
List of Slides

1 Title
2 Chapter 10: Separate classes
3 Chapter aims
5 Section 2: Example:Age history with Date class
6 Aim
7 Age history with Date class
8 Class: objects: contain a group of variables
9 Age history with Date class

10 Class: objects: are instances of a class
12 Variable: instance variables
14 Age history with Date class
15 Age history with Date class
16 Method: constructor methods
20 Age history with Date class
21 The full Date code
22 Age history with Date class

0-0

23 Age history with Date class
24 Class: is a type
25 Variable: of a class type
26 Age history with Date class
27 Variable: of a class type: stores a reference to an object
29 Type: primitive versus reference
30 Age history with Date class
31 Class: making instances with new
34 Age history with Date class
35 Age history with Date class
36 Age history with Date class
37 Age history with Date class
38 Age history with Date class
39 Age history with Date class
40 Age history with Date class
41 Method: accepting parameters: of a class type
42 Age history with Date class
43 Class: accessing instance variables

0-1

44 Age history with Date class
47 Age history with Date class
48 Trying it
49 Coursework: AddQuadPoly
50 Section 3: Improving the Date class: lessThan() and equals() methods
51 Aim
52 Improving the Date class: lessThan() and equals() methods
53 Method: class versus instance methods
60 Improving the Date class: lessThan() and equals() methods
61 Improving the Date class: lessThan() and equals() methods
62 Improving the Date class: lessThan() and equals() methods
63 Improving the Date class: lessThan() and equals() methods
64 Improving the Date class: lessThan() and equals() methods
66 Improving the Date class: lessThan() and equals() methods
67 Improving the Date class: lessThan() and equals() methods
68 Improving the Date class: lessThan() and equals() methods
69 Improving the Date class: lessThan() and equals() methods
70 Improving the Date class: lessThan() and equals() methods

0-2

71 Improving the Date class: lessThan() and equals() methods
72 Variable: of a class type: stores a reference to an object: avoid misunder
75 Coursework: CompareQuadPoly
76 Section 4: Improving the Date class: toString() method
77 Aim
78 Improving the Date class: toString() method
79 Improving the Date class: toString() method
81 Method: a method may have no parameters
82 Improving the Date class: toString() method
83 Improving the Date class: toString() method
88 Coursework: AddQuadPoly and CompareQuadPoly with toString()
89 Section 5: Improving the Date class: addYear() method
90 Aim
91 Improving the Date class: addYear() method
92 Variable: instance variables: should be private by default
93 Improving the Date class: addYear() method
95 Method: returning a value: of a class type
98 Improving the Date class: addYear() method

0-3

99 Improving the Date class: addYear() method
100 Improving the Date class: addYear() method
101 Type: String: conversion: from object
104 Improving the Date class: addYear() method
106 Improving the Date class: addYear() method
109 Coursework: QuadPoly with an addition method
110 Section 6: Alternative style
111 Aim
112 Class: objects: this reference
113 Alternative style
115 Alternative style
117 Concepts covered in this chapter

0-4

Title

Java Just in Time

John Latham

November 6, 2018

November 6, 2018 Java Just in Time - John Latham Page 1(0/0)

Chapter 10

Separate classes

November 6, 2018 Java Just in Time - John Latham Page 2(0/0)

Chapter aims

• All programs up to now have been in one class.

• Programs generally consist of more than one class

– two reasons why discussed already.

Coffee

time:

Can you remember those two reasons? One of them is

about size, and the other is relevant every time we use,

say, System or Math.

November 6, 2018 Java Just in Time - John Latham Page 3(0/0)

Chapter aims

• Look at using a class as template for constructing objects

– used in another class.

• Meet Java technology for object oriented programming:

– constructor methods,

– instance variables,

– instance methods.

• OOP helps reduce complexity of sophisticated programs.

– We revisit age history example.

November 6, 2018 Java Just in Time - John Latham Page 4(0/0)

Section 2

Example:

Age history with Date class

November 6, 2018 Java Just in Time - John Latham Page 5(0/0)

Aim

AIM: To introduce the principle of using more than one

class in a program, and in particular, the idea of us-

ing a class as a template for the construction of ob-

jects. We also introduce instance variables, construc-

tor methods, creating new objects, the fact that a class

is a type and the use of references.

November 6, 2018 Java Just in Time - John Latham Page 6(0/0)

Age history with Date class

• Previously used three variables to store each date.

• In abstract they were a single date with three parts.

• Ideally, this could be reflected in our program. . . .

November 6, 2018 Java Just in Time - John Latham Page 7(0/0)

Class: objects: contain a group of variables

• Group collection of variables into one entity

– by creating an object.

• E.g. represent a point using x and y value.

– Combine x and y variables into single Point object.

November 6, 2018 Java Just in Time - John Latham Page 8(0/0)

Age history with Date class

• Want to combine three variables

– components of a date

– into one object.

• Need to define a class telling Java how to make such objects.

November 6, 2018 Java Just in Time - John Latham Page 9(0/0)

Class: objects: are instances of a class

• Before can make objects, need to tell Java how they are constructed.

• E.g. to make a Point object, need to say

– will be pair of variables inside it called x and y

– what types they are

– how they get their values.

• We write a class to act as template for creation of objects

– contains the blue-print / instructions to Java.

• Need a class for each kind of object desired.

– E.g. have a Point class saying how to make Point objects

or Chicken class for making Chickens, etc..

– choose any name we feel is appropriate

∗ (by convention always start with capital letter).

November 6, 2018 Java Just in Time - John Latham Page 10(0/0)

Class: objects: are instances of a class

• Having described template, can ask Java to make objects of that class

– at run time.

• Objects are instances of their class.

– E.g. particular Point objects all instances of our Point class.

– Can create many different Point objects

∗ each contains own x and y variables

– all made from the one template

∗ the Point class.

November 6, 2018 Java Just in Time - John Latham Page 11(0/0)

Variable: instance variables

• The variables inside objects are called instance variables

– belong to instances of a class.

• Declare like class variables but without reserved word static.

• E.g. part of definition of a Point class

– each Point object has two instance variables:

public class Point

{

private double x;

private double y;

...

} // class Point

November 6, 2018 Java Just in Time - John Latham Page 12(0/0)

Variable: instance variables

• Instance variables have visibility modifier

– private means can only be accessed by code inside class which

declared them.

• Class variables belong to class which declared them

– created at run time in the static context when class is loaded.

– Only one copy.

• Instance variables belong to objects

– created at run time dynamically – dynamic context –

∗ when object they are part of is created.

