Java Just in Time:
Collected concepts after chapter 19

‘John Latham, School of Computer Science, Manchester LBMy,eUK‘

Contents

April 15, 2011

1 Computer basics

11
1.2
1.3
1.4
15
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13

2 Java tools
2.1
2.2
2.3
2.4
2.5

Computer basics:
Computer basics:
Computer basics:
Computer basics:
Computer basics:
Computer basics:
Computer basics:
Computer basics:
Computer basics:
Computer basics:
Computer basics:
Computer basics:
Computer basics:

Java tools: text editor (pa@ 5
Java tools: javac compiler (p 9 ...
Java tools: java interpreter (page 9)
Java tools: javadoc (p23)

hardware (p@e 3)
hardware: processor (page3)
hardware: memory (page3)
hardware: persistent storage @ag.e.%. C

hardware: input and output devicage

software (p 3) .
software: machine code (@ e3).
software: operating system (page 4)
software: application program (page 4
data (p@e 3)
data: files (page5)
data: files: text files (page5)

data: files: binary files (page 5)

Java tools: javadoc: throws tag (pgge b55)

3 Operating environment

3.1
3.2
3.3
3.4
3.5

4 Class

Operating environment: programs are commands @ge 7)... .

Operating environment: standard output (;ﬁge 7 ..

Operating environment: standard input (page 187)

Operating environment: command line arguments (@ge 8). ..
Operating environment: standard error (; agel344)

19000

CONTENTS

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19

5 Methoa
5.1
5.2
5.3
5.4
5.5
5.6
57
5.8
5.9
5.10
511
5.12
5.13
514
5.15
5.16
517
5.18
5.19
5.20
521
5.22
5.23
5.24
5.25
5.26

Class: programs are divided into classes (@e 16) 19007
Class: public class (pagel16) (0[0178]
Class: definition (page16) 0a»
Class: objects: contain a group of variables page 158) 19007
Class: objects: are instances of a class (page 158) 19008
Class: objects: this reference (pﬁ 180) 19008
Class: objects: may be mutable or immutable (ﬁ 193). . . . 19009
Class: objects: compareTo() (p@ﬂ) 19009
Class:isatype (page 161) 0990
Class: making instances with new (pﬁlGZ) 19010
Class: accessing instance variables (%@é 164) 19010
Class: importing classes (p@%) 19011
Class: stub (page 191) i 1190
Class: extending another class (245) C e e w ... 19012
Class: generic class (p91) 19012
Class: generic class: bound type parameter 496)... . . . 19013
Class: generic class: bound type parameter: extenus class 6)19013
Class: generic class: where type parameters cannseddgpag e 501)19014
Class: generic class: used as a raw type (page 502) 19014
19015
Method (PagE I18) . « . « « v v oo 19015
Method: main method: programs contain a main methode@ . 19015
Method: main method: is public (page 17) 19015
Method: main method: is static (page 17) 19016
Method: main method: is void (page!17) 9016
Method: main method: is the program starting point (... . 19016
Method: main method: always has the same heading(pgge 18. 19016
Method: private (pagﬁ& B0
Method: accepting parameters (p118) 19017
Method: accepting parameters: of a class type 164. ... 19018
Method: accepting parameters: of an array type (page 29. . . . 19018
Method: calling a method 19) 19019
Method: void methods (page 120) 901D
Method: returning a value (|022) 19020
Method: returning a value: of a class type (76) - - - ..19020
Method: returning a value: multiple returns (page 196). 19021
Method: returning a value: of an array type (page 312) 19022
Method: changing parameters does not affect argur(mg) . 19022
Method: changing parameters does not affect argumaurtseferenced objects can b
Method: constructor methods (pﬁhsg) 19023
Method: constructor methods: more than one (203)... . . 19024
Method: constructor methods: more than one: usindplaigéﬁ) . 19024
Method: constructor methods: default (pﬁ425). c e e ... 19025
Method: class versus instance methods (%e 166) 19026
Method: a method may have no parameters 173) 19028
Method: return with no value (p06) 19028

19001

CONTENTS

5.27
5.28
5.29
5.30
5.31

Method: accessor methods (pagel207) 19028
Method: mutator methods ﬁ 07), 19029
Method: overloaded methods (pgge 237) ... 19029

Method:
Method:

that throws an exception (page 354) 19029
that throws an exception: RuntimeExcepti(agﬁ) . . 19030

6 Command line argumenté
Command line arguments

6.1
6.2
6.3
6.4

7 Tiée

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21
7.22
7.23
7.24
7.25
7.26
7.27

19031

. program arguments are paseminc(pag 19031

\8 Standard API

8.1
8.2
8.3
8.4
8.5

Command line arguments: program arguments are accdegsedex (pag)19032
Command line arguments: length of the list (e 79)19032
Command line arguments: list index can be avariable@ .. . 19032
19033
TYPE (PAGE 36) « « o o o 19033
Type: String (pa5) 13203
Type: String: literal (pagﬁ8) 19033
Type: String: literal: must be ended on the same Iinee(.. . 19033
Type: String: literal: escape sequences (e 49)19033
Type: String: concatenation (pagei26)19034
Type: String: conversion: from int (p38 c e e e o 19035
Type: String: conversion: from double (55) c e e ewe... . 19035
Type: String: conversion: from object (p 77).19036
Type: String: conversion: from object: null refere|(1pag) . . 19036
Type: int (pagﬁG 1903
Type: double (pa4) 1003
Type: casting an int to a double (p@ 79) 19037
Type: boolean (page 133) 3890
Type:long (page 145) 1®03
Type: short (pa@lS) 3ID0O
Type: byte (page 145) 03
Type:char(page 145) 03
Type: char: literal (pa5) 19039
Type: char: literal: escape sequences (ﬁb 146) 19039
Type: char: comparisons (page 238). 19039
Type: char: casting to and from int (pm%) N Re [0 72 10
Type: float (page 146) 104
Type: primitive versus reference (p162) 19041
Type: array type (page 287)o 0419
Type: enumtype (page309) 4190
Type: enum type: access from another class {TTgé 312) 19042
19042
Standard API: System: out.printin() (p@ 18)19042
Standard API: System: out.printin(): with no argumqﬂatg(é?%. . 19043
Standard API: System: out.printin(): with any argum@atge 427) . 19043
Standard API: System: out.print() (page 98) 19044
Standard API: System: out.printf() (page 126) 19044

19002

CONTENTS

8.6

8.7

8.8

8.9

8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
8.22
8.23
8.24
8.25
8.26
8.27
8.28
8.29
8.30
8.31
8.32
8.33
8.34
8.35

9

Statement

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15

Standard API:
Standard API:
Standard API:
Standard API:
Standard API:
Standard API:
Standard API:
Standard API:
Standard API:
Standard API:
Standard API:
Standard API:
Standard API:
Standard API:
Standard API:
Standard API:
Standard API:
Standard API:
Standard API:
Standard API:
Standard API:
Standard API:
Standard API:
Standard API:
Standard API:
Standard API:
Standard API:
Standard API:
Standard API:
Standard API:

System: out.printf(): zero padding@) 19045
System: out.printf(): string item (pag8)2. 19046
System: out.printf(): fixed text and maaynis (pag)19047
System: out.printf(): left justificati(page 300) . . . 19047
System:in(page 187) 19047
System: in: is an InputStream (452) 19048
System: getProperty() (dﬁ—e\l%) s e .- ... 19048
System: getProperty(): line.sepa Elg)19048
System: currentTimeMillis() (page 262). 19048
System: err.printin() (page344) 19048
System: out: is an OutputStream (pagg . . . 19049
System: err: is an OutputStream (page.468 . . . 19049
Integer: parselint() (p% 4119049
Integer: as a box for int (page 487) 19050
Integer: as a box for int: autoboxing 19050
Double: parseDouble() (e 54)19050
Math: pow() (pagel73) 19051
Math: abs() (page 87) 19051
Math: Pl (page87) 9031
Math: random() (meS) 19052
Math: round() (page 289) 19052
Scanner (page 188) 19052
Scanner: for a file (p06) e e e 19053
String (pa@b:%) 19054
String: some instance methods @e 234). . . . 19055
String: format() (01) Y R [0 1516
String: split() a?e 313).19057
Character % 42) . o 19057
Object (page 422) 905B
Object: toString() (pég?@?) . 19059
19059
......................... 19059

Statement (paéﬁS)
Statement: simple statements are ended with a serm'-(mkg) 19059

Statement: assignment statement (e 37
Statement: assignment statement: assigning a litela Ypag
Statement: assignment statement: assigning an expresdue (pag
Statement: assignment statement: updating a vari

..19059

7) 19059
8)19060
(70) . . . 19060

Statement: assignment statement: updating a varistibethand operators (p87)]

Statement: assignment statement: is an expressioe 19062
Statement: if else statement (p@ 60) 19062
Statement: if else statement: nested (@e 62) . . 19063
Statement: if statement (péﬁ 64) 19064
Statement: compound statement (e 66)19064
Statement: while loop (pagel71) 19065
Statement: for loop (pa T) o 9066

Statement: for loop: multiple statements in for upcﬂp@é 136) . . 19067

19003

CONTENTS

9.16
9.17
9.18
9.19
9.20
9.21
9.22
9.23
9.24

10 Error
10.1
10.2
10.3
10.4
10.5

10.6

Execution
11.1
11.2
11.3
11.4
11.5
11.6

11

Code clarit)}
12.1
12.2
12.3
12.4
12.5
12.6

13 Design
13.1
13.2
13.3
134
135
13.6
13.7
13.8
13.9
13.10

12

14 Variable

14.1

Statement:
Statement:
Statement:
Statement:
Statement:
Statement:
Statement:

statements can be nested within each pﬂgﬂfﬁ) . . . 19068

switch statement with breaks (page 107) 19068
switch statement without breaks (page 110). 19069
do while loop (page 112) 19070
for-each loop: on arrays (293) 19071
try statement (p344) 19073
try statement: with multiple catch clalﬂpag) .. 19074

Statement: try statement: with finally (pgge h51) e eeeee. ... 19075
Statement: throw statement (pEge bSO) 19076
19077
Error (pagﬁO) 19077
Error: syntactic error (paO) 19077
Error: semantic error (page 22) 0oL 19077
Error: compile time error (pagel22) 19077
Error: run time error (p4) 9018
Error: logical error (page29) 19078
19078
Execution: sequential execution (p%zs) s e e e e e . 19078
Execution: conditional execution 60)19079
Execution: repeated execution (p 70) ... 19079
Execution: parallel execution — threads (dﬁ253) e e -19079
Execution: parallel execution — threads: the GUI etleetad (pag% 25M)19079
Execution: event driven programming (p54) 19080
19080
Code clarity: layout (pal) 19080
Code clarity: layout: indentation (pﬁsz) C e e e 10081
Code clarity: layout: splitting long lines (pdg€43) 19081
Code clarity: comments (page 82) 19082
Code clarity: comments: marking ends of code conSr(lpxatg) . 19082
Code clarity: comments: multi-line comments (@18919083
19083
Design: hard coding (pa6) 9088
Design: pseudocode (page 73) 0849
Design: object oriented design (p@l%) C . 19084
Design: object oriented design: noun identificaticag@185) 19084
Design: object oriented design: encapsulation ﬁ L..... 19085
Design: Sorting alist(page 295) 19085
Design: Sorting a list: bubble sort (p296 e . 19086
Design: Searching a list: linear search (da:geﬁ 323) 19087
Design: UML (page 381) 19088
Design: UML: class diagram (p81) 19088
19088
Variable (pag@G) 1®08

CONTENTS

14.2
14.3
14.4
145
14.6
14.7
14.8
14.9
14.10
14.11
14.12
14.13
14.14
14.15
14.16
14.17
14.18
14.19
14.20
14.21
14.22
14.23

