
Java Just in Time:
Collected concepts after chapter 21

John Latham, School of Computer Science, Manchester University, UK.

April 15, 2011

Contents

1 Computer basics 21000
1.1 Computer basics: hardware (page 3) 21000
1.2 Computer basics: hardware: processor (page 3) 21000
1.3 Computer basics: hardware: memory (page 3) 21000
1.4 Computer basics: hardware: persistent storage (page 3). 21001
1.5 Computer basics: hardware: input and output devices (page 3) 21001
1.6 Computer basics: software (page 3)21001
1.7 Computer basics: software: machine code (page 3) 21001
1.8 Computer basics: software: operating system (page 4) 21001
1.9 Computer basics: software: application program (page 4) 21002
1.10 Computer basics: data (page 3) . 21002
1.11 Computer basics: data: files (page 5) 21002
1.12 Computer basics: data: files: text files (page 5) 21002
1.13 Computer basics: data: files: binary files (page 5) 21003

2 Java tools 21003
2.1 Java tools: text editor (page 5) .21003
2.2 Java tools: javac compiler (page 9)21003
2.3 Java tools: java interpreter (page 9) 21004
2.4 Java tools: javadoc (page 223) . 21004
2.5 Java tools: javadoc: throws tag (page 355) 21005

3 Operating environment 21006
3.1 Operating environment: programs are commands (page 7) 21006
3.2 Operating environment: standard output (page 7) 21006
3.3 Operating environment: command line arguments (page 8). 21006
3.4 Operating environment: standard input (page 187) 21006
3.5 Operating environment: standard error (page 344) 21006

4 Class 21007

21000

CONTENTS

4.1 Class: programs are divided into classes (page 16) 21007
4.2 Class: public class (page 16) . 21007
4.3 Class: definition (page 16) . 21007
4.4 Class: objects: contain a group of variables (page 158) 21007
4.5 Class: objects: are instances of a class (page 158) 21008
4.6 Class: objects: this reference (page 180) 21008
4.7 Class: objects: may be mutable or immutable (page 193) 21009
4.8 Class: objects: compareTo() (page 222) 21009
4.9 Class: is a type (page 161) . 21009
4.10 Class: is a type: and has three components (page 512) 21010
4.11 Class: making instances with new (page 162) 21010
4.12 Class: accessing instance variables (page 164) 21011
4.13 Class: importing classes (page 188) 21011
4.14 Class: stub (page 191) . 21012
4.15 Class: extending another class (page 245) 21012
4.16 Class: generic class (page 491) .21013
4.17 Class: generic class: bound type parameter (page 496) 21013
4.18 Class: generic class: bound type parameter: extends some class (page 496)21014
4.19 Class: generic class: bound type parameter: extends some interface (page 526)21014
4.20 Class: generic class: where type parameters cannot be used (page 501)21015
4.21 Class: generic class: used as a raw type (page 502) 21015

5 Method 21016
5.1 Method (page 118) . 21016
5.2 Method: main method: programs contain a main method (page 17) . 21016
5.3 Method: main method: is public (page 17)21016
5.4 Method: main method: is static (page 17) 21016
5.5 Method: main method: is void (page 17) 21017
5.6 Method: main method: is the program starting point (page17) 21017
5.7 Method: main method: always has the same heading (page 18) . . . 21017
5.8 Method: private (page 118) . 21018
5.9 Method: accepting parameters (page 118) 21018
5.10 Method: accepting parameters: of a class type (page 164) 21019
5.11 Method: accepting parameters: of an array type (page 297) 21019
5.12 Method: calling a method (page 119)21019
5.13 Method: void methods (page 120) 21020
5.14 Method: returning a value (page 122) 21021
5.15 Method: returning a value: of a class type (page 176) 21021
5.16 Method: returning a value: multiple returns (page 196). 21022
5.17 Method: returning a value: of an array type (page 312) 21023
5.18 Method: changing parameters does not affect arguments(page 124) . 21023
5.19 Method: changing parameters does not affect arguments: but referenced objects can be changed
5.20 Method: constructor methods (page 159) 21024
5.21 Method: constructor methods: more than one (page 203) 21025
5.22 Method: constructor methods: more than one: using this(page 393) . 21025
5.23 Method: constructor methods: default (page 425) 21026
5.24 Method: class versus instance methods (page 166) 21027

21001

CONTENTS

5.25 Method: a method may have no parameters (page 173) 21029
5.26 Method: return with no value (page 206) 21029
5.27 Method: accessor methods (page 207)21029
5.28 Method: mutator methods (page 207)21030
5.29 Method: overloaded methods (page 237) 21030
5.30 Method: that throws an exception (page 354) 21030
5.31 Method: that throws an exception: RuntimeException (page 358) . . 21031
5.32 Method: generic methods (page 522)21032
5.33 Method: generic methods: bound type parameter (page 526) 21033

6 Command line arguments 21034
6.1 Command line arguments: program arguments are passed tomain (page 17)21034
6.2 Command line arguments: program arguments are accessedby index (page 26)21035
6.3 Command line arguments: length of the list (page 79) 21035
6.4 Command line arguments: list index can be a variable (page 79) . . . 21035

7 Type 21035
7.1 Type (page 36) . 21035
7.2 Type: String (page 135) . 21036
7.3 Type: String: literal (page 18) .21036
7.4 Type: String: literal: must be ended on the same line (page 21) . . . 21036
7.5 Type: String: literal: escape sequences (page 49) 21036
7.6 Type: String: concatenation (page 26) 21037
7.7 Type: String: conversion: from int (page 38) 21037
7.8 Type: String: conversion: from double (page 55) 21038
7.9 Type: String: conversion: from object (page 177) 21038
7.10 Type: String: conversion: from object: null reference(page 211) . . 21039
7.11 Type: int (page 36) . 21040
7.12 Type: double (page 54) . 21040
7.13 Type: casting an int to a double (page 79) 21040
7.14 Type: boolean (page 133) . 21040
7.15 Type: long (page 145) . 21041
7.16 Type: short (page 145) . 21041
7.17 Type: byte (page 145) . 21041
7.18 Type: char (page 145) . 21041
7.19 Type: char: literal (page 145) .21042
7.20 Type: char: literal: escape sequences (page 146) 21042
7.21 Type: char: comparisons (page 238) 21042
7.22 Type: char: casting to and from int (page 238) 21043
7.23 Type: float (page 146) . 21043
7.24 Type: primitive versus reference (page 162) 21044
7.25 Type: array type (page 287) . 21044
7.26 Type: enum type (page 309) . 21044
7.27 Type: enum type: access from another class (page 312) 21045

8 Standard API 21045
8.1 Standard API: System: out.println() (page 18) 21045

21002

CONTENTS

8.2 Standard API: System: out.println(): with no argument (page 98) . . 21045
8.3 Standard API: System: out.println(): with any argument(page 427) . 21046
8.4 Standard API: System: out.print() (page 98) 21046
8.5 Standard API: System: out.printf() (page 126) 21047
8.6 Standard API: System: out.printf(): zero padding (page140) 21048
8.7 Standard API: System: out.printf(): string item (page 289) 21049
8.8 Standard API: System: out.printf(): fixed text and many items (page 289)21049
8.9 Standard API: System: out.printf(): left justification(page 300) . . . 21050
8.10 Standard API: System: in (page 187)21050
8.11 Standard API: System: in: is an InputStream (page 452) 21050
8.12 Standard API: System: getProperty() (page 195) 21050
8.13 Standard API: System: getProperty(): line.separator(page 195) . . . 21051
8.14 Standard API: System: currentTimeMillis() (page 262). 21051
8.15 Standard API: System: err.println() (page 344) 21051
8.16 Standard API: System: out: is an OutputStream (page 468) 21051
8.17 Standard API: System: err: is an OutputStream (page 468) 21051
8.18 Standard API: Integer: parseInt() (page 41) 21052
8.19 Standard API: Integer: as a box for int (page 487) 21052
8.20 Standard API: Integer: as a box for int: autoboxing (page 494) 21052
8.21 Standard API: Integer: as a box for int: works with collections (page 548)21053
8.22 Standard API: Double: parseDouble() (page 54) 21053
8.23 Standard API: Math: pow() (page 73)21054
8.24 Standard API: Math: abs() (page 87)21054
8.25 Standard API: Math: PI (page 87) 21054
8.26 Standard API: Math: random() (page 205) 21054
8.27 Standard API: Math: round() (page 289) 21055
8.28 Standard API: Scanner (page 188)21055
8.29 Standard API: Scanner: for a file (page 306) 21056
8.30 Standard API: String (page 233) .21057
8.31 Standard API: String: some instance methods (page 234). 21057
8.32 Standard API: String: format() (page 301) 21058
8.33 Standard API: String: split() (page 313) 21059
8.34 Standard API: String: implements Comparable (page 520) 21059
8.35 Standard API: Character (page 342) 21060
8.36 Standard API: Object (page 422) 21061
8.37 Standard API: Object: toString() (page 427) 21061
8.38 Standard API: Object: equals() (page 521) 21061
8.39 Standard API: Object: hashCode() (page 548) 21062
8.40 Standard API: Object: hashCode(): making a good definition (page 566)21062
8.41 Standard API: Arrays (page 518) 21062
8.42 Standard API: Arrays: sort() (page 518) 21062
8.43 Standard API: Arrays: copyOf() (page 523) 21063
8.44 Standard API: Comparable interface (page 520) 21064
8.45 Standard API: Comparable interface: compareTo() and equals() (page 522)21064

9 Statement 21065
9.1 Statement (page 18) . 21065

21003

CONTENTS

9.2 Statement: simple statements are ended with a semi-colon (page 18) 21065
9.3 Statement: assignment statement (page 37) 21065
9.4 Statement: assignment statement: assigning a literal value (page 37) 21065
9.5 Statement: assignment statement: assigning an expression value (page 38)21065
9.6 Statement: assignment statement: updating a variable (page 70) . . . 21066
9.7 Statement: assignment statement: updating a variable:shorthand operators (page 87)21067
9.8 Statement: assignment statement: is an expression (page 450) 21067
9.9 Statement: if else statement (page 60) 21068
9.10 Statement: if else statement: nested (page 62) 21069
9.11 Statement: if statement (page 64) 21069
9.12 Statement: compound statement (page 66) 21070
9.13 Statement: while loop (page 71) .21071
9.14 Statement: for loop (page 77) . 21072
9.15 Statement: for loop: multiple statements in for update(page 136) . . 21073
9.16 Statement: statements can be nested within each other (page 92) . . . 21073
9.17 Statement: switch statement with breaks (page 107) 21074
9.18 Statement: switch statement without breaks (page 110). 21074
9.19 Statement: do while loop (page 112)21076
9.20 Statement: for-each loop: on arrays (page 293) 21076
9.21 Statement: for-each loop: on collections (page 562) 21078
9.22 Statement: try statement (page 344) 21079
9.23 Statement: try statement: with multiple catch clauses(page 347) . . 21080
9.24 Statement: try statement: with finally (page 451) 21082
9.25 Statement: throw statement (page 350) 21082

10 Error 21083
10.1 Error (page 20) . 21083
10.2 Error: syntactic error (page 20) 21083
10.3 Error: semantic error (page 22) .21083
10.4 Error: compile time error (page 22) 21084
10.5 Error: run time error (page 24) . 21084
10.6 Error: logical error (page 29) .21084

11 Execution 21085
11.1 Execution: sequential execution (page 23) 21085
11.2 Execution: conditional execution (page 60) 21085
11.3 Execution: repeated execution (page 70) 21085
11.4 Execution: parallel execution – threads (page 253) 21085
11.5 Execution: parallel execution – threads: the GUI eventthread (page 254)21086
11.6 Execution: event driven programming (page 254) 21086

12 Code clarity 21087
12.1 Code clarity: layout (page 31) .21087
12.2 Code clarity: layout: indentation (page 32) 21087
12.3 Code clarity: layout: splitting long lines (page 43) 21088
12.4 Code clarity: comments (page 82)21088
12.5 Code clarity: comments: marking ends of code constructs (page 83) . 21089

21004

CONTENTS

12.6 Code clarity: comments: multi-line comments (page 189) 21089

13 Design 21090
13.1 Design: hard coding (page 36) . 21090
13.2 Design: pseudo code (page 73) . 21090
13.3 Design: object oriented design (page 184) 21090
13.4 Design: object oriented design: noun identification (page 185) 21091
13.5 Design: object oriented design: encapsulation (page 187) 21091
13.6 Design: Sorting a list (page 295)21092
13.7 Design: Sorting a list: bubble sort (page 296) 21092
13.8 Design: Sorting a list: total order (page 516) 21094
13.9 Design: Sorting a list: tree sort (page 554) 21094
13.10 Design: Searching a list: linear search (page 323) 21095
13.11 Design: Searching a list: binary search (page 525) 21095
13.12 Design: UML (page 381) . 21096
13.13 Design: UML: class diagram (page 381) 21096
13.14 Design: Storing data (page 547) 21096
13.15 Design: Storing data: hash table (page 547) 21097
13.16 Design: Storing data: ordered binary tree (page 552) 21097
13.17 Design: Storing data: linked list (page 557) 21098

14 Variable 21099
14.1 Variable (page 36) . 21099
14.2 Variable: int variable (page 37) 21100
14.3 Variable: a value can be assigned when a variable is declared (page 42)21100
14.4 Variable: double variable (page 54) 21100
14.5 Variable: can be defined within a compound statement (page 92) . . 21101
14.6 Variable: local variables (page 124) 21101
14.7 Variable: class variables (page 124) 21102
14.8 Variable: a group of variables can be declared together(page 129) . . 21102
14.9 Variable: boolean variable (page 133) 21102
14.10 Variable: char variable (page 145) 21104
14.11 Variable: instance variables (page 159) 21104
14.12 Variable: instance variables: should be private by default (page 175) 21105
14.13 Variable: of a class type (page 161) 21105
14.14 Variable: of a class type: stores a reference to an object (page 162) . 21105
14.15 Variable: of a class type: stores a reference to an object: avoid misunderstanding (page 170
14.16 Variable: of a class type: null reference (page 192) 21108
14.17 Variable: of a class type: holding the same reference as some other variable (page 216)21108
14.18 Variable: final variables (page 194) 21111
14.19 Variable: final variables: class constant (page 205) 21111
14.20 Variable: final variables: class constant: a set of choices (page 308) . 21112
14.21 Variable: final variables: class constant: a set of choices: dangerous (page 308)21112
14.22 Variable: of an array type (page 287) 21112
14.23 Variable: initial value (page 453) 21113

15 Expression 21113

21005

CONTENTS

15.1 Expression: arithmetic (page 38) 21113
15.2 Expression: arithmetic: int division truncates result (page 52) 21114
15.3 Expression: arithmetic: associativity and int division (page 52) . . . 21114
15.4 Expression: arithmetic: double division (page 55) 21114
15.5 Expression: arithmetic: double division: by zero (page 291) 21115
15.6 Expression: arithmetic: remainder operator (page 149) 21115
15.7 Expression: arithmetic: shift operators (page 473) 21115
15.8 Expression: arithmetic: integer bitwise operators (page 474) 21116
15.9 Expression: brackets and precedence (page 45) 21116
15.10 Expression: associativity (page 48) 21117
15.11 Expression: boolean (page 60) .21118
15.12 Expression: boolean: relational operators (page 60). 21119
15.13 Expression: boolean: logical operators (page 128) 21119
15.14 Expression: boolean: logical operators: conditional (page 323) . . . 21121
15.15 Expression: conditional expression (page 94) 21121

16 Package 21122
16.1 Package (page 187) . 21122
16.2 Package: java.util (page 188) .21122
16.3 Package: java.awt and javax.swing (page 245) 21122

17 GUI API 21123
17.1 GUI API: JFrame (page 245) . 21123
17.2 GUI API: JFrame: setTitle() (page 246) 21123
17.3 GUI API: JFrame: getContentPane() (page 246) 21123
17.4 GUI API: JFrame: setDefaultCloseOperation() (page 247) 21123
17.5 GUI API: JFrame: pack() (page 247) 21124
17.6 GUI API: JFrame: setVisible() (page 248) 21124
17.7 GUI API: Container (page 246) . 21124
17.8 GUI API: Container: add() (page 246)21125
17.9 GUI API: Container: add(): adding with a position constraint (page 268)21125
17.10 GUI API: Container: setLayout() (page 250) 21125
17.11 GUI API: JLabel (page 246) . 21125
17.12 GUI API: JLabel: setText() (page 258) 21125
17.13 GUI API: LayoutManager (page 249)21126
17.14 GUI API: LayoutManager: FlowLayout (page 249) 21126
17.15 GUI API: LayoutManager: FlowLayout: alignment (page278) . . . 21126
17.16 GUI API: LayoutManager: GridLayout (page 251) 21127
17.17 GUI API: LayoutManager: BorderLayout (page 267) 21127
17.18 GUI API: Listeners (page 254) . 21128
17.19 GUI API: Listeners: ActionListener interface (page 257) 21130
17.20 GUI API: Listeners: ActionListener interface: actionPerformed() (page 258)21131
17.21 GUI API: JButton (page 256) . 21131
17.22 GUI API: JButton: addActionListener() (page 256) 21131
17.23 GUI API: JButton: setEnabled() (page 266) 21131
17.24 GUI API: JButton: setText() (page 267) 21132
17.25 GUI API: ActionEvent (page 258) 21132

21006

CONTENTS

17.26 GUI API: ActionEvent: getSource() (page 280) 21132
17.27 GUI API: JTextField (page 265) .21132
17.28 GUI API: JTextField: getText() (page 265) 21132
17.29 GUI API: JTextField: setText() (page 265) 21132
17.30 GUI API: JTextField: setEnabled() (page 267) 21133
17.31 GUI API: JTextField: initial value (page 274) 21133
17.32 GUI API: JTextArea (page 267) . 21133
17.33 GUI API: JTextArea: setText() (page 269) 21133
17.34 GUI API: JTextArea: append() (page 269) 21133
17.35 GUI API: JPanel (page 270) . 21134
17.36 GUI API: JScrollPane (page 274)21134
17.37 GUI API: Color (page 400) . 21134

18 Interface 21135
18.1 Interface (page 257) . 21135
18.2 Interface: definition (page 511) 21135
18.3 Interface: is a type (page 512) .21137
18.4 Interface: method implementation (page 513) 21137
18.5 Interface: generic interface (page 520) 21137
18.6 Interface: extending another interface (page 526) 21137
18.7 Interface: a class can implement many interfaces (page530) 21138

19 Array 21138
19.1 Array (page 286) . 21138
19.2 Array: array creation (page 287) 21139
19.3 Array: array creation: initializer (page 320) 21139
19.4 Array: element access (page 288)21140
19.5 Array: element access: in two-dimensional arrays (page 330) 21141
19.6 Array: length (page 292) . 21141
19.7 Array: empty array (page 292) . 21141
19.8 Array: of objects (page 301) . 21142
19.9 Array: partially filled array (page 310) 21142
19.10 Array: partially filled array: deleting an element (page 404) 21143
19.11 Array: array extension (page 311) 21143
19.12 Array: shallow copy (page 314) .21144
19.13 Array: array of arrays (page 329) 21144
19.14 Array: array of arrays: two-dimensional arrays (page330) 21145

20 Exception 21147
20.1 Exception (page 340) . 21147
20.2 Exception: getMessage() (page 345) 21147
20.3 Exception: there are many types of exception (page 347). 21147
20.4 Exception: creating exceptions (page 350) 21148
20.5 Exception: creating exceptions: with a cause (page 357) 21148
20.6 Exception: getCause() (page 366) 21149
20.7 Exception: inheritance hierarchy (page 434) 21149
20.8 Exception: making our own exception classes (page 435). 21151

21007

CONTENTS

21 Inheritance 21152
21.1 Inheritance (page 373) . 21152
21.2 Inheritance: a subclass extends its superclass (page 378) 21153
21.3 Inheritance: invoking the superclass constructor (page 379) 21154
21.4 Inheritance: invoking the superclass constructor: implicitly (page 423)21154
21.5 Inheritance: overriding a method (page 380) 21155
21.6 Inheritance: overriding a method: @Override annotation (page 430) . 21155
21.7 Inheritance: abstract class (page 385) 21156
21.8 Inheritance: abstract method (page 386) 21156
21.9 Inheritance: polymorphism (page 390) 21157
21.10 Inheritance: polymorphism: dynamic method binding (page 391) . . 21158
21.11 Inheritance: final methods and classes (page 391) 21158
21.12 Inheritance: adding more object state (page 393) 21159
21.13 Inheritance: adding more instance methods (page 395). 21159
21.14 Inheritance: testing for an instance of a class (page 397) 21159
21.15 Inheritance: casting to a subclass (page 397) 21159
21.16 Inheritance: is a versus has a (page 406) 21160
21.17 Inheritance: using an overridden method (page 414) 21160
21.18 Inheritance: constructor chaining (page 423) 21161
21.19 Inheritance: multiple inheritance (page 509) 21162

22 File IO API 21163
22.1 File IO API: IOException (page 450)21163
22.2 File IO API: InputStream (page 451)21164
22.3 File IO API: InputStreamReader (page 456) 21165
22.4 File IO API: BufferedReader (page 459) 21165
22.5 File IO API: FileInputStream (page 462) 21165
22.6 File IO API: FileReader (page 462)21165
22.7 File IO API: OutputStream (page 462)21166
22.8 File IO API: OutputStreamWriter (page 462) 21166
22.9 File IO API: FileOutputStream (page 463) 21167
22.10 File IO API: FileWriter (page 463) 21167
22.11 File IO API: PrintWriter (page 463) 21168
22.12 File IO API: PrintWriter: checkError() (page 464) 21168
22.13 File IO API: PrintWriter: versus PrintStream (page 468) 21169
22.14 File IO API: PrintWriter: can also wrap an OutputStream (page 468) 21169
22.15 File IO API: File (page 469) . 21170
22.16 File IO API: DataOutputStream (page 479) 21170
22.17 File IO API: DataInputStream (page 479) 21171

23 Collections API 21171
23.1 Collections API (page 538) . 21171
23.2 Collections API: Lists (page 538) 21171
23.3 Collections API: Lists: List interface (page 538) 21172
23.4 Collections API: Lists: List interface: iterator() (page 553) 21172
23.5 Collections API: Lists: List interface: extends Collection (page 556) 21173
23.6 Collections API: Lists: ArrayList (page 539) 21173

21008

23.7 Collections API: Lists: add(index) and remove(index)(page 557) . . 21173
23.8 Collections API: Lists: LinkedList (page 558) 21174
23.9 Collections API: Collections class (page 543) 21174
23.10 Collections API: Sets (page 546) 21175
23.11 Collections API: Sets: Set interface (page 546) 21175
23.12 Collections API: Sets: Set interface: iterator() (page 554) 21176
23.13 Collections API: Sets: Set interface: extends Collection (page 557) . 21176
23.14 Collections API: Sets: HashSet (page 548) 21176
23.15 Collections API: Sets: TreeSet (page 552) 21176
23.16 Collections API: Sets: TreeSet: iterator() (page 554) 21177
23.17 Collections API: Iterator interface (page 553) 21177
23.18 Collections API: Collection interface (page 556) 21178
23.19 Collections API: Collection interface: constructortaking a Collection (page 568)21179
23.20 Collections API: Maps (page 559) 21180
23.21 Collections API: Maps: Map interface (page 560) 21180
23.22 Collections API: Maps: TreeMap (page 560) 21181
23.23 Collections API: Maps: HashMap (page 567) 21181

1 Computer basics

1.1 Computer basics: hardware (page 3)

The physical parts of a computer are known ashardware. You can see them, and touch them.

1.2 Computer basics: hardware: processor (page 3)

Thecentral processing unit(CPU) is the part of thehardware that actually obeys instructions.
It does this dumbly – computers are not inherently intelligent.

1.3 Computer basics: hardware: memory (page 3)

Thecomputer memory is part of the computer which is capable of storing and retrieving data
for short term use. This includes themachine codeinstructions that thecentral processing
unit is obeying, and any other data that the computer is currentlyworking with. For example,
it is likely that an image from a digital camera is stored in the computer memory while you are
editing or displaying it, as are the machine code instructions for the image editing program.

The computer memory requires electrical power in order to remember its data – it isvolatile
memory and will forget its contents when the power is turned off.

21009

1.4 Computer basics: hardware: persistent storage (page 3)

An important feature of computer memory is that its contentscan be accessed and changed
in any order required. This is known asrandom accessand such memory is calledrandom
access memoryor justRAM .

1.4 Computer basics: hardware: persistent storage (page 3)

For longer term storage ofdata, computers usepersistent storagedevices such ashard discs
andDVD ROM s. These are capable of holding much more information thancomputer mem-
ory, and are persistent in that they do not need power to rememberthe information stored on
them. However, the time taken to store and retrieve data ismuch longer than for computer
memory. Also, these devices cannot as easily be accessed in arandom order.

1.5 Computer basics: hardware: input and output devices (page 3)

Some parts of thehardware are dedicated to receiving input from or producing output tothe
outside world. Keyboards and mice are examples ofinput devices. Displays and printers are
examples ofoutput devices.

1.6 Computer basics: software (page 3)

One part of a computer you cannot see is itssoftware. This is stored oncomputer media, such
asDVD ROM s, and ultimately inside the computer, as lots of numbers. Itis the instructions
that the computer will obey. The closest you get to seeing it might be if you look at the silver
surface of a DVD ROM with a powerful magnifying glass!

1.7 Computer basics: software: machine code (page 3)

The instructions that thecentral processing unitobeys are expressed in a language known
asmachine code. This is a verylow level language, meaning that each instruction gets the
computer to do only a very simple thing, such as theaddition of two numbers, or sending a
byte to a printer.

1.8 Computer basics: software: operating system (page 4)

A collection ofsoftware which is dedicated to making the computer generally usable,rather
than being able to solve aparticular task, is known as anoperating system. The most popular
examples for modern personal computers are Microsoft Windows, Mac OS X and Linux. The

21010

1.9 Computer basics: software: application program (page 4)

latter two are implementations of Unix, which was first conceived in the early 1970s. The fact
it is still in widespread use today, especially by computer professionals, is proof that it is a
thoroughly stable and welldesigned and integrated platform for the expert (or budding expert)
computer scientist.

1.9 Computer basics: software: application program (page 4)

A piece ofsoftwarewhich is dedicated to solving a particular task, or application, is known as
anapplication program. For example, an image editing program.

1.10 Computer basics: data (page 3)

Another part of the computer that you cannot see is itsdata. Like software it is stored as
lots of numbers. Computers are processing and producing data all the time. For example, an
image from a digital camera is data. You can only see the picture when you display it using
some image displaying or editing software, but even this isn’t showing you the actual data that
makes up the picture. The names and addresses of your friendsis another example of data.

1.11 Computer basics: data: files (page 5)

Whendata is stored inpersistent storage, such as on ahard disc, it is organized into chunks
of related information known asfiles. Files have names and can be accessed by the computer
through theoperating system. For example, the image from a digital camera would probably
be stored in a jpeg file, which is a particular type of image file, and the name of this file would
probably end in.jpg or .jpeg .

1.12 Computer basics: data: files: text files (page 5)

A text file is a type offile that containsdata stored directly ascharacters in a human readable
form. This means if you were to send the raw contents directlyto the printer, you would
(for most printers) be immediately able to read it. Examplesof text files includeREADME.txt
that sometimes comes withsoftware you are installing, or source text for a document to be
processed by the LATEX[6] document processing system, such as the ones used to produce this
book (prior to publication). As you will see shortly, a more interesting example for you, is
computer programsource codefiles.

21011

1.13 Computer basics: data: files: binary files (page 5)

1.13 Computer basics: data: files: binary files (page 5)

A binary file is another kind offile in which data is stored asbinary (base 2) numbers, and
so is not human readable. For example, the image from a digital camera is probably stored as
a jpeg file, and if you were to look directly at its contents, rather than use someapplication
program to display it, you would see what appears to be nonsense! An interesting example of
a binary file is themachine codeinstructions of a program.

2 Java tools

2.1 Java tools: text editor (page 5)

A text editor is a program that allows the user to type and edittext files. You may well
have usednotepad under Microsoft Windows; that is a text editor. More likely you have
usedMicrosoft Word . If you have, you should note that it is not a text editor, it isa word
processor. Although you can save your documents as text files, it is morecommon to save
them as.doc files, which is actually abinary file format.Microsoft Word is not a good tool
to use for creating programsource codefiles.

If you are using anintegrated development environmentto support your programming, then
the text editor will be built in to it. If not, there are a plethora of text editors available which
are suited to Java programming.

2.2 Java tools: javac compiler (page 9)

The Javacompiler is calledjavac . Java program source is saved by the programmer in atext
file that has the suffix.java . For example, the text fileHelloWorld.java might contain the
source text of a program that printsHello world! on thestandard output. This text file
can then becompiled by the Java compiler, by giving its name as acommand line argument.
Thus the command

javac HelloWorld.java

will produce thebyte codeversion of it in thefile HelloWorld.class . Like machine code
files, byte code is stored inbinary files as numbers, and so is not human readable.

21012

2.3 Java tools: java interpreter (page 9)

2.3 Java tools: java interpreter (page 9)

When the end user wants to run a Java program, he or she invokesthejava interpreter with the
name of the program as itscommand line argument. The program must, of course, have been
compiled first! For example, to run theHelloWorld program we would issue the following
command.

java HelloWorld

This makes thecentral processing unitrun the interpreter orvirtual machine java , which
itself thenexecutes the program named as its first argument. Notice that the suffix .java is
needed when compiling the program, but no suffix is used whenrunning it. In our example
here, the virtual machine finds thebyte codefor the program in thefile HelloWorld.class
which must have been previously produced by thecompiler.

2.4 Java tools: javadoc (page 223)

A classwhich is intended to be reusable in many programs should haveuser documentation to
enable another programmer to use it without having to look atthe implementation code. In Java
this is achieved by the implementer of the class writingdoc comments in the code, and then
processing them with thejavadoc program. This tool produces a web page which describes
the class from the information in the doc comments and from the structure of the class itself,
and this page is linked to the pages for other classes as appropriate. For example, the heading of
eachpublic method is documented on the web page, with the description of the method being
taken byjavadoc from the doc comment which the implementer supplied for the method.

The resulting user documentation produced byjavadoc can be placed anywhere we wish – on
a web server for example. Meanwhile thesourceof that documentation is kept with thesource
code for the class, indeed it is inside the samefile. This excellent idea makes it easy for the
programmer to maintain information on how to use the class ashe or she alters the code, but
without restricting where the final documentation can be put.

A doc comment starts with the symbol/** and ends with*/ . These are written in certain
places as follows.

• A comment before the start of the class (after anyimport statements) describing its
purpose.

• A comment before each publicvariable describing the meaning of that variable.

• A comment before each public method describing what it does,its method parameters
andreturn value.

21013

2.5 Java tools: javadoc: throws tag (page 355)

• Optionally, a comment before eachprivate variable and method. This is less useful than
documentation for public items as normal users of the class do not have access to the
private ones. So, many programmers do not write doc commentsfor these (although
of course they do write ordinarycomments!). On the other hand, some take the view
that anybody who needs tomaintainthe class is, in effect, a user of both the publicand
private parts, and so user documentation of the whole class is of benefit.

The implementer writes user documentation text as appropriate inside the doc comments. The
emphasis is on how to use the features, not on how they are implemented. He or she also
includes variousdoc comment tags to help thejavadoc program process the text properly.
Here are some of the most commonly used tags.

Tag Meaning Where used
@author author name(s) State the author of the code. Before the class starts.
@paramparameter descriptionDescribe a method parameter.Before a method.
@return description Describe a method result. Before a method.

Most doc comments use more than one line, and it is conventional (but not essential) to start
continuation lines with an asterisk (*) neatly lined up with the first asterisk in the opening
comment symbol. The first sentence should be a summary of the whole thing being documented
– these are copied to a summary area of the final documentation.

For a doc comment tag to be recognized byjavadoc , it must be the first word on a line of the
comment, preceded only bywhite space, or an asterisk.

Doc comments are sometimes (but wrongly) calledjavadoc comments.

2.5 Java tools: javadoc: throws tag (page 355)

There is anotherdoc comment tagwhich is used to describe theexceptions that amethod
throws.

Tag Meaning Where used
@throws exception
name and description

Describes the circumstances
leading to an exception.

Before a method.

21014

3 Operating environment

3.1 Operating environment: programs are commands (page 7)

When a program isexecuted, the name of it is passed to theoperating systemwhich finds and
loads thefile of that name, and then starts the program. This might be hidden from you if you
are used to starting programs from a menu or browser interface, but it happens nevertheless.

3.2 Operating environment: standard output (page 7)

When programsexecute, they have something called thestandard output in which they can
produce text results. If they arerun from some kind ofcommand line interface, such as a Unix
shell or a Microsoft WindowsCommand Prompt, then this output appears in that interface
while the program is running. (If they are invoked through some integrated development
environment, browser, or menu, then this output might get displayed in some pop-up box, or
special console window.)

3.3 Operating environment: command line arguments (page 8)

Programs can be, and often are, givencommand line arguments to vary their behaviour.

3.4 Operating environment: standard input (page 187)

In addition tostandard output, when programsexecutethey also have astandard input
which allows textdata to be entered into the program as it runs. If they arerun from some
kind of command line interface, such as a Unixshell or a Microsoft WindowsCommand
Prompt, then this input is typically typed on the keyboard by the enduser.

3.5 Operating environment: standard error (page 344)

When programsexecute, in addition tostandard output andstandard input, they also have
another facility calledstandard error . This is intended to be used for output about errors
and exceptional circumstances, rather than program results. In someoperating environments
there might be no difference between these two in practice, but their separation at the program
level enables them to be handled differently where that is permitted. For example, on Unix
systems, the end user can redirect the standard output into afile, whilst leaving the standard
error to appear on the screen, or vice versa, etc. as desired.Nowadays, this is also true of
Microsoft Windows.

21015

4 Class

4.1 Class: programs are divided into classes (page 16)

In Java, the source text for a program is separated into pieces calledclasses. The source
text for each class is (usually) stored in a separatefile. Classes have a name, and if the
name isHelloWorld then the text for the class is saved by the programmer in thetext file
HelloWorld.java .

One reason for dividing programs into pieces is to make them easier to manage – programs to
perform complex tasks typically contain thousands of linesof text. Another reason is to make
it easier to share the pieces between more than one program – suchsoftware reuseis beneficial
to programmer productivity.

Every program has at least one class. The name of this class shall reflect the intention of the
program. By convention, class names start with an upper caseletter.

4.2 Class: public class (page 16)

A classcan be declared as beingpublic, which means it can be accessed from anywhere in the
running Java environment; in particular thevirtual machine itself can access it. The source
text for a public class definition starts with thereserved wordpublic. A reserved word is one
which is part of the Java language, rather than a word chosen by the programmer for use as,
say, the name of a program.

4.3 Class: definition (page 16)

After stating whether it haspublic access, aclassnext has thereserved wordclass, then its
name, then a left brace ({), its body of text and finally a closing right brace (}).

public class MyFabulousProgram
{

... Lots of stuff here.
}

4.4 Class: objects: contain a group of variables (page 158)

We can group a collection ofvariables into one entity by creating anobject. For example, we
might wish to represent a point in two dimensional space using anx and ay value to make up

21016

4.5 Class: objects: are instances of a class (page 158)

a coordinate. We would probably wish to combine ourx andy variables into a single object, a
Point .

4.5 Class: objects: are instances of a class (page 158)

Before we can makeobjects, we need to tell Java how the objects are to beconstructed. For
example, to make aPoint object, we would need to tell Java that there are to be a pair of
variables inside it, calledx andy , and tell it whattypes these variables have, and how they get
their values. We achieve this by writing aclasswhich will act as a template for the creation of
objects. We need to write such a template class for each kind of object we wish to have. For
example, we would write aPoint class describing how to makePoint objects. If, on the other
hand, we wanted to group together a load of variables describing attributes of wardrobes, so we
could make objects each of which represents a single wardrobe, then we would probably call
that classWardrobe . Java lets us choose any name that we feel is appropriate, exceptreserved
words (although by convention we always start the name with a capital letter).

Once we have described the template, we can get Java to make objects of that class atrun time .
We say that these objects areinstances of the class. So, for example, particularPoint objects
would all be instances of thePoint class. We can create as many differentPoint objects as
we wish, each containing its ownx andy variables, all from the one template, thePoint class.

4.6 Class: objects: this reference (page 180)

Sometimes, inconstructor methods or in instance methods of aclasswe wish to refer to
theobject that the constructor is creating, or to which the instance method belongs. For this
purpose, whenever thereserved wordthis is used in or as anexpressionit means areference
to the object that is being created by the constructor or thatowns the instance method, etc.. We
can only use thethis reference in places where it makes sense, such as constructor methods,
instance methods andinstance variable initializations. So,this (when used in this way)
behaves somewhat like an extra instance variable in each object, automatically set up to contain
a reference to that object.

For example, in aPoint class we may wish to have an instance method that yields a point
which is half way between the origin andthis point.

public Point halfThisPoint()
{

return halfWayPoint(new Point(0, 0));
} // halfThisPoint

An alternative implementation would be as follows.

21017

4.7 Class: objects: may be mutable or immutable (page 193)

public Point halfThisPoint()
{

return new Point(0, 0).halfWayPoint(this);
} // halfThisPoint

4.7 Class: objects: may be mutable or immutable (page 193)

Sometimes when wedesigna classwe desire that theinstances of it areimmutable objects.
This means that once such anobject has beenconstructed, itsobject statecannot be changed.
That is, there is no way for the values of theinstance variables to be altered after the object is
constructed.

By contrast, objects which can be altered are known asmutable objects.

4.8 Class: objects: compareTo() (page 222)

It is quite common to require the ability to compare anobject with another from the sameclass,
based on sometotal order , that is, a notion ofless than, greater than andequivalence. A Java
convention for this is to have aninstance methodcalledcompareTo which takes a (reference
to) another object as itsmethod parameter, andreturn s anint. A result of0 indicates the
two objects areequivalent, a negative value indicates this object is less than the other, and a
positive value indicates this object is greater than the other.

Date husbandsBirthday = ...
Date wifesBirthday = ...

if (husbandsBirthday.compareTo(wifesBirthday) > 0)
System.out.println("The husband is older than the wife");

else if (husbandsBirthday.compareTo(wifesBirthday) == 0)
System.out.println("The husband is the same age as the wife ");

else

System.out.println("The husband is younger than the wife");

4.9 Class: is a type (page 161)

A type is essentially asetof values. Theint type is all the whole numbers that can be repre-
sented using 32binary digit s, thedouble type is all thereal numbers that can be represented
using thedouble precision technique and theboolean type contains the valuestrue and
false. A classcan be used as a template for creatingobjects, and so is regarded in Java as a
type: the set of all objects that can be created which areinstances of that class. For example, a
Point class is a type which is the set of allPoint objects that can be created.

21018

4.10 Class: is a type: and has three components (page 512)

4.10 Class: is a type: and has three components (page 512)

Whilst a type is essentially aset of values, it also has two other components. These are the
operations which can be performed on those values, and theoperation interface to those oper-
ations. For example, the typeint is a collection of numbers, with operations such asaddition
andmultiplication , and each operation has anoperator as its operation interface, such as+
and* .

The distinction between operation and operation interfaceis subtle, and may even seem pedan-
tic, but nevertheless, they are not the same thing. For example, one could imagine thedesigners
of Java one day permitting a proper multiplication symbol (×) to be used as an alternative to
the* operator, without altering the meaning of the multiplication operation.

