List of Slides

O VOONOCDUODMNWN —

OOV DN OLN —

Chapter 9: Consolidation of concepts so far

Chapter aims

Section 2: Java concepts
Aim

Java concepts

Type: | ong

Type: short|

Type: byte
Type: char
Type: char: literal

Variable: char variable

Type: char: literal: escape sequences
Type: fl oat|

Java concepts

Example-class.java

20
21
22
23
24
25
26
28
29
30
31
32
33
34
35
36
37
38

Java concepts

Expression: arithmetic: remainder operator

Java concepts

Section 3: Program design concepts
Aim

Program design concepfts
Program design concepfts
Designing the variables
Designing the variables
Designing the variables
Designing the variables
Designing the variables
Designing the variables
Designing the variables
Designing the variables
Designing the variables
Designing the variables
Designing the variables

39
40
4]
42
43
44
45
46
47
49
50
52
93

Designing the variables

Designing the variables

Designing the variables

Designing the variables

Designing the algorithm

Designing the algorithm

Designing the algorithm

Designing the algorithm

Designing the algorithm

Designing the algorithm

TimesTable.java

Designing the algorithm

Concepts covered in this chapter

) .
THE LINIVERSITY
@ MANCHESTER

Java Just in Time

John Latham

November 5, 2018

Novernber 5, 2018 Java Just in Time - John Latham Page 1(0/0)

Chapter @

Consolidatfion of concepts so

far

Java Just in Time - John Latham ~ page 20 /0)

Chapter aims

e Consolidate concepts covered so far.

- opportunity to decide what you should reread.

e INnfroduce a few more simple concepts.

e LOOk specifically at process of designing programs

- mostly so far done via osmaosis.

Novernber 5, 2018 Java Just in Time - John Latham Page 3(0/0)

Section 2

Java concepts

Novernber 5, 2018 Java Just in Time - John Latham Page 4(0/0)

) .
THE LINIVERSITY
@ MANCHESTER

AIM: To consolidate and summarize the Java concepfts intro-
duced in the preceding chapters. We also infroduce
some more simple concepts which were not covered

pefore, but which compliment those that were - such
as the f1 oat type.

Novernber 5, 2018 Java Just in Time - John Latham Page 5(0/0)

A Java concepts

Read chapter to review what already has been covered.

Take time also to meet new concepfts

- some of them will be used in later chapters.
Java source code lexical details. . .

Classes, methods, types, variables and layout. . .

Novernber 5, 2018 Java Just in Time - John Latham Page 6(0/0)

Type: | ong

e The type i nt uses four bytes, 32 binary digits.

- Gives range —23! through to 23t — 1.

— 231 _1is 2147483647

e [he type | ong represents long integers using eight bytes.
- Gives range —2% through to 2% — 1.
- 298 _1 s 9223372036854775807.

e Along literal has L on the end
- e.g. - 151, 2147483648L.

Novernber 5, 2018 Java Just in Time - John Latham Page 7(0/0)

Type: short

e [he type short represents short integers using tfwo bytes.

- Gives range —2%° through to 21° — 1.

- 2> _1is 32767.

e Useful when have huge number of integers lying in that range

- uses less space.

Novernber 5, 2018 Java Just in Time - John Latham Page 8(0/0)

Type: byt e

e [he type byt e represents integers using one byte.

- Gives range —2’ through to 27 — 1.
- 27— 1is 127.

Novernber 5, 2018 Java Just in Time - John Latham Page 9(0/0)

Type: char

e Characters are represented by type char .

e A char variable can store a single character.

November 5, 2018 Java Just in Time - John Latham Page 10(0/0)

Type: char : literal

e A character literal is written using single quoftes.

