
List of Slides

1 Title
2 Chapter 8: Separate methods and logical operators
3 Chapter aims
4 Section 2: Example:Age history with two people
5 Aim
6 Age history with two people

11 Trying it
12 Coursework: WorkFuture2
13 Section 3: Example:Age history with a separate method
14 Aim
15 Method
16 Method: private
17 Age history with a separate method
18 Method: accepting parameters
22 Age history with a separate method
23 Method: calling a method

0-0

26 Age history with a separate method
27 Method: void methods
28 Age history with a separate method
29 Age history with a separate method
31 Age history with a separate method
33 Trying it
34 Warning: do not forget static
35 Warning: do not forget static
36 Coursework: WorkFuture4
37 Section 4: Example:Dividing a cake with a separate method for GCD
38 Aim
39 Method: returning a value
42 Dividing a cake with a separate method for GCD
46 Dividing a cake with a separate method for GCD
47 Method: changing parameters does not affect arguments
48 Changing values of method parameters
49 Coursework: DivideCake4
50 Section 5: Example:Multiple times table with separate methods

0-1

51 Aim
52 Multiple times table with separate methods
53 Variable: local variables
54 Variable: class variables
56 Multiple times table with separate methods
57 Multiple times table with separate methods
59 Multiple times table with separate methods
60 Multiple times table with separate methods
61 Multiple times table with separate methods
62 Standard API: System : out.printf()
64 Multiple times table with separate methods
65 Trying it
66 Coursework: CommonFactorsTable with methods
67 Section 6: Example:Age history with day and month
68 Aim
69 Age history with day and month
70 Expression: boolean: logical operators
76 Age history with day and month

0-2

77 Variable: a group of variables can be declared together
78 Age history with day and month
81 Age history with day and month
82 Age history with day and month
84 Trying it
85 Trying it
86 Trying it
87 Coursework: Reasoning about conditions
88 Section 7: Example:Truth tables
89 Aim
90 Truth tables
91 Truth tables
92 Type: boolean
93 Truth tables
94 Variable: boolean variable
99 Truth tables

100 Truth tables
104 Type: String

0-3

105 Truth tables
106 Truth tables
107 Statement: for loop: multiple statements in for update
109 Truth tables
111 Truth tables
112 Coursework: TruthTable34
113 Section 8: Example:Producing a calendar
114 Aim
115 Producing a calendar
116 Producing a calendar
117 Producing a calendar
121 Producing a calendar
122 Producing a calendar
123 Producing a calendar
124 Producing a calendar
125 Standard API: System : out.printf() : zero padding
126 Producing a calendar
127 Trying it

0-4

128 Coursework: CalendarHighlight
129 Concepts covered in this chapter

0-5

Title

Java Just in Time

John Latham

October 26, 2018

October 26, 2018 Java Just in Time - John Latham Page 1(0/0)

Chapter 8

Separate methods and logical

operators

October 26, 2018 Java Just in Time - John Latham Page 2(0/0)

Chapter aims

• Time to stop putting all code in main method

– might want to reuse certain parts instead of copying

∗ e.g. in multiple times table. . .

– wish to split up big programs into separate, manageable, parts.

• Also meet logical operators

• and some more Java concepts.

October 26, 2018 Java Just in Time - John Latham Page 3(0/0)

Section 2

Example:

Age history with two people

October 26, 2018 Java Just in Time - John Latham Page 4(0/0)

Aim

AIM: To further illustrate the inconvenience of having to

copy a chunk of code which is used in different parts

of a program, and thus motivate the need for separate

methods.

October 26, 2018 Java Just in Time - John Latham Page 5(0/0)

Age history with two people

001: // Print out an age history of two people.

002: // Arguments: present year, first birth year, second birth y ear.

003: public class AgeHistory2

004: {

005: public static void main(String[] args)

006: {

007: // The year of the present day.

008: int presentYear = Integer.parseInt(args[0]);

009:

010: // The two birth years, which must be less than the present yea r.

011: int birthYear1 = Integer.parseInt(args[1]);

012: int birthYear2 = Integer.parseInt(args[2]);

013:

October 26, 2018 Java Just in Time - John Latham Page 6(0/0)

Age history with two people

014: // PERSON 1

015: // Start by printing the event of birth.

016: System.out.println("Pn 1 was born in " + birthYear1);

017:

018: // Now we will go through the years between birth and last year .

019: int someYear1 = birthYear1 + 1;

020: int ageInSomeYear1 = 1;

021: while (someYear1 != presentYear)

022: {

023: System.out.println("Pn 1 was " + ageInSomeYear1 + " in " + som eYear1);

024: someYear1++;

025: ageInSomeYear1++;

026: } // while

027:

October 26, 2018 Java Just in Time - John Latham Page 7(0/0)

Age history with two people

028: // Finally, the age of the person this year.

029: System.out.println("Pn 1 is " + ageInSomeYear1 + " this year ");

030:

October 26, 2018 Java Just in Time - John Latham Page 8(0/0)

Age history with two people

031: // PERSON 2

032: // Start by printing the event of birth.

033: System.out.println("Pn 2 was born in " + birthYear2);

034:

035: // Now we will go through the years between birth and last year .

036: int someYear2 = birthYear2 + 1;

037: int ageInSomeYear2 = 1;

038: while (someYear2 != presentYear)

039: {

040: System.out.println("Pn 2 was " + ageInSomeYear2 + " in " + som eYear2);

041: someYear2++;

042: ageInSomeYear2++;

043: } // while

044:

October 26, 2018 Java Just in Time - John Latham Page 9(0/0)

Age history with two people

045: // Finally, the age of the person this year.

046: System.out.println("Pn 2 is " + ageInSomeYear2 + " this year ");

047: } // main

048:

049: } // class AgeHistory2

Coffee

time:

While this approach works, what are the problems with

it? E.g., could we be careless with our editing? What if

we wanted to make it work for 10 people?

October 26, 2018 Java Just in Time - John Latham Page 10(0/0)

Trying it

Console Input / Output

$ java AgeHistory2 2019 2000 1989

Pn 1 was born in 2000

Pn 1 was 1 in 2001

Pn 1 was 2 in 2002

(... lines removed to save space.)

Pn 1 was 18 in 2018

Pn 1 is 19 this year

Pn 2 was born in 1989

Pn 2 was 1 in 1990

Pn 2 was 2 in 1991

(... lines removed to save space.)

Pn 2 was 29 in 2018

Pn 2 is 30 this year

$ _ Run

October 26, 2018 Java Just in Time - John Latham Page 11(0/0)

Coursework: WorkFuture2

(Summary only)

Write a program to print out all the years from the present day until retirement,

for two people.

October 26, 2018 Java Just in Time - John Latham Page 12(0/0)

Section 3

Example:

Age history with a separate

method

October 26, 2018 Java Just in Time - John Latham Page 13(0/0)

Aim

AIM: To introduce the idea of dividing a program into sep-

arate methods to enable the reuse of some parts of

it. We meet the concepts private, method parameter,

method argument, method call and void method.

October 26, 2018 Java Just in Time - John Latham Page 14(0/0)

Method

• A method – section of code for performing particular task.

• Programs have main method.

• Can have other methods – any name we like

– which suits the purpose – describes what it does.

• Convention:

– method names start with lower case letter

– first letter of subsequent words capitalized.

October 26, 2018 Java Just in Time - John Latham Page 15(0/0)

Method: private

• Can have method with private visibility modifier.

– Should be private if not intended to be usable outside defining class.

• Use reserved word private instead of public.

October 26, 2018 Java Just in Time - John Latham Page 16(0/0)

Age history with a separate method

• Our separate method heading, so far:

private static ... printAgeHistory ...

October 26, 2018 Java Just in Time - John Latham Page 17(0/0)

Method: accepting parameters

• A method may have method parameters

– enable variation of effect based on given values.

• Similar to same idea with program command line arguments

– indeed: those are passed as parameter to main method.

