
List of Slides

1 Title
2 Chapter 9: Consolidation of concepts so far
3 Chapter aims
4 Section 2: Java concepts
5 Aim
6 Java concepts
7 Type: long
8 Type: short
9 Type: byte

10 Type: char
11 Type: char: literal
12 Variable: char variable
13 Type: char: literal: escape sequences
14 Type: float
15 Java concepts
16 Example-class.java

0-0

20 Java concepts
21 Expression: arithmetic: remainder operator
22 Java concepts
23 Section 3: Program design concepts
24 Aim
25 Program design concepts
26 Program design concepts
28 Designing the variables
29 Designing the variables
30 Designing the variables
31 Designing the variables
32 Designing the variables
33 Designing the variables
34 Designing the variables
35 Designing the variables
36 Designing the variables
37 Designing the variables
38 Designing the variables

0-1

39 Designing the variables
40 Designing the variables
41 Designing the variables
42 Designing the variables
43 Designing the algorithm
44 Designing the algorithm
45 Designing the algorithm
46 Designing the algorithm
47 Designing the algorithm
49 Designing the algorithm
50 TimesTable.java
52 Designing the algorithm
53 Concepts covered in this chapter

0-2

Title

Java Just in Time

John Latham

November 5, 2018

November 5, 2018 Java Just in Time - John Latham Page 1(0/0)

Chapter 9

Consolidation of concepts so

far

November 5, 2018 Java Just in Time - John Latham Page 2(0/0)

Chapter aims

• Consolidate concepts covered so far.

– opportunity to decide what you should reread.

• Introduce a few more simple concepts.

• Look specifically at process of designing programs

– mostly so far done via osmosis.

November 5, 2018 Java Just in Time - John Latham Page 3(0/0)

Section 2

Java concepts

November 5, 2018 Java Just in Time - John Latham Page 4(0/0)

Aim

AIM: To consolidate and summarize the Java concepts intro-

duced in the preceding chapters. We also introduce

some more simple concepts which were not covered

before, but which compliment those that were – such

as the float type.

November 5, 2018 Java Just in Time - John Latham Page 5(0/0)

Java concepts

• Read chapter to review what already has been covered.

• Take time also to meet new concepts

– some of them will be used in later chapters.

• Java source code lexical details. . .

• Classes, methods, types, variables and layout. . .

November 5, 2018 Java Just in Time - John Latham Page 6(0/0)

Type: long

• The type int uses four bytes, 32 binary digits.

– Gives range −231 through to 231
−1.

– 231
−1 is 2147483647.

• The type long represents long integers using eight bytes.

– Gives range −263 through to 263
−1.

– 263
−1 is 9223372036854775807.

• A long literal has L on the end

– e.g. -15L, 2147483648L.

November 5, 2018 Java Just in Time - John Latham Page 7(0/0)

Type: short

• The type short represents short integers using two bytes.

– Gives range −215 through to 215
−1.

– 215
−1 is 32767.

• Useful when have huge number of integers lying in that range

– uses less space.

November 5, 2018 Java Just in Time - John Latham Page 8(0/0)

Type: byte

• The type byte represents integers using one byte.

– Gives range −27 through to 27
−1.

– 27
−1 is 127.

November 5, 2018 Java Just in Time - John Latham Page 9(0/0)

Type: char

• Characters are represented by type char.

• A char variable can store a single character.

November 5, 2018 Java Just in Time - John Latham Page 10(0/0)

Type: char: literal

• A character literal is written using single quotes.

• E.g. ’J’

November 5, 2018 Java Just in Time - John Latham Page 11(0/0)

Variable: char variable

• Can have char variables, e.g.

char firstLetter = ’J’;

November 5, 2018 Java Just in Time - John Latham Page 12(0/0)

Type: char: literal: escape sequences

• A character literal can have escape sequences

– same as for string literals.

• E.g.

char backspace = ’\b’; char tab = ’\t’;

char newline = ’\n’; char formFeed = ’\f’;

char carriageReturn = ’\r’; char doubleQuote = ’\"’;

char singleQuote = ’\’’; char backslash = ’\\’;

November 5, 2018 Java Just in Time - John Latham Page 13(0/0)

Type: float

• The type float stores real numbers

– uses single precision floating point representation

– only four bytes per number

• The type double

– uses double precision – far more accurate

– needs eight bytes per number.

• A float literal ends in f or F

– e.g. 0.0F, -129.934F, 98.2375f

November 5, 2018 Java Just in Time - John Latham Page 14(0/0)

Java concepts

• Typical single class program:

November 5, 2018 Java Just in Time - John Latham Page 15(0/0)

Example-class.java

001: // Comments here to say what the program does.