– As many copies as there are instances of the class

∗ each object has its own set of instance variables.

November 6, 2018 Java Just in Time - John Latham Page 13(0/0)

Age history with Date class

• Have Date class as template for creating Date objects.

• Source code stored in file Date.java

– compiled separately to produce Date.class byte-code file.

• Have three instance variables – three components of a date

– with public visibility

∗ so can be accessed by main method in AgeHistory2 class.

November 6, 2018 Java Just in Time - John Latham Page 14(0/0)

Age history with Date class

001: // Representation of a date.

002: public class Date

003: {

004: // The day, month and year of the date.

005: public int day, month, year;

• This tells Java that Date objects each have three instance variables.

– Note lack of static.

• Next tell it how to construct Date objects

– how do variables get their values?

November 6, 2018 Java Just in Time - John Latham Page 15(0/0)

Method: constructor methods

• A class to be used as object template should have constructor method

– special kind of method

– containing instructions for constructing instances of the class.

• Constructor method has same name as class it is defined in.

• Usually public, no return type nor void.

• Can have method parameters,

– typically initial values for some/all instance variables.

November 6, 2018 Java Just in Time - John Latham Page 16(0/0)

Method: constructor methods

• E.g. constructor method for Point class with instance variables x and y:

public Point(double requiredX, double requiredY)

{

x = requiredX;

y = requiredY;

} // Point

• Tells Java in order to construct instance of class Point

– must be given two double values

– first will be placed in x instance variable

– second in y instance variable.

November 6, 2018 Java Just in Time - John Latham Page 17(0/0)

Method: constructor methods

• Constructor methods called like other methods

– except precede method call with reserved word new.

• E.g. create Point object with x and y being 7.4 and -19.9.

new Point(7.4, -19.9);

• Can have as many Point objects as we wish.

• Each has own pair of instance variables

– possibly different values for x and y.

• E.g. four Point objects – coordinates of a rectangle with centre (0, 0).

new Point(-20, 40);

new Point(-20, -40);

new Point(20, 40);

new Point(20, -40);

November 6, 2018 Java Just in Time - John Latham Page 18(0/0)

Method: constructor methods

−20

40private double y

private double x

A Point object

−20

−40private double y

private double x

A Point object

20

40private double y

private double x

A Point object

20

−40private double y

private double x

A Point object

November 6, 2018 Java Just in Time - John Latham Page 19(0/0)

Age history with Date class

• Date constructor is given three int values

– sets the three instance variables.

008: // Construct a date -- given the required day, month and year.

009: public Date(int requiredDay, int requiredMonth, int requiredYear)

010: {

011: day = requiredDay;

012: month = requiredMonth;

013: year = requiredYear;

014: } // Date

015:

016: } // class Date

November 6, 2018 Java Just in Time - John Latham Page 20(0/0)

The full Date code

001: // Representation of a date.

002: public class Date

003: {

004: // The day, month and year of the date.

005: public int day, month, year;

006:

007:

008: // Construct a date -- given the required day, month and year.

009: public Date(int requiredDay, int requiredMonth, int requiredYear)

010: {

011: day = requiredDay;

012: month = requiredMonth;

013: year = requiredYear;

014: } // Date

015:

016: } // class Date

November 6, 2018 Java Just in Time - John Latham Page 21(0/0)

Age history with Date class

• Can compile Date class

– but cannot run it – no main method.

Console Input / Output

$ javac Date.java

$ java Date

Exception in thread "main" java.lang.NoSuchMethodError: main

$ _ Run

November 6, 2018 Java Just in Time - John Latham Page 22(0/0)

Age history with Date class

• Rest of program lives in AgeHistory2 class

– similar to previous version

– but uses Date class to store dates.

• Will have variables of type Date.

November 6, 2018 Java Just in Time - John Latham Page 23(0/0)

Class: is a type

• A type is a set of values.

– E.g. int is all whole numbers representable in 32 binary digits.

– E.g. double is all real numbers representable using double precision.

– E.g. boolean contains true and false.

• A class can be used as template to create objects

– thus has an associated type:

∗ the set of all objects that can be created – instances of that class.

– E.g. Point type is set of all Point objects that can be created.

November 6, 2018 Java Just in Time - John Latham Page 24(0/0)

Variable: of a class type

• Can use a class much like built-in types e.g. int, double and boolean.

• Can declare variable whose type is a class.

• E.g. assuming class Point:

Point p1;

Point p2;

– declares two local variables or method variables of type Point.

• Can also have class variables whose type is a class.

– instance variables too.

November 6, 2018 Java Just in Time - John Latham Page 25(0/0)

Age history with Date class

• We have class variable of type Date.

001: // Print out an age history of two people.

002: // Arguments: present date, first birth date, second birth d ate.

003: // Each date is three numbers: day month year.

004: public class AgeHistory2

005: {

006: // The present date.

007: private static Date presentDate;

• This will store a reference to a Date object containing the three date

components supplied as command line arguments.

November 6, 2018 Java Just in Time - John Latham Page 26(0/0)

Variable: of a class type: stores a reference to an

object

• For a variable of a built-in primitive type, Java knows how much memory

will be needed for it.

– E.g. all int variables need 4 bytes.

– E.g. all double variables need 8 bytes.

• Java needs this to allocate memory addresses for variables.

• But is not possible to calculate how much memory is needed for objects

– instances of different classes will have different sizes

– sometimes instances of the same class have different sizes!

• Size of an object is only known when it is created, at run time.

November 6, 2018 Java Just in Time - John Latham Page 27(0/0)

Variable: of a class type: stores a reference to an

object

• So, variables of a class type do not store an object

– instead store a reference to an object.

∗ essentially the memory address at which the object resides

∗ only known when object is created at run time.

– But size of all references is the same

∗ so Java knows how much memory to allocate for a variable of class

type.

• Strictly, type associated with a class is set of possible references to

instances of the class.

November 6, 2018 Java Just in Time - John Latham Page 28(0/0)

Type: primitive versus reference

• Every type in Java is either primitive type or reference type.

• Values of primitive types have size known at compile time.

• Types for which size of individual values is only known at run time

– e.g. classes

are called reference types

– values are always accessed via reference.

November 6, 2018 Java Just in Time - John Latham Page 29(0/0)

Age history with Date class

Coffee

time:

Do you think String is a reference type or a primitive

type? Hint: how long is a string?

November 6, 2018 Java Just in Time - John Latham Page 30(0/0)

Class: making instances with new

• An instance of a class created by calling class constructor method

– using reserved word new

– supplying method arguments for method parameters.