• Parameters declares in method heading, in brackets after name.

• E.g.

public static void main(String[] args)

• Can have zero or more parameters

– separated by commas (,)

– each has type and name.

October 26, 2018 Java Just in Time - John Latham Page 18(0/0)

Method: accepting parameters

• E.g.

private static void printHeightPerYear(double height, int age)

{

System.out.println("At age " + age + ", height per year ratio is "

+ height / age);

} // printHeightPerYear

• Parameters are like variables declared inside method

– but given initial values before method body executed.

• E.g. String[] args on main is variable

– already given list of string command line arguments.

October 26, 2018 Java Just in Time - John Latham Page 19(0/0)

Method: accepting parameters

• Parameter names not important to Java – except must be different.

• But should be meaningful to human reader.

• E.g.

private static void printHeightPerYear(double howTall, int howOld)

{

System.out.println("At age " + howOld + ", height per year ra tio is "

+ howTall / howOld);

} // printHeightPerYear

• First or second better? Subjective.

October 26, 2018 Java Just in Time - John Latham Page 20(0/0)

Method: accepting parameters

• So what about this version?

private static void printHeightPerYear(double d, int i)

{

System.out.println("At age " + i + ", height per year ratio is "

+ d / i);

} // printHeightPerYear

• Hardly better than using x and y .

• Java too dumb to have understanding of problem

– so it cannot care

– but we must – or are we as dumb? ;-)

October 26, 2018 Java Just in Time - John Latham Page 21(0/0)

Age history with a separate method

• Our separate method heading, so far:

private static ... printAgeHistory(int presentYear,

int personNumber, int birthYear)

October 26, 2018 Java Just in Time - John Latham Page 22(0/0)

Method: calling a method

• Body of method executed when some other code has method call.

• E.g. System.out.println("Hello world!") .

• E.g. assume printHeightPerYear

printHeightPerYear(1.6, 14);

• We supply method argument for each method parameter

– separated by commas (,).

• How does it know which value is age and which is height?

– associated by order:

∗ first argument goes into first parameter,

∗ second into second,

October 26, 2018 Java Just in Time - John Latham Page 23(0/0)

Method: calling a method

• Arguments may be current values of variables.

• E.g.

double personHeight = 1.6;

int personAge = 14;

printHeightPerYear(personHeight, personAge);

October 26, 2018 Java Just in Time - John Latham Page 24(0/0)

Method: calling a method

• In fact, arguments are expressions

– get evaluated when method is called.

• E.g.

double growthLastYear = 0.02;

printHeightPerYear(personHeight - growthLastYear, pers onAge - 1);

October 26, 2018 Java Just in Time - John Latham Page 25(0/0)

Age history with a separate method

• We have four method calls in main method:

...

printAgeHistory(presentYear, 1, birthYear1);

printAgeHistory(presentYear, 2, birthYear2);

printAgeHistory(presentYear, 3, birthYear3);

printAgeHistory(presentYear, 4, birthYear4);

October 26, 2018 Java Just in Time - John Latham Page 26(0/0)

Method: void methods

• A method might calculate a result

– perhaps based on method parameters

and return that answer.

• Might be int, double or some other type.

• If method returns result then write return type in heading.

• If not write void – meaning ‘without contents’.

• E.g. main method does not return a result – it is a void method.

public static void main(String[] args)

October 26, 2018 Java Just in Time - John Latham Page 27(0/0)

Age history with a separate method

• Our separate method heading:

private static void printAgeHistory(int presentYear,

int personNumber, int birthYear)

October 26, 2018 Java Just in Time - John Latham Page 28(0/0)

Age history with a separate method

001: // Print out an age history of four people.

002: // Arguments: present year, first birth year, second, third , fourth.

003: public class AgeHistory4

004: {

005: // Print the age history of one person, identified as personN umber.

006: // Birth year must be less than present year.

007: private static void printAgeHistory(int presentYear,

008: int personNumber, int birthYear)

009: {

010: // Start by printing the event of birth.

011: System.out.println("Pn " + personNumber + " was born in " + bi rthYear);

012:

013: // Now we will go through the years between birth and last year .

014: int someYear = birthYear + 1;

015: int ageInSomeYear = 1;

October 26, 2018 Java Just in Time - John Latham Page 29(0/0)

Age history with a separate method

016: while (someYear != presentYear)

017: {

018: System.out.println("Pn " + personNumber + " was "

019: + ageInSomeYear + " in " + someYear);

020: someYear++;

021: ageInSomeYear++;

022: } // while

023:

024: // Finally, the age of the person this year.

025: System.out.println("Pn " + personNumber + " is "

026: + ageInSomeYear + " this year");

027: } // printAgeHistory

• Next comes main method

– order does not matter to Java.

October 26, 2018 Java Just in Time - John Latham Page 30(0/0)

Age history with a separate method

030: // The main method: get arguments and call printAgeHistory.

031: public static void main(String[] args)

032: {

033: // The year of the present day.

034: int presentYear = Integer.parseInt(args[0]);

035:

036: // The four birth years, which must be less than the present ye ar.

037: int birthYear1 = Integer.parseInt(args[1]);

038: int birthYear2 = Integer.parseInt(args[2]);

039: int birthYear3 = Integer.parseInt(args[3]);

040: int birthYear4 = Integer.parseInt(args[4]);

041:

October 26, 2018 Java Just in Time - John Latham Page 31(0/0)

Age history with a separate method

042: // Now print the four age histories.

043: printAgeHistory(presentYear, 1, birthYear1);

044: printAgeHistory(presentYear, 2, birthYear2);

045: printAgeHistory(presentYear, 3, birthYear3);

046: printAgeHistory(presentYear, 4, birthYear4);

047: } // main

048:

049: } // class AgeHistory4

Coffee

time:

Why did we need to write the reserved word static in the

heading of printAgeHistory() ? What do you think would

happen if we omitted it?

October 26, 2018 Java Just in Time - John Latham Page 32(0/0)

Trying it

Console Input / Output

$ java AgeHistory4 2019 2000 1989 1959 2018

Pn 1 was born in 2000

Pn 1 was 1 in 2001

(... lines removed to save space.)

Pn 1 is 19 this year

Pn 2 was born in 1989

Pn 2 was 1 in 1990

Pn 2 was 2 in 1991

(... lines removed to save space.)

Pn 2 is 30 this year

Pn 3 was born in 1959

Pn 3 was 1 in 1960

(... lines removed to save space.)

Pn 3 is 60 this year

Pn 4 was born in 2018

Pn 4 is 1 this year

$ _ Run

October 26, 2018 Java Just in Time - John Latham Page 33(0/0)

Warning: do not forget static

• What happens if omit static?

– You’ll do that at some point. . . .

• Here is compiling AgeHistoryOops – same as AgeHistory4 except no static.

October 26, 2018 Java Just in Time - John Latham Page 34(0/0)

Warning: do not forget static

Console Input / Output

$ javac AgeHistoryOops.java

AgeHistoryOops.java:43: non-static method printAgeHist ory(int,int,int) cannot be

referenced from a static context

printAgeHistory(presentYear, 1, birthYear1);

ˆ

AgeHistoryOops.java:44: non-static method printAgeHist ory(int,int,int) cannot be

referenced from a static context

printAgeHistory(presentYear, 2, birthYear2);

ˆ

AgeHistoryOops.java:45: non-static method printAgeHist ory(int,int,int) cannot be

referenced from a static context

printAgeHistory(presentYear, 3, birthYear3);

ˆ

AgeHistoryOops.java:46: non-static method printAgeHist ory(int,int,int) cannot be

referenced from a static context

printAgeHistory(presentYear, 4, birthYear4);

ˆ

4 errors

$ _ Run

October 26, 2018 Java Just in Time - John Latham Page 35(0/0)

Coursework: WorkFuture4

(Summary only)

Write a program, with a separate method, to print out all the years from the

present day until retirement, for four people.