Eachclassis a type, the set of all (references to) objects that can be created which arein-
stances of that class. It has operations, which are themethod implementations of thein-
stance methods of the class, and each of these operations has an operation interface, which is
themethod interface.

4.11 Class: making instances with new (page 162)

An instanceof a classis created by calling theconstructor method of the class, using the
reserved wordnew, and supplyingmethod arguments for themethod parameters. At run
time when this code isexecuted, the Javavirtual machine, with the help of the constructor
method code, creates anobject which is an instance of the class. Although it is not stated in
its heading, a constructor method alwaysreturn s a value, which is areference to thenewly
created object. This reference can then be stored in avariable, if we wish. For example, if we
have aPoint class, then we might have the following code.

Point topLeft = new Point(-20, 40);
Point bottomLeft = new Point(-20, -40);
Point topRight = new Point(20, 40);
Point bottomRight = new Point(20, -40);

This declares four variables, oftype Point and creates four instances of the classPoint rep-
resenting the four corners of a rectangle. The four variables each contain a reference to one of
the points. This is illustrated in the following diagram.

21019

4.12 Class: accessing instance variables (page 164)

−20

40private double y

private double x

A Point object

Point topLeft

−20

−40private double y

private double x

A Point object

Point bottomLeft 20

−40private double y

private double x

A Point object

Point bottomRight

20

40private double y

private double x

A Point object

Point topRight

All four Point objects each have twoinstance variables, calledx andy .

4.12 Class: accessing instance variables (page 164)

The instance variables of anobject can be accessed by taking areference to the object and
appending a dot (.) and then the name of thevariable. For example, if the variablep1 contains
a reference to aPoint object, andPoint objects have an instance variable calledx , then the
codep1.x is the instance variablex , belonging to thePoint referred to byp1.

4.13 Class: importing classes (page 188)

At the start of the sourcefile for a Javaclasswe can write one or moreimport statements.
These start with thereserved wordimport and then give thefully qualified name of a class
that lives in somepackagesomewhere, followed by a semi-colon(;). An import for a class per-
mits us to talk about it from then on, by using only its class name, rather than having to always
write its fully qualified name. For example, importingjava.util.Scanner would mean that
every time we refer toScanner the Javacompiler knows we really meanjava.util.Scanner .

import java.util.Scanner;
...
Scanner inputScanner = new Scanner(System.in);

If we wish, we can import all the classes in a package using a* instead of a class name.

import java.util.*;

21020

4.14 Class: stub (page 191)

Many programmers consider this to be lazy, and it is better toimport exactly what is needed, if
only to help show precisely what is used by the class. There isalso the issue of ambiguity: if
two different packages have classes with the same name, but this class only needs one of them,
then the lazy approach would cause an unnecessary problem.

However, every Java program has an automatic import for every class in the standardpack-
age java.lang , because these classes are used so regularly. That is why we can refer to
java.lang.System andjava.lang.Integer , etc. as justSystem andInteger , etc.. In other
words, every class always implicitly includes the following import statement for convenience.

import java.lang.*;

4.14 Class: stub (page 191)

During development of a program with severalclasses, we often produce astub for the classes
we have not yet implemented. This just contains some or all ofthepublic items of the class,
with empty, or almost empty, bodies for themethods. In other words, it is the bare minimum
needed to allow the classes we have so far developed to becompiled.

Any non-void methods are written with a singlereturn statement to yield some temporary
value of the righttype.

These stubs are then developed into the full class code at some later stage.

4.15 Class: extending another class (page 245)

A classmay be declared to say that itextends another class, using thereserved wordextends.
For example, the following says that the classHelloWorld extends the classjavax.swing.JFrame .

import javax.swing.JFrame;
public class HelloWorld extends JFrame

This means that allinstances of HelloWorld have the properties that any instance ofJFrame
would have, but also have all the properties that we additionally define in theHelloWorld
class. It is a way of adding properties to a class without actually changing the class – the new
class is anextensionof the other one.

21021

4.16 Class: generic class (page 491)

4.16 Class: generic class (page 491)

A generic classis a classwhich has one or moretype parameters written within angled
brackets (<>) just after its name in the class heading. When aninstanceof a generic class is
made, specifictypes are supplied astype arguments for the type parameters, in a similar way
thatmethod arguments are supplied formethod parameters in amethod call.

In the following symbolic example,T1 andT2 are type parameters.

public class MyGenericClass<T1, T2>
{

... Typical class stuff here,

... but using T1 and T2 as though they are types

... (in permitted ways).
T1 someVariable = ...
T2 someOtherVariable = ...
...

} // class MyGenericClass

When we make an instance ofMyGenericClass , we can supply a specific type for each type
parameter, as in the following example.

MyGenericClass<String, Date> myVariable = new MyGenericClass<String, Date>();

A class is atype. However, the intention with a generic class is that we supply specific type
arguments for the type parameters before we use it, and in doing so, we identify aparameter-
ized type. For example, from the generic classMyGenericClass we can have parameterized
types such asMyGenericClass<String, Date> ,
MyGenericClass<Integer, String> , etc., including ones involvingarrays, like
MyGenericClass<String[], Integer> , and so on.

A parameterized type almost behaves as though we have made a textual copy of the generic
class, and replaced each type parameter with its corresponding type argument. But not quite.
Instead, due to the way Java actually implements generic classes, there are some restrictions.
In particular, type arguments must bereference types, such as classes and arrays. This means
they cannot beprimitive type s.

4.17 Class: generic class: bound type parameter (page 496)

The type parameters of ageneric classmay bebound type parameters, which means we
specify certain restrictions for thetype arguments that can be supplied when aparameterized
type is identified.

21022

4.18 Class: generic class: bound type parameter: extends some class (page 496)

4.18 Class: generic class: bound type parameter: extends some class
(page 496)

One kind of restriction we can specify for abound type parameter is that the type argument
mustextend some knownclass. This is done by following the name of thetype parameter
with thereserved wordextends and then the known class. When a type argument is supplied,
thecompiler checks that it is either the known class, or asubclassof it.

For example, in the context of some vehicle simulation program, the following is a class that
has a type parameter,VehicleType , for which any correspondingtype argument must be
Vehicle or a subclass of it.

public class ServiceCentre<VehicleType extends Vehicle>
{

... Etc., using VehicleType as a type (in permitted ways)

... but knowing that it is a Vehicle

... and so using some Vehicle methods, etc..

public void service(VehicleType vehicle)
{

if (! vehicle.isRoadworthy())
{

...
} // if

} // service

...
} // class ServiceCentre

This would allow us to makeServiceCentre objects for particular kinds ofVehicle .

ServiceCentre<Car> garage = new ServiceCentre<Car>();
Car car = new Car(...);
Lorry lorry = new Lorry(...);
garage.service(car);
garage.service(lorry);

The last line above would cause acompile time error.

4.19 Class: generic class: bound type parameter: extends some interface
(page 526)

The type parameters of ageneric class(or generic interface, or generic method) may be
declared toextendsome knowntype. The known type may be aclassor aninterface. Perhaps

21023

4.20 Class: generic class: where type parameters cannot be used (page 501)

surprisingly, we use thereserved wordextends even if the known type is an interface. This
is in recognition of the idea that aninterface is atype in just the same way that a class is. One
type can be anextensionof another throughinheritance, either by being asubclassof another
class, asubinterfaceof another interface, or by being a class thatimplements an interface.

If the known type is an interface, then when atype argument is supplied for the type parameter,
thecompiler checks that it is a class which implements that interface, oris that interface or an
interface that extends it.

4.20 Class: generic class: where type parameters cannot be used (page
501)

Eachtype parameter of a generic classmay be treated as atype within the generic class,
except for certain restrictions, which fall into two categories.

The first is about the meaning of type parameters. Atype argument is supplied for each of
these to identify aparameterized type, which is then ready forinstances of it to be made. The
type arguments only mean anything in the context of creatinginstances, and make no sense in
thestatic contextof the generic class (which is not part of the type). So, we cannot refer to the
type parameters instatic parts, that is, inclass variableandclass methoddeclarations.1

The second set of restrictions are associated with the way Java implements generic classes. In
particular, we cannot create anyinstances of a type parameter, nor create anyarrays whose
array elements are of that type. (Essentially, the generic features of aclassis an entirelycom-
pile time artifact – to enable thecompiler to undertake more type checking than it otherwise
could. At run time , the virtual machine has no knowledge of the type parameters, and so
cannotcreateinstances of the correct type.)

4.21 Class: generic class: used as a raw type (page 502)

A generic classis still a classand hence atype, and actually it can be used directly to make
instances of it without supplyingtype arguments. This is due to legacy issues: generic classes
were added in Java 5.0, andtype parameters were added to many standardapplication pro-
gram interface (API) classes at that time. Obviously there already existed millions of Java
programs that use those classes, and it would be unacceptable for them all to suddenly stop
working!

Java refers to the type of the generic class without type parameters as theraw type for the
class. If we use the raw type, then thecompiler assumes the best known actual type for each
of its type parameters, and gives us warnings, about types being unchecked . But it goes ahead
and makes thebyte codeanyway. This way, programmers are encouraged to use the generic

1There is actually a separate mechanism for putting type parameters on class methods.

21024

classes properly for new code and gradually change legacy code to do so. The best known
type assumed by the compiler for a type parameter whichextends some concrete type is that
concrete type, and for ones that do not it isjava.lang.Object .

5 Method

5.1 Method (page 118)

A method in Java is a section of code, dedicated to performing a particular task. All programs
have amain method which is the starting point of the program. We can have other methods
too, and we can give them any name we like – although we should always choose a name which
suits the purpose. By convention, method names start with a lower case letter. For example,
System.out.println() is a method which prints a line of text. Apart from its slightly strange
spelling, the nameprintln does reflect the meaning of the method.

5.2 Method: main method: programs contain a main method (page 17)

All Java programs contain a section of code calledmain , and this is where the computer will
start toexecutethe program. Such sections of code are calledmethods because they contain
instructions on how to do something. Themain method always starts with the following
heading.

public static void main(String[] args)

5.3 Method: main method: is public (page 17)

Themain methodstarts with thereserved wordpublic, which means it can be accessed from
anywhere in the running Java environment. This is necessary– the program could not berun
by thevirtual machine if the starting point was not accessible to it.

public

5.4 Method: main method: is static (page 17)

Themain method of the program has thereserved wordstatic which means it is allowed
to be used in thestatic context. A context relates to the use ofcomputer memory during

21025

5.5 Method: main method: is void (page 17)

the running of the program. When thevirtual machine loads a program, it creates the static
context for it, allocating computer memory to store the program and itsdata, etc.. Adynamic
context is a certain kind of allocation of memory which is made later,during the running of the
program. The program would not be able to start if the main method was not allowed to run in
the static context.

public static

5.5 Method: main method: is void (page 17)

In general, amethod (section of code) might calculate some kind offunction or formula, and
return the answer as a result. For example, the result might be a number. If a method returns
a result then this must be stated in its heading. If it does not, then we write thereserved word
void, which literally means (among other definitions) ‘without contents’. Themain method
does not return a value.

public static void

5.6 Method: main method: is the program starting point (page17)

The starting part, ormain method, of the program is always calledmain , because it is the main
part of the program.

public static void main

5.7 Method: main method: always has the same heading (page 18)

Themain method of a Java program must always have a heading like this.

public static void main(String[] args)

This is true even if we do not intend to use anycommand line arguments. So a typical single
classprogram might look like the following.

public class MyFabulousProgram
{

public static void main(String[] args)

21026

5.8 Method: private (page 118)

{

... Stuff here to perform the task.
}

}

5.8 Method: private (page 118)

A method should be declared with aprivate visibility modifier if it is not intended to be
usable from outside theclass it is defined in. This is done by writing thereserved word
private instead ofpublic in the heading.

5.9 Method: accepting parameters (page 118)

A method may be givenmethod parameters which enable it to vary its effect based on their
values. This is similar to a program being givencommand line arguments, indeed the argu-
ments given to a program are passed as parameters to themain method.

Parameters are declared in the heading of the method. For example, main methods have the
following heading.

public static void main(String[] args)

The text inside the brackets is the declaration of the parameters. A method can have any
number of parameters, including zero. If there is more than one, they are separated by commas
(,). Each parameter consists of atype and a name. For example, the following method is given
two parameters, adouble and anint.

private static void printHeightPerYear(double height, int age)
{

System.out.println("At age " + age + ", height per year ratio is "
+ height / age);

} // printHeightPerYear

You should think of parameters as being likevariables defined inside the method, except that
they are given initial values before the method body isexecuted. For example, the single
parameter to the main method is a variable which is given alist of strings before the method
begins execution, these strings being the command line arguments supplied to the program.

The names of the parameters are not important to Java – as longas they all have different
names! The names only mean something to the human reader, which is of course important.
The above method could easily have been written as follows.

21027

5.10 Method: accepting parameters: of a class type (page 164)

private static void printHeightPerYear(double howTall, int howOld)
{

System.out.println("At age " + howOld + ", height per year ra tio is "
+ howTall / howOld);

} // printHeightPerYear

You might think the first version is subjectively nicer than the second, but clearly both are better
than this next one!

private static void printHeightPerYear(double d, int i)
{

System.out.println("At age " + i + ", height per year ratio is "
+ d / i);

} // printHeightPerYear

And that is only marginally better than calling the parameters, sayx andy . However, Java does
not care – it is not clever enough to be able to, as it can have nounderstanding of the problem
being solved by the code.

5.10 Method: accepting parameters: of a class type (page 164)

The method parameters of amethod can be of anytype, including classes. A parameter
which is of a class type must be given amethod argumentvalue of that type when the method
is invoked, for example areferenceto anobject which is aninstanceof the class named as the
parameter type.

5.11 Method: accepting parameters: of an array type (page 297)

The method parameters of amethod can be of anytype, including arrays. A parameter
which is of anarray type must be given amethod argument value of that type when the
method is invoked. This value will of course be areference to an array which hasarray
elements of thearray base type, or thenull reference.

The most obvious example of this is theString[] command line argumentarray, which is
passed to themain method by the Javavirtual machine.

5.12 Method: calling a method (page 119)

The body of amethod is executed when some other code refers to it using amethod call. For
example, the program calls a method namedprintln when it executesSystem.out.println("Hello

21028

5.13 Method: void methods (page 120)

world!") . For another example, if we have a method, namedprintHeightPerYear , which
prints out a height to age ratio when it is given a height (in metres) and an age, then we could
make it print the ratio between the height1.6 and the age14 using the following method call.

printHeightPerYear(1.6, 14);

When we call a method we supply amethod argument for eachmethod parameter, separat-
ing them by commas (,). These argument values are copied into the corresponding parameters
of the method – the first argument goes into the first parameter, the second into the second, and
so on.

The arguments passed to a method may be the current values ofvariables. For example, the
above code could have been written as follows.

double personHeight = 1.6;
int personAge = 14;

printHeightPerYear(personHeight, personAge);

As you may expect, the arguments to a method are actuallyexpressions rather than justliteral
values or variables. These expressions areevaluated at the time the method is called. So we
might have the following.

double growthLastYear = 0.02;

printHeightPerYear(personHeight - growthLastYear, pers onAge - 1);

5.13 Method: void methods (page 120)

Often, amethod might calculate some kind offunction or formula, perhaps based on its
method parameters, andreturn the answer as a result. The result might be anint or a
double or some othertype. If a method returns a result then thereturn type of the result
must be stated in its heading. If it does not, then we write theword void instead, which liter-
ally means (among other definitions) ‘without contents’. For example, themain method of a
program does not return a result – it is always avoid method.

public static void main(String[] args)

21029

5.14 Method: returning a value (page 122)

5.14 Method: returning a value (page 122)

A method may return a result back to the code that called it. If this is so, we declare the
return type of the result in the method heading, in place of thereserved wordvoid. Such
methods are often callednon-void methods. For example, the following method takes a Cel-
sius temperature, and returns the corresponding Fahrenheit value.

private static double celsiusToFahrenheit(double celsiusValue)
{

double fahrenheitValue = celsiusValue * 9 / 5 + 32;
return fahrenheitValue;

} // celsiusToFahrenheit

The method is declared with a return type ofdouble, by writing thattype name before the
method name.

The return statement is how we specify what value is to be returned as the result of the
method. Thestatementcauses the execution of the method to end, and control to transfer back
to the code that called the method.

The result of a non-void method can be used in anexpression. For example, the method above
might be used as follows.

double celsiusValue = Double.parseDouble(args[0]);
System.out.println("The Fahrenheit value of "

+ celsiusValue + " Celsius is "
+ celsiusToFahrenheit(celsiusValue) + ".");

The return statement takes any expression after the reserved word return. So our method
above could be implemented using just one statement.

private static double celsiusToFahrenheit(double celsiusValue)
{

return celsiusValue * 9 / 5 + 32;
} // celsiusToFahrenheit

5.15 Method: returning a value: of a class type (page 176)

A method may return a result back to the code that called it, and this may be of anytype,
including aclass. In such cases, the value returned will typically be areference to anobject
which is aninstanceof the class named as thereturn type .

21030

5.16 Method: returning a value: multiple returns (page 196)

For example, in aPoint class withinstance variables x andy , we might have aninstance
method to return aPoint which is half way along a straight line between thisPoint and a
given otherPoint .

public Point halfWayPoint(Point other)
{

double newX = (x + other.x) / 2;
double newY = (y + other.y) / 2;
return new Point(newX, newY);

} // halfWayPoint

The method creates anew object and then returns a reference to it. This might be used as
follows.

Point p1 = new Point(3, 4);
Point p2 = new Point(45, 60);

Point halfWayBetweenP1AndP2 = p1.halfWayPoint(p2);

The reference to the newPoint returned by the instance method, is stored in thevariable
halfWayBetweenP1AndP2 . It would, of course, be the point(24,32). This is illustrated in the
following diagram.

24

32private double y

private double x

A Point object

Point halfwayBetweenP1AndP2 = p1.halfwayPoint(p2)

3

4private double y

private double x

A Point object

Point p1 = new Point(3, 4) 45

60private double y

private double x

A Point object

Point p2 = new Point(45, 60)

5.16 Method: returning a value: multiple returns (page 196)

The return statement is how we specify what value is to bereturn ed as the result of anon-
void method. Thestatementcauses the execution to end, and control to transfer back to the

21031

5.17 Method: returning a value: of an array type (page 312)

code that called themethod. Typically, this is written as the last statement in the method, but
we can actually write one or more anywhere in the method.

The Javacompiler checks to make sure that we have been sensible, and that:

• There is no path through the method that does not end with a return statement.

• There is no code in the method that can never be reached due to an earlier occurring
return statement.

5.17 Method: returning a value: of an array type (page 312)

A method mayreturn a result back to the code that called it. This result may be of any type,
including anarray type. This value will of course be areferenceto anarray which contains
array elements of the appropriate type as stated in thereturn type (or thenull reference).

5.18 Method: changing parameters does not affect arguments(page 124)

We can think ofmethod parameters as being likevariables defined inside themethod, but
which are given their initial value by the code that calls themethod. This means the method
can change the values of the parameters, like it can for any other variable defined in it. Such
changes have no effect on the environment of the code that called the method, regardless of
where themethod argument values came from. An argument value, be it a literal constant,
taken straight from a variable, or the result of some more complexexpression, is simply copied
into the corresponding parameter at the time the method is called. This is known ascall by
value.

5.19 Method: changing parameters does not affect arguments: but ref-
erenced objects can be changed (page 208)

All method parameters obtain their values from the correspondingmethod argument us-
ing thecall by value principle. This means amethod cannot have any effect on the calling
environment via its method parameters if they are of aprimitive type .

However, if a method parameter is of areference typethen there is nothing to stop the code
in the method following thereferencesupplied as the argument, and altering the state of the
object it refers to (if it is amutable object). Indeed, such behaviour is often exactly what we
want.

In the abstract example below, assume thatchangeState() is aninstance methodin theclass
SomeClass which alters the values of some of theinstance variables.

21032

5.20 Method: constructor methods (page 159)

public static void changeSomething(SomeClass object, SomeType value)
{

object.changeState(value); // This really changes the obj ect referred to.
object = null; // This has no effect outside of this method.
...

} // changeSomething
...
SomeClass variable = new SomeClass();
changeSomething(variable, someValueOfSomeType);

At the end of the above code, the change caused by the first lineof the method has had an
impact outside of the method, whereas the second line has hadno such effect.

5.20 Method: constructor methods (page 159)

A classwhich is to be used as a template for makingobjects should be given aconstructor
method. This is a special kind ofmethod which contains instructions for theconstruction of
objects that areinstances of the class. A constructor method always has the same name as the
class it is defined in. It is usually declared as beingpublic, but we do not specify areturn
type or write thereserved wordvoid. Constructor methods can havemethod parameters,
and typically these are the initial values for some or all of the instance variables.

For example, the following might be a constructor method fora Point class, which has two
instance variables,x andy .

public Point(double requiredX, double requiredY)
{

x = requiredX;
y = requiredY;

} // Point

This says that in order to construct an object which is an instance of the classPoint , we
need to supply twodouble values, the first will be placed in thex instance variable, and the
second in they instance variable. Constructor methods are called in a similar way to any other
method, except that we precede themethod call with the reserved wordnew. For example,
the following code would create anew object, which is an instance of the classPoint , and in
which the instance variablesx andy have the values7.4 and-19.9 respectively.

new Point(7.4, -19.9);

We can create as manyPoint objects as we wish, each of them having their own pair of instance
variables, and so having possibly different values forx andy . These next fourPoint objects
are the coordinates of a rectangle which is centred around the origin of a graph, point (0, 0).

21033

5.21 Method: constructor methods: more than one (page 203)

new Point(-20, 40);
new Point(-20, -40);
new Point(20, 40);
new Point(20, -40);

This is illustrated in the following diagram.

−20

40private double y

private double x

A Point object

−20

−40private double y

private double x

A Point object

20

40private double y

private double x

A Point object

20

−40private double y

private double x

A Point object

All four Point objects each have two instance variables, calledx andy .

5.21 Method: constructor methods: more than one (page 203)

A classcan have more than oneconstructor methodas long as the number, order and/ortypes
of themethod parameters are different. This distinction is necessary so that thecompiler can
tell which constructor should be used when anobject is being created.

5.22 Method: constructor methods: more than one: using this(page 393)

Typically, themethod parameters toconstructor methods are values forinstance variables,
and inclasses where there are several instance variables it can be convenient to have multiple
constructor methods, some of which assume sensible defaultvalues for some instance variables.

For example, in aPoint class, it might quite reasonably be decided that for convenience, we
can easily obtain a representation of the origin byconstructing a Point using nomethod
arguments.

21034

5.23 Method: constructor methods: default (page 425)

public class Point
{

private double x, y;

public Point(double requiredX, double requiredY)
{

x = requiredX;
y = requiredY;

} // Point

public Point()
{

x = 0;
y = 0;

} // Point

...
} // class Point

In effect, the second constructor method above is rather like a wrapper around the first one,
and we can make this relationship explicit by actually calling the first constructor method from
the second. We do this using thereserved wordthis, and passing the desired parameters in
brackets. So, another way of writing the second constructorabove is as follows.

public Point()
{

this(0, 0);
} // Point

Such analternative constructor call must be the firststatementin the body of the constructor
method, and, of course, the class must have another constructor method which matches the
supplied arguments.

5.23 Method: constructor methods: default (page 425)

If we write aclassand do not include aconstructor method in it, then Java implicitly treats
it as though we have defined apublic empty one, which takes nomethod arguments. For
example, for a class calledFabulousThing , this would be as follows.

public FabulousThing()
{

} // FabulousThing

21035

5.24 Method: class versus instance methods (page 166)

This is called adefault constructor and is of course the same as one which simply invokes the
constructor method of thesuperclass.

public FabulousThing()
{

super();
} // FabulousThing

The default constructor is only assumed for classes that do not explicitly define a constructor
method, which means that not every class actually has a constructor method which takes no
arguments. For example, the classVeryFabulousThing , partially defined below, does not
have such a constructor method.

public class VeryFabulousThing
{

... Some code, but no more constructor methods.
public VeryFabulousThing(String name)
{

...
} // VeryFabulousThing
... Some code, but no more constructor methods.

} // class VeryFabulousThing

As a result, the following is illegal.

public class TheMostFabulousThingInTheUniverse extends VeryFabulousThing
{

... Code here, but no constructor method.
} // class TheMostFabulousThingInTheUniverse

This is because the classTheMostFabulousThingInTheUniverse cannot have a default con-
structor because its superclass does not have a constructormethod that takes no arguments.

In practice, default constructors are not often what we wantanyway. This author recommends
that youalwaysexplicitly write at least one constructor method for every class which you intend
there to beinstances of, even when that constructor method is empty. This shows to anybody
reading your code that it is deliberately empty, rather thanhas been omitted by mistake.

5.24 Method: class versus instance methods (page 166)

When we define amethod, we can write thereserved wordstatic in its heading, meaning
that it can beexecuted in thestatic context, that is, it can be used as soon as theclass is

21036

5.24 Method: class versus instance methods (page 166)

loaded into thevirtual machine. These are known asclass methods, because they belong to
the class. By contrast, if we omit thestatic modifier then the method is aninstance method.
This means it can only be run in adynamic context, attached to a particularinstanceof the
class.

This parallels the distinction betweenclass variables andinstance variables. There is one
copy of a class variable, created when the class is loaded. There is one copy of an instance
variable for every instance, created when the instance is created.

We can think of methods in the same way: class methods belong to the class they are defined in,
and there is one copy of their code atrun time , ready for use immediately. Instance methods
belong to an instance, and there are as many copies of the codeat run time as there are instances.
Of course, the virtual machine does not really make copies ofthe code of instance methods,
but it behavesas though it does, in the sense that when an instance method isexecuted, it runs
in the context of the instance that it belongs to.

For example, suppose we have aPoint class with instance variablesx andy . We might wish
to have an instance method which takes nomethod parameters, butreturn s the distance of a
point from the origin. Pythagoras[18] tells us that this is

√

x2 +y2. (We can use thesqrt()
method from theMath class.)

public double distanceFromOrigin()
{

return Math.sqrt(x * x + y * y);
} // distanceFromOrigin

A class method can be accessed by taking the name of the class,and appending a dot (.) and
then the name of the method.Math.sqrt is a handy example right now.

An instance method belonging to anobject can be accessed by taking areferenceto theobject
and appending a dot (.) and then the name of the method. For example, if thevariable p1
contains a reference to aPoint object, then the codep1.distanceFromOrigin() invokes the
instance methoddistanceFromOrigin() , belonging to thePoint referred to byp1.

The following code would print the numbers5 and75.

Point p1 = new Point(3, 4);
Point p2 = new Point(45, 60);

System.out.println(p1.distanceFromOrigin());
System.out.println(p2.distanceFromOrigin());

When the method is called viap1 it uses the instance variables of the object referred to byp1,
that is the values3 and4 respectively. When the method is called viap2 it uses the values45
and60 instead.

21037

5.25 Method: a method may have no parameters (page 173)

For another example, we may wish to have a method which determines the distance between a
point and a given other point.

public double distanceFromPoint(Point other)
{

double xDistance = x - other.x;
double yDistance = y - other.y;

return Math.sqrt(xDistance * xDistance + yDistance * yDistance);
} // distanceFromPoint

The following code would print the number70.0 , twice.

System.out.println(p1.distanceFromPoint(p2));
System.out.println(p2.distanceFromPoint(p1));

5.25 Method: a method may have no parameters (page 173)

The list ofmethod parameters given to amethod may be empty. This is typical for methods
which always have the same effect orreturn the same result, or their result depends on the
value ofinstance variables rather than some values in the context where the method is called.

5.26 Method: return with no value (page 206)

A void methodmay containreturn statements which do not have an associatedreturn value
– just thereserved wordreturn. These cause the execution of themethod to end, and control
to transfer back to the code that called the method. Every void method behaves as though it has
an implicit return statement at the end, unless it has one explicitly written.

The use of return statements throughout the body of a method permits us to design them using
a single entry, multiple exit principle: every call of the method starts at the beginning,but
depending onconditions the execution may exit at various points.

5.27 Method: accessor methods (page 207)

A public instance methodwhose job it is to reveal all or some part of theobject state, without
changing it, is known as anaccessor method. Perhaps the most obvious example of this is an
instance method calledgetSomeVariable , wheresomeVariable is the name of aninstance
variable. However, a welldesigned classwith goodencapsulationdoes not systematically

21038

5.28 Method: mutator methods (page 207)

reveal to its user what its instance variables are. Hence themore general idea of an accessor
method: it exposes the value of somefeature, which might or might not be directly imple-
mented as an instance variable.

5.28 Method: mutator methods (page 207)

A public instance methodwhose job it is to set or update all or some part of theobject state
is known as amutator method. Perhaps the most obvious example of this is an instance
method calledsetSomeVariable , wheresomeVariable is the name of aninstance variable.
However, the more general idea of a mutator method is that it changes the value of some feature,
which might or might not be directly implemented as an instance variable.

Obviously, onlymutable objects have mutator methods.

5.29 Method: overloaded methods (page 237)

The method signatureof a method is its name and list oftypes of its method parameters.
Java permits us to haveoverloaded methods, that is, more than onemethod with the same
name within oneclass, as long as they have different signatures. E.g. they may have a different
number of parameters, different types, the same types but ina different order, etc.. If two
methods had the same signature then thecompiler could never know which one was intended
by amethod callwith method arguments matching both of them.

For example, the methodSystem.out.println() can be used with no arguments, with a
singleString as an argument, or with an argument of some other type, such asint or any
object. These are in fact different methods with the same name!

5.30 Method: that throws an exception (page 354)

A methodhas a body of code which isexecuted when amethod call invokes it. If it is possible
for that code to cause anexception to be thrown, either directly or indirectly, which is not
caught by it, then the method must have athrows clausestating this in its heading. We do this
by writing thereserved wordthrows followed by the kind(s) of exception, after themethod
parameter list. For example, thecharAt() instance methodof thejava.lang.String class
throws an exception if the givenstring index is not in range.

public char charAt(int index) throws IndexOutOfBoundsException
{

...
} // charAt

21039

5.31 Method: that throws an exception: RuntimeException (page 358)

As another example, suppose in some program we have aclasswhich providesmutable ob-
jects representing customer details. Aninstanceof the class is allowed to have the customer
name changed, but the new name is not allowed to be empty.

public class Customer
{

private String familyName, firstNames;
...
public void setName(String requiredFamilyName, String requiredFirs tNames)

throws IllegalArgumentException
{

if (requiredFamilyName == null || requiredFirstNames == null

|| requiredFamilyName.equals("") || requiredFirstNames .equals(""))
throw new IllegalArgumentException("Name cannot be null or empty") ;

familyName = requiredFamilyName;
firstNames = requiredFirstNames;

} // setName
...

} // class Customer

5.31 Method: that throws an exception: RuntimeException (page 358)

Generally, everyexceptionthatpossiblycan bethrown by amethod, either directly by athrow
statementor indirectly via another method, etc., must either be caught by the method, or it must
say in itsthrows clausethat it throws the exception. However, Java relaxes this rule for certain
kinds of exception known asRuntimeException . These represent common erroneous situa-
tions which are usually avoidable and for which we typicallywrite code to ensure they do not
happen. Thejava.lang.RuntimeException classis a kind ofException , and examples of
more specific classes which are kinds ofRuntimeException includeArrayIndexOutOfBoundsException ,
IllegalArgumentException ,NumberFormatException , ArithmeticException andNullPointerException
(all from thejava.lang package).

It would be a major inconvenience tohaveto always declare that these common cases might
happen, or to explicitlycatch them, in situations where we know they will not bethrown due
to the way we have written the code. So, for these kinds of exception, Java leaves it as an option
for us to declare whether they might be thrown by a method. Forexample, in the following
method there is anarray reference, and also an (implicit)array element access. These could
in principle result in aNullPointerException and anArrayIndexOutOfBoundsException
respectively. The Javacompiler is not clever enough to be able to reason whether such an
exception can actually occur, whereas we know they cannot because of the way our code works.

private int sum(int[] array)
{

21040

5.32 Method: generic methods (page 522)

if (array == null)
return 0;

int sum = 0;
for (int element : array)

sum += element;
return sum;

} // sum

On the other hand, the following methodcan cause some kinds ofRuntimeException – if
given anull reference or anempty array. Java still cannot know this without us declaring it
in the heading.

private double mean(int[] array)
throws NullPointerException, ArrayIndexOutOfBoundsException

{

int sum = array[0];
for (int index = 1; index <= array.length; index++)

sum += array[index];
return sum / array.length;

} // sum

For code which is intended forsoftware reuse, it is a good idea for us to be disciplined about
this relaxation of the normal rule. If we write a method that can throw some exception which
is aRuntimeException , because we have not written the code in a way which always avoids
the possibility, or indeed we explicitly throw such an exception, then we should still declare it
in the method heading, even though we are not forced to.

Exceptions for which we must either have acatch clauseor list in athrows clauseare known
aschecked exceptions, and those for which the rule is relaxed, that isRuntimeException and
its specific kinds, are known asunchecked exceptions.

5.32 Method: generic methods (page 522)

A generic methodis amethodwhich has one or moretype parameters written within angled
brackets (<>) just before thereturn type in the method heading. These are used in a similar
way to type parameters of ageneric class, but apply only to the method. When we write a
method call for a generic method, we can supplytype arguments for the type parameters.
Generic methods may be defined inside a generic or non-generic class, and may beinstance
methods orclass methods. However, they are of most use asclass methods, because generic
features of instance methods areusuallybest achieved via type parameters for the wholeclass.

The following symbolic example is a class method with two type parameters.

21041

5.33 Method: generic methods: bound type parameter (page 526)

public static <T1, T2> void myGenericMethod(T1[] anArray, T2 aValue)
{

... Code here that uses T1 and T2 as types.

... Some restrictions apply,

... such as we cannot make instances of T1, or T2.
} // myGenericMethod

This takes (areferenceto) anarray of sometype, T1[] and also (a reference to) anobject of
typeT2. The actual types forT1 andT2 can be supplied as type arguments when the method is
called. For example, assuming the above is defined in a class calledMyClassWithGenericMethod ,
then the following could be a call to it.

Date[] aDateArray = ...
String aString = ...

MyClassWithGenericMethod.<Date, String>myGenericMeth od(aDateArray, aString);

Notice that the type arguments are written, within angled brackets (<>), after the dot (.) sep-
arating the class name from the method name – they are not class type parameters, and so are
not written after the class name, but instead they occur before the method name. There is also a
peculiarity to watch out for. Normally, if we call a class method from within the class where it
is defined, we do not need to prepend the class name and a dot(.), but if we are going to supply
type arguments then we must. And for a generic instance method, we must similarly use the
this referenceand prependthis and a dot.

However, the good news is that we canomit the type arguments completely when we call a
generic method, and in nearly all cases thecompiler is able to work them out from the types
of themethod arguments.

5.33 Method: generic methods: bound type parameter (page 526)

The type parameters of ageneric methodcan bebound type parameters as they can be
with generic classes. For example, here is aclass methodthat return s the largest element,
according tonatural ordering , of anarray of items which areComparable with themselves.

public class MaxArray
{

public static <ArrayType extends Comparable<ArrayType>>
ArrayType getMax(ArrayType[] anArray)
throws IllegalArgumentException

{

try

{

21042

ArrayType result = anArray[0];
for (int index = 1; index < anArray.length; index++)

if (result.compareTo(anArray[index]) < 0)
result = anArray[index];

return result;
} // try
catch (ArrayIndexOutOfBoundsException e)
{ throw new IllegalArgumentException("Array must be non-empty", e); }

catch (NullPointerException e)
{ throw new IllegalArgumentException("Array must exist", e); }

} // getMax

} // class MaxArray

This could be used as follows.

String[] aStringArray = { "the", "cat", "vaporized", "on", "the", "mat" };
String maxInAStringArray = MaxArray.getMax(aStringArra y);

The compiler was able to figure out thetype argument, and so ourmethod call above is
equivalent to the following.

String maxInAStringArray = MaxArray.<String>getMax(aSt ringArray);

6 Command line arguments

6.1 Command line arguments: program arguments are passed tomain
(page 17)

Programs can be givencommand line arguments which typically affect their behaviour. Ar-
guments given to a Java program are strings of textdata, and there can be any number of them
in a list. In Java,String[] means ‘list of strings’. We have to give a name for this list, and
usually we call itargs . The chosen name allows us to refer to the given data from within the
program, should we wish to.

public static void main(String[] args)

21043

6.2 Command line arguments: program arguments are accessedby index (page 26)

6.2 Command line arguments: program arguments are accessedby in-
dex (page 26)

The command line arguments given to themain method are alist of strings. These are
the text data string arguments supplied on thecommand line. The strings areindexed by
integers (whole numbers) starting from zero. We can access the individual strings by placing
the index value in square brackets after the name of the list.So, assuming that we call the list
args , thenargs[0] is the first command line argument given to the program, if there is one.

6.3 Command line arguments: length of the list (page 79)

Thecommand line arguments passed to themain method are alist of strings. We can find
the length of a list by writing a dot followed by the wordlength , after the name of the list. For
example,args.length yields anint value which is the number of items in the listargs .

6.4 Command line arguments: list index can be a variable (page 79)

The index used to access the individual items from alist of strings does not have to be an
integer literal , but can be anint variable or indeed anarithmetic expression. For example,
the following code adds together a list ofintegers given ascommand line arguments.

int sumOfArgs = 0;
for (int argIndex = 0; argIndex < args.length; argIndex = argIndex + 1)

sumOfArgs = sumOfArgs + Integer.parseInt(args[argIndex]);
System.out.println("The sum is " + sumOfArgs);

The benefit of being able to use avariable, rather than an integer literal is that the access can
be done in aloop which controls the value of the variable: thus the actual value used as the
index is not the same each time.

7 Type

7.1 Type (page 36)

Programs can process various different kinds ofdata, such as numbers, text data, images etc..
The kind of a data item is known as itstype.

21044

7.2 Type: String (page 135)

7.2 Type: String (page 135)

The type of text data strings, such asstring literal values andconcatenations of such, is
calledString in Java.

7.3 Type: String: literal (page 18)

In Java, we can have astring literal , that is a fixed piece of text to be used asdata, by enclosing
it in double quotes. It is called a string literal, because itis a type of data which is a string of
characters, exactly as listed. Such a piece of data might be used as a message to the user.

"This is a fixed piece of text data -- a string literal"

7.4 Type: String: literal: must be ended on the same line (page 21)

In Java,string literal s must be ended on the same line they are started on.

7.5 Type: String: literal: escape sequences (page 49)

We can have anew line characterembedded in astring literal by using theescape sequence
\n . For example, the following code will print out three lines on standard output.

System.out.println("This text\nspans three\nlines.");

It will generate the following.

This text
spans three
lines.

There are other escape sequences we can use, including the following.

21045

7.6 Type: String: concatenation (page 26)

Sequence Name Effect
\b Backspace Moves the cursor back one place, so the nextchar-

acter will over-print the previous.
\t Tab (horizontal tab) Moves the cursor to the next ‘tab stop’.
\n New line (line feed) Moves the cursor to the next line.
\f Form feed Moves to a new page on many (text) printers.
\r Carriage return Moves the cursor to the start of the current line, so

characters will over-print those already printed.
\" Double quote Without the backslash escape, this would mark the

end of the string literal.
\’ Single quote This is just for consistency – we don’t need to es-

cape a single quote in a string literal.
\\ Backslash Well, sometimes you want the backslash character

itself.

