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Chapter 10

Separate classes
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Chapter aims

• All programs up to now have been in one class.

• Programs generally consist of more than one class

– two reasons why discussed already.

Coffee

time:

Can you remember those two reasons? One of them is

about size, and the other is relevant every time we use,

say, System or Math.
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Chapter aims

• Look at using a class as template for constructing objects

– used in another class.

• Meet Java technology for object oriented programming:

– constructor methods,

– instance variables,

– instance methods.

• OOP helps reduce complexity of sophisticated programs.

– We revisit age history example.
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Section 2

Example:

Age history with Date class
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Aim

AIM: To introduce the principle of using more than one

class in a program, and in particular, the idea of us-

ing a class as a template for the construction of ob-

jects. We also introduce instance variables, construc-

tor methods, creating new objects, the fact that a class

is a type and the use of references.
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Age history with Date class

• Previously used three variables to store each date.

• In abstract they were a single date with three parts.

• Ideally, this could be reflected in our program. . . .
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Class: objects: contain a group of variables

• Group collection of variables into one entity

– by creating an object.

• E.g. represent a point using x and y value.

– Combine x and y variables into single Point object.
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Age history with Date class

• Want to combine three variables

– components of a date

– into one object.

• Need to define a class telling Java how to make such objects.
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Class: objects: are instances of a class

• Before can make objects, need to tell Java how they are constructed.

• E.g. to make a Point object, need to say

– will be pair of variables inside it called x and y

– what types they are

– how they get their values.

• We write a class to act as template for creation of objects

– contains the blue-print / instructions to Java.

• Need a class for each kind of object desired.

– E.g. have a Point class saying how to make Point objects

or Chicken class for making Chickens, etc..

– choose any name we feel is appropriate

∗ (by convention always start with capital letter).

November 6, 2018 Java Just in Time - John Latham Page 10(0/0)



Class: objects: are instances of a class

• Having described template, can ask Java to make objects of that class

– at run time.

• Objects are instances of their class.

– E.g. particular Point objects all instances of our Point class.

– Can create many different Point objects

∗ each contains own x and y variables

– all made from the one template

∗ the Point class.
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Variable: instance variables

• The variables inside objects are called instance variables

– belong to instances of a class.

• Declare like class variables but without reserved word static.

• E.g. part of definition of a Point class

– each Point object has two instance variables:

public class Point

{

private double x;

private double y;

...

} // class Point
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Variable: instance variables

• Instance variables have visibility modifier

– private means can only be accessed by code inside class which

declared them.

• Class variables belong to class which declared them

– created at run time in the static context when class is loaded.

– Only one copy.

• Instance variables belong to objects

– created at run time dynamically – dynamic context –

∗ when object they are part of is created.

– As many copies as there are instances of the class

∗ each object has its own set of instance variables.
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Age history with Date class

• Have Date class as template for creating Date objects.

• Source code stored in file Date.java

– compiled separately to produce Date.class byte-code file.

• Have three instance variables – three components of a date

– with public visibility

∗ so can be accessed by main method in AgeHistory2 class.
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Age history with Date class

001: // Representation of a date.

002: public class Date

003: {

004: // The day, month and year of the date.

005: public int day, month, year;

• This tells Java that Date objects each have three instance variables.

– Note lack of static.

• Next tell it how to construct Date objects

– how do variables get their values?
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Method: constructor methods

• A class to be used as object template should have constructor method

– special kind of method

– containing instructions for constructing instances of the class.

• Constructor method has same name as class it is defined in.

• Usually public, no return type nor void.

• Can have method parameters,

– typically initial values for some/all instance variables.
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Method: constructor methods

• E.g. constructor method for Point class with instance variables x and y:

public Point(double requiredX, double requiredY)

{

x = requiredX;

y = requiredY;

} // Point

• Tells Java in order to construct instance of class Point

– must be given two double values

– first will be placed in x instance variable

– second in y instance variable.

November 6, 2018 Java Just in Time - John Latham Page 17(0/0)



Method: constructor methods

• Constructor methods called like other methods

– except precede method call with reserved word new.

• E.g. create Point object with x and y being 7.4 and -19.9.

new Point(7.4, -19.9);

• Can have as many Point objects as we wish.

• Each has own pair of instance variables

– possibly different values for x and y.

• E.g. four Point objects – coordinates of a rectangle with centre (0, 0).

new Point(-20, 40);

new Point(-20, -40);

new Point(20, 40);

new Point(20, -40);
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Method: constructor methods

−20

40private double y

private double x

A Point object

−20

−40private double y

private double x

A Point object

20

40private double y

private double x

A Point object

20

−40private double y

private double x

A Point object
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Age history with Date class

• Date constructor is given three int values

– sets the three instance variables.