October 26, 2018 Java Just in Time - John Latham Page 36(0/0)

Section 4

Example:

Dividing a cake with a

separate method for GCD

October 26, 2018 Java Just in Time - John Latham Page 37(0/0)

Aim

AIM: To introduce the idea of using methods merely to split

the program into parts, making it easier to understand

and develop. We also meet the return statement

for use in non-void methods, and see that altering a

method parameter does not change its argument.

October 26, 2018 Java Just in Time - John Latham Page 38(0/0)

Method: returning a value

• A method can return a result

– we declare return type in heading (intead of void).

• Often called non-void methods.

• E.g. return corresponding Fahrenheit for given Celsius.

private static double celsiusToFahrenheit(double celsiusValue)

{

double fahrenheitValue = celsiusValue * 9 / 5 + 32;

return fahrenheitValue;

} // celsiusToFahrenheit

• Method declared with return type double.

• The return statement specifies value to be returned

– causes execution control to go back to after method call.

October 26, 2018 Java Just in Time - John Latham Page 39(0/0)

Method: returning a value

• Result of non-void method can be used in expressions.

• E.g.

double celsiusValue = Double.parseDouble(args[0]);

System.out.println("The Fahrenheit value of "

+ celsiusValue + " Celsius is "

+ celsiusToFahrenheit(celsiusValue) + ".");

October 26, 2018 Java Just in Time - John Latham Page 40(0/0)

Method: returning a value

• Return statement can have any expression – not just a variable.

• E.g.

private static double celsiusToFahrenheit(double celsiusValue)

{

return celsiusValue * 9 / 5 + 32;

} // celsiusToFahrenheit

October 26, 2018 Java Just in Time - John Latham Page 41(0/0)

Dividing a cake with a separate method for GCD

001: // Program to decide how to divide a cake in proportion to the a ge of two

002: // persons, using the minimum number of equal sized portions .

003: // The two arguments are the two positive integer ages.

004: public class DivideCake

005: {

006: // Find the GCD of two positive integers.

007: private static int greatestCommonDivisor(int multiple1OfGCD,

008: int multiple2OfGCD)

009: {

010: // Both multiple1OfGCD and multiple2OfGCD must be positive .

011: // While the two multiples are not the same, the difference

012: // between them must also be a multiple of the GCD.

013: // So we keep subtracting the smallest from the largest

014: // until they are equal.

October 26, 2018 Java Just in Time - John Latham Page 42(0/0)

Dividing a cake with a separate method for GCD

015: while (multiple1OfGCD != multiple2OfGCD)

016: if (multiple1OfGCD > multiple2OfGCD)

017: multiple1OfGCD -= multiple2OfGCD;

018: else

019: multiple2OfGCD -= multiple1OfGCD;

020:

021: // Now multiple1OfGCD == multiple2OfGCD

022: // which is also the GCD of their original values.

023: return multiple1OfGCD;

024: } // greatestCommonDivisor

025:

026:

October 26, 2018 Java Just in Time - John Latham Page 43(0/0)

Dividing a cake with a separate method for GCD

027: // Obtain arguments, get GCD, compute portions and report it all.

028: public static void main(String[] args)

029: {

030: // Both ages must be positive.

031: int age1 = Integer.parseInt(args[0]);

032: int age2 = Integer.parseInt(args[1]);

033:

034: int agesGCD = greatestCommonDivisor(age1, age2);

035: System.out.println("The GCD of " + age1 + " and " + age2

036: + " is " + agesGCD);

037: int noOfPortions1 = age1 / agesGCD;

038: int noOfPortions2 = age2 / agesGCD;

039:

October 26, 2018 Java Just in Time - John Latham Page 44(0/0)

Dividing a cake with a separate method for GCD

040: System.out.println("So the cake should be divided into "

041: + (noOfPortions1 + noOfPortions2));

042: System.out.println

043: ("The " + age1 + " year old gets " + noOfPortions1

044: + " and the " + age2 + " year old gets " + noOfPortions2);

045: } // main

046:

047: } // class DivideCake

October 26, 2018 Java Just in Time - John Latham Page 45(0/0)

Dividing a cake with a separate method for GCD

Coffee

time:

Did you notice that inside the greatestCommonDivisor()

method, the code changes the values of both

multiple1OfGCD and multiple2OfGCD ? These start off as be-

ing the ages of the two people, but end up being the

GCD of the two ages. Then, after the method has fin-

ished executing, the main() method prints out the values

of age1 and age2 in its message.

So, will age1 and age2 have had their value changed,

causing the program to wrongly report both ages as be-

ing the GCD of the original values?

October 26, 2018 Java Just in Time - John Latham Page 46(0/0)

Method: changing parameters does not affect

arguments

• A method parameter is just like variable defined inside method

– except given initial value by method call.

• Method body can change the value – it is a variable

– changes do not affect where initial value came from.

• Known as call by value

– method argument is some expression

∗ value is copied into parameter at method call.

October 26, 2018 Java Just in Time - John Latham Page 47(0/0)

Changing values of method parameters

• So, when:

int agesGCD = greatestCommonDivisor(age1, age2);

– values of age1 and age2 are copied to method parameters

multiple1OfGCD and multiple2OfGCD

– those parameters are changed within the method

∗ but no effect on age1 and age2 .

October 26, 2018 Java Just in Time - John Latham Page 48(0/0)

Coursework: DivideCake4

(Summary only)

Write a program to compute the greatest common divisor of four numbers,

using a separate method.

October 26, 2018 Java Just in Time - John Latham Page 49(0/0)

Section 5

Example:

Multiple times table with

separate methods

October 26, 2018 Java Just in Time - John Latham Page 50(0/0)

Aim

AIM: To introduce the concept of class variables, com-

pared with local variables, and reinforce the ideas

of using separate methods for reuse and for dividing

a program into manageable chunks. We also meet

System.out.printf() .

October 26, 2018 Java Just in Time - John Latham Page 51(0/0)

Multiple times table with separate methods

• Improve multiple times table program

– split into separate methods

∗ avoid duplicated code

∗ make more readable

– improve flexibility – have size of table in a variable

∗ easy to change if requirements change.

October 26, 2018 Java Just in Time - John Latham Page 52(0/0)

Variable: local variables

• All variables declared inside method – local to that method

– only exist while method is running

– cannot be accessed by other methods.

• Known as local variables or method variables.

• Different methods can have variables with same name.

October 26, 2018 Java Just in Time - John Latham Page 53(0/0)

Variable: class variables

• We can declare variables inside a class

– outside of any methods.

– called class variables

– exist from when class is loaded into virtual machine

– can be accessed by any method in that class.

October 26, 2018 Java Just in Time - John Latham Page 54(0/0)

Variable: class variables

• E.g., perhaps store components of today’s date:

private static int presentDay;

private static int presentMonth;

private static int presentYear;

• Observe reserved word static

– they are part of the static context memory allocation.

• Also visibility modifier

– if private can only be accessed by code inside that class.

October 26, 2018 Java Just in Time - John Latham Page 55(0/0)

Multiple times table with separate methods

001: // Program to print out a neat multiplication table.

002: public class TimesTable

003: {

004: // The size of the table -- the number of rows and columns.

005: private static int tableSize = 12;

• Main method calls several separate methods.

• Some directly access class variable tableSize .

October 26, 2018 Java Just in Time - John Latham Page 56(0/0)

Multiple times table with separate methods

008: // The main method implements the top level structure of the t able.

009: public static void main(String[] args)

010: {

011: // Top line.

012: printLine();

013:

014: // Column headings.

015: printColumnHeadings();

016:

017: // Underline headings.

018: printLine();

019:

020: // Now the rows.

021: for (int row = 1; row <= tableSize; row++)

022: printRow(row);

023:

October 26, 2018 Java Just in Time - John Latham Page 57(0/0)

Multiple times table with separate methods

024: // Bottom line.