Note: System.out.println() always ends the line with the platform dependentline separa-
tor , which on Linux is a new line character but on Microsoft Windows is acarriage return
character followed by a new line character. In practice you may not notice the difference, but
the above code is not strictly the same as using three separate System.out.println() calls
and is not 100% portable.

7.6 Type: String: concatenation (page 26)

The + operator, when used with two stringoperands, produces a string which is thecon-
catenationof the two strings. For example"Hello " + "world" produces a string which is
Hello (including the space) concatenated with the stringworld , and so has the same value as
"Hello world" .

There would not be much point concatenating together twostring literal s like this, compared
with having one string literal which is already the text we want. We would be more likely to
use concatenation when at least one of the operands is not a fixed value, i.e. is avariable value.
For example,"Hello " + args[0] produces a string which isHello (including the space)
concatenated with the firstcommand line argumentgiven when the program isrun .

The resulting string can be used anywhere that a single string literal could be used. For ex-
ampleSystem.out.println("Hello " + args[0]) would print the resulting string on the
standard output.

7.7 Type: String: conversion: from int (page 38)

The Javaoperator + is used for bothaddition andconcatenation– it is anoverloaded op-
erator. If at least one of theoperands is atext data string, then Java uses concatenation,
otherwise it uses addition. When only one of the two operandsis a string, and the other is

21046

7.8 Type: String: conversion: from double (page 55)

some othertype of data, for example anint, the Javacompiler is clever enough to understand
the programmer wishes that data to be converted into a stringbefore the concatenation takes
place. It is important to note the difference between aninteger and the decimal digit string we
usually use to represent it. For example, theinteger literal 123 is anint, a number; whereas
thestring literal "123" is a text data string – a string of 3 separatecharacters.

Suppose thevariable noOfPeopleToInviteToTheStreetParty had the value51, then the
code

System.out.println("Please invite " + noOfPeopleToInvit eToTheStreetParty);

would print out the following text.

Please invite 51

The number51 would be converted to the string"51" and then concatenated to the string
"Please invite " before being processed bySystem.out.println() .

Furthermore, for our convenience, there is a separate version of System.out.println() that
takes a singleint rather than a string, and prints its decimal representation. Thus, the code

System.out.println(noOfPeopleToInviteToTheStreetPar ty);

has the same effect as the following.

System.out.println("" + noOfPeopleToInviteToTheStreet Party);

7.8 Type: String: conversion: from double (page 55)

The Javaconcatenation operator, +, for joining text data strings can also be used to convert
adouble to a string. For example, theexpression"" + 123.4 has the value"123.4" .

7.9 Type: String: conversion: from object (page 177)

It is quite common forclasses to have aninstance methodwhich is designed to produce a
String representation of anobject. It is conventional in Java for suchmethods to be called
toString . For example, aPoint class withx andy instance variables might have the follow-
ing toString() method.

21047

7.10 Type: String: conversion: from object: null reference(page 211)

public String toString()
{

return "(" + x + "," + y + ")";
} // toString

For convenience, whenever the Javacompiler finds anobject referenceas anoperand of the
concatenation operatorit assumes that the object’stoString() method is to be invoked to
produce the requiredString . For example, consider the following code.

Point p1 = new Point(10, 40);
System.out.println("The point is " + p1.toString());

Thanks to the compiler’s convenient implicit assumption about toString() , the above code
could, and probably would, have been written as follows.

Point p1 = new Point(10, 40);
System.out.println("The point is " + p1);

For our further convenience, there is a separate version ofSystem.out.println() that takes
any single object rather than a string, and prints itstoString() . Thus, the code

System.out.println(p1);

has the same effect as the following.

System.out.println("" + p1);

7.10 Type: String: conversion: from object: null reference(page 211)

For convenience, whenever the Javacompiler finds anobject referenceas anoperand of the
concatenation operatorit assumes that the object’stoString() instance methodis to be
invoked to produce the requiredString . However, the reference might be thenull reference
in which case there is no object on which to invoketoString() , so instead, the string"null"
is used.

In fact, assumingsomeString is someString andmyVar is avariable of a reference type,
then the code:

someString + myVar

21048

7.11 Type: int (page 36)

is actually treated as follows.

someString + (myVar == null

? "null"
: (myVar.toString() == null ? "null" : myVar.toString()))

The same applies to the first operand of string concatenationif that is an object reference.

For this reason, most Java programmers prefer to use"" + myVar rather thanmyVar.toString()
when they wish to convert the object referenced bymyVar to a string, because it avoids the pos-
sibility of an exceptionif myVar contains the null reference.

7.11 Type: int (page 36)

One of thetypes of data we can use in Java is calledint. A data item which is anint is an
integer (whole number), such as0, -129934 or 982375 , etc..

7.12 Type: double (page 54)

Another of thetypes of data we can use in Java is known asdouble. A data item which is a
double is a real (fractional decimal number), such as0.0 , -129.934 or 98.2375 , etc.. The
type is calleddouble because it uses a means of storing the numbers calleddouble precision.
On computers, real numbers are only approximated, because they have to be stored in a finite
amount of memory space, whereas in mathematics we have the notion of infinite decimals.
The double precision storage approach uses twice as much memory per number than the older
single precisiontechnique, but gives numbers which are much more precise.

7.13 Type: casting an int to a double (page 79)

Sometimes we have anint value which we wish to be regarded as adouble. The process of
conversion is known ascasting, and we can achieve it by writing(double) in front of theint.
For example,(double)5 is thedouble value5.0 . Of course, we are most likely to use this
feature to cast the value of anint variable , rather than aninteger literal .

7.14 Type: boolean (page 133)

There is atype in Java calledboolean, and this is the type of allconditions used inif else
statements andloops. It is named after the English mathematician, George Boolewhose work

21049

7.15 Type: long (page 145)

in 1847 established the basis of modern logic[12]. The type contains just twoboolean literal
values calledtrue andfalse. For example,5 <= 5 is aboolean expression, which, because
it has novariables in it, always has the same value whenevaluated. Whereas theexpression
age1 < age2 || age1 == age2 && height1 <= height2 has a value which depends on
the values of the variables in it.

7.15 Type: long (page 145)

The type int allows for the storage ofintegers in the range−231 through to 231−1. This
is because it uses fourbytes, i.e. 32binary digit s. 231−1 is 2147483647. Although this is
plenty for most purposes, we sometimes need whole numbers ina bigger range. The typelong
representslong integers and uses eight bytes, i.e. 64bits. A long variable can store numbers
from −263 through to 263−1. The value of 263−1 is 9223372036854775807.

A long literal is written with anL on the end, to distinguish it from anint literal , as in-15L
and2147483648L .

7.16 Type: short (page 145)

The type short representsshort integers using twobytes, i.e. 16binary digit s. A short
variable can store numbers from−215 through to 215−1. The value of 215−1 is 32767. We
would typically use this type when we have a huge number ofintegers, which happen to lie in
the restricted range, and we are concerned about the amount of memory (orfile space) needed
to store them.

7.17 Type: byte (page 145)

The type byte representsintegers using just onebyte, i.e. 8binary digit s. A byte variable
can store numbers from−27 through to 27−1. The value of 27−1 is 127.

7.18 Type: char (page 145)

Characters in Java are represented by thetype char. A char variable can store a singlechar-
acter at any time.

21050

7.19 Type: char: literal (page 145)

7.19 Type: char: literal (page 145)

A character literal can be written in our program by enclosing it in single quotes. For example
’J’ is a character literal.

7.20 Type: char: literal: escape sequences (page 146)

When writing acharacter literal we can use the sameescape sequences that are available
within string literal s. These include the following.

char backspace = ’\b’; char tab = ’\t’;
char newline = ’\n’; char formFeed = ’\f’;
char carriageReturn = ’\r’; char doubleQuote = ’\"’;
char singleQuote = ’\’’; char backslash = ’\\’;

7.21 Type: char: comparisons (page 238)

Values of type char may be compared using the usual<, <=, ==, != , >= and > relational
operators. Characters are stored in the computer using numericcharacter codes – each one
has a unique number – and when twocharacters are compared, the result is formed from the
same comparison on the two numbers.

Generally speaking we do not need to know the actual numbers used for specific characters.
However, there are certain properties that are useful to know, such as that the number for’A’ is
oneless thanthat for ’B’ , which is one less than the number used for’C’ , and so on. In other
words, the upper case alphabetic letters have contiguous character codes. The same is true of
the lower case alphabet, and also the digit characters’0’ through to’9’ . The character codes
for the digits are all less than those for the upper case letters, which are all less than those for
the lower case letters.

For example, the followingmethodchecks whether a given character is a lower case alphabetic
character.

public static boolean isLowerCase(char aChar)
{

return aChar >= ’a’ && aChar <= ’z’;
} // isLowerCase

A method similar to this is provided in the standardclassjava.lang.Character . That one
also works forlocales (i.e. languages) other than English.

21051

7.22 Type: char: casting to and from int (page 238)

Another property worth remembering is that, for the Englishcharacters, the code for each upper
case letter is 32 less than the code for the corresponding lower case letter.

7.22 Type: char: casting to and from int (page 238)

The numericcharacter codeused to store acharacter may be obtained bycasting a char

value to anint. We can achieve this by writing(int) in front of it. For example,(int)’A’
is the numeric code used to store a capital A.

We can also convert in the opposite direction, by casting anint to a char. For example, at
the end of the following fragment of code, thevariable letterB will contain an upper case B
character.2

int codeForA = (int)’A’;
char letterB = (char) (codeForA + 1);

The followingmethod returns the upper case equivalent of a given character, if it is a lower
case letter, or the original character if not. It assumes availability of the methodisLowerCase() .

public static char toUpperCase(char aChar)
{

if (isLowerCase(aChar))
return (char) ((int)aChar - (int)’a’ + (int)’A’);

else

return aChar;
} // toUpperCase

A method similar to this is provided in the standardclassjava.lang.Character . That one
also works forlocales (i.e. languages) other than English.

7.23 Type: float (page 146)

The type float is for real (fractional decimal) numbers, using thefloating point represen-
tation with a single precisionstorage. It uses only fourbytes per number, compared with
double which employsdouble precisionstorage and so is far more accurate, but needs eight
bytes per number.

A float literal is written with anf or F on the end, as in0.0F , -129.934F or 98.2375f .

2Actually, the cast in the first line fromchar to int would be implicit, but it is good style to write it anyway.
In the second line, the cast fromint to char is required.

21052

7.24 Type: primitive versus reference (page 162)

7.24 Type: primitive versus reference (page 162)

Eachtype in Java is either aprimitive type or areference type. Values of primitive types have
a size which is known atcompile time. For example, everyint value comprises fourbytes.
Types for which the size of an individual value is only known at run time , such asclasses, are
known as reference types because the values are always accessed via areference.

7.25 Type: array type (page 287)

Whilst it is true thatarrays in Java areobjects, they are treated somewhat differently from
instances of classes. To obtain anarray type, we do not write a class and then use its name.
Instead we simply write thetype of the array elements followed by a left and then a right
square bracket ([]). The type of the elements is known as thearray base type.

For example,int[] is the type of arrays withint as the base type, that is ones which contain
elements that areint values.String[] is the type of arrays which contain elements that are
references toString objects.

7.26 Type: enum type (page 309)

An enum type is a feature which arrived in Java 5.0 that allows us to identify a type with an
enumeration of named values. For example, we might have fourpossible directions in some
game involving movement.

private enum Direction { UP, DOWN, LEFT, RIGHT }

This behaves rather like we have defined aclasscalledDirection , and fourvariables, each
referring to a uniqueinstanceof Direction . So, for example, we can have the following.

private Direction currentDirection = Direction.UP;
private Direction nextDirection = null;

If we wanted the type to be available in other classes, then wewould declare it aspublic.

Enum types can also be used inswitch statements.

switch (currentDirection)
{

case UP: ...

21053

7.27 Type: enum type: access from another class (page 312)

case DOWN: ...
case LEFT: ...
case RIGHT: ...
default: ...

} // switch

7.27 Type: enum type: access from another class (page 312)

If we declare apublic enum type, then it can be used in otherclasses. We access it using dots
(.) rather like we do for other kinds of access from another class.

For example, if the enum typeDirection is defined in the classMovement , then we could refer
to it, and one of its values as follows.

Movement.Direction requestedDirection = Movement.Direc tion.UP;

8 Standard API

8.1 Standard API: System: out.println() (page 18)

The simplest way to print a message onstandard output is to use:

System.out.println("This text will appear on standard out put");

System is a class(that is, a piece of code) that comes with Java as part of itsapplication
program interface (API) – a large number of classes designed to support our Java programs.
Inside System there is a thing calledout , and this has amethod (section of code) called
println . So overall, this method is calledSystem.out.println . The method takes a string
of text given to it in its brackets, and displays that text on the standard output of the program.

8.2 Standard API: System: out.println(): with no argument (page 98)

TheclassSystem also contains a version of theout.println() methodwhich takes no argu-
ments. This outputs nothing except anew line. It has the same effect as callingSystem.out.println()
with an empty string as its argument, that is

System.out.println();

21054

8.3 Standard API: System: out.println(): with any argument(page 427)

has the same effect as the following.

System.out.println("");

So, for example

System.out.print("Hello world!");
System.out.println();

would have the same effect as the following.

System.out.println("Hello world!");

System.out.println() with no argument is most useful when we need to end a line which
has been generated a piece at a time, or when we want to have a blank line.

8.3 Standard API: System: out.println(): with any argument (page 427)

Theclass
java.lang.System has anoverloaded methodversion ofout.println() andout.print()
for everyprimitive type of method argument, as well asjava.lang.Object . Each treats its
argument,(arg) , as("" + arg) . So, anint is output in decimal representation, and a non-
null object referencehas itstoString() instance methodused, etc..

Also, there is a version ofSystem.out.println() and System.out.print() that take a
character array, char[] , and print the characters in it.

8.4 Standard API: System: out.print() (page 98)

TheclassSystem contains amethodout.print() which is almost the same asout.println() .
The only difference is thatout.print() does not produce anew lineafter printing its output.
This means that any output printed after this will appear on the same line. For example

System.out.print("Hello");
System.out.print(" ");
System.out.println("world!");

would have the same effect as the following.

21055

8.5 Standard API: System: out.printf() (page 126)

System.out.println("Hello world!");

System.out.print() is most useful when the output is being generated a piece at a time,
often within aloop.

8.5 Standard API: System: out.printf() (page 126)

TheclassSystem contains amethod out.printf() , introduced in Java 5.0, which is similar
to out.print() except that we can use it to produce formatted output of values.

A simple use of this is to take aninteger value and have it printed withspace paddingto a
given positive integer field width. This means the output contains leading spaces followed by
the usual representation of the integer, such that the number of characters printed is at least
the given field width.

The following code fragment includes an example which prints a string representation of123 ,
with leading spaces so that the result has a width of ten characters.

System.out.println("1234567890");
System.out.printf("%10d%n", 123);

Here is the effect of these twostatements.

1234567890
123

The first%tellsout.printf() that we wish it to format something, the10 tells it the minimum
total width to produce, and the following letter says what kind of conversion to perform. Ad
tells it to produce the representation of a decimal whole number, which is given after theformat
specifier string, as the secondmethod argument. The%n tells out.printf() to output the
platform dependentline separator.

The method can be asked to format a floating point value, such as adouble. In such cases we
give the minimum total width, a dot (.), the number of decimal places, and anf conversion.
For example,

System.out.printf("%1.2f%n", 123.456);

needs more than the given minimum width of1, and so produces the following.

21056

8.6 Standard API: System: out.printf(): zero padding (page140)

123.46

Whereas, the format specifier in

System.out.println("1234567890");
System.out.printf("%10.2f%n", 123.456);

prints a total of ten characters for the number, two of which are decimal places.

1234567890
123.46

8.6 Standard API: System: out.printf(): zero padding (page140)

We can ask
System.out.printf() for zero padding rather thanspace paddingof a number by placing
a leading zero on the desired minimum width in theformat specifier.

The following code fragment contains an example which prints a string representation of123 ,
with leading zeroes so that the result is tencharacters long.

System.out.println("1234567890");
System.out.printf("%010d%n", 123);

Here is the effect.

1234567890
0000000123

Similarly,

System.out.println("1234567890");
System.out.printf("%010.2f%n", 123.456);

produces the following.

1234567890
0000123.46

21057

8.7 Standard API: System: out.printf(): string item (page 289)

8.7 Standard API: System: out.printf(): string item (page 289)

We can ask
System.out.printf() to print aString item by usings as the conversioncharacter in the
format specifier. For example,

System.out.println("123456789012345");
System.out.printf("%15s%n", "Hello World");

has this effect.

123456789012345
Hello World

If the item following the format specifier string is not itself a string, but some otherobject then
its toString() is used. For example, assuming aPoint classis defined as expected, then the
code

System.out.println("123456789012345");
System.out.printf("%15s%n", new Point(3,4));

produces the following.

123456789012345
(3.0,4.0)

8.8 Standard API: System: out.printf(): fixed text and many items (page
289)

We can giveSystem.out.printf() a format string with more than oneformat specifier in
it, together with more than one value to be printed. What is more, any text in the format string
which is not part of a format specifier is simply printed as it appears. Also, if no width is given
for a format specifier then its natural width is used.

For example,

Point p1 = new Point(3,4);
Point p2 = new Point(45, 60);
System.out.printf("The distance between %s and %s is %1.2f .%n",

p1, p2, p1.distanceFromPoint(p2));

21058

8.9 Standard API: System: out.printf(): left justification(page 300)

produces the following output.

The distance between (3.0,4.0) and (45.0,60.0) is 70.00.

8.9 Standard API: System: out.printf(): left justification (page 300)

If we wish an item printed bySystem.out.printf() to be left justified, rather than right
justified, then we can place a hyphen in front of the width in the format specifier.

For example,

System.out.println("123456789012345X");
System.out.printf("%-15sX%n", "Hello World");

produces the following.

123456789012345X
Hello World X

8.10 Standard API: System: in (page 187)

Inside theSystem class, in addition to theclass variablecalledout , there is another calledin .
This contains areferenceto anobject which represents thestandard input of the program.

Perhaps surprisingly, unlike thestandard output, the standard input in Java is not easy to use
as it is, and we typically access it via some other means, suchas aScanner .

8.11 Standard API: System: in: is an InputStream (page 452)

The class variablecalled in , inside thejava.lang.System class (i.e. System.in) holds
a reference to anobject which is aninstanceof java.io.InputStream . This enables our
programs to access thebytes of theirstandard input.

8.12 Standard API: System: getProperty() (page 195)

When a program isrunning, varioussystem property values hold information about such
things as the Java version and platform being used, the home directory of the user, etc.. The

21059

8.13 Standard API: System: getProperty(): line.separator(page 195)

class methodSystem.getProperty() takes the name of such a property as itsString method
parameter andreturn s the correspondingString value.

8.13 Standard API: System: getProperty(): line.separator(page 195)

System.getProperty() maps the nameline.separator onto thesystem property which
is theline separator for the platform in use.

8.14 Standard API: System: currentTimeMillis() (page 262)

The class java.lang.System contains aclass methodcalled currentTimeMillis which
return s the current date and time expressed as the number of milliseconds since midnight,
January 1, 1970. This value is along.

8.15 Standard API: System: err.println() (page 344)

Inside thejava.lang.System class, in addition toclass variables calledout and in there
is another callederr . This contains areference to anobject which represents thestandard
error of the program. Via this object we have themethods System.err.println() and
System.err.print() . These cause their givenmethod arguments to be displayed on the
standard error.

8.16 Standard API: System: out: is an OutputStream (page 468)

Theclass variablecalledout , inside thejava.lang.System class(i.e. System.out) holds
a reference to anobject which is aninstanceof java.io.OutputStream . This enables our
programs to producebytes on theirstandard output.

More precisely,System.out is an instance ofjava.io.PrintStream , which is asubclassof
OutputStream . Unlike basicOutputStream objects, aPrintStream object also hasinstance
methods print() , println() and (since Java 5.0)printf() , which take variousmethod
arguments and write theircharacter representations as bytes.

8.17 Standard API: System: err: is an OutputStream (page 468)

Theclass variablecallederr , inside thejava.lang.System class(i.e. System.err) holds a
referenceto anobject which is aninstanceof java.io.PrintStream , asubclassof

21060

8.18 Standard API: Integer: parseInt() (page 41)

java.io.OutputStream . This enables our programs to producebytes on theirstandard er-
ror .

8.18 Standard API: Integer: parseInt() (page 41)

One simple way to turn atext data string, say "123" into the integer (whole number) it
represents is to use the following.

Integer.parseInt("123");

Integer is a class(that is, a piece of code) that comes with Java. InsideInteger there is a
method (section of code) calledparseInt . This method takes a text data string given to it in
its brackets, converts it into anint andreturn s that number. Arun time error will occur if
the given string does not represent anint value.

For example

int firstArgument;
firstArgument = Integer.parseInt(args[0]);

would take the firstcommand line argumentand, assuming it represents a number (i.e. it is a
string of digits with a possible sign in front), would turn itinto the number it represents, then
store that number infirstArgument . If instead the first argument was some other text data
string, it would produce a run time error.

8.19 Standard API: Integer: as a box for int (page 487)

In addition to containingclass methods to manipulateinteger related values, the standardclass
java.lang.Integer can be used to wrap upint values asobjects. One of theconstructor
methods of the class may be given anint, and this makes aninstanceof Integer wrapping
up, or boxing, that number. Theinstance method intValue() can then later be used to
retrieve the boxed number from the object. This effectivelyallows anint, which is aprimitive
type, to be treated as though it is anobject.

8.20 Standard API: Integer: as a box for int: autoboxing (page 494)

Use of the standardclassjava.lang.Integer to wrap upint values asobjects is so com-
mon, that since Java 5.0 thecompiler can make their use implicit by providingautoboxingand

21061

8.21 Standard API: Integer: as a box for int: works with collections (page 548)

auto-unboxing. Whenever anint value is given where anInteger is required, theint is au-
tomaticallyboxed (wrapped up) into anew Integer object. And whenever (areferenceto) an
Integer is given where anint is required, theintValue() instance methodis automatically
used to unbox theint value.

For example, here is some code that explicitly wraps up and extracts anint.

Integer anInteger = new Integer(10);
int anInt = anInteger.intValue() + 1;
System.out.println(anInt);

The following code would have exactly the same effect – both would print out11.

Integer anInteger = 10;
int anInt = anInteger + 1;
System.out.println(anInt);

Whilst this convenience can often make theint andInteger types work seamlessly together,
it is important to remember the difference between them.int is a primitive type , whereas
Integer is areference type. So, for example, anarray of tenint values would take as much
memory as ten times the space of oneint value (plus a little). By contrast, an array of ten
Integer objects would hold tenreferences, each referring to an object storing anint value.

8.21 Standard API: Integer: as a box for int: works with collections
(page 548)

The standardclass java.lang.Integer implements java.lang.Comparable<Integer> ,
and provides the instance methodscompareTo() , and alsoequals() andhashCode() in such
a way thatInteger objects behave properly asComparable s and inhash tables, etc..

8.22 Standard API: Double: parseDouble() (page 54)

One simple way to turn atext data string, say"123.456" into the real (fractional decimal
number) it represents is to use the following.

Double.parseDouble("123.456");

Double is a class(that is, a piece of code) that comes with Java. InsideDouble there is a
method (section of code) calledparseDouble . This method takes a text data string given to
it in its brackets, converts it into andouble andreturn s that number. Arun time error will
occur if the given string does not represent a number. For example

21062

8.23 Standard API: Math: pow() (page 73)

double firstArgument = Double.parseDouble(args[0]);

would take the firstcommand line argumentand, assuming it represents a number, would
turn it into the number it represents, then store that numberin firstArgument . To represent
a number, the string must be a sequence of digits, possibly with a decimal point and maybe a
negative sign in front. If instead the first argument was someother text data string, it would
produce a run time error.

8.23 Standard API: Math: pow() (page 73)

Java does not have anoperator to compute powers. Instead, there is a standardclasscalled
Math which contains a collection of usefulmethods, includingpow() . This takes two numbers,
separated by a comma, and gives the value of the first number raised to the power of the second.

For example, theexpressionMath.pow(2, 10) produces the value of 210 which is1024 .

8.24 Standard API: Math: abs() (page 87)

Java does not have anoperator to yield theabsolute valueof a number, that is, its value
ignoring its sign. Instead, the standardclasscalledMath contains amethod, calledabs . This
method takes a number and gives its absolute value.

For example, theexpressionMath.abs(-2.7) produces the value2.7 , as does the expression
Math.abs(3.4 - 0.7) .

8.25 Standard API: Math: PI (page 87)

The standardclasscalledMath contains a constant value calledPI that is set to the most ac-
curate value ofπ that can be represented using thedouble numbertype. We can refer to this
value usingMath.PI , as in the following example.

double circleArea = Math.PI * circleRadius * circleRadius;

8.26 Standard API: Math: random() (page 205)

The standardclassjava.lang.Math contains aclass methodcalled random . This takes no
method arguments andreturn s somedouble value,r, such that 0.0 ≤ r < 1.0 is true. The
value is chosen in a pseudo random fashion, using analgorithm which exhibits the character-
istics of an approximately uniform distribution of random numbers.

21063

8.27 Standard API: Math: round() (page 289)

8.27 Standard API: Math: round() (page 289)

The standardclass java.lang.Math contains aclass methodcalled round . This takes a
double method argument and return s along value which is the nearest whole number to
the given one. If we wish to turn that result into anint then we would of coursecast it, as in
the following example.

int myPennies = ... Obtain this somehow.
int myNearlyPounds = (int) Math.round(myPennies / 100.0);

8.28 Standard API: Scanner (page 188)

Since the advent of Java 5.0 there is a standardclasscalled java.util.Scanner which pro-
vides some simple features to read inputdata. In particular, it can be used to readSystem.in
by passing that to itsconstructor method as follows.

import java.util.Scanner;
...
Scanner inputScanner = new Scanner(System.in);
...

Each time we want a line of text we invoke thenextLine() instance method.

String line = inputScanner.nextLine();
...

Or maybe we want to read aninteger usingnextInt() .

int aNumber = inputScanner.nextInt();
// Skip past anything on the same line following the number.
inputScanner.nextLine();
...

Essentially,System.in accesses thestandard input as a stream ofbytes of data. AScanner
turns these bytes into a stream ofcharacters (i.e.char values) and offers a variety of instance
methods to scan these into whole lines, or various tokens separated bywhite space, such as
spaces, tabs and end of lines. Some of these instance methodsare listed below.

21064

8.29 Standard API: Scanner: for a file (page 306)

Public method interfaces for classScanner (some of them).

Method Return Arguments Description
nextLine String Returns all the text from the current point in the

character stream up to the next end of line, as a
String .

nextInt int Skips any spaces, tabs and end of lines and then
reads characters which represent an integer, and
return s that value as anint. It does not skip
spaces, tabs or end of lines following those char-
acters. The characters must represent an integer, or
a run time error will occur.

nextBoolean boolean Similar tonextInt() except for aboolean value.
nextByte byte Similar tonextInt() except for abyte value.
nextDouble double Similar tonextInt() except for adouble value.
nextFloat float Similar tonextInt() except for afloat value.
nextLong long Similar tonextInt() except for along value.
nextShort short Similar tonextInt() except for ashort value.

There are very many more features in this class, including the ability to change what is consid-
ered to be characters that separate the various tokens.

8.29 Standard API: Scanner: for a file (page 306)

The standardclass java.util.Scanner can be used to read the contents of afile, such as
my-data.txt , as follows.

import java.io.File;
import java.util.Scanner;

...
Scanner input = new Scanner(new File("my-data.txt"));

java.io.File is a standard class used to represent file names.

Having obtained aScanner for the file, we can then use its variousinstance methods, such as
nextLine() , to read thedata.

If we desire to read every line of the file, we might also use thehasNextLine() instance
method – thisreturn strue or false depending on whether there are more lines in the file.

while (input.hasNextLine())

21065

8.30 Standard API: String (page 233)

{

String line = input.nextLine();
...

} // while

8.30 Standard API: String (page 233)

Strings in Java areobjects of the standardclassjava.lang.String . This class is defined in
the same way as any other, but the Java language also knows about string literal s and the string
concatenation operator. So, strings are semi-built-in to Java. All the other built-in types are
primitive type s, butString is areference type.

When we write

String name = "Java";

we are asking for an object oftype String to be created, containing the textJava , and for a
reference to that object to be placed in thevariable calledname. So, even though we do not
use the special wordnew, whenever we write a string literal in our code, we are askingfor a
new String object to be created.

J a v a

String name
A String object

The text of aString is stored as a sequence ofcharacters, each of these is a member of the
char type. This text cannot be changed:String s areimmutable objects.

8.31 Standard API: String: some instance methods (page 234)

Strings haveinstance methods, some of which are listed below.

21066

8.32 Standard API: String: format() (page 301)

Public method interfaces for classString (some of them).

Method Return Arguments Description
charAt char int This return s thecharacter at the specifiedstring

index. The characters are indexed from zero up-
wards.

compareTo int String Compares the text of this with the given other, us-
ing lexicographic ordering (alphabetic/dictionary
order). Returns0 if they are equal, a negativeint if
this is less thanthe other, a positiveint otherwise.

endsWith boolean String Returnstrue if and only if the text of this string
ends with that of the given other.

equals boolean String Returnstrue if and only if this string contains the
same text as the given other.

indexOf int String Returns the index within this string of the first oc-
currence of the given other string, or -1 if it does not
occur.

length int Returns the length of this string.
startsWith boolean String Returnstrue if and only if the text of this string

starts with that of the given other.
substring String int Returns anewstring that is a substring of this string.

The substring begins with the character at the given
index and extends to the end of this string.

substring String int, int Returns a new string that is a substring of this string.
The substring begins at the first given index and ex-
tends to the character at the second index minus one.

toLowerCase String Returns a new string which is the same as this one
except that all upper case letters are replaced with
their corresponding lower case letter.

toUpperCase String Returns a new string which is the same as this one
except that all lower case letters are replaced with
their corresponding upper case letter.

8.32 Standard API: String: format() (page 301)

The standardclassjava.lang.String has aclass methodto produce formattedString rep-
resentations of values. It is calledformat and was introduced in Java 5.0. It works with a
format specifier string in precisely the same way asSystem.out.printf() except that the
result isreturn ed rather than printed.

For example, the code

21067

8.33 Standard API: String: split() (page 313)

System.out.println(String.format("The distance betwee n %s and %s is %1.2f.",
p1, p2, p1.distanceFromPoint(p2)));

has precisely the same effect as the following. (Observe the%n.)

System.out.printf("The distance between %s and %s is %1.2f .%n",
p1, p2, p1.distanceFromPoint(p2));

8.33 Standard API: String: split() (page 313)

One of the manyinstance methods in the standardclassjava.lang.String is calledsplit .
It return s anarray of String s in which eacharray element is a portion of theString
to which the instance method belongs. How the string is splitinto portions depends on the
method argumentgiven tosplit() . This argument is anotherString containing aregular
expressiondescribing what separates the portions.

Here are some examples.

String and regular expression Resulting array
"The-cat-sat-on-the-mat".split("-") { "The", "cat", "sat",

"on", "the", "mat" }
"The--cat--sat--on--the--mat".split("-") { "The", "", "cat",

"", "sat", "", "on",
"", "the", "", "mat" }

"The--cat--sat--on--the--mat".split("-+") { "The", "cat", "sat",
"on", "the", "mat" }

"The-cat--sat---on----the--mat".split("-+") { "The", "cat", "sat",
"on", "the", "mat" }

In the last two examples, the regular expression"-+" means “one or more hyphens”.

8.34 Standard API: String: implements Comparable (page 520)

The standardclass
java.lang.String implements java.lang.Comparable , with an implementation ofcompareTo()
which provides alexicographic ordering. This means it orders the strings in dictionary order
based on the values of thecharacters in them.

Since Java 5.0, whenComparable became ageneric interface, String actually implements
Comparable<String> .

21068

8.35 Standard API: Character (page 342)

public final class String implements Comparable<String>
{

...
@Override
public int compareTo(String other)
{

...
} // compareTo
...

} // class String

8.35 Standard API: Character (page 342)

The standardclassjava.lang.Character contains manyclass methods to help with manip-
ulation ofcharacters, including the following.

Public method interfaces for classCharacter (some of them).

Method Return Arguments Description

isWhitespace boolean char Returnstrue if the given char is a white space
character, (e.g.space character, tab character,
new line character), or false otherwise.

isDigit boolean char Returnstrue if the givenchar is a digit (e.g.’0’ ,
’8’), or false otherwise.

isLetter boolean char Returnstrue if the givenchar is a letter (e.g.’A’ ,
’a’), or false otherwise.

isLetterOrDigit boolean char Returnstrue if the givenchar is a letter or a digit,
or false otherwise.

isLowerCase boolean char Returnstrue if the givenchar is a lower case letter,
or false otherwise.

isUpperCase boolean char Returnstrue if the givenchar is an upper case let-
ter, orfalse otherwise.

toLowerCase char char Returns the lower case equivalent of the givenchar

if it is an upper case letter, or the givenchar if it is
not.3

toUpperCase char char Returns the upper case equivalent of the givenchar

if it is a lower case letter, or the givenchar if it is
not.1

3For maximum portability of code to different regions of the world, it is better to use theString versions of
these methods.

21069

8.36 Standard API: Object (page 422)

8.36 Standard API: Object (page 422)

All objects in Java are alsoinstances of the standardclasscalledjava.lang.Object . Unless
a class is explicitly declared toextend some other class, then it implicitly extendsObject
directly. This means all classes in Java reside in a singleinheritance hierarchy, which is a
tree structure with the classObject at its root. Every class has asuperclass, except for the
classObject .

TheObject class has oneconstructor method and it takes nomethod arguments.

public class Object
{

...
public Object()
{

... Code here to actually create an object,

... allocating memory for it, etc..
} // Object
...

} // class Object

8.37 Standard API: Object: toString() (page 427)

Theclassjava.lang.Object has atoString() instance method. This produces aString
consisting of (a representation of) thetype of theobject followed by a’@’ and ahexadecimal
(i.e. base 16) number which is (by default) unique to the object. Classes which do not provide
their own versioninherit this default one.

8.38 Standard API: Object: equals() (page 521)

The standardclassjava.lang.Object contains aninstance methodequals() which is de-
signed to model the notion ofequivalencebetween twoobjects. The definition is as follows.

public boolean equals(Object other)
{

return this == other;
} // equals

This is inherit ed by all other classes, and so by default allobjects have thisfinestnotion of
equivalence: two objects areequivalent if and only if they areequal, i.e. are the same object.
This is often too fine, and so, many classesoverride this definition with one which models the
appropriate notion of equivalence for that particular class.

21070

8.39 Standard API: Object: hashCode() (page 548)

8.39 Standard API: Object: hashCode() (page 548)

Every object has aninstance methodcalled hashCode , defined in thejava.lang.Object
class, which is designed to help with classes that use ahash table to storeobjects, such as
java.util.HashSet . The definition inObject is such that distinct objects have a distinct
hash code, (usually) based on the memory address of thereferenceat run time . Classes that
override equals() should really also overridehashCode() with one thatreturn s the same
hash code for objects that areequivalent, rather than distinct, and yet tend to return a different
code for those that are not equivalent. This is so that they will work properly if needed to be
used as elements of aHashSet , etc..

MyClass v1 = new MyClass(...);
MyClass v2 = new MyClass(...);

if (v1.equals(v2) && v1.hashCode() != v2.hashCode())
System.out.println("Your hash tables will not work!");

else if (! v1.equals(v2) && v1.hashCode() == v2.hashCode())
System.out.println("Your hash tables may operate slowly. ");

8.40 Standard API: Object: hashCode(): making a good definition (page
566)

Classes thatoverride equals() ought to also overridehashCode() with one thatreturn s the
same value forequivalent objects. Thus, thefunction should be based on the sameinstance
variables that are used to defineequivalencein equals() . A goodhash codefunction should
tend to give different hash codes for objects that are not equivalent, otherwisehash tables that
use them will have too many clashes. One way of achieving a good spread of numbers in a hash
code, is to turn these instance variables into numbers, if they are not already so (e.g. by using
their ownhashCode()) and multiply each by a different, arbitrarily chosen,prime number,
before adding the products together.

8.41 Standard API: Arrays (page 518)

The standardclassjava.util.Arrays provides variousclass methods to perform complex
manipulations ofarrays.

8.42 Standard API: Arrays: sort() (page 518)

One of theclass methods in java.util.Arrays is calledsort , and it takes anarray of
Object s which itsorts into theirnatural ordering . For this to work withoutthrow ing anex-

21071

8.43 Standard API: Arrays: copyOf() (page 523)

ception, the items in the array must all be oftype Comparable and bemutually comparable.
Thealgorithm used is calledmerge sort. This is much more efficient thanbubble sort.

In fact, theclassalso contains several more class methods calledsort , one for each array of a
primitive type , such asint[] , etc.. There is even a second version for each type which takes
threemethod parameters: an array, and a pair ofint indices, f rom andto. These sort all the
items in the array which have anarray index ≥ f rom and< to. This enablespartially filled
arrays to be sorted by makingf rom= 0 andto = the number ofarray elements used.

8.43 Standard API: Arrays: copyOf() (page 523)

The standardclassjava.util.Arrays provides, since Java 6.0, anotherclass methodcalled
copyOf which makes a copy of anarray . It is ageneric methodand so can handle any kind
of reference typearray. Thenewarray returned can be bigger or smaller than the original, and
thearray elements will be the same as in the original for thearray index positions they have
in common.

public static <T> T[] copyOf(T[] original, int newLength)
{

T[] result = ... make a new array of length newLength,
... where result[i] = original[i]
... for all 0 <= i < min(original.length, newLength)

return result;
} // copyOf

The singletype parameter, T, specifies thetype of the array elements, and the twomethod
parameters are the original array of typeT[] , and anint required length for the copy. It
return s a new array of typeT[] . (The method uses reflection – an advanced topic not covered
by this book – to get around the restrictions on the use of typeparameters.)

In fact, the class also contains several more class methods calledcopyOf , one for each array of
aprimitive type , such asint[] , etc..

These methods are particularly useful forarray extension.

SomeType[] myArray = new SomeType[INITIAL_SIZE];
...
if ... myArray is now full and I need more room

myArray = Arrays.copyOf(myArray, myArray.length * RESIZE _FACTOR);
...

21072

8.44 Standard API: Comparable interface (page 520)

8.44 Standard API: Comparable interface (page 520)

The standardinterface java.lang.Comparable provides atype for objects which can be
compared with similar items. Having one type for this notionenables generalalgorithms to be
implemented, such as ones forsorting and efficient searching ofarrays. It was introduced in
Java 1.2, but at Java 5.0 it became ageneric interface. It contains just oneinstance method
definition.

public interface Comparable<T>
{

int compareTo(T o);
} // Comparable

Any non-abstract classthat implements this interface, must contain amethod implementa-
tion of compareTo() which provides atotal order for its objects. Thetype parameter, T, is
for thetype of objects that can be compared andclasses that (directly) implementComparable
are intended to supply their own class name as thetype argument. For example, if we say
that classSomeClass implementsComparable<SomeClass> we are stating thatSomeClass
provides aninstance methodcompareTo() , enabling aSomeClass object to compare itself
with a given other one.