002: // This may take several lines.

003: public class ProgramName

004: {

005: // Each class variable should have comments saying what it is used for.

006: private static int someVariable;

007:

008: // Variables can be initialized when they are declared.

009: private static double someOtherVariable = someVariable * 100.0;

010:

011:

November 5, 2018 Java Just in Time - John Latham Page 16(0/0)

Example-class.java

012: // Each method should have comments saying what it does.

013: // If it does not return a result, we write the word void.

014: public static void someMethod(int aParameter)

015: {

016: // Local variables should also have a comment.

017: int aLocalVariable;

018:

019: ... Method instruction statements go here.

020: // Comments are used to help make tricky code readable.

021: ...

022: } // someMethod

023:

024:

November 5, 2018 Java Just in Time - John Latham Page 17(0/0)

Example-class.java

025: // Methods which are only of use in this class/program should be private.

026: // If it returns a result, we state the type in the heading.

027: private static double someOtherMethod(boolean parameter1, int parameter2)

028: {

029: double aLocalVariable;

030: ...

031: return something;

032: } // someOtherMethod

033:

034:

November 5, 2018 Java Just in Time - John Latham Page 18(0/0)

Example-class.java

035: // The program always starts its execution at the main method.

036: // The parameters are the command line arguments of the program.

037: public static void main(String[] args)

038: {

039: ...

040: } // main

041:

042: } // class ProgramName

November 5, 2018 Java Just in Time - John Latham Page 19(0/0)

Java concepts

• Statements. . .

• Expressions. . .

November 5, 2018 Java Just in Time - John Latham Page 20(0/0)

Expression: arithmetic: remainder operator

• Another arithmetic operator – remainder: %

– also known as modulo.

• Given two integer operands

– yields remainder after dividing first by second.

• E.g.

public static boolean isEven(int number)

{

return number % 2 == 0;

} // isEven

November 5, 2018 Java Just in Time - John Latham Page 21(0/0)

Java concepts

• Errors. . .

• Standard classes. . .

November 5, 2018 Java Just in Time - John Latham Page 22(0/0)

Section 3

Program design concepts

November 5, 2018 Java Just in Time - John Latham Page 23(0/0)

Aim

AIM: To look more formally at the process of designing an

algorithm and writing a program. In particular, we look

closely at designing variables.

November 5, 2018 Java Just in Time - John Latham Page 24(0/0)

Program design concepts

• Seen lots of example programs, done coursework

– by osmosis you have begun to learn skill of programming.

• Now we formalize this a little: how do we write a program / method?

– Really: how do we write an algorithm?

• Guidelines – not a recipe:

November 5, 2018 Java Just in Time - John Latham Page 25(0/0)

Program design concepts

1. Understand the problem – obviously you cannot possibly get the

computer to solve it otherwise. (It is amazing how many people overlook

this!)

2. Ask yourself how you would solve the problem if you were not going to

program a computer. If you cannot answer this then almost certainly you

will fail to get the computer to do it.

3. Consider whether the way you would do it is the way the computer should

do it. Often it is, because we humans are actually very good at being

lazy, and finding the best way to do something when we put our minds to

it. On the other hand, sometimes the way a computer would do it is

different because of the nature of computers compared with us – they

are very quick at doing mindless things.

4. Decide how the computer should do it, i.e. what is the basic method your

algorithm will use.

November 5, 2018 Java Just in Time - John Latham Page 26(0/0)

Program design concepts

5. Design the variables used in the algorithm, very carefully. We shall say

more about this shortly.

6. Design the algorithm itself in pseudo code . If the previous step is done

properly, this one will almost do itself.

7. Finally implement the algorithm in code – this should be the easiest part if

the previous steps have been followed carefully.

November 5, 2018 Java Just in Time - John Latham Page 27(0/0)

Designing the variables

• A variable is just a named location

– your code can stick a value there

∗ (of appropriate type)

– and change it from time to time.

November 5, 2018 Java Just in Time - John Latham Page 28(0/0)

Designing the variables

• No, No, NO, NOO, NOOOOO,
NOOOOOOOOOOOOO!!!!!!!!
– Far too computer centric view to help us design.

– This is exactly what is wrong with many programs.

November 5, 2018 Java Just in Time - John Latham Page 29(0/0)

Designing the variables

• Focus on meaning of data by designing variables

– get this wrong and our programs will

∗ not work

∗ be badly written – hard to fix

∗ essentially useless!

• Classic mistake:

– recognise variable needed of certain type

– then quickly choose its name

– never carefully consider what it means with respect to problem

– Result:

∗ cryptic names

∗ buggy code.