• When executed at run time JVM creates an object

– helped by constructor method code.

• Constructor methods always return a value

– but not stated in heading

– value is reference to newly created object.

• Reference can be stored in a variable.

November 6, 2018 Java Just in Time - John Latham Page 31(0/0)

Class: making instances with new

• E.g. assuming Point class:

Point topLeft = new Point(-20, 40);

Point bottomLeft = new Point(-20, -40);

Point topRight = new Point(20, 40);

Point bottomRight = new Point(20, -40);

• Declares four Point variables.

• Creates four instances of Point.

• Diagram. . .

November 6, 2018 Java Just in Time - John Latham Page 32(0/0)

Class: making instances with new

−20

40private double y

private double x

A Point object

Point topLeft

−20

−40private double y

private double x

A Point object

Point bottomLeft 20

−40private double y

private double x

A Point object

Point bottomRight

20

40private double y

private double x

A Point object

Point topRight

• Each Point object has two instance variables, x and y.

November 6, 2018 Java Just in Time - John Latham Page 33(0/0)

Age history with Date class

• Previously had three class variables

– each held one int component of present date.

01

07

2019

private static int presentDay

private static int presentMonth

private static int presentYear

November 6, 2018 Java Just in Time - John Latham Page 34(0/0)

Age history with Date class

• Now have one class variable

– contains reference to a Date object

∗ containing three int instance variables.

01

07

2019

public int month

public int day

public int year

private static Date presentDate

A Date object

November 6, 2018 Java Just in Time - John Latham Page 35(0/0)

Age history with Date class

• Put main method first to ease discussion.

– Get first three command line arguments

– turn to ints

– pass to Date constructor method

– store reference in presentDate.

010: // The main method: get arguments and call printAgeHistory.

011: public static void main(String[] args)

012: {

013: // The present date.

014: presentDate = new Date(Integer.parseInt(args[0]),

015: Integer.parseInt(args[1]),

016: Integer.parseInt(args[2]));

November 6, 2018 Java Just in Time - John Latham Page 36(0/0)

Age history with Date class

• Then

– do similar with next two argument triples

– store resulting references in local variables

– call printAgeHistory() method twice.

November 6, 2018 Java Just in Time - John Latham Page 37(0/0)

Age history with Date class

018: // The dates of birth: these must be less than the present date .

019: Date birthDate1 = new Date(Integer.parseInt(args[3]),

020: Integer.parseInt(args[4]),

021: Integer.parseInt(args[5]));

022:

023: Date birthDate2 = new Date(Integer.parseInt(args[6]),

024: Integer.parseInt(args[7]),

025: Integer.parseInt(args[8]));

026:

027: // Now print the two age histories.

028: printAgeHistory(1, birthDate1);

029: printAgeHistory(2, birthDate2);

030: } // main

November 6, 2018 Java Just in Time - John Latham Page 38(0/0)

Age history with Date class

• Use of Date class has improved main method

– more succinct

– raised level of abstraction w.r.t. dates.

November 6, 2018 Java Just in Time - John Latham Page 39(0/0)

Age history with Date class

• printAgeHistory() is now given a single Date argument

– instead of three separate date components.

November 6, 2018 Java Just in Time - John Latham Page 40(0/0)

Method: accepting parameters: of a class type

• The method parameters of a method can be any type

– including classes.

∗ must be given method argument value of that type

∗ e.g. reference to an object which is instance of class named as

parameter type.

November 6, 2018 Java Just in Time - John Latham Page 41(0/0)

Age history with Date class

033: // Print the age history of one person, identified as personN umber.

034: // The birth date must be less than the present date.

035: private static void printAgeHistory(int personNumber, Date birthDate)

036: {

November 6, 2018 Java Just in Time - John Latham Page 42(0/0)

Class: accessing instance variables

• The instance variables of an object accessed by

– taking reference to the object

– appending dot (.)

– then name of variable.

• E.g. if variable p1 contains reference to a Point object

– p1.x

∗ is instance variable x belonging to Point referred to by p1.

Coffee

time:

Where else have we seen a dot being used to address

something?

November 6, 2018 Java Just in Time - John Latham Page 43(0/0)

Age history with Date class

• printAgeHistory() accesses instance variables of Date objects

– referenced by birthDate and presentDate.

037: // Start by printing the event of birth.

038: System.out.println("Pn " + personNumber + " was born on "

039: + birthDate.day + "/" + birthDate.month

040: + "/" + birthDate.year);

041:

042: // Now we will go through the years since birth but before toda y.

043: int someYear = birthDate.year + 1;

044: int ageInSomeYear = 1;

November 6, 2018 Java Just in Time - John Latham Page 44(0/0)

Age history with Date class

045: while (someYear < presentDate.year

046: || someYear == presentDate.year

047: && birthDate.month < presentDate.month

048: || someYear == presentDate.year

049: && birthDate.month == presentDate.month

050: && birthDate.day < presentDate.day)

051: {

052: System.out.println("Pn " + personNumber + " was " + ageInSom eYear

053: + " on " + birthDate.day + "/" + birthDate.month

054: + "/" + someYear);

055: someYear++;

056: ageInSomeYear++;

057: } // while

058:

November 6, 2018 Java Just in Time - John Latham Page 45(0/0)

Age history with Date class

059: // At this point birthDate.day/birthDate.month/someYear

060: // will be the next birthday, aged ageInSomeYear.

061: // This will be greater than or equal to the present date.

062: // If the person has not yet had their birthday this year

063: // someYear equals presentDate.year,

064: // otherwise someYear equals presentDate.year + 1.

065:

066: if (birthDate.month == presentDate.month

067: && birthDate.day == presentDate.day)

068: // then someYear must equal presentDate.year.

069: System.out.println("Pn " + personNumber + " is "

070: + ageInSomeYear + " today!");

071: else

072: System.out.println("Pn " + personNumber + " will be "

073: + ageInSomeYear + " on " + birthDate.day + "/"

074: + birthDate.month + "/" + someYear);

075: } // printAgeHistory

076:

077: } // class AgeHistory2

November 6, 2018 Java Just in Time - John Latham Page 46(0/0)

Age history with Date class

Coffee

time:

The introduction of a separate Date class helped improve

part of the program, but has so far made other parts of

the program worse than it was when we stored a date

using three separate variables! Identify which parts were

made better, and which worse.

November 6, 2018 Java Just in Time - John Latham Page 47(0/0)

Trying it

• Get same results as did from previous version.

