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Chapter 5

Repeated execution
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Chapter aims

• Most programs need parts of code to be executed more than once

– repeated execution or iteration.

• We meet the while loop and for loop statements.

• Plus some more general concepts.

October 10, 2018 Java Just in Time - John Latham Page 3(0/0)



Section 2

Example:

Minimum tank size
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Aim

AIM: To introduce the idea of repeated execution, imple-

mented by the while loop. We also meet the notion

of a variable update.
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Minimum tank size

• You make central heating oil storage tanks

– always cubic

– six pieces of sheet metal from 1M2 upwards, always whole metres.

• Want program to compute size of smallest tank to hold given volume.

– start with smallest size

– keep making bigger by 1 until big enough.
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Execution: repeated execution

• Obeying instructions just once is not sufficient to solve many problems

– some instructions need to be executed, zero, one or many times.

• Known as repeated execution, iteration, or looping.

• Number of times depends on some condition involving variables.
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Statement: assignment statement: updating a

variable

• Values of variables can change.

• E.g. work out maximum of three numbers.

int x;

int y;

int z;

... Code here that gives values to x, y and z.

int maximumOfXYandZSoFar = x;

if (maximumOfXYandZSoFar < y)

maximumOfXYandZSoFar = y;

if (maximumOfXYandZSoFar < z)

maximumOfXYandZSoFar = z;

• maximumOfXYandZSoFar gets given a value, then maybe it is changed.

October 10, 2018 Java Just in Time - John Latham Page 8(0/0)



Statement: assignment statement: updating a

variable

• Commonly wish the program to perform a variable update

– often inside a loop.

• E.g. add one to value of countSoFar:

countSoFar = countSoFar + 1;

• Reminder – assignment statements are not definitions of equality.
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Statement: while loop

• One way of looping is the while loop.

• Two parts

– condition – evaluated each time

– statement – executed while condition is true.

• Syntax:

– reserved word while

– condition in brackets

– statement to be repeated
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Statement: while loop

• E.g. – inefficient way to give x the value 21:

int x = 1;

while (x < 20)

x = x + 2;

• x starts with value 1

– repeatedly has 2 added to it

– stops when x < 20 is false.

– So ends with value 21.

• Notice brackets, semi-colon and lay out.
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Statement: while loop

• Observe similarity between while loop and if statement

– only difference is first word!

• Similarity in meaning:

– while loop executes body zero or more times

– if statement executes body zero or one time.

• Avoid common novice phrase “if loop”. . .
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Minimum tank size

001: public class MinimumTankSize

002: {

003: public static void main(String[] args)

004: {

005: double requiredVolume = Double.parseDouble(args[0]);

006: int sideLength = 1;

007: while (sideLength * sideLength * sideLength < requiredVolume)

008: sideLength = sideLength + 1;

009: System.out.println("You need a tank of " + sideLength

010: + " metres per side to hold the volume "

011: + requiredVolume + " cubic metres");

012: }

013: }
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Trying it

Console Input / Output

$ java MinimumTankSize 1

You need a tank of 1 metres per side to hold the volume 1.0 cubic metres

$ java MinimumTankSize 1.001

You need a tank of 2 metres per side to hold the volume 1.001 cubic metres

$ java MinimumTankSize 8

You need a tank of 2 metres per side to hold the volume 8.0 cubic metres

$ java MinimumTankSize 8.001

You need a tank of 3 metres per side to hold the volume 8.001 cubic metres

$ java MinimumTankSize 100

You need a tank of 5 metres per side to hold the volume 100.0 cubic metres

$ java MinimumTankSize 57.3

You need a tank of 4 metres per side to hold the volume 57.3 cubic metres

$ _ Run
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Trying it

• What about some inappropriate values?

Console Input / Output

$ java MinimumTankSize 0

You need a tank of 1 metres per side to hold the volume 0.0 cubic metres

$ java MinimumTankSize -10

You need a tank of 1 metres per side to hold the volume -10.0 cubic metres

$ _ Run
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Trying it

Coffee

time:

A common error made by novice programmers is to place a semi-

colon (;) at the end of lines which shouldn’t have one. What do you

think would happen if the while loop of our program was as follows?