15 Expression
15.1
15.2
15.3
154
15.5
15.6
15.7
15.8
15.9
15.10
15.11
15.12
15.13
15.14
15.15

16 Packagb
16.1
16.2

16.3

GUI AP/
17.1

17

Variable: int variable (pa?) 19089
Variable: a value can be assigned when a variable |armupagﬁ2)19089
Variable: double variable (page54) 19089
Variable: can be defined within a compound stateme . 19090
Variable: local variables (page 124) . . 19090
Variable: class variables (page 124) . . 19091
Variable: a group of vanables can be declared togéﬂw@éﬁ) . 19091
Variable: boolean vanabl e 33) ... 19092
Variable: char variable (p . 19093
Variable: instance vanables (p 59) 19093
Variable: instance variables: should be pnvate hﬁaLdE(pagi) 19094
Variable: of a class type (p61) 19094
Variable: of a class type: stores a reference to am:o(qqagéﬁ) . 19095
Variable: of a class type: stores a reference to artblgeoid misunderstanding (paﬁ
Variable: of a class type: null reference (e 192). .. . 19097
Variable: of a class type: holding the same referes-me other vanable (page 216
Variable: final variables (page 194) . - . 19100
Variable: final variables: class constant (i 205) 19101
Variable: final variables: class constant: a set ofomc(pagﬁS) 19101
Variable: final variables: class constant: a set ofcelso dangerous (paﬁ08)19101
Variable: of an array type (page 287)19102
Variable: initial value (pa3) 19102
19102
Expression: arithmetic (p38) 19102
Expression: arithmetic: int division truncates reemhgéﬁ . 19103
Expression: arithmetic: associativity and int diots{page 52) . . . 19103
Expression: arithmetic: double division (p 55) . . 19104
Expression: arithmetic: double division: by zero @ag1) 19104
Expression: arithmetic: remainder operator (pag¢ 149. 19104
Expression: arithmetic: shift operators (page 473)..... 19105
Expression: arithmetic: integer bitwise operatoes). 19105
Expression: brackets and precedence (page 45) 19106
Expression: associativit 48) T R N KO ¥ {
Expression: boolean (p 60) 19108
Expression: boolean: relational operators (page 60). 19108
Expression: boolean: logical operators (page 128). 19109
Expression: boolean: logical operators: condili(}mgéﬁ) . 19111
Expression: conditional expression (dﬁe 94)19111
19111
Package (PAGE 187) . . . o v v o 19111
Package: java.util (pai88) 19112
Package: java.awt and javax.swing (dﬁ\ 245) . 19112
19113
GUI API: JFrame (page 245) . . . o o oo ™11

19005

CONTENTS

17.2 GUI API: JFrame: setTitle() (page 246) . . 19113
17.3 GUI API: JFrame: getContentPane() (p (pi246) . 19113
17.4 GUI API: JFrame: setDefaultCloseOperation() (ﬁﬁ 24. - 19113
17.5 GUIAPI: JFrame: pack() (page 247) oo oo .. 9114
17.6 GUI API: JFrame: setVisible() (page 248) .19114
17.7 GUIAPL: Container (page 246) oot 119
17.8 GUI API: Container: add() (page246) 19114
17.9 GUI API: Container: add(): adding W|thaposmon coastt (pagéT—&é)wllS
17.10 GUI API: Container: setLayout() (page 250) 19115
17.11 GUIAPL JLabel (page 246) . . . o v o v oo 118
17.12 GUI API: JLabel: setText() (pagss)10115
17.13 GUI API: LayoutManager (page 249) 19115
17.14 GUI API: LayoutManager: FlowLayout (page 249) 19116
17.15 GUI API: LayoutManager: FlowLayout: alignment (pﬁ} ... 19116
17.16 GUI API: LayoutManager: GridLayout (page 251) 19116
17.17 GUI API: LayoutManager: BorderLayout (page267) 19117
17.18 GUI API: Listeners (page 254) oo oo 9118
17.19 GUI API: Listeners: ActionListener interface (p@ 19120

17.20 GUI API: Listeners: ActionListener interface: actierformed() (pade 2@8)19120
17.21 GUI API: JButton (pade 236) 120
17.22 GUI API: JButton: addActionListener

17.23 GUI API: JButton: setEnabled() (page 266) 19121
17.24 GUI API: JButton: setText() (page 267)19121
17.25 GUI API: ActionEvent (page 258) 9121
17.26 GUI API: ActionEvent: getSource() (pége 1§80) C e e e 19121
17.27 GUI AP JTextField (page 265) o oot 19122
17.28 GUI API: JTextField: getText() (pa5) ... 10122
17.29 GUI API: JTextField: setText() (page 265) e e e w0 19122
17.30 GUI API: JTextField: setEnabled() (pcﬁ267) ceee. .. 19122
17.31 GUI API: JTextField: initial value (paWM) 19122
17.32 GUI API: JTextArea (paée 2%7) 9123
17.33 GUI API: JTextArea: setText() (pd i69) N Ke N 24
17.34 GUI API: JTextArea: a nd() (paEge ﬁ69) C e e o4 10123
17.35 GUI API: JPanel (pa e2 123
17.36 GUI API: JScrollPane e274) 19123
17.37 GUIAPI: Color (page 400) 291
18 Interface 19125
18.1 Interface (pa7) 291
19 Array 19125
191 Amay (PAGE 286) e 19125
19.2 Array: array creation (pa-?) 19126
19.3 Array: array creation: initializer (paEe 3@0) 19126
194 Array: element access (p$ge i88) 19127
19.5 Array: element access: in two-dimensional arrayse(@) 19127
19.6 Array: length (pade 2@2) 129

19006

CONTENTS

19.7
19.8
19.9
19.10
19.11
19.12
19.13
19.14

20

Exceptioﬁ

20.1
20.2
20.3
20.4
20.5
20.6
20.7
20.8

21

Inheritance
21.1
21.2
21.3
21.4
21.5
21.6
21.7
21.8
21.9
21.10
21.11
21.12
21.13
21.14
21.15
21.16
21.17
21.18

22

File 10 AP/

22.1
22.2
22.3
22.4
22.5
22.6
22.7

Array: empty array (page 292) 129
Array: of objects (pa;). 9128
Array: partially filled array (pagﬁO) 19129
Array: partially filled array: deleting an eIementme) 19130
Array: array extension (p 11) 19130
Array: shallow copy (pa I 19131
Array: array of arrays (pa@g) 19131
Array: array of arrays: two-dimensional arrays (@ 19132
19133
Exception (pagﬁm) 13
Exception: getMessage() (p@%) 19133
Exception: there are many types of exception (page 347). . . . 19133
Exception: creating exceptions (p350) .. . 19134
Exception: creating exceptions: with a cause (@ 357 19134
Exception: getCause() (pég?B%) 19135
Exception: inheritance hierarchy (pmM) 19135
Exception: making our own exception classes (435) . 19137
19138
Inheritance (pai73) 139
Inheritance: a subclass extends its superclass/(f&je.3 19139
Inheritance: invoking the superclass constructo;ge{) 19140
Inheritance: invoking the superclass constructoplicrly (pagdﬁ)lgmo
Inheritance: overriding a method (p80) 19141
Inheritance: overriding a method: @Override anrmlB(qDagiO) 19141
Inheritance: abstract class (pageB385) 19142
Inheritance: abstract method (pagel386) 19142
Inheritance: polymorphism (page 390) . ..19143
Inheritance: polymorphism: dynamic method blndp@éﬁ) 19144
Inheritance: final methods and classes 391) 19144
Inheritance: adding more object state (ag 393) 19145
Inheritance: adding more instance methods m 395). 19145
Inheritance: testing for an instance of a class ﬁ 3.... .. 19145
Inheritance: casting to a subclass page 397) . 19145
Inheritance: is a versus has a(406) c o w .. 19146
Inheritance: using an overridden method ([ﬁ 414) 19146
Inheritance: constructor chaining (p@ 423) . 19147
19148
File 10 API: IOException (pa%m 19148
File IO API: InputStream (page 451) 19148
File IO API: InputStreamReadeSG) c e e e 19149
File IO API: BufferedReader (page 459) 19149
File IO API: FilelnputStream (page 462)19150
File IO API: FileReader (page 462) 19150
File IO API: OutputStream (page 462) 19151

19007

22.8 File 10 API: OutputStreamWriter (page 462) 19151

22.9 File IO API: FileOutputStream (page 463)19151
22.10 File IO API: FileWriter (page 463) 19151
22.11 File 1O API: PrintWriter (page 463) 19152
2212 File 10 API: PrintWriter: checkError() (page 464) 19152
22.13 File 10 API: PrintWriter: versus PrintStream (p 6...... 19153
22.14 File 10 API: PrintWriter: can also wrap an Outputsme(epag) 19154
2215 File 10 APL: File (page 469) o o v v v i 9154
22.16 File 10 API: DataOutputStream (page 479) 19155
22.17 File 1O API: DatalnputStream (p79). C e e e e e e ... 19155

1 Computer basics

1.1 Computer basics: hardware (page 3)

The physical parts of a computer are knowrhasdware. You can see them, and touch them.

1.2 Computer basics: hardware: processor (page 3)

Thecentral processing unit(CPU) is the part of thénardware that actually obeys instructions.
It does this dumbly — computers are not inherently intetlige

1.3 Computer basics: hardware: memory (page|3)

Thecomputer memoryis part of the computer which is capable of storing and reitngedata
for short term use. This includes tiheachine codeinstructions that theentral processing
unit is obeying, and any other data that the computer is curredhking with. For example,
it is likely that an image from a digital camera is stored ia tomputer memory while you are
editing or displaying it, as are the machine code instrastior the image editing program.

The computer memory requires electrical power in order moeraber its data — it igolatile
memory and will forget its contents when the power is turned off.

An important feature of computer memory is that its contexais be accessed and changed

in any order required. This is known ssndom accessand such memory is calle@gndom
access memoryr justRAM.

19008

1.4 Computer basics: hardware: persistent storage (page 3)

1.4 Computer basics: hardware: persistent storage (page 3)

For longer term storage ofata, computers uspersistent storagedevices such asard discs
andDVD ROMs. These are capable of holding much more information toamputer mem-
ory, and are persistent in that they do not need power to remethéénformation stored on
them. However, the time taken to store and retrieve dataushlonger than for computer
memory. Also, these devices cannot as easily be accessedndam order.

1.5 Computer basics: hardware: input and output devices (pge 3)

Some parts of thbardware are dedicated to receiving input from or producing outpuht®
outside world. Keyboards and mice are examplempfit devices. Displays and printers are
examples obutput devices.

1.6 Computer basics: software (pagel3)

One part of a computer you cannot see isdaffware. This is stored ocomputer media such
asDVD ROMs, and ultimately inside the computer, as lots of numberss the instructions
that the computer will obey. The closest you get to seeingghirbe if you look at the silver
surface of a DVD ROM with a powerful magnifying glass!

1.7 Computer basics: software: machine code (page 3)

The instructions that theentral processing unitobeys are expressed in a language known
asmachine code This is a verylow level language meaning that each instruction gets the
computer to do only a very simple thing, such as dleition of two numbers, or sending a
byte to a printer.

1.8 Computer basics: software: operating system (page 4)

A collection of software which is dedicated to making the computer generally usabtber
than being able to solvegarticular task, is known as aoperating system The most popular
examples for modern personal computers are Microsoft WisgdtMac OS X and Linux. The
latter two are implementations of Unix, which was first caaed in the early 1970s. The fact
it is still in widespread use today, especially by comput@fgssionals, is proof that it is a
thoroughly stable and wetlesigred and integrated platform for the expert (or budding ejpert
computer scientist.

19009

1.9 Computer basics: software: application program (page 4

1.9 Computer basics: software: application program (page p

A piece ofsoftware which is dedicated to solving a particular task, or appiaatis known as
anapplication program. For example, an image editing program.

1.10 Computer basics: data (page'3)

Another part of the computer that you cannot see igléta. Like software it is stored as
lots of numbers. Computers are processing and producirgadlathe time. For example, an
image from a digital camera is data. You can only see the i@atdnen you display it using
some image displaying or editing software, but even thi$ growing you the actual data that
makes up the picture. The names and addresses of your fieeadsther example of data.