November 6, 2018 Java Just in Time - John Latham Page 48(0/0)

Coursework: AddQuadPoly

(Summary only)

Write a class to store quadratic polynomials, and a program that adds

together two quadratic polynomials to form a third.

November 6, 2018 Java Just in Time - John Latham Page 49(0/0)

Section 3

Improving the Date class:

lessThan() and equals()

methods

November 6, 2018 Java Just in Time - John Latham Page 50(0/0)

Aim

AIM: To introduce the concept of instance methods. We

also look at common misunderstandings about vari-

ables and references.

November 6, 2018 Java Just in Time - John Latham Page 51(0/0)

Improving the Date class: lessThan() and

equals()methods

• The while loop and if else statement conditions still rather complex

– comparing two dates using each of the three components.

• Simplify this

– move date comparison logic to Date class.

November 6, 2018 Java Just in Time - John Latham Page 52(0/0)

Method: class versus instance methods

• Up to now all methods have had static in heading

– can be executed in static context

– i.e. used as soon as class is loaded.

• Known as class methods

– they belong to the class.

• If omit static modifier we have an instance method

– can only be run in a dynamic context

– attached to a particular instance of the class.

November 6, 2018 Java Just in Time - John Latham Page 53(0/0)

Method: class versus instance methods

• Compare with distinction between class variables and instance variables

– one copy of a class variable

∗ created when class is loaded

– one copy of an instance variable for every instance

∗ created when instance is created.

November 6, 2018 Java Just in Time - John Latham Page 54(0/0)

Method: class versus instance methods

• Class methods belong to the class they are defined in

– one copy of their code at run time

∗ ready for use immediately.

• Instance methods belong to an instance

– are as many copies of the code at run time as there are instances

∗ ready to run when instance is created.

– Not really copied, but behaves as though is:

∗ runs in context of the instance it belongs to.

November 6, 2018 Java Just in Time - John Latham Page 55(0/0)

Method: class versus instance methods

• E.g. assume Point with instance variables x and y.

• Might have instance method

– takes no method parameters

– returns distance of a point from origin.

∗ Pythagoras:
√

x2 + y2.

public double distanceFromOrigin()

{

return Math.sqrt(x * x + y * y);

} // distanceFromOrigin

November 6, 2018 Java Just in Time - John Latham Page 56(0/0)

Method: class versus instance methods

• Class methods accessed by name of class, dot (.) and then name of

method.

– E.g. Math.sqrt

• Instance methods belonging to an object accessed by

– take reference to the object

– append a dot (.)

– then name of method.

• E.g. assume p1 contains reference to a Point

– p1.distanceFromOrigin()

∗ invokes instance method distanceFromOrigin() belonging to the

Point referred to by p1.

November 6, 2018 Java Just in Time - John Latham Page 57(0/0)

Method: class versus instance methods

• E.g. following produces 5 and 75.

Point p1 = new Point(3, 4);

Point p2 = new Point(45, 60);

System.out.println(p1.distanceFromOrigin());

System.out.println(p2.distanceFromOrigin());

• First method call uses instance variables of object referred to by p1

– i.e. values 3 and 4 for x and y.

• Second method call uses instance variables of object referred to by p2

– i.e. values 45 and 60 for x and y.

November 6, 2018 Java Just in Time - John Latham Page 58(0/0)

Method: class versus instance methods

• E.g. method to determine distance between a point and given other

point.

public double distanceFromPoint(Point otherPoint)

{

double xDistance = x - otherPoint.x;

double yDistance = y - otherPoint.y;

return Math.sqrt(xDistance * xDistance + yDistance * yDistance);

} // distanceFromPoint

• This would print 70.0, twice.

System.out.println(p1.distanceFromPoint(p2));

System.out.println(p2.distanceFromPoint(p1));

November 6, 2018 Java Just in Time - John Latham Page 59(0/0)

Improving the Date class: lessThan() and

equals()methods

• First part of improved Date is the same.

001: // Representation of a date.

002: public class Date

003: {

004: // The day, month and year of the date.

005: public int day, month, year;

006:

007:

008: // Construct a date -- given the required day, month and year.

009: public Date(int requiredDay, int requiredMonth, int requiredYear)

010: {

011: day = requiredDay;

012: month = requiredMonth;

013: year = requiredYear;

014: } // Date

November 6, 2018 Java Just in Time - John Latham Page 60(0/0)

Improving the Date class: lessThan() and

equals()methods

• Instance method:

– compare this Date object with given other one

∗ return true iff they are equivalent.

017: // Compare this date with a given other one, for equality.

018: public boolean equals(Date other)

019: {

020: return day == other.day && month == other.month && year == other.year;

021: } // equals

November 6, 2018 Java Just in Time - John Latham Page 61(0/0)

Improving the Date class: lessThan() and

equals()methods

• Instance method:

– compare this Date object with given other one

∗ return true iff this one is earlier.

024: // Compare this date with a given other one, for less than.

025: public boolean lessThan(Date other)

026: {

027: return year < other.year

028: || year == other.year

029: && (month < other.month

030: || month == other.month && day < other.day);

031: } // lessThan

032:

033: } // class Date

November 6, 2018 Java Just in Time - John Latham Page 62(0/0)

Improving the Date class: lessThan() and

equals()methods

Console Input / Output

$ javac Date.java

$ _ Run

Coffee

time:

What do you think of the following version of lessThan()?

. public boolean lessThan(Date other)

. {

. return year < other.year

. || year == other.year && month < other.month

. || year == other.year && month == other.month

. && day < other.day;

. } // lessThan

Does it have the same effect as the one in our example?

If so, in what ways is it better or worse?

November 6, 2018 Java Just in Time - John Latham Page 63(0/0)

Improving the Date class: lessThan() and

equals()methods

• First part of AgeHistory2 is the same.

001: // Print out an age history of two people.

002: // Arguments: present date, first birth date, second birth date.

003: // Each date is three numbers: day month year.

004: public class AgeHistory2

005: {

006: // The present date.

007: private static Date presentDate;

008:

009:

010: // The main method: get arguments and call printAgeHistory.

011: public static void main(String[] args)

012: {

013: // The present date.

014: presentDate = new Date(Integer.parseInt(args[0]),

015: Integer.parseInt(args[1]),

016: Integer.parseInt(args[2]));

November 6, 2018 Java Just in Time - John Latham Page 64(0/0)

Improving the Date class: lessThan() and

equals()methods

017:

018: // The dates of birth: these must be less than the present date.

