
List of Slides

1 Title
2 Chapter 5: Repeated execution
3 Chapter aims
4 Section 2: Example:Minimum tank size
5 Aim
6 Minimum tank size
7 Execution: repeated execution
8 Statement: assignment statement: updating a variable

10 Statement: while loop
13 Minimum tank size
14 Trying it
15 Trying it
16 Trying it
17 Coursework: MinimumTankSize in half measures
18 Section 3: Example:Minimum bit width
19 Aim

0-0

20 Minimum bit width
21 Minimum bit width
22 Design: pseudo code
24 Minimum bit width
25 Minimum bit width
26 Standard API: Math: pow()
27 Minimum bit width
28 Trying it
29 Trying it
30 Trying it
31 Trying it
32 Trying it
33 Coursework: LargestSquare
34 Section 4: Special note about design
35 Aim
36 Special note about design
37 Section 5: Example:Compound interest: known target
38 Aim

0-1

39 Compound interest: known target
40 Compound interest: known target
42 Trying it
43 Coursework: MinimumBitWidth by doubling
44 Section 6: Example:Compound interest: known years
45 Aim
46 Compound interest: known years
47 Statement: for loop
52 Compound interest: known years
54 Compound interest: known years
55 Trying it
56 Coursework: Power
57 Section 7: Example:Average of a list of numbers
58 Aim
59 Average of a list of numbers
60 Command line arguments: length of the list
61 Command line arguments: list index can be a variable
62 Average of a list of numbers

0-2

63 Type: casting an int to a double
64 Average of a list of numbers
65 Average of a list of numbers
66 Average of a list of numbers
67 Average of a list of numbers
68 Trying it
69 Coursework: Variance
70 Section 8: Example:Single times table
71 Aim
72 Single times table
73 Trying it
74 Trying it
75 Trying it
76 Coursework: SinTable
77 Section 9: Example:Age history
78 Aim
79 Code clarity: comments
80 Code clarity: comments: marking ends of code constructs

0-3

82 Age history
86 Trying it
87 Trying it
88 Trying it
89 Coursework: WorkFuture
90 Section 10: Example:Home cooked Pi
91 Aim
92 Home cooked Pi
93 Home cooked Pi
94 Home cooked Pi
95 Home cooked Pi
96 Home cooked Pi
97 Home cooked Pi
99 Home cooked Pi

100 Standard API: Math: abs()
101 Home cooked Pi
102 Standard API: Math: PI
103 Statement: assignment statement: updating a variable: shorthand oper

0-4

104 Home cooked Pi
105 Home cooked Pi
109 Trying it
110 Trying it
111 Trying it
112 Trying it
113 Coursework: Shorthand operators
114 Concepts covered in this chapter

0-5

Title

Java Just in Time

John Latham

October 10, 2018

October 10, 2018 Java Just in Time - John Latham Page 1(0/0)

Chapter 5

Repeated execution

October 10, 2018 Java Just in Time - John Latham Page 2(0/0)

Chapter aims

• Most programs need parts of code to be executed more than once

– repeated execution or iteration.

• We meet the while loop and for loop statements.

• Plus some more general concepts.

October 10, 2018 Java Just in Time - John Latham Page 3(0/0)

Section 2

Example:

Minimum tank size

October 10, 2018 Java Just in Time - John Latham Page 4(0/0)

Aim

AIM: To introduce the idea of repeated execution, imple-

mented by the while loop. We also meet the notion

of a variable update.

October 10, 2018 Java Just in Time - John Latham Page 5(0/0)

Minimum tank size

• You make central heating oil storage tanks

– always cubic

– six pieces of sheet metal from 1M2 upwards, always whole metres.

• Want program to compute size of smallest tank to hold given volume.

– start with smallest size

– keep making bigger by 1 until big enough.

October 10, 2018 Java Just in Time - John Latham Page 6(0/0)

Execution: repeated execution

• Obeying instructions just once is not sufficient to solve many problems

– some instructions need to be executed, zero, one or many times.

• Known as repeated execution, iteration, or looping.

• Number of times depends on some condition involving variables.

October 10, 2018 Java Just in Time - John Latham Page 7(0/0)

Statement: assignment statement: updating a

variable

• Values of variables can change.

• E.g. work out maximum of three numbers.

int x;

int y;

int z;

... Code here that gives values to x, y and z.

int maximumOfXYandZSoFar = x;

if (maximumOfXYandZSoFar < y)

maximumOfXYandZSoFar = y;

if (maximumOfXYandZSoFar < z)

maximumOfXYandZSoFar = z;

• maximumOfXYandZSoFar gets given a value, then maybe it is changed.

October 10, 2018 Java Just in Time - John Latham Page 8(0/0)

Statement: assignment statement: updating a

variable

• Commonly wish the program to perform a variable update

– often inside a loop.

• E.g. add one to value of countSoFar:

countSoFar = countSoFar + 1;

• Reminder – assignment statements are not definitions of equality.

October 10, 2018 Java Just in Time - John Latham Page 9(0/0)

Statement: while loop

• One way of looping is the while loop.

• Two parts

– condition – evaluated each time

– statement – executed while condition is true.

• Syntax:

– reserved word while

– condition in brackets

– statement to be repeated

October 10, 2018 Java Just in Time - John Latham Page 10(0/0)

Statement: while loop

• E.g. – inefficient way to give x the value 21:

int x = 1;

while (x < 20)

x = x + 2;

• x starts with value 1

– repeatedly has 2 added to it

– stops when x < 20 is false.

– So ends with value 21.

• Notice brackets, semi-colon and lay out.

October 10, 2018 Java Just in Time - John Latham Page 11(0/0)

Statement: while loop

• Observe similarity between while loop and if statement

– only difference is first word!

• Similarity in meaning:

– while loop executes body zero or more times

– if statement executes body zero or one time.