1.11 Computer basics: data: files (pagel5)

Whendata is stored inpersistent storage such as on &ard disc, it is organized into chunks

of related information known a#es. Files have names and can be accessed by the computer
through theoperating system For example, the image from a digital camera would probably
be stored in a jpeg file, which is a particular type of image &led the name of this file would
probably end injpg or.jpeg .

1.12 Computer basics: data: files: text files (page 5)

A text file is a type offile that containglata stored directly asharacters in a human readable
form. This means if you were to send the raw contents dirdctlthe printer, you would
(for most printers) be immediately able to read it. Examplietext files includeREADME..txt

that sometimes comes wigoftware you are installing, or source text for a document to be
processed by théTeX[6] document processing system, such as the ones useddagathis
book (prior to publication). As you will see shortly, a morgdaresting example for you, is
computer prograrmsource codefiles.

1.13 Computer basics: data: files: binary files (page 5)

A binary file is another kind ofile in which data is stored adinary (base 2) numbers, and
so is not human readable. For example, the image from a bagitaera is probably stored as
a jpeg file, and if you were to look directly at its contentshex than use somapplication
program to display it, you would see what appears to be nonsense! &reisting example of
a binary file is theanachine codeinstructions of a program.

19010

2 Javatools

2.1 Javatools: text editor (page b)

A text editor is a program that allows the user to type and ¢eit files. You may well
have usechotepad under Microsoft Windows; that is a text editor. More likelply have
usedMicrosoft Word . If you have, you should note that it is not a text editor, iai&ord
processor Although you can save your documents as text files, it is nscoremon to save
them asdoc files, which is actually &inary file format. Microsoft Word is not a good tool
to use for creating prograsource coddiles.

If you are using arntegrated development environmento support your programming, then
the text editor will be built in to it. If not, there are a pletia of text editors available which
are suited to Java programming.

2.2 Javatools: javac compiler (page|9)

The Javacompiler is calledjavac . Java program source is saved by the programmeterta
file that has the suffijava . For example, the text filglelloWorld.java might contain the
source text of a program that printello world! on thestandard output. This text file
can then beompiled by the Java compiler, by giving its name ascanmand line argument
Thus the command

javac Helloworld.java

will produce thebyte codeversion of it in thefile HelloWorld.class . Like machine code
files, byte code is stored ininary files as numbers, and so is not human readable.

2.3 Javatools: java interpreter (page 9)

When the end user wants to run a Java program, he or she i@ interpreter with the
name of the program as it®emmand line argument The program must, of course, have been
compiled first! For example, to run thEelloWorld program we would issue the following
command.

java HelloWorld

This makes theentral processing unitrun the interpreter ovirtual machine java , which
itself thenexecutes the program named as its first argument. Notice that thexsjaffa is

19011

2.4 Java tools: javadoc (page 223)

needed when compiling the program, but no suffix is used whbening it. In our example
here, the virtual machine finds thte codefor the program in thdile HelloWorld.class
which must have been previously produced bydbmpiler.

2.4 Javatools: javadoc (page 223)

A classwhich is intended to be reusable in many programs should iissedocumentation to
enable another programmer to use it without having to lodkeaimplementation code. In Java
this is achieved by the implementer of the class writitog commens in the code, and then
processing them with thiavadoc program. This tool produces a web page which describes
the class from the information in the doc comments and froensthucture of the class itself,
and this page is linked to the pages for other classes as@pis For example, the heading of
eachpublic method is documented on the web page, with the description of thoddbeing
taken byjavadoc from the doc comment which the implementer supplied for tle¢hmd.

The resulting user documentation producegdgdoc can be placed anywhere we wish — on
a web server for example. Meanwhile th@urceof that documentation is kept with tiseurce
codefor the class, indeed it is inside the safile. This excellent idea makes it easy for the
programmer to maintain information on how to use the cladseasr she alters the code, but
without restricting where the final documentation can be put

A doc comment starts with the symbtt and ends with/ . These are written in certain
places as follows.

A comment before the start of the class (after amport statements) describing its
purpose.

e A comment before each pubhariable describing the meaning of that variable.

e A comment before each public method describing what it dites)ethod parameters
andreturn value.

e Optionally, a comment before eaphivate variable and method. This is less useful than
documentation for public items as normal users of the classal have access to the
private ones. So, many programmers do not write doc comnfenthese (although
of course they do write ordinagomments!). On the other hand, some take the view
that anybody who needs toaintainthe class is, in effect, a user of both the pulaiid
private parts, and so user documentation of the whole cdasishenefit.

The implementer writes user documentation text as ap@tgpimside the doc comments. The
emphasis is on how to use the features, not on how they aremagpited. He or she also
includes variousioc comment tag to help thgavadoc program process the text properly.
Here are some of the most commonly used tags.

19012

2.5 Javatools: javadoc: throws tag (page 355)

Tag Meaning Where used

@author author name(s) State the author of the code| Before the class starts.
@paramparameter descriptionDescribe a method parameteiBefore a method.
@return description Describe a method result. Before a method.

Most doc comments use more than one line, and it is convealt{bat not essential) to start
continuation lines with an asterisk)(neatly lined up with the first asterisk in the opening
comment symbol. The first sentence should be a summary ofttbkething being documented
— these are copied to a summary area of the final documentation

For a doc comment tag to be recognizeddwadoc , it must be the first word on a line of the
comment, preceded only lwhite space or an asterisk.

Doc comments are sometimes (but wrongly) cajea@doc commens.

2.5 Javatools: javadoc: throws tag (page 355)

There is anothedoc comment tagwhich is used to describe thexceptiors that amethod
throws.

Tag Meaning Where used
@throws ~ exception| Describes the circumstance8efore a method.
name and description| leading to an exception.

3 Operating environment

3.1 Operating environment: programs are commands (page 7)

When a program iexecutel, the name of it is passed to thperating systemwhich finds and
loads thdfile of that name, and then starts the program. This might be hittden you if you
are used to starting programs from a menu or browser ineerfad it happens nevertheless.

3.2 Operating environment: standard output (page 7)

When programexecute they have something called teeandard output in which they can
produce text results. If they aren from some kind otommand line interface such as a Unix
shell or a Microsoft WindowsCommand Prompt, then this output appears in that interface
while the program is running. (If they are invoked througimgdntegrated development

19013

3.3 Operating environment: command line arguments (page 8)

environment, browser, or menu, then this output might get displayed mespop-up box, or
special console window.)

3.3 Operating environment: command line arguments (page 8)

Programs can be, and often are, gigcemmand line argumens to vary their behaviour.

3.4 Operating environment: standard input (page 187)

In addition tostandard output, when programxecutethey also have atandard input
which allows textdata to be entered into the program as it runs. If they rame from some
kind of command line interface such as a Unixshell or a Microsoft WindowsCommand
Prompt, then this input is typically typed on the keyboard by the ager.

3.5 Operating environment: standard error (page 344)

When programgxecute in addition tostandard output andstandard input, they also have
another facility calledstandard error. This is intended to be used for output about errors
and exceptional circumstances, rather than program se$nlsomeoperating environments
there might be no difference between these two in practigethieir separation at the program
level enables them to be handled differently where that impted. For example, on Unix
systems, the end user can redirect the standard output fii&g @hilst leaving the standard
error to appear on the screen, or vice versa, etc. as dedWedadays, this is also true of
Microsoft Windows.

4 Class

4.1 Class: programs are divided into classes (page 16)

In Java, the source text for a program is separated into pieakkedclases. The source
text for each class is (usually) stored in a sepafége Classes have a name, and if the
name isHelloWorld then the text for the class is saved by the programmer irtekiefile
HelloWorld.java

One reason for dividing programs into pieces is to make thasieeto manage — programs to
perform complex tasks typically contain thousands of lioext. Another reason is to make
it easier to share the pieces between more than one prograchscftware reuseis beneficial
to programmer productivity.

19014

4.2 Class: public class (page 16)

Every program has at least one class. The name of this clafigettect the intention of the
program. By convention, class names start with an upperletise

4.2 Class: public class (page 16)

A classcan be declared as beipgblic, which means it can be accessed from anywhere in the
running Java environment; in particular thietual machine itself can access it. The source
text for a public class definition starts with thresserved wordpubl i c¢. A reserved word is one
which is part of the Java language, rather than a word chogehebprogrammer for use as,
say, the name of a program.

4.3 Class: definition (page 16)

After stating whether it hapublic access, alassnext has theeserved wordcl ass, then its
name, then a left bracg its body of text and finally a closing right bracp (

public class MyFabulousProgram

{

... Lots of stuff here.

}

4.4 Class: objects: contain a group of variables (page 158)

We can group a collection efariables into one entity by creating asbject. For example, we
might wish to represent a point in two dimensional spaceguaitx and ay value to make up
a coordinate. We would probably wish to combine p@ndy variables into a single object, a
Point .

4.5 Class: objects: are instances of a class (page 158)

Before we can makebjects, we need to tell Java how the objects are tadwestructed. For
example, to make &oint object, we would need to tell Java that there are to be a pair of
variables inside it, callec andy, and tell it whatypes these variables have, and how they get
their values. We achieve this by writingclasswhich will act as a template for the creation of
objects. We need to write such a template class for each Kiotject we wish to have. For
example, we would write Boint class describing how to makeint objects. If, on the other
hand, we wanted to group together a load of variables desgréttributes of wardrobes, so we
could make objects each of which represents a single waedtbbn we would probably call

19015

4.6 Class: objects: this reference (page 180)

that classVardrobe . Java lets us choose any name that we feel is appropriaepegserved
words (although by convention we always start the name with aaldptter).

Once we have described the template, we can get Java to migkesalf that class atin time.

We say that these objects anstances of the class. So, for example, particubaint objects
would all be instances of thoint class. We can create as many differBoint objects as
we wish, each containing its ownandy variables, all from the one template, thant class.

4.6 Class: objects: this reference (page 180)

Sometimes, irconstructor methods or ininstance method of aclasswe wish to refer to

the object that the constructor is creating, or to which the instancéhotbelongs. For this
purpose, whenever thieserved wordt hi s is used in or as aexpressionit means aeference

to the object that is being created by the constructor oravats the instance method, etc.. We
can only use théhis referencein places where it makes sense, such as constructor methods,
instance methods andstance variable initializations. So,t hi s (when used in this way)
behaves somewhat like an extra instance variable in eaeltobutomatically set up to contain

a reference to that object.

For example, in &oint class we may wish to have an instance method that yields & poin
which is half way between the origin andi s point.

publ i ¢ Point halfThisPoint()

{
return halfWayPoint(new Point(0, 0));

} /I halfThisPoint
An alternative implementation would be as follows.

publ i ¢ Point halfThisPoint()

{

return new Point(0, 0).halfWayPoint(t his);
} /I halfThisPoint

4.7 Class: objects: may be mutable or immutable (page 193)

Sometimes when wedesigna classwe desire that theastances of it areimmutable objects.
This means that once such alpject has beeronstructed, itsobject statecannot be changed.
That is, there is no way for the values of thetance variables to be altered after the object is
constructed.

By contrast, objects which can be altered are knowmatable objects.

19016

4.8 Class: objects: compareTo() (page 222)

4.8 Class: objects: compareTo() (page 222)

Itis quite common to require the ability to compareddnject with another from the sanwass
based on som®tal order, that is, a notion oliess than greater than andequivalence A Java
convention for this is to have anstance methodcalledcompareTo which takes argference
to) another object as itwethod parameter, andreturns ani nt. A result of0 indicates the
two objects areequivalent, a negative value indicates this object is less than ther,atinel a
positive value indicates this object is greater than theroth

Date husbandsBirthday = ...
Date wifesBirthday = ...

i f (husbandsBirthday.compareTo(wifesBirthday) > 0)
System.out.printin(“The husband is older than the wife");
el se if (husbandsBirthday.compareTo(wifesBirthday) == 0)
System.out.printin(“The husband is the same age as the wife ");
el se
System.out.printin("The husband is younger than the wife");

4.9 Class: is atype (page 161)

A typeis essentially aetof values. The nt type is all the whole numbers that can be repre-
sented using 3Binary digit s, thedoubl e type is all thereal numbers that can be represented
using thedouble precisiontechnique and théool ean type contains the valuas ue and
fal se. A classcan be used as a template for creatgects, and so is regarded in Java as a
type: the set of all objects that can be created whichretances of that class. For example, a
Point class is a type which is the set of &bint objects that can be created.