008: // Construct a date -- given the required day, month and year.

009: public Date(int requiredDay, int requiredMonth, int requiredYear)

010: {

011: day = requiredDay;

012: month = requiredMonth;

013: year = requiredYear;

014: } // Date

015:

016: } // class Date
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The full Date code

001: // Representation of a date.

002: public class Date

003: {

004: // The day, month and year of the date.

005: public int day, month, year;

006:

007:

008: // Construct a date -- given the required day, month and year.

009: public Date(int requiredDay, int requiredMonth, int requiredYear)

010: {

011: day = requiredDay;

012: month = requiredMonth;

013: year = requiredYear;

014: } // Date

015:

016: } // class Date
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Age history with Date class

• Can compile Date class

– but cannot run it – no main method.

Console Input / Output

$ javac Date.java

$ java Date

Exception in thread "main" java.lang.NoSuchMethodError: main

$ _ Run
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Age history with Date class

• Rest of program lives in AgeHistory2 class

– similar to previous version

– but uses Date class to store dates.

• Will have variables of type Date.
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Class: is a type

• A type is a set of values.

– E.g. int is all whole numbers representable in 32 binary digits.

– E.g. double is all real numbers representable using double precision.

– E.g. boolean contains true and false.

• A class can be used as template to create objects

– thus has an associated type:

∗ the set of all objects that can be created – instances of that class.

– E.g. Point type is set of all Point objects that can be created.
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Variable: of a class type

• Can use a class much like built-in types e.g. int, double and boolean.

• Can declare variable whose type is a class.

• E.g. assuming class Point:

Point p1;

Point p2;

– declares two local variables or method variables of type Point.

• Can also have class variables whose type is a class.

– instance variables too.
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Age history with Date class

• We have class variable of type Date.

001: // Print out an age history of two people.

002: // Arguments: present date, first birth date, second birth d ate.

003: // Each date is three numbers: day month year.

004: public class AgeHistory2

005: {

006: // The present date.

007: private static Date presentDate;

• This will store a reference to a Date object containing the three date

components supplied as command line arguments.
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Variable: of a class type: stores a reference to an

object

• For a variable of a built-in primitive type, Java knows how much memory

will be needed for it.

– E.g. all int variables need 4 bytes.

– E.g. all double variables need 8 bytes.

• Java needs this to allocate memory addresses for variables.

• But is not possible to calculate how much memory is needed for objects

– instances of different classes will have different sizes

– sometimes instances of the same class have different sizes!

• Size of an object is only known when it is created, at run time.

November 6, 2018 Java Just in Time - John Latham Page 27(0/0)



Variable: of a class type: stores a reference to an

object

• So, variables of a class type do not store an object

– instead store a reference to an object.

∗ essentially the memory address at which the object resides

∗ only known when object is created at run time.

– But size of all references is the same

∗ so Java knows how much memory to allocate for a variable of class

type.

• Strictly, type associated with a class is set of possible references to

instances of the class.
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Type: primitive versus reference

• Every type in Java is either primitive type or reference type.

• Values of primitive types have size known at compile time.

• Types for which size of individual values is only known at run time

– e.g. classes

are called reference types

– values are always accessed via reference.
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Age history with Date class

Coffee

time:

Do you think String is a reference type or a primitive

type? Hint: how long is a string?
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Class: making instances with new

• An instance of a class created by calling class constructor method

– using reserved word new

– supplying method arguments for method parameters.

• When executed at run time JVM creates an object

– helped by constructor method code.

• Constructor methods always return a value

– but not stated in heading

– value is reference to newly created object.

• Reference can be stored in a variable.
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Class: making instances with new

• E.g. assuming Point class:

Point topLeft = new Point(-20, 40);

Point bottomLeft = new Point(-20, -40);

Point topRight = new Point(20, 40);

Point bottomRight = new Point(20, -40);

• Declares four Point variables.

• Creates four instances of Point.

• Diagram. . .
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Class: making instances with new

−20

40private double y

private double x

A Point object

Point topLeft

−20

−40private double y

private double x

A Point object

Point bottomLeft 20

−40private double y

private double x

A Point object

Point bottomRight

20

40private double y

private double x

A Point object

Point topRight

• Each Point object has two instance variables, x and y.
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Age history with Date class

• Previously had three class variables

– each held one int component of present date.

01

07

2019

private static int presentDay

private static int presentMonth

private static int presentYear
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Age history with Date class

• Now have one class variable

– contains reference to a Date object

∗ containing three int instance variables.

01

07

2019

public int month

public int day

public int year

private static Date presentDate

A Date object
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Age history with Date class

• Put main method first to ease discussion.

– Get first three command line arguments

– turn to ints

– pass to Date constructor method

– store reference in presentDate.