019: Date birthDate1 = new Date(Integer.parseInt(args[3]),

020: Integer.parseInt(args[4]),

021: Integer.parseInt(args[5]));

022:

023: Date birthDate2 = new Date(Integer.parseInt(args[6]),

024: Integer.parseInt(args[7]),

025: Integer.parseInt(args[8]));

026:

027: // Now print the two age histories.

028: printAgeHistory(1, birthDate1);

029: printAgeHistory(2, birthDate2);

030: } // main

November 6, 2018 Java Just in Time - John Latham Page 65(0/0)

Improving the Date class: lessThan() and

equals()methods

033: // Print the age history of one person, identified as personNumber.

034: // The birth date must be less than the present date.

035: private static void printAgeHistory(int personNumber, Date birthDate)

036: {

037: // Start by printing the event of birth.

038: System.out.println("Pn " + personNumber + " was born on "

039: + birthDate.day + "/" + birthDate.month

040: + "/" + birthDate.year);

November 6, 2018 Java Just in Time - John Latham Page 66(0/0)

Improving the Date class: lessThan() and

equals()methods

• Replace int variable someYear

– with Date variable, someBirthday.

• And ageInSomeYear renamed ageOnSomeBirthday.

042: // Now we will go through the years since birth but before today.

043: // We keep track of the birthday we are considering.

044: Date someBirthday

045: = new Date(birthDate.day, birthDate.month, birthDate.year + 1);

046: int ageOnSomeBirthday = 1;

November 6, 2018 Java Just in Time - John Latham Page 67(0/0)

Improving the Date class: lessThan() and

equals()methods

• While loop condition much simpler than previously.

047: while (someBirthday.lessThan(presentDate))

048: {

049: System.out.println("Pn " + personNumber + " was " + ageOnSomeBirthday

050: + " on " + someBirthday.day + "/" + someBirthday.month

051: + "/" + someBirthday.year);

052: someBirthday = new Date(someBirthday.day, someBirthday.month,

053: someBirthday.year + 1);

054: ageOnSomeBirthday++;

055: } // while

November 6, 2018 Java Just in Time - John Latham Page 68(0/0)

Improving the Date class: lessThan() and

equals()methods

• Each time round loop, reference in someBirthday is changed

– refers to a new Date representing next birthday.

November 6, 2018 Java Just in Time - John Latham Page 69(0/0)

Improving the Date class: lessThan() and

equals()methods

• If else statement condition also much simpler than previously.

057: // Now deal with the next birthday.

058: if (someBirthday.equals(presentDate))

059: System.out.println("Pn " + personNumber + " is "

060: + ageOnSomeBirthday + " today!");

061: else

062: System.out.println("Pn " + personNumber + " will be "

063: + ageOnSomeBirthday + " on " + someBirthday.day

064: + "/" + someBirthday.month + "/" + someBirthday.year);

065: } // printAgeHistory

066:

067: } // class AgeHistory2

November 6, 2018 Java Just in Time - John Latham Page 70(0/0)

Improving the Date class: lessThan() and

equals()methods

Coffee

time:

Java would have permitted us to write the condition

of the if else statement as someBirthday == presentDate.

Why would this not work?

Coffee

time:

The introduction of instancemethods has helped improve

more of the program. What aspects still have room for

improvement?

November 6, 2018 Java Just in Time - John Latham Page 71(0/0)

Variable: of a class type: stores a reference to an

object: avoid misunderstanding

• Two common mistakes:

1. Misconception: A variable is an object.

2. Misconception: A variable contains an object.

• Neither: variables of a class type can contain a reference to an object.

• Common question – “why do we have to write Date twice in following?”.

Date someBirthday

= new Date(birthDate.day, birthDate.month, birthDate.year + 1);

• Because doing three things:

1. Declaring a variable,

2. constructing an object,

3. storing reference to object in the variable.

November 6, 2018 Java Just in Time - John Latham Page 72(0/0)

Variable: of a class type: stores a reference to an

object: avoid misunderstanding

• Can have variable without object.

Date someBirthday;

• Can have object without variable (useful?)

new Date(birthDate.day, birthDate.month, birthDate.year + 1);

System.out.println(new Point(3, 4).distanceFromPoint(new Point(45, 60)));

• Can have two variables referring to same object.

Date theSameBirthday = someBirthday;

• Can change value of variable – make it refer to different object.

someBirthday = new Date(someBirthday.day, someBirthday.month,

someBirthday.year + 1);

Diagram. . .

November 6, 2018 Java Just in Time - John Latham Page 73(0/0)

Variable: of a class type: stores a reference to an

object: avoid misunderstanding

01

07

2018

public int month

public int day

public int year

A Date object

01

07

2019

public int month

public int day

public int year

A Date object

Date someBirthday

someBirthday = new Date(someBirthday.day, someBirthday.month, someBirthday.year + 1);

01

07

2018

public int month

public int day

public int year

A Date object

Date someBirthday

November 6, 2018 Java Just in Time - John Latham Page 74(0/0)

Coursework: CompareQuadPoly

(Summary only)

Extend a class that stores quadratic polynomials, and write a program that

compares the ‘size’ of two quadratic polynomials.

November 6, 2018 Java Just in Time - John Latham Page 75(0/0)

Section 4

Improving the Date class:

toString() method

November 6, 2018 Java Just in Time - John Latham Page 76(0/0)

Aim

AIM: To reinforce the concept of instance methods. We also

note that a method might have no method parame-

ters.

November 6, 2018 Java Just in Time - John Latham Page 77(0/0)

Improving the Date class: toString()method

• Continue to improve AgeHistory2

– several places where we print a date

– put logic for producing a date string in Date class

∗ as instance method.

– Use in AgeHistory2 class.

• First part of Date is the same.

November 6, 2018 Java Just in Time - John Latham Page 78(0/0)

Improving the Date class: toString()method

001: // Representation of a date.

002: public class Date

003: {

004: // The day, month and year of the date.

005: public int day, month, year;

006:

007:

008: // Construct a date -- given the required day, month and year.

009: public Date(int requiredDay, int requiredMonth, int requiredYear)

010: {

011: day = requiredDay;

012: month = requiredMonth;

013: year = requiredYear;

014: } // Date

015:

016:

November 6, 2018 Java Just in Time - John Latham Page 79(0/0)

Improving the Date class: toString()method

017: // Compare this date with a given other one, for equality.

018: public boolean equals(Date other)

019: {

020: return day == other.day && month == other.month && year == other.year;

021: } // equals

022:

023:

024: // Compare this date with a given other one, for less than.