• Avoid common novice phrase “if loop”. . .

October 10, 2018 Java Just in Time - John Latham Page 12(0/0)

Minimum tank size

001: public class MinimumTankSize

002: {

003: public static void main(String[] args)

004: {

005: double requiredVolume = Double.parseDouble(args[0]);

006: int sideLength = 1;

007: while (sideLength * sideLength * sideLength < requiredVolume)

008: sideLength = sideLength + 1;

009: System.out.println("You need a tank of " + sideLength

010: + " metres per side to hold the volume "

011: + requiredVolume + " cubic metres");

012: }

013: }

October 10, 2018 Java Just in Time - John Latham Page 13(0/0)

Trying it

Console Input / Output

$ java MinimumTankSize 1

You need a tank of 1 metres per side to hold the volume 1.0 cubic metres

$ java MinimumTankSize 1.001

You need a tank of 2 metres per side to hold the volume 1.001 cubic metres

$ java MinimumTankSize 8

You need a tank of 2 metres per side to hold the volume 8.0 cubic metres

$ java MinimumTankSize 8.001

You need a tank of 3 metres per side to hold the volume 8.001 cubic metres

$ java MinimumTankSize 100

You need a tank of 5 metres per side to hold the volume 100.0 cubic metres

$ java MinimumTankSize 57.3

You need a tank of 4 metres per side to hold the volume 57.3 cubic metres

$ _ Run

October 10, 2018 Java Just in Time - John Latham Page 14(0/0)

Trying it

• What about some inappropriate values?

Console Input / Output

$ java MinimumTankSize 0

You need a tank of 1 metres per side to hold the volume 0.0 cubic metres

$ java MinimumTankSize -10

You need a tank of 1 metres per side to hold the volume -10.0 cubic metres

$ _ Run

October 10, 2018 Java Just in Time - John Latham Page 15(0/0)

Trying it

Coffee

time:

A common error made by novice programmers is to place a semi-

colon (;) at the end of lines which shouldn’t have one. What do you

think would happen if the while loop of our program was as follows?

. while (sideLength * sideLength * sideLength < requiredVolume);

. sideLength = sideLength + 1;

(Hint: remember the empty statement).

October 10, 2018 Java Just in Time - John Latham Page 16(0/0)

Coursework: MinimumTankSize in half measures

(Summary only)

Write a program which calculates the minimum size of cubic tanks to hold

given required volumes, where the possible sizes are in steps of 0.5 metre.

October 10, 2018 Java Just in Time - John Latham Page 17(0/0)

Section 3

Example:

Minimum bit width

October 10, 2018 Java Just in Time - John Latham Page 18(0/0)

Aim

AIM: To introduce the idea of using pseudo code to help us

design programs. We also meet Math.pow().

October 10, 2018 Java Just in Time - John Latham Page 19(0/0)

Minimum bit width

• Numbers are represented in binary – base 2 representation

– each is sequence of binary digits (bits)

– each bit either 0 or 1.

• Want to calculate how many bits needed to represent given number of

different values.

– E.g.

– one bit gives two values: 0, 1

– two bits gives four values: 00, 01, 10, 11

– three bits gives eight values: 000, 001, 010, 011, 100, 101, 110, 111

– etc.

October 10, 2018 Java Just in Time - John Latham Page 20(0/0)

Minimum bit width

Coffee

time:

Convince yourself that the number of values repre-

sentable using N bits is 2N .

• We will use a variable noOfBits

– start off with value 0

– keep adding 1 while too small.

October 10, 2018 Java Just in Time - John Latham Page 21(0/0)

Design: pseudo code

• Complex programs are hard to write straight into the text editor

– so don’t try to!

• Need to design them before we implement them.

• Design does not start at first word and end at last one.

– start wherever it suits us

– typically at the trickiest bit.

October 10, 2018 Java Just in Time - John Latham Page 22(0/0)

Design: pseudo code

• We don’t express designs in Java

– forces our mind to be cluttered with trivia

∗ e.g. semi-colons, brackets, . . .

∗ too distracting.

• We express algorithm designs in pseudo code

– kind of informal programming language

– no unnecessary trivia

– might not bother writing class nor method headings.

• Can also vary level of abstraction to suit us

– not constrained to use only features of Java at every stage.

October 10, 2018 Java Just in Time - John Latham Page 23(0/0)

Minimum bit width

• Pseudo code for minimum bit width:

get numberOfValues from command line

noOfBits = 0

while noOfBits is too small

increment noOfBits

output noOfBits

October 10, 2018 Java Just in Time - John Latham Page 24(0/0)

Minimum bit width

• How know whether noOfBits is too small?

– big enough when 2noO f Bits ≥ numberO fValues.

• So increment while 2noO f Bits
< numberO fValues.

• Rewrite pseudo code, closer to Java: less abstract.

numberOfValues = args[0]

noOfBits = 0

noOfBitswhile 2 < numberOfValues

noOfBits = noOfBits + 1

s.o.p noOfBits

• Notice s.o.p, no semi-colons, no brackets

– would be waste of time to write proper Java during design.

October 10, 2018 Java Just in Time - John Latham Page 25(0/0)

Standard API: Math: pow()

• No power operator in Java.

• But standard class Math has method pow()

– takes two numbers, gives value of first raised to power of second.

• E.g. Math.pow(2, 10) produces 210 i.e. 1024.

• Math has many other useful maths functions.