025: printLine();

026: } // main

• Separate method to print a line – accesses tableSize .

029: // Print a line across the table.

030: private static void printLine()

031: {

032: // Left side, 5 characters for row labels, separator.

033: System.out.print("|-----|");

034: // Across each column.

035: for (int column = 1; column <= tableSize; column++)

036: System.out.print("----");

037: // The right side.

038: System.out.println("-|");

039: } // printLine

October 26, 2018 Java Just in Time - John Latham Page 58(0/0)

Multiple times table with separate methods

042: // Print the line containing the column headings.

043: private static void printColumnHeadings()

044: {

045: System.out.print("| |");

046: for (int column = 1; column <= tableSize; column++)

047: printNumber(column);

048: System.out.println(" |");

049: } // printColumnHeadings

October 26, 2018 Java Just in Time - John Latham Page 59(0/0)

Multiple times table with separate methods

052: // Print one row of the table.

053: private static void printRow(int row)

054: {

055: // The left side.

056: System.out.print("|");

057: printNumber(row);

058: // Separator.

059: System.out.print(" |");

060:

061: // Now the columns on this row.

062: for (int column = 1; column <= tableSize; column++)

063: printNumber(row * column);

064:

065: // The right side.

066: System.out.println(" |");

067: } // printRow

October 26, 2018 Java Just in Time - John Latham Page 60(0/0)

Multiple times table with separate methods

• Printing number in style previously used:

– write once, use in three places.

private static void printNumber(int numberToPrint)

{

if (numberToPrint < 10)

System.out.print(" " + numberToPrint);

else if (numberToPrint < 100)

System.out.print(" " + numberToPrint);

else

System.out.print(" " + numberToPrint);

} // printNumber

• But still seems a lot of work! Simpler way?

October 26, 2018 Java Just in Time - John Latham Page 61(0/0)

Standard API: System: out.printf()

• Since Java 5.0, System contains method out.printf()

– similar to out.print() , but produces formatted output.

• E.g. print integer with space padding to given field width

– output with leading spaces so at least field width characters.

System.out.println("1234567890");

System.out.printf("%10d%n", 123);

– produces:

1234567890

123

– %– wish to format something

– 10 – minimum total field width

– d – please format decimal whole number following the format specifier.

– %n– output platform dependent line separator.

October 26, 2018 Java Just in Time - John Latham Page 62(0/0)

Standard API: System: out.printf()

• Can format floating point value, e.g. a double.

System.out.printf("%1.2f%n", 123.456);

– 1 – minimum total field width

– .2 – number of decimal places

– f – conversion code for floating point value

– output needs more than minimum width:

123.46

• Whereas:

System.out.println("1234567890");

System.out.printf("%10.2f%n", 123.456);

– produces:

1234567890

123.46

October 26, 2018 Java Just in Time - John Latham Page 63(0/0)

Multiple times table with separate methods

Coffee

time:

Are you tempted to pop back to previous ex-

ample programs and improve their output using

System.out.printf() ?

• Observe no %n in format specifier.

070: // Print a number using exactly 4 characters, with leading sp aces.

071: private static void printNumber(int numberToPrint)

072: {

073: System.out.printf("%4d", numberToPrint);

074: } // printNumber

075:

076: } // class TimesTable

October 26, 2018 Java Just in Time - John Latham Page 64(0/0)

Trying it

Console Input / Output

$ java TimesTable

|-----|-- -----|

| | 1 2 3 4 5 6 7 8 9 10 11 12 |

|-----|-- -----|

| 1 | 1 2 3 4 5 6 7 8 9 10 11 12 |

| 2 | 2 4 6 8 10 12 14 16 18 20 22 24 |

| 3 | 3 6 9 12 15 18 21 24 27 30 33 36 |

| 4 | 4 8 12 16 20 24 28 32 36 40 44 48 |

| 5 | 5 10 15 20 25 30 35 40 45 50 55 60 |

| 6 | 6 12 18 24 30 36 42 48 54 60 66 72 |

| 7 | 7 14 21 28 35 42 49 56 63 70 77 84 |

| 8 | 8 16 24 32 40 48 56 64 72 80 88 96 |

| 9 | 9 18 27 36 45 54 63 72 81 90 99 108 |

| 10 | 10 20 30 40 50 60 70 80 90 100 110 120 |

| 11 | 11 22 33 44 55 66 77 88 99 110 121 132 |

| 12 | 12 24 36 48 60 72 84 96 108 120 132 144 |

|-----|-- -----|

$ _ Run

October 26, 2018 Java Just in Time - John Latham Page 65(0/0)

Coursework: CommonFactorsTable with methods

(Summary only)

Write a program, with separate methods, to produce a table showing pairs of

numbers which share common factors.

October 26, 2018 Java Just in Time - John Latham Page 66(0/0)

Section 6

Example:

Age history with day and

month

October 26, 2018 Java Just in Time - John Latham Page 67(0/0)

Aim

AIM: To introduce the logical operators. We also see that a

group of variables can be declared together.

October 26, 2018 Java Just in Time - John Latham Page 68(0/0)

Age history with day and month

• Adding day and month to age history

– means comparing dates based on three values

– loop condition complexity explosion!

∗ Surprising?

October 26, 2018 Java Just in Time - John Latham Page 69(0/0)

Expression: boolean: logical operators

• Need more complex conditions than just relational operators.

– Use logical operators to glue simple conditions into bigger ones.

– Most commonly used: conditional and, conditional or and logical not.

October 26, 2018 Java Just in Time - John Latham Page 70(0/0)

Expression: boolean: logical operators

Operator Title Posh title Description

&& and conjunction c1 && c2 is true if and only if both condi-

tions c1 and c2 evaluate to true. Both of the

two conditions, known as conjuncts, must

be true to satisfy the combined condition.

|| or disjunction c1 || c2 is true if and only if at least one of

the conditions c1 and c2 evaluate to true.

The combined condition is satisfied, unless

both of the two conditions, known as dis-

juncts, are false.

! not negation !c is true if and only if the condition c eval-

uates to false. This operator negates the

given condition.

October 26, 2018 Java Just in Time - John Latham Page 71(0/0)

Expression: boolean: logical operators

• Can define using truth tables

– ? means the operand is not evaluated.

c1 c2 c1 && c2

true true true

true false false

false ? false

c1 c2 c1 || c2

true ? true

false true true

false false false

c !c

true false

false true

October 26, 2018 Java Just in Time - John Latham Page 72(0/0)

Expression: boolean: logical operators

• E.g.

age1 < age2 || age1 == age2 && height1 <= height2

• What about operator precedence and operator associativity?

– &&and || lower precedence than relational operators

– relational operators lower precedence than arithmetic operators

– ! has very high precedence

– &&higher precedence than || .

• Implicit brackets:

(age1 < age2) || ((age1 == age2) && (height1 <= height2))

• E.g. sorting people by age then height. . .

October 26, 2018 Java Just in Time - John Latham Page 73(0/0)

Expression: boolean: logical operators

if (age1 < age2 || age1 == age2 && height1 <= height2)

System.out.println("You are in the correct order.");

else

System.out.println("Please swap over.");

• Less clearly?

if (!(age1 < age2 || age1 == age2 && height1 <= height2))

System.out.println("Please swap over.");

else

System.out.println("You are in the correct order.");

• Another way – same effect (convince yourself!).

if (age1 > age2 || age1 == age2 && height1 > height2)

System.out.println("Please swap over.");

else

System.out.println("You are in the correct order.");

October 26, 2018 Java Just in Time - John Latham Page 74(0/0)

Expression: boolean: logical operators

• In maths: x ≤ y ≤ z

– in Java: x <= y && y <= z

• In English: “my mother’s age is 46 or 47”

– in Java: myMumAge == 46 || myMumAge == 47

• In English: sometimes say “and” when really mean “or”:

– “the two possible ages for my dad are 49 and 53”

∗ “my dad’s age is 49 or my dad’s age is 53”.