010: // The main method: get arguments and call printAgeHistory.

011: public static void main(String[] args)

012: {

013: // The present date.

014: presentDate = new Date(Integer.parseInt(args[0]),

015: Integer.parseInt(args[1]),

016: Integer.parseInt(args[2]));
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Age history with Date class

• Then

– do similar with next two argument triples

– store resulting references in local variables

– call printAgeHistory() method twice.
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Age history with Date class

018: // The dates of birth: these must be less than the present date .

019: Date birthDate1 = new Date(Integer.parseInt(args[3]),

020: Integer.parseInt(args[4]),

021: Integer.parseInt(args[5]));

022:

023: Date birthDate2 = new Date(Integer.parseInt(args[6]),

024: Integer.parseInt(args[7]),

025: Integer.parseInt(args[8]));

026:

027: // Now print the two age histories.

028: printAgeHistory(1, birthDate1);

029: printAgeHistory(2, birthDate2);

030: } // main
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Age history with Date class

• Use of Date class has improved main method

– more succinct

– raised level of abstraction w.r.t. dates.
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Age history with Date class

• printAgeHistory() is now given a single Date argument

– instead of three separate date components.
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Method: accepting parameters: of a class type

• The method parameters of a method can be any type

– including classes.

∗ must be given method argument value of that type

∗ e.g. reference to an object which is instance of class named as

parameter type.
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Age history with Date class

033: // Print the age history of one person, identified as personN umber.

034: // The birth date must be less than the present date.

035: private static void printAgeHistory(int personNumber, Date birthDate)

036: {
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Class: accessing instance variables

• The instance variables of an object accessed by

– taking reference to the object

– appending dot (.)

– then name of variable.

• E.g. if variable p1 contains reference to a Point object

– p1.x

∗ is instance variable x belonging to Point referred to by p1.

Coffee

time:

Where else have we seen a dot being used to address

something?
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Age history with Date class

• printAgeHistory() accesses instance variables of Date objects

– referenced by birthDate and presentDate.

037: // Start by printing the event of birth.

038: System.out.println("Pn " + personNumber + " was born on "

039: + birthDate.day + "/" + birthDate.month

040: + "/" + birthDate.year);

041:

042: // Now we will go through the years since birth but before toda y.

043: int someYear = birthDate.year + 1;

044: int ageInSomeYear = 1;
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Age history with Date class

045: while (someYear < presentDate.year

046: || someYear == presentDate.year

047: && birthDate.month < presentDate.month

048: || someYear == presentDate.year

049: && birthDate.month == presentDate.month

050: && birthDate.day < presentDate.day)

051: {

052: System.out.println("Pn " + personNumber + " was " + ageInSom eYear

053: + " on " + birthDate.day + "/" + birthDate.month

054: + "/" + someYear);

055: someYear++;

056: ageInSomeYear++;

057: } // while

058:
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Age history with Date class

059: // At this point birthDate.day/birthDate.month/someYear

060: // will be the next birthday, aged ageInSomeYear.

061: // This will be greater than or equal to the present date.

062: // If the person has not yet had their birthday this year

063: // someYear equals presentDate.year,

064: // otherwise someYear equals presentDate.year + 1.

065:

066: if (birthDate.month == presentDate.month

067: && birthDate.day == presentDate.day)

068: // then someYear must equal presentDate.year.

069: System.out.println("Pn " + personNumber + " is "

070: + ageInSomeYear + " today!");

071: else

072: System.out.println("Pn " + personNumber + " will be "

073: + ageInSomeYear + " on " + birthDate.day + "/"

074: + birthDate.month + "/" + someYear);

075: } // printAgeHistory

076:

077: } // class AgeHistory2
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Age history with Date class

Coffee

time:

The introduction of a separate Date class helped improve

part of the program, but has so far made other parts of

the program worse than it was when we stored a date

using three separate variables! Identify which parts were

made better, and which worse.
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Trying it

• Get same results as did from previous version.
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Coursework: AddQuadPoly

(Summary only)

Write a class to store quadratic polynomials, and a program that adds

together two quadratic polynomials to form a third.

November 6, 2018 Java Just in Time - John Latham Page 49(0/0)



Section 3

Improving the Date class:

lessThan() and equals()

methods
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Aim

AIM: To introduce the concept of instance methods. We

also look at common misunderstandings about vari-

ables and references.
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Improving the Date class: lessThan() and

equals()methods

• The while loop and if else statement conditions still rather complex

– comparing two dates using each of the three components.

• Simplify this

– move date comparison logic to Date class.
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Method: class versus instance methods

• Up to now all methods have had static in heading

– can be executed in static context

– i.e. used as soon as class is loaded.

• Known as class methods

– they belong to the class.