4.10 Class: making instances with new (page 162)

An instance of a classis created by calling theonstructor method of the class, using the
reserved wordnew, and supplyingnethod argument for themethod parameters. Atrun
time when this code i€xecutal, the Javavirtual machine, with the help of the constructor
method code, creates abject which is an instance of the class. Although it is not stated in
its heading, a constructor method alwagturns a value, which is aeferenceto the newly
created object. This reference can then be stored/ariable, if we wish. For example, if we
have aPoint class, then we might have the following code.

Point topLeft = new Point(-20, 40);
Point bottomLeft = new Point(-20, -40);
Point topRight = new Point(20, 40);
Point bottomRight = new Point(20, -40);

19017

4.11 Class: accessing instance variables (page 164)

This declares four variables, tfpe Point and creates four instances of the clBs®t rep-
resenting the four corners of a rectangle. The four vargabéeh contain a reference to one of
the points. This is illustrated in the following diagram.

A Point object A Point object

Point topLeft private double x -20 Point topRight private double x 20

—— P ~——— P

private double y 40 private double y 40

A Point object A Point object

Point bottomLeft private double x -20 Point bottomRight private double x 20

—— P —— P

private double y -40 private double y -40

All four Point objects each have twinstance variables, calledx andy.

4.11 Class: accessing instance variables (page 164)

Theinstance variables of anobject can be accessed by takingederenceto the object and
appending a dot (| and then the name of tivariable. For example, if the variablgl contains
a reference to oint object, andPoint objects have an instance variable cakkedhen the
codeplx isthe instance variabbe belonging to théoint referred to bypl.

4.12 Class: importing classes (page 188)

At the start of the sourcle for a Javaclasswe can write one or morgnport statements.
These start with theeserved wordi nport and then give théully qualified name of a class
that lives in som@ackagesomewhere, followed by a semi-coloi(Animport for a class per-
mits us to talk about it from then on, by using only its classearather than having to always
write its fully qualified name. For example, importifaya.util. Scanner would mean that
every time we refer t8canner the Javaompiler knows we really meajava.util. Scanner

i nport java.util.Scanner;

Scanner inputScanner = new Scanner(System.in);

19018

4.13 Class: stub (page 191)

If we wish, we can import all the classes in a package usinghatead of a class name.
i nport java.util.*;

Many programmers consider this to be lazy, and it is bettenfrt exactly what is needed, if
only to help show precisely what is used by the class. Thesststhe issue of ambiguity: if
two different packages have classes with the same namdibuatdss only needs one of them,
then the lazy approach would cause an unnecessary problem.

However, every Java program has an automatic import foryesless in the standandack-
agejava.lang , because these classes are used so regularly. That is whanweefer to
java.lang.System andjava.lang.Integer , etc. as jusBystem andinteger |, etc.. In other
words, every class always implicitly includes the follogrimport statement for convenience.

i nport java.lang.*;

4.13 Class: stub (page 191)

During development of a program with sevetkdsses, we often producestub for the classes
we have not yet implemented. This just contains some or dh@public items of the class,
with empty, or almost empty, bodies for theethods. In other words, it is the bare minimum
needed to allow the classes we have so far developedd¢orbpiled.

Any non-void methods are written with a singlesturn statement to yield some temporary
value of the rightype.

These stubs are then developed into the full class code & kden stage.

4.14 Class: extending another class (page 245)

A classmay be declared to say thatittends another class, using theserved wordext ends.
For example, the following says that the clasoWorld extends the clagavax.swing.JFrame

i nport javax.swing.JFrame;
public class HelloWorld extends JFrame

This means that alhstances of HelloWorld have the properties that any instancelleame
would have, but also have all the properties that we additiprdefine in theHelloworld
class. Itis a way of adding properties to a class withoutaltiwhanging the class — the new
class is arextensionof the other one.

19019

4.15 Class: generic class (page 491)

4.15 Class: generic class (page 491)

A generic classis a classwhich has one or morg/pe parameters written within angled
brackets €>) just after its name in the class heading. Whenretanceof a generic class is
made, specifitypes are supplied aype arguments for the type parameters, in a similar way
thatmethod argument are supplied fomethod parameters in amethod call.

In the following symbolic exampld,1 andT2 are type parameters.

public class MyGenericClass<Tl, T2>
{
... Typical class stuff here,
... but using T1 and T2 as though they are types
.. (in permitted ways).
T1 someVariable = ...
T2 someOtherVariable = ...

} Il class MyGenericClass

When we make an instance kdf/GenericClass , we can supply a specific type for each type
parameter, as in the following example.

MyGenericClass<String, Date> myVariable = new MyGenericClass<String, Date>();

A class is aype. However, the intention with a generic class is that we spppkcific type
arguments for the type parameters before we use it, and ngdwi, we identify gparameter-
ized type For example, from the generic cladgGenericClass we can have parameterized
types such ablyGenericClass<String, Date> ,

MyGenericClass<Integer, String> , etc., including ones involvingrrays, like
MyGenericClass<String[], Integer> , and so on.

A parameterized type almost behaves as though we have madeualtcopy of the generic
class, and replaced each type parameter with its corresgphge argument. But not quite.
Instead, due to the way Java actually implements genersse$a there are some restrictions.
In particular, type arguments must teference types, such as classes and arrays. This means
they cannot b@rimitive type s.

4.16 Class: generic class: bound type parameter (page 496)

Thetype parameters of ageneric classmay bebound type parameters, which means we
specify certain restrictions for thgpe arguments that can be supplied whemparameterized
type is identified.

19020

4.17 Class: generic class: bound type parameter: extenus slass (page 496)

4.17 Class: generic class: bound type parameter:. extendsme class
(page 496)

One kind of restriction we can specify for@und type parameteris that the type argument
mustextend some knowrclass This is done by following the name of tligpe parameter

with thereserved wordext ends and then the known class. When a type argument is supplied,
thecompiler checks that it is either the known class, @ubclassof it.

For example, in the context of some vehicle simulation progrthe following is a class that
has a type parametevgehicleType , for which any correspondintype argument must be
Vehicle ora subclass of it.

public class ServiceCentre<VehicleType ext ends Vehicle>

{

... Etc., using VehicleType as a type (in permitted ways)
... but knowing that it is a Vehicle
.. and so using some Vehicle methods, efc..

public void service(VehicleType vehicle)

{

if (! vehicle.isRoadworthy())

{
L
} Il service

} Il class ServiceCentre
This would allow us to mak8erviceCentre objects for particular kinds o¥ehicle

ServiceCentre<Car> garage = new ServiceCentre<Car>();
Car car = new Car(...);

Lorry lorry = new Lorry(...);

garage.service(car);

garage.service(lorry);

The last line above would causeampile time error.

4.18 Class: generic class: where type parameters cannot bead (page
501)

Eachtype parameter of a generic classmay be treated as tgpe within the generic class,
except for certain restrictions, which fall into two cateigs.

19021

4.19 Class: generic class: used as a raw type (page 502)

The first is about the meaning of type parametersy@e argumentis supplied for each of
these to identify parameterized type which is then ready fanstances of it to be made. The
type arguments only mean anything in the context of creatisgnces, and make no sense in
thestatic contextof the generic class (which is not part of the type). So, wenoarefer to the
type parameters ist at i ¢ parts, that is, irtlass variableandclass methoddeclaration,

The second set of restrictions are associated with the wayidglements generic classes. In
particular, we cannot create amstances of a type parameter, nor create ayays whose
array elements are of that type. (Essentially, the generic featuresatdissis an entirelycom-

pile time artifact — to enable theompiler to undertake more type checking than it otherwise
could. Atrun time, thevirtual machine has no knowledge of the type parameters, and so
cannotcreateinstances of the correct type.)

4.19 Class: generic class: used as a raw type (page 502)

A generic classs still aclassand hence #ype, and actually it can be used directly to make
instances of it without supplyingype arguments. This is due to legacy issues: generic classes
were added in Java 5.0, ahygpe parameters were added to many standagplication pro-
gram interface (API) classes at that time. Obviously there already existedangl of Java
programs that use those classes, and it would be unacceptalithem all to suddenly stop
working!

Java refers to the type of the generic class without typenpeiexs as theaw type for the
class. If we use the raw type, then tb@mpiler assumes the best known actual type for each
of its type parameters, and gives us warnings, about typag bechecked . But it goes ahead
and makes theyte codeanyway. This way, programmers are encouraged to use theigene
classes properly for new code and gradually change legady ttmwdo so. The best known
type assumed by the compiler for a type parameter weitbnds some concrete type is that
concrete type, and for ones that do not iis.lang.Object

5 Method

5.1 Method (page 118)

A methodin Java is a section of code, dedicated to performing a péatitask. All programs
have amain method which is the starting point of the program. We can have othethiods
too, and we can give them any name we like — although we shbwéya choose a name which
suits the purpose. By convention, method names start withvarlcase letter. For example,
System.out.printin() is a method which prints a line of text. Apart from its slighgtrange
spelling, the namerintin does reflect the meaning of the method.

There is actually a separate mechanism for putting typenpetiers on class methods.

19022

5.2 Method: main method: programs contain a main methode(fa@y

5.2 Method: main method: programs contain a main method (pag/17)

All Java programs contain a section of code caltedh , and this is where the computer will
start toexecutethe program. Such sections of code are caftexthods because they contain
instructions on how to do something. Thaain method always starts with the following
heading.

public static void main(String[] args)

5.3 Method: main method: is public (page 17)

Themain method starts with theeserved wordpubl i ¢, which means it can be accessed from
anywhere in the running Java environment. This is necess#trg program could not bein
by thevirtual machine if the starting point was not accessible to it.

public

5.4 Method: main method: is static (page 17)

The main method of the program has theeserved wordst at i ¢ which means it is allowed
to be used in thestatic context A context relates to the use obmputer memory during
therunning of the program. When thartual machine loads a program, it creates the static
context for it, allocating computer memory to store the pangand itdata, etc.. Adynamic
contextis a certain kind of allocation of memory which is made latering the running of the
program. The program would not be able to start if the mairhogktvas not allowed to run in
the static context.

public static

5.5 Method: main method: is void (page 17)

In general, anethod (section of code) might calculate some kindafction or formula, and
return the answer as a result. For example, the result might be aewtila method returns
a result then this must be stated in its heading. If it doestheh we write theeserved word
voi d, which literally means (among other definitions) ‘withowaintents’. Themain method
does not return a value.

public static void

19023

5.6 Method: main method: is the program starting point (fEge

5.6 Method: main method: is the program starting point (pagel7)

The starting part, omain method, of the program is always calledtin , because it is the main
part of the program.

public static void main

5.7 Method: main method: always has the same heading (page)18
Themain method of a Java program must always have a heading like this.
public static void main(String[] args)

This is true even if we do not intend to use amgmmand line argumens. So a typical single
classprogram might look like the following.

public class MyFabulousProgram

{
public static void main(String[] args)
{
... Stuff here to perform the task.
}
}

5.8 Method: private (page 118)

A method should be declared with private visibility modifier if it is not intended to be
usable from outside thelassit is defined in. This is done by writing theeserved word
pri vat e instead ofpubl i ¢ in the heading.

5.9 Method: accepting parameters (page 118)

A method may be givermethod parameters which enable it to vary its effect based on their
values. This is similar to a program being givammmand line argumens, indeed the argu-
ments given to a program are passed as parameters fiwainenethod.

Parameters are declared in the heading of the method. Forpéxamain methods have the
following heading.