October 26, 2018 Java Just in Time - John Latham Page 75(0/0)

Age history with day and month

• Previously printAgeHistory() had three method parameters,

– present year, the person number, birth year.

• Now, dates need three values, so perhaps seven parameters?

• No! – Present date same for all people, so store in class variables.

October 26, 2018 Java Just in Time - John Latham Page 76(0/0)

Variable: a group of variables can be declared

together

• Can declare several variables of same type in one declaration.

• E.g.

int x, y;

• Give values too. E.g.

int minimumVotingAge = 18, minimumArmyAge = 16;

• Not as useful as might expect

– typically have a comment before each variable. . .

• But, sometimes can have one comment for group of variables.

October 26, 2018 Java Just in Time - John Latham Page 77(0/0)

Age history with day and month

001: // Print out an age history of two people.

002: // Arguments: present date, first birth date, second birth d ate.

003: // Each date is three numbers: day month year.

004: public class AgeHistory2

005: {

006: // The present date, stored as three variables.

007: private static int presentDay, presentMonth, presentYear;

008:

009:

010: // Print the age history of one person, identified as personN umber.

011: // The birth date must be less than the present date.

012: private static void printAgeHistory

013: (int personNumber, int birthDay, int birthMonth, int birthYear)

014: {

015: // Start by printing the event of birth.

016: System.out.println("Pn " + personNumber + " was born on "

017: + birthDay + "/" + birthMonth + "/" + birthYear);

018:

October 26, 2018 Java Just in Time - John Latham Page 78(0/0)

Age history with day and month

019: // Now we will go through the years since birth but before toda y.

020: int someYear = birthYear + 1;

021: int ageInSomeYear = 1;

022: while (someYear < presentYear

023: || someYear == presentYear && birthMonth < presentMonth

024: || someYear == presentYear && birthMonth == presentMonth

025: && birthDay < presentDay)

026: {

027: System.out.println("Pn " + personNumber + " was " + ageInSom eYear

028: + " on " + birthDay + "/" + birthMonth

029: + "/" + someYear);

030: someYear++;

031: ageInSomeYear++;

032: } // while

033:

October 26, 2018 Java Just in Time - John Latham Page 79(0/0)

Age history with day and month

034: // At this point birthDay/birthMonth/someYear

035: // will be the next birthday, aged ageInSomeYear.

036: // This will be greater than or equal to the present date.

037: // If the person has not yet had their birthday this year

038: // someYear equals presentYear,

039: // otherwise someYear equals presentYear + 1.

040:

041: if (birthMonth == presentMonth && birthDay == presentDay)

042: // then someYear must equal presentYear.

043: System.out.println("Pn " + personNumber + " is "

044: + ageInSomeYear + " today!");

045: else

046: System.out.println("Pn " + personNumber + " will be "

047: + ageInSomeYear + " on " + birthDay + "/"

048: + birthMonth + "/" + someYear);

049: } // printAgeHistory

October 26, 2018 Java Just in Time - John Latham Page 80(0/0)

Age history with day and month

Coffee

time:

In the code above, did you see how the condition of

the while loop has exploded with complexity, compared

with the previous versions of the program that merely

had one relational operator, i.e. while (someYear !=

presentYear) ? Did this surprise you?

October 26, 2018 Java Just in Time - John Latham Page 81(0/0)

Age history with day and month

052: // The main method: get arguments and call printAgeHistory.

053: public static void main(String[] args)

054: {

055: // The present date, stored in three class variables.

056: presentDay = Integer.parseInt(args[0]);

057: presentMonth = Integer.parseInt(args[1]);

058: presentYear = Integer.parseInt(args[2]);

059:

060: // The dates of birth: these must be less than the present date .

061: int birthDay1 = Integer.parseInt(args[3]);

062: int birthMonth1 = Integer.parseInt(args[4]);

063: int birthYear1 = Integer.parseInt(args[5]);

064:

October 26, 2018 Java Just in Time - John Latham Page 82(0/0)

Age history with day and month

065: int birthDay2 = Integer.parseInt(args[6]);

066: int birthMonth2 = Integer.parseInt(args[7]);

067: int birthYear2 = Integer.parseInt(args[8]);

068:

069: // Now print the two age histories.

070: printAgeHistory(1, birthDay1, birthMonth1, birthYear1) ;

071: printAgeHistory(2, birthDay2, birthMonth2, birthYear2) ;

072: } // main

073:

074: } // class AgeHistory2

Coffee

time:

Of the nine variable assignments above, why do three of

them not start with the word int?

October 26, 2018 Java Just in Time - John Latham Page 83(0/0)

Trying it

Born this day and month last year and same day 19 years ago:

Console Input / Output

$ java AgeHistory2 01 07 2019 01 07 2018 01 07 2000

(Output shown using multiple columns to save space.)

Pn 1 was born on 1/7/2018 Pn 2 was 4 on 1/7/2004 Pn 2 was 10 on 1/7/2010 Pn 2 was 16 on 1/7/2016

Pn 1 is 1 today! Pn 2 was 5 on 1/7/2005 Pn 2 was 11 on 1/7/2011 Pn 2 was 17 on 1/7/2017

Pn 2 was born on 1/7/2000 Pn 2 was 6 on 1/7/2006 Pn 2 was 12 on 1/7/2012 Pn 2 was 18 on 1/7/2018

Pn 2 was 1 on 1/7/2001 Pn 2 was 7 on 1/7/2007 Pn 2 was 13 on 1/7/2013 Pn 2 is 19 today!

Pn 2 was 2 on 1/7/2002 Pn 2 was 8 on 1/7/2008 Pn 2 was 14 on 1/7/2014

Pn 2 was 3 on 1/7/2003 Pn 2 was 9 on 1/7/2009 Pn 2 was 15 on 1/7/2015

$ _ Run

Born yesterday and same day 19 years ago:

Console Input / Output

$ java AgeHistory2 01 07 2019 30 06 2019 30 06 2000

(Output shown using multiple columns to save space.)

Pn 1 was born on 30/6/2019 Pn 2 was 4 on 30/6/2004 Pn 2 was 10 on 30/6/2010 Pn 2 was 16 on 30/6/2016

Pn 1 will be 1 on 30/6/2020 Pn 2 was 5 on 30/6/2005 Pn 2 was 11 on 30/6/2011 Pn 2 was 17 on 30/6/2017

Pn 2 was born on 30/6/2000 Pn 2 was 6 on 30/6/2006 Pn 2 was 12 on 30/6/2012 Pn 2 was 18 on 30/6/2018

Pn 2 was 1 on 30/6/2001 Pn 2 was 7 on 30/6/2007 Pn 2 was 13 on 30/6/2013 Pn 2 was 19 on 30/6/2019

Pn 2 was 2 on 30/6/2002 Pn 2 was 8 on 30/6/2008 Pn 2 was 14 on 30/6/2014 Pn 2 will be 20 on 30/6/2020

Pn 2 was 3 on 30/6/2003 Pn 2 was 9 on 30/6/2009 Pn 2 was 15 on 30/6/2015

$ _ Run

October 26, 2018 Java Just in Time - John Latham Page 84(0/0)

Trying it

Born a year ago tomorrow and same day 19 years ago:

Console Input / Output

$ java AgeHistory2 01 07 2019 2 07 2018 2 07 2000

(Output shown using multiple columns to save space.)