• If omit static modifier we have an instance method

– can only be run in a dynamic context

– attached to a particular instance of the class.
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Method: class versus instance methods

• Compare with distinction between class variables and instance variables

– one copy of a class variable

∗ created when class is loaded

– one copy of an instance variable for every instance

∗ created when instance is created.
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Method: class versus instance methods

• Class methods belong to the class they are defined in

– one copy of their code at run time

∗ ready for use immediately.

• Instance methods belong to an instance

– are as many copies of the code at run time as there are instances

∗ ready to run when instance is created.

– Not really copied, but behaves as though is:

∗ runs in context of the instance it belongs to.
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Method: class versus instance methods

• E.g. assume Point with instance variables x and y.

• Might have instance method

– takes no method parameters

– returns distance of a point from origin.

∗ Pythagoras:
√

x2 + y2.

public double distanceFromOrigin()

{

return Math.sqrt(x * x + y * y);

} // distanceFromOrigin
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Method: class versus instance methods

• Class methods accessed by name of class, dot (.) and then name of

method.

– E.g. Math.sqrt

• Instance methods belonging to an object accessed by

– take reference to the object

– append a dot (.)

– then name of method.

• E.g. assume p1 contains reference to a Point

– p1.distanceFromOrigin()

∗ invokes instance method distanceFromOrigin() belonging to the

Point referred to by p1.
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Method: class versus instance methods

• E.g. following produces 5 and 75.

Point p1 = new Point(3, 4);

Point p2 = new Point(45, 60);

System.out.println(p1.distanceFromOrigin());

System.out.println(p2.distanceFromOrigin());

• First method call uses instance variables of object referred to by p1

– i.e. values 3 and 4 for x and y.

• Second method call uses instance variables of object referred to by p2

– i.e. values 45 and 60 for x and y.
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Method: class versus instance methods

• E.g. method to determine distance between a point and given other

point.

public double distanceFromPoint(Point otherPoint)

{

double xDistance = x - otherPoint.x;

double yDistance = y - otherPoint.y;

return Math.sqrt(xDistance * xDistance + yDistance * yDistance);

} // distanceFromPoint

• This would print 70.0, twice.

System.out.println(p1.distanceFromPoint(p2));

System.out.println(p2.distanceFromPoint(p1));

November 6, 2018 Java Just in Time - John Latham Page 59(0/0)



Improving the Date class: lessThan() and

equals()methods

• First part of improved Date is the same.

001: // Representation of a date.

002: public class Date

003: {

004: // The day, month and year of the date.

005: public int day, month, year;

006:

007:

008: // Construct a date -- given the required day, month and year.

009: public Date(int requiredDay, int requiredMonth, int requiredYear)

010: {

011: day = requiredDay;

012: month = requiredMonth;

013: year = requiredYear;

014: } // Date
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Improving the Date class: lessThan() and

equals()methods

• Instance method:

– compare this Date object with given other one

∗ return true iff they are equivalent.

017: // Compare this date with a given other one, for equality.

018: public boolean equals(Date other)

019: {

020: return day == other.day && month == other.month && year == other.year;

021: } // equals
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Improving the Date class: lessThan() and

equals()methods

• Instance method:

– compare this Date object with given other one

∗ return true iff this one is earlier.

024: // Compare this date with a given other one, for less than.

025: public boolean lessThan(Date other)

026: {

027: return year < other.year

028: || year == other.year

029: && (month < other.month

030: || month == other.month && day < other.day);

031: } // lessThan

032:

033: } // class Date
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Improving the Date class: lessThan() and

equals()methods

Console Input / Output

$ javac Date.java

$ _ Run

Coffee

time:

What do you think of the following version of lessThan()?

. public boolean lessThan(Date other)

. {

. return year < other.year

. || year == other.year && month < other.month

. || year == other.year && month == other.month

. && day < other.day;

. } // lessThan

Does it have the same effect as the one in our example?

If so, in what ways is it better or worse?
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Improving the Date class: lessThan() and

equals()methods

• First part of AgeHistory2 is the same.

001: // Print out an age history of two people.

002: // Arguments: present date, first birth date, second birth date.

003: // Each date is three numbers: day month year.

004: public class AgeHistory2

005: {

006: // The present date.

007: private static Date presentDate;

008:

009:

010: // The main method: get arguments and call printAgeHistory.

011: public static void main(String[] args)

012: {

013: // The present date.

014: presentDate = new Date(Integer.parseInt(args[0]),

015: Integer.parseInt(args[1]),

016: Integer.parseInt(args[2]));
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Improving the Date class: lessThan() and

equals()methods

017:

018: // The dates of birth: these must be less than the present date.