November 5, 2018 Java Just in Time - John Latham Page 30(0/0)

Designing the variables

• Java invites this attitude: you write type of variable before name!

– Resist!!!!
• We must really think about these the other way round.

November 5, 2018 Java Just in Time - John Latham Page 31(0/0)

Designing the variables

• Example code, written by computer centric programmer.

– Assume getCurrentHumidity() and PRECIPITATION THRESHOLD

boolean b;

if (getCurrentHumidity() > PRECIPITATION_THRESHOLD)

b = true;

else

b = false;

. . .

if (b == true)

System.out.println("Take your umbrella!");

November 5, 2018 Java Just in Time - John Latham Page 32(0/0)

Designing the variables

• Is that code okay?

– Well it does work. . .maybe.

• Recall how naughty code like if (b == true) is?

– Terrible!

November 5, 2018 Java Just in Time - John Latham Page 33(0/0)

Designing the variables

• Let’s choose better name for boolean variable, b

– what does it really mean?

boolean rainIsLikely;

if (getCurrentHumidity() > PRECIPITATION_THRESHOLD)

rainIsLikely = true;

else

rainIsLikely = false;

. . .

if (rainIsLikely == true)

System.out.println("Take your umbrella!");

November 5, 2018 Java Just in Time - John Latham Page 34(0/0)

Designing the variables

• How often do you say

“Do you think it will rain

equals true?”
?

November 5, 2018 Java Just in Time - John Latham Page 35(0/0)

Designing the variables

• Do not need if else statement.

boolean rainIsLikely

= getCurrentHumidity() > PRECIPITATION_THRESHOLD;

• Do not need == true.

if (rainIsLikely)

System.out.println("Take your umbrella!");

• Poor design led to poor style.

November 5, 2018 Java Just in Time - John Latham Page 36(0/0)

Designing the variables

• Example: where it leads to buggy code

– we wish to count items – here is pseudo code.

int i = 1

while there are more items

get an item

i++

end-while

output "There were " i " items"

Coffee

time:

What is wrong with this design and how should it be fixed?

There are two obvious ways to fix it. Which is best?

November 5, 2018 Java Just in Time - John Latham Page 37(0/0)

Designing the variables

• Think carefully what i really is. . .

– number of items we have had so far.

int itemCountSoFar = 1

while there are more items

get an item

itemCountSoFar++

end-while

output "There were " itemCountSoFar " items"

• Ah ha! First line is a lie – that is where error is.

November 5, 2018 Java Just in Time - John Latham Page 38(0/0)

Designing the variables

• Or, i is number of next item to be obtained.

int nextItemNumber = 1

while there are more items

get an item

nextItemNumber++

end-while

output "There were " nextItemNumber " items"

• Now last line is a lie – that is where error is!

November 5, 2018 Java Just in Time - John Latham Page 39(0/0)

Designing the variables

• i was an ambiguous name

– because of lack of design about what it really means

– was treated with different interpretation in different parts of design.

• Which interpretation is best? itemCountSoFar or nextItemNumber?

– subjective

– but, always a count of items so far, not always a next item

November 5, 2018 Java Just in Time - John Latham Page 40(0/0)

Designing the variables

• Treat variables with respect – design them carefully.

• They represent identifiable entities in the problem.

• If cannot fully and precisely describe meaning in one sentence

– then probably is a bad variable

– think again!

• That sentence will be your comment for the variable.

• Condense it to a few words to make variable name.

• Then you can identify its type!

November 5, 2018 Java Just in Time - John Latham Page 41(0/0)

Designing the variables

• If you design variables well then algorithm code almost writes itself

– just ensure value of every variable reflects its meaning at all times

– you cannot have a bug!

• Well, you might make a mistake

– but if you do, it will be easy to spot.

• Plus, code is easier to read and maintain too!

November 5, 2018 Java Just in Time - John Latham Page 42(0/0)

Designing the algorithm

• Express algorithm at high level of abstraction.

• Add more detail – lower abstraction level.

• Until low enough that implementation in Java straightforward.

• E.g. our first example was MinimumBitWidth:

get numberOfValues from command line

noOfBits = 0

while noOfBits is too small

increment noOfBits

output noOfBits

November 5, 2018 Java Just in Time - John Latham Page 43(0/0)

Designing the algorithm

• Then added more detail:

numberOfValues = args[0]

noOfBits = 0

noOfBitswhile 2 < numberOfValues

noOfBits++

s.o.p noOfBits

• Close enough to Java so easy to implement.