. while (sideLength * sideLength * sideLength < requiredVolume);

. sideLength = sideLength + 1;

(Hint: remember the empty statement).
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Coursework: MinimumTankSize in half measures

(Summary only)

Write a program which calculates the minimum size of cubic tanks to hold

given required volumes, where the possible sizes are in steps of 0.5 metre.
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Section 3

Example:

Minimum bit width
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Aim

AIM: To introduce the idea of using pseudo code to help us

design programs. We also meet Math.pow().
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Minimum bit width

• Numbers are represented in binary – base 2 representation

– each is sequence of binary digits (bits)

– each bit either 0 or 1.

• Want to calculate how many bits needed to represent given number of

different values.

– E.g.

– one bit gives two values: 0, 1

– two bits gives four values: 00, 01, 10, 11

– three bits gives eight values: 000, 001, 010, 011, 100, 101, 110, 111

– etc.

October 10, 2018 Java Just in Time - John Latham Page 20(0/0)



Minimum bit width

Coffee

time:

Convince yourself that the number of values repre-

sentable using N bits is 2N .

• We will use a variable noOfBits

– start off with value 0

– keep adding 1 while too small.
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Design: pseudo code

• Complex programs are hard to write straight into the text editor

– so don’t try to!

• Need to design them before we implement them.

• Design does not start at first word and end at last one.

– start wherever it suits us

– typically at the trickiest bit.
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Design: pseudo code

• We don’t express designs in Java

– forces our mind to be cluttered with trivia

∗ e.g. semi-colons, brackets, . . .

∗ too distracting.

• We express algorithm designs in pseudo code

– kind of informal programming language

– no unnecessary trivia

– might not bother writing class nor method headings.

• Can also vary level of abstraction to suit us

– not constrained to use only features of Java at every stage.
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Minimum bit width

• Pseudo code for minimum bit width:

get numberOfValues from command line

noOfBits = 0

while noOfBits is too small

increment noOfBits

output noOfBits
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Minimum bit width

• How know whether noOfBits is too small?

– big enough when 2noO f Bits ≥ numberO fValues.

• So increment while 2noO f Bits
< numberO fValues.

• Rewrite pseudo code, closer to Java: less abstract.

numberOfValues = args[0]

noOfBits = 0

noOfBitswhile 2 < numberOfValues

noOfBits = noOfBits + 1

s.o.p noOfBits

• Notice s.o.p, no semi-colons, no brackets

– would be waste of time to write proper Java during design.
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Standard API: Math: pow()

• No power operator in Java.

• But standard class Math has method pow()

– takes two numbers, gives value of first raised to power of second.

• E.g. Math.pow(2, 10) produces 210 i.e. 1024.

• Math has many other useful maths functions.
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Minimum bit width

001: public class MinimumBitWidth

002: {

003: public static void main(String[] args)

004: {

005: int numberOfValues = Integer.parseInt(args[0]);

006: int noOfBits = 0;

007: while (Math.pow(2, noOfBits) < numberOfValues)

008: noOfBits = noOfBits + 1;

009: System.out.println("You need " + noOfBits + " bits to represent "

010: + numberOfValues + " values");

011: }

012: }
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Trying it

Console Input / Output

$ java MinimumBitWidth 0

You need 0 bits to represent 0 values

$ java MinimumBitWidth 1

You need 0 bits to represent 1 values

$ _ Run

Coffee

time:

What do you think of the last result above – that you can

represent one value using no bits? For example, how

much memory would be needed to store the gender of

each member of a club that only allows women to join?
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Trying it