019: Date birthDate1 = new Date(Integer.parseInt(args[3]),

020: Integer.parseInt(args[4]),

021: Integer.parseInt(args[5]));

022:

023: Date birthDate2 = new Date(Integer.parseInt(args[6]),

024: Integer.parseInt(args[7]),

025: Integer.parseInt(args[8]));

026:

027: // Now print the two age histories.

028: printAgeHistory(1, birthDate1);

029: printAgeHistory(2, birthDate2);

030: } // main
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Improving the Date class: lessThan() and

equals()methods

033: // Print the age history of one person, identified as personNumber.

034: // The birth date must be less than the present date.

035: private static void printAgeHistory(int personNumber, Date birthDate)

036: {

037: // Start by printing the event of birth.

038: System.out.println("Pn " + personNumber + " was born on "

039: + birthDate.day + "/" + birthDate.month

040: + "/" + birthDate.year);
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Improving the Date class: lessThan() and

equals()methods

• Replace int variable someYear

– with Date variable, someBirthday.

• And ageInSomeYear renamed ageOnSomeBirthday.

042: // Now we will go through the years since birth but before today.

043: // We keep track of the birthday we are considering.

044: Date someBirthday

045: = new Date(birthDate.day, birthDate.month, birthDate.year + 1);

046: int ageOnSomeBirthday = 1;
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Improving the Date class: lessThan() and

equals()methods

• While loop condition much simpler than previously.

047: while (someBirthday.lessThan(presentDate))

048: {

049: System.out.println("Pn " + personNumber + " was " + ageOnSomeBirthday

050: + " on " + someBirthday.day + "/" + someBirthday.month

051: + "/" + someBirthday.year);

052: someBirthday = new Date(someBirthday.day, someBirthday.month,

053: someBirthday.year + 1);

054: ageOnSomeBirthday++;

055: } // while
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Improving the Date class: lessThan() and

equals()methods

• Each time round loop, reference in someBirthday is changed

– refers to a new Date representing next birthday.
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Improving the Date class: lessThan() and

equals()methods

• If else statement condition also much simpler than previously.

057: // Now deal with the next birthday.

058: if (someBirthday.equals(presentDate))

059: System.out.println("Pn " + personNumber + " is "

060: + ageOnSomeBirthday + " today!");

061: else

062: System.out.println("Pn " + personNumber + " will be "

063: + ageOnSomeBirthday + " on " + someBirthday.day

064: + "/" + someBirthday.month + "/" + someBirthday.year);

065: } // printAgeHistory

066:

067: } // class AgeHistory2
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Improving the Date class: lessThan() and

equals()methods

Coffee

time:

Java would have permitted us to write the condition

of the if else statement as someBirthday == presentDate.

Why would this not work?

Coffee

time:

The introduction of instancemethods has helped improve

more of the program. What aspects still have room for

improvement?
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Variable: of a class type: stores a reference to an

object: avoid misunderstanding

• Two common mistakes:

1. Misconception: A variable is an object.

2. Misconception: A variable contains an object.

• Neither: variables of a class type can contain a reference to an object.

• Common question – “why do we have to write Date twice in following?”.

Date someBirthday

= new Date(birthDate.day, birthDate.month, birthDate.year + 1);

• Because doing three things:

1. Declaring a variable,

2. constructing an object,

3. storing reference to object in the variable.
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Variable: of a class type: stores a reference to an

object: avoid misunderstanding

• Can have variable without object.

Date someBirthday;

• Can have object without variable (useful?)

new Date(birthDate.day, birthDate.month, birthDate.year + 1);

System.out.println(new Point(3, 4).distanceFromPoint(new Point(45, 60)));

• Can have two variables referring to same object.

Date theSameBirthday = someBirthday;

• Can change value of variable – make it refer to different object.

someBirthday = new Date(someBirthday.day, someBirthday.month,

someBirthday.year + 1);

Diagram. . .
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Variable: of a class type: stores a reference to an

object: avoid misunderstanding

01

07

2018

public int month

public int day

public int year

A Date object

01

07

2019

public int month

public int day

public int year

A Date object

Date someBirthday

someBirthday = new Date(someBirthday.day, someBirthday.month, someBirthday.year + 1);     

01

07

2018

public int month

public int day

public int year

A Date object

Date someBirthday
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Coursework: CompareQuadPoly

(Summary only)

Extend a class that stores quadratic polynomials, and write a program that

compares the ‘size’ of two quadratic polynomials.
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Section 4

Improving the Date class:

toString() method
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Aim

AIM: To reinforce the concept of instance methods. We also

note that a method might have no method parame-

ters.
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Improving the Date class: toString()method

• Continue to improve AgeHistory2

– several places where we print a date

– put logic for producing a date string in Date class

∗ as instance method.

– Use in AgeHistory2 class.

• First part of Date is the same.
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Improving the Date class: toString()method

001: // Representation of a date.