October 10, 2018 Java Just in Time - John Latham Page 26(0/0)

Minimum bit width

001: public class MinimumBitWidth

002: {

003: public static void main(String[] args)

004: {

005: int numberOfValues = Integer.parseInt(args[0]);

006: int noOfBits = 0;

007: while (Math.pow(2, noOfBits) < numberOfValues)

008: noOfBits = noOfBits + 1;

009: System.out.println("You need " + noOfBits + " bits to represent "

010: + numberOfValues + " values");

011: }

012: }

October 10, 2018 Java Just in Time - John Latham Page 27(0/0)

Trying it

Console Input / Output

$ java MinimumBitWidth 0

You need 0 bits to represent 0 values

$ java MinimumBitWidth 1

You need 0 bits to represent 1 values

$ _ Run

Coffee

time:

What do you think of the last result above – that you can

represent one value using no bits? For example, how

much memory would be needed to store the gender of

each member of a club that only allows women to join?

October 10, 2018 Java Just in Time - John Latham Page 28(0/0)

Trying it

Console Input / Output

$ java MinimumBitWidth 2

You need 1 bits to represent 2 values

$ java MinimumBitWidth 3

You need 2 bits to represent 3 values

$ java MinimumBitWidth 4

You need 2 bits to represent 4 values

$ java MinimumBitWidth 5

You need 3 bits to represent 5 values

$ _ Run

October 10, 2018 Java Just in Time - John Latham Page 29(0/0)

Trying it

Console Input / Output

$ java MinimumBitWidth 255

You need 8 bits to represent 255 values

$ java MinimumBitWidth 256

You need 8 bits to represent 256 values

$ java MinimumBitWidth 257

You need 9 bits to represent 257 values

$ _ Run

Console Input / Output

$ java MinimumBitWidth 65535

You need 16 bits to represent 65535 values

$ java MinimumBitWidth 65536

You need 16 bits to represent 65536 values

$ java MinimumBitWidth 65537

You need 17 bits to represent 65537 values

$ _ Run

October 10, 2018 Java Just in Time - John Latham Page 30(0/0)

Trying it

Console Input / Output

$ java MinimumBitWidth 536870911

You need 29 bits to represent 536870911 values

$ java MinimumBitWidth 536870912

You need 29 bits to represent 536870912 values

$ java MinimumBitWidth 536870913

You need 30 bits to represent 536870913 values

$ _ Run

Console Input / Output

$ java MinimumBitWidth 1073741823

You need 30 bits to represent 1073741823 values

$ java MinimumBitWidth 1073741824

You need 30 bits to represent 1073741824 values

$ java MinimumBitWidth 1073741825

You need 31 bits to represent 1073741825 values

$ _ Run

October 10, 2018 Java Just in Time - John Latham Page 31(0/0)

Trying it

Console Input / Output

$ java MinimumBitWidth 2147483647

You need 31 bits to represent 2147483647 values

$ java MinimumBitWidth 2147483648

Exception in thread "main" java.lang.NumberFormatException: For input string: "2

147483648"

at java.lang.NumberFormatException.forInputString(NumberFormatException.

java:48)

at java.lang.Integer.parseInt(Integer.java:465)

at java.lang.Integer.parseInt(Integer.java:499)

at MinimumBitWidth.main(MinimumBitWidth.java:5)

$ _ Run

Coffee

time:

Can you guess what has caused the exception in the last

test? (Hint: int uses 32 bits to represent numbers, and

needs to store negative as well as non-negative values.)

October 10, 2018 Java Just in Time - John Latham Page 32(0/0)

Coursework: LargestSquare

(Summary only)

Write a program to find the largest square number which is less than or equal

to a given number.

October 10, 2018 Java Just in Time - John Latham Page 33(0/0)

Section 4

Special note about design

October 10, 2018 Java Just in Time - John Latham Page 34(0/0)

Aim

AIM: To make sure the process of design does not get forgot-

ten!

October 10, 2018 Java Just in Time - John Latham Page 35(0/0)

Special note about design

• Not enough time in lectures or room in book to show pseudo code for

every example.

• So show only for a few.

• But don’t get wrong impression:

– all programs require some design work

∗ depends on complexity and previous programmer experience.

• If new to programming: presume all examples from now on would require

pseudo code.

• Common mistake: go to text editor and try to type code from start to end.

– Makes it harder – don’t do it!

∗ Would you write essays that way?

∗ Programs have more complex structure than essays.

October 10, 2018 Java Just in Time - John Latham Page 36(0/0)

Section 5

Example:

Compound interest: known

target

October 10, 2018 Java Just in Time - John Latham Page 37(0/0)

Aim

AIM: To reinforce the while loop and the compound state-

ment.

October 10, 2018 Java Just in Time - John Latham Page 38(0/0)

Compound interest: known target

• Invest sum of money at given interest rate

– How many years before reach required target balance?

• Use while loop

– accumulate balance while less than target

– count the years.

• Need compound statement because two statements within loop body.

October 10, 2018 Java Just in Time - John Latham Page 39(0/0)

Compound interest: known target

001: public class CompoundInterestKnownTarget

002: {

003: public static void main(String[] args)

004: {

005: double initialInvestment = Double.parseDouble(args[0]);

006: double interestRate = Double.parseDouble(args[1]);

007: double targetBalance = Double.parseDouble(args[2]);

008: int noOfYearsInvestedSoFar = 0;

009: double currentBalance = initialInvestment;

010:

October 10, 2018 Java Just in Time - John Latham Page 40(0/0)

Compound interest: known target

011: while (currentBalance < targetBalance)

012: {

013: noOfYearsInvestedSoFar = noOfYearsInvestedSoFar + 1;

014: currentBalance = currentBalance + currentBalance * interestRate / 100;

015: }

016:

017: System.out.println(initialInvestment + " invested at interest rate "

018: + interestRate + "%");

019: System.out.println("After " + noOfYearsInvestedSoFar + " years,"

020: + " the balance will be " + currentBalance);

021: }

022: }

October 10, 2018 Java Just in Time - John Latham Page 41(0/0)

Trying it

Console Input / Output

$ java CompoundInterestKnownTarget 100.0 12.5 1000.0

100.0 invested at interest rate 12.5%

After 20 years, the balance will be 1054.50938424492

$ java CompoundInterestKnownTarget 100.0 4.5 1000.0

100.0 invested at interest rate 4.5%

After 53 years, the balance will be 1030.7738533669428

$ _ Run

October 10, 2018 Java Just in Time - John Latham Page 42(0/0)

Coursework: MinimumBitWidth by doubling

(Summary only)

Write a program to find the minimum bit width needed to support a given

number of values, by doubling.