Console Input / Output

$ java MinimumBitWidth 2

You need 1 bits to represent 2 values

$ java MinimumBitWidth 3

You need 2 bits to represent 3 values

$ java MinimumBitWidth 4

You need 2 bits to represent 4 values

$ java MinimumBitWidth 5

You need 3 bits to represent 5 values

$ _ Run
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Trying it

Console Input / Output

$ java MinimumBitWidth 255

You need 8 bits to represent 255 values

$ java MinimumBitWidth 256

You need 8 bits to represent 256 values

$ java MinimumBitWidth 257

You need 9 bits to represent 257 values

$ _ Run

Console Input / Output

$ java MinimumBitWidth 65535

You need 16 bits to represent 65535 values

$ java MinimumBitWidth 65536

You need 16 bits to represent 65536 values

$ java MinimumBitWidth 65537

You need 17 bits to represent 65537 values

$ _ Run
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Trying it

Console Input / Output

$ java MinimumBitWidth 536870911

You need 29 bits to represent 536870911 values

$ java MinimumBitWidth 536870912

You need 29 bits to represent 536870912 values

$ java MinimumBitWidth 536870913

You need 30 bits to represent 536870913 values

$ _ Run

Console Input / Output

$ java MinimumBitWidth 1073741823

You need 30 bits to represent 1073741823 values

$ java MinimumBitWidth 1073741824

You need 30 bits to represent 1073741824 values

$ java MinimumBitWidth 1073741825

You need 31 bits to represent 1073741825 values

$ _ Run
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Trying it

Console Input / Output

$ java MinimumBitWidth 2147483647

You need 31 bits to represent 2147483647 values

$ java MinimumBitWidth 2147483648

Exception in thread "main" java.lang.NumberFormatException: For input string: "2

147483648"

at java.lang.NumberFormatException.forInputString(NumberFormatException.

java:48)

at java.lang.Integer.parseInt(Integer.java:465)

at java.lang.Integer.parseInt(Integer.java:499)

at MinimumBitWidth.main(MinimumBitWidth.java:5)

$ _ Run

Coffee

time:

Can you guess what has caused the exception in the last

test? (Hint: int uses 32 bits to represent numbers, and

needs to store negative as well as non-negative values.)
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Coursework: LargestSquare

(Summary only)

Write a program to find the largest square number which is less than or equal

to a given number.
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Section 4

Special note about design
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Aim

AIM: To make sure the process of design does not get forgot-

ten!
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Special note about design

• Not enough time in lectures or room in book to show pseudo code for

every example.

• So show only for a few.

• But don’t get wrong impression:

– all programs require some design work

∗ depends on complexity and previous programmer experience.

• If new to programming: presume all examples from now on would require

pseudo code.

• Common mistake: go to text editor and try to type code from start to end.

– Makes it harder – don’t do it!

∗ Would you write essays that way?

∗ Programs have more complex structure than essays.
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Section 5

Example:

Compound interest: known

target
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Aim

AIM: To reinforce the while loop and the compound state-

ment.
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Compound interest: known target

• Invest sum of money at given interest rate

– How many years before reach required target balance?

• Use while loop

– accumulate balance while less than target

– count the years.

• Need compound statement because two statements within loop body.
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Compound interest: known target

001: public class CompoundInterestKnownTarget

002: {

003: public static void main(String[] args)

004: {

005: double initialInvestment = Double.parseDouble(args[0]);

006: double interestRate = Double.parseDouble(args[1]);

007: double targetBalance = Double.parseDouble(args[2]);

008: int noOfYearsInvestedSoFar = 0;

009: double currentBalance = initialInvestment;

010:
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Compound interest: known target

011: while (currentBalance < targetBalance)

012: {

013: noOfYearsInvestedSoFar = noOfYearsInvestedSoFar + 1;

014: currentBalance = currentBalance + currentBalance * interestRate / 100;

015: }

016:

017: System.out.println(initialInvestment + " invested at interest rate "

018: + interestRate + "%");

019: System.out.println("After " + noOfYearsInvestedSoFar + " years,"

020: + " the balance will be " + currentBalance);

021: }

022: }
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Trying it

Console Input / Output

$ java CompoundInterestKnownTarget 100.0 12.5 1000.0

100.0 invested at interest rate 12.5%

After 20 years, the balance will be 1054.50938424492

$ java CompoundInterestKnownTarget 100.0 4.5 1000.0

100.0 invested at interest rate 4.5%

After 53 years, the balance will be 1030.7738533669428

$ _ Run
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Coursework: MinimumBitWidth by doubling

(Summary only)

Write a program to find the minimum bit width needed to support a given

number of values, by doubling.
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Section 6

Example:

Compound interest: known

years
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Aim

AIM: To introduce the for loop.
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Compound interest: known years

• Invest sum of money at given interest rate for fixed number of years

– what is balance at the end?