025: public boolean lessThan(Date other)

026: {

027: return year < other.year

028: || year == other.year

029: && (month < other.month

030: || month == other.month && day < other.day);

031: } // lessThan

November 6, 2018 Java Just in Time - John Latham Page 80(0/0)

Method: a method may have no parameters

• List of method parameters may be empty.

– E.g. if method always has same effect / returns same result.

– E.g. if result depends solely on values of instance variables

∗ rather than values in context of method call.

November 6, 2018 Java Just in Time - John Latham Page 81(0/0)

Improving the Date class: toString()method

034: // Return the day/month/year representation of the date.

035: public String toString()

036: {

037: return day + "/" + month + "/" + year;

038: } // toString

039:

040: } // class Date

Console Input / Output

$ javac Date.java

$ _ Run

November 6, 2018 Java Just in Time - John Latham Page 82(0/0)

Improving the Date class: toString()method

• Use toString() instance method when need to print a Date.

001: // Print out an age history of two people.

002: // Arguments: present date, first birth date, second birth date.

003: // Each date is three numbers: day month year.

004: public class AgeHistory2

005: {

006: // The present date.

007: private static Date presentDate;

008:

009:

010: // The main method: get arguments and call printAgeHistory.

011: public static void main(String[] args)

012: {

013: // The present date.

014: presentDate = new Date(Integer.parseInt(args[0]),

015: Integer.parseInt(args[1]),

016: Integer.parseInt(args[2]));

November 6, 2018 Java Just in Time - John Latham Page 83(0/0)

Improving the Date class: toString()method

017:

018: // The dates of birth: these must be less than the present date.

019: Date birthDate1 = new Date(Integer.parseInt(args[3]),

020: Integer.parseInt(args[4]),

021: Integer.parseInt(args[5]));

022:

023: Date birthDate2 = new Date(Integer.parseInt(args[6]),

024: Integer.parseInt(args[7]),

025: Integer.parseInt(args[8]));

026:

027: // Now print the two age histories.

028: printAgeHistory(1, birthDate1);

029: printAgeHistory(2, birthDate2);

030: } // main

031:

032:

November 6, 2018 Java Just in Time - John Latham Page 84(0/0)

Improving the Date class: toString()method

033: // Print the age history of one person, identified as personNumber.

034: // The birth date must be less than the present date.

035: private static void printAgeHistory(int personNumber, Date birthDate)

036: {

037: // Start by printing the event of birth.

038: System.out.println("Pn " + personNumber + " was born on "

039: + birthDate.toString());

040:

November 6, 2018 Java Just in Time - John Latham Page 85(0/0)

Improving the Date class: toString()method

041: // Now we will go through the years since birth but before today.

042: // We keep track of the birthday we are considering.

043: Date someBirthday

044: = new Date(birthDate.day, birthDate.month, birthDate.year + 1);

045: int ageOnSomeBirthday = 1;

046: while (someBirthday.lessThan(presentDate))

047: {

048: System.out.println("Pn " + personNumber + " was " + ageOnSomeBirthday

049: + " on " + someBirthday.toString());

050: someBirthday = new Date(someBirthday.day, someBirthday.month,

051: someBirthday.year + 1);

052: ageOnSomeBirthday++;

053: } // while

054:

November 6, 2018 Java Just in Time - John Latham Page 86(0/0)

Improving the Date class: toString()method

055: // Now deal with the next birthday.

056: if (someBirthday.equals(presentDate))

057: System.out.println("Pn " + personNumber + " is "

058: + ageOnSomeBirthday + " today!");

059: else

060: System.out.println("Pn " + personNumber + " will be "

061: + ageOnSomeBirthday + " on "

062: + someBirthday.toString());

063: } // printAgeHistory

064:

065: } // class AgeHistory2

November 6, 2018 Java Just in Time - John Latham Page 87(0/0)

Coursework: AddQuadPoly and CompareQuadPoly
with toString()

(Summary only)

Extend a class that stores quadratic polynomials, and modify programs that

add together, and compare the ‘size’ of, two quadratic polynomials.

November 6, 2018 Java Just in Time - John Latham Page 88(0/0)

Section 5

Improving the Date class:

addYear() method

November 6, 2018 Java Just in Time - John Latham Page 89(0/0)

Aim

AIM: To further reinforce instance methods, meet Java’s

toString() convention and focus on the visibility of in-

stance variables. We also see a return type which is a

class.

November 6, 2018 Java Just in Time - John Latham Page 90(0/0)

Improving the Date class: addYear() method

• Three more things to do.

– Another instance method for Date to create new Date one year later.

∗ When use in AgeHistory2 there will be no direct accesses to Date

instance variables left outside Date.

– Make Date instance variables private.

– Use Java’s implicit toString() mechanism.

November 6, 2018 Java Just in Time - John Latham Page 91(0/0)

Variable: instance variables: should be private by

default

• Generally best to make instance variables private

– permits us to change way class works without affecting code in other

classes.

• E.g. Point class:

– might decide to reimplement – have instance variables for polar

coordinate radius and angle instead of x and y.

– Safe because x and y instance variables were private

∗ no other code could possibly be using them.

– Still have same public interface

∗ constructor method would convert given x and y to polar

∗ toString() would convert them back.

Coffee

time:

Howmight we store dates differently, instead of using day,

month and year?

November 6, 2018 Java Just in Time - John Latham Page 92(0/0)

Improving the Date class: addYear()method

001: // Representation of a date.

002: public class Date

003: {

004: // The day, month and year of the date.

005: private int day, month, year;

• Next part is the same.

008: // Construct a date -- given the required day, month and year.

009: public Date(int requiredDay, int requiredMonth, int requiredYear)

010: {

011: day = requiredDay;

012: month = requiredMonth;

013: year = requiredYear;

014: } // Date

015:

016:

November 6, 2018 Java Just in Time - John Latham Page 93(0/0)

Improving the Date class: addYear() method

017: // Compare this date with a given other one, for equality.

018: public boolean equals(Date other)

019: {

020: return day == other.day && month == other.month && year == other.year;

021: } // equals

022:
023:
024: // Compare this date with a given other one, for less than.

025: public boolean lessThan(Date other)

026: {

027: return year < other.year

028: || year == other.year

029: && (month < other.month

030: || month == other.month && day < other.day);

031: } // lessThan

032:
033:
034: // Return the day/month/year representation of the date.