¢« £.g.'J

Novernber 5, 2018 Java Just in Time - John Latham Page 11(0/0)

Variable: char variable

e Can have char variables, e.g.

char firstLetter ='J";

Novernber 5, 2018 Java Just in Time - John Latham Page 12(0/0)

Type: char : literal: escape sequences

e A character literal can have escape sequences

- same as for string literals.

e £.Q.

backspace = '\b’; tab = "\t’;

newine ='\n’; fornfeed = "\ f’;
carriageReturn = '\r’; doubl eQuote = "\"";
singl eQuote = "\""; backslash = "\\";

November 5, 2018 Java Just in Time - John Latham Page 13(0/0)

Type: f | oat

e [he type fl oat stores real numbers
— uses single precision floating point representation

— only four bytes per number

e The type doubl e

- uses double precision — far more accurate

- needs eight bytes per number.

o A float literal endsinf orF
— e.g. 0. 0F, - 129. 934F, 98. 2375f

Novernber 5, 2018 Java Just in Time - John Latham Page 14(0/0)

Java concepts

e [ypical single class program:

Novernber 5, 2018 Java Just in Time - John Latham Page 15(0/0)

it E Xam p I e-C I QsSs. j ava

001: // Comments here to say what the program does.

002: // This may take several |ines.

003: public class ProgranNanme
004: {
005: // Each class variable should have comments saying what it is used for.

006: private static int someVari abl e;

007:

008: // Variables can be initialized when they are declared.

009: private static double soneQ herVariable = someVariable * 100. 0;
010:

011:

Novernber 5, 2018 Java Just in Time - John Latham Page 16(0/0)

it E Xam p I e-C I QsSs. j ava

[l Each method shoul d have comments saying what it does.
[l If it does not return a result, we wite the word void.
public static void someMethod(int aParaneter)

{

/| Local variables should al so have a coment.
i nt aLocal Vari abl e:

Met hod instruction statements go here.

[l Comrents are used to help make tricky code readabl e.

} Il someMet hod

Novernber 5, 2018 Java Just in Time - John Latham Page 17(0/0)

it E Xam p I e-C I QsSs. j ava

[l Methods which are only of use in this class/program shoul d be private.

[l 1f it returns a result, we state the type in the headi ng.

private static double someQ her Met hod(bool ean paraneterl, int paraneter?2)

{

doubl e alLocal Vari abl e:

return something;
} Il someQ her Met hod

Novernber 5, 2018 Java Just in Time - John Latham Page 18(0/0)

it E Xam p I e-C I QsSs. j ava

Il The program al ways starts its execution at the main nethod.

[l The paranmeters are the command |ine argunents of the program

public static void main(String[] args)

{

} /Il main

. } 11 class Programane

Novernber 5, 2018 Java Just in Time - John Latham Page 19(0/0)

Java concepts

e Statements. ..

e EXxpressions. ..

Novernber 5, 2018 Java Just in Time - John Latham Page 20(0/0)

Expression: arithmetic: remainder operator

e Another arithmetic operator — remainder: %

- also known as modulo.

e Given two integer operands

- vields remainder affer dividing first by second.

e £.Q.

public static bool ean i SEven(int nunber)

{

return nunber %2 == 0:
} Il isEven

Novernber 5, 2018 Java Just in Time - John Latham Page 21(0/0)

Java concepts

e Errors...

e Standard classes. ..

Novernber 5, 2018 Java Just in Time - John Latham Page 22(0/0)

Section 3

Program design concepts

Novernber 5, 2018 Java Just in Time - John Latham Page 23(0/0)

Aim

AIM: To look more formally af the process of designing an
algorithm and wrifing a program. In parficular, we look

closely at designing variables.

Novernber 5, 2018 Java Just in Time - John Latham Page 24(0/0)

Program design concepts

e Seen lots of example programs, done coursework

- by osmosis you have begun to learn skill of programming.

e Now we formalize this a litftle: how do we write a program / method?

- Redally: how do we write an algorithm?

e Guidelines — not a recipe:

Novernber 5, 2018 Java Just in Time - John Latham Page 25(0/0)

Program design concepts

1. Understand the problem — obviously you cannot possibly get the
computer to solve it otherwise. (It is amazing how many people overlook
this!)