Pn 1 was born on 2/7/2018 Pn 2 was 4 on 2/7/2004 Pn 2 was 10 on 2/7/2010 Pn 2 was 16 on 2/7/2016

Pn 1 will be 1 on 2/7/2019 Pn 2 was 5 on 2/7/2005 Pn 2 was 11 on 2/7/2011 Pn 2 was 17 on 2/7/2017

Pn 2 was born on 2/7/2000 Pn 2 was 6 on 2/7/2006 Pn 2 was 12 on 2/7/2012 Pn 2 was 18 on 2/7/2018

Pn 2 was 1 on 2/7/2001 Pn 2 was 7 on 2/7/2007 Pn 2 was 13 on 2/7/2013 Pn 2 will be 19 on 2/7/2019

Pn 2 was 2 on 2/7/2002 Pn 2 was 8 on 2/7/2008 Pn 2 was 14 on 2/7/2014

Pn 2 was 3 on 2/7/2003 Pn 2 was 9 on 2/7/2009 Pn 2 was 15 on 2/7/2015

$ _ Run

Born this day last month and same day 19 years ago:

Console Input / Output

$ java AgeHistory2 01 07 2019 01 6 2019 01 6 2000

(Output shown using multiple columns to save space.)

Pn 1 was born on 1/6/2019 Pn 2 was 4 on 1/6/2004 Pn 2 was 10 on 1/6/2010 Pn 2 was 16 on 1/6/2016

Pn 1 will be 1 on 1/6/2020 Pn 2 was 5 on 1/6/2005 Pn 2 was 11 on 1/6/2011 Pn 2 was 17 on 1/6/2017

Pn 2 was born on 1/6/2000 Pn 2 was 6 on 1/6/2006 Pn 2 was 12 on 1/6/2012 Pn 2 was 18 on 1/6/2018

Pn 2 was 1 on 1/6/2001 Pn 2 was 7 on 1/6/2007 Pn 2 was 13 on 1/6/2013 Pn 2 was 19 on 1/6/2019

Pn 2 was 2 on 1/6/2002 Pn 2 was 8 on 1/6/2008 Pn 2 was 14 on 1/6/2014 Pn 2 will be 20 on 1/6/2020

Pn 2 was 3 on 1/6/2003 Pn 2 was 9 on 1/6/2009 Pn 2 was 15 on 1/6/2015

$ _ Run

October 26, 2018 Java Just in Time - John Latham Page 85(0/0)

Trying it

Born a year ago next month and same day 19 years ago:

Console Input / Output

$ java AgeHistory2 01 07 2019 01 8 2018 01 8 2000

(Output shown using multiple columns to save space.)

Pn 1 was born on 1/8/2018 Pn 2 was 4 on 1/8/2004 Pn 2 was 10 on 1/8/2010 Pn 2 was 16 on 1/8/2016

Pn 1 will be 1 on 1/8/2019 Pn 2 was 5 on 1/8/2005 Pn 2 was 11 on 1/8/2011 Pn 2 was 17 on 1/8/2017

Pn 2 was born on 1/8/2000 Pn 2 was 6 on 1/8/2006 Pn 2 was 12 on 1/8/2012 Pn 2 was 18 on 1/8/2018

Pn 2 was 1 on 1/8/2001 Pn 2 was 7 on 1/8/2007 Pn 2 was 13 on 1/8/2013 Pn 2 will be 19 on 1/8/2019

Pn 2 was 2 on 1/8/2002 Pn 2 was 8 on 1/8/2008 Pn 2 was 14 on 1/8/2014

Pn 2 was 3 on 1/8/2003 Pn 2 was 9 on 1/8/2009 Pn 2 was 15 on 1/8/2015

$ _ Run

More tests? What date have we overlooked?

October 26, 2018 Java Just in Time - John Latham Page 86(0/0)

Coursework: Reasoning about conditions

(Summary only)

Do some reasoning to show that two different conditions have the same

value.

October 26, 2018 Java Just in Time - John Latham Page 87(0/0)

Section 7

Example:

Truth tables

October 26, 2018 Java Just in Time - John Latham Page 88(0/0)

Aim

AIM: To introduce the boolean type, and reinforce logical op-

erators. We also meet the String type and see that a

for update can have multiple statements.

October 26, 2018 Java Just in Time - John Latham Page 89(0/0)

Truth tables

• Print out truth table for two hard coded propositional expressions

– p1 : a && (b || c)

– p2 : a && b || a && c

Console Input / Output

$ java TruthTable

| a | b | c | p1 | p2 |

|_______|_______|_______|_______|_______|

| true | true | true | true | true |

| true | true | false | true | true |

| true | false | true | true | true |

| true | false | false | false | false |

| false | true | true | false | false |

| false | true | false | false | false |

| false | false | true | false | false |

| false | false | false | false | false |

|_______|_______|_______|_______|_______|

$ _ Run

October 26, 2018 Java Just in Time - John Latham Page 90(0/0)

Truth tables

• Table has 8 lines because 3 variables, a, b and c

– each can be true or false: 2×2×2

Coffee

time:

Did you expect the propositional expressions to be equiv-

alent? They are – the p1 and p2 columns are the same.

Make more concrete: replace a with isRaining , b with

haveUmbrella and c with amWaterproof :

. isRaining && (haveUmbrella || amWaterproof)

and

. isRaining && haveUmbrella || isRaining && amWaterproof

More intuitive?

October 26, 2018 Java Just in Time - John Latham Page 91(0/0)

Type: boolean

• Java type boolean

– type of all conditions

– named after George Boole.

• two boolean literal values: true and false.

• E.g. 5 <= 5 is a boolean expression

– always true.

• E.g. age1 < age2 || age1 == age2 && height1 <= height2

– depends on values of the variables.

October 26, 2018 Java Just in Time - John Latham Page 92(0/0)

Truth tables

Coffee

time:

What is the value of 5 <= 5? Is it true or false?

What about 5 < 5 || 5 == 5 ?

October 26, 2018 Java Just in Time - John Latham Page 93(0/0)

Variable: boolean variable

• The boolean type can be used like int and double

– can have boolean variables

– methods can have boolean return type

– etc..

October 26, 2018 Java Just in Time - John Latham Page 94(0/0)

Variable: boolean variable

• E.g.

if (age1 < age2 || age1 == age2 && height1 <= height2)

System.out.println("You are in the correct order.");

else

System.out.println("Please swap over.");

Might instead write:

boolean correctOrder = age1 < age2 || age1 == age2 && height1 <= height 2;

if (correctOrder)

System.out.println("You are in the correct order.");

else

System.out.println("Please swap over.");

– Perhaps more readable code?

– named condition in a helpful way

– context dependent, ultimately subjective.

October 26, 2018 Java Just in Time - John Latham Page 95(0/0)

Variable: boolean variable

• More motive if result used more than once:

boolean correctOrder = age1 < age2 || age1 == age2 && height1 <= height 2;

if (correctOrder)

System.out.println("You are in the correct order.");

else

System.out.println("Please swap over.");

... Lots of stuff here.

if (!correctOrder)

System.out.println("Don’t forget to swap over!");

• Novices and some so-called experts may have written. . .

October 26, 2018 Java Just in Time - John Latham Page 96(0/0)

Variable: boolean variable

boolean correctOrder;

if (age1 < age2 || age1 == age2 && height1 <= height2)

correctOrder = true;

else

correctOrder = false;

if (correctOrder == true)

System.out.println("You are in the correct order.");

else

System.out.println("Please swap over.");

... Lots of stuff here.

if (correctOrder == false)

System.out.println("Don’t forget to swap over!");

October 26, 2018 Java Just in Time - John Latham Page 97(0/0)

Variable: boolean variable

• There are three terrible things wrong with the above!

Coffee

time:

What are they?

October 26, 2018 Java Just in Time - John Latham Page 98(0/0)

Truth tables

Coffee

time:

Assuming that be is some boolean expression and bv1 and

bv2 are some boolean variables, why is it so terrible to write

the following?

. if (bv1 == true)

. if (be) bv2 = true;

. else. bv2 = false;

What code should be written instead?

October 26, 2018 Java Just in Time - John Latham Page 99(0/0)

Truth tables

001: // Program to print out the truth table

002: // for two hard coded propositional expressions p1 and p2.

003: // The expressions have three boolean variables, a, b, and c.

004: // Each column of the table occupies 7 characters plus separa tor.