If a class implementsComparable , then the order defined bycompareTo() is known as the
natural ordering of that class.

8.45 Standard API: Comparable interface: compareTo() and equals()
(page 522)

A classthat implements java.lang.Comparable should have amethod implementationof
compareTo() which is consistent withequals() , wherever this is possible. By consistent, we
mean that

x.equals(y)

always gives the same value as the following.

x.compareTo(y) == 0

21073

9 Statement

9.1 Statement (page 18)

A command in a programming language, such as Java, which makes the computer perform
a task is known as astatement. System.out.println("I will output whatever I am
told to") is an example of a statement.

9.2 Statement: simple statements are ended with a semi-colon (page 18)

All simple statements in Java must be ended by a semi-colon (;). This is a rule of the Java
languagesyntax.

9.3 Statement: assignment statement (page 37)

An assignment statementis a Javastatementwhich is used to give a value to avariable, or
change its existing value. This is only allowed if the value we are assigning has atype which
matches the type of the variable.

9.4 Statement: assignment statement: assigning a literal value (page 37)

We can assign aliteral value, that is a constant, to avariable using anassignment statement
such as the following.

noOfPeopleLivingInMyStreet = 47;

We use a singleequal sign(=), with the name of the variable to the left of it, and the valuewe
wish it to be given on the right. In the above example, theinteger literal 47 will be placed into
the variablenoOfPeopleLivingInMyStreet . Assuming the variable was declared as anint
variable then this assignment would be allowed because 47 is anint.

9.5 Statement: assignment statement: assigning an expression value (page
38)

More generally than just assigning aliteral value, we can use anassignment statementto
assign the value of anexpressionto avariable. For example, assuming we have the variable

21074

9.6 Statement: assignment statement: updating a variable (page 70)

int noOfPeopleToInviteToTheStreetParty;

then the code

noOfPeopleToInviteToTheStreetParty = noOfPeopleLiving InMyStreet + 4;

whenexecuted, wouldevaluatethe expression on the right of theequal sign(=) and then place
the resulting value in the variablenoOfPeopleToInviteToTheStreetParty .

9.6 Statement: assignment statement: updating a variable (page 70)

Javavariables have a name and a value, and this value can change. For example, the following
code is one way of working out the maximum of two numbers.

int x;
int y;
int z;
... Code here that gives values to x, y and z.

int maximumOfXYandZ = x;
if (maximumOfXYandZ < y)

maximumOfXYandZ = y;
if (maximumOfXYandZ < z)

maximumOfXYandZ = z;

See that the variablemaximumOfXYandZ is given a value which then might get changed, so that
after the end of the secondif statement it holds the correct value.

A very common thing we want the computer to do, typically inside a loop, is to perform a
variable update. This is when a variable has its value changed to a new value which is based
on its current one. For example, the code

count = count + 1;

will add one to the value of the variablecount . Such examples remind us that anassignment
statementis not a definition ofequality, despite Java’s use of the singleequal sign!

21075

9.7 Statement: assignment statement: updating a variable:shorthand operators (page 87)

9.7 Statement: assignment statement: updating a variable:shorthand
operators (page 87)

The need to undertake avariable update is so common, that Java provides variousshorthand
operators for certain types of update.

Here are some of the most commonly used ones.

Operator Name Example Longhand meaning
++ postfix increment x++ x = x + 1
-- postfix decrement x-- x = x - 1
+= compound assignment: add to x += y x = x + y
-= compound assignment: subtract fromx -= y x = x - y
*= compound assignment: multiply by x *= y x = x * y
/= compound assignment: divide by x /= y x = x / y

The point of thesepostfix increment, postfix decrementandcompound assignmentopera-
tors is not so much to save typing when a program is being written, but to make the program
easier to read. Once you are familiar with them, you will benefit from the shorter and more
obvious code.

There is also a historical motivation. In the early days of the programming language C, from
which Java inherits much of itssyntax, these shorthandoperators caused thecompiler to
produce more efficient code than their longhand counterparts. The modern Java compiler with
the latest optimization technology should remove this concern.

9.8 Statement: assignment statement: is an expression (page 450)

In Java, theassignment statementis actually anexpression. The= symbol is anoperator,
which takes avariable as its leftoperand, and an expression as its right operand. It evaluates
the expression, assigns it to the variable,and thenyields the value of the expression as its result.

This allows us to writehorrible code, such as the following.

int x = 10, y = 20, z;

int result = (z = x * y) + (y = z * 2);

This is an example of the more general idea ofside effect expressions – expressions that
change the value of some variables while they are beingevaluated. Generally speaking, side
effect expressions are bad idea, as their use leads to code that is difficult to understand and
hence maintain – as the above example illustrates!

21076

9.9 Statement: if else statement (page 60)

However, there are a few appropriate uses of treating assignment statements as expressions.
One is when we wish to assign the same value to a number of variables in one go.

x = y = z = 10;

Unlike most operators,= hasright associativity, which means the above example is the same
as

x = (y = (z = 10));

and so makes sense. However, situations where we wish to giveseveral variables the same
value at once are not actually very common.

9.9 Statement: if else statement (page 60)

The if else statementis one way in Java of havingconditional execution. It essentially con-
sists of three parts: acondition or boolean expression, a statementwhich will be executed
when the condition istrue (thetrue part), and another statement which will be executed when
the condition isfalse (thefalse part). The whole statement starts with thereserved wordif.
This is followed by the condition, written in brackets. Nextcomes the statement for the true
part, then the reserved wordelse and finally the statement for the false part.

For example, assuming we have thevariable noOfPeopleToInviteToTheStreetParty con-
taining the number suggested by its name, then the code

if (noOfPeopleToInviteToTheStreetParty > 100)
System.out.println("We will need a big sound system!");

else

System.out.println("We should be okay with a normal HiFi.");

will cause the computer to compare the current value ofnoOfPeopleToInviteToTheStreetParty
with the number100 , and if it is greater then print out the messageWe will need a big
sound system! or otherwise print out the messageWe should be okay with a normal
HiFi. – it will never print out both messages. Notice the brackets around the condition and
the semi-colons at the end of the two statements inside the ifelse statement. Notice also the
way we lay out the code to make it easy to read, splitting the lines at sensible places and adding
moreindentation at the start of the two inner statements.

21077

9.10 Statement: if else statement: nested (page 62)

9.10 Statement: if else statement: nested (page 62)

Thetrue part or false part statements inside anif else statementmay be any valid Javastate-
ment, including other if else statements. When we place an if elsestatement inside another, we
say they arenested.

For example, study the following code.

if (noOfPeopleToInviteToTheStreetParty > 300)
System.out.println("We will need a Mega master 500 Watt amp lifier!");

else

if (noOfPeopleToInviteToTheStreetParty > 100)
System.out.println("We will need a Maxi Master 150 Watt amp lifier!");

else

System.out.println("We should be okay with a normal HiFi.");

Depending on the value ofnoOfPeopleToInviteToTheStreetParty , this will report one of
threemessages. Notice the way we have laid out the code above – thisis following the usual
rules that inner statements have moreindentation than those they are contained in, so the
second if else statement has more spaces because it lives inside the first one. However, typically
we make an exception to this rule for if else statements nested in the false part of another, and
we would actually lay out the code as follows.

if (noOfPeopleToInviteToTheStreetParty > 300)
System.out.println("We will need a Mega master 500 Watt amp lifier!");

else if (noOfPeopleToInviteToTheStreetParty > 100)
System.out.println("We will need a Maxi Master 150 Watt amp lifier!");

else

System.out.println("We should be okay with a normal HiFi.");

This layout reflects ourabstract thinking that the collection of statements isone construct
offering three choices, even though it is implemented usingtwo if else statements. This idea
extends to cases where we want many choices, using many nested if else statements, without
the indentation having to increase for each choice.

9.11 Statement: if statement (page 64)

Sometimes we want the computer toexecutesome code depending on acondition, but do
nothing if the condition isfalse. We could implement this using anif else statementwith an
emptyfalse part. For example, consider the following code.

21078

9.12 Statement: compound statement (page 66)

if (noOfPeopleToInviteToTheStreetParty > 500)
System.out.println("You may need an entertainment licens e!");

else ;

This will print the message if thevariable has a valuegreater than 500 , or otherwise exe-
cute theempty statementbetween thereserved wordelse and the semi-colon. Such empty
statements do nothing, as you would probably expect!

It is quite common to wish nothing to be done when the condition isfalse, and so Java offers
us theif statement. This is similar to the if else statement, except it simply does not have the
wordelse, nor a false part.

if (noOfPeopleToInviteToTheStreetParty > 500)
System.out.println("You may need an entertainment licens e!");

9.12 Statement: compound statement (page 66)

The Javacompound statementis simply a list of any number ofstatements between an open-
ing left brace ({) and a closing right brace (}). You could think of the body of amethod, e.g.
main() , as being a compound statement if that is helpful. The meaning is straightforward:
when the computerexecutes a compound statement, it merely executes each statement inside
it, in turn. More precisely of course, the Javacompiler turns thesource codeinto byte code
that has this effect when thevirtual machine executes thecompiled program.

We can have a compound statement wherever we can have any kindof statement, but it is most
useful when combined with statements which have another statement within them, such asif
else statements andif statements.

For example, the following code reports three messages whenthevariable has a valuegreater
than 500 .

if (noOfPeopleToInviteToTheStreetParty > 500)
{

System.out.println("You may need an entertainment licens e!");
System.out.println("Also hire some street cleaners for th e next day?");
System.out.println("You should consider a bulk discount o n lemonade!");

}

When thecondition of the if statement istrue, the body of the if statement is executed. This
single statement is itself a compound statement, and so the three statements within it are exe-
cuted. It is for this sort of purpose that the compound statement exists.

21079

9.13 Statement: while loop (page 71)

Note how we lay out the compound statement, with the opening brace at the sameindentation
as the if statement, the statements within it having extra indentation, and the closing brace
lining up with the opening one.

Less usefully, a compound statement can be empty, as in the following example.

if (noOfPeopleToInviteToTheStreetParty > 500)
{

System.out.println("You may need an entertainment licens e!");
System.out.println("Also hire some street cleaners for th e next day?");
System.out.println("You should consider a bulk discount o n lemonade!");

}

else {}

As you might expect, the meaning of an empty compound statement is the same as the meaning
of anempty statement!

9.13 Statement: while loop (page 71)

The while loop is one way in Java of havingrepeated execution. It essentially consists of
two parts: acondition, and astatementwhich will beexecuted repeatedly while the condition
is true. The whole statement starts with thereserved wordwhile. This is followed by the
condition, written in brackets. Next comes the statement tobe repeated, known as theloop
body.

For example, the following code is a long winded and inefficient way of giving thevariable x
the value21.

int x = 1;
while (x < 20)

x = x + 2;

The variable starts off with the value1, and then repeatedly has2 added to it, until it is no
longerless than20. This is when theloop ends, andx will have the value21.

Notice the brackets around the condition and the semi-colonat the end of the statement inside
the loop. Notice also the way we lay out the code to make it easyto read, splitting the lines at
sensible places and adding moreindentation at the start of the inner statement.

Observe the similarity between the while loop and theif statement – theonly difference in
syntax is the first word. There is a similarity in meaning too: the while loop executes its body
zero ormore times, whereas the if statement executes its body zero orone time. However,
if statements arenot loops and you should avoid the common novice phrase “if loop”when
referring to them!

21080

9.14 Statement: for loop (page 77)

9.14 Statement: for loop (page 77)

Another kind ofloop in Java is thefor loop, which is best suited for situations when the number
of iterations of theloop body is known before the loop starts. We shall describe it using the
following simple example.

for (int count = 1; count <= 10; count = count + 1)
System.out.println("Counting " + count);

Thestatementstarts with thereserved wordfor, which is followed by three items in brackets,
separated by semi-colons. Then comes the loop body, which isa single statement (often a
compound statementof course). The first of the three items in brackets is afor initialization ,
which is performed once just before the loop starts. Typically this involves declaring avariable
and giving an initial value to it, as in the above exampleint count = 1 . The second item is
thecondition for continuing the loop – the loop will onlyexecuteand will continue to execute
while that condition istrue. In the example above the condition iscount <= 10 . Finally, the
third item, afor update, is a statement which is executed at theendof each iteration of the
loop, that isafter the loop body has been executed. This is typically used to change the value
of the variable declared in the first item, as in our examplecount = count + 1 .

So the overall effect of our simple example is: declarecount and set its value to1, check that it
is less than10, print outCounting 1 , add one tocount , check again, print outCounting 2 ,
add one tocount , check again, and so on until the condition isfalse when the value ofcount
has reached11.

We do not really need the for loop, as thewhile loop is sufficient. For example, the code above
could have been written as follows.

int count = 1;
while (count <= 10)
{

System.out.println("Counting " + count);
count = count + 1;

}

However you will see that the for loop version has placed together all the code associated with
the control of the loop, making it easier to read, as well as a little shorter.

There is one very subtle difference between the for loop and while loop versions of the example
above, concerning thescopeof the variablecount , that is the area of code in which the variable
can be used. Variables declared in the initialization part of a for loop can only be used in the for
loop – they do not exist elsewhere. This is an added benefit of using for loops when appropriate:
the variable, which is used solely to control the loop, cannot be accidentally used in the rest of
the code.

21081

9.15 Statement: for loop: multiple statements in for update(page 136)

9.15 Statement: for loop: multiple statements in for update(page 136)

Javafor loops are permitted to have more than onestatementin their for update, that is, the
part which isexecuted after theloop body. Rather than always being one statement, this part
may be a list of statements with commas (,) between them.

One appropriate use for this feature is to have a for loop thatexecutes twice, once each for the
two possible values of aboolean variable.

For example, the following code prints out scenarios to helptrain people to live in the city of
Manchester!

boolean isRaining = true;
boolean haveUmbrella = true;
for (int countU = 1; countU <= 2; countU++, haveUmbrella = !haveUmbre lla)
for (int countR = 1; countR <= 2; countR++, isRaining = !isRaining)
{

System.out.println("It is" + (isRaining ? "" : " not") + " rai ning.");
System.out.println

("You have " + (haveUmbrella ? "an" : "no") + " umbrella.");
if (isRaining && !haveUmbrella)

System.out.println("You get wet!");
else

System.out.println("You stay dry.");
System.out.println();

} // for

9.16 Statement: statements can be nested within each other (page 92)

Statements that control execution flow, such asloops andif else statements have otherstate-
ments inside them. These inner statements can be any kind of statement, including those that
control the flow of execution. This allows quite complexalgorithms to be constructed with
unlimited nesting of different and same kinds of control statements.

For example, one simple (but inefficient) way to print out thenon-negative multiples ofx which
lie betweeny (≥ 0) andz inclusive, is as follows.

for (int number = 0; number <= z; number += x)
if (number >= y)

System.out.println("A multiple of " + x + " between " + y
+ "and " + z + " is " + number);

21082

9.17 Statement: switch statement with breaks (page 107)

9.17 Statement: switch statement with breaks (page 107)

Java provides aconditional execution statementwhich is ideal for situations where there are
many choices based on some value, such as a number, beingequal to specific fixed values for
each choice. It is called theswitch statement. The following example code will applaud the
user when they have correctly guessed the winning number of100 , encourage them when they
are one out, or insult them otherwise.

int userGuess = Integer.parseInt(args[0]);

switch (userGuess)
{

case 99: case 101:
System.out.println("You are close!");
break;

case 100:
System.out.println("Bingo! You win!");
System.out.println("You have guessed correctly.");
break;

default:
System.out.println("You are pathetic!");
System.out.println("Have another guess.");
break;

} // switch

The switch statement starts with thereserved wordswitch followed by a bracketedexpres-
sion of a type that has discrete values, such asint (notably notdouble). The body of the
statement is enclosed in braces, ({ and}), and consists of a list of entries. Each of these starts
with a list of labels, comprising the reserved wordcase followed by a value and then a colon
(:). After the labels we have one or more statements, typicallyending with abreak statement.
One (at most) label is allowed to be the reserved worddefault followed by a colon – usually
written at the end of the list.

When a switch statement isexecuted, the expression isevaluated and then each label in the
body is examined in turn to find one whose value is equal to thatof the expression. If such
a match is found, the statements associated with that label are executed, down to the special
break statementwhich causes the execution of the switch statement to end. Ifa match is not
found, then instead the statements associated with thedefault label are executed, or if there
is nodefault then nothing is done.

9.18 Statement: switch statement without breaks (page 110)

A less common form of theswitch statementis when we omit thebreak statements at the end
of the list of statements associated with each set ofcase labels. This, perhaps surprisingly,

21083

9.18 Statement: switch statement without breaks (page 110)

causes execution to “fall through” to the statements associated with the next set ofcase labels.
Most of the time we donot want this to happen – so we have to be careful to remember the
break statements.

We can also mix the styles – having break statements for some entries, and not for some others.
The following code is a bizarre, but interesting way of doingsomething reasonably simple. It
serves as an illustration of the switch statement, and as a puzzle for you. It takes twointegers,
the second of which is meant to be in the range one to ten, and outputs a result which is some
function of the two numbers. What is that result?

int value = Integer.parseInt(args[0]);
int power = Integer.parseInt(args[1]);

int valueToThePower1 = value;
int valueToThePower2 = valueToThePower1 * valueToThePower1;
int valueToThePower4 = valueToThePower2 * valueToThePower2;
int valueToThePower8 = valueToThePower4 * valueToThePower4;

int result = 1;

switch (power)
{

case 10: result *= valueToThePower1;
case 9: result *= valueToThePower1;
case 8: result *= valueToThePower8;

break;
case 7: result *= valueToThePower1;
case 6: result *= valueToThePower1;
case 5: result *= valueToThePower1;
case 4: result *= valueToThePower4;

break;
case 3: result *= valueToThePower1;
case 2: result *= valueToThePower2;

break;
case 1: result *= valueToThePower1;

break;
} // switch

System.out.println(result);

If you find the semantics of the switch statement somewhat inelegant, then do not worry – you
are not alone! Java inherited it from C, where it was designedmore to ease the work of the
compiler than to be a good construct for the programmer. You will find the switch statement is
less commonly used than theif else statement, and the majority of times you use it, you will
want to have break statements on every set ofcase labels. Unfortunately, due to them being
optional, accidentally missing them off does not cause acompile time error.

21084

9.19 Statement: do while loop (page 112)

9.19 Statement: do while loop (page 112)

Thedo while loop is the third way in Java of havingrepeated execution. It is similar to the
while loop but instead of having thecondition at the start of theloop, it appears at the end.
This means the condition isevaluated after the loop body is executed rather than before. The
whole statementstarts with thereserved word do. This is followed by the statement to be
repeated, then the reserved wordwhile and finally the condition, written in brackets.

For example, the following code is a long winded and inefficient way of giving thevariable x
the value21.

int x = 1;
do

x += 2;
while (x < 20);

Observe the semi-colon that is needed after the condition.

Of course, the body of the do while loop might be acompound statement, in which case we
might lay out the code as follows.

int x = 0;
int y = 100;
do

{

x++;
y--;

} while (x != y);

The above is a long winded and inefficient way of giving both the variablesx andy the value
50.

Note that, because the condition is evaluatedafter the body is executed, the body is executed at
least once. This is in contrast to the while loop, which mighthave have its body executed zero
times.

9.20 Statement: for-each loop: on arrays (page 293)

Java 5.0 introduced a newstatement called theenhanced for statement, more commonly
known as thefor-each loop.4

4The popular name for this loop may seem odd, because the wordeach is not used in it, but the meaning of
the statement is similar to a concept in languages such as Perl[17], which does use the phrasefor each . And we
actually say ‘for each’ when we read out the Java statement.

21085

9.20 Statement: for-each loop: on arrays (page 293)

It is best explained by example. Suppose we have the following.

double[] myFingerLengths = new double[10];

... Code here to assign values to the array elements.

Then we can find the sum of thearray elements with the following for-each loop.

double myTotalFingerLength = 0;
for (double fingerLength : myFingerLengths)

myTotalFingerLength += fingerLength;

This is saying that we want toloop over all the elements in thearray which isreferenced by
myFingerLengths , storing each element in turn in the variablefingerLength , and adding it to
the value ofmyTotalFingerLength . In other words ‘for eachfingerLength in myFingerLengths ,
addfingerLength to myTotalFingerLength ’.

The above for-each loop is actually a shorthand for the following for loop.

double myTotalFingerLength = 0;
for (int index = 0; index < myFingerLengths.length; index++)
{

double fingerLength = myFingerLengths[index];
myTotalFingerLength += fingerLength;

} // for

Here is the general case of the for-each loop when used with arrays, whereanArray is a variable
referring to some array witharray base type SomeType and elementName is any suitable
variable name.

for (SomeType elementName : anArray)
... Statement using elementName.

This general case is simply a shorthand for the following.

for (int index = 0; index < anArray.length; index++)
{

SomeType elementName = anArray[index];
... Statement using elementName.

} // for

21086

9.21 Statement: for-each loop: on collections (page 562)

A for-each loop can and should be used instead of a for loop in places where we wish to loop
over all the elements of a single array, and thearray index is onlyused to access (not change)
the elements of that array. In other words, for processing where the element values matter, but
their position in the array is not directly used, and there isonly one array. So, for example, the
following code cannot be replaced with a for-each loop.

int weightedSum = 0;
for (int index = 0; index < numbers.length; index++)

weightedSum += numbers[index] * index;

Neither can this.

for (int index = 0; index < numbers.length; index++)
otherNumbers[index] = numbers[index];

Finally, a common error (even in some Java text books!) is to think that a for-each loop can be
used tochangethe array elements. For example, the following codecompiles without errors,
but it does not do what you might expect!

int[] numbers = new int[100];
for (int number : numbers)

number = 10;

The for-each loop above is a shorthand for the following, which you can see achieves nothing.

for (int index = 0; index < numbers.length; index++)
{

int number = numbers[index];
number = 10;

} // for

9.21 Statement: for-each loop: on collections (page 562)

The enhanced for statementintroduced in Java 5.0 and more commonly known as thefor-
each loop, can be used withcollections as well asarrays. Suppose we have someCollection
for which we want to process each of the elements using itsIterator .

Collection<T> c = ...

Iterator<T> i = c.iterator();
while (i.hasNext())

... Statement with one use of i.next().

21087

9.22 Statement: try statement (page 344)

If, as in the above abstract example, we wish to process all the elements of the collection in the
sameloop, then we can use a for-each loop, as follows.

Collection<T> c = ...

for (T e : c)
... Statement using e.

This is a shorthand for precisely the followingfor loop.

Collection<T> c = ...

for (Iterator<T> i = c.iterator(); i.hasNext();)
{

T e = i.next();
... Statement using e.

} // for

As with arrays, the for-each loop is only suitable if we want to process all the elements using
the one loop.

9.22 Statement: try statement (page 344)

The try statement is used to implementexception catchingin Java. It uses thereserved
wordstry andcatch, as follows.

try

{

... Code here that might cause an exception to happen.
} // try
catch (Exception exception)
{

... Code here to deal with the exception.
} // catch

Thestatementconsists of two parts, thetry block and thecatch clause. When the try state-
ment isexecuted, the code inside the try block is obeyed as usual. However, if at some point
during this execution anexceptionoccurs, aninstanceof java.lang.Exception is created,
and then control immediately transfers to the catch clause.The newly createdException ob-
ject is available to the code in the catch clause, as anexception parameter, which is a bit like

21088

9.23 Statement: try statement: with multiple catch clauses(page 347)

amethod parameter. For this reason, we must declare a name (andtype) for the exception in
the round brackets following the reserved wordcatch.

For example, the followingmethod computes the mean average of anarray of int values,
dealing with the possibility of thereference being thenull reference or the array being an
empty array, by catching the exception andreturn ing zero instead.

private double average(int[] anArray)
{

try

{

int total = anArray[0];
for (int i = 1; i < anArray.length; i++)

total += anArray[i];
return total / (double) anArray.length;

} // try
catch (Exception exception)
{

// Report the exception and carry on.
System.err.println(exception);
return 0;

} // catch
} // average

Note: unlike most Javastatements that may contain other statements, the two parts of the try
statement must both becompound statements, even if they only contain one statement!

9.23 Statement: try statement: with multiple catch clauses(page 347)

Thetry statement may have more than onecatch clause, each of which is designed tocatcha
different kind ofexception. When an exception occurs in thetry block , the execution control
transfers to the first matching catch clause, if there is one,or continues to propagate out of the
try statement if there is not.

For example, consider the followingmethod which finds the largest of some numbers stored
in anarray of String objects.

private int maximum(String[] anArray)
{

try

{

int maximumSoFar = Integer.parseInt(anArray[0]);
for (int i = 1; i < anArray.length; i++)
{

21089

9.23 Statement: try statement: with multiple catch clauses(page 347)

int thisNumber = Integer.parseInt(anArray[i]);
if (thisNumber > maximumSoFar)

maximumSoFar = thisNumber;
} // for
return maximumSoFar;

} // try
catch(NumberFormatException exception)
{

System.err.println("Cannot parse item as an int: "
+ exception.getMessage());

return 0;
} // catch
catch(ArrayIndexOutOfBoundsException exception)
{

System.err.println("There is no maximum, as there are no nu mbers!");
return 0;

} // catch
} // maximum

If the arrayreferenced by themethod parameteris anempty array, that is, it has no elements,
then anArrayIndexOutOfBoundsException object will be created when the code tries to
access the firstarray element. This will be caught by the second catch clause. If, on the other
hand, one of the strings in the array does not represent anint then aNumberFormatException
object will be created inside theparseInt() method, and this will be caught by the first catch
clause.

However, if the givenmethod argument was actually thenull reference, that is, there is no
array at all – not even an empty one, then aNullPointerException object is created when
the code tries to follow the array reference to access element zero of it.

int maximumSoFar = Integer.parseInt(anArray[0]);

The codeanArray[0] means “follow the reference in thevariable anArray to the array refer-
enced by it, and then get the value stored atarray index 0 in that array.” In this example there
is no catch clause matching aNullPointerException , so the execution control transfers out
of the try statement altogether, and out of the method. If themethod call was itself inside the
following try statement, then theNullPointerException would get caught there.

try

{

int max = maximum(null);
...

} // try
catch (NullPointerException exception)
{

System.err.println("Silly me!");
} // catch

21090

9.24 Statement: try statement: with finally (page 451)

9.24 Statement: try statement: with finally (page 451)

The try statement may optionally be given afinally block , which is a piece of code that
will be executed at the end of the whole try statement, regardless of whetherthe try block
successfully completes, or if acatch clauseis executed, or if control is beingthrown out of
the try statement.

The general form of atry finally statement is as follows.

try

{

... Code here that might cause an exception to happen.
} // try
catch (SomeException exception)
{

... Code here to deal with SomeException types of exception.
} // catch
catch (AnotherException exception)
{

... Code here to deal with AnotherException types of excepti on.
} // catch
... more catch clauses as required.
finally

{

... Code here that will be run, no matter what,

... as the last thing the statement does.
} // finally

9.25 Statement: throw statement (page 350)

The throw statement is used when we wish our code to trigger theexceptionmechanism of
Java. It consists of thereserved wordthrow, followed by areferenceto anException object.
When thestatementis executed, the Javavirtual machine finds the closesttry statement that
is currently being executed, which has acatch clausethat matches the kind of exception being
thrown, and transfers execution control to that catch clause. If there is no matching catch clause
to be found, then the exception is reported and thethread is terminated.

For example, here wethrow an instanceof the generaljava.lang.Exception classwithout
a specific message.

throw new Exception();

This next one has a message.

21091

throw new Exception("This is the message associated with the excepti on");

And finally, this example is throwing an instance ofjava.lang.NumberFormatException
with a message.

NumberFormatException exception
= new NumberFormatException("Only digits please");

throw exception;

10 Error

10.1 Error (page 20)

When we write thesource codefor a Java program, it is very easy for us to get something
wrong. In particular, there are lots of rules of the languagethat our program must obey in order
for it to be a valid program.

10.2 Error: syntactic error (page 20)

One kind of error we might make in our programs issyntactic errors. This is when we break
thesyntax rules of the language. For example, we might miss out a closing bracket, or insert an
extra one, etc.. This is rather like missing out a word in a sentence of natural language, making
it grammatically incorrect. The sign below, seen strapped to the back of a poodle, contains bad
grammar – it has anis missing.

My other dog an Alsatian.

Syntactic errors in Java result in thecompiler giving us an error message. They can possibly
confuse the compiler, resulting in it thinking many more things are wrong too!

10.3 Error: semantic error (page 22)

Another kind of error we might make is asemantic error, when we obey the rules of the
syntax but what we have written does not make any sense – it has no semantics (meaning).
Another sign on a different poodle might say

My other dog is a Porsche.

21092

10.4 Error: compile time error (page 22)

which is senseless because a Porsche is a kind of car, not a dog.

10.4 Error: compile time error (page 22)

Javasyntactic errors and manysemantic errors can be detected for us by thecompiler when
it processes our program. Errors that the compiler can detect are calledcompile time errors.

10.5 Error: run time error (page 24)

Another kind of error we can get with programs isrun time error s. These are errors which
are detected when the program isrun rather than when it iscompiled. In Java this means the
errors are detected and reported by thevirtual machine, java .

Java calls run time errorsexceptions. Unfortunately, the error messages produced byjava can
look very cryptic to novice programmers. A typical one mightbe as follows.

Exception in thread "main" java.lang.NoSuchMethodError: main

You can get the best clue to what has caused the error by just looking at the words either side
of the colon (:). In the above example, the message is saying thatjava cannot find themethod
calledmain .

10.6 Error: logical error (page 29)

The most tricky kind of error we can make in our programs is alogical error . For these
mistakes we do not get an error message from thecompiler, nor do we get one atrun time
from thevirtual machine. These are the kind of errors for which the Java program we have
written is meaningful as far as Java is concerned, it is just that our program does the wrong
thing compared with what we wanted. There is no way the compiler or virtual machine can
help us with these kinds of error: they are far, far too stupidto understand theproblemwe were
trying to solve with our program.

For this reason, many logical errors, especially very subtle ones, manage to slip through unde-
tected by human program testing, and end up asbugs in the final product – we have all heard
stories of computer generated demands for unpaid bills withnegativeamounts, etc..

21093

11 Execution

11.1 Execution: sequential execution (page 23)

Programs generally consist of more than onestatement, in a list. We usually place these on
separate lines to enhance human readability, although Javadoes not care about that. Statements
in such a list areexecuted sequentially, one after the other. More correctly, the Java compiler
turns each one into correspondingbyte codes, and thevirtual machine executes each collec-
tion of byte codes in turn. This is known assequential execution.

11.2 Execution: conditional execution (page 60)

Having a computer always obey a list of instructions in a certain order is not sufficient to solve
many problems. We often need the computer to do some things only under certain circum-
stances, rather than every time the program isrun . This is known asconditional execution,
because we get the computer toexecutecertain instructionsconditionally, based on the values
of thevariables in the program.

11.3 Execution: repeated execution (page 70)

Having a computer always obey instructions just once withinthe run of a program is not
sufficient to solve many problems. We often need the computerto do some things more than
once. In general, we might want some instructions to beexecuted, zero, one or many times.
This is known asrepeated execution, iteration , or looping. The number of times a loop of
instructions is executed will depend on somecondition involving thevariables in the program.

11.4 Execution: parallel execution – threads (page 253)

Computers appear to be able to perform more than one task at the same time. For example, we
can run several programs at once and they run in parallel. At theoperating systemlevel, each
program runs in a separateprocess, and the computer shares itscentral processing unittime
fairly between the current processes.

The Javavirtual machine has a built-in notion of processes, calledthreads, which allows for
a single program to be doing more than one thing at a time. Whena Java program is started,
the virtual machine creates one thread, called themain thread, which is set off torun the
body of themain method. This executes thestatements in the main method, including the
statements of anymethod calls it finds. Upon reaching the end of the main method, this thread
terminates, which causes the virtual machine to exit if thatwas the only thread existing at the

21094

11.5 Execution: parallel execution – threads: the GUI eventthread (page 254)

time. If, however there are any other threads which have not yet terminated, then the virtual
machine continues to run them. It exits the program only whenall the threads have ended.

11.5 Execution: parallel execution – threads: the GUI eventthread (page
254)

When we have a program that places agraphical user interface(GUI) window on the screen,
the Javavirtual machine creates anotherthread, which we shall call theGUI event thread.
This is created when the first window of the program is shown. As a result of this, the program
doesnot end when themain thread reaches the end of themain method – this is of course
what we want for a program with a GUI.

(In reality, the virtual machine creates several GUI event threads, but it suffices to think of there
being just the one.)

The GUI event thread spends most of its life asleep – quietly doing nothing. When the end user
of the program does something that might be of interest to theprogram, theoperating system
informs the virtual machine, which in turn wakes up the GUI event thread. Such interesting
things include moving the mouse into, out of, or within a window belonging to the program,
pressing a mouse key while the mouse is over such a window, typing a keyboard key while
a window of the program has keyboard focus, etc.. These things are collectively known as
events.

When it is woken up, the GUI event thread looks to see what might have changed as a result of
the end user’s action. For example, he or she may have presseda GUI button belonging to the
program. For each event which is definitely interesting, theGUI event threadexecutes some
code which is designed to process that event. Then it goes back to sleep again.

11.6 Execution: event driven programming (page 254)

A large part of writing programs withgraphical user interfaces (GUIs) is about constructing
the code which will process theevents associated with the end user’s actions. This is known as
event driven programming. Essentially, themain methodsets up the GUI of the program via
method calls, and then it ends. From then on, the code associated with processing GUI events
does all the work – when the end user does things which cause such events to happen. That is,
the program becomes driven by the events.

21095

12 Code clarity

12.1 Code clarity: layout (page 31)

Java does not care how we lay our code out, as long as we use somewhite spaceto separate
adjacent symbols that would otherwise be treated as one symbol if they were joined. For
examplepublic void with no space between the words would be treated as the singlesymbol
publicvoid and no doubt cause acompile time error. So, if we were crazy, we could write
all our programsource codeon one line with the minimum amount of space between symbols!

public class HelloSolarSystem {public static void main(String[]args) {System.out.println("Hello Mercury!");System.out.prin tln("Hello

Oh dear – it ran off the side of the page (and that was with a smaller font too). Let us split it up
into separate lines so that it fits on the page.

public class HelloSolarSystem {public static void main(String[]args) {

System.out.println("Hello Mercury!");System.out.prin tln(
"Hello Venus!");System.out.println("Hello Earth!");Sy stem.out.println
("Hello Mars!");System.out.println("Hello Jupiter!"); System.out.
println("Hello Saturn!");System.out.println("Hello Ur anus!");System.
out.println("Hello Neptune!");System.out.println("Go odbye Pluto!"); }}

Believe it or not, this program would stillcompile andrun okay, but hopefully you will agree
that it is not very easy forus to read. Layout is very important to the human reader, and
programmers must take care and pride in laying out their programs as they are written. So we
split our programsensibly, rather than arbitrarily, into separate lines, and useindentation (i.e.
spaces at the start of some lines), to maximize the readability of our code.

12.2 Code clarity: layout: indentation (page 32)

A classcontains structuresnestedwithin each other. The outer-most structure is the class itself,
consisting of its heading and then containing it’s body within the braces. The body contains
items such as themain method. This in turn consists of a heading and a body contained within
braces.

The idea ofindentation is that the more nested a part of the code is, the more space it has at
the start of its lines. So the class itself has no spaces, but its body, within the braces, has two
or three. Then the body of the main method has two or three more. You should be consistent:
always use the same number of spaces per nesting level. It is also a good idea to avoid using
tab characters as they can often look okay on your screen, but not line up properly when the
code is printed.

21096

12.3 Code clarity: layout: splitting long lines (page 43)

In addition, another rule of thumb is that opening braces ({) should have the same amount of
indentation as the matching closing brace (}). You will find that principle being used through-
out this book. However, some people prefer a style where opening braces are placed at the end
of lines, which this author believes is less clear.

public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello world!");
}

}

12.3 Code clarity: layout: splitting long lines (page 43)

One of the features of good layout is to keep oursource codelines from getting too long. Very
long lines cause the reader to have to work harder in horizontal eye movement to scan the code.
When code with long lines is viewed on the screen, the reader either has to use a horizontal
scroll bar to see them, or make the window so wide that other windows cannot be placed next
to it. Worst of all, when code with long lines is printed on paper there is a good chance that the
long lines will disappear off the edge of the page! At very least, they will be wrapped onto the
next line making the code messy and hard to read.

So a good rule of thumb is to keep your source code lines shorter than 80characters long. You
can do this simply in mosttext editors by never making the text window too wide and never
using the horizontal scroll bar while writing the code.

When we do have astatementthat is quite long, we simply split it into separate lines at care-
fully chosen places. When we choose such places, we bear in mind that most human readers
scan down the left hand side of the code lines, rather than read every word. So, if a line is a
continuation of a previous line, it is important to make thisobvious at the start of it. This means
using an appropriate amount ofindentation, and choosing the split so that the first symbol on
the continued line is not one which could normally start a statement.

A little thought at the writing stage quickly leads to a habitof good practise which seriously
reduces the effort required to read programs once they are written. Due tobug fixing and
general maintenance over the lifetime of a real program, thecode is read many more times than
it is written!

12.4 Code clarity: comments (page 82)

In addition to having careful layout andindentation in our programs, we can also enhance
human readability by usingcomments. These are pieces of text which are ignored by the
compiler, but help describe to the human reader what the program does and how it works.

21097

12.5 Code clarity: comments: marking ends of code constructs (page 83)

For example, every program should have comments at the startsaying what it does and briefly
how it is used. Also,variables can often benefit from a comment before their declaration
explaining what they are used for. As appropriate, there should be comments in the code too,
beforecertain parts of it, explaining what these nextstatements are going to do.

One form of comment in Java starts with the symbol// . The rest of that source line is then the
text of the comment. For example

// This is a comment, ignored by the compiler.

12.5 Code clarity: comments: marking ends of code constructs (page 83)

Another good use ofcomments is to mark every closing brace (}) with a comment saying what
code construct it is ending. The following skeleton examplecode illustrates this.

public class SomeClass
{

public static void main(String[] args)
{

...
while (...)
{

...

...

...
} // while
...

} // main

} // class SomeClass

12.6 Code clarity: comments: multi-line comments (page 189)

Another form ofcomment in Java allows us to have text which spans several lines. These start
with the symbol/* and end with the symbol*/ , which typically will be several lines later in
the code. These symbols, and all text between them, is ignored by thecompiler.

Less usefully, we can have the start and end symbols on the same line, with program code on
either side of the comment, if we wish.

21098

13 Design

13.1 Design: hard coding (page 36)

Programs typically process inputdata, and produce output data. The input data might be
given ascommand line arguments, or it might be supplied by the user through someuser
interface such as agraphical user interfaceor GUI . It might be obtained fromfiles stored on
the computer.

Sometimes input data might be built into the program. Such data is said to behard coded.
This can be quite common while we are developing a program andwe haven’t yet written the
code that obtains the data from the appropriate place. In other cases it might be appropriate to
have it hard coded in the final version of the program, if such data only rarely changes.

13.2 Design: pseudo code (page 73)

As our programs get a little more complex, it becomes hard to write them straight into thetext
editor. Instead we need todesignthembeforewe implement them.

We do not design programs by starting at the first word and ending at the last, like we do when
we implement them. Instead we can start wherever it suits us –typically at the trickiest bit.

Neither do we express our designs in Java – that would be a bad thing to do, as Java forces our
mind to be cluttered with trivia which, although essential in the final code, is distracting during
the design.