19024

5.9 Method: accepting parameters (page 118)

public static void main(String[] args)

The text inside the brackets is the declaration of the patensie A method can have any
number of parameters, including zero. If there is more tham they are separated by commas
(,). Each parameter consists dfype and a name. For example, the following method is given
two parameters, @oubl e and ani nt .

private static void printHeightPerYear(doubl e height, int age)

{
System.out.printin("At age " + age + ", height per year ratio is "
+ height / age);
} Il printHeightPerYear

You should think of parameters as being likariables defined inside the method, except that
they are given initial values before the method bodgxecutel. For example, the single
parameter to the main method is a variable which is givéstaf strings before the method
begins execution, these strings being the command lineveegts supplied to the program.

The names of the parameters are not important to Java — asaptitey all have different
names! The names only mean something to the human readeh shof course important.
The above method could easily have been written as follows.

private static void printHeightPerYear(doubl e howTall, int howOld)

{

System.out.printin("At age " + howOld + ", height per year ra tio is "
+ howTall / howOld);
} Il printHeightPerYear

You might think the first version is subjectively nicer th&e second, but clearly both are better
than this next one!

private static void printHeightPerYear(double d, int i)

{

System.out.printin("At age " + i + ", height per year ratio is
+.d /)
+ Il printHeightPerYear

And that is only marginally better than calling the paramsgtsayx andy. However, Java does
not care — it is not clever enough to be able to, as it can hawenderstanding of the problem
being solved by the code.

19025

5.10 Method: accepting parameters: of a class type (page 164

5.10 Method: accepting parameters: of a class type (page 164

The method parameters of amethod can be of anytype, including clases. A parameter
which is of a class type must be givemgthod argumentvalue of that type when the method
is invoked, for example eeferenceto anobject which is aninstanceof the class named as the
parameter type.

5.11 Method: accepting parameters: of an array type (page 29

The method parameters of amethod can be of anytype, including arrays. A parameter
which is of anarray type must be given anethod argument value of that type when the
method is invoked. This value will of course beeference to an array which haarray
elemens of thearray base type or thenull reference.

The most obvious example of this is tB&ing] command line argumentarray, which is
passed to thenain method by the Javavirtual machine.

5.12 Method: calling a method (page 119)

The body of anethod is executel when some other code refers to it usingethod call. For
example, the program calls a method namredin ~ when it executeSystem.out.printin("Hello
world!") . For another example, if we have a method, namredHeightPerYear , Which
prints out a height to age ratio when it is given a height (irire® and an age, then we could
make it print the ratio between the heigh® and the agé4 using the following method call.

printHeightPerYear(1.6, 14);

When we call a method we supplyr@ethod argumentfor eachmethod parameter, separat-
ing them by commas {. These argument values are copied into the correspondirzgeters
of the method — the first argument goes into the first parantésecond into the second, and
SO on.

The arguments passed to a method may be the current valvesia@bles. For example, the
above code could have been written as follows.

doubl e personHeight = 1.6;
i nt personAge = 14;

printHeightPerYear(personHeight, personAge);

19026

5.13 Method: void methods (page 120)

As you may expect, the arguments to a method are actergtisessiors rather than juditeral
values or variables. These expressions evaluated at the time the method is called. So we
might have the following.

doubl e growthLastYear = 0.02;

printHeightPerYear(personHeight - growthLastYear, pers onAge - 1);

5.13 Method: void methods (page 120)

Often, amethod might calculate some kind dinction or formula, perhaps based on its
method parameters, andreturn the answer as a result. The result might bei an or a
doubl e or some othetype. If a method returns a result then theturn type of the result
must be stated in its heading. If it does not, then we writeatbed voi d instead, which liter-
ally means (among other definitions) ‘without contents’r Ewample, thenain method of a
program does not return a result — it is alwaywsa method.

public static void main(String[] args)

5.14 Method: returning a value (page 122)

A method may return a result back to the code that called it. If this is so, we decthe
return type of the result in the method heading, in place of taserved wordvoi d. Such
methods are often callatbn-void methods. For example, the following method takes a Cel-
sius temperature, and returns the corresponding Fahtesathee.

private static doubl e celsiusToFahrenheit(doubl e celsiusValue)

{

doubl e fahrenheitValue = celsiusValue * 9 / 5 + 32;
return fahrenheitValue;
} Il celsiusToFahrenheit

The method is declared with a return typedolubl e, by writing thattype name before the
method name.

The return statement is how we specify what value is to be returned as the resulhef t
method. Thestatementcauses the execution of the method to end, and control tefaainack
to the code that called the method.

The result of a non-void method can be used irgpression For example, the method above
might be used as follows.

19027

5.15 Method: returning a value: of a class type (page 176)

doubl e celsiusValue = Double.parseDouble(args[0]);
System.out.printin(“The Fahrenheit value of "

+ celsiusValue + " Celsius is "

+ celsiusToFahrenheit(celsiusvValue) + ".");

The return statement takes any expression after the reseme ret urn. So our method
above could be implemented using just one statement.

private static doubl e celsiusToFahrenheit(doubl e celsiusValue)

{

return celsiusValue * 9 / 5 + 32;
} Il celsiusToFahrenheit

5.15 Method: returning a value: of a class type (page 176)

A method may return a result back to the code that called it, and this may be oftgps,
including aclass In such cases, the value returned will typically beeferenceto anobject
which is aninstanceof the class named as theturn type.

For example, in &oint class withinstance variables x andy, we might have amnstance
method to return aPoint which is half way along a straight line between tRsnt and a
given otherPoint .

publ i ¢ Point halfWayPoint(Point other)

{
doubl e newX = (x + otherx) / 2;
doubl e newY = (y + othery) / 2;
return new Point(newX, newyY)

+ Il halfWayPoint

The method createsrsew objectand then returns a reference to it. This might be used as
follows.

Point pl
Point p2

new Point(3, 4);
new Point(45, 60);

Point halfWayBetweenP1AndP2 = pl.halfWayPoint(p2);

The reference to the neRoint returned by the instance method, is stored in\haable
halfWayBetweenP1AndP2 . It would, of course, be the poiiR4,32). This is illustrated in the
following diagram.

19028

5.16 Method: returning a value: multiple returns (page 196)

A Point object A Point object

Point p1 = new Point(3, 4) private double x 3 Point p2 = new Point(45, 60) private double x 45

—— P ——— P

private double y 4 private double y 60

A Point object

Point halfwayBetweenP1AndP2 = p1.halfwayPoint(p2) private double x 24

- ____— —>
private double y 32

5.16 Method: returning a value: multiple returns (page 196)

Thereturn statement is how we specify what value is to eturn ed as the result of aon-
void method. Thestatementcauses the execution to end, and control to transfer badieto t
code that called thenethod. Typically, this is written as the last statement in the rodttbut
we can actually write one or more anywhere in the method.

The Javacompiler checks to make sure that we have been sensible, and that:

e There is no path through the method that does not end witluenrstatement.

e There is no code in the method that can never be reached duedarker occurring
return statement.

5.17 Method: returning a value: of an array type (page 312)

A method mayreturn a result back to the code that called it. This result may bengtype,
including anarray type. This value will of course be eeferenceto anarray which contains
array elements of the appropriate type as stated in tbeirn type (or thenull reference).

5.18 Method: changing parameters does not affect argumentpage 124)

We can think ofmethod parameters as being likevariables defined inside thenethod, but

which are given their initial value by the code that calls thethod. This means the method
can change the values of the parameters, like it can for drgr etariable defined in it. Such
changes have no effect on the environment of the code thatlddle method, regardless of

19029

5.19 Method: changing parameters does not affect argumuitseferenced objects can be
changed (page 208)

where themethod argumentvalues came from. An argument value, be it a literal constant
taken straight from a variable, or the result of some moregerexpression is simply copied
into the corresponding parameter at the time the methodlledcaThis is known agall by
value.

5.19 Method: changing parameters does not affect argumentsut ref-
erenced objects can be changed (page 208)

All method parameters obtain their values from the correspondimgthod argument us-
ing thecall by value principle. This means enethod cannot have any effect on the calling
environment via its method parameters if they are pfimitive type .

However, if a method parameter is ofeference typethen there is nothing to stop the code
in the method following theeference supplied as the argument, and altering the state of the
object it refers to (if it is amutable object). Indeed, such behaviour is often exactly what we
want.

In the abstract example below, assume thahgeState() is aninstance methodin theclass
SomeClass which alters the values of some of timstance variables.

public static void changeSomething(SomeClass object, SomeType value)

{

object.changeState(value); // This really changes the obj ect referred to.
object = null; II' This has no effect outside of this method.

} I changeSomething

SomeClass variable = new SomeClass();
changeSomething(variable, someValueOfSomeType);

At the end of the above code, the change caused by the firsofittee method has had an
impact outside of the method, whereas the second line hasdadch effect.

5.20 Method: constructor methods (page 159)

A classwhich is to be used as a template for makoigects should be given aonstructor
method. This is a special kind afethod which contains instructions for theonstruction of
objects that arenstances of the class. A constructor method always has the same mathe a
class it is defined in. It is usually declared as bemuplic, but we do not specify aeturn
type or write thereserved wordvoi d. Constructor methods can haneethod parameters,
and typically these are the initial values for some or allh&fibstance variables.

19030

5.20 Method: constructor methods (page 159)

For example, the following might be a constructor methoda@®oint class, which has two
instance variables, andy.

publ i c Point(doubl e requiredX, doubl e requiredY)

{
X = requiredX;
y = requiredY;
} I Point

This says that in order to construct an object which is anaims# of the clas®oint , we
need to supply twaoubl e values, the first will be placed in theinstance variable, and the
second in thg instance variable. Constructor methods are called in dainvay to any other
method, except that we precede theethod call with thereserved wordnew. For example,
the following code would creatersew object, which is an instance of the cld&snt , and in
which the instance variablesandy have the value$.4 and-19.9 respectively.

new Point(7.4, -19.9);

We can create as maRgint objects as we wish, each of them having their own pair of csta
variables, and so having possibly different valuesxf@andy. These next fouPoint objects
are the coordinates of a rectangle which is centred aroundrifin of a graph, point (0, 0).

new Point(-20, 40);
new Point(-20, -40);
new Point(20, 40);

new Point(20, -40);

This is illustrated in the following diagram.

19031

5.21 Method: constructor methods: more than one (page 203)

A Point object A Point object
private double x =20 private double x 20
private double y 40 private double y 40

A Point object A Point object
private double x =20 private double x 20
private double y -40 private double y -40

All four Point objects each have two instance variables, cadladdy.

5.21 Method: constructor methods: more than one (page 203)

A classcan have more than omenstructor method as long as the number, order andigres
of themethod parameters are different. This distinction is necessary so thattmapiler can
tell which constructor should be used whenddoject is being created.

5.22 Method: constructor methods: more than one: using thigpage 393)

Typically, themethod parametels toconstructor methods are values foinstance variables,
and inclasss where there are several instance variables it can bergenv¢o have multiple
constructor methods, some of which assume sensible defdués for some instance variables.

For example, in &oint class, it might quite reasonably be decided that for comresg, we
can easily obtain a representation of the origindmystructing a Point using nomethod
arguments.

public class Point
{

private double X, YV,

publ i c Point(doubl e requiredX, doubl e requiredY)

19032

5.23 Method: constructor methods: default (page 425)

{

X = requiredX;
y = requiredY;
} Il Point

publ i c Point()
{

x = 0;

y =0
} Il Point

} Il class Point

In effect, the second constructor method above is ratherdikvrapper around the first one,
and we can make this relationship explicit by actually ogllihe first constructor method from
the second. We do this using theserved wordt hi s, and passing the desired parameters in
brackets. So, another way of writing the second constratiove is as follows.

publ i c Point()

{
t hi s(0, 0);
} I Point

Such aralternative constructor call must be the firsstatementin the body of the constructor
method, and, of course, the class must have another cotmstraethod which matches the
supplied arguments.