. Ask yourself how you would solve the problem if you were not going to
program a computer. If you cannot answer this then almost certainly you
will fail fo get the computer to do it.

. Consider whether the way you would do it is the way the computer should
do it. Often it is, because we humans are actually very good at being
lazy, and finding the best way to do something when we put our minds fo
it. On the other hand, sometimes the way a computer would do it is
different because of the nature of computers compared with us — they
are very quick at doing mindless things.

. Decide how the computer should do it, i.e. what is The basic method your
algorithm will use.

November 5, 2018 Java Just in Time - John Latham Page 26(0/0)

Program design concepts

. Design the variables used in the algorithm, very carefully. We shall say
more about this shortly.

. Design the algorithm ifself in pseudo code . If the previous step is done
properly, this one will almost do itself.

. Finally implement the algorithm in code - this should be the easiest part if
the previous steps have been followed carefully.

Novernber 5, 2018 Java Just in Time - John Latham Page 27(0/0)

Designing the variables

e A variable is just a named location

- your code can sfick a value there
x (of appropriate type)

- and change it from time fo time.

Novernber 5, 2018 Java Just in Time - John Latham Page 28(0/0)

Designing the variables

.No, No, NO, NOO, NOOOOO,

- Far too computer cenftric view to help us design.

— This is exactly what is wrong with many programs.

Novernber 5, 2018 Java Just in Time - John Latham Page 29(0/0)

Designing the variables

e Focus on meaning of data by designing variables

- get this wrong and our programs will
* NOt work

x e badly written — hard to fix
x essentially useless!
e Classic mistake:
recognise variable needed of cerfain type
then quickly choose its name
never carefully consider what it means with respect to problem

Result:

x Cryptic names
x buggy code.

Novernber 5, 2018 Java Just in Time - John Latham Page 30(0/0)

Designing the variables

e Java invites this attitude: you write type of variable before namel

_Resist!

e \We must redlly think about these the other way round.

Novernber 5, 2018 Java Just in Time - John Latham Page 31(0/0)

Designing the variables

e Example code, written by computer centric programmet.

— Assume get Cur r ent Huni di ty() and PREC! Pl TATI ON.THRESHOLD

bool ean b;

if (getCurrentHum dity() > PRECI Pl TATI ON_THRESHOLD)
b = true;

el se

b = fal se;

if (b == true)
Systemout. println("Take your unbrellal");

Novernber 5, 2018 Java Just in Time - John Latham Page 32(0/0)

Designing the variables

e Is that code okay?

- Well it does work. .. maybe.

e Recall how naughty code likeif (b == true) is?

- Terrible!

Novernber 5, 2018 Java Just in Time - John Latham Page 33(0/0)

it DeSigning II.he Vqriqbles

e Let’s choose better name for boolean variable, b

- what does it really mean?

bool ean rainlsLikely;

if (getCurrentHum dity() > PRECI Pl TATI ON_THRESHOLD)
rainlsLikely = true;

el se

rainlsLikely = fal se;

if (rainlsLikely == true)
Systemout. println("Take your unbrella!");

Novernber 5, 2018 Java Just in Time - John Latham Page 34(0/0)

Designing the variables

e How offen do you say

"Do you think it will rain
equals frue?”

Novernber 5, 2018 Java Just in Time - John Latham Page 35(0/0)

Designing the variables

e DO not need if else statement.

bool ean rainlsLikely
= getCurrentHum dity() > PRECI PI TATI ON THRESHOLD;

e DO Nnot need == true.

i f (rainlsLikely)
Systemout. println("Take your unbrellal");

e Poor design led to poor style.

Novernber 5, 2018 Java Just in Time - John Latham Page 36(0/0)

Designing the variables

e Example: where it leads to buggy code

- we wish To count items — here is pseudo code.
int 1 =1
while there are nore itens
get an item
| ++
end-whi | e
output "There were " 1 " itens"

Coffee Whatis wrong with this design and how should it be fixed?
There are fwo obvious ways to fix it. Which is best?