Instead, we express ouralgorithm designs inpseudo code, which is a kind of informal pro-
gramming language that has all unnecessary trivia ignored.So, for example, we do not bother
writing the semi-colons at the end ofstatements, or the brackets roundconditions etc.. We
might not bother writing theclassheading, nor themethod heading, if it is obvious to us what
we are designing. And so on.

Also, during design in pseudo code, we can vary the level ofabstraction to suit us – we do not
have to be constrained to use only the features that are available in Java.

13.3 Design: object oriented design (page 184)

When we are developing programs in anobject oriented programming language, such as
Java, we should use the principle ofobject oriented design. We start by identifying theclasses
we shall have in the program, by examining therequirements statementof the problem which

21099

13.4 Design: object oriented design: noun identification (page 185)

the program is to solve. This is recognizing the idea that problems inherently involve interac-
tions between ‘real world’ objects. These will be modelled in our program, by it creating
objects which areinstances of the classes we identify.

In this view then, an object is an entity which has some kind ofobject state which might
change over time, and some kind ofobject behaviourwhich might be based on its state.

From the requirements, we think carefully about the state and the behaviour of the objects in
the problem. Then we decide how to model their behaviour using instance methods, and their
state usinginstance variables. There may, in general, be a need forclass variables andclass
methods too.

13.4 Design: object oriented design: noun identification (page 185)

One way to analyse therequirements statementin order to decide whatclasses to have in the
program, is to simply go through the requirements and list all the nouns and noun phrases we
can find. This is callednoun identification and is useful because the objects inherent in the
solution to most problems actually appear as nouns in the description of the problem. Some of
the nouns will relate toobjects that will exist atrun time , and some will relate to classes in
the program.

It is not the case that every noun found will be a class or an object, of course, and sometimes
we need classes that do not appear as nouns in the requirements. However, the technique is
usually a good way of starting the process.

13.5 Design: object oriented design: encapsulation (page 187)

An important principle inobject oriented designis the idea ofencapsulation. A well designed
classencapsulates the behaviour of theobjects that can be created from it, in such a way
that in order to use the class, one only needs to know about itspublic methods (including
constructor methods) and what they mean, rather than how they work and whatinstance
variables the class may have. To help achieve good encapsulation, we follow the principle of
putting the logic where the data is– all the code pertaining to the behaviour of particular
objects are included in their class, rather than sprinkled around the various different classes of
the program.

Encapsulation is an instance ofabstraction. Abstraction is the process of ignoring detail which
is not necessary for us to know (at the moment). We can use a class without having to know
how it works, for example, if it is written by somebody else. Or, we candesignthe details of
one class at a time for our programs, without at that moment being concerned with the details
of how the other classes work.

For an example which has little to do with Java, assume you have just bought a cheap DVD TV

21100

13.6 Design: Sorting a list (page 295)

recorder from your local supermarket. Do you need to know howit works in order to use it?
Do you need to remove the case lid in order to use it? No, you only need to know about the
buttons on theoutsideof the case. That is, until it breaks (after all it was a cheap one). Only
at that point do you, or perhaps better still a TV gadget engineer, need to remove the case and
poke around inside.

13.6 Design: Sorting a list (page 295)

A list of items, such as anarray , contains those items in some, perhaps arbitrary, order. Weof-
ten want to rearrange them into aspecificorder, without losing or gaining any. This is known as
sorting. For example, a list of numbers may be sorted into ascending or descending numerical
order, a list of names may be sorted alphabetically, etc..

There are many differentalgorithms for sorting lists, includingbubble sort, insertion sort,
selection sort, quick sort, merge sort, tree sort

13.7 Design: Sorting a list: bubble sort (page 296)

Onealgorithm for sorting is known asbubble sort. This works by passing through thelist
looking at adjacent items, and swapping them over if they arein the wrong order. One pass
through is not enough to ensure the list gets completely sorted, so more passes must be made
until it is. However, after the first pass, the ‘highest’ item, that is, the one that should end up
being furthest from the start of the list, must actually be atthe end of the list.

For example suppose we start with the following list and wishto sort it into ascending order.

45 78 12 79 60 17

On the first pass, we compare 45 with 78, which are in order, andthen 78 with 12 which need
swapping. Next we compare 78 with 79, and so on. Eventually weend up with 79 being at the
end of the list.

Start 45 78 12 79 60 17
45<= 78 okay 45<= 78 12 79 60 17
78> 12 swap 45 12<= 78 79 60 17
78<= 79 okay 45 12 78<= 79 60 17
79> 60 swap 45 12 78 60<= 79 17
79> 17 swap 45 12 78 60 17<= 79

The highest number, 79, is in place, but the preceding items are not yet sorted.

21101

13.7 Design: Sorting a list: bubble sort (page 296)

After the second pass, the second highest item must be at the penultimate place in the list, and
so on. It follows that, if there areN items in the list, thenN−1 passes are enough to guarantee
the whole list is sorted. Furthermore, the first pass needs tolook atN−1 adjacent pairs, but
the next pass can look at one less, because we know the highestitem is in the right place at the
end. The very last pass only needs to look at one pair, as all the other items must be in place by
then.

Going back to our example, here are the results at the end of the next passes.

Pass
2 12 45 60 17 78 79
3 12 45 17 60 78 79
4 12 17 45 60 78 79
5 12 17 45 60 78 79

Notice that pass 5 was actually unnecessary as thearray became sorted after pass 4.

Here is somepseudo codefor sortinganArray using bubble sort.

for passCount = 1 to anArray length - 1
for pairLeftIndex = 0 to anArray length - 1 - passCount

if items in anArray at pairLeftIndex and pairLeftIndex + 1
are out of order

swap them over

This can be improved by observing that the list may get sortedbefore the maximum number
of passes needed to guarantee it. For example it could be sorted to start with! Here is an
alternativedesign.

int unsortedLength = anArray length
boolean changedOnThisPass
do

changedOnThisPass = false
for pairLeftIndex = 0 to unsortedLength - 2

if items in anArray at pairLeftIndex and pairLeftIndex + 1
are out of order

swap them over
changedOnThisPass = true

end-if
end-for
unsortedLength--

while changedOnThisPass

21102

13.8 Design: Sorting a list: total order (page 516)

13.8 Design: Sorting a list: total order (page 516)

A total order over somedata is a relationship between pairs of that data which enables itto
be sorted. For example,less than or equalis a total order over numbers: we can choose to
sort alist of numbers into ascending order. So,greater than or equal is also a total order – we
can sort into descending order. We can sort strings using alexicographic ordering (i.e. into
dictionary order). A child might sort sweets into order by colour – unwittingly defining a total
order of colours in the process.

More formally, every total order,�, has three properties, for all valuesx, y andz:

[Antisymmetric:] if x� y andy� x, thenx = y
[Transitive:] if x� y andy� z, thenx� z

[Total:] x� y or y� x

One way of modelling a total order is to provide afunction that takes any pair,(x,y), of the
data and yields one of three states as follows.

• x comes beforey.

• x andy have the same placing.

• x comes aftery.

In Java the function is typically implemented by aninstance methodcompareTo() which
compares the currentinstance (x) with a given other (y), and yields anint that is negative,
zero, or positive to represent the three states respectively.

13.9 Design: Sorting a list: tree sort (page 554)

Anotheralgorithm for sorting is known astree sort. In this approach, the items from thelist
are inserted into anordered binary tree, and then the tree is scanned from left to right, that is
smallest item to largest (according to thetotal order being used), to produce the result.

If the data to be sorted has no duplicates, or if it is desired to not include such multiple elements
in the result, then in Java a tree sort can be achieved by usinganinstanceof java.util.TreeSet .
This is because itsiterator() instance methodproduces anIterator which gives access
to the elements in order from smallest to largest. Any duplicate items will not appear in the
result because aset is not changed by an attempt to add an element which isequivalent to one
that is already present.

21103

13.10 Design: Searching a list: linear search (page 323)

13.10 Design: Searching a list: linear search (page 323)

The simplest way to find an item in alist of items, such as anarray , is to perform alinear
search– starting at the front and looking at each item in turn. For example, the following
array search methodfinds the position of a givenint in a givenarray , or return s -1 if the
number is not found.

private int posOfInt(int[] anArray, int toFind)
{

int searchPos = 0;
while (searchPos < anArray.length && anArray[searchPos] != toFi nd)

searchPos++;
if (searchPos == anArray.length) return -1;
else return searchPos;

} // posOfInt

If the value oftoFind is not in the array, then eventually the value ofsearchPos will reach
anArray.length . At that point the firstconjunct of thewhile loop condition, searchPos <
anArray.length becomesfalse and hence so does theconjunction itself, without it evaluat-
ing the second conjunct,anArray[searchPos] != toFind . If on the other hand we swapped
over the two conjuncts, whensearchPos reaches that same value the (now) first conjunct
would cause anArrayIndexOutOfBoundsException .

// Definitely silly code.
while (anArray[searchPos] != toFind && searchPos < anArray.leng th)

searchPos++;

13.11 Design: Searching a list: binary search (page 525)

When searching for a particular item in alist of items we can seriously improve efficiency
compared with performing alinear search if the items are alreadysorted into a knowntotal
order and we use abinary search. However, this more efficient approach is also more compli-
cated than the simple, but slow, linear search. This exhibits the unfortunately typical trade-off
between speed and simplicity.

In a binary search we have two indiceslow andhigh which start off asindexing the first and
last elements of thedata in the list. At any time, the item we are looking for lies somewhere
betweenlow andhigh , or it is not present. So we look at the item half way between them. If
it is the one we are looking for, then the process is over. If itis less thanthe one we want,
we move thelow index up to that half way point plus one, otherwise we move thehigh index
down to one less than it. Iflow andhigh meet or cross over then we can stop looking – the
item is not there.

21104

13.12 Design: UML (page 381)

list = ... items are stored in the list in ascending order
searchItem = .. the item we wish to find in list
int lowIndex = 0
int highIndex = list.length - 1
int midIndex = (lowIndex + highIndex) / 2
while lowIndex < highIndex && list[midIndex] != searchItem

if list[midIndex] < searchItem
lowIndex = midIndex + 1

else
highIndex = midIndex - 1

midIndex = (lowIndex + highIndex) / 2
end-while
if list[midIndex] == searchItem

... you found it
else

... searchItem is not in the list

13.12 Design: UML (page 381)

Many professional Java programmers express theirdesigns using theUnified Modelling Lan-
guage(UML). This is a collection of diagram types which can be used to show various rela-
tionships between entities, such asobjects andclasses.

13.13 Design: UML: class diagram (page 381)

A UML class diagram can be used to represent aninheritance hierarchy. Eachclassappears
as a box with its name, itsvariables and itsmethods. Items which areprivate are marked with
a - andpublic ones are marked with a+.

13.14 Design: Storing data (page 547)

Collections ofdata which need to be stored in thecomputer memory at run time are placed
in a data structure. Perhaps the most obvious example is thearray , in which data might be
stored in an arbitrary or specific order. One common thing we want to do with stored data is
find it, using some kind of searchalgorithm such as alinear search (see Section 14.6.2 on
page 323) or abinary search (see Section 20.4.3 on page 525). The latter requires the data to
be sorted in a particular order, using asort algorithm such asbubble sort (see Section 14.3
on page 296).

21105

13.15 Design: Storing data: hash table (page 547)

13.15 Design: Storing data: hash table (page 547)

One way of storingdata so that it can be retrieved quickly is to use ahash table. This data
structure places (references to) items in anarray , where thearray index is based on ahash
codeprovided by each item that might need to be stored. The idea isthat data items which
areequivalent musthave the same hash code, and items which are not equivalent try to have
different hash codes. To insert an item into the structure, we take its hash code, which is an
integer, and divide it by the size of the array we are using for the hashtable, take the remainder
and place the item at that array index. To see if an item is already in the hash table, we compute
the corresponding array index and check the array.

The following diagram shows a hash table of size eleven, holding five items with hash codes
22, 223, 38, 30 and 119.

0 1 2 3 4 5 6 7 8 9 10

nullnull null null nullnull

HC = 22

22 % 11 = 0

HC = 223

223 % 11 = 3

HC = 38

38 % 11 = 5

HC = 119

119 % 11 = 9

HC = 30

30 % 11 = 8

We may of course have clashes, caused by two items which are not equivalent having the same
array index, and there are various strategies for coping with that, such as merely finding the next
available free slot in the array. However that leads to a partial linear search to find such items
later. To get the best efficiency from the hash table, it is important to minimize the occurrence
of clashes, so we typically make the size of the array aprime number and, whendesigning the
function which computes the hash code of an element, we try to make non-equivalent items
get different hash codes.

13.16 Design: Storing data: ordered binary tree (page 552)

An ordered binary tree (OBT) is adata structure which allows for quick storage and retrieval
of data. The structure is so named because the data is stored in a tree, with each branch having

21106

13.17 Design: Storing data: linked list (page 557)

a possible left subtree and/or a right subtree (binary) and the data is kept in sometotal order
from left to right across the tree. That is, for every item in the tree, all items in its left subtree
areless thanit (according to whatever total order is being used) and all items in its right subtree
are greater.

For example, the following diagram shows an OBT containing the tenintegers 12, 17, 19, 27,
34, 49, 53, 75, 81 and 99.

12

19

49

81

995334

2717 75

Because the data is ordered, we do not have to search the entire tree to find an item. Instead
we start at the top and, if we have not yet found it, we go left ifthe item we want is less than
the item where we are, or right otherwise, and repeat these steps until we either find the item
or reach the bottom.

Searching an OBT has similar efficiency to abinary search (see Section 20.4.3 on page 525)
because we (essentially) halve the search space at each stage as we proceed down the tree.
Although this is not as fast as using ahash tablewith agood(and quick)hash code function,
an OBT is useful in situations where we wish to retrieve the data from it in order.

13.17 Design: Storing data: linked list (page 557)

A linked list is adata structure which holdsdata in a chain of linkobjects, each containing a
(referenceto) one data element, and a reference to the next link object.In adoubly linked list ,
such as the one shown in the following diagram, each link alsohas a reference to the previous
link.

21107

data0 data1 data2 data3 data4

first

last
null

null

0 1 2 3 4

References are kept to the first and last links in the chain. Toaccess an element at a particular
list index, the chain must be followed from the front counting links until that index is reached,
or from the back if that is nearer. So, this kind oflist is not very efficient if manyrandom
accesses of elements are needed. It can, however, be more efficient than using anarray in
other situations, such as adding at the back without ever having to usearray extension, and
adding or removing at the front or middle, without the need toshuffle the existing elements
along.

14 Variable

14.1 Variable (page 36)

A variable in Java is an entity that can hold adata item. It has a name and a value. It is rather
like the notion of a variable in algebra (although it is not quite the same thing). The name of
a variable does not change – it is carefully chosen by the programmer to reflect the meaning
of the entity it represents in relation to the problem being solved by the program. However,
the valueof a variable can (in general) be changed – we can vary it. Hence the name of the
concept: avariable is an entity that has a (possibly) varying value.

The Javacompiler implements variables by mapping their names ontocomputer memory
locations, in which the values associated with the variables will be stored atrun time .

So one view of a variable is that it is a box, like a pigeon hole,in which a value can be placed. If
we wish, we can get the program to place a different value in that box, replacing the previous;
and we can do this as many times as we want to.

Variables only have values at run time, when the program isrunning. Their names, created by
the programmer, are already fixed by the time the program iscompiled. Variables also have
one more attribute – thetype of the data they are allowed to contain. This too is chosen by the
programmer.

21108

14.2 Variable: int variable (page 37)

14.2 Variable: int variable (page 37)

In Java,variables must be declared in avariable declaration before they can be used. This is
done by the programmer stating thetype and then the name of the variable. For example the
code

int noOfPeopleLivingInMyStreet;

declares anint variable , that is a variable the value of which will be anint, and which has the
namenoOfPeopleLivingInMyStreet . Observe the semi-colon (;) which, according to the
Javasyntax rules, is needed to terminate the variable declaration. Atrun time , this variable is
allowed to hold aninteger (whole number). Its value can change, but it will always be anint.
The name of a variable should reflect its intended meaning. Inthis case, it would seem from
its name that the programmer intends the variable to always hold the number of people living
in his or her street. The programmer would write code to ensure that this meaning is always
reflected by its value at run time.

By convention, variable names start with a lower case letter, and consist of a number of words,
with the first letter of each subsequent word capitalized.

14.3 Variable: a value can be assigned when a variable is declared (page
42)

Java permits us to assign a value to avariable at the same time as declaring it. You could regard
this as a kind ofassignment statementin which the variable is also declared at the same time.
For example

int noOfHousesInMyStreet = 26;

14.4 Variable: double variable (page 54)

We can declaredouble variables in Java, that isvariables which have thetype double. For
example the code

double meanAgeOfPeopleLivingInMyHouse;

declares avariable of typedouble, with the namemeanAgeOfPeopleLivingInMyHouse . At
run time , this variable is allowed to hold adouble data item, that is areal (fractional decimal
number). The value of this variable can change, but it will always be adouble, including of
course, approximations ofwholenumbers such as40.0 .

21109

14.5 Variable: can be defined within a compound statement (page 92)

14.5 Variable: can be defined within a compound statement (page 92)

We can declare avariable within the body of amethod, such asmain() , (practically) anywhere
where we can have astatement. The variable can then be used from that point onwards within
the method body. The area of code in which a variable may be used is called itsscope.

However, if we declare a variable within acompound statement, its scope is restricted to
the compound statement: it does not exist after the end of thecompound statement. This is
a good thing, as it allows us to localize our variables to the exact point of their use, and so
avoid cluttering up other parts of the code with variables available to be used but which have
no relevance.

Consider the following symbolic example.

public static void main(String[] args)
{

...
int x = ...
... x is available here.
while (...)
{

... x is available here.
int y = ...
... x and y are available here.

} // while
... x is available here, but not y,
... so we cannot accidentally refer to y instead of x.

} // main

The variablex can be used from the point of its definition onwards up to the end of the method,
whereas the variabley can only be used from the point of its definition up to the end ofthe
compound statement which is the body of theloop.

14.6 Variable: local variables (page 124)

When we declarevariables inside amethod, they are local to that method and only exist while
that method is running – they cannot be accessed by other methods. They are known aslocal
variables or method variables. Also, different methods can have variables with the same
name – they are different variables.

21110

14.7 Variable: class variables (page 124)

14.7 Variable: class variables (page 124)

We can declarevariables directly inside aclass, outside of anymethods. Suchclass variables
exist from the moment the class is loaded into thevirtual machine until the end of the program,
and they can be accessed by any method in the class. For example, the following are three class
variables which might be used to store the components of today’s date.

private static int presentDay;
private static int presentMonth;
private static int presentYear;

Notice that we use thereserved wordstatic in their declaration. Also, class variables have a
visibility modifier – the above have all been declared as beingprivate, which means they can
only be accessed by code inside the class which has declared them.

14.8 Variable: a group of variables can be declared together(page 129)

Java permits us to declare a group ofvariables which have the sametype in one declaration,
by writing the type followed by a comma-separated list of thevariable names. For example

int x, y;

declares two variables, both of typeint. We can even assign values to the variables, as in the
following.

int minimumVotingAge = 18, minimumArmyAge = 16;

This shorthand is not as useful as one might think, because ofcourse, we typically have a
comment before each variable explaining what its meaning is. However, we can sometimes
have one comment which describes a group of variables.

14.9 Variable: boolean variable (page 133)

Theboolean type can be used in much the same way asint anddouble, in the sense that we
can haveboolean variables andmethods can haveboolean as theirreturn type .

For example, consider the following code.

21111

14.9 Variable: boolean variable (page 133)

if (age1 < age2 || age1 == age2 && height1 <= height2)
System.out.println("You are in the correct order.");

else

System.out.println("Please swap over.");

We could, if we wished, write it using aboolean variable.

boolean correctOrder = age1 < age2 || age1 == age2 && height1 <= height 2;
if (correctOrder)

System.out.println("You are in the correct order.");
else

System.out.println("Please swap over.");

Some people would argue that this makes for more readable code, as in effect, we have named
thecondition in a helpful way. How appropriate that is would depend on how obvious the code
is otherwise, which is context dependent and ultimately subjective. Of course, the motive for
storing the condition value in avariable is less subjective if we wish to use it more than once.

boolean correctOrder = age1 < age2 || age1 == age2 && height1 <= height 2;
if (correctOrder)

System.out.println("You are in the correct order.");
else

System.out.println("Please swap over.");

... Lots of stuff here.

if (!correctOrder)
System.out.println("Don’t forget to swap over!");

Many novice programmers, and even some so-called experts, when writing the code above may
have actually written the following.

boolean correctOrder;
if (age1 < age2 || age1 == age2 && height1 <= height2)

correctOrder = true;
else

correctOrder = false;

if (correctOrder == true)
System.out.println("You are in the correct order.");

else

System.out.println("Please swap over.");

... Lots of stuff here.

21112

14.10 Variable: char variable (page 145)

if (correctOrder == false)
System.out.println("Don’t forget to swap over!");

There are threeterrible things wrong with this code (two of them are the same really) –identify
them,and do not write code like that!

14.10 Variable: char variable (page 145)

We can declarechar variables in Java, that isvariables which have thetype char. For exam-
ple the code

char firstLetter = ’J’;

declares a variable of typechar, with the namefirstLetter . At run time , this variable is
allowed to hold achar data item, that is a singlecharacter.

14.11 Variable: instance variables (page 159)

Thevariables that we wish to have insideobjects are calledinstance variables because they
belong to theinstances of aclass. We declare them in much the same way as we declareclass
variables, except without thereserved wordstatic. For example, the following code is part
of the definition of aPoint class with two instance variables to be used to store the components
of a Point object.

public class Point
{

private double x;
private double y;
...

} // class Point

Like class variables, instance variables have a visibilitymodifier – the above variables have
both been declared as beingprivate, which means they can only be accessed by code inside
the class which has declared them.

Class variables belong to the class in which they are declared, and they are created atrun time
in thestatic contextwhen the class is loaded into thevirtual machine. There is only one copy
of each class variable. By contrast, instance variables arecreated dynamically, in adynamic
context, when the object they are part of is created during therun of the program. There are
as many copies of each instance variable as there are instances of the class: each object has its
own set of instance variables.

21113

14.12 Variable: instance variables: should be private by default (page 175)

14.12 Variable: instance variables: should be private by default (page
175)

Java allows us to givepublic visibility to our instance variables if we wish, but generally it
is a good idea to define them asprivate. This permits us to alter the way we implement the
class, without it affecting the code in other classes. For example, the programmer who has the
job of maintaining aPoint class with instance variablesx andy , might decide it was better
to re-implement the class to use instance variables that store the polar coordinate radius and
angle instead. This might be because some newmethods being added to the class would work
much more easily in the polar coordinate system. Because thex andy instance variables had
originally been made private, the programmer would know that there could not be any mention
of them in other classes. So it would be safe to replace them with ones of a different name
and which work differently. To make the points behave the same as before, the values given to
theconstructor method would be converted fromx andy values to polar values, before being
stored, and thetoString() method could convert them back again.

14.13 Variable: of a class type (page 161)

As aclassis atype, we can use one in much the same way as we use the built-in types, such as
int, double andboolean. This means we can declare avariable whose type is a class. For
example, if we have a classPoint then we can have variables of typePoint .

Point p1;
Point p2;

The above defines twolocal variables ormethod variables of typePoint . We also can have
class variables and eveninstance variables whose type is a class.

14.14 Variable: of a class type: stores a reference to an object (page 162)

There is one important difference between avariable whosetype is a built-inprimitive type ,
such asint and one whose type is aclass. With the former, Java knows from the type how
much memory will be needed for the variable. For example, adouble variable needs more
memory than anint variable , but all variables of typeint need the same amount of memory,
as do those of typedouble. Java needs this information so that it knows how to allocate
memory addresses for variables.

By contrast, it is not possible to calculate how much memory will be needed to store anobject,
becauseinstances of different classes will have different sizes, and in somecases it is possible
for different instances of the same class to have different sizes! The only time the size of an
object is reliably known is when it is created, atrun time .

21114

14.15 Variable: of a class type: stores a reference to an object: avoid misunderstanding
(page 170)

To deal with this situation in a systematic way, variables which are of a class type do not store
an object, but instead store areferenceto an object. A reference to an object is essentially the
memory address at which the object resides in memory, and is only known at run time when
the object is created. Because they are really just memory addresses, the size of all references
is the same, and is fixed. So by using references in variables of a class type, rather than actually
storing objects, Java knows how much memory to allocate for any such variable.

Strictly speaking then, a type which is a class, is actually the set of possiblereferencesto
instances of the class, rather than the set of actual instances themselves.

14.15 Variable: of a class type: stores a reference to an object: avoid
misunderstanding (page 170)

Students new to the idea ofreferences often fail to appreciate their significance, and make one
or sometimes both of the following two mistakes.

1. Misconception: Avariable is anobject.

2. Misconception: A variable contains an object.

Neither of these are true, as we have already said: variables(of a class type) can contain a
referenceto an object. A common question is “why do we have to writeDate twice in the
following?”.

Date someBirthday
= new Date(birthDate.day, birthDate.month, birthDate.year + 1);

It is because we are doing three things.

1. We are declaring a variable.

2. We areconstructing an object.

3. We are storing a reference to that object in the variable.

So we can have a variable without an object.

Date someBirthday;

And we can have an object without a variable – could that be useful?

21115

14.15 Variable: of a class type: stores a reference to an object: avoid misunderstanding
(page 170)

new Date(birthDate.day, birthDate.month, birthDate.year + 1);

Yes, it can be useful: for example, when we want to use objectsjust once, straight after con-
structing them.

System.out.println(new Point(3, 4).distanceFromPoint(new Point(45, 60)));

If we wish, we can have two variables referring to the same object.

Date theSameBirthday = someBirthday;

Also, we can change the value of a variable making it refer to adifferent object.

someBirthday = new Date(someBirthday.day, someBirthday.month,
someBirthday.year + 1);

This creates anew Date object, and stores thereferenceto it in someBirthday – overwriting
the reference to the previousDate object. This is illustrated in the following diagram.

01

07

2010

public int month

public int day

public int year

A Date object

01

07

2011

public int month

public int day

public int year

A Date object

Date someBirthday

someBirthday = new Date(someBirthday.day, someBirthday.month, someBirthday.year + 1);

01

07

2010

public int month

public int day

public int year

A Date object

Date someBirthday

21116

14.16 Variable: of a class type: null reference (page 192)

14.16 Variable: of a class type: null reference (page 192)

When anobject is created, theconstructor method returns areference to it, which is then
used for all accesses to the object. Typically, this reference is stored in avariable.

Point p1 = new Point(75, 150);

There is a special reference value, known as thenull reference, which does not refer to an
object. We can talk about it using thereserved wordnull. It is used, for example, as a value
for a variable when we do not want it to refer to any object at this moment in time.

Point p2 = null;

So, in the example code here we have twoPoint variables,p1 andp2, but (atrun time) only
onePoint object.

Suppose thePoint classhasinstance methods getX() andgetY() with their obvious imple-
mentations. Then obtaining thex value of the object referenced byp1 is fine; the following
code would print75.

System.out.println(p1.getX());

However, the similar code involvingp2 would cause arun time error (an exceptioncalled
NullPointerException).

System.out.println(p2.getX());

This is because there is no object referenced byp2, and so any attempt to access the referenced
object must fail.

14.17 Variable: of a class type: holding the same reference as some other
variable (page 216)

A variable which is of aclass typecan hold areferenceto anyinstanceof that class (plus the
null reference). There is nothing to stop two (or more) variables having thesame reference
value. For example, the following code creates onePoint object and has it referred to by two
variables.

21117

14.17 Variable: of a class type: holding the same reference as some other variable (page
216)

Point p1 = new Point(10, 30);

Point p2 = p1;

10

30private double y

private double x

A Point object
Point p1

Point p2

This reminds us that a variable isnot itself an object, but merely a holder for a reference to an
object.

Having two or morevariables refer to the sameobject can cause us no problems if it is an
immutable object because we cannot change the object’s state no matter which variable we
use to access it. So, in effect, the object(s) referred to by the two variables behave the same as
they would if they were two different objects. The followingcode has the sameeffectas the
above fragment, almost no matter what we do withp1 andp2 subsequently.

Point p1 = new Point(10, 30);

Point p2 = new Point(10, 30);

The only behavioural difference between the two fragments is theconditions p1 == p2 and
p1 != p2 which aretrue andfalse respectively for the first code fragment, and the other
way round for the second one.

If, on the other hand, anobject referenced by more than one variableis amutable objectwe
have to be careful because any change made via any one of the variables causes the change to
occur in the (same) object referred to by the other variables. This may be, and often is, exactly
what we want, or it may be a problem if ourdesignis poor or if we have made a mistake in our
code and the variables were not meant to share the object.

Consider the following simple example.

public class Employee

21118

14.17 Variable: of a class type: holding the same reference as some other variable (page
216)

{

private final String name;
private int salary;

public Employee(String requiredName, int initialSalary)
{

name = requiredName;
salary = initialSalary;

} // Employee

public String getName()
{

return name;
} // getName

public void setSalary(int newSalary)
{

salary = newSalary;
} // setSalary

public int getSalary()
{

return salary;
} // getSalary

} // class Employee

...

Employee debora = new Employee("Debs", 50000);
Employee sharmane = new Employee("Shaz", 40000);

...

Employee worstEmployee = debora;
Employee bestEmployee = sharmane;

...

Now let us have an accidental piece of code.

worstEmployee = bestEmployee;

Then we carry on with intentional code.

...

21119

14.18 Variable: final variables (page 194)

bestEmployee.setSalary(55000);
worstEmployee.setSalary(0);

System.out.println("Our best employee, " + bestEmployee. getName()
+ ", is paid " + bestEmployee.getSalary());

System.out.println("Our worst employee, " + worstEmploye e.getName()
+ ", is paid " + worstEmployee.getSalary());

The effect of the accidental sharing is to give Sharmane, whois our best employee, a pay
increase to 55,000 immediately followed by a pay cut to zero becauseworstEmployee and
bestEmployee are both referring to the same object, the one which is also referred to by
sharmane . Meanwhile our worst employee, Debora, gets to keep her 50,000! Further more,
the report only actually talks about Sharmane in both contexts!

Our best employee, Shaz, is paid 0
Our worst employee, Shaz, is paid 0

14.18 Variable: final variables (page 194)

When we declare avariable we can write thereserved wordfinal as one of itsmodifiers
before thetype name. This means that once the variable has been given a value, that value
cannot be altered.

If an instance variableis declared to be afinal variable then it must be explicitly assigned a
value by the time theobject it belongs to has finished beingconstructed. This would be done
either by assigning a value in thevariable declaration, or via anassignment statementinside
theconstructor method.

14.19 Variable: final variables: class constant (page 205)

A class variablewhich is declared to be afinal variable (i.e. itsmodifiers include thereserved
wordsstatic andfinal) is also known in Java as aclass constant. An example of this is the
variable in theclassjava.lang.Math calledPI .

public static final double PI = 3.14159265358979323846;

By convention, class constants are usually named using onlycapital letters with the words
separated by underscores ().

21120

14.20 Variable: final variables: class constant: a set of choices (page 308)

14.20 Variable: final variables: class constant: a set of choices (page 308)

One use ofclass constants is to define a set of options for the users of aclass, without them
having to know what values have been chosen to model each option – they instead use the name
of one or more class constants to represent their choices.

For example, the following could be possible directions available in a class that is part of a
game that permits simple movement of some game entity.

public static final int UP = 0;
public static final int DOWN = 1;
public static final int LEFT = 2;
public static final int RIGHT = 3;

Apart from leading to more readable code, this technique gives us more flexibility: the main-
tainer of thesource codemight decide for some reason to change the values (but not thenames)
of the four constants. This should not cause any code outsideof the class to need rewriting.

14.21 Variable: final variables: class constant: a set of choices: danger-
ous (page 308)

The use ofint class constants to model a small set of options does have two dangers.

• The constants could be used for other purposes – e.g. they could be used inappropriately
in somearithmetic expression.

• Someone may accidentally use anotherint value which is not one of the constants in
places where a constant should be used. Thecompiler would accept it because it is an
int.

14.22 Variable: of an array type (page 287)

We can declarevariables of anarray type rather like we can of any othertype. For example,
here is a variable of typeint[] .

int[] salaries;

As arrays areobjects, they are accessed viareferences. So anarray variable at run time
holds either areferenceto an array or thenull reference. The following diagram shows the
above variable referring to an array ofint values.

21121

14.23 Variable: initial value (page 453)

int[] salaries

15000 25000 23950 49950 1270017750

14.23 Variable: initial value (page 453)

Whenclass variables, instance variables, andarray elements are created, they are given a
default initial value by thevirtual machine (unless they are also final variables). In contrast,
thecompiler forceslocal variables (method variables) andfinal variables to be initialized
by our code.

It is dangerous toquietly rely on default values when they happen to be the initial values
we desire, mainly because anyone looking at our code (including ourselves) cannot tell the
difference between us doing that and having forgotten to initialize! Another reason is that
sometimes you, or a reader of your program, may misremember what initial value there is for a
variable of a particulartype. So, one rule of thumb is to always perform our own initialization
to make it clear we have not overlooked it. However, where that is non-trivial (e.g. for array
elements), we instead write a clearcommentstating that we are happy the default value is what
we want, and what that value is.

15 Expression

15.1 Expression: arithmetic (page 38)

We can havearithmetic expressions in Java rather like we can in mathematics. These can con-
tain literal values, that is constants, such as theinteger literals 1 and18. They can also con-
tain variables which have already been declared, andoperators to combine sub-expressions
together. Four commonarithmetic operators areaddition (+), subtraction (-), multiplica-
tion (*) anddivision (/). Note the use of an asterisk for multiplication, and a forward slash for
division – computer keyboards do not have multiply or dividesymbols.

These four operators arebinary infix operator s, because they take twooperands, one on
either side of the operator.+ and- can also be used as theunary prefix operators, plus and
minus respectively, as in-5 .

When anexpressionis evaluated (expression evaluation) Java replaces each variable with
its current value and works out the result of the expression depending on the meaning of the
operators. For example, if the variablenoOfPeopleLivingInMyStreet had the value47 then
the expressionnoOfPeopleLivingInMyStreet + 4 would evaluate to51.

21122

15.2 Expression: arithmetic: int division truncates result (page 52)

15.2 Expression: arithmetic: int division truncates result (page 52)

The fourarithmetic operators,+, - , * and/ of Java behave very similarly to the corresponding
operators in mathematics. There is however one serious difference to look out for. When
the division operator is given twointegers (whole numbers) it usesinteger division which
always yields an integer as its result, by throwing away any fractional part of the answer. So,
8 / 2 gives the answer4 as you might expect, but9 / 2 also gives4 – not4.5 as it would in
mathematics. It does not round to the nearest whole number, it always rounds towards zero. In
mathematics15 / 4 gives3.75 . In Java it yields3 not 4.

15.3 Expression: arithmetic: associativity and int division (page 52)

Like theoperators + and- , the operators* and/ have equaloperator precedence(but higher
than+ and-) and also haveleft associativity.

However, there is an extra complication to consider becausethe Java/ operator truncates its
answer when given twointegers. Consider the following twoarithmetic expressions.

Expression Implicit brackets Value
9 * 4 / 2 (9 * 4) / 2 18
9 / 2 * 4 (9 / 2) * 4 16

In mathematics one would expect to get the same answer from both theseexpressions, but not
in Java!

15.4 Expression: arithmetic: double division (page 55)

The Javadivision operator, / , usesdouble division and produces adouble result if at least
one of itsoperands is adouble. The result will be the best approximation to the actual answer
of the division.

Expression Result Type of Result
8 / 2 4 int
8 / 2.0 4.0 double
9 / 2 4 int
9 / 2.0 4.5 double
9.0 / 2 4.5 double
9.0 / 2.0 4.5 double

21123

15.5 Expression: arithmetic: double division: by zero (page 291)

15.5 Expression: arithmetic: double division: by zero (page 291)

When using thedouble divisionoperation in Java, if the numerator is not zero but the denom-
inator is zero, the result we get is a model ofinfinity . This is represented, for example by
System.out.println() , asInfinity .

However, if both the numerator and the denominator are zero,we instead get a model of the
conceptnot a number, which is represented asNaN.

This behaviour of double division is in contrast tointeger division, which produces anexcep-
tion if the denominator is zero.

15.6 Expression: arithmetic: remainder operator (page 149)

Anotherarithmetic operator in Java is theremainder operator, also known as themodulo
operator,%. When used with twointeger operands, it yields the remainder obtained from
dividing the first operand by the second. As an example, the following method determines
whether a givenint method parameter is an even number.

public static boolean isEven(int number)
{

return number % 2 == 0;
} // isEven

15.7 Expression: arithmetic: shift operators (page 473)

Some morearithmetic operators in Java are theshift operators,<<, >> and>>>. Theleft shift
operator, <<, yields the number obtained by shifting the firstoperand left by the number of
bits given in the second operand, placing zeroes in that many rightmost places. Theunsigned
right shift operator,>>>, similarly shifts rightwards, placing zeroes on the left. The signed
right shift operator,>>, is the same, except it places ones on the left if the number being
shifted is negative.

For example,1000 is 0001111101000 in binary .

4096 2048 1024 512 256 128 64 32 16 8 4 2 1
0 0 0 1 1 1 1 1 0 1 0 0 0
0+ 0+ 0+ 512+ 256+ 128+ 64+ 32+ 0+ 8+ 0+ 0+ 0 = 1000

When this is shifted left by three places,1000 << 3 , we get the result8000 which is1111101000000
in binary.

21124

15.8 Expression: arithmetic: integer bitwise operators (page 474)

4096 2048 1024 512 256 128 64 32 16 8 4 2 1
1 1 1 1 1 0 1 0 0 0 0 0 0
4096+ 2048+ 1024+ 512+ 256+ 0+ 64+ 0+ 0+ 0+ 0+ 0+ 0 = 8000

Whereas,1000 >> 3 and1000 >>> 3 both yield0000001111101 in binary, which is125 .

4096 2048 1024 512 256 128 64 32 16 8 4 2 1
0 0 0 0 0 0 1 1 1 1 1 0 1
0+ 0+ 0+ 0+ 0+ 0+ 64+ 32+ 16+ 8+ 4+ 0+ 1 = 125

Shifting left by n bits, has the same effect asmultiplication by 2n and discarding any over-
flow. Signed shifting right byn bits has the same effect as dividing by 2n and discarding any
remainder.

15.8 Expression: arithmetic: integer bitwise operators (page 474)

Theoperators | , &, andˆ , when applied to numericoperands, have the effect of aninteger
bitwise or, integer bitwise andand integer bitwise exclusive or, respectively. The result is
obtained by pairing the correspondingbits of each operand according to the following table.

bit n of bit n of bit n of bit n of bit n of
op1 op2 op1 | op2 op1 & op2 op1 ˆ op2
0 0 0 0 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 0

For example, the value1000 which is1111101000 in binary , when anded with the value23
which is0000010111 in binary, yields0000000000 – because they have no corresponding bit
values in common. When they are instead or-ed together, we get 1111111111 in binary, which
is 1023 . This happens to be the same as1000 + 23 , but integer bitwise or is the same as
addition only when the two numbers have no corresponding bits with thesame value.