5.23 Method: constructor methods: default (page 425)

If we write aclassand do not include aonstructor method in it, then Java implicitly treats
it as though we have definedpaiblic empty one, which takes nmethod arguments. For
example, for a class callé@bulousThing , this would be as follows.

publ i ¢ FabulousThing()

{
} /I FabulousThing

This is called alefault constructor and is of course the same as one which simply invokes the
constructor method of theuperclass

19033

5.24 Method: class versus instance methods (page 166)

publ i ¢ FabulousThing()

{
super ();
} /I FabulousThing

The default constructor is only assumed for classes thabtlexplicitly define a constructor
method, which means that not every class actually has arcoitmt method which takes no
arguments. For example, the clagsyFabulousThing , partially defined below, does not
have such a constructor method.

public class VeryFabulousThing

{

... Some code, but no more constructor methods.
publ i ¢ VeryFabulousThing(String name)

{

} Il VeryFabulousThing
... Some code, but no more constructor methods.
} Il class VeryFabulousThing

As a result, the following is illegal.

public class TheMostFabulousThinginTheUniverse ext ends VeryFabulousThing

{

... Code here, but no constructor method.
} Il class TheMostFabulousThingInTheUniverse

This is because the classeMostFabulousThingInTheUniverse cannot have a default con-
structor because its superclass does not have a constnuetiood that takes no arguments.

In practice, default constructors are not often what we v@agtvay. This author recommends
that youalwaysexplicitly write at least one constructor method for evdass which you intend
there to banstances of, even when that constructor method is empty. This showsybody
reading your code that it is deliberately empty, rather thasbeen omitted by mistake.

5.24 Method: class versus instance methods (page 166)

When we define anethod, we can write theeserved wordst at i ¢ in its heading, meaning
that it can beexecutal in the static context that is, it can be used as soon as thessis
loaded into thevirtual machine. These are known adass method, because they belong to
the class. By contrast, if we omit teeat i ¢ modifier then the method is anstance method

19034

5.24 Method: class versus instance methods (page 166)

This means it can only be run indynamic context attached to a particulanstance of the
class.

This parallels the distinction betweetass variables andinstance variables. There is one
copy of a class variable, created when the class is loadedreTik one copy of an instance
variable for every instance, created when the instanceated.

We can think of methods in the same way: class methods bebahg tlass they are defined in,
and there is one copy of their coderah time, ready for use immediately. Instance methods
belong to an instance, and there are as many copies of theatndetime as there are instances.
Of course, the virtual machine does not really make copidbetode of instance methods,
but it behavess though it does, in the sense that when an instance metbreédsted, it runs

in the context of the instance that it belongs to.

For example, suppose we hav@ant class with instance variablesandy. We might wish
to have an instance method which takesmethod parameters, butreturn s the distance of a
point from the origin. Pythagoras[18] tells us that this ix2 4 y2. (We can use theqrt()
method from theMath class.)

publ i ¢ doubl e distanceFromOrigin()

{

return Mathssgri(x * x +y *vy);
} Il distanceFromOrigin

A class method can be accessed by taking the name of the afasappending a dot Y and
then the name of the methodath.sqrt is a handy example right now.

An instance method belonging to ahject can be accessed by takingederenceto theobject
and appending a dot Y and then the name of the method. For example, ifvidugable pl
contains a reference toPaint object, then the codel.distanceFromOrigin() invokes the
instance methodistanceFromOrigin() , belonging to théoint referred to bypl.

The following code would print the numbessand75.

Point pl
Point p2

new Point(3, 4);
new Point(45, 60);

System.out.printin(p1.distanceFromOrigin());
System.out.printin(p2.distanceFromOrigin());

When the method is called v it uses the instance variables of the object referred tplby
that is the value8 and4 respectively. When the method is called piait uses the value45
and60 instead.

For another example, we may wish to have a method which detesthe distance between a
point and a given other point.

19035

5.25 Method: a method may have no parameters (page 173)

publ i ¢ doubl e distanceFromPoint(Point other)

{

doubl e xDistance
doubl e yDistance

X - other.x;
y - other.y;

ret urn Math.sgrt(xDistance * xDistance + yDistance * yDistance);
} Il distanceFromPoint

The following code would print the numb@@.0 , twice.

System.out.printin(pl.distanceFromPoint(p2));
System.out.printin(p2.distanceFromPoint(p1));

5.25 Method: a method may have no parameters (page 173)

The list of method parameters given to anethod may be empty. This is typical for methods
which always have the same effectreturn the same result, or their result depends on the
value ofinstance variables rather than some values in the context where the methotlasl.ca

5.26 Method: return with no value (page 206)

A void method may contairreturn statements which do not have an associateturn value

— just thereserved wordr et ur n. These cause the execution of thethodto end, and control
to transfer back to the code that called the method. Eveywathod behaves as though it has
an implicit return statement at the end, unless it has onkogkpwritten.

The use of return statements throughout the body of a metéodifs us to design them using
a single entry, multiple exit principle: every call of the method starts at the beginning,
depending orronditions the execution may exit at various points.

5.27 Method: accessor methods (page 207)

A public instance methodwhose job itis to reveal all or some part of thigject state without
changing it, is known as a@ccessor method Perhaps the most obvious example of this is an
instance method callegetSomeVariable , wheresomeVariable is the name of amstance
variable. However, a welldesigred classwith goodencapsulationdoes not systematically
reveal to its user what its instance variables are. Hencentire general idea of an accessor
method: it exposes the value of sorfieature which might or might not be directly imple-
mented as an instance variable.

19036

5.28 Method: mutator methods (page 207)

5.28 Method: mutator methods (pagée 207)

A public instance methodwhose job it is to set or update all or some part ofdhgect state

is known as amutator method. Perhaps the most obvious example of this is an instance
method calledetSomeVariable , wheresomeVariable is the name of amstance variable
However, the more general idea of a mutator method is thaainges the value of some feature,
which might or might not be directly implemented as an inséavariable.

Obviously, onlymutable objects have mutator methods.

5.29 Method: overloaded methods (page 237)

The method signature of a method is its name and list tfpes of its method parameters.
Java permits us to hawaverloaded method, that is, more than onaethod with the same
name within onelass as long as they have different signatures. E.g. they mag aalfferent
number of parameters, different types, the same types batdifferent order, etc.. If two
methods had the same signature thenctirapiler could never know which one was intended
by amethod call with method arguments matching both of them.

For example, the metho8ystem.out.printin() can be used with no arguments, with a
singleString as an argument, or with an argument of some other type, suchtasr any
object. These are in fact different methods with the same name!

5.30 Method: that throws an exception (page 354)

A methodhas a body of code which executel when amethod callinvokes it. If it is possible
for that code to cause axceptionto bethrown, either directly or indirectly, which is not
caught by it, then the method must havihews clausestating this in its heading. We do this
by writing thereserved wordt hr ows followed by the kind(s) of exception, after tineethod
parameter list. For example, theharAt() instance methodof thejava.lang.String class
throws an exception if the givestring index is not in range.

public char charAt(int index) throws IndexOutOfBoundsException

{

} Il charAt

As another example, suppose in some program we hal@sawhich providesmutable ob-
jects representing customer details. Astanceof the class is allowed to have the customer
name changed, but the new name is not allowed to be empty.

19037

5.31 Method: that throws an exception: RuntimeExcepti@ayé358)

public class Customer

{

private String familyName, firstNames;

public void setName(String requiredFamilyName, String requiredFirs tNames)
t hr ows lllegalArgumentException
{
i f (requiredFamilyName == nul | || requiredFirstNames == nul |
|| requiredFamilyName.equals(™) || requiredFirstNames .equals(™))

t hrow new lllegalArgumentException("Name cannot be null or empty") ;

familyName = requiredFamilyName;
firstNames = requiredFirstNames;
} Il setName

} Il class Customer

5.31 Method: that throws an exception: RuntimeException (age 358)

Generally, evergxceptionthatpossiblycan behrown by amethod, either directly by dahrow
statementor indirectly via another method, etc., must either be cabglithe method, or it must
say in itsthrows clausethat itthrows the exception. However, Java relaxes this rule for certain
kinds of exception known aRuntimeException . These represent common erroneous situa-
tions which are usually avoidable and for which we typicaliyte code to ensure they do not

happen. Thgava.lang.RuntimeException classis a kind ofException , and examples of
more specific classes which are kind®ahtimeException includeArraylndexOutOfBoundsException :
lllegalArgumentException , NumberFormatException , ArithmeticException andNullPointerException

(all from thejava.lang packags.

It would be a major inconvenience laveto always declare that these common cases might
happen, or to explicithgatch them, in situations where we know they will not theown due

to the way we have written the code. So, for these kinds offgim®, Java leaves it as an option
for us to declare whether they might be thrown by a method. eikample, in the following
method there is aarray reference, and also an (implicitarray elementaccess. These could

in principle result in @ullPointerException and anrArrayindexOutOfBoundsException
respectively. The Javeompiler is not clever enough to be able to reason whether such an
exception can actually occur, whereas we know they canmetuse of the way our code works.

private int sum(int[] array)

{
if (array == null)
return O;

int sum = 0;
for (int element : array)

19038

sum += element;
return sum;
} Il sum

On the other hand, the following methedn cause some kinds d&funtimeException — — if
given anull reference or anempty array. Java still cannot know this without us declaring it
in the heading.

private doubl e mean(int[] array)
t hrows NullPointerException, ArraylndexOutOfBoundsException
{

int sum = array[0];
for (int index = 1; index <= array.length; index++)
sum += array[index];
return sum / array.length;
} Il sum

For code which is intended faoftware reuse it is a good idea for us to be disciplined about
this relaxation of the normal rule. If we write a method thamh ¢hrow some exception which
is aRuntimeException , because we have not written the code in a way which alwayislsivo
the possibility, or indeed we explicitly throw such an exop, then we should still declare it
in the method heading, even though we are not forced to.

Exceptions for which we must either haveaich clauseor list in athrows clauseare known
aschecked exceptios, and those for which the rule is relaxed, tha&ustimeException and
its specific kinds, are known amchecked exceptios.

6 Command line arguments

6.1 Command line arguments: program arguments are passed tmain
(page 17)

Programs can be givasommand line argumens which typically affect their behaviour. Ar-
guments given to a Java program are strings ofdesd, and there can be any number of them
in alist. In Java,String] means ‘list of strings’. We have to give a name for this lisid a
usually we call itargs . The chosen name allows us to refer to the given data frommwiitie
program, should we wish to.

public static void main(String[] args)

19039

6.2 Command line arguments: program arguments are acdegsedex (page 26)

6.2 Command line arguments: program arguments are accessdwy in-
dex (page 26)

The command line argumens given to themain method are alist of strings. These are
the text data string arguments supplied on tteommand line The strings arendexed by
integers (whole numbers) starting from zero. We can access theithdiVstrings by placing
the index value in square brackets after the name of theSstassuming that we call the list
args , thenargs[0] is the first command line argument given to the program, ifdli®one.

6.3 Command line arguments: length of the list (page 79)

Thecommand line argumens passed to thmain method are alist of strings. We can find
the length of a list by writing a dot followed by the wadhgth , after the name of the list. For
exampleargs.length yields ani nt value which is the number of items in the l&gs .

6.4 Command line arguments: list index can be a variable (pag79)

Theindex used to access the individual items fronlist of strings does not have to be an
integer literal, but can be aint variable or indeed ararithmetic expression For example,
the following code adds together a listinfegers given acommand line argumens.

i nt sumOfArgs = 0;

for (int argindex = O; argindex < args.length; argindex = argindex + 1)
sumOfArgs = sumOfArgs + Integer.parselnt(args[argindex]);

System.out.printin(“The sum is " + sumOfArgs);

The benefit of being able to usevariable, rather than an integer literal is that the access can
be done in doop which controls the value of the variable: thus the actuali@alsed as the
index is not the same each time.

7 Type

7.1 Type (page 36)

Programs can process various different kinddatg, such as numbers, text data, images etc..
The kind of a data item is known as iige.