October 10, 2018 Java Just in Time - John Latham Page 43(0/0)

Section 6

Example:

Compound interest: known

years

October 10, 2018 Java Just in Time - John Latham Page 44(0/0)

Aim

AIM: To introduce the for loop.

October 10, 2018 Java Just in Time - John Latham Page 45(0/0)

Compound interest: known years

• Invest sum of money at given interest rate for fixed number of years

– what is balance at the end?

• Could use a while loop

– for loop is more appropriate.

October 10, 2018 Java Just in Time - John Latham Page 46(0/0)

Statement: for loop

• The for loop best suited when number of iterations is known at start.

• E.g.:

for (int count = 1; count <= 10; count = count + 1)

System.out.println("Counting " + count);

• Syntax:

– reserved word for

– three items in brackets, separated by semi-colons.

– then loop body – a statement

∗ often a compound statement

October 10, 2018 Java Just in Time - John Latham Page 47(0/0)

Statement: for loop

• First of the three items is for initialization

– performed once when loop starts

– often delcares a variable and gives initial value to it.

– E.g. int count = 1

• Second is condition for continuing

– E.g. count <= 10

• Third is for update

– a statement executed at end of each iteration

– typically updates value of variable declared in first item.

– E.g. count = count + 1

October 10, 2018 Java Just in Time - John Latham Page 48(0/0)

Statement: for loop

• Overall effect of example:

for (int count = 1; count <= 10; count = count + 1)

System.out.println("Counting " + count);

– declare count, set to 1

– check if less than 10

– print Counting 1

– add one to count

– check again, print Counting 2, add one to count, check again,. . .

– until condition is false

∗ count has reached 11

October 10, 2018 Java Just in Time - John Latham Page 49(0/0)

Statement: for loop

• Don’t really need for loop – while loop is sufficient.

• E.g.:

int count = 1;

while (count <= 10)

{

System.out.println("Counting " + count);

count = count + 1;

}

• However for loop places all loop control code together

– easier to read

– shorter

– appropriate for known number of iterations.

October 10, 2018 Java Just in Time - John Latham Page 50(0/0)

Statement: for loop

• One subtle difference about scope of count

– variables declared in for initialization can only be used in the for loop

∗ do not exist elsewhere.

• Added benefit of for loop compared with equivalent while loop

– cannot accidentally use control variable in rest of the code.

October 10, 2018 Java Just in Time - John Latham Page 51(0/0)

Compound interest: known years

001: public class CompoundInterestKnownYears

002: {

003: public static void main(String[] args)

004: {

005: double initialInvestment = Double.parseDouble(args[0]);

006: double interestRate = Double.parseDouble(args[1]);

007: int noOfYearsInvested = Integer.parseInt(args[2]);

008: double currentBalance = initialInvestment;

009:

October 10, 2018 Java Just in Time - John Latham Page 52(0/0)

Compound interest: known years

010: for (int year = 1; year <= noOfYearsInvested; year = year + 1)

011: currentBalance = currentBalance + currentBalance * interestRate / 100;

012:

013: System.out.println(initialInvestment + " invested at interest rate "

014: + interestRate + "%");

015: System.out.println("After " + noOfYearsInvested + " years,"

016: + " the balance will be " + currentBalance);

017: }

018: }

October 10, 2018 Java Just in Time - John Latham Page 53(0/0)

Compound interest: known years

Coffee

time:

Could we have written the first line of the for loop as follows?

. for (int year = 0; year < noOfYearsInvested; year = year + 1)

If so, which is better? What if we wanted to use the value of year

inside the loop – would that affect your choice of which is best?

Coffee

time:

Could we have written it as this?!!

. for (int year = 0; year < 2 * noOfYearsInvested; year = year + 2)

October 10, 2018 Java Just in Time - John Latham Page 54(0/0)

Trying it

Console Input / Output

$ java CompoundInterestKnownYears 100.0 12.5 5

100.0 invested at interest rate 12.5%

After 5 years, the balance will be 180.2032470703125

$ java CompoundInterestKnownYears 100.0 4.5 12

100.0 invested at interest rate 4.5%

After 12 years, the balance will be 169.5881432767867

$ _ Run

October 10, 2018 Java Just in Time - John Latham Page 55(0/0)

Coursework: Power

(Summary only)

Write a program to raise a given number to the power of a second given

number, without using Math.pow().

October 10, 2018 Java Just in Time - John Latham Page 56(0/0)

Section 7

Example:

Average of a list of numbers

October 10, 2018 Java Just in Time - John Latham Page 57(0/0)

Aim

AIM: To show how to get the length of a list, note that an

index can be a variable, and introduce type casting.

October 10, 2018 Java Just in Time - John Latham Page 58(0/0)

Average of a list of numbers

• Given list of integer command line arguments

– reports their mean average.

• Compute sum in a for loop.

• Divide by number of numbers.

October 10, 2018 Java Just in Time - John Latham Page 59(0/0)

Command line arguments: length of the list

• The command line arguments are a list of strings.

• The length of a list is: name of list, dot, length.

• E.g. args.length is number of items in list args.

October 10, 2018 Java Just in Time - John Latham Page 60(0/0)

Command line arguments: list index can be a

variable

• A list item index can be an int variable or arithmetic expression.