035: public String toString()

036: {

037: return day + "/" + month + "/" + year;

038: } // toString

November 6, 2018 Java Just in Time - John Latham Page 94(0/0)

Method: returning a value: of a class type

• A method may have a class as its return type

– so it typically returns a reference to an instance of that class.

November 6, 2018 Java Just in Time - John Latham Page 95(0/0)

Method: returning a value: of a class type

• E.g. assuming a Point class:

public Point halfWayPoint(Point otherPoint)

{

double newX = (x + otherPoint.x) / 2;

double newY = (y + otherPoint.y) / 2;

return new Point(newX, newY);

} // halfWayPoint

• Perhaps used as:

Point p1 = new Point(3, 4);

Point p2 = new Point(45, 60);

Point halfWayBetweenP1AndP2 = p1.halfWayPoint(p2);

November 6, 2018 Java Just in Time - John Latham Page 96(0/0)

Method: returning a value: of a class type

24

32private double y

private double x

A Point object

Point halfwayBetweenP1AndP2 = p1.halfwayPoint(p2)

3

4private double y

private double x

A Point object

Point p1 = new Point(3, 4) 45

60private double y

private double x

A Point object

Point p2 = new Point(45, 60)

November 6, 2018 Java Just in Time - John Latham Page 97(0/0)

Improving the Date class: addYear() method

Coffee

time:

Suppose the Point class in the concept above had an

equals() instance method, defined as follows.

. public boolean equals(Point other)

. {

. return x == other.x && y == other.y;

. } // equals

Predict the values of equalByReference and equalByMethod.

. Point halfWayBetweenP1AndP2 = p1.halfWayPoint(p2);

. Point halfWayBetweenP2AndP1 = p2.halfWayPoint(p1);

. boolean equalByReference

. = halfWayBetweenP1AndP2 == halfWayBetweenP2AndP1;

. boolean equalByMethod

. = halfWayBetweenP1AndP2.equals(halfWayBetweenP2AndP1);

November 6, 2018 Java Just in Time - John Latham Page 98(0/0)

Improving the Date class: addYear() method

Coffee

time:

What are the values of the same variables after the fol-

lowing alternative code is run?

. Point halfWayBetweenP1AndP2 = p1.halfWayPoint(p2);

. Point halfWayBetweenP2AndP1 = halfWayBetweenP1AndP2;

. boolean equalByReference

. = halfWayBetweenP1AndP2 == halfWayBetweenP2AndP1;

. boolean equalByMethod

. = halfWayBetweenP1AndP2.equals(halfWayBetweenP2AndP1);

November 6, 2018 Java Just in Time - John Latham Page 99(0/0)

Improving the Date class: addYear() method

041: // Return a new Date which is one year later than this one.

042: public Date addYear()

043: {

044: return new Date(day, month, year + 1);

045: } // addYear

046:

047: } // class Date

Console Input / Output

$ javac Date.java

$ _ Run

November 6, 2018 Java Just in Time - John Latham Page 100(0/0)

Type: String: conversion: from object

• Commonly wish to have an instance method to produce a String

representation of an object.

• By convention always called toString.

• E.g. for Point class:

public String toString()

{

return "(" + x + "," + y + ")";

} // toString

November 6, 2018 Java Just in Time - John Latham Page 101(0/0)

Type: String: conversion: from object

• When compiler finds object reference as concatenation operand

– it assumes we wish toString() to be called.

• E.g.

Point p1 = new Point(10, 40);

System.out.println("The point is " + p1.toString());

could/should be written:

Point p1 = new Point(10, 40);

System.out.println("The point is " + p1);

November 6, 2018 Java Just in Time - John Latham Page 102(0/0)

Type: String: conversion: from object

• Also, for convenience, separate version of System.out.println():

System.out.println(p1);

same effect as:

System.out.println("" + p1);

November 6, 2018 Java Just in Time - John Latham Page 103(0/0)

Improving the Date class: addYear()method

001: // Print out an age history of two people.

002: // Arguments: present date, first birth date, second birth date.

003: // Each date is three numbers: day month year.

004: public class AgeHistory2

005: {

006: // The present date.

007: private static Date presentDate;

008:

009:

010: // The main method: get arguments and call printAgeHistory.

011: public static void main(String[] args)

012: {

013: // The present date.

014: presentDate = new Date(Integer.parseInt(args[0]),

015: Integer.parseInt(args[1]),

016: Integer.parseInt(args[2]));

017:

November 6, 2018 Java Just in Time - John Latham Page 104(0/0)

Improving the Date class: addYear() method

018: // The dates of birth: these must be less than the present date.

019: Date birthDate1 = new Date(Integer.parseInt(args[3]),

020: Integer.parseInt(args[4]),

021: Integer.parseInt(args[5]));

022:

023: Date birthDate2 = new Date(Integer.parseInt(args[6]),

024: Integer.parseInt(args[7]),

025: Integer.parseInt(args[8]));

026:

027: // Now print the two age histories.

028: printAgeHistory(1, birthDate1);

029: printAgeHistory(2, birthDate2);

030: } // main

November 6, 2018 Java Just in Time - John Latham Page 105(0/0)

Improving the Date class: addYear()method

• Implicit use of toString().

• Explicit use of addYear().

033: // Print the age history of one person, identified as personNumber.

034: // The birth date must be less than the present date.

035: private static void printAgeHistory(int personNumber, Date birthDate)

036: {

037: // Start by printing the event of birth.

038: System.out.println("Pn " + personNumber + " was born on " + birthDate);

039:

November 6, 2018 Java Just in Time - John Latham Page 106(0/0)

Improving the Date class: addYear()method

040: // Now we will go through the years since birth but before today.

041: // We keep track of the birthday we are considering.

042: Date someBirthday = birthDate.addYear();

043: int ageOnSomeBirthday = 1;

044: while (someBirthday.lessThan(presentDate))

045: {

046: System.out.println("Pn " + personNumber + " was " + ageOnSomeBirthday

047: + " on " + someBirthday);

048: someBirthday = someBirthday.addYear();

049: ageOnSomeBirthday++;

050: } // while

051:

November 6, 2018 Java Just in Time - John Latham Page 107(0/0)

Improving the Date class: addYear() method

052: // Now deal with the next birthday.

053: if (someBirthday.equals(presentDate))

054: System.out.println("Pn " + personNumber + " is "

055: + ageOnSomeBirthday + " today!");

056: else

057: System.out.println("Pn " + personNumber + " will be "

058: + ageOnSomeBirthday + " on " + someBirthday);

059: } // printAgeHistory

060:

061: } // class AgeHistory2

• Compare this version with the original year-only version.