002: public class Date

003: {

004: // The day, month and year of the date.

005: public int day, month, year;

006:

007:

008: // Construct a date -- given the required day, month and year.

009: public Date(int requiredDay, int requiredMonth, int requiredYear)

010: {

011: day = requiredDay;

012: month = requiredMonth;

013: year = requiredYear;

014: } // Date

015:

016:
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Improving the Date class: toString()method

017: // Compare this date with a given other one, for equality.

018: public boolean equals(Date other)

019: {

020: return day == other.day && month == other.month && year == other.year;

021: } // equals

022:

023:

024: // Compare this date with a given other one, for less than.

025: public boolean lessThan(Date other)

026: {

027: return year < other.year

028: || year == other.year

029: && (month < other.month

030: || month == other.month && day < other.day);

031: } // lessThan
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Method: a method may have no parameters

• List of method parameters may be empty.

– E.g. if method always has same effect / returns same result.

– E.g. if result depends solely on values of instance variables

∗ rather than values in context of method call.
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Improving the Date class: toString()method

034: // Return the day/month/year representation of the date.

035: public String toString()

036: {

037: return day + "/" + month + "/" + year;

038: } // toString

039:

040: } // class Date

Console Input / Output

$ javac Date.java

$ _ Run
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Improving the Date class: toString()method

• Use toString() instance method when need to print a Date.

001: // Print out an age history of two people.

002: // Arguments: present date, first birth date, second birth date.

003: // Each date is three numbers: day month year.

004: public class AgeHistory2

005: {

006: // The present date.

007: private static Date presentDate;

008:

009:

010: // The main method: get arguments and call printAgeHistory.

011: public static void main(String[] args)

012: {

013: // The present date.

014: presentDate = new Date(Integer.parseInt(args[0]),

015: Integer.parseInt(args[1]),

016: Integer.parseInt(args[2]));
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Improving the Date class: toString()method

017:

018: // The dates of birth: these must be less than the present date.

019: Date birthDate1 = new Date(Integer.parseInt(args[3]),

020: Integer.parseInt(args[4]),

021: Integer.parseInt(args[5]));

022:

023: Date birthDate2 = new Date(Integer.parseInt(args[6]),

024: Integer.parseInt(args[7]),

025: Integer.parseInt(args[8]));

026:

027: // Now print the two age histories.

028: printAgeHistory(1, birthDate1);

029: printAgeHistory(2, birthDate2);

030: } // main

031:

032:
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Improving the Date class: toString()method

033: // Print the age history of one person, identified as personNumber.

034: // The birth date must be less than the present date.

035: private static void printAgeHistory(int personNumber, Date birthDate)

036: {

037: // Start by printing the event of birth.

038: System.out.println("Pn " + personNumber + " was born on "

039: + birthDate.toString());

040:
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Improving the Date class: toString()method

041: // Now we will go through the years since birth but before today.

042: // We keep track of the birthday we are considering.

043: Date someBirthday

044: = new Date(birthDate.day, birthDate.month, birthDate.year + 1);

045: int ageOnSomeBirthday = 1;

046: while (someBirthday.lessThan(presentDate))

047: {

048: System.out.println("Pn " + personNumber + " was " + ageOnSomeBirthday

049: + " on " + someBirthday.toString());

050: someBirthday = new Date(someBirthday.day, someBirthday.month,

051: someBirthday.year + 1);

052: ageOnSomeBirthday++;

053: } // while

054:

November 6, 2018 Java Just in Time - John Latham Page 86(0/0)



Improving the Date class: toString()method

055: // Now deal with the next birthday.

056: if (someBirthday.equals(presentDate))

057: System.out.println("Pn " + personNumber + " is "

058: + ageOnSomeBirthday + " today!");

059: else

060: System.out.println("Pn " + personNumber + " will be "

061: + ageOnSomeBirthday + " on "

062: + someBirthday.toString());

063: } // printAgeHistory

064:

065: } // class AgeHistory2

November 6, 2018 Java Just in Time - John Latham Page 87(0/0)



Coursework: AddQuadPoly and CompareQuadPoly
with toString()

(Summary only)

Extend a class that stores quadratic polynomials, and modify programs that

add together, and compare the ‘size’ of, two quadratic polynomials.
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Section 5

Improving the Date class:

addYear() method
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Aim

AIM: To further reinforce instance methods, meet Java’s

toString() convention and focus on the visibility of in-

stance variables. We also see a return type which is a

class.
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Improving the Date class: addYear() method

• Three more things to do.

– Another instance method for Date to create new Date one year later.

∗ When use in AgeHistory2 there will be no direct accesses to Date

instance variables left outside Date.

– Make Date instance variables private.