November 5, 2018 Java Just in Time - John Latham Page 37(0/0)

it DeSigning II.he Vqriqbles

e Think carefully whati readlly is. ..

- number of items we have had so far.

int itenCount SoFar =1
while there are nore itens
get an item
| t enCount SoFar ++
end-whi |l e
out put "There were " itenCount SoFar " itens"

e Ah hal First line is a lie — that is where error is.

Novernber 5, 2018 Java Just in Time - John Latham Page 38(0/0)

it DeSigning II.he Vqriqbles

e Or, i is number of next item to be obtained.

i nt nextltemNunber =1
while there are nore itens
get an item
next | t emNunber ++
end-whi | e

output "There were " nextltemNunmber " itens"

e Now last line is a lie — that is where error is!

Novernber 5, 2018 Java Just in Time - John Latham Page 39(0/0)

Designing the variables

e | WQAS AN ambiguous name

- because of lack of design about what it really means

— was treated with different intferpretation in different parts of design.

e Which infterpretation is bbest? i t enCount SoFar or next | t emNunber ?
- subjective

- but, always a count of items so far, not always a next item

Novernber 5, 2018 Java Just in Time - John Latham Page 40(0/0)

Designing the variables

Treat variables with respect — design them carefully.

They represent identifiable entities in the problem.

If cannoft fully and precisely describe meaning in one senfence

- then probably is a bad variable

- think again!
That sentence will be your comment for the variable,
Condense it fo a few words to make variable name.

Then you can identify its type!

Novernber 5, 2018 Java Just in Time - John Latham Page 41(0/0)

Designing the variables

e |f you design variables well then algorithm code almost writes ifself
— Just ensure value of every variable reflects its meaning at all fimes

- you cannot have a bug!

e Well, you might make a mistake

- but if you do, it will be easy to spot.

e Plus, code is easier to read and maintain too!

Novernber 5, 2018 Java Just in Time - John Latham Page 42(0/0)

Designing the algorithm

Express algorithm at high level of abstraction.
Add more detail — lower abstraction level.

Until low enough that implementation in Java straightforward.

E.g. our first example was M ni nunBi t W dt h:

get number O Val ues from comand |ine
noOBits = 0
while noOBits is too small
i ncrement noOXBits
out put noOFBits

Novernber 5, 2018 Java Just in Time - John Latham Page 43(0/0)

Designing the algorithm

e Then added more detail:

nunber O Val ues = args| 0]
noOFBits = 0

whinlse 2noC)‘Bits

< nunber O Val ues
nor Bi t s++

S.0.p noOBits

e Close enough to Java so easy to implement.

Novernber 5, 2018 Java Just in Time - John Latham Page 44(0/0)

o MANCHEoT DeSigning the qlgorithm

e Next example was Pi Esti mati on:

obtain tolerance fromcommand |ine

set up previousEstinmate as value fromno terns

set up latestEstimate as value fromone term

whil e previousEstimate is not within tolerance of |atestEstimte
previ ousEstimate = | atestEstinate
add next termto |atestEstimte

end-whi | e

print out |atestEstinate

print out the nunber of terns used

print out the standard known value of Pi for conparison

Novernber 5, 2018 Java Just in Time - John Latham Page 45(0/0)

o MANCHEoT DeSigning the qlgorithm

e \We lowered level of abstraction:

doubl e tol erance = args| 0]
doubl e previ ousEstimate = 0

double latestEstimate = 4
Int ternCount = 1

whil e previousEstimate is not within tolerance of |atestEstimte

previ ouskEstimate = [atestEstinate
add next termto |atestEstimte
t er mCount ++
end-whi | e
S.0.p latestEstimte
S.0.p ternCount
S.0.p the standard known val ue of Pi for conparison