19040

7.2 Type: String (page 135)

7.2 Type: String (page 135)

Thetype of text data strings, such astring literal values andconcatenatiors of such, is
calledString in Java.

7.3 Type: String: literal (page/18)

In Java, we can havestring literal , that is a fixed piece of text to be useddasga, by enclosing
it in double quotes. It is called a string literal, because @type of data which is a string of
characters, exactly as listed. Such a piece of data might be used assagesto the user.

"This is a fixed piece of text data -- a string literal”

7.4 Type: String: literal: must be ended on the same line (pag21)

In Javastring literal s must be ended on the same line they are started on.

7.5 Type: String: literal: escape sequences (page 49)

We can have aew line characterembedded in atring literal by using theescape sequence
\n . For example, the following code will print out three linessiandard output.

System.out.printin("This text\nspans three\nlines.");
It will generate the following.

This text
spans three
lines.

There are other escape sequences we can use, includindiomarfg.

19041

7.6 Type: String: concatenation (page 26)

Sequence| Name Effect

\b Backspace Moves the cursor back one place, so the obsir-
acter will over-print the previous.

\t Tab (horizontal tab) Moves the cursor to the next ‘tab stop’.

\n New line (line feed)| Moves the cursor to the next line.

\f Form feed Moves to a new page on many (text) printers.

\r Carriage return Moves the cursor to the start of the current line, so
characters will over-print those already printed.

\" Double quote Without the backslash escape, this would mark|the
end of the string literal.

\ Single quote This is just for consistency — we don’t need to es-
cape a single quote in a string literal.

\\ Backslash Well, sometimes you want the backslash charagter
itself.

Note: System.out.printin() always ends the line with the platform dependerd separa-

tor, which on Linux is a new line character but on Microsoft Wimdois acarriage return
character followed by a new line character. In practice you may noteethe difference, but
the above code is not strictly the same as using three sef@ysa¢m.out.printin() calls
and is not 100% portable.

7.6 Type: String: concatenation (page 26)

The + operator, when used with two stringperands, produces a string which is tloen-
catenation of the two strings. For examplélello " + "world" produces a string which is
Hello (including the space) concatenated with the stwodd , and so has the same value as
"Hello world"

There would not be much point concatenating togetherdtriag literal s like this, compared
with having one string literal which is already the text wenivaWe would be more likely to
use concatenation when at least one of the operands is netiavidue, i.e. is &ariable value.
For example;Hello " + args|0] produces a string which igello (including the space)
concatenated with the firsbommand line argumentgiven when the program rsin.

The resulting string can be used anywhere that a singlegdiitaral could be used. For ex-

ampleSystem.out.printin("Hello " + args[0]) would print the resulting string on the
standard output.

7.7 Type: String: conversion: from int (page 38)

The Javeaoperator + is used for botraddition andconcatenation— it is anoverloaded op-
erator. If at least one of th@perands is atext data string, then Java uses concatenation,
otherwise it uses addition. When only one of the two operasdsstring, and the other is

19042

7.8 Type: String: conversion: from double (page 55)

some othetype of data, for example amnt , the Javaompiler is clever enough to understand
the programmer wishes that data to be converted into a diefye the concatenation takes
place. It is important to note the difference betweernéeger and the decimal digit string we
usually use to represent it. For example, ititeger literal 123 is ani nt, a number; whereas
thestring literal "123" is a text data string — a string of 3 separelt@racters.

Suppose theariable noOfPeopleTolnviteToTheStreetParty had the valuél, then the
code
System.out.printin("Please invite " + noOfPeopleTolnvit eToTheStreetParty);

would print out the following text.
Please invite 51

The numberb1 would be converted to the strif§l" and then concatenated to the string
"Please invite " before being processed Bystem.out.printin()

Furthermore, for our convenience, there is a separateoveodiSystem.out.printin() that
takes a singlént rather than a string, and prints its decimal representafibas, the code

System.out.printin(noOfPeopleTolnviteToTheStreetPar ty);
has the same effect as the following.

System.out.printin("™ + noOfPeopleTolnviteToTheStreet Party);

7.8 Type: String: conversion: from double (page 55)

The Javaconcatenation operator +, for joining text data strings can also be used to convert
adoubl e to a string. For example, thexpression™ + 123.4 has the valuél23.4"

7.9 Type: String: conversion: from object (page 177)

It is quite common forclasses to have ainstance methodwhich is desigred to produce a
String representation of aabject. It is conventional in Java for suahethods to be called
toString . For example, oint class withx andy instance variables might have the follow-
ing toString() method.

19043

7.10 Type: String: conversion: from object: null refereljoage 211)

publ i ¢ String toString()

{
ret urn II(II + X + ll,ll + y + ll)ll;
} I toString

For convenience, whenever the Jaaanpiler finds anobject referenceas anoperand of the
concatenation operatorit assumes that the objectString() method is to be invoked to
produce the requiresitring . For example, consider the following code.

Point p1 = new Point(10, 40);
System.out.printin("The point is " + pl.toString());

Thanks to the compiler’s convenient implicit assumptioowthioString() , the above code
could, and probably would, have been written as follows.

Point p1 = new Point(10, 40);
System.out.printin("The point is " + pl);

For our further convenience, there is a separate versiSgstém.out.printin() that takes
any single object rather than a string, and printso&&ring() . Thus, the code

System.out.printin(pl);
has the same effect as the following.

System.out.printin("™ + pl);

7.10 Type: String: conversion: from object: null reference(page 211)

For convenience, whenever the Jaganpiler finds anobject referenceas anoperand of the
concatenation operatorit assumes that the objectsString() instance methodis to be
invoked to produce the requir&tring . However, the reference might be thell reference
in which case there is no object on which to invaé&tring() , so instead, the stririgull*

is used.

In fact, assumingomeString is someString andmyVar is avariable of areference type
then the code:

someString + myVar

19044

7.11 Type: int (page 36)

is actually treated as follows.

someString + (myVar == nul |
? "null"
. (myVar.toString() == nul I ? "null" : myVar.toString()))

The same applies to the first operand of string concatentitibat is an object reference.

For this reason, most Java programmers prefer t6'usemyVar rather thamyVar.toString()
when they wish to convert the object referencednyyar to a string, because it avoids the pos-
sibility of an exceptionif myVar contains the null reference.

7.11 Type: int (page 36)

One of thetypes of data we can use in Java is callédt . A data item which is annt is an
integer (whole number), such &5 -129934 or 982375, etc..

7.12 Type: double (page 54)

Another of thetypes of data we can use in Java is known aésubl e. A data item which is a
doubl e is areal (fractional decimal number), such 89 , -129.934 or 98.2375 , etc.. The
type is callecdoubl e because it uses a means of storing the numbers adleble precision
On computers, real numbers are only approximated, bechagdave to be stored in a finite
amount of memory space, whereas in mathematics we have tlom d infinite decimals.
The double precision storage approach uses twice as muclom@er number than the older
single precisiontechnique, but gives numbers which are much more precise.

7.13 Type: casting an int to a double (page 79)

Sometimes we have amt value which we wish to be regarded asaubl e. The process of
conversion is known asasing, and we can achieve it by writiidouble) in front of thei nt .
For example(double)5 is thedoubl e value5.0 . Of course, we are most likely to use this
feature to cast the value of amt variable, rather than aimteger literal.

7.14 Type: boolean (page 133)

There is atype in Java calletbool ean, and this is the type of altonditions used inf else
statemens andloops. It is named after the English mathematician, George Bablese work

19045

7.15 Type: long (page 145)

in 1847 established the basis of modern logic[12]. The tygeains just twdoolean literal
values called r ue andf al se. For example5 <= 5 is aboolean expressionwhich, because
it has novariables in it, always has the same value whesaluated. Whereas thexpression
agel < age? || agel == age?2 && heightl <= height2 has a value which depends on
the values of the variables in it.

7.15 Type: long (page 145)

Thetype i nt allows for the storage dhtegers in the range-23! through to 21— 1. This
is because it uses folaytes, i.e. 32binary digits. 21— 1 is 2147483647. Although this is
plenty for most purposes, we sometimes need whole numbarigger range. The typeng
representfong integers and uses eight bytes, i.e. Bds. Al ong variable can store numbers
from —253 through to 3 — 1. The value of 3 — 1 is 9223372036854775807.

A long literal is written with anL on the end, to distinguish it from ant literal , as in-15L
and2147483648L .

7.16 Type: short (page 145)

Thetype short representshort integers using twobytes, i.e. 16binary digits. A short
variable can store numbers from21° through to 2°— 1. The value of -1 is 32767. We
would typically use this type when we have a huge numbéntefjers, which happen to lie in
the restricted range, and we are concerned about the amiomeioory (orfile space) needed
to store them.

7.17 Type: byte (page 145)

Thetype byt e representintegers using just ondyte, i.e. 8binary digits. Abyt e variable
can store numbers from2’ through to Z — 1. The value of 2— 1 is 127.

7.18 Type: char (page 145)

Characters in Java are represented bytype char . A char variable can store a singlehar-
acter at any time.

19046

7.19 Type: char: literal (page 145)

7.19 Type: char: literal (page 145)

A character literal can be written in our program by enclosing it in single quokes example
'J" is a character literal.

7.20 Type: char: literal: escape sequences (page 146)

When writing acharacter literal we can use the sanescape sequeneethat are available
within string literal s. These include the following.

char backspace = "\b’; char tab ="\t}

char newline = "\n’; char formFeed = \f;
char carriageReturn = "\r’; char doubleQuote = "\";
char singleQuote = \"; char backslash = "\\;

7.21 Type: char: comparisons (page 238)

Values oftype char may be compared using the uswal<=, ==, I=, >= and > relational
operators. Characters are stored in the computer using nuncbecacter codes — each one
has a unigue number — and when teltaracters are compared, the result is formed from the
same comparison on the two numbers.

Generally speaking we do not need to know the actual numised for specific characters.
However, there are certain properties that are useful taksiach as that the number fé¢ is
oneless thanthat for’'B’ , which is one less than the number used@r, and so on. In other
words, the upper case alphabetic letters have contiguaradier codes. The same is true of
the lower case alphabet, and also the digit charatiershrough to9” . The character codes
for the digits are all less than those for the upper caseasgttéhich are all less than those for
the lower case letters.

For example, the followinghethod checks whether a given character is a lower case alphabetic
character.

public static bool ean isLowerCase(char aChar)

{

return aChar >= 'a’ && aChar <= 7’
} Il isLowerCase

A method similar to this is provided in the standa&tdssjava.lang.Character . That one
also works forlocales (i.e. languages) other than English.

19047

7.22 Type: char: casting to and from int (page 238)

Another property worth remembering is that, for the Engtisracters, the code for each upper
case letter is 32 less than the code for the correspondingy loase letter.

7.22 Type: char: casting to and from int (page 238)

The numericcharacter codeused to store aharacter may be obtained bgasing achar
value to an nt. We can achieve this by writingnt) in front of it. For example(int)’A’
is the numeric code used to store a capital A.

We can also convert in the opposite direction, by castingranto achar. For example, at
the end of the following fragment of code, thariable letterB will contain an upper case B
characte?

int codeForA = (int)A’
char letterB = (char) (codeForA + 1);

The followingmethod returns the upper case equivalent of a given character, if it is @&tow
case letter, or the original character if not. It assumesahifity of the methodsLowerCase()

public static char toUpperCase(char aChar)

{

i f (isLowerCase(aChar))
return (char) ((int)aChar - (int)a + (int)A)
el se
return aChar;
} Il toUpperCase

A method similar to this is provided in the standa&tdssjava.lang.Character . That one
also works forlocales (i.e. languages) other than English.

7.23 Type: float (page 146)

Thetype f1 oat is for real (fractional decimal) numbers, using tHeating point represen-
tation with a single precisionstorage. It uses only fousytes per number, compared with
doubl e which employsdouble precisionstorage and so is far more accurate, but needs eight
bytes per number.