• Could use a while loop

– for loop is more appropriate.
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Statement: for loop

• The for loop best suited when number of iterations is known at start.

• E.g.:

for (int count = 1; count <= 10; count = count + 1)

System.out.println("Counting " + count);

• Syntax:

– reserved word for

– three items in brackets, separated by semi-colons.

– then loop body – a statement

∗ often a compound statement
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Statement: for loop

• First of the three items is for initialization

– performed once when loop starts

– often delcares a variable and gives initial value to it.

– E.g. int count = 1

• Second is condition for continuing

– E.g. count <= 10

• Third is for update

– a statement executed at end of each iteration

– typically updates value of variable declared in first item.

– E.g. count = count + 1
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Statement: for loop

• Overall effect of example:

for (int count = 1; count <= 10; count = count + 1)

System.out.println("Counting " + count);

– declare count, set to 1

– check if less than 10

– print Counting 1

– add one to count

– check again, print Counting 2, add one to count, check again,. . .

– until condition is false

∗ count has reached 11
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Statement: for loop

• Don’t really need for loop – while loop is sufficient.

• E.g.:

int count = 1;

while (count <= 10)

{

System.out.println("Counting " + count);

count = count + 1;

}

• However for loop places all loop control code together

– easier to read

– shorter

– appropriate for known number of iterations.
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Statement: for loop

• One subtle difference about scope of count

– variables declared in for initialization can only be used in the for loop

∗ do not exist elsewhere.

• Added benefit of for loop compared with equivalent while loop

– cannot accidentally use control variable in rest of the code.
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Compound interest: known years

001: public class CompoundInterestKnownYears

002: {

003: public static void main(String[] args)

004: {

005: double initialInvestment = Double.parseDouble(args[0]);

006: double interestRate = Double.parseDouble(args[1]);

007: int noOfYearsInvested = Integer.parseInt(args[2]);

008: double currentBalance = initialInvestment;

009:
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Compound interest: known years

010: for (int year = 1; year <= noOfYearsInvested; year = year + 1)

011: currentBalance = currentBalance + currentBalance * interestRate / 100;

012:

013: System.out.println(initialInvestment + " invested at interest rate "

014: + interestRate + "%");

015: System.out.println("After " + noOfYearsInvested + " years,"

016: + " the balance will be " + currentBalance);

017: }

018: }
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Compound interest: known years

Coffee

time:

Could we have written the first line of the for loop as follows?

. for (int year = 0; year < noOfYearsInvested; year = year + 1)

If so, which is better? What if we wanted to use the value of year

inside the loop – would that affect your choice of which is best?

Coffee

time:

Could we have written it as this?!!

. for (int year = 0; year < 2 * noOfYearsInvested; year = year + 2)
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Trying it

Console Input / Output

$ java CompoundInterestKnownYears 100.0 12.5 5

100.0 invested at interest rate 12.5%

After 5 years, the balance will be 180.2032470703125

$ java CompoundInterestKnownYears 100.0 4.5 12

100.0 invested at interest rate 4.5%

After 12 years, the balance will be 169.5881432767867

$ _ Run
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Coursework: Power

(Summary only)

Write a program to raise a given number to the power of a second given

number, without using Math.pow().
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Section 7

Example:

Average of a list of numbers
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Aim

AIM: To show how to get the length of a list, note that an

index can be a variable, and introduce type casting.
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Average of a list of numbers

• Given list of integer command line arguments

– reports their mean average.

• Compute sum in a for loop.

• Divide by number of numbers.
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Command line arguments: length of the list

• The command line arguments are a list of strings.

• The length of a list is: name of list, dot, length.

• E.g. args.length is number of items in list args.
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Command line arguments: list index can be a

variable

• A list item index can be an int variable or arithmetic expression.

• E.g. sum integer command line arguments:

int sumOfArgs = 0;

for (int argIndex = 0; argIndex < args.length; argIndex = argIndex + 1)

sumOfArgs = sumOfArgs + Integer.parseInt(args[argIndex]);

System.out.println("The sum is " + sumOfArgs);

• Can use same code to access different items, by, e.g., changing variable

value in a loop.
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Average of a list of numbers

• Sum of numbers is integer, number of numbers is integer.