• E.g. sum integer command line arguments:

int sumOfArgs = 0;

for (int argIndex = 0; argIndex < args.length; argIndex = argIndex + 1)

sumOfArgs = sumOfArgs + Integer.parseInt(args[argIndex]);

System.out.println("The sum is " + sumOfArgs);

• Can use same code to access different items, by, e.g., changing variable

value in a loop.

October 10, 2018 Java Just in Time - John Latham Page 61(0/0)

Average of a list of numbers

• Sum of numbers is integer, number of numbers is integer.

• What happens when divide integer by integer?. . .

October 10, 2018 Java Just in Time - John Latham Page 62(0/0)

Type: casting an int to a double

• We can turn an int into a double by casting.

• E.g. (double)5 is 5.0.

• More likely to cast value of an int variable than integer literal!

October 10, 2018 Java Just in Time - John Latham Page 63(0/0)

Average of a list of numbers

• No sense asking for average of no numbers.

– So assume at least one.

• Sum is just first number to start with.

• Then add remaining numbers via for loop.

October 10, 2018 Java Just in Time - John Latham Page 64(0/0)

Average of a list of numbers

001: public class MeanAverage

002: {

003: public static void main(String[] args)

004: {

005: int sumSoFar = Integer.parseInt(args[0]);

006:

007: for (int argIndex = 1; argIndex < args.length; argIndex = argIndex + 1)

008: sumSoFar = sumSoFar + Integer.parseInt(args[argIndex]);

009:

010: System.out.println("The mean average is "

011: + sumSoFar / (double) args.length);

012: }

013: }

October 10, 2018 Java Just in Time - John Latham Page 65(0/0)

Average of a list of numbers

Coffee

time:

Recall that list indices start at 0. Convince yourself that we are cor-

rectly accessing the numbers in the list: should the for loop index

start from 0? Why not? Would the following code for the for loop

work? Is it better code?

. for (int argIndex = 1; argIndex <= args.length - 1; argIndex =

argIndex + 1)

October 10, 2018 Java Just in Time - John Latham Page 66(0/0)

Average of a list of numbers

Coffee

time:

What would happen if there were no numbers given on

the command line? What sort of exception would be re-

ported? What if we had started the value of sumSoFar at 0

and dealt with the first number inside the loop, instead of

separately before the loop. What sort of exception would

we expect to get now, if there were no command line ar-

guments? Try it and see!

October 10, 2018 Java Just in Time - John Latham Page 67(0/0)

Trying it

Console Input / Output

$ java MeanAverage 100

The mean average is 100.0

$ java MeanAverage 100 500

The mean average is 300.0

$ java MeanAverage 34 67 12 904 -5 8375 -1249

The mean average is 1162.5714285714287

$ java MeanAverage 60 -100 40

The mean average is 0.0

$ _ Run

And no arguments?

Console Input / Output

$ java MeanAverage

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 0

at MeanAverage.main(MeanAverage.java:5)

$ _ Run

October 10, 2018 Java Just in Time - John Latham Page 68(0/0)

Coursework: Variance

(Summary only)

Write a program to produce the variance of some given numbers.

October 10, 2018 Java Just in Time - John Latham Page 69(0/0)

Section 8

Example:

Single times table

October 10, 2018 Java Just in Time - John Latham Page 70(0/0)

Aim

AIM: To reinforce the for loop.

October 10, 2018 Java Just in Time - John Latham Page 71(0/0)

Single times table

001: public class TimesTable

002: {

003: public static void main(String[] args)

004: {

005: int multiplier = Integer.parseInt(args[0]);

006:

007: System.out.println("--------------------------------");

008: System.out.println("| Times table for " + multiplier);

009: System.out.println("--------------------------------");

010: for (int thisNumber = 1; thisNumber <= 10; thisNumber = thisNumber + 1)

011: System.out.println("| " + thisNumber + " x " + multiplier

012: + " = " + thisNumber * multiplier);

013: System.out.println("--------------------------------");

014: }

015: }

October 10, 2018 Java Just in Time - John Latham Page 72(0/0)

Trying it

Console Input / Output

$ java TimesTable 3

| Times table for 3

| 1 x 3 = 3

| 2 x 3 = 6

| 3 x 3 = 9

| 4 x 3 = 12

| 5 x 3 = 15

| 6 x 3 = 18

| 7 x 3 = 21

| 8 x 3 = 24

| 9 x 3 = 27

| 10 x 3 = 30

$ _ Run

October 10, 2018 Java Just in Time - John Latham Page 73(0/0)

Trying it

Console Input / Output

$ java TimesTable 5

| Times table for 5

| 1 x 5 = 5

| 2 x 5 = 10

| 3 x 5 = 15

| 4 x 5 = 20

| 5 x 5 = 25

| 6 x 5 = 30

| 7 x 5 = 35

| 8 x 5 = 40

| 9 x 5 = 45

| 10 x 5 = 50

$ _ Run

October 10, 2018 Java Just in Time - John Latham Page 74(0/0)

Trying it

Console Input / Output

$ java TimesTable 8

| Times table for 8

| 1 x 8 = 8

| 2 x 8 = 16

| 3 x 8 = 24

| 4 x 8 = 32

| 5 x 8 = 40

| 6 x 8 = 48

| 7 x 8 = 56

| 8 x 8 = 64

| 9 x 8 = 72

| 10 x 8 = 80

$ _ Run

October 10, 2018 Java Just in Time - John Latham Page 75(0/0)

Coursework: SinTable

(Summary only)

Write a program to produce a sin table.

October 10, 2018 Java Just in Time - John Latham Page 76(0/0)

Section 9

Example:

Age history

October 10, 2018 Java Just in Time - John Latham Page 77(0/0)

Aim

AIM: To introduce the idea of documenting programs using

comments.

October 10, 2018 Java Just in Time - John Latham Page 78(0/0)

Code clarity: comments

• Layout and indentation enhance readability.

• So do comments

– pieces of text ignored by the compiler.