005: public class TruthTable

006: {

007: // The first propositional expression, p1.

008: private static boolean p1(boolean a, boolean b, boolean c)

009: {

010: return a && (b || c);

011: } // p1

012:

013:

October 26, 2018 Java Just in Time - John Latham Page 100(0/0)

Truth tables

014: // The second propositional expression, p2.

015: private static boolean p2(boolean a, boolean b, boolean c)

016: {

017: return a && b || a && c;

018: } // p2

019:

020:

021: // Print a line of underscores as wide as the truth table.

022: private static void printStraightLine()

023: {

024: System.out.println(" _______________________________ ________ ");

025: } // printStraightLine

026:

027:

October 26, 2018 Java Just in Time - John Latham Page 101(0/0)

Truth tables

028: // Print the headings for the truth table.

029: private static void printHeadings()

030: {

031: System.out.println("| a | b | c | p1 | p2 |");

032: } // printHeadings

033:

034:

035: // Print a line of underscores

036: // with vertical bars for the column separators.

037: private static void printColumnsLine()

038: {

039: System.out.println("|_______|_______|_______|______ _|_______|");

040: } // printColumnsLine

041:

042:

October 26, 2018 Java Just in Time - John Latham Page 102(0/0)

Truth tables

043: // To print a row, we use formatRowItem to make the

044: // column entries have 7 characters.

045: private static void printRow(boolean a, boolean b, boolean c)

046: {

047: System.out.println("|" + formatRowItem(a) + "|" + formatR owItem(b)

048: + "|" + formatRowItem(c)

049: + "|" + formatRowItem(p1(a, b, c))

050: + "|" + formatRowItem(p2(a, b, c)) + "|");

051: } // printRow

October 26, 2018 Java Just in Time - John Latham Page 103(0/0)

Type: String

• Another type – String

– type of text data strings

– e.g. string literals

– concatenation results.

October 26, 2018 Java Just in Time - John Latham Page 104(0/0)

Truth tables

054: // Take a boolean row item and return a string of 7 characters

055: // to represent that item.

056: private static String formatRowItem(boolean rowItem)

057: {

058: return rowItem ? " true " : " false ";

059: } // formatRowItem

Coffee

time:

Notice that we did not write rowItem == true before the

?. Such code is terrible – every time you are tempted to

write it, you should chastise yourself!

October 26, 2018 Java Just in Time - John Latham Page 105(0/0)

Truth tables

• Want three nested loops, one for each of a, b and c .

– each loops twice: once for true and once for false.

• Cannot use boolean variable to control for loop

– only two values – need third one to indicate have had both the others.

• So use int variable to ensure two executions

– and make boolean variable swap from true to false.

October 26, 2018 Java Just in Time - John Latham Page 106(0/0)

Statement: for loop: multiple statements in for

update

• Can have more than one statement in for update

– separated by commas (,)

• E.g. A for loop over the possible values of a boolean variable

October 26, 2018 Java Just in Time - John Latham Page 107(0/0)

Statement: for loop: multiple statements in for

update

boolean haveUmbrella = true;

boolean isRaining = true;

for (int countU = 1; countU <= 2; countU++, haveUmbrella = !haveUmbre lla)

for (int countR = 1; countR <= 2; countR++, isRaining = !isRaining)

{

System.out.println("It is" + (isRaining ? "" : " not") + " rai ning.");

System.out.println

("You have " + (haveUmbrella ? "an" : "no") + " umbrella.");

if (isRaining && !haveUmbrella)

System.out.println("You get wet!");

else

System.out.println("You stay dry.");

System.out.println();

} // for

October 26, 2018 Java Just in Time - John Latham Page 108(0/0)

Truth tables

062: // The main method has nested loops to generate table rows.

063: public static void main(String[] args)

064: {

065: printStraightLine();

066: printHeadings();

067: printColumnsLine();

068:

069: // Start off with all three variables being true.

070: boolean a = true, b = true, c = true;

071:

October 26, 2018 Java Just in Time - John Latham Page 109(0/0)

Truth tables

072: // Execute twice for the ‘a’ variable,

073: // and ensure ‘a’ goes from true to false.

074: for (int aCount = 1; aCount <= 2; aCount++, a = !a)

075: // Do the same for ‘b’, for each ‘a’ value.

076: for (int bCount = 1; bCount <= 2; bCount++, b = !b)

077: // Do the same for ‘c’, for each ‘b’ value.

078: for (int cCount = 1; cCount <= 2; cCount++, c = !c)

079: // Print a row for each a, b and c combination.

080: printRow(a, b, c);

081:

082: printColumnsLine();

083: } // main

084:

085: } // class TruthTable

October 26, 2018 Java Just in Time - John Latham Page 110(0/0)

Truth tables

Coffee

time:

In some programming languages, such as Perl[?], it is pos-

sible to treat data as program code at run time. But this

is not so in Java (maybe that is a good thing?). How

easy would it be to alter this program so that the propo-

sitional expressions are supplied as command line argu-

ments rather than being hard coded?

October 26, 2018 Java Just in Time - John Latham Page 111(0/0)

Coursework: TruthTable34

(Summary only)

Write a program to test the equivalence of three propositional expressions,

each having four variables.

October 26, 2018 Java Just in Time - John Latham Page 112(0/0)

Section 8

Example:

Producing a calendar

October 26, 2018 Java Just in Time - John Latham Page 113(0/0)

Aim

AIM: To reinforce much of the material presented in this

chapter. We also revisit System.out.printf() .

October 26, 2018 Java Just in Time - John Latham Page 114(0/0)

Producing a calendar

• Wish to produce monthly calendar, given start day and number of days.

Console Input / Output

$ java Calendar 3 28

|Su Mo Tu We Th Fr Sa|

| 01 02 03 04 05|

|06 07 08 09 10 11 12|

|13 14 15 16 17 18 19|

|20 21 22 23 24 25 26|

|27 28 |

| |

$ _ Run

• Just to be different, declare each method after it is used.

October 26, 2018 Java Just in Time - John Latham Page 115(0/0)

Producing a calendar

001: // Program to print a calendar for a single given month.

002: // The first argument is the number of the start day, 1 to 7

003: // (Sunday = 1, Monday = 2, ..., Saturday = 7).

004: // The second argument is the last date in the month, e.g. 31.

005: public class Calendar

006: {

007: public static void main(String[] args)

008: {

009: printMonth(Integer.parseInt(args[0]), Integer.parseI nt(args[1]));

010: } // main

October 26, 2018 Java Just in Time - John Latham Page 116(0/0)

Producing a calendar

013: // Print the calendar for the month.

014: private static void printMonth(int monthStartDay, int lastDateInMonth)

015: {

016: // Keep track of which day (1-7) is the next to be printed out.

017: int nextDayColumnToUse = monthStartDay;

018:

019: // Keep track of the next date to be printed out.

020: int nextDateToPrint = 1;

021:

022: // The top line of hyphens.

023: printMonthLineOfHyphens();

024: // The column headings.

025: printDayNames();

026:

October 26, 2018 Java Just in Time - John Latham Page 117(0/0)

Producing a calendar

027: // We always print out as many rows as we need,

028: // but with a minimum of 6 to encourage consistent format.

029: int noOfRowsPrintedSoFar = 0;

030: while (nextDateToPrint <= lastDateInMonth || noOfRowsPrintedS oFar < 6)

031: {

032: // Print one row.

033: System.out.print("|");

034: for (int dayColumnNo = 1; dayColumnNo <= 7; dayColumnNo++)

035: {

036: // Print a space separator between day columns.

037: if (dayColumnNo > 1)

038: System.out.print(" ");

039:

October 26, 2018 Java Just in Time - John Latham Page 118(0/0)

Producing a calendar

040: // We either print spaces or a date.