• What happens when divide integer by integer?. . .
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Type: casting an int to a double

• We can turn an int into a double by casting.

• E.g. (double)5 is 5.0.

• More likely to cast value of an int variable than integer literal!
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Average of a list of numbers

• No sense asking for average of no numbers.

– So assume at least one.

• Sum is just first number to start with.

• Then add remaining numbers via for loop.
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Average of a list of numbers

001: public class MeanAverage

002: {

003: public static void main(String[] args)

004: {

005: int sumSoFar = Integer.parseInt(args[0]);

006:

007: for (int argIndex = 1; argIndex < args.length; argIndex = argIndex + 1)

008: sumSoFar = sumSoFar + Integer.parseInt(args[argIndex]);

009:

010: System.out.println("The mean average is "

011: + sumSoFar / (double) args.length);

012: }

013: }
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Average of a list of numbers

Coffee

time:

Recall that list indices start at 0. Convince yourself that we are cor-

rectly accessing the numbers in the list: should the for loop index

start from 0? Why not? Would the following code for the for loop

work? Is it better code?

. for (int argIndex = 1; argIndex <= args.length - 1; argIndex =

argIndex + 1)
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Average of a list of numbers

Coffee

time:

What would happen if there were no numbers given on

the command line? What sort of exception would be re-

ported? What if we had started the value of sumSoFar at 0

and dealt with the first number inside the loop, instead of

separately before the loop. What sort of exception would

we expect to get now, if there were no command line ar-

guments? Try it and see!
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Trying it

Console Input / Output

$ java MeanAverage 100

The mean average is 100.0

$ java MeanAverage 100 500

The mean average is 300.0

$ java MeanAverage 34 67 12 904 -5 8375 -1249

The mean average is 1162.5714285714287

$ java MeanAverage 60 -100 40

The mean average is 0.0

$ _ Run

And no arguments?

Console Input / Output

$ java MeanAverage

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 0

at MeanAverage.main(MeanAverage.java:5)

$ _ Run
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Coursework: Variance

(Summary only)

Write a program to produce the variance of some given numbers.
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Section 8

Example:

Single times table
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Aim

AIM: To reinforce the for loop.
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Single times table

001: public class TimesTable

002: {

003: public static void main(String[] args)

004: {

005: int multiplier = Integer.parseInt(args[0]);

006:

007: System.out.println("--------------------------------");

008: System.out.println("| Times table for " + multiplier);

009: System.out.println("--------------------------------");

010: for (int thisNumber = 1; thisNumber <= 10; thisNumber = thisNumber + 1)

011: System.out.println("| " + thisNumber + " x " + multiplier

012: + " = " + thisNumber * multiplier);

013: System.out.println("--------------------------------");

014: }

015: }
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Trying it

Console Input / Output

$ java TimesTable 3

--------------------------------

| Times table for 3

--------------------------------

| 1 x 3 = 3

| 2 x 3 = 6

| 3 x 3 = 9

| 4 x 3 = 12

| 5 x 3 = 15

| 6 x 3 = 18

| 7 x 3 = 21

| 8 x 3 = 24

| 9 x 3 = 27

| 10 x 3 = 30

--------------------------------

$ _ Run
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Trying it

Console Input / Output

$ java TimesTable 5

--------------------------------

| Times table for 5

--------------------------------

| 1 x 5 = 5

| 2 x 5 = 10

| 3 x 5 = 15

| 4 x 5 = 20

| 5 x 5 = 25

| 6 x 5 = 30

| 7 x 5 = 35

| 8 x 5 = 40

| 9 x 5 = 45

| 10 x 5 = 50

--------------------------------

$ _ Run
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Trying it

Console Input / Output

$ java TimesTable 8

--------------------------------

| Times table for 8

--------------------------------

| 1 x 8 = 8

| 2 x 8 = 16

| 3 x 8 = 24

| 4 x 8 = 32

| 5 x 8 = 40

| 6 x 8 = 48

| 7 x 8 = 56

| 8 x 8 = 64

| 9 x 8 = 72

| 10 x 8 = 80

--------------------------------

$ _ Run
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Coursework: SinTable

(Summary only)

Write a program to produce a sin table.

