invoked

– but what if is null reference?

∗ Uses string "null" instead.

• Assume someString is String , myVar is reference type, then:

someString + myVar

treated as:

someString + (myVar == null

? "null"

: (myVar.toString() == null ? "null" : myVar.toString()))

November 13, 2018 Java Just in Time - John Latham Page 117(0/0)

Type: String: conversion: from object: null

reference

• Most Java programmers prefer

"" + myVar

to

myVar.toString()

– avoids possibility of exception if myVar is null .

November 13, 2018 Java Just in Time - John Latham Page 118(0/0)

Coursework: StudentsCalling

(Summary only)

Write a program that simulates the behaviour of students using their mobile

phones.

November 13, 2018 Java Just in Time - John Latham Page 119(0/0)

Section 4

Example:

Greedy children gone wrong

November 13, 2018 Java Just in Time - John Latham Page 120(0/0)

Aim

AIM: To look at the idea of an object referenced by more

than one variable and the danger this presents when it

is a mutable object.

November 13, 2018 Java Just in Time - John Latham Page 121(0/0)

Variable: of a class type: holding the same

reference as some other variable

• Two or more variables can hold reference to same instance of a class. E.g:

Point p1 = new Point(10, 30);

Point p2 = p1;

10

30private double y

private double x

A Point object
Point p1

Point p2

November 13, 2018 Java Just in Time - John Latham Page 122(0/0)

Variable: of a class type: holding the same

reference as some other variable

• Causes no problems if is immutable object

– cannot change object’s state

no matter which variable used to access it

– in effect object referred to behaves the same as if two different objects.

• Following has almost same effect :

Point p1 = new Point(10, 30);

Point p2 = new Point(10, 30);

• Only difference is p1 == p2 and p1 != p2

– true and false versus false and true.

November 13, 2018 Java Just in Time - John Latham Page 123(0/0)

Variable: of a class type: holding the same

reference as some other variable

• If object referenced by more than one variable

is mutable object we must be careful

– any change made via any one variable has

effect on (same) object referred to by other variables.

∗ May be what we want

∗ may be a problem if poor design or mistake in code.

• E.g. . . .

November 13, 2018 Java Just in Time - John Latham Page 124(0/0)

Variable: of a class type: holding the same

reference as some other variable

public class Employee

{

private final String name;

private int salary;

public Employee(String requiredName, int initialSalary)

{

name = requiredName;

salary = initialSalary;

} // Employee

public String getName()

{

return name;

} // getName

November 13, 2018 Java Just in Time - John Latham Page 125(0/0)

Variable: of a class type: holding the same

reference as some other variable

public void setSalary(int newSalary)

{

salary = newSalary;

} // setSalary

public int getSalary()

{

return salary;

} // getSalary

} // class Employee

November 13, 2018 Java Just in Time - John Latham Page 126(0/0)

Variable: of a class type: holding the same

reference as some other variable

...

Employee debora = new Employee("Debs", 50000);

Employee sharmane = new Employee("Shaz", 40000);

...

Employee worstEmployee = debora;

Employee bestEmployee = sharmane;

...

• Accidental code:

worstEmployee = bestEmployee;

November 13, 2018 Java Just in Time - John Latham Page 127(0/0)

Variable: of a class type: holding the same

reference as some other variable

• Continued intentional code:

...

bestEmployee.setSalary(55000);

worstEmployee.setSalary(0);

System.out.println("Our best employee, " + bestEmployee. getName()

+ ", is paid " + bestEmployee.getSalary());

System.out.println("Our worst employee, " + worstEmploye e.getName()

+ ", is paid " + worstEmployee.getSalary());

• Result: Debora keeps her 50,000; Sharmane increased to 55,000

but then cut to 0. Output:

Our best employee, Shaz, is paid 0

Our worst employee, Shaz, is paid 0

November 13, 2018 Java Just in Time - John Latham Page 128(0/0)

Greedy children gone wrong

001: public class GreedyChildren

002: {

003: // Private helper method to make a delivery and report it.

004: private static void deliver(IceCreamParlour parlour, double amount)

005: {

006: System.out.println(parlour);

007: System.out.println("accepts delivery of " + amount);

008: parlour.acceptDelivery(amount);

009: System.out.println("Result: " + parlour);

010: System.out.println();

011: } // deliver

November 13, 2018 Java Just in Time - John Latham Page 129(0/0)

Greedy children gone wrong

• Simplified – make only instances of IceCreamParlour .

014: public static void main(String[] args)

015: {

016: IceCreamParlour parlour1 = new IceCreamParlour("Glacial Palacial");

017: System.out.println(parlour1);

018: IceCreamParlour parlour2 = new IceCreamParlour("Nice ’n’ Icey");

019: System.out.println(parlour2);

020: IceCreamParlour parlour3 = new IceCreamParlour("Dreamy Creamy Cup");

021: System.out.println(parlour3);

022: System.out.println();

• ‘Accidental’ piece of code

023: parlour3 = parlour1;

November 13, 2018 Java Just in Time - John Latham Page 130(0/0)

Greedy children gone wrong

025: System.out.println("Deliveries:");

026: System.out.println();

027: deliver(parlour1, 50);

028: deliver(parlour2, 10);

029: deliver(parlour3, 30);

030:

031: System.out.println("Total ice cream delivered was " + (50 + 10 + 30));

032: System.out.println("which is waiting in parlours as follo ws.");

033: System.out.println(parlour1);

034: System.out.println(parlour2);

035: System.out.println(parlour3);

036: } // main

037:

038: } // class GreedyChildren

Coffee

time:

Before reading on, predict what the output of the pro-

gram will be.