15.9 Expression: brackets and precedence (page 45)

In addition tooperators andvariables,expressions in Java can have round brackets in them.
As in mathematics, brackets are used to define the structure of the expression by grouping parts
of it into sub-expressions. For example, the following two expressions have different structures,
and thus very different values.

(2 + 4) * 8
2 + (4 * 8)

21125

15.10 Expression: associativity (page 48)

The value of the first expression is made from theaddition of 2 and4 and thenmultiplication
of the resulting6 by 8 to get48. The second expression isevaluated by multiplying4 with 8
to get32 and then adding2 to that result, ending up with34.

To help us see the structure of these two expressions, let us draw them asexpression trees.

(2 + 4) * 8

*
___/ \

+ 8
/ \

2 4

2 + (4 * 8)

+
/ ___

2 *
/ \

4 8

What if there were no brackets?

2 + 4 * 8

Java allows us to have expressions without any brackets, or more generally, without brackets
aroundeverysub-expression. It provides rules to define what the structure of such an expression
is, i.e., where the missing brackets should go. If you look atthe4 in the above expression, you
will see that it has an operator on either side of it. In a sense, the+ operator and the* operator
are both fighting to have the4 as anoperand. Rather like a tug of war,+ is pulling the4 to the
left, and* is tugging it to the right. The question is, which one wins? Java, as in mathematics,
provides the answer by having varying levels ofoperator precedence. The* and/ operators
have a higher precedence than+ and- , which means* fights harder than+, so it wins! 2 + 4
* 8 evaluates to34.

15.10 Expression: associativity (page 48)

The principle ofoperator precedenceis insufficient to disambiguate allexpressions which
are not fully bracketed. For example, consider the following expressions.

10 + 7 + 3
10 + 7 - 3
10 - 7 + 3
10 - 7 - 3

In all four expressions, the7 is being fought over by twooperators which have the same
precedence: either two+, two - , or one of each. So where should the missing brackets go?
The expression trees could have one of the two following structures, whereOP1 is the first
operator, andOP2 is the second.

21126

15.11 Expression: boolean (page 60)

10 OP1 (7 OP2 3)

OP1
/ ___

10 OP2
/ \

7 3

(10 OP1 7) OP2 3

___OP2
/ \

OP1 3
/ \

10 7

Let us see whether it makes a difference to the results of the expressions.

Expression Value
(10 + 7) + 3 20
10 + (7 + 3) 20
(10 + 7) - 3 14
10 + (7 - 3) 14
(10 - 7) + 3 6
10 - (7 + 3) 0
(10 - 7) - 3 0
10 - (7 - 3) 6

As you can see, it does make a difference sometimes – in these cases when the first operator
is subtraction (-). So how does Java resolve this problem? As in mathematics, Java operators
have anoperator associativityas well as a precedence. The operators+, - , * and / all have
left associativitywhich means that when two of these operators of equal precedence are both
fighting over oneoperand, it is the left operator that wins. If you like, the tug of war takes
place on sloping ground with the left operator having the advantage of being lower down than
the right one!

Expression Implicit brackets Value
10 + 7 + 3 (10 + 7) + 3 20
10 + 7 - 3 (10 + 7) - 3 14
10 - 7 + 3 (10 - 7) + 3 6
10 - 7 - 3 (10 - 7) - 3 0

The operators* and/ also have equal precedence (but higher than+ and-) so similar situations
arise with those too.

15.11 Expression: boolean (page 60)

An expressionwhich whenevaluated yields eithertrue or false is known as acondition,
and is typically used for controllingconditional execution. Conditions are also calledboolean
expressions.

21127

15.13 Expression: boolean: logical operators (page 128)

15.12 Expression: boolean: relational operators (page 60)

Java gives us sixrelational operators for comparing values such as numbers, which we can use
to make upconditions. These are allbinary infix operator s, that is they take twooperands,
one either side of theoperator. They yieldtrue or false depending on the given values.

Operator Title Description
== Equal This is theequal operator, which provides the notion of

equality. a == b yieldstrue if and only if the value of
a is the same as the value ofb.

!= Not equal This is thenot equal operator, providing the the notion
of not equality. a != b yields true if and only if the
value ofa is not the same as the value ofb.

< Less than This is theless thanoperator.a < b yieldstrue if and
only if the value ofa is less than the value ofb.

> Greater than This is thegreater than operator.a > b yieldstrue if
and only if the value ofa is greater than the value ofb.

<= Less than or equal This is theless than or equaloperator. a <= b yields
true if and only if the value ofa is less than value ofb,
or is equal to it.

>= Greater than or equalThis is thegreater than or equal operator. a >= b
yieldstrue if and only if the value ofa is greater than
value ofb, or is equal to it.

15.13 Expression: boolean: logical operators (page 128)

For somealgorithms, we needconditions on loops etc. that are more complex than can be
made simply by using therelational operators. Java provides us withlogical operators to
enable us to glue together simple conditions into bigger ones. The three most commonly used
logical operators areconditional and, conditional or andlogical not.

Operator Title Posh title Description
&& and conjunction c1 && c2 is true if and only if both conditionsc1

and c2 evaluate to true. Both of the two condi-
tions, known asconjuncts, must betrue to satisfy
the combined condition.

|| or disjunction c1 || c2 is true if and only if at least one of the
conditionsc1 and c2 evaluate totrue. The com-
bined condition is satisfied, unless both of the two
conditions, known asdisjuncts, arefalse.

! not negation !c is true if and only if the conditionc evaluates to
false. This operator negates the given condition.

We can define theseoperators usingtruth table s, where ? means theoperand is not evaluated.

21128

15.13 Expression: boolean: logical operators (page 128)

c1 c2 c1 && c2
true true true

true false false

false ? false

c1 c2 c1 || c2
true ? true

false true true

false false false

c !c
true false

false true

Using these operators, we can make up complex conditions, such as the following.

age1 < age2 || age1 == age2 && height1 <= height2

As with thearithmetic operators, Java definesoperator precedenceandoperator associa-
tivity to disambiguate complex conditions that are not fully bracketed, such as the one above.
&&and|| have a lower precedence than the relational operators whichhave a lower precedence
than the arithmetic ones.! has a very high precedence (even more so than the arithmetic oper-
ators) and&& has a higher precedence than|| . So the above exampleexpressionhas implicit
brackets as follows.

(age1 < age2) || ((age1 == age2) && (height1 <= height2))

This might be part of a program thatsorts people standing in a line by age, but when they
are the same age, it sorts them by height. Assuming that theint variables age1 andheight1
contain the age and height of one person, and the other two variables similarly contain that
data for another, then the following code might be used to tell thepair to swap their order if
necessary.

if (age1 < age2 || age1 == age2 && height1 <= height2)
System.out.println("You are in the correct order.");

else

System.out.println("Please swap over.");

We might have, perhaps less clearly, chosen to write that code as follows.

if (!(age1 < age2 || age1 == age2 && height1 <= height2))
System.out.println("Please swap over.");

else

System.out.println("You are in the correct order.");

You might find it tricky, but it’s worth convincing yourself:yet another way of writing code
with the same effect would be as follows.

if (age1 > age2 || age1 == age2 && height1 > height2)
System.out.println("Please swap over.");

else

System.out.println("You are in the correct order.");

21129

15.14 Expression: boolean: logical operators: conditional (page 323)

In mathematics, we are used to writing expressions such asx≤ y≤ z to mean true, if and only
if y lies in the rangex to z, inclusive. In Java, such expressions need to be written asx <= y
&& y <= z .

Also, in everyday language we are used to using the words ‘and’ and ‘or’ where they have very
similar meanings to the associated Java operators. However, we say things like “my mother’s
age is 46 or 47”. In Java, we would need to writemyMumAge == 46 || myMumAge == 47
to capture the same meaning. Another example, “my brothers are aged 10 and 12”, might be
coded asmyBrother1Age == 10 && myBrother2Age == 12 .

However, there are times in everyday language when we say “and” when we really mean “or”
in logic, and hence would use|| in Java. For example, “the two possible ages for my dad are
49 and53” is really the same as saying “my dad’s age is 49or my dad’s age is 53”.

15.14 Expression: boolean: logical operators: conditional (page 323)

Thelogical operators&&and|| in Java are calledconditional andandconditional or because
they have an important property, which distinguishes them from their classical logic counter-
parts. They are lazy. This means that if they can determine their result after evaluating their
left operand, they will notevaluatetheir right one. That is, if the firstdisjunct of || evaluates
to true it will not evaluate the second; and if the firstconjunct of &&evaluates tofalse it will
not evaluate the second. This allows us to safely writeconditions such as the following.data
== null || data.length == 0

15.15 Expression: conditional expression (page 94)

The conditional operator in Java permits us to writeconditional expressions which have
different sub-expressionsevaluated depending on somecondition. The general form is

c ? e1 : e2

wherec is some condition, ande1 ande2 are twoexpressions of sometype. The condition
is evaluated, and if the value istrue thene1 is evaluated and its value becomes the result of
the expression. If the condition isfalse thene2 is evaluated and its value becomes the result
instead.

For example

int maxXY = x > y ? x : y;

is another way of achieving the same effect as the following.

21130

int maxXY;
if (x > y)

maxXY = x;
else

maxXY = y;

16 Package

16.1 Package (page 187)

There are hundreds ofclasses that come with Java in itsapplication program interface (API),
and even more that are available around the world for reusingin our programs if we wish. To
help manage this huge number of classes, they are grouped into collections of related classes,
calledpackages. But even this is not enough to make things manageable, so packages are
grouped into a hierarchy in a rather similar way to how a well organizedfile systemis arranged
into directories and sub-directories. For example, there is one group of standard packages
calledjava and another calledjavax .

16.2 Package: java.util (page 188)

One of the standard Javapackages in the package groupjava is calledutil . This means its
full name isjava.util – the package addressing mechanism uses a dot (.) in much the same
way as Unix uses a slash, or Microsoft Windows uses a backslash, to separate directories in a
filename path.java.util contains many generally useful utilityclasses. For example, there is
a class calledScanner which lives there, so itsfully qualified name is java.util.Scanner .
This fully qualified name is unique: if someone else was to create a class calledScanner then
it would not be in the same package, so the two would not be confused.

We can refer to a class using its fully qualified name, for example the following declares a
variable of type java.util.Scanner and creates aninstanceof the class too.

java.util.Scanner inputScanner = new java.util.Scanner(System.in);

16.3 Package: java.awt and javax.swing (page 245)

Inside the group ofpackages known asjava , there is one calledawt , so the the full name
of the package isjava.awt . It contains theclasses that make up the original Javagraphical
user interfacesystem known as theAbstract Windowing Toolkit (AWT). For example, there

21131

is a class that lives insidejava.awt called Container , and so itsfully qualified name is
java.awt.Container .

Another group,javax contains a package calledswing and this is the set of classes which
make up the more modernJava Swingsystem, which is built on top of AWT. For example,
there is a class that lives insidejavax.swing calledJFrame , and so its fully qualified name is
javax.swing.JFrame .

Java programs that provide aGUI typically need to use classes from both these packages.

17 GUI API

17.1 GUI API: JFrame (page 245)

Eachinstanceof theclassjavax.swing.JFrame corresponds to a window that appears on the
screen.

17.2 GUI API: JFrame: setTitle() (page 246)

The class javax.swing.JFrame has aninstance methodcalled setTitle which takes a
String to be used as the title of the window. This string typically appears in the title bar
of the window, depending upon what window manager the user isusing (in Unix worlds there
is a massive variety of window managers to choose from).

17.3 GUI API: JFrame: getContentPane() (page 246)

Theclassjavax.swing.JFrame has aninstance methodcalledgetContentPane which re-
turn s thecontent paneof theJFrame . This is the part of theJFrame that holds thegraphical
user interface(GUI) components of the window. It is aninstanceof java.awt.Container .

17.4 GUI API: JFrame: setDefaultCloseOperation() (page 247)

Theclass
javax.swing.JFrame has aninstance methodcalled setDefaultCloseOperation which
takes amethod parameterthat specifies what theJFrame should do when the end user presses
the close button on the title bar of the window. There are fourpossible settings as follows.

21132

17.5 GUI API: JFrame: pack() (page 247)

• Do nothing on close– Don’t do anything.

• Hide on close– Hide the window, so that it is no longer visible, but do not destroy it.

• Dispose on close– Destroy the window.

• Exit on close– Exit the whole program.

The parameter is actually anint, but we do not need to know what exact value to give as a
method argument, because there are fourclass constants defined inJFrame which have the
right values.

public static final int DO_NOTHING_ON_CLOSE = ?;
public static final int HIDE_ON_CLOSE = ?;
public static final int DISPOSE_ON_CLOSE = ?;
public static final int EXIT_ON_CLOSE = ?;

We simply use whichever class constant suits us, as in the following example.

setDefaultCloseOperation(DISPOSE_ON_CLOSE);

17.5 GUI API: JFrame: pack() (page 247)

Theclassjavax.swing.JFrame has aninstance methodcalledpack . This makes theJFrame
arrange itself ready for being shown on the screen. It works out the sizes and positions of all
its components, and (in general) the size of the window itself. Typically pack() is called after
all thegraphical user interface(GUI) components have been added to theJFrame .

17.6 GUI API: JFrame: setVisible() (page 248)

The classjavax.swing.JFrame has aninstance methodcalledsetVisible . This takes a
boolean method parameter, and if this value istrue then it makes theJFrame object cause
the window it represents to appear on the physical screen, ordisappear otherwise.

17.7 GUI API: Container (page 246)

The class java.awt.Container implements part of agraphical user interface (GUI). An
instanceof the class is a component that is allowed to contain other components.

21133

17.8 GUI API: Container: add() (page 246)

17.8 GUI API: Container: add() (page 246)

The class java.awt.Container has aninstance methodcalledadd which takes agraph-
ical user interface (GUI) component and includes it in the collection of components to be
displayed within the container.

17.9 GUI API: Container: add(): adding with a position constraint (page
268)

Theclassjava.awt.Container has anotherinstance methodcalledadd which takes agraph-
ical user interface (GUI) component and some otherobject constraining how the compo-
nent should be positioned. This is intended for use withlayout managers that use position
constraints, such asjava.awt.BorderLayout . For example, the following code makes the
JLabel appear in the north position ofmyContainer .

myContainer.setLayout(new BorderLayout());
myContainer.add(new JLabel("This is in the north"), BorderLayout.NORTH);

17.10 GUI API: Container: setLayout() (page 250)

The classjava.awt.Container has aninstance methodcalledsetLayout which takes an
instanceof one of thelayout manager classes, and uses that to lay out itsgraphical user
interface (GUI) components each time a lay out is needed, for example, when the window it
is part of ispacked.

17.11 GUI API: JLabel (page 246)

The classjavax.swing.JLabel implements a particular part of agraphical user interface
(GUI) which simply displays a small piece of text, that is, a label. The label text is specified as
a String method argument to one of theJLabel constructor methods.

17.12 GUI API: JLabel: setText() (page 258)

Theclassjavax.swing.JLabel has aninstance methodcalledsetText which takes aString
method argumentand changes the text of the label to it.

21134

17.13 GUI API: LayoutManager (page 249)

17.13 GUI API: LayoutManager (page 249)

A layout manager is aclasswhich contains the logic for laying outgraphical user interface
(GUI) components within aninstanceof java.awt.Container in some set pattern. There are
various types of layout manager, including the following most common ones.

• java.awt.FlowLayout – arrange the components in a horizontal line.

• java.awt.GridLayout – arrange the components in a grid.

• java.awt.BorderLayout – arrange the components with one at the centre, and one at
each of the four sides.

17.14 GUI API: LayoutManager: FlowLayout (page 249)

The class java.awt.FlowLayout is a layout manager which positions all the components
within an instanceof
java.awt.Container in a horizontal row. The components appear in the order they were
added to the container.

17.15 GUI API: LayoutManager: FlowLayout: alignment (page 278)

Theclass
java.awt.FlowLayout can be given an alignment mode, passed as amethod argumentto one
of its constructor methods. It affects the behaviour of the layout in cases when the component
is larger than is needed to hold the components that are in it.

The argument is anint value, and should be an appropriateclass constant, including the
following.

• FlowLayout.CENTER – the laid out items are centred in the container.

• FlowLayout.LEFT – the laid out items are on the left of the container, with unused space
on the right.

• FlowLayout.RIGHT – the laid out items are on the right of the container, with unused
space on the left.

If we do not specify an alignment then centred alignment is used.

21135

17.16 GUI API: LayoutManager: GridLayout (page 251)

17.16 GUI API: LayoutManager: GridLayout (page 251)

The class java.awt.GridLayout is a layout manager which positions all the components
within an instanceof
java.awt.Container in a rectangular grid. The container is divided into equal-sized rectan-
gles, and one component is placed in each rectangle. The components appear in the order they
were added to the container, filling up one row at a time.

When we create aGridLayout object, we provide a pair ofintmethod arguments to thecon-
structor method, the first specifies the number of rows, and the second the number of columns.
One of these values should be zero. For example, the following constructs a GridLayout
which has three rows, and as many columns as are needed depending upon the number of
components being laid out.

new GridLayout(3, 0);

This next example constructs aGridLayout which has two columns, and as many rows as are
needed depending upon the number of components being laid out.

new GridLayout(0, 2);

If both the rows and columns arguments are non-zero, thenthe columns argument is totally
ignored! Neither values may be negative, and at least one of them mustbe non-zero, otherwise
we get arun time error .

We can also specify the horizontal and vertical gaps that we wish to have between items in the
grid. These can be given via a constructor method that takes four arguments.

new GridLayout(0, 5, 10, 20);

The above example creates aGridLayout that has five columns, with a horizontal gap of 10
pixels between each column, and a vertical gap of 20 pixels between each row. A pixel is the
smallest unit of display position. Its exact size will depend on the resolution and physical size
of the computer monitor.

17.17 GUI API: LayoutManager: BorderLayout (page 267)

The class java.awt.BorderLayout is a layout manager which has slots for five compo-
nents, one at the centre, and one at each of the four sides around the centre. The names

21136

17.18 GUI API: Listeners (page 254)

of these positions are modelled using fiveclass constants calledBorderLayout.CENTER ,
BorderLayout.NORTH ,BorderLayout.SOUTH , BorderLayout.WEST . andBorderLayout.EAST .

A BorderLayout is designed to be used when there is onegraphical user interface (GUI)
component which is in some sense the main component, for example a JTextArea which
contains some result of the program. We can put this in theBorderLayout.CENTER position
and some other component above in theBorderLayout.NORTH position, and/or below in the
BorderLayout.SOUTH position, and/or to the left in theBorderLayout.WEST position and/or
to the right in theBorderLayout.EAST position.

This is shown in the following diagram.

BorderLayout.NORTH

BorderLayout.SOUTH

BorderLayout.CENTER

B
o

rd
e

rL
a

yo
u

t.
W

E
S

T

B
o

rd
e

rL
a

yo
u

t.
E

A
S

T

17.18 GUI API: Listeners (page 254)

Java uses alistener model for the processing ofgraphical user interface(GUI) events. When
something happens that needs dealing with, such as the end user pressing a GUI button, the
GUI event thread creates anobject representing the event before doing any processing that
may be required. The event has anevent source, which is some Java GUI object associated
with the cause of the event. For example, an event created because the end user has pressed a
button will have that button as its source. Each possible event source keeps a set oflistener
objects that have been registered as wishing to be ‘told’ if an event is created from that source.
The GUI event thread processes the event by simply calling a particular instance method
belonging to each of these listeners.

Let us consider anabstractexample. Suppose we have some object that can be an event source,

21137

17.18 GUI API: Listeners (page 254)

for example it might be a button. To keep it an abstract example, let us say it is aninstanceof
SomeKindOfEventSource .

SomeKindOfEventSource source = new SomeKindOfEventSource(...);

Suppose also we wish events from that source to be processed by some code that we write. Let
us put that in aclasscalledSomeKindOfEventListener for this abstract example.

public class SomeKindOfEventListener
{

public void processSomeKindOfEvent(SomeKindOfEvent e)
{

... Code that deals with the event.
} // processSomeKindOfEvent

} // class SomeKindOfEventListener

To link our code to the event source, we would make an instanceof SomeKindOfEventListener
and register it with the event source as a listener.

SomeKindOfEventListener listener = new SomeKindOfEventListener(...);

source.addSomeKindOfListener(listener);

The above code (or rather a concrete version of it) would typically be run in themain thread
during the set up of the GUI. The following diagram illustrates the finished relationship be-
tween the source and listener objects.

21138

17.19 GUI API: Listeners: ActionListener interface (page 257)

set of listeners

A SomeKindOfEventSource object A SomeKindOfEventListener object

SomeKindOfEventSource source

processSomeKindOfEvent

addSomeKindOfEventListener

SomeKindOfEventListener listener

Now when an event happens, the GUI event thread can look at theset of listeners in the source
object, and call theprocessSomeKindOfEvent() instance method belonging to each of them.
So, when oursource object generates an event, theprocessSomeKindOfEvent() instance
method in ourlistener object is called.

Java Swing actually has several different kinds of listenerfor supporting different kinds of
event. The above example is just anabstraction of this idea, so donot take the names
SomeKindOfEventSource , SomeKindOfEventListener , processSomeKindOfEvent andaddSomeKindOfListener
literally – each type of event has corresponding names that are appropriate to it. For ex-
ample, events generated by GUI buttons are known asActionEvent s and are processed by
ActionListener objects which have anactionPerformed() instance method and are linked
to the event source by anaddActionListener() instance method.

17.19 GUI API: Listeners: ActionListener interface (page 257)

The standardinterface called java.awt.event.ActionListener contains a body-lessin-
stance methodwhich is calledactionPerformed . The intention is that a full implementation
of this instance method will contain code to process aneventcaused by the user doing some-
thing like pressing agraphical user interface(GUI) button.

21139

17.20 GUI API: Listeners: ActionListener interface: actionPerformed() (page 258)

17.20 GUI API: Listeners: ActionListener interface: actionPerformed()
(page 258)

After creating aninstance of java.awt.event.ActionEvent when the end user has per-
formed an ‘action’ such as pressing a button, theGUI event thread finds out from thatevent
source which ActionListener objects have registered with it as wanting to be told about
theevent. The GUI event thread then invokes theinstance methodcalledactionPerformed
belonging to each of those registeredActionListener s, passing theActionEvent object as a
method argument.

So, the heading of theactionPerformed() instance method is as follows.

public void actionPerformed(ActionEvent event)

Each implementation of the method will perform whatever task is appropriate as a response to
the particular action in a particular program.

17.21 GUI API: JButton (page 256)

Theclassjavax.swing.JButton implements a particular part of agraphical user interface
(GUI) which offers a button for the end user to ‘press’ using the mouse. The text to be displayed
on the button is specified as aString method argumentto theJButton constructor method.

17.22 GUI API: JButton: addActionListener() (page 256)

Theclassjavax.swing.JButton has aninstance methodcalledaddActionListener . This
takes as itsmethod parameteranActionListener object, and remembers it as being alis-
tener interested in processing theeventcaused by an end-user pressing this button.

public void addActionListener(ActionListener listener)
{

... Remember that listener wants to be informed of action eve nts.
} // addActionListener

17.23 GUI API: JButton: setEnabled() (page 266)

Theclassjavax.swing.JButton has aninstance methodcalledsetEnabled , which takes a
boolean method parameter. If it is given the valuefalse, the button becomes disabled, that
is any attempt to press it has no effect. If instead the parameter istrue, the button becomes
enabled. When in the disabled state, the button will typically look ‘greyed out’.

21140

17.24 GUI API: JButton: setText() (page 267)

17.24 GUI API: JButton: setText() (page 267)

The class javax.swing.JButton has aninstance methodcalled setText which takes a
String and changes the text label displayed on the button, to the givenmethod argument.

17.25 GUI API: ActionEvent (page 258)

When theGUI event thread detects that the end user has performed an ‘action’, such as press-
ing a button, it creates aninstanceof the classjava.awt.event.ActionEvent in which it
stores information about theevent. For example, it stores areference to theevent source
object, such as the button that was pressed.

17.26 GUI API: ActionEvent: getSource() (page 280)

Theclassjava.awt.event.ActionEvent has aninstance methodcalledgetSource which
return s areferenceto theobject that caused theevent.

17.27 GUI API: JTextField (page 265)

Theclassjavax.swing.JTextField implements a particular part of agraphical user inter-
face(GUI) which allows a user to enter a small piece of text. One of theconstructor methods
of the class takes a singleint method parameter. This is the minimum number ofcharacters
of text we would like the field to be wide enough to display.

We can also use aJTextField to display a small piece of text generated from within the
program.

17.28 GUI API: JTextField: getText() (page 265)

Theclassjavax.swing.JTextField has aninstance methodcalledgetText which takes no
method arguments andreturn s the text contents of the text field, as aString .

17.29 GUI API: JTextField: setText() (page 265)

Theclassjavax.swing.JTextField has aninstance methodcalledsetText which takes a
String as itsmethod argumentand changes the text of the text field to the given value.

21141

17.30 GUI API: JTextField: setEnabled() (page 267)

17.30 GUI API: JTextField: setEnabled() (page 267)

The class javax.swing.JTextField has aninstance methodcalled setEnabled , which
takes aboolean method parameter. If it is given the valuefalse, the text field becomes
disabled, that is any attempt to type into it has no effect. Ifinstead the parameter istrue, the
text field becomes enabled. When in the disabled state, the text field will typically look ‘greyed
out’.

17.31 GUI API: JTextField: initial value (page 274)

Theclassjavax.swing.JTextField has aconstructor methodwhich takes aString method
parameter to be used as the initial value for the text inside the text field.

JTextField nameJTextField = new JTextField("Type your name here.");

17.32 GUI API: JTextArea (page 267)

The classjavax.swing.JTextArea implements a particular part of agraphical user inter-
face (GUI) which displays a larger piece of text, consisting of multiple lines. The size of the
text area can be specified asmethod arguments to theconstructor method, as the number of
rows (lines) and the number of columns (characters per line).

17.33 GUI API: JTextArea: setText() (page 269)

The class javax.swing.JTextArea has aninstance methodcalled setText which takes
a String as amethod argument and changes the text of the text area to the given value.
This String may containnew line characters in it, and the text area will display the text
appropriately as separate lines.

17.34 GUI API: JTextArea: append() (page 269)

The class javax.swing.JTextArea has aninstance methodcalled append which takes a
String and appends it onto the end of the text already in the text area. Any required line
breaks must be made by including explicitnew line characters.

21142

17.35 GUI API: JPanel (page 270)

17.35 GUI API: JPanel (page 270)

The classjavax.swing.JPanel is anextensionof the olderjava.awt.Container , which
means that it is a component that is allowed to contain other components, and it hasadd()
instance methods allowing us to add components to it.JPanel is designed to work well with
the rest of theJava Swing package, and is the recommended kind of container to use when we
wish to group a collection of components so that they are treated as one for layout purposes.

17.36 GUI API: JScrollPane (page 274)

The classjavax.swing.JScrollPane implements a particular part of agraphical user in-
terface (GUI) which provides a scrolling facility over another component.

The simplest way to use it is to invoke theconstructor methodwhich takes a GUI component
as amethod parameter. This creates aJScrollPane object which provides a scrollable view
of the given component.

As an example, consider the following code which adds aJTextArea to thecontent paneof a
JFrame .

Container contents = getContentPane();
contents.add(new JTextArea(15, 20));

To make theJTextArea scrollable, we would replace the above with the following code in-
stead.

Container contents = getContentPane();
contents.add(new JScrollPane(new JTextArea(15, 20)));

17.37 GUI API: Color (page 400)

Theclassjava.awt.Color implements colours to be used ingraphical user interfaces. Each
Color object comprises four values in the range 0 to 255, one for each of theprimary colours
red, green and blue, and a fourth component (alpha) for opacity.

For convenience, the class includes a number ofclass constants containingreferences to
Color objects which represent some common colours.

public static final Color black = new Color(0, 0, 0, 255);

21143

public static final Color white = new Color(255, 255, 255, 255);
public static final Color red = new Color(255, 0, 0, 255);
public static final Color green = new Color(0, 255, 0, 255);
public static final Color blue = new Color(0, 0, 255, 255);

public static final Color lightGray = new Color(192, 192, 192, 255);
public static final Color gray = new Color(128, 128, 128, 255);
public static final Color darkGray = new Color(64, 64, 64, 255);

public static final Color pink = new Color(255, 175, 175, 255);
public static final Color orange = new Color(255, 200, 0, 255);
public static final Color yellow = new Color(255, 255, 0, 255);
public static final Color magenta = new Color(255, 0, 255, 255);
public static final Color cyan = new Color(0, 255, 255, 255);

Among many other features, there is aninstance methodgetRGB() which return s a unique
int for eachequivalent colour, based on the four component values.

18 Interface

18.1 Interface (page 257)

An interface is like aclass, except all theinstance methods in it must have no bodies. It is
used as the basis of a kind of contract, in the sense that it maybe declared that some classim-
plements an interface. This means that it supplies full definitions for all the body-less instance
methods listed in the interface. For example, the followingcode

public class MyClass implements SomeInterface
{

...
} // MyClass

says that the class being defined,MyClass , provides full definitions for all the instance methods
listed in the interfaceSomeInterface . So, for example, if amethodsomewhere has amethod
parameter of type SomeInterface , then aninstanceof MyClass could be supplied as a corre-
spondingmethod argument, as it satisfies the requirements of being of typeSomeInterface .

18.2 Interface: definition (page 511)

An interface is like aclass, except all theinstance methods in it must beabstract methods,
that is, they have no bodies. Only themethod interfaces are declared, i.e. themethod sig-

21144

18.2 Interface: definition (page 511)

natures andreturn types. Themethod implementations must be provided by each non-
abstract classthat implements the interface. For example, the following code says that the
classStopClock is both asubclassof JFrame and implementsActionListener .

import java.awt.event.ActionListener;
import javax.swing.JFrame;

public class StopClock extends JFrame implements ActionListener
{

...
public void actionPerformed(ActionEvent event)
{

...
} // actionPerformed
...

} // class StopClock

This means that aninstanceof StopClock is polymorphic – it is a StopClock , is a JFrame
and alsois an ActionListener .

The definition of an interface has thereserved wordinterface in its heading, instead of the
reserved wordclass. It can contain a list of instance method headings, each of which has
no body – just a semi-colon (;). If we wish, we can write the reserved wordabstract in
the heading of the interface, like we would for anabstract class. We can also write it in the
instance method headings, like we would for abstract methods appearing in abstract classes.
However, we are discouraged from doing so by the Java language standard[5], because all the
instance methodsmustbe abstract methods. Similarly, all the instance methodsmustbepublic,
and so we do not need to write that visibilitymodifier either, and are discouraged from doing
so.

The following is what you might expect theActionListener interface to look like.

public interface ActionListener
{

void actionPerformed(ActionEvent e);
} // interface ActionListener

An interface cannot containconstructor methods nor class methods (static method)s.
What is more, if it has anyvariables defined, they must bepublic, static andfinal vari-
ables, although we can omit those modifiers if we wish.

There can be noprivate instance methods or variables in an interface – obviously.

21145

18.3 Interface: is a type (page 512)

18.3 Interface: is a type (page 512)

An interface is a type, the set of all (references to) objects that can be created which are
instances of anyclassthat implements the interface. It has operations, which are themethod
implementations of theinstance methods of the interface, provided by each class which im-
plements the interface. And each of these operations has anoperation interface, which is the
method interface defined in the interface (and, in effect, redefined in each class that imple-
ments the interface).

So, an interface defines only the operation interfaces of thetype, not the actual operations.
That is why this code construct is called aninterface. We can think of it as being aninterface
contract – any class that claims to implement it is obliged to supply operation implementations.

18.4 Interface: method implementation (page 513)

A non-abstract classwhich implements aninterface must supplymethod implementations
for theabstract methods defined in that interface. As when making anoverride of aninstance
methoddefined in asuperclass, there is a danger of getting amethod parameter typewrong,
and introducing anoverloaded methodinstead, or mistyping the method name. Theoverride
annotation, @Override , introduced in Java 5.0, was extended in Java 6.0 to enable usto tell
the compiler that we believe an instance method is an override or an implementation of one
from a superclassor an interface. One situation this detects is when we have indeed got the
method implementation correct, but forgot to say that ourclassimplements the interface we
had in mind!

18.5 Interface: generic interface (page 520)

A generic interface is an interface which has one or moretype parameters written within
angled brackets (<>) just after its name in the interface heading. Such type parameters may be
used astypes in the declaration of theabstract methods in the interface. The feature works
in the same way as forgeneric classes: the generic interface itself is araw type and when we
supplytype arguments for the type parameters, we identify aparameterized type.

18.6 Interface: extending another interface (page 526)

An interface canextend another interface. This means that theabstract methods andclass
constants specified in thesuperinterfaceareinherit ed in thesubinterface. From apolymor-
phism point of view, it also means thatinstances of aclasswhich implements the subinterface,
are members of thetype denoted by the superinterface in addition to the type denoted by the
subinterface.

21146

18.7 Interface: a class can implement many interfaces (page530)

Unlike classes which can only extend one other class, interfaces can extend many other inter-
faces.

18.7 Interface: a class can implement many interfaces (page530)

A classcan extend at most one other class, but is permitted toimplement any number of
interfaces. The implemented interfaces are listed, with commas between, after thereserved
word implements.

For example, we could imagine aStopClock program, which automatically stopped and started
the clock when the mouse is moved out of and back in to the window. This would probably
implementMouseListener as well asActionListener .

import java.awt.ActionListener;
import java.awt.MouseListener;
import javax.swing.JFrame;
...
public class StopClock extends JFrame

implements ActionListener, MouseListener
{

...
// actionPerformed is defined in the interface ActionListe ner
public void actionPerformed(ActionEvent event)
{

...
} // actionPerformed

... Various methods here, as specified in MouseListener.

} // class StopClock

19 Array

19.1 Array (page 286)

An array is a fixed size, ordered collection (list) of items of some particulartype. The items
are stored next to each other incomputer memoryat run time . As an example, the following
is a representation of an array of 8int values, which happen to be the first 8prime numbers
(excluding 1).

21147

19.2 Array: array creation (page 287)

2 3 5 7 11 13 17 19

Each box, orarray element, contains a value, which can be changed if desired. In other
words, each element is a separatevariable. At the same time, the array as a whole is a single
entity. This is rather similar to the idea of anobject havinginstance variables, except that the
elements of an array must all be of the same type.

Indeed, arrays in Javaareobjects.

19.2 Array: array creation (page 287)

We can create anarray in Java using thereserved wordnew, like we do with otherobjects.
However, instead of following this with the name of aclass, we can state thearray base type
and then, in square brackets, the size of the array. For example, the following creates an array
of tendouble values.

new double[10]

At run time , this code yields areferenceto thenewly created array, which we typically would
want to store in avariable.

double[] myFingerLengths = new double[10];

Thanks to the use of references, the size of an array does not need to be known atcompile
time, because thecompiler does not need to allocate memory for it. This means atrun time
we can create an array which is the right size for the actualdata being processed.

int noOfEmployees = Integer.parseInt(args[0]);

String[] employeeNames = new String[noOfEmployees];

19.3 Array: array creation: initializer (page 320)

When we declare anarray variable we can at the same time create the actual array by listing
the array elements which are to be placed in it, using anarray initializer . This is instead

21148

19.4 Array: element access (page 288)

of saying how big the array is. Java counts thislist, creates an array that big, and assigns the
elements in the order listed. For example, the following code declares anarray variable which
refers to an array containing the first eightprime numbers (excluding 1).

int[] smallPrimes = {2, 3, 5, 7, 11, 13, 17, 19 };

This is just a shorthand for the following.

int[] smallPrimes = new int[8];
...
smallPrimes[0]=2; smallPrimes[1]=3; smallPrimes[2]=5;
smallPrimes[3]=7; smallPrimes[4]=11; smallPrimes[5]=1 3;
smallPrimes[6]=17; smallPrimes[7]=19;

19.4 Array: element access (page 288)

The array elements in anarray can be accessed individually via anarray index. This is a
whole numbergreater than or equal to zero. The first element in an array is indexed by zero,
the second by one, and so on. To access an element, we write areferenceto the array, followed
by the index within left and right square brackets.

For example, assuming we have the array

double[] myFingerLengths = new double[10];

and somehow we have placed the lengths of my fingers and thumbsinto the ten elements of
myFingerLengths , then the following code would compute the total length of myfingers and
thumbs.

double myTotalFingerLength = 0;
for (int index = 0; index < 10; index++)

myTotalFingerLength += myFingerLengths[index];

So, arrays are a bit like ordinaryobjects with the array elements beinginstance variables,
except that the number of instance variables is chosen when the array is created, they are all
the sametype, they are ‘named’ by indices rather than names, and they are accessed using a
differentsyntax.

21149

19.5 Array: element access: in two-dimensional arrays (page 330)

19.5 Array: element access: in two-dimensional arrays (page 330)

Each grid element in atwo-dimensional array is indexed by two indices – the firstarray
index accesses the rowarray , and the second accesses thearray elementwithin that row. For
example, given the code

int[][] my2DArray = new int[5][4];

thenmy2DArray[0] is areferenceto the first row, and somy2DArray[0][0] is the first element
in the first row. Similarly,my2DArray[4][3] is the last element in the last row.

19.6 Array: length (page 292)

Everyarray in Java has apublic instance variablecalledlength , of typeint, which contains
thearray length or size of the array. It is, of course, afinal variable, so we cannot change its
value.

int[] myArray = new int[25];
int myArrayLength = myArray.length;

In the above code fragment, thevariable myArrayLength will have the value25.

19.7 Array: empty array (page 292)

When we create anarray we say how manyarray elements it should have, and this number
can be zero. Although such anempty array may not seem of much use, it still exists – we can
access itsarray length for example.

int[] myEmptyArray = new int[0];
System.out.println(myEmptyArray.length);

The above code will output zero, whereas the following code will cause arun time error (in
fact aNullPointerException), because there is no array so we cannot ask for its length.

int[] myNonArray = null;
System.out.println(myNonArray.length);

21150

19.8 Array: of objects (page 301)

19.8 Array: of objects (page 301)

An array can contain values of anytype, includingobjects. Of course, as with any other kind
of variable, thearray elements of an array with anarray base typewhich is aclass, actually
containreferences to the objects.

The most obvious example of an array of objects, is thecommand line arguments passed to
themain method.

public static void main(String[] args)

The following diagram shows the abovemethod parameter referring to an array, with the
array elements themselves referring toString objects.

"Quick Hackers"

"49959"

"15049"

"Top Soft"

"Middle Ware"

"27750"

String object

String objectString[] args

String object

String object

String object

String object

0

2

3

4

5

1

19.9 Array: partially filled array (page 310)

An array has a fixed size, specified when it is created. Apartially filled array is one in which
not all of thearray elements are used, only a leading portion of them. The size of this portion
is typically stored in a separatevariable.

For example, suppose we have an array of 100 elements, of which initially none are in use.

21151

19.10 Array: partially filled array: deleting an element (page 404)

private final int MAX_NO_OF_ITEMS = 100;
private int noOfItemsInArray = 0;
private SomeType[] anArray = new SomeType[MAX_NO_OF_ITEMS];

We can add another item into the array, or do nothing if it is full, as follows.

if (noOfItemsInArray < MAX_NO_OF_ITEMS)
{

anArray[noOfItemsInArray] = aNewItem;
noOfItemsInArray++;

} // if

19.10 Array: partially filled array: deleting an element (page 404)

The simplest way to delete anarray element from a partially filled array with an arbitrary
order, is to replace the unwanted item with the one at the end of the used portion and decrement
the count of items.

int indexToBeDeleted = ...
noOfItemsInArray--;
anArray[indexToBeDeleted] = anArray[noOfItemsInArray] ;

19.11 Array: array extension (page 311)

If we are using apartially filled array then we may need to worry about the problem of it
becoming full when we still wish to add more items into it. Theprinciple ofarray extension
deals with this by making anew, biggerarray and copying items from the original into it.