October 10, 2018 Java Just in Time - John Latham Page 76(0/0)



Section 9

Example:

Age history
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Aim

AIM: To introduce the idea of documenting programs using

comments.
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Code clarity: comments

• Layout and indentation enhance readability.

• So do comments

– pieces of text ignored by the compiler.

• E.g.

– at start of program: what it does, how it is used.

– at each variable declaration: what it is used for.

– within code: what next statements do.

• One form: // followed by comment text.

• E.g.

// This is a comment, ignored by the compiler.
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Code clarity: comments: marking ends of code

constructs

• Good idea to mark end of code constructs.

• Especially if long and doesn’t all fit on screen. . .

• E.g.

public class SomeClass

{

public static void main(String[] args)

{

...

while (...)

{

...

...
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Code clarity: comments: marking ends of code

constructs

...

} // while

...

} // main

} // class SomeClass
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Age history

001: // Program to print out the history of a person’s age.

002: // First argument is an integer for the present year.

003: // Second argument is the birth year, which must be less than the present year.

004: public class AgeHistory

005: {

006: public static void main(String[] args)

007: {

008: // The year of the present day.

009: int presentYear = Integer.parseInt(args[0]);

010:

011: // The year of birth: this must be less than the present year.

012: int birthYear = Integer.parseInt(args[1]);

013:
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Age history

014: // Start by printing the event of birth.

015: System.out.println("You were born in " + birthYear);

016:

017: // Now we will go through the years between birth and last year.

018:

019: // We need to keep track of the year we are considering

020: // starting with the year after the birth year.

021: int someYear = birthYear + 1;

022:

023: // We keep track of the age, starting with 1.

024: int ageInSomeYear = 1;

025:
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Age history

026: // We deal with each year while it has not reached the present year.

027: while (someYear != presentYear)

028: {

029: // Print out the age in that year.

030: System.out.println("You were " + ageInSomeYear + " in " + someYear);

031:

032: // Add one to the year and to the age.

033: someYear = someYear + 1;

034: ageInSomeYear = ageInSomeYear + 1;

035: } // while

036:
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Age history

037: // At this point someYear will equal presentYear.

038: // So ageInSomeYear must be the age in the present year.

039: System.out.println("You are " + ageInSomeYear + " this year");

040: } // main

041:

042: } // class AgeHistory

Coffee

time:

What would happen if we ran the program with a birth

year which is not less than the present year?
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Trying it

Console Input / Output

$ java AgeHistory 2019 2018

You were born in 2018

You are 1 this year

$ java AgeHistory 2019 2000

(Output shown using multiple columns to save space.)

You were born in 2000 You were 7 in 2007 You were 14 in 2014

You were 1 in 2001 You were 8 in 2008 You were 15 in 2015

You were 2 in 2002 You were 9 in 2009 You were 16 in 2016

You were 3 in 2003 You were 10 in 2010 You were 17 in 2017

You were 4 in 2004 You were 11 in 2011 You were 18 in 2018

You were 5 in 2005 You were 12 in 2012 You are 19 this year

You were 6 in 2006 You were 13 in 2013

$ _ Run
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Trying it

• Try birth year greater than present year.

– Run, kill after 1 second, show last 3 lines of output.

Console Input / Output

$ (java AgeHistory 2019 2020 & PID=${!}; sleep 1; kill $PID) | tail -3

You were 35653 in 37673

You were 35654 in 37674

You were 35655 in 37675

$ _ Run

Coffee

time:

Can you explain the program behaviour?
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Trying it

• Repeat:

Console Input / Output

$ (java AgeHistory 2019 2020 & PID=${!}; sleep 1; kill $PID) | tail -3

You were 38244 in 40264

You were 38245 in 40265

You were 38246 in 40266

$ _ Run

Coffee

time:

Why is the result different? What would happen if we let

the program run indefinitely? (Hint: is there a maximum

value for someYear?)
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Coursework: WorkFuture

(Summary only)

Write a program to print out all the years from the present day until the user

retires.
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Section 10

Example:

Home cooked Pi
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Aim

AIM: To introduce various shorthand operators for variable

updates, have another example where we reveal

the pseudo code design, and meet Math.abs() and

Math.PI.
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Home cooked Pi

• 15th century Indian mathematician Madhava of Sangamagrama

discovered following sequence

– rediscovered in 1673 by Gottfried Leibniz[?].