Coffee

time:

What do you think would happen if we place, as an

operand of concatenation, a reference to an object

belonging to a class in which we have not defined a

toString() instance method?

November 6, 2018 Java Just in Time - John Latham Page 108(0/0)

Coursework: QuadPoly with an addition method

(Summary only)

Further extend a class that stores quadratic polynomials, and modify a

program that adds together two quadratic polynomials.

November 6, 2018 Java Just in Time - John Latham Page 109(0/0)

Section 6

Alternative style

November 6, 2018 Java Just in Time - John Latham Page 110(0/0)

Aim

AIM: To show an alternative way of talking about instance

variables and instance methods from within the same

class, using this.

November 6, 2018 Java Just in Time - John Latham Page 111(0/0)

Class: objects: this reference

• In constructor methods or instance methods sometimes wish to talk about

the object being created or to which the instance method belongs.

• The reserved word this in an expression is such a this reference.

• E.g.

public Point halfThisPoint()

{

return halfWayPoint(new Point(0, 0));

} // halfThisPoint

• Alternatively:

public Point halfThisPoint()

{

return new Point(0, 0).halfWayPoint(this);

} // halfThisPoint

November 6, 2018 Java Just in Time - John Latham Page 112(0/0)

Alternative style

• This author prefers use of this reference only when needed.

• Some like following style:

001: // Representation of a date.

002: public class Date

003: {

004: // The day, month and year of the date.

005: private int day, month, year;

006:

007:

November 6, 2018 Java Just in Time - John Latham Page 113(0/0)

Alternative style

008: // Construct a date -- given the required day, month and year.

009: public Date(int day, int month, int year)

010: {

011: this.day = day;

012: this.month = month;

013: this.year = year;

014: } // Date

• Note same names for method parameters and instance variables.

November 6, 2018 Java Just in Time - John Latham Page 114(0/0)

Alternative style

017: // Compare this date with a given other one, for equality.

018: public boolean equals(Date other)

019: {

020: return this.day == other.day && this.month == other.month

021: && this.year == other.year;

022: } // equals

023:

024:

025: // Compare this date with a given other one, for less than.

026: public boolean lessThan(Date other)

027: {

028: return this.year < other.year

029: || this.year == other.year

030: && (this.month < other.month

031: || this.month == other.month && this.day < other.day);

032: } // lessThan

033:

November 6, 2018 Java Just in Time - John Latham Page 115(0/0)

Alternative style

034:

035: // Return the day/month/year representation of the date.

036: public String toString()

037: {

038: return this.day + "/" + this.month + "/" + this.year;

039: } // toString

040:

041:

042: // Return a new Date which is one year later than this one.

043: public Date addYear()

044: {

045: return new Date(this.day, this.month, this.year + 1);

046: } // addYear

047:

048: } // class Date

November 6, 2018 Java Just in Time - John Latham Page 116(0/0)

Concepts covered in this chapter

• Each book chapter ends with a list of concepts covered in it.

• Each concept has with it

– a self-test question,

– and a page reference to where it was covered.

• Please use these to check your understanding before we start the next

chapter.

November 6, 2018 Java Just in Time - John Latham Page 117(0/0)

	Title
	Chapter 10: Separate classes
	Chapter aims
	Section 2: Example: Age history with Date class
	Aim
	Age history with Date class
	Class: objects: contain a group of variables
	Class: objects: contain a group of variables

	Age history with Date class
	Class: objects: are instances of a class
	Class: objects: are instances of a class

	Variable: instance variables
	Variable: instance variables

	Age history with Date class
	Age history with Date class
	Method: constructor methods
	Method: constructor methods

	Age history with Date class
	The full Date code
	Age history with Date class
	Age history with Date class
	Class: is a type
	Class: is a type

	Variable: of a class type
	Variable: of a class type

	Age history with Date class
	Variable: of a class type: stores a reference to an object
	Variable: of a class type: stores a reference to an object

	Type: primitive versus reference
	Type: primitive versus reference

	Age history with Date class
	Class: making instances with new
	Class: making instances with new

	Age history with Date class
	Age history with Date class
	Age history with Date class
	Age history with Date class
	Age history with Date class
	Age history with Date class
	Age history with Date class
	Method: accepting parameters: of a class type
	Method: accepting parameters: of a class type

	Age history with Date class
	Class: accessing instance variables
	Class: accessing instance variables

	Age history with Date class
	Age history with Date class
	Trying it
	Coursework: AddQuadPoly
	Section 3: Improving the Date class: lessThan() and equals() methods
	Aim
	Improving the Date class: lessThan() and equals() methods
	Method: class versus instance methods
	Method: class versus instance methods

	Improving the Date class: lessThan() and equals() methods
	Improving the Date class: lessThan() and equals() methods
	Improving the Date class: lessThan() and equals() methods
	Improving the Date class: lessThan() and equals() methods
	Improving the Date class: lessThan() and equals() methods
	Improving the Date class: lessThan() and equals() methods
	Improving the Date class: lessThan() and equals() methods
	Improving the Date class: lessThan() and equals() methods
	Improving the Date class: lessThan() and equals() methods
	Improving the Date class: lessThan() and equals() methods
	Improving the Date class: lessThan() and equals() methods
	Variable: of a class type: stores a reference to an object: avoid misunderstanding
	Variable: of a class type: stores a reference to an object: avoid misunderstanding

	Coursework: CompareQuadPoly
	Section 4: Improving the Date class: toString() method
	Aim
	Improving the Date class: toString() method
	Improving the Date class: toString() method
	Method: a method may have no parameters
	Method: a method may have no parameters

	Improving the Date class: toString() method
	Improving the Date class: toString() method
	Coursework: AddQuadPoly and CompareQuadPoly with toString()
	Section 5: Improving the Date class: addYear() method
	Aim
	Improving the Date class: addYear() method
	Variable: instance variables: should be private by default
	Variable: instance variables: should be private by default

	Improving the Date class: addYear() method
	Method: returning a value: of a class type
	Method: returning a value: of a class type

	Improving the Date class: addYear() method
	Improving the Date class: addYear() method
	Improving the Date class: addYear() method
	Type: String: conversion: from object
	Type: String: conversion: from object

	Improving the Date class: addYear() method
	Improving the Date class: addYear() method
	Coursework: QuadPoly with an addition method
	Section 6: Alternative style
	Aim
	Class: objects: this reference
	Class: objects: this reference

	Alternative style
	Alternative style
	Concepts covered in this chapter