– Use Java’s implicit toString() mechanism.
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Variable: instance variables: should be private by

default

• Generally best to make instance variables private

– permits us to change way class works without affecting code in other

classes.

• E.g. Point class:

– might decide to reimplement – have instance variables for polar

coordinate radius and angle instead of x and y.

– Safe because x and y instance variables were private

∗ no other code could possibly be using them.

– Still have same public interface

∗ constructor method would convert given x and y to polar

∗ toString() would convert them back.

Coffee

time:

Howmight we store dates differently, instead of using day,

month and year?
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Improving the Date class: addYear()method

001: // Representation of a date.

002: public class Date

003: {

004: // The day, month and year of the date.

005: private int day, month, year;

• Next part is the same.

008: // Construct a date -- given the required day, month and year.

009: public Date(int requiredDay, int requiredMonth, int requiredYear)

010: {

011: day = requiredDay;

012: month = requiredMonth;

013: year = requiredYear;

014: } // Date

015:

016:
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Improving the Date class: addYear() method

017: // Compare this date with a given other one, for equality.

018: public boolean equals(Date other)

019: {

020: return day == other.day && month == other.month && year == other.year;

021: } // equals

022:
023:
024: // Compare this date with a given other one, for less than.

025: public boolean lessThan(Date other)

026: {

027: return year < other.year

028: || year == other.year

029: && (month < other.month

030: || month == other.month && day < other.day);

031: } // lessThan

032:
033:
034: // Return the day/month/year representation of the date.

035: public String toString()

036: {

037: return day + "/" + month + "/" + year;

038: } // toString
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Method: returning a value: of a class type

• A method may have a class as its return type

– so it typically returns a reference to an instance of that class.
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Method: returning a value: of a class type

• E.g. assuming a Point class:

public Point halfWayPoint(Point otherPoint)

{

double newX = (x + otherPoint.x) / 2;

double newY = (y + otherPoint.y) / 2;

return new Point(newX, newY);

} // halfWayPoint

• Perhaps used as:

Point p1 = new Point(3, 4);

Point p2 = new Point(45, 60);

Point halfWayBetweenP1AndP2 = p1.halfWayPoint(p2);
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Method: returning a value: of a class type

24

32private double y

private double x

A Point object

Point halfwayBetweenP1AndP2 = p1.halfwayPoint(p2)

3

4private double y

private double x

A Point object

Point p1 = new Point(3, 4) 45

60private double y

private double x

A Point object

Point p2 = new Point(45, 60)
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Improving the Date class: addYear() method

Coffee

time:

Suppose the Point class in the concept above had an

equals() instance method, defined as follows.

. public boolean equals(Point other)

. {

. return x == other.x && y == other.y;

. } // equals

Predict the values of equalByReference and equalByMethod.

. Point halfWayBetweenP1AndP2 = p1.halfWayPoint(p2);

. Point halfWayBetweenP2AndP1 = p2.halfWayPoint(p1);

. boolean equalByReference

. = halfWayBetweenP1AndP2 == halfWayBetweenP2AndP1;

. boolean equalByMethod

. = halfWayBetweenP1AndP2.equals(halfWayBetweenP2AndP1);
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Improving the Date class: addYear() method

Coffee

time:

What are the values of the same variables after the fol-

lowing alternative code is run?

. Point halfWayBetweenP1AndP2 = p1.halfWayPoint(p2);

. Point halfWayBetweenP2AndP1 = halfWayBetweenP1AndP2;

. boolean equalByReference

. = halfWayBetweenP1AndP2 == halfWayBetweenP2AndP1;

. boolean equalByMethod

. = halfWayBetweenP1AndP2.equals(halfWayBetweenP2AndP1);
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Improving the Date class: addYear() method

041: // Return a new Date which is one year later than this one.

042: public Date addYear()

043: {

044: return new Date(day, month, year + 1);

045: } // addYear

046:

047: } // class Date

Console Input / Output

$ javac Date.java

$ _ Run
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Type: String: conversion: from object

• Commonly wish to have an instance method to produce a String

representation of an object.

• By convention always called toString.

• E.g. for Point class:

public String toString()

{

return "(" + x + "," + y + ")";

} // toString
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Type: String: conversion: from object

• When compiler finds object reference as concatenation operand

– it assumes we wish toString() to be called.

• E.g.

Point p1 = new Point(10, 40);

System.out.println("The point is " + p1.toString());

could/should be written:

Point p1 = new Point(10, 40);

System.out.println("The point is " + p1);
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Type: String: conversion: from object

• Also, for convenience, separate version of System.out.println():

System.out.println(p1);

same effect as:

System.out.println("" + p1);
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Improving the Date class: addYear()method

001: // Print out an age history of two people.

002: // Arguments: present date, first birth date, second birth date.

003: // Each date is three numbers: day month year.