π = 4−
4
3

+
4
5
−

4
7

+
4
9
− . . .

• More accurate with more terms, but never exact

– each term jumps result either side of π, getting ever closer.

• Doesn’t matter if don’t know why it works – just implement correctly.
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Home cooked Pi

• Not fastest algorithm for π, but interesting.

• Start with value 4.

• Subtract 4
3 .

• Add 4
5 .

• Etc.: each denominator is previous + 2, sign keeps swapping.

• Stop when difference between successive sums is less than or equal to

given tolerance.
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Home cooked Pi

• Some pseudo code:

obtain tolerance from command line

set up previousEstimate as value from no terms

set up latestEstimate as value from one term

while previousEstimate is not within tolerance of latestEstimate

previousEstimate = latestEstimate

add next term to latestEstimate

end-while

print out latestEstimate

print out the number of terms used

print out the standard known value of Pi for comparison
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Home cooked Pi

• Make more concrete and add a variable to count terms:

double tolerance = args[0]

double previousEstimate = 0

double latestEstimate = 4

int termCount = 1

while previousEstimate is not within tolerance of latestEstimate

previousEstimate = latestEstimate

add next term to latestEstimate

termCount = termCount + 1

end-while

s.o.p latestEstimate

s.o.p termCount

s.o.p the standard known value of Pi for comparison
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Home cooked Pi

• To find next term, have two variables:

– denominator

∗ increase by two each time

– sign of numerator.

∗ alternate between 1 and -1.

Coffee

time:

What simple operation can we do to a variable to make

it change the sign of its value?
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Home cooked Pi

double tolerance = args[0]

double previousEstimate = 0

double latestEstimate = 4

int termCount = 1

int nextDenominator = 3

int nextNumeratorSign = -1

while previousEstimate is not within tolerance of latestEstimate

previousEstimate = latestEstimate

latestEstimate = latestEstimate + nextNumeratorSign * 4 / nextDenominator

termCount = termCount + 1

nextNumeratorSign = nextNumeratorSign * -1

nextDenominator = nextDenominator + 2

end-while
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Home cooked Pi

s.o.p latestEstimate

s.o.p termCount

s.o.p the standard known value of Pi for comparison
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Home cooked Pi

• Only two bits to make more concrete

– loop condition

– standard known value of π.
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Standard API: Math: abs()

• No Java operator to give absolute value of a number

– i.e. ignore its sign.

• Instead Math contains abs()

– takes a number and gives its absolute value.

• E.g.

– Math.abs(-2.7) produces 2.7

– as does Math.abs(3.4 - 0.7).
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Home cooked Pi

• Our loop condition:

Math.abs(latestEstimate - previousEstimate) > tolerance
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Standard API: Math: PI

• Math contains a constant called PI

– most accurate value of π possible as a double.

• Math.PI is how we access it.

• E.g.:

double circleArea = Math.PI * circleRadius * circleRadius;
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Statement: assignment statement: updating a

variable: shorthand operators

• Java has shorthand operators for certain types of update.

Op. Name E.g. Long meaning

++ postfix increment x++ x = x + 1

-- postfix decrement x-- x = x - 1

+= compound assignment: add to x += y x = x + y

-= compound assignment: subtract from x -= y x = x - y

*= compound assignment: multiply by x *= y x = x * y

/= compound assignment: divide by x /= y x = x / y

• Save a bit of typing – so what!

• Moreover: make program easier to read.

• (Historical efficient code motivation.)
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Home cooked Pi

Coffee

time:

How many of these shorthand operators can be used in

this program? Where? If we had known about them be-

fore this point, do you think we would have used them in

our pseudo code?
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Home cooked Pi

001: // A program to estimate Pi using Leibniz’s formula.

002: // Argument is desired tolerance between successive terms.

003: // Reports the estimate, the number of terms

004: // and the library constant for comparison.