We start by making an array of a certain size, with no items in it.

private static final int INITIAL_ARRAY_SIZE = 100;
private static final int ARRAY_RESIZE_FACTOR = 2;
private int noOfItemsInArray = 0;
private SomeType[] anArray = new SomeType[INITIAL_ARRAY_SIZE];

When we come to add an item, we make a bigger array if required.

if (noOfItemsInArray == anArray.length)
{

21152

19.12 Array: shallow copy (page 314)

SomeType[] biggerArray
= new SomeType[anArray.length * ARRAY_RESIZE_FACTOR];

for (int index = 0; index < noOfItemsInArray; index++)
biggerArray[index] = anArray[index];

anArray = biggerArray;
} // if

anArray[noOfItemsInArray] = aNewItem;
noOfItemsInArray++;

The new array does not need to be twice as big as the original, just at least one element bigger.
However, increasing the size by only one at a time would be slow due to the need for copying
the existing elements across.

19.12 Array: shallow copy (page 314)

When we copy anarray containingreferences toobjects, we can either make ashallow copy
or a deep copy. A shallow copy contains the same references, so the objectsend up being
shared between the two arrays. A deep copy contains references tocopiesof the original
objects.

19.13 Array: array of arrays (page 329)

The array elements of anarray may be of anytype, including arrays. This means the ele-
ments of the array arereferences to other arrays. For example, the following diagram shows
anarray variable which contains a reference to an array of arrays ofint values.

0

4

int[][] myArray

17 −999 3 99 −256 10 7 −23

012−3679799108−1

1 2 3 0 1 2 3

2103210

1 2 3 4

null

21153

19.14 Array: array of arrays: two-dimensional arrays (page330)

The type of the variable isint[][] , that isint array, array. The variable references an array
of 5 values, the first of which is a reference to an array of 5 numbers, the second a reference to
an array of 3 numbers, the third is a reference to an array of 4 numbers, the fourth is thenull
referenceand the final element is a reference to an array of 3 numbers. These arrays could be
created, ready for the numbers to be put in them, as follows.

int[][] myArray = new int[5][];
myArray[0] = new int[5];
myArray[1] = new int[3];
myArray[2] = new int[4];
myArray[3] = null;
myArray[4] = new int[3];

19.14 Array: array of arrays: two-dimensional arrays (page330)

A very common situation when we have anarray of arrays, is that none of thearray elements
are thenull reference and all of the arrays theyreferenceare the same length. This is known
as atwo-dimensional array, and is essentially a model of a rectangular grid. For example, the
following diagram shows avariable which contains a reference to a two-dimensional array of
int values.

21154

19.14 Array: array of arrays: two-dimensional arrays (page330)

0

3

int[][] my2DArray

17 −999 3 99

27−79923

57 −93 30 79

7680−101

14 15 0 −13

0 1 2

0 1 2 3

3210

1 2 3

3210

0

1

2

3

4

The above two-dimensional array could be created (without the numbers being assigned into it
yet) by the following code.

int[][] my2DArray = new int[5][];
my2DArray[0] = new int[4];
my2DArray[1] = new int[4];
my2DArray[2] = new int[4];
my2DArray[3] = new int[4];
my2DArray[4] = new int[4];

Two-dimensional arrays are so common, that Java provides a shorthand notation for defining
them. The shorthand for the above example is as follows.

int[][] my2DArray = new int[5][4];

The codenew int[5][4] makes an array of length 5 get created atrun time , and also 5 arrays
of length 4, which are capable of holdingint values, with these latter 5 arrays being referenced
by the 5 elements in the first array.

21155

20 Exception

20.1 Exception (page 340)

A run time error is called anexceptionin Java. There is a standardclasscalledjava.lang.Exception
which is used to record and handle exceptions. When an exceptional situation happens, anin-
stanceof this class is created, containing information about the error, stored in itsinstance
variables. In particular, it includes astack tracecontaining the source line number,method
name and class name at which the error occurred. This stack also contains the same informa-
tion for the method that called the one that failed, and so on,right back up to the main method
(for an error occurring in themain thread).

20.2 Exception: getMessage() (page 345)

When aninstanceof java.lang.Exception is created, it may be given a text message helping
to describe the reason for the error. This may be retrieved from anException object via its
getMessage() instance method.

20.3 Exception: there are many types of exception (page 347)

Theclassjava.lang.Exception is a general model ofexceptions. Java also has many classes
for modelling exceptions which are more specific to a particular kind of error. Here are a few
of the ones from thejava.lang package, each listed with an example error situation which
causes aninstanceof the exception class to be created.

21156

20.4 Exception: creating exceptions (page 350)

Exception class Example use
ArrayIndexOutOfBoundsException When some code tries to access anarray el-

ement using anarray index which is not in
the range of thearray being indexed.

IllegalArgumentException When amethod is passed amethod argu-
ment which is inappropriate in some way.

NumberFormatException In the parseInt() method of the
java.lang.Integer class when it is
asked to interpret an invalidString
method argument as anint. (Ac-
tually, NumberFormatException is
a particular kind of the more general
IllegalArgumentException .)

ArithmeticException When aninteger division has a denominator
which is zero.

NullPointerException When we have code that tries to access the
object referenced by avariable, but the vari-
able actually contains thenull reference.

20.4 Exception: creating exceptions (page 350)

The standardclassjava.lang.Exception has a number ofconstructor methods enabling us
to createinstances of it. One of these takes nomethod arguments, and creates anException
that has no message associated with it. A second constructormethod takes aString which is to
be used as the message. The other kinds ofexception, such asArrayIndexOutOfBoundsException ,
IllegalArgumentException ,NumberFormatException , ArithmeticException andNullPointerException
also have these two constructor methods.

20.5 Exception: creating exceptions: with a cause (page 357)

The standardclassjava.lang.Exception also has two moreconstructor methods enabling
us to createinstances which know about anotherexceptionthat caused this one to be created.
One of these takes the message and theexception cause, the other just takes the cause (and
hence has no message). Whenever wethrow a new exception inside acatch clause, it is good
practice to include the caught exception as the cause of the new one.

Many of the other kinds of exception also have these two constructor methods.

21157

20.6 Exception: getCause() (page 366)

20.6 Exception: getCause() (page 366)

The exception causestored inside anException may be retrieved via itsgetCause() in-
stance method. This will return thenull reference if no cause was given.

20.7 Exception: inheritance hierarchy (page 434)

All exceptions in Java are modelled asinstances ofclasses. For example, the classjava.lang.Exception
models a very general idea of exception, andjava.lang.ArrayIndexOutOfBoundsException
a much more specific kind. The different kinds of exception are arranged in aninheritance hi-
erarchy, with those classes near the top being models of quite general exceptions, and those
at the bottom being very specific. An instance ofArrayIndexOutOfBoundsException is
created when anarray index is out of the legal range for thearray . This class is asub-
classof the more generaljava.lang.IndexOutOfBoundsException . A different subclass of
IndexOutOfBoundsException is called
java.lang.StringIndexOutOfBoundsException . Instances of this are created in circum-
stances such as supplying an illegalmethod argumentto thecharAt() instance methodof a
String . The classIndexOutOfBoundsException is itself a subclass ofjava.lang.RuntimeException ,
the kind of exception that Java does notrequireus tocatch, although we sometimes do, and
this class is a subclass ofException .

We can show this relationship in aUML class diagram, including theconstructor methods
and some of thepublic instance methods.

21158

20.7 Exception: inheritance hierarchy (page 434)

Throwable

+ Throwable()
+ Throwable(message: String)
+ Throwable(message: String, cause: Throwable)
+ Throwable(cause: Throwable)
+ getMessage(): String
+ getCause(): Throwable
+ toString(): String

Error

+ Error()
+ Error(message: String)
+ Error(message: String, cause: Throwable)
+ Error(cause: Throwable)

Exception

+ Exception()
+ Exception(message: String)
+ Exception(message: String, cause: Throwable)
+ Exception(cause: Throwable)

RuntimeException

+ RuntimeException()
+ RuntimeException(message: String)
+ RuntimeException(message: String, cause: Throwable)
+ RuntimeException(cause: Throwable)

ArrayIndexOutOfBoundsException

+ ArrayIndexOutOfBoundsException()
+ ArrayIndexOutOfBoundsException(message: String)
+ ArrayIndexOutOfBoundsException(index: int)

StringIndexOutOfBoundsException

+ StringIndexOutOfBoundsException()
+ StringIndexOutOfBoundsException(message: String)
+ StringIndexOutOfBoundsException(index: int)

IOException

+ IOException()
+ IOException(message: String)

IndexOutOfBoundsException

+ IndexOutOfBoundsException()
+ IndexOutOfBoundsException(message: String)

You can see thatException is itself a subclass of something even more general calledjava.lang.Throwable ,
and there is a separate subclass ofThrowable called
java.lang.Error . The classThrowable is the type of all objects that can bethrown and
handled by catches of atry statement. Error is the type ofThrowable s which represent such
serious conditions, that it is unlikely a program would bother trying to catch them. For exam-
ple, java.lang.OutOfMemoryError is a subclass ofError , and an instance of it is thrown
when thevirtual machine has run out of memory to create any more objects. Catching this
kind of condition is unlikely to be helpful in most situations, and so Java does not force us
to. They are examples ofunchecked exceptions. However, ultimately the programmer knows
best, soError scanbe caught if desired.

Exception is the type ofThrowable which represents conditions that should typically be
caught at some point. If amethod contains code that could cause anException , or one of
its subclasses, to be thrown, then thecompiler forces the exception to either be caught within

21159

20.8 Exception: making our own exception classes (page 435)

the method, or declared in thethrows clauseof the method – they arechecked exceptions.

However, theRuntimeException class (and its subclasses) represents the kind of possible
exception which programmers usually avoid in the first place. For example, whenlooping an
array index over an array, the code would probably be writtento use the correct values, and
so avoid anArrayIndexOutOfBoundsException exception. It would be highly inconvenient
to haveto write acatch clauseor a throws clause even though we know the exceptions are
avoided, and so Java relaxes the rule for this subclass – theytoo areunchecked exceptions.
Of course, this means we must discipline ourselves: especially in code intended forsoftware
reuse, weshouldwrite catch or throws clauses if we have not eliminated the possibility of these
exceptions!

The diagram above is only a sample. There are almost 80 directsubclasses ofException in
the standard classes in Java 6.0, includingjava.io.IOException – instances of that can be
thrown when processingfiles. There are nearly 50 direct subclasses ofRuntimeException .

One advantage of thisinheritance hierarchy is that when we catch exceptions, we can decide
how general or specific we need to be. For example, the following fragment of code could
cause anArrayIndexOutOfBoundsException to be thrown in some circumstances, and in
other cases aStringIndexOutOfBoundsException .

int arrayIndex, stringIndex;
String[] listOfStrings;

... Code here to populate the above array,

... and set arrayIndex and stringIndex.

char c = listOfStrings[arrayIndex].charAt(stringIndex)

We can catch any exceptions of typeArrayIndexOutOfBoundsException , caused byarrayIndex
having a bad value. Alternatively we can catch exceptions caused by the value ofstringIndex
being unsuitable, that isStringIndexOutOfBoundsException exceptions. If we wish, we can
have twocatch clauses, one for each. However, the exception inheritance hierarchy allows us
the option of having one catch clause to deal with both, if that is appropriate, by catching
IndexOutOfBoundsException .

20.8 Exception: making our own exception classes (page 435)

Another advantage ofexceptions being arranged in aninheritance hierarchy is that we can
easily make our own exceptionclasses. Sometimes, the leaf classes at the bottom of the stan-
dard exception inheritance hierarchy tree are not quite specific enough to suit the errors that
can occur in our own code. They are, obviously,designed to be appropriate to the standard
classes. So, whenever we wish tothrow an exception, we should ask ourselves whether there

21160

is a standard exception that nicely captures the meaning of the error, and if not, we should make
our own exception class that does.

Making a new exception class is very easy. All we need to do is choose one of the standard
classes which is closest to characterizing what we want, andmake asubclassof it. Often this
standard class will be eitherjava.lang.Exception itself or java.lang.RuntimeException .
We would choose the former if we want ours to bechecked exceptions, or the latter if we want
them to beunchecked exceptions because we believe the circumstances leading to them can
be and typically should be avoided.

Most often, our own exception classes contain nothing but four constructor methods, one
with no method parameters, one which takes aString for the message associated with the
exception, one which has both a message and aThrowable exception cause, and one which has
only a cause. These simply invoke the corresponding constructor method from thesuperclass.

21 Inheritance

21.1 Inheritance (page 373)

A classcan be used to model a category ofobjects with certain characteristics that exist in
some way in the requirements of the program. However, sometimes the requirements exhibit
sub-categories of objects. For example, a program which is designed to simulate traffic move-
ment to help with road planning would probably have a class called Vehicle , representing the
category of all road vehicles. This would contain properties which are common to all vehicles,
such as average speed, and the relationship between their position and traffic lights, etc.. Sub-
categories of vehicle might be bicycle, private car, taxi, bus, lorry etc.. These all have different
specific properties – for example bicycles can be secured to many suitable fixed objects, such as
railings and of course bicycle stands, whereas cars need carparks and metered side streets, etc..
Lorries need specific access and unloading points at specificplaces, such as shops that require
regular deliveries. The road simulation would probably want to model people wishing to move
about on the roads, and in this respect, bicycles, private cars, taxis and buses have a current
and maximum number of passengers. Lorries might instead have a current and maximum load
capacity. The behaviour of taxis and buses respectively link to the properties of taxi ranks and
bus stops. And so on.

We would want to model these sub-categories as separate classes, each with whatever prop-
erties they specifically need, and yet still model the idea that they are all vehicles with the
general properties. Inobject oriented programming we signify this relationship by having
superclasses andsubclasses. A superclass is something which models the general category of
certain objects, and a subclass models a sub-category of those objects. So, we might decide
thatVehicle is the superclass of all road vehicles, and that the classBicycle models the sub-
category of bicycles, and have the classesPrivateCar , Taxi , Bus, Lorry , etc. for the other
specific sub-categories.

21161

21.2 Inheritance: a subclass extends its superclass (page 378)

By saying that a class is a subclass of another, its superclass, we are modelling theis a rela-
tionship. So, in the above example, a bicycleis a vehicle, that is, aninstanceof Bicycle is
also an instance ofVehicle .

The relationship between superclasses and their subclasses is known asinheritance because
the subclassesinherit the general properties from the superclass, as well as adding any specific
properties of their own.

21.2 Inheritance: a subclass extends its superclass (page 378)

A subclassis said to be anextensionof its superclass, because, in addition toinherit ing the
properties of the superclass, it may have more properties that the superclass does not have. We
state the relationship by declaring in the heading for the subclass that itextends the superclass.
For example, in a program to simulate traffic flow we might havethe following.

public class Bicycle extends Vehicle
{

...
public void chainToRailings(Railings railings)
{

...
} // chainToRailings
...

} // class Bicycle

So aBicycle object has all the properties of aVehicle , but also has the feature of being able
to be chained to railings.

As well as being used to representis arelationships between the modelclasses of our programs,
subclasses are commonly used in thegraphical user interfaceparts of our programs. For ex-
ample, the following says that theHelloWorld class is a subclass of thejavax.swing.JFrame
class. This meansHelloWorld is an extension ofJFrame , that is, aninstanceof HelloWorld
is aJFrame object too, but with extra properties that a plainJFrame object does not have.

import javax.swing.JFrame;
public class HelloWorld extends JFrame
{

... Code to add a JLabel with the text "Hello World!" in it.
} // class HelloWorld

21162

21.3 Inheritance: invoking the superclass constructor (page 379)

21.3 Inheritance: invoking the superclass constructor (page 379)

In the body of theconstructor methodof asubclasswe typically start by invoking a construc-
tor method of itssuperclass. This is done by writing thereserved wordsuper followed by
the appropriatemethod arguments in brackets. Such asuperclass constructor callmust be
the firststatementin the body of the constructor method, and furthermore, the superclass must
have a constructor method which matches the supplied arguments.

For example, in a traffic flow simulation program, when a vehicle is added to the simulation it
probably would always be given a position, direction and current speed.

public class Vehicle
{

...
public Vehicle(Position requiredPosition,

Direction requiredDirection, Speed requiredSpeed)
{

... Code that does something with requiredPosition,

... requiredDirection and requiredSpeed.
} // Vehicle
...

} // class Vehicle

Instead of creating plainVehicle objects we would makeinstances of a subclass, such as
Bicycle . We would still supply the position, direction and current speed information to the
constructor method ofBicycle , and it would most likely simply pass it on to the constructor
method ofVehicle .

public class Bicycle extends Vehicle
{

...
public Bicycle(Position position, Direction direction, Speed sp eed)
{

super(position, direction, speed);
... Code specific to making a Bicycle, if any, goes here.

} // Bicycle
...

} // class Bicycle

21.4 Inheritance: invoking the superclass constructor: implicitly (page
423)

In the body of aconstructor method, if the first statement is not asuperclass constructor
call (usingsuper), nor is it analternative constructor call (usingthis), then a call to the

21163

21.5 Inheritance: overriding a method (page 380)

constructor method of thesuperclasswhich has nomethod arguments, is assumed. This is
because the first work which is done by a constructor method must be to actually create the
object, that is, allocate memory for it, and this is done inside the constructor method of the
java.lang.Object class.

21.5 Inheritance: overriding a method (page 380)

The instance methods of asuperclassareinherit ed by itssubclasses. Sometimes, the defini-
tion of an instance method needs to be changed in a subclass, in which case the subclass simply
redefines it. The subclass versionoverrides the inherited definition. To override an instance
method, the redefinition must have the same name andtypes ofmethod parameters otherwise
it is a definition of a differentmethod! It must also still be an instance method, and have the
samereturn type . (Actually, the return type of the new instance method can bea subclass of
the return type of the one in the superclass.)

For example, in a traffic flow simulation program, most kinds of vehicle probably perform an
emergency stop in much the same way. However, a bicycle probably does it differently to most.

public class Vehicle
{

...
public void emergencyStop()
{

... General code for most vehicles.
} // emergencyStop
...

} // class Vehicle

public class Bicycle extends Vehicle
{

...
public void emergencyStop()
{

... Specific code for bicycles.
} // emergencyStop
...

} // class Bicycle

21.6 Inheritance: overriding a method: @Override annotation (page
430)

Java 5.0 introduced an idea calledannotations. These allow us to provide additional informa-
tion to thecompiler which can then be used to help in various ways. In particular,theover-

21164

21.7 Inheritance: abstract class (page 385)

ride annotation, @Override , can be written immediately before the heading of aninstance
method that we believeoverrides one from thesuperclass, or is amethod implementationof
anabstract method in the superclass. The compiler will complain if this is not the case, thus
protecting us from accidentally getting themethod signature wrong – perhaps misspelling
the method name or mis-ordering themethod parameter types and creating anoverloaded
method, etc..

21.7 Inheritance: abstract class (page 385)

If we wish that noinstances of a particularclassshould be made, we can declare it as an
abstract class. This is done by including thereserved wordabstract before the wordclass
in its heading. Thecompiler will produce an error if any code attempts to create a direct
instance of an abstract class.

For example, in a program that simulates traffic flow, it is likely that we do not wish any direct
instances of the classVehicle to be made, onlysubclasses of it.

public abstract class Vehicle
{

...
} // class Vehicle

public class Bicycle extends Vehicle
{

...
} // class Bicycle

The following code would produce an error message from the compiler.

Vehicle v = new Vehicle(...);

Whereas this code would be allowed.

Bicycle b = new Bicycle(...);

21.8 Inheritance: abstract method (page 386)

An abstract classis permitted to haveabstract methods declared in it. These areinstance
methods which havemodifiers (such aspublic – but notstatic), return type , name and

21165

21.9 Inheritance: polymorphism (page 390)

method parameters as usual, but also include thereserved word abstract and instead of
a body defined within braces, the heading is followed by a semi-colon (;). This declares
only themethod interface, i.e. themethod signatureandreturn type , and not themethod
implementation.

For example, in a traffic flow simulation program, the abstract classVehicle might have an
abstract method that decides whether the vehicle can pass down a particular route. It may well
be that each kind of vehicle needs to implement this in a different way.

public abstract class Vehicle
{

...
public abstract boolean canPassDown(Route r);
...

} // class Vehicle

All subclasses of the abstract class must either provide a method implementation of all the
abstract methods, or themselves be abstract classes. When we write an abstract method, we are
saying that all (non-abstract) subclasses of the abstract class contain an instance method with
the given method interface (name, method parameters and return type), but the implementations
of the instance method are provided by the subclasses, rather than one being defined here. This
saves us having to provide an implementation that is never used, in cases whereeverysubclass
wouldoverride it with their own version.

public class Bicycle extends Vehicle
{

...
public boolean canPassDown(Route r)
{

... Code for deciding if this bicycle can pass down the route.
} // canPassDown
...

} // class Bicycle

When a subclass defines a non-abstract instance method whichis also defined in itssuper-
class, we say that itoverrides the one from the superclass. When it defines an instance method
which is declared as an abstract method in its superclass, wesay it provides amethod im-
plementation. We can think of an override asreplacingthe method implementation from the
superclass.

21.9 Inheritance: polymorphism (page 390)

An instance of a subclassis also an instance of itssuperclass. For example, in a traffic
flow simulation program, if theclassBicycle is a subclass ofVehicle , then an instance of

21166

21.10 Inheritance: polymorphism: dynamic method binding (page 391)

Bicycle is aBicycle and also itis aVehicle . It may be treated as aBicycle , because that is
its type. However, it also may be treated as aVehicle because that is also its type. It hasboth
these forms. We say that it ispolymorphic, which means ‘has many forms’. Java supports
polymorphism via the use ofinheritance.

21.10 Inheritance: polymorphism: dynamic method binding (page 391)

In general, aclassmight have asubclass, which mightoverride some of itsinstance methods.
Also, abstract methods are designed to have differentmethod implementations in different
subclasses. Thus, when thecompiler produces thebyte codefor amethod callon an instance
method, it does not know which actualmethod implementationwill get used – the same call
could invoke different versions of the method at different moments, depending on the value of
theobject referenceat run time .

For example, assume we have the classVehicle with the instance methodemergencyStop() ,
and subclassPoshCar that does not override it, and another subclassBicycle that does. Which
version of the method is called by the second line in the following code?

Vehicle funRide = Math.random() < 0.5 ? new PoshCar(...) : new Bicycle(...);
funRide.emergencyStop();

Only at run time can the answer be determined: the reference stored infunRide refers either
to aPoshCar object, in which case the version fromVehicle is used, or aBicycle object, in
which case the version fromBicycle is used. The process of determining at run time which
actual method to invoke is known asdynamic method binding.

As a programmer, we have to be aware of this principle, because it means that our code might
not behave as we expected it to in some subclass where some of our instance methods have been
replaced with ones that do something different to what we were expecting. Instance methods
which are declared asprivate are safe – they cannot be overridden because they are not even
visible in any subclass.

21.11 Inheritance: final methods and classes (page 391)

If we wish that nosubclassmayoverride a particularpublic instance method, we can declare
it as afinal method by including thereserved word final in its heading. This should be
used with care – it may be that future requirements dictate that a subclass which has not yet
been written needs its own version of the instance method, but it would not be able to have one
without us removing thefinal modifier in thesuperclass.

Similarly, we can state that aclassis a final classand cannot have any subclasses at all, by
includingfinal in the class heading.

21167

21.12 Inheritance: adding more object state (page 393)

21.12 Inheritance: adding more object state (page 393)

A subclassis said to be anextensionof its superclass, because in general it may add more
properties that the superclass does not have. One way ofextending is to add moreobject state,
that is, additionalinstance variables.

21.13 Inheritance: adding more instance methods (page 395)

Another way ofextending thesuperclassin asubclassis to add moreinstance methods. This
is especially likely to be desired if the subclass also has additional instance variables.

21.14 Inheritance: testing for an instance of a class (page 397)

The reserved wordinstanceof is abinary infix operator which takes anobject reference
as its leftoperand, and aclassname as its right operand. It yieldstrue if the reference refers
to an object whichis an instanceof the named class (including being an instance of asubclass
of the named class),false otherwise.

For example, in a traffic flow simulation program, if the classTandem is a subclass ofBicycle
which is a subclass ofVehicle , then the following code might be found.

Vehicle vehicle = new Tandem(...);
... Code that might change what vehicle refers to.
if (vehicle instanceof Bicycle)

... Code that is only run if vehicle is still referring to a Bic ycle,

... perhaps still the original Tandem.

21.15 Inheritance: casting to a subclass (page 397)

An instanceof asubclass is an instance of itssuperclasstoo. This means something which is
of the subclasstype can always be used wherever the superclass type is required.For example,
in a traffic flow simulation program, ifBicycle is a subclass ofVehicle , then the following
would be permitted.

Vehicle vehicle1 = new Bicycle(...);

However, obviously not every instance of a superclass is also an instance of a particular one
of its subclasses, and so something of the superclass type cannot automatically be used where
something of a subclass type is required.

21168

21.16 Inheritance: is a versus has a (page 406)

For example, the following is not permitted.

Vehicle vehicle1 = new Bicycle(...);
...
Bicycle bicycle1 = vehicle1;

The problem is in the last line –vehicle1 is definitely of typeVehicle , but as far as Java is
concerned, its value might not be of typeBicycle , and so acompile time error will result.

If we are convinced that it is safe to treat something of the superclass type as though it is of a
particular subclass type, then we cancastthe value to that subclass, by preceding the value with
the name of the subclass in brackets. For example, the following is appropriate if we are sure
that after the code represented as... has beenexecuted, the value of thevariable vehicle1
is still a referenceto aBicycle object.

Vehicle vehicle1 = new Bicycle(...);
...
Bicycle bicycle1 = (Bicycle)vehicle1;

Thecompiler will accept this on face value, but the type cast is checked atrun time . If it turns
out that the value being cast to a subtype is not a reference toan object of that type, then a
ClassCastException object isthrown.

A common misunderstanding is that aclasscast somehow changes the object that is being cast.
Rather, it merelychecksthat the object is already of the stated type. This is in contrast to a
primitive type cast, such as converting adouble into anint, which really does create a new
value from the old one.

21.16 Inheritance: is a versus has a (page 406)

When aclass, A, is asubclassof another class,B, we say that anobject of type A is a B.

If, on the other hand, a class,C, has aninstance variableof type D, we say that an object of
typeC has aD.

21.17 Inheritance: using an overridden method (page 414)

A subclasscanoverride an instance methoddefined in asuperclass, but sometimes the be-
haviour of the new version is based on that of the one it is overriding. This means we need

21169

21.18 Inheritance: constructor chaining (page 423)

to have amethod call to thesuperclassversion, which we can do by prepending the instance
method name with thereserved wordsuper and a dot.

For example, in a traffic flow simulation program where most kinds of vehicle probably perform
an emergency stop in much the same way, perhaps a bicycle’s behaviour is based on the more
general one.

public class Vehicle
{

...
public void emergencyStop()
{

... General code for most vehicles.
} // emergencyStop
...

} // class Vehicle

public class Bicycle extends Vehicle
{

...
public void emergencyStop()
{

... Specific code for bicycles.
super.emergencyStop();
... More specific code for bicycles.

} // emergencyStop
...

} // class Bicycle

This super. notation can be used in any instance method of the subclass, not just in the
overriding method.

21.18 Inheritance: constructor chaining (page 423)

Whenever aconstructor method is invoked, the first thing done is either a call to another
constructor method in the sameclass, or to a constructor method in thesuperclass. This in
turn does the same, all the way up theinheritance hierarchy until eventually the construc-
tor method of thejava.lang.Object class is called. This process is known asconstructor
chaining.

Such chaining must always be possible for every class we write, or else we would not be able to
haveobjects created atrun time – it is the constructor method ofObject that actually creates
an object. So, one rule is that at least one constructor method of every class mustnot start with
a call to another constructor method of the same class!

21170

21.19 Inheritance: multiple inheritance (page 509)

21.19 Inheritance: multiple inheritance (page 509)

By saying that aclassis asubclassof another we are modelling theis a relationship. Some-
times, it can appear natural to view a class as being a subclass of more than onesuperclass.
This results in the subclassinherit ing properties from each of its superclasses, which is known
asmultiple inheritance.

Whilst the idea can sound attractive, it brings with it a complication when two or more of these
superclasses contain aninstance methodwith the same name andmethod parameters. This
problem is best illustrated by an abstract example. Supposewe have the classSuper1 , with the
instance methodmethodA() .

public class Super1
{

...
public void methodA()
{

...
} // methodA
...

} // class Super1

Suppose we, quite separately, have the classSuper2 , which also has an instance method
methodA() .

public class Super2
{

...
public void methodA()
{

...
} // methodA
...

} // class Super2

At some later date, somebody could make a subclass,Sub, of bothSuper1 andSuper2 .

public class Sub extends Super1, Super2
{

...
public void methodB()
{

...
methodA();

21171

...
} // methodB
...

} // class Sub

There are two, related, issues here. The first is about ambiguity: which methodA() should the
call insidemethodB() invoke? Many people regard the potential for this problem asbeing the
basis for the view that multiple inheritance is a bad idea – itleads to problematicinheritance
hierarchy designs. No doubt when the classSuper1 was written, the namemethodA was a
good name for themethod. And the same was true whenSuper2 was being written. But the
two methods may have completely unrelated functions, written by different people at different
times.

The second issue is concerned withrun time efficiency. When thevirtual machine is perform-
ing dynamic method binding for a method call, it needs to search the inheritance hierarchy
for every superclass, to find the method, perhaps hoping there is no conflict, but somehow deal-
ing with it if there is. This takes more time than searching upthe tree in a single inheritance
hierarchy.

In practice,full multiple inheritance is not very often required anyway. So,for all these rea-
sons, Java does not permit a class to have more than one superclass. Every class, except
java.lang.Object , has exactly one superclass, andObject has none because it is at the
top of the inheritance hierarchy.

22 File IO API

22.1 File IO API: IOException (page 450)

When processingfiles, there is much potential for things to go wrong. For example, attempting
to read a file that does not exist, or the end user running out offile space while writing a file,
or theoperating systemexperiencing a disk or network filestore problem, and so on. As a
result, most of the operations we can perform on files in Java are capable ofthrow ing anex-
ception, of thetype java.io.IOException . As you might expect, there are manysubclasses
of IOException , includingjava.io.FileNotFoundException .

IOException is itself a directsubclassof java.lang.Exception , rather than
java.lang.RuntimeException and thusinstances of it arechecked exceptions, that is, we
must writecatch clauses or throws clauses for them. This is because the errors which cause
them are not generally avoidable by writing code.

21172

22.2 File IO API: InputStream (page 451)

22.2 File IO API: InputStream (page 451)

The basic building block for readingdata in Java, is theclassjava.io.InputStream . This
provides a view of the data as abyte stream– a continuous sequence ofbytes.

The simplest way to access these bytes, one by one, is via theread() instance method. This
takes nomethod arguments andreturn s the next byte from the stream. However, if there are
no more bytes, because all of them have been read (or there wasnone in the first place), then it
returns the number-1 instead. If something goes wrong during the read, then anIOException
is thrown.

The value returned byread() must be able to distinguish-1 from the byte value255 , which
is the same as-1 in 8-bit number representation. For this reason, the resultis actually anint
rather than abyte.

As an example, here is possible skeleton code to process all the data in anInputStream . This
is another appropriate use of treating anassignment statementas anexpression: we have a
loop which terminates when the result of some expression is a certain value, and we also want
to use that result inside the body of the loop. Notice that we need to put brackets around the
assignment statement; this is because= has a loweroperator precedencethan the!= operator.

InputStream inputData;
try

{

inputData = ... Code to set up inputData.
int currentByte;
while ((currentByte = inputData.read()) != -1)
{

... Code to do something with currentByte.
} // while

} // try
catch (IOException exception)
{

System.err.println("Ooops -- that didn’t work! " + excepti on.getMessage());
} // catch
finally

{

try { if (inputData != null) inputData.close(); }

catch (IOException exception)
{ System.err.println("Could not close input " + exception); }

} // finally

Notice how we have used atry finally statement to make sure that there is an attempt toclose
theInputStream even if something else goes wrong. It is a good idea to ensure we close input
and/or output streams when we have finished with them. For example, on someoperating
systems that do not separate the notions offile name from file contents, a file cannot be deleted

21173

22.3 File IO API: InputStreamReader (page 456)

or renamed if a program has it open for reading or writing. Additionally, if we do not close
output streams then the data might never get written to its destination!

22.3 File IO API: InputStreamReader (page 456)

If we wish to treat anInputStream as a sequence ofcharacters, rather than a sequence of
bytes, we can wrap it up in aninstance of the class java.io.InputStreamReader . This
provides aninstance methodcalledread , whichreturn s the nextcharacterfrom the wrapped
up InputStream , or -1 if there are no more to be read. To achieve this, the instance method
reads one or more bytes from the underlyingInputStream for each character.

InputStreamReader has twoconstructor methods, one takes just anInputStream which
it wraps up. It will (usually) use the the defaultfile encoding in operation on the computer
where the program isrun . The second constructor method takes both anInputStream and
the character encoding which is to be used – permitting us to read character streams that were
generated under a differentlocale.

22.4 File IO API: BufferedReader (page 459)

Whilst theclass java.io.InputStreamReader convertsbytes into characters, it does not
provide aninstance methodto read a whole line of characters in one go. Instead, this function-
ality is provided byjava.io.BufferedReader . This class wraps up anInputStreamReader
object and provides the instance methodreadLine() , as well asread() for a single character
(and othermethods). We can create aBufferedReader object by providing theconstructor
method with an instanceof InputStreamReader , which we wish it to wrap up.

The instance methodreadLine() takes nomethod arguments andreturn s aString , contain-
ing the next line of the input from the underlyingInputStreamReader ; or thenull reference
if there are no more lines to be read.

22.5 File IO API: FileInputStream (page 462)

To readbytes from afile, we use aninstanceof theclassjava.io.FileInputStream . This
is asubclassof java.io.InputStream which reads its input bytes from a file.

22.6 File IO API: FileReader (page 462)

To readcharacters instead ofbytes from a file, we can wrap aFileInputStream in an
InputStreamReader . For convenience we can instead create aninstanceof java.io.FileReader ,

21174

22.7 File IO API: OutputStream (page 462)

which then creates the requiredFileInputStream and InputStreamReader internally for
us. FileReader is a subclassof java.io.InputStreamReader , and so has aread() in-
stance methodto read acharacter, and can be wrapped inside aBufferedReader to obtain
a readLine() instance method. One of theconstructor methods of FileReader takes the
name of the file to be accessed.

Here is a possible skeleton use ofFileReader .

FileReader fileReader;
try

{

fileReader = new FileReader("my-data.txt");
int currentCharacter;
while ((currentCharacter = fileReader.read()) != -1)
{

... do something with currentCharacter.
} //while

} //try
catch (IOException exception)
{

System.err.println(exception.getMessage());
} // catch
finally

{

try { if (fileReader != null) fileReader.close(); }

catch (IOException exception)
{ System.err.println("Could not close input file " + excepti on); }

} // finally

22.7 File IO API: OutputStream (page 462)

The basic building block for writingdata in Java, is theclassjava.io.OutputStream . Like
java.io.InputStream , this provides a view of the data as abyte stream. OutputStream
has, amongst others, aninstance methodwrite() to write a singlebyte.

22.8 File IO API: OutputStreamWriter (page 462)

If we wish to treat anOutputStream as a sequence ofcharacters, rather than a sequence of
bytes, we can wrap it up in aninstanceof theclassjava.io.OutputStreamWriter . This is
analogous to
java.io.InputStreamReader for InputStream objects. OutputStreamWriter has, amongst
others, aninstance methodwrite() to write a single character.

21175

22.9 File IO API: FileOutputStream (page 463)

22.9 File IO API: FileOutputStream (page 463)

To writebytes to afile, we use aninstanceof theclassjava.io.FileOutputStream . This is
asubclassof java.io.OutputStream which writes its output bytes to a file.

22.10 File IO API: FileWriter (page 463)

To write characters instead ofbytes to a file, we can wrap aFileOutputStream in an
OutputStreamWriter . For convenience we can instead create aninstanceof java.io.FileWriter ,
which then creates the requiredFileOutputStream andOutputStreamWriter internally for
us. FileWriter is asubclassof java.io.OutputStreamWriter , and so has awrite() in-
stance methodto write a character. One of theconstructor methods ofFileWriter takes the
name of the file to be written to.

Here is a possible skeleton use ofFileWriter . Notice the call to theclose() instance method
in thefinally block – it is a good idea toclosefiles, especially for output files, when we have
finished with them. If we do not, then it is possible thatdata written into theFileWriter
might still be waiting in memory buffers, and never get written into the physical file.

FileWriter fileWriter;
try

{

fileWriter = new FileWriter("my-results.txt");
boolean iFeelLikeIt = ...
while (iFeelLikeIt)
{

int currentCharacter = ...
fileWriter.write(currentCharacter);
...
iFeelLikeIt = ...

} // while
} // try
catch (IOException exception)
{

System.err.println(exception.getMessage());
} // catch
finally

{

try { if (fileWriter != null) fileWriter.close(); }

catch (IOException exception)
{ System.err.println("Could not close output file " + except ion); }

} // finally

Notice that thevariable to hold each character is anint. Only the lowest 16bits, which is the

21176

22.11 File IO API: PrintWriter (page 463)

size ofchar, are used bywrite() . This avoids the need for us tocast the value to achar if
we have in fact just obtained it fromread() of an InputStream .

22.11 File IO API: PrintWriter (page 463)

Whilst the class java.io.OutputStreamWriter (and itssubclassjava.io.FileWriter)
convertscharacters into bytes, it does not provideinstance methods to print whole lines
of text, or decimal representations of numbers, etc.. Instead, this functionality is provided by
java.io.PrintWriter . This class wraps up anOutputStreamWriter object and provides
instance methodsprintln() , andprint() for a range of possiblemethod arguments. Since
Java 5.0 it also hasprintf() . We can create aPrintWriter object by providing thecon-
structor method with an instanceof OutputStreamWriter , which we wish it to wrap up.

22.12 File IO API: PrintWriter: checkError() (page 464)

Curiously, theinstance methods of thejava.io.PrintWriter classneverthrow anyexcep-
tions! (However, some of itsconstructor methods do.) So, to find out whether something has
gone wrong with the printing, we can use itscheckError() instance method. Thisreturn s a
boolean which istrue if there has been an error,false otherwise.

Hence, a typical use ofPrintWriter might be as follows.

PrintWriter printWriter;
try

{

printWriter = ...
while (...)
{

...
printWriter.write(...);
...