November 5, 2018 Java Just in Time - John Latham Page 44(0/0)

Designing the algorithm

• Next example was PiEstimation:

obtain tolerance from command line

set up previousEstimate as value from no terms

set up latestEstimate as value from one term

while previousEstimate is not within tolerance of latestEstimate

previousEstimate = latestEstimate

add next term to latestEstimate

end-while

print out latestEstimate

print out the number of terms used

print out the standard known value of Pi for comparison

November 5, 2018 Java Just in Time - John Latham Page 45(0/0)

Designing the algorithm

• We lowered level of abstraction:

double tolerance = args[0]

double previousEstimate = 0

double latestEstimate = 4

int termCount = 1

while previousEstimate is not within tolerance of latestEstimate

previousEstimate = latestEstimate

add next term to latestEstimate

termCount++

end-while

s.o.p latestEstimate

s.o.p termCount

s.o.p the standard known value of Pi for comparison

November 5, 2018 Java Just in Time - John Latham Page 46(0/0)

Designing the algorithm

• And again:

double tolerance = args[0]

double previousEstimate = 0

double latestEstimate = 4

int termCount = 1

int nextDenominator = 3

int nextNumeratorSign = -1

while Math.abs(latestEstimate - previousEstimate) > tolerance

previousEstimate = latestEstimate

latestEstimate += nextNumeratorSign * 4 / nextDenominator

termCount++

nextNumeratorSign *= -1

nextDenominator += 2

end-while

November 5, 2018 Java Just in Time - John Latham Page 47(0/0)

Designing the algorithm

s.o.p latestEstimate

s.o.p termCount

s.o.p Math.PI

November 5, 2018 Java Just in Time - John Latham Page 48(0/0)

Designing the algorithm

• Another example was TimesTable:

print the box top line

print column headings

print headings underline

for row = 1 to 10

print a row

print the box bottom line

• Later we implemented this using separate methods.

• Steps in early abstract designs often make good choice for methods:

November 5, 2018 Java Just in Time - John Latham Page 49(0/0)

TimesTable.java

001: // Program to print out a neat multiplication table.

002: public class TimesTable

003: {

004: // The size of the table -- the number of rows and columns.

005: private static int tableSize = 12;

006:

007:

008: // The main method implements the top level structure of the table.

009: public static void main(String[] args)

010: {

011: // Top line.

012: printLine();

013:

014: // Column headings.

015: printColumnHeadings();

November 5, 2018 Java Just in Time - John Latham Page 50(0/0)

TimesTable.java

016:

017: // Underline headings.

018: printLine();

019:

020: // Now the rows.

021: for (int row = 1; row <= tableSize; row++)

022: printRow(row);

023:

024: // Bottom line.

025: printLine();

026: } // main

...

076: } // class TimesTable

November 5, 2018 Java Just in Time - John Latham Page 51(0/0)

Designing the algorithm

• Generalize algorithm design process:

1. Identify main steps of algorithm.

2. Express algorithm in terms of main steps.

3. Separately expand on each step using same process

i.e. identify its main steps...

• Sometimes called top down stepwise refinement.

November 5, 2018 Java Just in Time - John Latham Page 52(0/0)

Concepts covered in this chapter

• Each book chapter ends with a list of concepts covered in it.

• Each concept has with it

– a self-test question,

– and a page reference to where it was covered.

• Please use these to check your understanding before we start the next

chapter.

November 5, 2018 Java Just in Time - John Latham Page 53(0/0)

	Title
	Chapter 9: Consolidation of concepts so far
	Chapter aims
	Section 2: Java concepts
	Aim
	Java concepts
	Type: long
	Type: long

	Type: short
	Type: short

	Type: byte
	Type: byte

	Type: char
	Type: char

	Type: char: literal
	Type: char: literal

	Variable: char variable
	Variable: char variable

	Type: char: literal: escape sequences
	Type: char: literal: escape sequences

	Type: float
	Type: float

	Java concepts
	Example-class.java
	Java concepts
	Expression: arithmetic: remainder operator
	Expression: arithmetic: remainder operator

	Java concepts
	Section 3: Program design concepts
	Aim
	Program design concepts
	Program design concepts
	Designing the variables
	Designing the variables
	Designing the variables
	Designing the variables
	Designing the variables
	Designing the variables
	Designing the variables
	Designing the variables
	Designing the variables
	Designing the variables
	Designing the variables
	Designing the variables
	Designing the variables
	Designing the variables
	Designing the variables
	Designing the algorithm
	Designing the algorithm
	Designing the algorithm
	Designing the algorithm
	Designing the algorithm
	Designing the algorithm
	TimesTable.java
	Designing the algorithm
	Concepts covered in this chapter