• E.g.

– at start of program: what it does, how it is used.

– at each variable declaration: what it is used for.

– within code: what next statements do.

• One form: // followed by comment text.

• E.g.

// This is a comment, ignored by the compiler.

October 10, 2018 Java Just in Time - John Latham Page 79(0/0)

Code clarity: comments: marking ends of code

constructs

• Good idea to mark end of code constructs.

• Especially if long and doesn’t all fit on screen. . .

• E.g.

public class SomeClass

{

public static void main(String[] args)

{

...

while (...)

{

...

...

October 10, 2018 Java Just in Time - John Latham Page 80(0/0)

Code clarity: comments: marking ends of code

constructs

...

} // while

...

} // main

} // class SomeClass

October 10, 2018 Java Just in Time - John Latham Page 81(0/0)

Age history

001: // Program to print out the history of a person’s age.

002: // First argument is an integer for the present year.

003: // Second argument is the birth year, which must be less than the present year.

004: public class AgeHistory

005: {

006: public static void main(String[] args)

007: {

008: // The year of the present day.

009: int presentYear = Integer.parseInt(args[0]);

010:

011: // The year of birth: this must be less than the present year.

012: int birthYear = Integer.parseInt(args[1]);

013:

October 10, 2018 Java Just in Time - John Latham Page 82(0/0)

Age history

014: // Start by printing the event of birth.

015: System.out.println("You were born in " + birthYear);

016:

017: // Now we will go through the years between birth and last year.

018:

019: // We need to keep track of the year we are considering

020: // starting with the year after the birth year.

021: int someYear = birthYear + 1;

022:

023: // We keep track of the age, starting with 1.

024: int ageInSomeYear = 1;

025:

October 10, 2018 Java Just in Time - John Latham Page 83(0/0)

Age history

026: // We deal with each year while it has not reached the present year.

027: while (someYear != presentYear)

028: {

029: // Print out the age in that year.

030: System.out.println("You were " + ageInSomeYear + " in " + someYear);

031:

032: // Add one to the year and to the age.

033: someYear = someYear + 1;

034: ageInSomeYear = ageInSomeYear + 1;

035: } // while

036:

October 10, 2018 Java Just in Time - John Latham Page 84(0/0)

Age history

037: // At this point someYear will equal presentYear.

038: // So ageInSomeYear must be the age in the present year.

039: System.out.println("You are " + ageInSomeYear + " this year");

040: } // main

041:

042: } // class AgeHistory

Coffee

time:

What would happen if we ran the program with a birth

year which is not less than the present year?

October 10, 2018 Java Just in Time - John Latham Page 85(0/0)

Trying it

Console Input / Output

$ java AgeHistory 2019 2018

You were born in 2018

You are 1 this year

$ java AgeHistory 2019 2000

(Output shown using multiple columns to save space.)

You were born in 2000 You were 7 in 2007 You were 14 in 2014

You were 1 in 2001 You were 8 in 2008 You were 15 in 2015

You were 2 in 2002 You were 9 in 2009 You were 16 in 2016

You were 3 in 2003 You were 10 in 2010 You were 17 in 2017

You were 4 in 2004 You were 11 in 2011 You were 18 in 2018

You were 5 in 2005 You were 12 in 2012 You are 19 this year

You were 6 in 2006 You were 13 in 2013

$ _ Run

October 10, 2018 Java Just in Time - John Latham Page 86(0/0)

Trying it

• Try birth year greater than present year.

– Run, kill after 1 second, show last 3 lines of output.

Console Input / Output

$ (java AgeHistory 2019 2020 & PID=${!}; sleep 1; kill $PID) | tail -3

You were 35653 in 37673

You were 35654 in 37674

You were 35655 in 37675

$ _ Run

Coffee

time:

Can you explain the program behaviour?

October 10, 2018 Java Just in Time - John Latham Page 87(0/0)

Trying it

• Repeat:

Console Input / Output

$ (java AgeHistory 2019 2020 & PID=${!}; sleep 1; kill $PID) | tail -3

You were 38244 in 40264

You were 38245 in 40265

You were 38246 in 40266

$ _ Run

Coffee

time:

Why is the result different? What would happen if we let

the program run indefinitely? (Hint: is there a maximum

value for someYear?)

October 10, 2018 Java Just in Time - John Latham Page 88(0/0)

Coursework: WorkFuture

(Summary only)

Write a program to print out all the years from the present day until the user

retires.

October 10, 2018 Java Just in Time - John Latham Page 89(0/0)

Section 10

Example:

Home cooked Pi

October 10, 2018 Java Just in Time - John Latham Page 90(0/0)

Aim

AIM: To introduce various shorthand operators for variable

updates, have another example where we reveal

the pseudo code design, and meet Math.abs() and

Math.PI.

October 10, 2018 Java Just in Time - John Latham Page 91(0/0)

Home cooked Pi

• 15th century Indian mathematician Madhava of Sangamagrama

discovered following sequence

– rediscovered in 1673 by Gottfried Leibniz[?].

π = 4−
4
3

+
4
5
−

4
7

+
4
9
− . . .

• More accurate with more terms, but never exact

– each term jumps result either side of π, getting ever closer.

• Doesn’t matter if don’t know why it works – just implement correctly.

October 10, 2018 Java Just in Time - John Latham Page 92(0/0)

Home cooked Pi

• Not fastest algorithm for π, but interesting.

• Start with value 4.

• Subtract 4
3 .

• Add 4
5 .

• Etc.: each denominator is previous + 2, sign keeps swapping.

• Stop when difference between successive sums is less than or equal to

given tolerance.