Novernber 5, 2018 Java Just in Time - John Latham Page 46(0/0)

o MANCHEoT DeSigning the qlgorithm

e ANd again:

doubl e tol erance = args| 0]

doubl e previousEstinmate = 0

doubl e | atestEstinate = 4

i nt ternCount 1

i nt next Denom nator =

Int nextNuneratorSign = -1

whil e Math. abs(l atestEstimate - previousEstimate) > tol erance
previ ousEstimate = | atestEstinate
| at est Esti mate += nextNumeratorSign * 4 / next Denom nat or
t er mCount ++
next NumeratorSign *= -1
next Denom nator += 2

end-whi | e

Novernber 5, 2018 Java Just in Time - John Latham Page 47(0/0)

o MANCHEoT DeSigning the qlgorithm

S.0.p latestEstimte

S.0.p ternCount
S.0.p Math. Pl

Novernber 5, 2018 Java Just in Time - John Latham Page 48(0/0)

Designing the algorithm

e Another example was Ti nesTabl e:

print the box top line
print colum headi ngs
print headings underline
for row=11to 10

print a row

print the box bottomline

e Lafer we implemented this using separate methods.

e Steps in early abstract designs often make good choice for methods:

Novernber 5, 2018 Java Just in Time - John Latham Page 49(0/0)

P Ti m eSTQ b I e . j qvq

. /] Programto print out a neat nultiplication table.

. public class TinmesTabl e

!

/] The size of the table -- the nunber of rows and col ums.

private static int tableSize = 12;

[The main nethod inplenments the top level structure of the table.
public static void main(String[] args)
{

[l Top |ine.

printLine();

[l Col um headi ngs.
pri nt Col umHeadi ngs() ;

Novernber 5, 2018 Java Just in Time - John Latham Page 50(0/0)

P Ti m eSTQ b I e . j qvq

017: [l Underline headings.

018: printLine();

019:

020: [l Now the rows.

021: for (int row =1, row <= tabl eSi ze; rowt+)
022: print Row(row);

023:

024: /1 Bottomline.

025: printLine();

026: } // main

076: } // class TimesTable

November 5, 2018 Java Just in Time - John Latham Page 51(0/0)

Designing the algorithm

e Generalize algorithm design process:
1. ldentify main steps of algorithm.

2. Express algorithm in ferms of main steps.

3. Separately expand on each step using same process
l.e. identify ifs main steps...

e Sometimes called top down stepwise refinement.

Novernber 5, 2018 Java Just in Time - John Latham Page 52(0/0)

Concepts covered in this chapter

e Each book chapter ends with a list of concepts covered in it.

e Each concept has with it
- a self-test question,

- and a page reference to where it was covered.

e Please use these to check your understanding before we start the next
chapter.

Novernber 5, 2018 Java Just in Time - John Latham Page 53(0/0)

	Title
	Chapter 9: Consolidation of concepts so far
	Chapter aims
	Section 2: Java concepts
	Aim
	Java concepts
	Type: long
	Type: long

	Type: short
	Type: short

	Type: byte
	Type: byte

	Type: char
	Type: char

	Type: char: literal
	Type: char: literal

	Variable: char variable
	Variable: char variable

	Type: char: literal: escape sequences
	Type: char: literal: escape sequences

	Type: float
	Type: float

	Java concepts
	Example-class.java
	Java concepts
	Expression: arithmetic: remainder operator
	Expression: arithmetic: remainder operator

	Java concepts
	Section 3: Program design concepts
	Aim
	Program design concepts
	Program design concepts
	Designing the variables
	Designing the variables
	Designing the variables
	Designing the variables
	Designing the variables
	Designing the variables
	Designing the variables
	Designing the variables
	Designing the variables
	Designing the variables
	Designing the variables
	Designing the variables
	Designing the variables
	Designing the variables
	Designing the variables
	Designing the algorithm
	Designing the algorithm
	Designing the algorithm
	Designing the algorithm
	Designing the algorithm
	Designing the algorithm
	TimesTable.java
	Designing the algorithm
	Concepts covered in this chapter