} // while
} // try
catch (IOException exception)
{

System.err.println(exception.getMessage());
} // catch
finally

{

if (printWriter != null)
{

// printWriter.close() does not throw an exception.
printWriter.close();

21177

22.13 File IO API: PrintWriter: versus PrintStream (page 468)

if (printWriter.checkError())
System.err.println("Something went wrong with the output ");

} // if
} // finally

22.13 File IO API: PrintWriter: versus PrintStream (page 468)

An often asked question is, what is the difference betweenjava.io.PrintStream andjava.io.PrintWriter
PrintStream is asubclassof OutputStream , and so haswrite() instance methods for writ-
ing bytes, but also hasprint() , println() andprintf() instance methods for printing rep-
resentations of things ascharacters, (e.g. decimal representations ofints, String s as lines,
etc.). APrintWriter is a wrapper around aninstanceof java.io.OutputStreamWriter and
providesprint() , println() andprintf() instance methods for printing representations as
characters via thatOutputStreamWriter . It does not have any way to write bytes.

The desire to write amixtureof bytes and characters to the same stream is highly unusual –
we nearly always want either all bytes or all characters, thelatter sometimes with the ability to
print representations.PrintStream primarily exists forSystem.out andSystem.err , so that
thestandard output and thestandard error are each available as a stream of bytes, but can
also be conveniently treated as ‘printable’ – e.g. for errormessages, debugging messages, or
very simple programs.

Programs that need to produce representations as a stream ofcharacters should usePrintWriter
rather thanPrintStream , becausePrintWriter does not have instance methods to write
bytes; we cannot accidentally use them. (And programs that wish to produce a stream of bytes
should useOutputStream (includingjava.io.FileOutputStream) rather thanPrintStream .)

22.14 File IO API: PrintWriter: can also wrap an OutputStrea m (page
468)

System.out is anOutputStream (actually itssubclass, PrintStream). If we wish to treat it
as aPrintWriter , then we can wrap it up inside anOutputStreamWriter and then inside a
PrintWriter .

PrintWriter systemOut = new PrintWriter(new OutputStreamWriter(System.out));

However, for convenience one of theconstructor methods of PrintWriter can take an
OutputStream directly, andconstruct the intermediateOutputStreamWriter internally for
us.

PrintWriter systemOut = new PrintWriter(System.out);

21178

22.15 File IO API: File (page 469)

All instances of outputclasses which act as wrappers around some other output classobject
may typically store their output in an internal buffer before sending it to the wrapped up object,
in an effort to speed up overall operation of our programs. Such buffers areflushed by calls
to the flush() instance method, or when the output isclosed, via theclose() instance
method. For aPrintWriter which is wrapping upSystem.out , it is likely we would want
to enableautomatic flushing. This ensures thatdata is sent all the way through to appearing
at the final destination (e.g. the screen) whenever one of theprintln() or printf() instance
methods has finished producing its result (but notprint()). Automatic flushing can be enabled
by using a separate constructor method which takes an additionalboolean method argument.

PrintWriter systemOut = new PrintWriter(System.out, true);

22.15 File IO API: File (page 469)

Theclassjava.io.File allows us to examine properties offiles. Although the class is called
File , it is really all about filenames, and properties of any files of those names. Oneconstruc-
tor method of the File class takes the path name of a file as its singlemethod argument.
There are a number ofinstance methods, includingexists() which return s aboolean in-
dicating whether or not theFile object represents a file that actually exists. In other words,
whether or not the path name given to the constructor method is the name of a file that currently
exists.

22.16 File IO API: DataOutputStream (page 479)

If we wish to write values of anyprimitive type , rather than justbyte, to abinary file , we can
use thejava.io.DataOutputStream class. This is asubclassof java.io.OutputStream
and aninstanceof it is also a wrapper around anOutputStream (including its subclasses such
asjava.io.FileOutputStream). For example, aDataOutputStream object which writes to
thefile out.dat can beconstructed with the following code.

DataOutputStream out = new DataOutputStream(new FileOutputStream("out.dat"));

DataOutputStream has instance methods to write all the kinds of primitive type, such as
writeInt() to write anint value in fourbytes, andwriteShort() to write ashort value in
two bytes. Themostsignificant byte of numbers is written first, although if we intend to read the
databack using the correspondingreadXXX() instance method ofjava.io.DataInputStream ,
we do not really need to worry about the byte order.

Instances ofjava.lang.String can also be written, using thewriteUTF() instance method.
This records the information in (a slight variant of) afile encodingknown as8-bit Unicode
Transformation Format . UTF-8 allows for allUnicode[20] characters to be represented.

21179

22.17 File IO API: DataInputStream (page 479)

22.17 File IO API: DataInputStream (page 479)

If we wish to read values from abinary file which was written using aDataOutputStream , we
can use thejava.io.DataInputStream class. This is asubclassof java.io.InputStream
and aninstanceof it is also a wrapper around anInputStream (including its subclasses such
asjava.io.FileInputStream). For example, aDataInputStream object which reads from
thefile in.dat can beconstructed with the following code.

DataInputStream in = new DataInputStream(new FileInputStream("in.dat"));

DataInputStream has instance methods to read all the kinds ofprimitive type , such as
readInt() to read anint value from fourbytes, andreadShort() to read ashort value
from two bytes. Themostsignificant byte of numbers is read first, although if we are just
readingdata back which was written using the correspondingwriteXXX() instance method of
DataOutputStream , we do not really need to worry about the byte order.

Instances ofjava.lang.String which were written usingwriteUTF() of DataOutputStream ,
can be read using thereadUTF() instance method.

23 Collections API

23.1 Collections API (page 538)

The need to storecollections of data is very common in programming, and so in addition
to thearray type built-in to Java, the standard Javaapplication program interface (API)
provides thecollections framework. This is a group ofclasses andinterfaces designed to
store collections of data in various different ways. These collections typically allow elements
to be added to them without us worrying about memory allocation – that is, they automatically
grow big enough to hold the elements that are added to them.

23.2 Collections API: Lists (page 538)

One of the kinds ofcollection supported by thecollections framework is thelist collection.
These are collections ofdatawhich are essentiallylists or sequences. This means that duplicate
elements are permitted, they are stored in some order, and each element occurs at a particular
list index position, starting at index zero. Lists are, in principle, similar to arrays.

21180

23.4 Collections API: Lists: List interface: iterator() (page 553)

23.3 Collections API: Lists: List interface (page 538)

Theinterface java.util.List is part of thecollections framework. It specifies theinstance
methods needed to support alist collection. These include the following.

Method definitions in interface List (some of them).

Method Return Arguments Description

size int Returns the size of thisList , that is, the number of
elements in it.

add boolean Object Appends the givenObject to the end of theList .
Returnstrue.

get Object int Returns theObject at the specifiedlist index, which
must be legal (0 <= index < size()) to avoid an
IndexOutOfBoundsException .

set Object int, Object Overwrites an existing element with a new one: i.e.
it replaces theObject at the givenint list index
with the given otherObject . Returns the origi-
nal Object . The index must be legal to avoid an
IndexOutOfBoundsException .

Since Java 5.0,List is ageneric interfacewith a singletype parameter representing thetype
of objects that can be stored in it. So, when we use aparameterized typeof List rather than
its raw type, all the occurrences ofObject in the above table of instance methods are replaced
by thetype argument.

23.4 Collections API: Lists: List interface: iterator() (page 553)

The instance methoditerator() , specified in theinterface java.util.List , return s an
object that implements java.util.Iterator , supporting aniteration of the elements in the
List , in ascending order of theirlist index in theList .

For example, the following code prints out all the elements of a List , from the one indexed by
zero, up to the last one, indexed bysize() minus one.

public static <ListType> void printList(List<ListType> list)
{

Iterator<ListType> iterator = list.iterator();
while (iterator.hasNext())
{

ListType item = iterator.next();

21181

23.5 Collections API: Lists: List interface: extends Collection (page 556)

System.out.println(item);
} // while

} // printList

For anArrayList , this way of scanning through the elements is just as efficient as using the list
index of each element. However, for some kinds ofList s, accessing by index is not efficient,
whereas scanning using anIterator always will be, because it is designed for that purpose.
So, as a rule of thumb, whenever you need to scan through the elements of alist in an arbitrary
order, or from first to last, you should use anIterator rather than the indices.

23.5 Collections API: Lists: List interface: extends Collection (page 556)

Theinterface java.util.List is anextensionof the more general interfacejava.util.Collection .

public interface List<E> extends Collection<E>
{

...
} // interface List

23.6 Collections API: Lists: ArrayList (page 539)

The class java.util.ArrayList is part of thecollections framework, and is oneimple-
mentation of alist collection. It implements thejava.util.List interface. As the name
suggests, this kind oflist is implemented using aprivate instance variable, which is anarray
of type java.lang.Object[] . This array is grown (byarray extension) automatically as
required.

Since Java 5.0,ArrayList , and the other classes in the collections framework aregeneric
classes. Thetype parameter of anArrayList is thetype of objects that can be stored in it.

public class ArrayList<E> implements List<E>
{ ... }

23.7 Collections API: Lists: add(index) and remove(index)(page 557)

The interface java.util.List specifiesinstance methods for adding and removing an el-
ement at a particularlist index, in addition to those defined injava.util.Collection for
adding an element (at the end inlists), or removing an elementequivalent to a given one.

21182

23.8 Collections API: Lists: LinkedList (page 558)

Method definitions in interface List (some more of them).

Method Return Arguments Description
add int, Object Inserts the givenObject at the specified list index,

shifting any elements after that position up by one
place. To avoid anIndexOutOfBoundsException , the
index must be legal (0 <= index <= size()).

remove Object int Removes the element at the given list index, shifting el-
ements after that position down by one place. To avoid
an IndexOutOfBoundsException , the index must be
legal (0 <= index < size()).

23.8 Collections API: Lists: LinkedList (page 558)

The classjava.util.LinkedList is part of thecollections framework, and is another im-
plementation of alist collection. It implements thejava.util.List interface by using a
doubly linked list .

Since Java 5.0,LinkedList , and the other classes in the collections framework aregeneric
classes. Thetype parameter of a LinkedList is thetype of objects that can be stored in it.

public class LinkedList<E> implements List<E>
{ ... }

23.9 Collections API: Collections class (page 543)

The standardclassjava.util.Collections provides variousclass methods to perform com-
plex manipulations ofcollections. One of these is calledsort , and takes aList of Object s
which it sorts into theirnatural ordering . For this to work withoutthrow ing anexception,
the items in theList must all be oftype java.lang.Comparable and bemutually compa-
rable. Thealgorithm used is calledmerge sort, which is far more efficient thanbubble sort
(but less simple).

Since Java 5.0, many of the class methods inCollections have becomegeneric methods.
The sort() class method has a singletype parameter which is thetype of the items in the
givenList . These must beComparable with themselves, and so you would probably expect
the heading of the class method to be as follows.

public static <T extends Comparable<T>>
void sort(List<T> list)

21183

23.11 Collections API: Sets: Set interface (page 546)

In fact, it is defined in this way instead.

public static <T extends Comparable<? super T>>
void sort(List<T> list)

The code<? super T> means “any type that isT or asuperclass(or superinterface) of it”.
So here, this means any suppliedtype argument must implement Comparable with itself,
or a superclass of itself. Many of thetype parameters in the standardapplication program
interface (API) are expressed in that sort of way, because it leads to more flexibility and
convenience.

23.10 Collections API: Sets (page 546)

Another of the kinds ofcollection supported by thecollections framework is theset collec-
tion. These are collections ofdata which are essentiallysets, which means that adding an
element to them has no effect if the set already contains an element that isequivalent to the
new one. Also, the order in which the elements are added to thecollection isnot preserved.

For the purposes of determining whether twoObject s are equivalent, sets are intended to use
theequals() instance methodof the elements in them.

23.11 Collections API: Sets: Set interface (page 546)

The interface java.util.Set is part of thecollections framework. It specifies theinstance
methods needed to support aset collection. These include the following.

Method definitions in interface Set (some of them).

Method Return Arguments Description

size int Returns the size of thisSet , that is, the number of
elements in it.

add boolean Object Inserts the givenObject into the Set , unless an
equivalent one is already present. Returnstrue if it
gets added,false otherwise.

contains boolean Object Returntrue if the Set contains anObject which is
equivalent to the given one,false otherwise.

Since Java 5.0,Set is ageneric interface. Thetype parameterof aSet is thetype of objects

21184

23.12 Collections API: Sets: Set interface: iterator() (page 554)

that can be stored in it. So, when we use aparameterized typeof Set rather than itsraw type,
all the occurrences ofObject in the above table of instance methods are replaced by thetype
argument.

23.12 Collections API: Sets: Set interface: iterator() (page 554)

The instance methoditerator() , specified in theinterface java.util.Set , return s an
object that implements java.util.Iterator , supporting aniteration of the elements in the
Set . The order of the iteration will depend on the kind ofset, and may be in some arbitrary
order.

23.13 Collections API: Sets: Set interface: extends Collection (page 557)

Theinterface java.util.Set is anextensionof the more general interfacejava.util.Collection .

public interface Set<E> extends Collection<E>
{

...
} // interface Set

23.14 Collections API: Sets: HashSet (page 548)

Theclassjava.util.HashSet is part of thecollections framework, and is one implementa-
tion of aset collection. It implements thejava.util.Set interface. This kind ofsetuses a
hash table, with thehash codes being obtained from thehashCode() instance methodof the
items stored in it. For this to work, anyobjects which areequivalent musthave the same hash
code, otherwise multiple copies of equivalent items will beallowed in the set! For efficiency,
non-equivalent objects should tend to have different hash codes.

Since Java 5.0,HashSet , and the other classes in the collections framework aregeneric classes.
Thetype parameter of a HashSet is thetype of objects that can be stored in it.

public class HashSet<E> implements Set<E>
{ ... }

23.15 Collections API: Sets: TreeSet (page 552)

The classjava.util.TreeSet is part of thecollections framework, and is another imple-
mentation of aset collection. It implements thejava.util.Set interface. This kind ofset

21185

23.17 Collections API: Iterator interface (page 553)

uses anordered binary tree and so it has to be possible to order the elements which are stored
in it. The simplest way of providing such an ordering is to ensure that theclassof the elements
implementsjava.lang.Comparable .

Since Java 5.0,TreeSet , and the other classes in the collections framework aregeneric classes.
Thetype parameter of a TreeSet is thetype of objects that can be stored in it.

public class TreeSet<E> implements Set<E>
{ ... }

23.16 Collections API: Sets: TreeSet: iterator() (page 554)

The iterator() instance methodof the java.util.TreeSet class returns anobject that
implements
java.util.Iterator , which supports aniteration through the elements in the order they
appear in the tree, from left to right. With the simplest use of a TreeSet we thus get the
natural ordering of elements as provided bymethod implementations of compareTo() .

As a rule of thumb,java.util.HashSet should be used in preference toTreeSet when it is
not desired to obtain the values from theset collectionin a specific order. If there is little or no
hash codeclashing, aHashSet operates in nearly constant time per addition and membership
test. By contrast, aTreeSet operates in time which is proportional to the logarithm of the size
of theset.

23.17 Collections API: Iterator interface (page 553)

The interface java.util.Iterator is part of thecollections framework. It specifies the
instance methods needed to support a way of accessing all the elements in acollectionone by
one.

Method definitions in interface Iterator (some of them).

Method Return Arguments Description

hasNext boolean Returnstrue if the iteration has more elements,false
otherwise.

next Object Returns the next element in the iteration, and moves the
iteration on to the element following that one.

When anew Iterator object is obtained from a collection,hasNext() will return true,

21186

23.18 Collections API: Collection interface (page 556)

unless the collection is empty. The first time we callnext() , we get the first element from the
iteration if there is one, then the second time we get the second element, and so on. Sooner or
laterhasNext() will return false because we have callednext() as many times as there are
elements. Typically we usehasNext() to control aloop and callnext() inside the loop only
if there is another element.

All list collections andset collections support the instance methoditerator() which returns
someobject that is aninstanceof someclassthatimplements Iterator . The object returned
supports an iteration through the elements of the collection, in an order which depends on the
kind of collection.

Since Java 5.0,Iterator is ageneric interface. Thetype parameter of an Iterator is the
type of objects that are stored in the corresponding collection.In other words, if the collec-
tion was given atype argument, then thenext() instance method of anIterator over that
collection returns an object of that type.

23.18 Collections API: Collection interface (page 556)

The interface java.util.Collection is part of thecollections framework. It specifies the
instance methods needed to support acollection, such as alist collection or aset collection.
These include the following.

Method definitions in interface Collection (some of them).

Method Return Arguments Description
size int Returns the size of thisCollection , that is, the

number of elements in it.
add boolean Object Ensures that thisCollection contains the

given Object , or anequivalent one if appro-
priate. Itreturn s true if the Collection was
modified, false otherwise. For example, a
List always appends the element on the end
and returnstrue, whereas aSet will do nothing
if it already contains an equivalent element.

remove boolean Object Removes one element equivalent to the given
Object , and returnstrue if the Collection
was changed (i.e. there was at least one element
matching the given one).

addAll boolean Collection Adds all the elements of the givenCollection
to this one, and returnstrue if this collection
was changed. (E.g. the given collection could
be empty, or this one could be aSet and already
contain the elements.)

21187

23.19 Collections API: Collection interface: constructortaking a Collection (page 568)

Method definitions in interface Collection (some of them).

Method Return Arguments Description
removeAll boolean Collection Removes all the elements of the given

Collection from this one, and returnstrue if
this collection was changed.

retainAll boolean Collection Removes all elements of this collection which
arenotcontained in the givenCollection , and
returnstrue if this collection was changed.

contains boolean Object Returnstrue if the Collection contains at
least oneObject which is equivalent to the
given one,false otherwise.

containsAll boolean Collection Returnstrue if this Collection contains at
least one equivalentObject for each element
in the given collection,false otherwise.

iterator Iterator Returns an object that implements
java.util.Iterator , giving access to
all the elements of theCollection . The order
depends on the kind of collection.

Since Java 5.0,Collection is ageneric interfacewith a singletype parameter which rep-
resents thetype of objects that can be stored in it. So, when we use aparameterized typeof
Collection rather than itsraw type, all occurrences ofObject in the above table of instance
methods are replaced by thetype argument.

23.19 Collections API: Collection interface: constructortaking a Collec-
tion (page 568)

Theapplication program interface (API) documentation of thejava.util.Collection in-
terface states that anyclasswhich implements it should provide twoconstructor methods,
one which takes nomethod arguments and builds an emptyCollection , and one which takes
an existingCollection and builds anew one containing the same elements.

Interestingly, there is no way for this requirement to be enforced in Java, as interfaces cannot
specify constructor methods! It could be argued that this isa deficiency in the use of interfaces
as a means of contractual obligation.

Anyway, all the standard implementations ofjava.util.Collection do satisfy the require-
ment.

21188

23.21 Collections API: Maps: Map interface (page 560)

23.20 Collections API: Maps (page 559)

Another kind ofcollection supported by thecollections framework is themap. One view of
arrays andlist collections is that they are functions from akey to a corresponding element,
where the key is thearray index or list index. A map is more general, in the sense that the key
can be anytype of object, rather than always anint index. For every key in the map, there
is an associated value. Two different keys may map on to the same value, but every possible
key maps on to at most one value. To put it another way, you can think of a map as being aset
of pairs, each containing a key and a value. The keys are all unique within a particular map –
every pair has a key which is notequivalent to the key in any other pair. By contrast, the values
may be duplicated – any number of different pairs may have values which are equivalent. Thus,
a map is amany-to-one association, otherwise known in Mathematics as afunction.

23.21 Collections API: Maps: Map interface (page 560)

The interface java.util.Map is part of thecollections framework. It specifies theinstance
methods needed to support amap. These include the following.

Method definitions in interface Map (some of them).

Method Return Arguments Description

put Object Object, Object Takes akey and a value, and adds that associ-
ation to the map. If the map previously con-
tained a mapping for this key (or anequiv-
alent one), the old value is replaced with the
new one. Returns thenull reference, if this is
a new key, orreturn s the old value otherwise.

get Object Object Takes a key and returns the value associ-
ated with it, or the null reference if the map
does not contain a mapping with a key which
equivalent to the given one.

values Collection Returns aCollection of the values (not
keys) in the map. Theiterator() instance
method of the resultingCollection may
support iterating through the values in a par-
ticular order, or not, depending on the kind of
Map.

keySet Set Returns aSet of the keys (not values) in the
map.

Since Java 5.0,Map is ageneric interface. There aretwo type parameters for aMap, first the

21189

23.22 Collections API: Maps: TreeMap (page 560)

type of objects that can be used as keys, and then the type of objects that canbe used as values.
So, when we use aparameterized typeof Maprather than itsraw type, occurrences ofObject
in the above table of instance methods are replaced by the correspondingtype argument as
appropriate.

23.22 Collections API: Maps: TreeMap (page 560)

Theclassjava.util.TreeMap is part of thecollections framework, and is one implementa-
tion of amap. It implements thejava.util.Map interface. This kind of map is implemented
using anordered binary tree. This means that there must be an ordering on thekeys of the
map, and the simplest way of providing such an ordering is to ensure that the keys implement
java.util.Comparable .

The values() instance methodof TreeMap gives aCollection ; the iterator() of this
gives anobject thatimplements java.util.Iterator , and supportsiteration over the values
of the map in key order.

Since Java 5.0,TreeMap , and the other classes in the collections framework aregeneric classes.
There aretwo type parameters for aTreeMap , first thetype of objects that can be used as keys,
and then the type of objects that can be used as values.

public class TreeMap<K, V> implements Map<K, V>
{ ... }

(Actually TreeMap implements an interface calledjava.util.SortedMap which extends
Map.)

23.23 Collections API: Maps: HashMap (page 567)

The classjava.util.HashMap is part of thecollections framework, and is another imple-
mentation of amap. It implements thejava.util.Map interface. This kind of map is imple-
mented using ahash tableand so each element must have an appropriate implementationof
hashCode() so that theHashMap works correctly.

Thevalues() instance methodof HashMap gives aCollection containing the values of the
map, which can yield anobject implementing java.util.Iterator that supportsiteration
over these values in no specific order.

As a rule of thumb,HashMap should be used in preference tojava.util.TreeMap when it is
not desired to obtain the values from the map inkey order. If there is little or nohash code
clashing, aHashMap operates in nearly constant time per look up and addition. Bycontrast, a
TreeMap operates in time which is proportional to the logarithm of the size of the map.

21190

23.23 Collections API: Maps: HashMap (page 567)

Since Java 5.0,HashMap, and the other classes in the collections framework aregeneric classes.
There aretwo type parameters for aHashMap, first thetype of objects that can be used as keys,
and then the type of objects that can be used as values.

public class HashMap<K, V> implements Map<K, V>
{ ... }

21191

	Computer basics
	Computer basics: hardware (page 3)
	Computer basics: hardware: processor (page 3)
	Computer basics: hardware: memory (page 3)
	Computer basics: hardware: persistent storage (page 3)
	Computer basics: hardware: input and output devices (page 3)
	Computer basics: software (page 3)
	Computer basics: software: machine code (page 3)
	Computer basics: software: operating system (page 4)
	Computer basics: software: application program (page 4)
	Computer basics: data (page 3)
	Computer basics: data: files (page 5)
	Computer basics: data: files: text files (page 5)
	Computer basics: data: files: binary files (page 5)

	Java tools
	Java tools: text editor (page 5)
	Java tools: javac compiler (page 9)
	Java tools: java interpreter (page 9)
	Java tools: javadoc (page 223)
	Java tools: javadoc: throws tag (page 355)

	Operating environment
	Operating environment: programs are commands (page 7)
	Operating environment: standard output (page 7)
	Operating environment: command line arguments (page 8)
	Operating environment: standard input (page 187)
	Operating environment: standard error (page 344)

	Class
	Class: programs are divided into classes (page 16)
	Class: public class (page 16)
	Class: definition (page 16)
	Class: objects: contain a group of variables (page 158)
	Class: objects: are instances of a class (page 158)
	Class: objects: this reference (page 180)
	Class: objects: may be mutable or immutable (page 193)
	Class: objects: compareTo() (page 222)
	Class: is a type (page 161)
	Class: is a type: and has three components (page 512)
	Class: making instances with new (page 162)
	Class: accessing instance variables (page 164)
	Class: importing classes (page 188)
	Class: stub (page 191)
	Class: extending another class (page 245)
	Class: generic class (page 491)
	Class: generic class: bound type parameter (page 496)
	Class: generic class: bound type parameter: extends some class (page 496)
	Class: generic class: bound type parameter: extends some interface (page 526)
	Class: generic class: where type parameters cannot be used (page 501)
	Class: generic class: used as a raw type (page 502)

	Method
	Method (page 118)
	Method: main method: programs contain a main method (page 17)
	Method: main method: is public (page 17)
	Method: main method: is static (page 17)
	Method: main method: is void (page 17)
	Method: main method: is the program starting point (page 17)
	Method: main method: always has the same heading (page 18)
	Method: private (page 118)
	Method: accepting parameters (page 118)
	Method: accepting parameters: of a class type (page 164)
	Method: accepting parameters: of an array type (page 297)
	Method: calling a method (page 119)
	Method: void methods (page 120)
	Method: returning a value (page 122)
	Method: returning a value: of a class type (page 176)
	Method: returning a value: multiple returns (page 196)
	Method: returning a value: of an array type (page 312)
	Method: changing parameters does not affect arguments (page 124)
	Method: changing parameters does not affect arguments: but referenced objects can be changed (page 208)
	Method: constructor methods (page 159)
	Method: constructor methods: more than one (page 203)
	Method: constructor methods: more than one: using this (page 393)
	Method: constructor methods: default (page 425)
	Method: class versus instance methods (page 166)
	Method: a method may have no parameters (page 173)
	Method: return with no value (page 206)
	Method: accessor methods (page 207)
	Method: mutator methods (page 207)
	Method: overloaded methods (page 237)
	Method: that throws an exception (page 354)
	Method: that throws an exception: RuntimeException (page 358)
	Method: generic methods (page 522)
	Method: generic methods: bound type parameter (page 526)

	Command line arguments
	Command line arguments: program arguments are passed to main (page 17)
	Command line arguments: program arguments are accessed by index (page 26)
	Command line arguments: length of the list (page 79)
	Command line arguments: list index can be a variable (page 79)

	Type
	Type (page 36)
	Type: String (page 135)
	Type: String: literal (page 18)
	Type: String: literal: must be ended on the same line (page 21)
	Type: String: literal: escape sequences (page 49)
	Type: String: concatenation (page 26)
	Type: String: conversion: from int (page 38)
	Type: String: conversion: from double (page 55)
	Type: String: conversion: from object (page 177)
	Type: String: conversion: from object: null reference (page 211)
	Type: int (page 36)
	Type: double (page 54)
	Type: casting an int to a double (page 79)
	Type: boolean (page 133)
	Type: long (page 145)
	Type: short (page 145)
	Type: byte (page 145)
	Type: char (page 145)
	Type: char: literal (page 145)
	Type: char: literal: escape sequences (page 146)
	Type: char: comparisons (page 238)
	Type: char: casting to and from int (page 238)
	Type: float (page 146)
	Type: primitive versus reference (page 162)
	Type: array type (page 287)
	Type: enum type (page 309)
	Type: enum type: access from another class (page 312)

	Standard API
	Standard API: System: out.println() (page 18)
	Standard API: System: out.println(): with no argument (page 98)
	Standard API: System: out.println(): with any argument (page 427)
	Standard API: System: out.print() (page 98)
	Standard API: System: out.printf() (page 126)
	Standard API: System: out.printf(): zero padding (page 140)
	Standard API: System: out.printf(): string item (page 289)
	Standard API: System: out.printf(): fixed text and many items (page 289)
	Standard API: System: out.printf(): left justification (page 300)
	Standard API: System: in (page 187)
	Standard API: System: in: is an InputStream (page 452)
	Standard API: System: getProperty() (page 195)
	Standard API: System: getProperty(): line.separator (page 195)
	Standard API: System: currentTimeMillis() (page 262)
	Standard API: System: err.println() (page 344)
	Standard API: System: out: is an OutputStream (page 468)
	Standard API: System: err: is an OutputStream (page 468)
	Standard API: Integer: parseInt() (page 41)
	Standard API: Integer: as a box for int (page 487)
	Standard API: Integer: as a box for int: autoboxing (page 494)
	Standard API: Integer: as a box for int: works with collections (page 548)
	Standard API: Double: parseDouble() (page 54)
	Standard API: Math: pow() (page 73)
	Standard API: Math: abs() (page 87)
	Standard API: Math: PI (page 87)
	Standard API: Math: random() (page 205)
	Standard API: Math: round() (page 289)
	Standard API: Scanner (page 188)
	Standard API: Scanner: for a file (page 306)
	Standard API: String (page 233)
	Standard API: String: some instance methods (page 234)
	Standard API: String: format() (page 301)
	Standard API: String: split() (page 313)
	Standard API: String: implements Comparable (page 520)
	Standard API: Character (page 342)
	Standard API: Object (page 422)
	Standard API: Object: toString() (page 427)
	Standard API: Object: equals() (page 521)
	Standard API: Object: hashCode() (page 548)
	Standard API: Object: hashCode(): making a good definition (page 566)
	Standard API: Arrays (page 518)
	Standard API: Arrays: sort() (page 518)
	Standard API: Arrays: copyOf() (page 523)
	Standard API: Comparable interface (page 520)
	Standard API: Comparable interface: compareTo() and equals() (page 522)

	Statement
	Statement (page 18)
	Statement: simple statements are ended with a semi-colon (page 18)
	Statement: assignment statement (page 37)
	Statement: assignment statement: assigning a literal value (page 37)
	Statement: assignment statement: assigning an expression value (page 38)
	Statement: assignment statement: updating a variable (page 70)
	Statement: assignment statement: updating a variable: shorthand operators (page 87)
	Statement: assignment statement: is an expression (page 450)
	Statement: if else statement (page 60)
	Statement: if else statement: nested (page 62)
	Statement: if statement (page 64)
	Statement: compound statement (page 66)
	Statement: while loop (page 71)
	Statement: for loop (page 77)
	Statement: for loop: multiple statements in for update (page 136)
	Statement: statements can be nested within each other (page 92)
	Statement: switch statement with breaks (page 107)
	Statement: switch statement without breaks (page 110)
	Statement: do while loop (page 112)
	Statement: for-each loop: on arrays (page 293)
	Statement: for-each loop: on collections (page 562)
	Statement: try statement (page 344)
	Statement: try statement: with multiple catch clauses (page 347)
	Statement: try statement: with finally (page 451)
	Statement: throw statement (page 350)

	Error
	Error (page 20)
	Error: syntactic error (page 20)
	Error: semantic error (page 22)
	Error: compile time error (page 22)
	Error: run time error (page 24)
	Error: logical error (page 29)

	Execution
	Execution: sequential execution (page 23)
	Execution: conditional execution (page 60)
	Execution: repeated execution (page 70)
	Execution: parallel execution -- threads (page 253)
	Execution: parallel execution -- threads: the GUI event thread (page 254)
	Execution: event driven programming (page 254)

	Code clarity
	Code clarity: layout (page 31)
	Code clarity: layout: indentation (page 32)
	Code clarity: layout: splitting long lines (page 43)
	Code clarity: comments (page 82)
	Code clarity: comments: marking ends of code constructs (page 83)
	Code clarity: comments: multi-line comments (page 189)

	Design
	Design: hard coding (page 36)
	Design: pseudo code (page 73)
	Design: object oriented design (page 184)
	Design: object oriented design: noun identification (page 185)
	Design: object oriented design: encapsulation (page 187)
	Design: Sorting a list (page 295)
	Design: Sorting a list: bubble sort (page 296)
	Design: Sorting a list: total order (page 516)
	Design: Sorting a list: tree sort (page 554)
	Design: Searching a list: linear search (page 323)
	Design: Searching a list: binary search (page 525)
	Design: UML (page 381)
	Design: UML: class diagram (page 381)
	Design: Storing data (page 547)
	Design: Storing data: hash table (page 547)
	Design: Storing data: ordered binary tree (page 552)
	Design: Storing data: linked list (page 557)

	Variable
	Variable (page 36)
	Variable: int variable (page 37)
	Variable: a value can be assigned when a variable is declared (page 42)
	Variable: double variable (page 54)
	Variable: can be defined within a compound statement (page 92)
	Variable: local variables (page 124)
	Variable: class variables (page 124)
	Variable: a group of variables can be declared together (page 129)
	Variable: boolean variable (page 133)
	Variable: char variable (page 145)
	Variable: instance variables (page 159)
	Variable: instance variables: should be private by default (page 175)
	Variable: of a class type (page 161)
	Variable: of a class type: stores a reference to an object (page 162)
	Variable: of a class type: stores a reference to an object: avoid misunderstanding (page 170)
	Variable: of a class type: null reference (page 192)
	Variable: of a class type: holding the same reference as some other variable (page 216)
	Variable: final variables (page 194)
	Variable: final variables: class constant (page 205)
	Variable: final variables: class constant: a set of choices (page 308)
	Variable: final variables: class constant: a set of choices: dangerous (page 308)
	Variable: of an array type (page 287)
	Variable: initial value (page 453)

	Expression
	Expression: arithmetic (page 38)
	Expression: arithmetic: int division truncates result (page 52)
	Expression: arithmetic: associativity and int division (page 52)
	Expression: arithmetic: double division (page 55)
	Expression: arithmetic: double division: by zero (page 291)
	Expression: arithmetic: remainder operator (page 149)
	Expression: arithmetic: shift operators (page 473)
	Expression: arithmetic: integer bitwise operators (page 474)
	Expression: brackets and precedence (page 45)
	Expression: associativity (page 48)
	Expression: boolean (page 60)
	Expression: boolean: relational operators (page 60)
	Expression: boolean: logical operators (page 128)
	Expression: boolean: logical operators: conditional (page 323)
	Expression: conditional expression (page 94)

	Package
	Package (page 187)
	Package: java.util (page 188)
	Package: java.awt and javax.swing (page 245)

	GUI API
	GUI API: JFrame (page 245)
	GUI API: JFrame: setTitle() (page 246)
	GUI API: JFrame: getContentPane() (page 246)
	GUI API: JFrame: setDefaultCloseOperation() (page 247)
	GUI API: JFrame: pack() (page 247)
	GUI API: JFrame: setVisible() (page 248)
	GUI API: Container (page 246)
	GUI API: Container: add() (page 246)
	GUI API: Container: add(): adding with a position constraint (page 268)
	GUI API: Container: setLayout() (page 250)
	GUI API: JLabel (page 246)
	GUI API: JLabel: setText() (page 258)
	GUI API: LayoutManager (page 249)
	GUI API: LayoutManager: FlowLayout (page 249)
	GUI API: LayoutManager: FlowLayout: alignment (page 278)
	GUI API: LayoutManager: GridLayout (page 251)
	GUI API: LayoutManager: BorderLayout (page 267)
	GUI API: Listeners (page 254)
	GUI API: Listeners: ActionListener interface (page 257)
	GUI API: Listeners: ActionListener interface: actionPerformed() (page 258)
	GUI API: JButton (page 256)
	GUI API: JButton: addActionListener() (page 256)
	GUI API: JButton: setEnabled() (page 266)
	GUI API: JButton: setText() (page 267)
	GUI API: ActionEvent (page 258)
	GUI API: ActionEvent: getSource() (page 280)
	GUI API: JTextField (page 265)
	GUI API: JTextField: getText() (page 265)
	GUI API: JTextField: setText() (page 265)
	GUI API: JTextField: setEnabled() (page 267)
	GUI API: JTextField: initial value (page 274)
	GUI API: JTextArea (page 267)
	GUI API: JTextArea: setText() (page 269)
	GUI API: JTextArea: append() (page 269)
	GUI API: JPanel (page 270)
	GUI API: JScrollPane (page 274)
	GUI API: Color (page 400)

	Interface
	Interface (page 257)
	Interface: definition (page 511)
	Interface: is a type (page 512)
	Interface: method implementation (page 513)
	Interface: generic interface (page 520)
	Interface: extending another interface (page 526)
	Interface: a class can implement many interfaces (page 530)

	Array
	Array (page 286)
	Array: array creation (page 287)
	Array: array creation: initializer (page 320)
	Array: element access (page 288)
	Array: element access: in two-dimensional arrays (page 330)
	Array: length (page 292)
	Array: empty array (page 292)
	Array: of objects (page 301)
	Array: partially filled array (page 310)
	Array: partially filled array: deleting an element (page 404)
	Array: array extension (page 311)
	Array: shallow copy (page 314)
	Array: array of arrays (page 329)
	Array: array of arrays: two-dimensional arrays (page 330)

	Exception
	Exception (page 340)
	Exception: getMessage() (page 345)
	Exception: there are many types of exception (page 347)
	Exception: creating exceptions (page 350)
	Exception: creating exceptions: with a cause (page 357)
	Exception: getCause() (page 366)
	Exception: inheritance hierarchy (page 434)
	Exception: making our own exception classes (page 435)

	Inheritance
	Inheritance (page 373)
	Inheritance: a subclass extends its superclass (page 378)
	Inheritance: invoking the superclass constructor (page 379)
	Inheritance: invoking the superclass constructor: implicitly (page 423)
	Inheritance: overriding a method (page 380)
	Inheritance: overriding a method: @Override annotation (page 430)
	Inheritance: abstract class (page 385)
	Inheritance: abstract method (page 386)
	Inheritance: polymorphism (page 390)
	Inheritance: polymorphism: dynamic method binding (page 391)
	Inheritance: final methods and classes (page 391)
	Inheritance: adding more object state (page 393)
	Inheritance: adding more instance methods (page 395)
	Inheritance: testing for an instance of a class (page 397)
	Inheritance: casting to a subclass (page 397)
	Inheritance: is a versus has a (page 406)
	Inheritance: using an overridden method (page 414)
	Inheritance: constructor chaining (page 423)
	Inheritance: multiple inheritance (page 509)

	File IO API
	File IO API: IOException (page 450)
	File IO API: InputStream (page 451)
	File IO API: InputStreamReader (page 456)
	File IO API: BufferedReader (page 459)
	File IO API: FileInputStream (page 462)
	File IO API: FileReader (page 462)
	File IO API: OutputStream (page 462)
	File IO API: OutputStreamWriter (page 462)
	File IO API: FileOutputStream (page 463)
	File IO API: FileWriter (page 463)
	File IO API: PrintWriter (page 463)
	File IO API: PrintWriter: checkError() (page 464)
	File IO API: PrintWriter: versus PrintStream (page 468)
	File IO API: PrintWriter: can also wrap an OutputStream (page 468)
	File IO API: File (page 469)
	File IO API: DataOutputStream (page 479)
	File IO API: DataInputStream (page 479)

	Collections API
	Collections API (page 538)
	Collections API: Lists (page 538)
	Collections API: Lists: List interface (page 538)
	Collections API: Lists: List interface: iterator() (page 553)
	Collections API: Lists: List interface: extends Collection (page 556)
	Collections API: Lists: ArrayList (page 539)
	Collections API: Lists: add(index) and remove(index) (page 557)
	Collections API: Lists: LinkedList (page 558)
	Collections API: Collections class (page 543)
	Collections API: Sets (page 546)
	Collections API: Sets: Set interface (page 546)
	Collections API: Sets: Set interface: iterator() (page 554)
	Collections API: Sets: Set interface: extends Collection (page 557)
	Collections API: Sets: HashSet (page 548)
	Collections API: Sets: TreeSet (page 552)
	Collections API: Sets: TreeSet: iterator() (page 554)
	Collections API: Iterator interface (page 553)
	Collections API: Collection interface (page 556)
	Collections API: Collection interface: constructor taking a Collection (page 568)
	Collections API: Maps (page 559)
	Collections API: Maps: Map interface (page 560)
	Collections API: Maps: TreeMap (page 560)
	Collections API: Maps: HashMap (page 567)