October 10, 2018 Java Just in Time - John Latham Page 93(0/0)

Home cooked Pi

• Some pseudo code:

obtain tolerance from command line

set up previousEstimate as value from no terms

set up latestEstimate as value from one term

while previousEstimate is not within tolerance of latestEstimate

previousEstimate = latestEstimate

add next term to latestEstimate

end-while

print out latestEstimate

print out the number of terms used

print out the standard known value of Pi for comparison

October 10, 2018 Java Just in Time - John Latham Page 94(0/0)

Home cooked Pi

• Make more concrete and add a variable to count terms:

double tolerance = args[0]

double previousEstimate = 0

double latestEstimate = 4

int termCount = 1

while previousEstimate is not within tolerance of latestEstimate

previousEstimate = latestEstimate

add next term to latestEstimate

termCount = termCount + 1

end-while

s.o.p latestEstimate

s.o.p termCount

s.o.p the standard known value of Pi for comparison

October 10, 2018 Java Just in Time - John Latham Page 95(0/0)

Home cooked Pi

• To find next term, have two variables:

– denominator

∗ increase by two each time

– sign of numerator.

∗ alternate between 1 and -1.

Coffee

time:

What simple operation can we do to a variable to make

it change the sign of its value?

October 10, 2018 Java Just in Time - John Latham Page 96(0/0)

Home cooked Pi

double tolerance = args[0]

double previousEstimate = 0

double latestEstimate = 4

int termCount = 1

int nextDenominator = 3

int nextNumeratorSign = -1

while previousEstimate is not within tolerance of latestEstimate

previousEstimate = latestEstimate

latestEstimate = latestEstimate + nextNumeratorSign * 4 / nextDenominator

termCount = termCount + 1

nextNumeratorSign = nextNumeratorSign * -1

nextDenominator = nextDenominator + 2

end-while

October 10, 2018 Java Just in Time - John Latham Page 97(0/0)

Home cooked Pi

s.o.p latestEstimate

s.o.p termCount

s.o.p the standard known value of Pi for comparison

October 10, 2018 Java Just in Time - John Latham Page 98(0/0)

Home cooked Pi

• Only two bits to make more concrete

– loop condition

– standard known value of π.

October 10, 2018 Java Just in Time - John Latham Page 99(0/0)

Standard API: Math: abs()

• No Java operator to give absolute value of a number

– i.e. ignore its sign.

• Instead Math contains abs()

– takes a number and gives its absolute value.

• E.g.

– Math.abs(-2.7) produces 2.7

– as does Math.abs(3.4 - 0.7).

October 10, 2018 Java Just in Time - John Latham Page 100(0/0)

Home cooked Pi

• Our loop condition:

Math.abs(latestEstimate - previousEstimate) > tolerance

October 10, 2018 Java Just in Time - John Latham Page 101(0/0)

Standard API: Math: PI

• Math contains a constant called PI

– most accurate value of π possible as a double.

• Math.PI is how we access it.

• E.g.:

double circleArea = Math.PI * circleRadius * circleRadius;

October 10, 2018 Java Just in Time - John Latham Page 102(0/0)

Statement: assignment statement: updating a

variable: shorthand operators

• Java has shorthand operators for certain types of update.

Op. Name E.g. Long meaning

++ postfix increment x++ x = x + 1

-- postfix decrement x-- x = x - 1

+= compound assignment: add to x += y x = x + y

-= compound assignment: subtract from x -= y x = x - y

*= compound assignment: multiply by x *= y x = x * y

/= compound assignment: divide by x /= y x = x / y

• Save a bit of typing – so what!

• Moreover: make program easier to read.

• (Historical efficient code motivation.)

October 10, 2018 Java Just in Time - John Latham Page 103(0/0)

Home cooked Pi

Coffee

time:

How many of these shorthand operators can be used in

this program? Where? If we had known about them be-

fore this point, do you think we would have used them in

our pseudo code?

October 10, 2018 Java Just in Time - John Latham Page 104(0/0)

Home cooked Pi

001: // A program to estimate Pi using Leibniz’s formula.

002: // Argument is desired tolerance between successive terms.

003: // Reports the estimate, the number of terms

004: // and the library constant for comparison.

005: public class PiEstimation

006: {

007: public static void main(String[] args)

008: {

009: // The tolerance is the minimum difference between successive

010: // terms before we stop estimating.

011: double tolerance = Double.parseDouble(args[0]);

012:

013: // The result from our previous estimate, initially 0 for 0 terms.

014: double previousEstimate = 0;

015:

October 10, 2018 Java Just in Time - John Latham Page 105(0/0)

Home cooked Pi

016: // The result from our latest estimate, eventually the final result.

017: double latestEstimate = 4;

018:

019: // We count the terms, initially 1 for the 4.

020: int termCountSoFar = 1;

021:

022: // The value of the next term denominator, initially 3.

023: int nextDenominator = 3;

024:

025: // The sign of the next term, initially -ve.

026: int nextNumeratorSign = -1;

027:

October 10, 2018 Java Just in Time - John Latham Page 106(0/0)

Home cooked Pi

028: // Keep adding terms until change is within tolerance.

029: while (Math.abs(latestEstimate - previousEstimate) > tolerance)

030: {

031: previousEstimate = latestEstimate;

032: latestEstimate += nextNumeratorSign * 4.0 / nextDenominator;

033: termCountSoFar++;

034: nextNumeratorSign *= -1;

035: nextDenominator += 2;

036: } // while

037:

October 10, 2018 Java Just in Time - John Latham Page 107(0/0)

Home cooked Pi

038: System.out.println("The estimated value of Pi to tolerance " + tolerance

039: + " is " + latestEstimate);

040: System.out.println("The estimate used " + termCountSoFar + " terms");

041: System.out.println("The library value of Pi is " + Math.PI);

042: } // main

043:

044: } // class PiEstimation

Coffee

time:

What would happen if we wrote 4 instead of 4.0 when

computing the next term to add to the result? Without

trying it, can you say what the output would be?