004: public class AgeHistory2

005: {

006: // The present date.

007: private static Date presentDate;

008:

009:

010: // The main method: get arguments and call printAgeHistory.

011: public static void main(String[] args)

012: {

013: // The present date.

014: presentDate = new Date(Integer.parseInt(args[0]),

015: Integer.parseInt(args[1]),

016: Integer.parseInt(args[2]));

017:
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Improving the Date class: addYear() method

018: // The dates of birth: these must be less than the present date.

019: Date birthDate1 = new Date(Integer.parseInt(args[3]),

020: Integer.parseInt(args[4]),

021: Integer.parseInt(args[5]));

022:

023: Date birthDate2 = new Date(Integer.parseInt(args[6]),

024: Integer.parseInt(args[7]),

025: Integer.parseInt(args[8]));

026:

027: // Now print the two age histories.

028: printAgeHistory(1, birthDate1);

029: printAgeHistory(2, birthDate2);

030: } // main
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Improving the Date class: addYear()method

• Implicit use of toString().

• Explicit use of addYear().

033: // Print the age history of one person, identified as personNumber.

034: // The birth date must be less than the present date.

035: private static void printAgeHistory(int personNumber, Date birthDate)

036: {

037: // Start by printing the event of birth.

038: System.out.println("Pn " + personNumber + " was born on " + birthDate);

039:
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Improving the Date class: addYear()method

040: // Now we will go through the years since birth but before today.

041: // We keep track of the birthday we are considering.

042: Date someBirthday = birthDate.addYear();

043: int ageOnSomeBirthday = 1;

044: while (someBirthday.lessThan(presentDate))

045: {

046: System.out.println("Pn " + personNumber + " was " + ageOnSomeBirthday

047: + " on " + someBirthday);

048: someBirthday = someBirthday.addYear();

049: ageOnSomeBirthday++;

050: } // while

051:
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Improving the Date class: addYear() method

052: // Now deal with the next birthday.

053: if (someBirthday.equals(presentDate))

054: System.out.println("Pn " + personNumber + " is "

055: + ageOnSomeBirthday + " today!");

056: else

057: System.out.println("Pn " + personNumber + " will be "

058: + ageOnSomeBirthday + " on " + someBirthday);

059: } // printAgeHistory

060:

061: } // class AgeHistory2

• Compare this version with the original year-only version.

Coffee

time:

What do you think would happen if we place, as an

operand of concatenation, a reference to an object

belonging to a class in which we have not defined a

toString() instance method?
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Coursework: QuadPoly with an addition method

(Summary only)

Further extend a class that stores quadratic polynomials, and modify a

program that adds together two quadratic polynomials.
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Section 6

Alternative style
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Aim

AIM: To show an alternative way of talking about instance

variables and instance methods from within the same

class, using this.
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Class: objects: this reference

• In constructor methods or instance methods sometimes wish to talk about

the object being created or to which the instance method belongs.

• The reserved word this in an expression is such a this reference.

• E.g.

public Point halfThisPoint()

{

return halfWayPoint(new Point(0, 0));

} // halfThisPoint

• Alternatively:

public Point halfThisPoint()

{

return new Point(0, 0).halfWayPoint(this);

} // halfThisPoint
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Alternative style

• This author prefers use of this reference only when needed.

• Some like following style:

001: // Representation of a date.

002: public class Date

003: {

004: // The day, month and year of the date.

005: private int day, month, year;

006:

007:
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Alternative style

008: // Construct a date -- given the required day, month and year.

009: public Date(int day, int month, int year)

010: {

011: this.day = day;

012: this.month = month;

013: this.year = year;

014: } // Date

• Note same names for method parameters and instance variables.
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Alternative style

017: // Compare this date with a given other one, for equality.

018: public boolean equals(Date other)

019: {

020: return this.day == other.day && this.month == other.month

021: && this.year == other.year;

022: } // equals

023:

024:

025: // Compare this date with a given other one, for less than.

026: public boolean lessThan(Date other)

027: {

028: return this.year < other.year

029: || this.year == other.year

030: && (this.month < other.month

031: || this.month == other.month && this.day < other.day);

032: } // lessThan

033:
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Alternative style

034:

035: // Return the day/month/year representation of the date.

036: public String toString()

037: {

038: return this.day + "/" + this.month + "/" + this.year;

039: } // toString

040:

041:

042: // Return a new Date which is one year later than this one.

043: public Date addYear()

044: {

045: return new Date(this.day, this.month, this.year + 1);

046: } // addYear

047:

048: } // class Date
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Concepts covered in this chapter

• Each book chapter ends with a list of concepts covered in it.

• Each concept has with it

– a self-test question,

– and a page reference to where it was covered.

• Please use these to check your understanding before we start the next

chapter.
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