041: if (dayColumnNo != nextDayColumnToUse

042: || nextDateToPrint > lastDateInMonth)

043: printDateSpace();

044: else

045: {

046: printDate(nextDateToPrint);

047: nextDayColumnToUse++;

048: nextDateToPrint++;

049: } // else

050: } // for

051:

052: // End the row.

053: System.out.println("|");

054: noOfRowsPrintedSoFar++;

October 26, 2018 Java Just in Time - John Latham Page 119(0/0)

Producing a calendar

055:

056: // Get ready for the next row.

057: nextDayColumnToUse = 1;

058: } // while

059:

060: // The bottom line of hyphens.

061: printMonthLineOfHyphens();

062: } // printMonth

October 26, 2018 Java Just in Time - John Latham Page 120(0/0)

Producing a calendar

065: // Print a line of hyphens as wide as the table,

066: // starting and ending with a space so the corners look right.

067: private static void printMonthLineOfHyphens()

068: {

069: System.out.print(" ");

070: for (int dayColumnNo = 1; dayColumnNo <= 7; dayColumnNo++)

071: {

072: if (dayColumnNo > 1)

073: System.out.print("-");

074: printDateHyphens();

075: } // for

076: System.out.println(" ");

077: } // printMonthLineOfHyphens

October 26, 2018 Java Just in Time - John Latham Page 121(0/0)

Producing a calendar

080: // Print the day name headings.

081: private static void printDayNames()

082: {

083: System.out.print("|");

084: for (int dayColumnNo = 1; dayColumnNo <= 7; dayColumnNo++)

085: {

086: if (dayColumnNo > 1)

087: System.out.print(" ");

088: printDayName(dayColumnNo);

089: } // for

090: System.out.println("|");

091: } // printDayNames

October 26, 2018 Java Just in Time - John Latham Page 122(0/0)

Producing a calendar

094: // Print the day name of the given day number, as two character s.

095: private static void printDayName(int dayNo)

096: {

097: // Our days are numbered 1 - 7, from Sunday.

098: switch (dayNo)

099: {

100: case 1: System.out.print("Su"); break;

101: case 2: System.out.print("Mo"); break;

102: case 3: System.out.print("Tu"); break;

103: case 4: System.out.print("We"); break;

104: case 5: System.out.print("Th"); break;

105: case 6: System.out.print("Fr"); break;

106: case 7: System.out.print("Sa"); break;

107: } // switch

108: } // printDayName

October 26, 2018 Java Just in Time - John Latham Page 123(0/0)

Producing a calendar

111: // Print spaces as wide as a date, i.e. two spaces.

112: private static void printDateSpace()

113: {

114: System.out.print(" ");

115: } // printDateSpace

and

118: // Print hyphens as wide as a date, i.e. two hyphens.

119: private static void printDateHyphens()

120: {

121: System.out.print("--");

122: } // printDateHyphens

October 26, 2018 Java Just in Time - John Latham Page 124(0/0)

Standard API: System: out.printf(): zero padding

• System.out.printf() can produce zero padding instead of space padding

– place leading zero on minimum width in format specifier:

System.out.println("1234567890");

System.out.printf("%010d%n", 123);

produces:

1234567890

0000000123

• Also:

System.out.println("1234567890");

System.out.printf("%010.2f%n", 123.456);

produces:

1234567890

0000123.46

October 26, 2018 Java Just in Time - John Latham Page 125(0/0)

Producing a calendar

125: // Print a date, using two characters, with a leading zero if r equired.

126: private static void printDate(int date)

127: {

128: System.out.printf("%02d", date);

129: } // printDate

130:

131: } // class Calendar

October 26, 2018 Java Just in Time - John Latham Page 126(0/0)

Trying it

Console Input / Output

$ java Calendar 6 29; java Calendar 7 31; java Calendar 3 30

(Output shown using multiple columns to save space.)

-------------------- -------------------- --------------------

|Su Mo Tu We Th Fr Sa| |Su Mo Tu We Th Fr Sa| |Su Mo Tu We Th Fr Sa|

| 01 02| | 01| | 01 02 03 04 05|

|03 04 05 06 07 08 09| |02 03 04 05 06 07 08| |06 07 08 09 10 11 12|

|10 11 12 13 14 15 16| |09 10 11 12 13 14 15| |13 14 15 16 17 18 19|

|17 18 19 20 21 22 23| |16 17 18 19 20 21 22| |20 21 22 23 24 25 26|

|24 25 26 27 28 29 | |23 24 25 26 27 28 29| |27 28 29 30 |

| | |30 31 | | |

-------------------- -------------------- --------------------

$ _ Run

October 26, 2018 Java Just in Time - John Latham Page 127(0/0)

Coursework: CalendarHighlight

(Summary only)

Modify a calendar month printing program to produce a larger calendar

format and to highlight a certain date.

October 26, 2018 Java Just in Time - John Latham Page 128(0/0)

Concepts covered in this chapter

• Each book chapter ends with a list of concepts covered in it.

• Each concept has with it

– a self-test question,

– and a page reference to where it was covered.

• Please use these to check your understanding before we start the next

chapter.

October 26, 2018 Java Just in Time - John Latham Page 129(0/0)

	Title
	Chapter 8: Separate methods and logical operators
	Chapter aims
	Section 2: Example: Age history with two people
	Aim
	Age history with two people
	Trying it
	Coursework: WorkFuture2
	Section 3: Example: Age history with a separate method
	Aim
	Method
	Method

	Method: private
	Method: private

	Age history with a separate method
	Method: accepting parameters
	Method: accepting parameters

	Age history with a separate method
	Method: calling a method
	Method: calling a method

	Age history with a separate method
	Method: void methods
	Method: void methods

	Age history with a separate method
	Age history with a separate method
	Age history with a separate method
	Trying it
	Warning: do not forget .85plus.85minus.8510.851.18static
	Warning: do not forget .85plus.85minus.8510.851.18static
	Coursework: WorkFuture4
	Section 4: Example: Dividing a cake with a separate method for GCD
	Aim
	Method: returning a value
	Method: returning a value

	Dividing a cake with a separate method for GCD
	Dividing a cake with a separate method for GCD
	Method: changing parameters does not affect arguments
	Method: changing parameters does not affect arguments

	Changing values of method parameters
	Coursework: DivideCake4
	Section 5: Example: Multiple times table with separate methods
	Aim
	Multiple times table with separate methods
	Variable: local variables
	Variable: local variables

	Variable: class variables
	Variable: class variables

	Multiple times table with separate methods
	Multiple times table with separate methods
	Multiple times table with separate methods
	Multiple times table with separate methods
	Multiple times table with separate methods
	Standard API: System: out.printf()
	Standard API: System: out.printf()

	Multiple times table with separate methods
	Trying it
	Coursework: CommonFactorsTable with methods
	Section 6: Example: Age history with day and month
	Aim
	Age history with day and month
	Expression: boolean: logical operators
	Expression: boolean: logical operators

	Age history with day and month
	Variable: a group of variables can be declared together
	Variable: a group of variables can be declared together

	Age history with day and month
	Age history with day and month
	Age history with day and month
	Trying it
	Trying it
	Trying it
	Coursework: Reasoning about conditions
	Section 7: Example: Truth tables
	Aim
	Truth tables
	Truth tables
	Type: boolean
	Type: boolean

	Truth tables
	Variable: boolean variable
	Variable: boolean variable

	Truth tables
	Truth tables
	Type: String
	Type: String

	Truth tables
	Truth tables
	Statement: for loop: multiple statements in for update
	Statement: for loop: multiple statements in for update

	Truth tables
	Truth tables
	Coursework: TruthTable34
	Section 8: Example: Producing a calendar
	Aim
	Producing a calendar
	Producing a calendar
	Producing a calendar
	Producing a calendar
	Producing a calendar
	Producing a calendar
	Producing a calendar
	Standard API: System: out.printf(): zero padding
	Standard API: System: out.printf(): zero padding

	Producing a calendar
	Trying it
	Coursework: CalendarHighlight
	Concepts covered in this chapter