October 10, 2018 Java Just in Time - John Latham Page 108(0/0)

Trying it

Console Input / Output

$ java PiEstimation 0.1

The estimated value of Pi to tolerance 0.1 is 3.189184782277596

The estimate used 21 terms

The library value of Pi is 3.141592653589793

$ java PiEstimation 0.01

The estimated value of Pi to tolerance 0.01 is 3.1465677471829556

The estimate used 201 terms

The library value of Pi is 3.141592653589793

$ java PiEstimation 0.001

The estimated value of Pi to tolerance 0.0010 is 3.1420924036835256

The estimate used 2001 terms

The library value of Pi is 3.141592653589793

$ _ Run

• Number of terms grows rapidly with more accuracy – not fastest algorithm

October 10, 2018 Java Just in Time - John Latham Page 109(0/0)

Trying it

• Note scientific notation.

Console Input / Output

$ java PiEstimation 0.00001

The estimated value of Pi to tolerance 1.0E-5 is 3.141597653564762

The estimate used 200001 terms

The library value of Pi is 3.141592653589793

$ java PiEstimation 0.000001

The estimated value of Pi to tolerance 1.0E-6 is 3.1415931535894743

The estimate used 2000001 terms

The library value of Pi is 3.141592653589793

$ _ Run

Coffee

time:

How many decimal places accuracy would you expect

to get from the tolerance command line argument given

in that last test? Does this tally with the results?

October 10, 2018 Java Just in Time - John Latham Page 110(0/0)

Trying it

• More decimal places:

Console Input / Output

$ java PiEstimation 0.0000001

The estimated value of Pi to tolerance 1.0E-7 is 3.1415927035898146

The estimate used 20000001 terms

The library value of Pi is 3.141592653589793

$ java PiEstimation 0.00000001

The estimated value of Pi to tolerance 1.0E-8 is 3.1415926485894077

The estimate used 199999998 terms

The library value of Pi is 3.141592653589793

$ _ Run

Coffee

time:

Did you notice that the number of terms from the last test

has broken the pattern from the previous ones? Might this

suggest something about accuracy?

October 10, 2018 Java Just in Time - John Latham Page 111(0/0)

Trying it

Coffee

time:

As we ask for more accuracy, the program takes longer

to run: about 10 times more terms for each extra deci-

mal place! What is the specific danger if we ask for too

much accuracy? (Hint: is there a maximum value for

nextDenominator? Also, remember that doubles are only

approximations of real numbers.)

October 10, 2018 Java Just in Time - John Latham Page 112(0/0)

Coursework: Shorthand operators

(Summary only)

Go through all the previous programs in this chapter to see where shorthand

operators could have been used.

October 10, 2018 Java Just in Time - John Latham Page 113(0/0)

Concepts covered in this chapter

• Each book chapter ends with a list of concepts covered in it.

• Each concept has with it

– a self-test question,

– and a page reference to where it was covered.

• Please use these to check your understanding before we start the next

chapter.

October 10, 2018 Java Just in Time - John Latham Page 114(0/0)

	Title
	Chapter 5: Repeated execution
	Chapter aims
	Section 2: Example: Minimum tank size
	Aim
	Minimum tank size
	Execution: repeated execution
	Execution: repeated execution

	Statement: assignment statement: updating a variable
	Statement: assignment statement: updating a variable

	Statement: while loop
	Statement: while loop

	Minimum tank size
	Trying it
	Trying it
	Trying it
	Coursework: MinimumTankSize in half measures
	Section 3: Example: Minimum bit width
	Aim
	Minimum bit width
	Minimum bit width
	Design: pseudo code
	Design: pseudo code

	Minimum bit width
	Minimum bit width
	Standard API: Math: pow()
	Standard API: Math: pow()

	Minimum bit width
	Trying it
	Trying it
	Trying it
	Trying it
	Trying it
	Coursework: LargestSquare
	Section 4: Special note about design
	Aim
	Special note about design
	Section 5: Example: Compound interest: known target
	Aim
	Compound interest: known target
	Compound interest: known target
	Trying it
	Coursework: MinimumBitWidth by doubling
	Section 6: Example: Compound interest: known years
	Aim
	Compound interest: known years
	Statement: for loop
	Statement: for loop

	Compound interest: known years
	Compound interest: known years
	Trying it
	Coursework: Power
	Section 7: Example: Average of a list of numbers
	Aim
	Average of a list of numbers
	Command line arguments: length of the list
	Command line arguments: length of the list

	Command line arguments: list index can be a variable
	Command line arguments: list index can be a variable

	Average of a list of numbers
	Type: casting an int to a double
	Type: casting an int to a double

	Average of a list of numbers
	Average of a list of numbers
	Average of a list of numbers
	Average of a list of numbers
	Trying it
	Coursework: Variance
	Section 8: Example: Single times table
	Aim
	Single times table
	Trying it
	Trying it
	Trying it
	Coursework: SinTable
	Section 9: Example: Age history
	Aim
	Code clarity: comments
	Code clarity: comments

	Code clarity: comments: marking ends of code constructs
	Code clarity: comments: marking ends of code constructs

	Age history
	Trying it
	Trying it
	Trying it
	Coursework: WorkFuture
	Section 10: Example: Home cooked Pi
	Aim
	Home cooked Pi
	Home cooked Pi
	Home cooked Pi
	Home cooked Pi
	Home cooked Pi
	Home cooked Pi
	Home cooked Pi
	Standard API: Math: abs()
	Standard API: Math: abs()

	Home cooked Pi
	Standard API: Math: PI
	Standard API: Math: PI

	Statement: assignment statement: updating a variable: shorthand operators
	Statement: assignment statement: updating a variable: shorthand operators

	Home cooked Pi
	Home cooked Pi
	Trying it
	Trying it
	Trying it
	Trying it
	Coursework: Shorthand operators
	Concepts covered in this chapter