November 13, 2018 Java Just in Time - John Latham Page 131(0/0)

Trying it

Console Input / Output

$ java GreedyChildren

Glacial Palacial has 0.0 in stock

Nice ’n’ Icey has 0.0 in stock

Dreamy Creamy Cup has 0.0 in stock

Deliveries:

Glacial Palacial has 0.0 in stock

accepts delivery of 50.0

Result: Glacial Palacial has 50.0 in stock

Nice ’n’ Icey has 0.0 in stock

accepts delivery of 10.0

Result: Nice ’n’ Icey has 10.0 in stock

Glacial Palacial has 50.0 in stock

accepts delivery of 30.0

Result: Glacial Palacial has 80.0 in stock

Total ice cream delivered was 90

which is waiting in parlours as follows.

Glacial Palacial has 80.0 in stock

Nice ’n’ Icey has 10.0 in stock

Glacial Palacial has 80.0 in stock

$ _ Run

November 13, 2018 Java Just in Time - John Latham Page 132(0/0)

Concepts covered in this chapter

• Each book chapter ends with a list of concepts covered in it.

• Each concept has with it

– a self-test question,

– and a page reference to where it was covered.

• Please use these to check your understanding before we start the next

chapter.

November 13, 2018 Java Just in Time - John Latham Page 133(0/0)

	Title
	Chapter 11: Object oriented design
	Chapter aims
	Section 2: Example: Age history revisited
	Aim
	Age history revisited
	Design: object oriented design
	Design: object oriented design

	Age history revisited
	Age history revisited
	Design: object oriented design: noun identification
	Design: object oriented design: noun identification

	Identifying the classes
	Identifying the classes
	Designing the class interfaces
	Designing the class interfaces
	Designing the class interfaces
	Design: object oriented design: encapsulation
	Design: object oriented design: encapsulation

	The AgeHistory class
	Operating environment: standard input
	Operating environment: standard input

	Standard API: System: in
	Standard API: System: in

	Package
	Package

	Package: java.util
	Package: java.util

	Class: importing classes
	Class: importing classes

	Standard API: Scanner
	Standard API: Scanner

	The AgeHistory class
	Code clarity: comments: multi-line comments
	Code clarity: comments: multi-line comments

	The AgeHistory class
	The AgeHistory class
	Stubbing Date and Person
	Class: stub
	Class: stub

	Person.java
	Date.java
	Stubbing Date and Person
	Stubbing Date and Person
	The Date class
	Variable: of a class type: null reference
	Variable: of a class type: null reference

	The Date class
	Class: objects: may be mutable or immutable
	Class: objects: may be mutable or immutable

	The Date class
	Variable: final variables
	Variable: final variables

	The Date class
	The Person class
	The Person class
	Standard API: System: getProperty()
	Standard API: System: getProperty()

	Standard API: System: getProperty(): line.separator
	Standard API: System: getProperty(): line.separator

	The Person class
	The Person class
	Method: returning a value: multiple returns
	Method: returning a value: multiple returns

	The Person class
	Trying it
	Trying it
	Coursework: ShapeShift
	Section 3: Example: Greedy children
	Aim
	Greedy children
	Greedy children
	Identifying the classes
	Designing the class interfaces
	Designing the class interfaces
	Designing the class interfaces
	Designing the class interfaces
	Designing the class interfaces
	Method: constructor methods: more than one
	Method: constructor methods: more than one

	Designing the class interfaces
	The IceCreamParlour class
	The IceCreamParlour class
	The IceCreamParlour class
	The IceCreamParlour class
	The GreedyChild class
	Variable: final variables: class constant
	Variable: final variables: class constant

	The GreedyChild class
	The GreedyChild class
	The GreedyChild class
	Standard API: Math: random()
	Standard API: Math: random()

	The GreedyChild class
	The GreedyChild class
	Method: return with no value
	Method: return with no value

	The GreedyChild class
	The GreedyChild class
	Method: accessor methods
	Method: accessor methods

	Method: mutator methods
	Method: mutator methods

	The GreedyChild class
	The GreedyChildren class
	The GreedyChildren class
	Method: changing parameters does not affect arguments: but referenced objects can be changed
	Method: changing parameters does not affect arguments: but referenced objects can be changed

	The GreedyChildren class
	The GreedyChildren class
	Trying it
	Type: String: conversion: from object: null reference
	Type: String: conversion: from object: null reference

	Coursework: StudentsCalling
	Section 4: Example: Greedy children gone wrong
	Aim
	Variable: of a class type: holding the same reference as some other variable
	Variable: of a class type: holding the same reference as some other variable

	Greedy children gone wrong
	Greedy children gone wrong
	Greedy children gone wrong
	Trying it
	Concepts covered in this chapter