005: public class PiEstimation

006: {

007: public static void main(String[] args)

008: {

009: // The tolerance is the minimum difference between successive

010: // terms before we stop estimating.

011: double tolerance = Double.parseDouble(args[0]);

012:

013: // The result from our previous estimate, initially 0 for 0 terms.

014: double previousEstimate = 0;

015:
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Home cooked Pi

016: // The result from our latest estimate, eventually the final result.

017: double latestEstimate = 4;

018:

019: // We count the terms, initially 1 for the 4.

020: int termCountSoFar = 1;

021:

022: // The value of the next term denominator, initially 3.

023: int nextDenominator = 3;

024:

025: // The sign of the next term, initially -ve.

026: int nextNumeratorSign = -1;

027:
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Home cooked Pi

028: // Keep adding terms until change is within tolerance.

029: while (Math.abs(latestEstimate - previousEstimate) > tolerance)

030: {

031: previousEstimate = latestEstimate;

032: latestEstimate += nextNumeratorSign * 4.0 / nextDenominator;

033: termCountSoFar++;

034: nextNumeratorSign *= -1;

035: nextDenominator += 2;

036: } // while

037:
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Home cooked Pi

038: System.out.println("The estimated value of Pi to tolerance " + tolerance

039: + " is " + latestEstimate);

040: System.out.println("The estimate used " + termCountSoFar + " terms");

041: System.out.println("The library value of Pi is " + Math.PI);

042: } // main

043:

044: } // class PiEstimation

Coffee

time:

What would happen if we wrote 4 instead of 4.0 when

computing the next term to add to the result? Without

trying it, can you say what the output would be?
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Trying it

Console Input / Output

$ java PiEstimation 0.1

The estimated value of Pi to tolerance 0.1 is 3.189184782277596

The estimate used 21 terms

The library value of Pi is 3.141592653589793

$ java PiEstimation 0.01

The estimated value of Pi to tolerance 0.01 is 3.1465677471829556

The estimate used 201 terms

The library value of Pi is 3.141592653589793

$ java PiEstimation 0.001

The estimated value of Pi to tolerance 0.0010 is 3.1420924036835256

The estimate used 2001 terms

The library value of Pi is 3.141592653589793

$ _ Run

• Number of terms grows rapidly with more accuracy – not fastest algorithm
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Trying it

• Note scientific notation.

Console Input / Output

$ java PiEstimation 0.00001

The estimated value of Pi to tolerance 1.0E-5 is 3.141597653564762

The estimate used 200001 terms

The library value of Pi is 3.141592653589793

$ java PiEstimation 0.000001

The estimated value of Pi to tolerance 1.0E-6 is 3.1415931535894743

The estimate used 2000001 terms

The library value of Pi is 3.141592653589793

$ _ Run

Coffee

time:

How many decimal places accuracy would you expect

to get from the tolerance command line argument given

in that last test? Does this tally with the results?
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Trying it

• More decimal places:

Console Input / Output

$ java PiEstimation 0.0000001

The estimated value of Pi to tolerance 1.0E-7 is 3.1415927035898146

The estimate used 20000001 terms

The library value of Pi is 3.141592653589793

$ java PiEstimation 0.00000001

The estimated value of Pi to tolerance 1.0E-8 is 3.1415926485894077

The estimate used 199999998 terms

The library value of Pi is 3.141592653589793

$ _ Run

Coffee

time:

Did you notice that the number of terms from the last test

has broken the pattern from the previous ones? Might this

suggest something about accuracy?
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Trying it

Coffee

time:

As we ask for more accuracy, the program takes longer

to run: about 10 times more terms for each extra deci-

mal place! What is the specific danger if we ask for too

much accuracy? (Hint: is there a maximum value for

nextDenominator? Also, remember that doubles are only

approximations of real numbers.)
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Coursework: Shorthand operators

(Summary only)

Go through all the previous programs in this chapter to see where shorthand

operators could have been used.
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Concepts covered in this chapter

• Each book chapter ends with a list of concepts covered in it.

• Each concept has with it

– a self-test question,

– and a page reference to where it was covered.

• Please use these to check your understanding before we start the next

chapter.
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