A float literal is written with anf or F on the end, as if.0F , -129.934F or 98.2375f

2Actually, the cast in the first line fromhar toi nt would be implicit, but it is good style to write it anyway.
In the second line, the cast fromt to char is required.

19048

7.24 Type: primitive versus reference (page 162)

7.24 Type: primitive versus reference (page 162)

Eachtype in Java is either arimitive type or areference type Values of primitive types have
a size which is known atompile time. For example, everynt value comprises foubytes.
Types for which the size of an individual value is only knowmun time, such aclasss, are
known as reference types because the values are alwaysadces aeference

7.25 Type: array type (page 287)

Whilst it is true thatarrays in Java ar@bjects, they are treated somewhat differently from
instances of classes. To obtain amarray type, we do not write a class and then use its name.
Instead we simply write th&ype of the array elements followed by a left and then a right
square brackef](). The type of the elements is known as #reay base type

For exampleint]] is the type of arrays withnt as the base type, that is ones which contain

elements that arent values.String[] is the type of arrays which contain elements that are
references toString objects.

7.26 Type: enum type (page 309)

An enum typeis a feature which arrived in Java 5.0 that allows us to idigmtitype with an
enumeration of named values. For example, we might havepgossible directions in some
game involving movement.

private enum Direction { UP, DOWN, LEFT, RIGHT }

This behaves rather like we have definedasscalledDirection , and fourvariables, each
referring to a uniquénstanceof Direction . So, for example, we can have the following.

privat e Direction currentDirection = Direction.UP;
private Direction nextDirection = nul | ;

If we wanted the type to be available in other classes, thewodd declare it apublic.

Enum types can also be usedsivitch statemens.

swi t ch (currentDirection)

{

case UP:

19049

7.27 Type: enum type: access from another class (page 312)

case DOWN:
case LEFT:. ..
case RIGHT: ..
defaul t:

+ Il switch

7.27 Type: enum type: access from another class (page 312)

If we declare gublic enum type, then it can be used in othelas®s. We access it using dots
(.) rather like we do for other kinds of access from anothersclas

For example, if the enum tyfdgrection is defined in the clagdovement, then we could refer
to it, and one of its values as follows.

Movement.Direction requestedDirection = Movement.Direc tion.UP;

8 Standard API

8.1 Standard API: System: out.println() (page 18)

The simplest way to print a messagestandard output is to use:
System.out.printin("This text will appear on standard out put");

System is aclass(that is, a piece of code) that comes with Java as part appdication
program interface (API) — a large number of classes designed to support our Javeapneg
Inside System there is a thing calledut , and this has amethod (section of code) called
printin . So overall, this method is call&ystem.out.printin . The method takes a string
of text given to it in its brackets, and displays that textloa standard output of the program.

8.2 Standard API: System: out.println(): with no argument (page 98)

TheclassSystem also contains a version of tlet.printin() method which takes no argu-
ments. This outputs nothing exceptaw line. It has the same effect as callifgstem.out.printin()
with an empty string as its argument, that is

System.out.printin();

19050

8.3 Standard API: System: out.printin(): with any argunm(@aige 427)

has the same effect as the following.
System.out.printin("");
So, for example

System.out.print("Hello world!™);
System.out.printin();

would have the same effect as the following.
System.out.printin("Hello world!);

System.out.printn() with no argument is most useful when we need to end a line which
has been generated a piece at a time, or when we want to haaelalible.

8.3 Standard API: System: out.printin(): with any argument (page 427)

Theclass
java.lang.System has aroverloaded methodversion ofout.printin() andout.print()
for everyprimitive type of method argument as well agava.lang.Object . Each treats its

argument(arg) , as(™ + arg) . So, ani nt is output in decimal representation, and a non-
null object referencehas itstoString() instance methodused, etc..

Also, there is a version dbystem.out.printin() and System.out.print() that take a
character array, char[] , and print the characters in it.

8.4 Standard API: System: out.print() (page 98)

TheclassSystem contains anethod out.print() which is almost the same ast.printin()
The only difference is thatut.print() does not produce @ew line after printing its output.
This means that any output printed after this will appear@nsame line. For example

System.out.print("Hello");
System.out.print(" ");
System.out.printin("world!");

would have the same effect as the following.

19051

8.5 Standard API: System: out.printf() (page 126)

System.out.printin("Hello world!);

System.out.print() is most useful when the output is being generated a pieceiatea t
often within aloop.

8.5 Standard API: System: out.printf() (page 126)

TheclassSystem contains anethod out.printf() , Introduced in Java 5.0, which is similar
to out.print() except that we can use it to produce formatted output of galue

A simple use of this is to take anteger value and have it printed witBpace paddingto a
given positive integer field width. This means the outputtaors leading spaces followed by
the usual representation of the integer, such that the nuoflsharacters printed is at least
the given field width.

The following code fragment includes an example which granstring representation 23,
with leading spaces so that the result has a width of ten cteas

System.out.printin("1234567890");
System.out.printf("%210d%n", 123);

Here is the effect of these twsiatemens.

1234567890
123

The first%tells out.printf() that we wish it to format something, tiié tells it the minimum
total width to produce, and the following letter says whatckof conversion to perform. A
tells it to produce the representation of a decimal wholelmemwhich is given after thiermat
specifier string, as the secontiethod argument The %ntells out.printf() to output the
platform dependenine separator.

The method can be asked to format a floating point value, ssieli@ubl e. In such cases we
give the minimum total width, a dot }, the number of decimal places, andfaoonversion.
For example,

System.out.printf("%1.2f%n", 123.456);

needs more than the given minimum widthlofand so produces the following.

19052

8.6 Standard API: System: out.printf(): zero padding (nE4@)

123.46
Whereas, the format specifier in

System.out.printin("1234567890");
System.out.printf("%210.2f%n", 123.456);

prints a total of ten characters for the number, two of whighdecimal places.

1234567890
123.46

8.6 Standard API: System: out.printf(): zero padding (pagel140)

We can ask
System.out.printf() for zero paddingrather tharspace paddingof a number by placing
a leading zero on the desired minimum width in thenat specifier.

The following code fragment contains an example which pranstring representation 23,
with leading zeroes so that the result is tdaracters long.

System.out.printin("1234567890");
System.out.printf("%010d%n", 123);

Here is the effect.

1234567890
0000000123

Similarly,

System.out.printin("1234567890");
System.out.printf("%010.2f%n", 123.456);

produces the following.

1234567890
0000123.46

19053

8.7 Standard API: System: out.printf(): string item (pagé)y2

8.7 Standard API: System: out.printf(): string item (pagel289)

We can ask
System.out.printf() to print aString item by usings as the conversiooharacter in the
format specifier. For example,

System.out.printin("123456789012345");
System.out.printf("%15s%n", "Hello World");

has this effect.

123456789012345
Hello World

If the item following the format specifier string is not itéalstring, but some othabject then
its toString() is used. For example, assumingant classis defined as expected, then the
code

System.out.printin("123456789012345");
System.out.printf("%215s%n", new Point(3,4));

produces the following.

123456789012345
(3.0,4.0)

8.8 Standard API: System: out.printf(): fixed text and many items (page
289)

We can giveSystem.out.printf() a format string with more than orfermat specifier in
it, together with more than one value to be printed. What isanany text in the format string
which is not part of a format specifier is simply printed agpears. Also, if no width is given
for a format specifier then its natural width is used.

For example,

Point p1 = new Point(3,4);

Point p2 = new Point(45, 60);

System.out.printf("The distance between %s and %s is %1.2f on",
pl, p2, pl.distanceFromPoint(p2));

19054

8.9 Standard API: System: out.printf(): left justificati(page 300)

produces the following output.

The distance between (3.0,4.0) and (45.0,60.0) is 70.00.

8.9 Standard API: System: out.printf(): left justification (page 300)

If we wish an item printed bysystem.out.printf() to be left justified, rather than right
justified, then we can place a hyphen in front of the width mfdrmat specifier.

For example,

System.out.printin("123456789012345X");
System.out.printf("%-15sX%n", "Hello World");

produces the following.

123456789012345X
Hello World X

8.10 Standard API: System: in (page 187)

Inside theSystem class in addition to theclass variablecalledout , there is another called .
This contains aeferenceto anobject which represents thetandard input of the program.

Perhaps surprisingly, unlike tletandard output, the standard input in Java is not easy to use
as itis, and we typically access it via some other means, asielScanner .

8.11 Standard API: System: in: is an InputStream (page 452)

The class variablecalledin , inside thejava.lang.System class(i.e. System.in) holds
a reference to anobject which is aninstance of java.io.InputStream . This enables our
programs to access tihgtes of theirstandard input.

8.12 Standard API: System: getProperty() (page 195)

When a program isunning, varioussystem property values hold information about such
things as the Java version and platform being used, the hoewaty of the user, etc.. The

19055

8.13 Standard API: System: getProperty(): line.sepafptoge 195)

class methodSystem.getProperty() takes the name of such a property aSitsigy method
parameter andreturn s the correspondingtring value.

8.13 Standard API: System: getProperty(): line.separato(page 195)

System.getProperty() maps the naméne.separator onto thesystem property which
is theline separator for the platform in use.

8.14 Standard API: System: currentTimeMillis() (page 262)

The classjava.lang.System contains aclass methodcalled currentTimeMillis which
returns the current date and time expressed as the number of mdliigs since midnight,
January 1, 1970. This value i3 ang.

8.15 Standard API: System: err.printin() (page 344)

Inside thejava.lang.System class in addition toclass variables calledout andin there
is another calle@rr . This contains aeferenceto anobject which represents thstandard
error of the program. Via this object we have theethods System.err.printin() and
System.err.print() . These cause their givenethod argumensts to be displayed on the
standard error.

8.16 Standard API: System: out: is an OutputStream (page 468

Theclass variablecalledout , inside theava.lang.System class(i.e. System.out) holds
areferenceto anobject which is aninstanceof java.io.OutputStream . This enables our
programs to produdeytes on theirstandard output.

More preciselySystem.out is an instance ghva.io.PrintStream , Which is asubclassof
OutputStream . Unlike basicOutputStream objects, &PrintStream object also hamsstance

methods print() , printin() and (since Java 5.Qyintf() , which take variousnethod
arguments and write theicharacter representations as bytes.

8.17 Standard API: System: err: is an OutputStream (page 468

Theclass variablecallederr , inside thgava.lang.System class(i.e. System.err) holds a
referenceto anobject which is aninstanceof java.io.PrintStream , asubclassof

19056

8.18 Standard API: Integer: parseint() (page 41)

java.io.OutputStream . This enables our programs to produmges on theirstandard er-
ror.

8.18 Standard API: Integer: parselnt() (page 41)

One simple way to turn #&ext data string, say"123" into theinteger (whole number) it
represents is to use the following.

Integer.parselnt("123");

Integer is aclass(that is, a piece of code) that comes with Java. Ingiteger there is a
method (section of code) calleparseint . This method takes a text data string given to it in
its brackets, converts it into amt andreturns that number. Aun time error will occur if
the given string does not representi am value.

For example

i nt firstArgument;
firstArgument = Integer.parselnt(args[0]);

would take the firstcommand line argumentand, assuming it represents a number (i.e. itis a
string of digits with a possible sign in front), would turniiito the number it represents, then
store that number ifirstArgument . If instead the first argument was some other text data
string, it would produce a run time error.

8.19 Standard API: Integer: as a box for int (page 487)

In addition to containinglass method to manipulaténteger related values, the standaiidss
java.lang.Integer can be used to wrap umt values abjects. One of theconstructor
methods of the class may be given ant , and this makes amstanceof Integer wrapping
up, orboxing, that number. Thenstance methodintValue() can then later be used to
retrieve the boxed number from the object. This effectiedigws an nt , which is aprimitive
type, to be treated as though it is abject.

8.20 Standard API: Integer: as a box for int: autoboxing (page'494)

Use of the standardlassjava.lang.Integer to wrap upi nt values asobjects is so com-
mon, that since Java 5.0 thempiler can make their use implicit by providiragitoboxingand

19057

8.21 Standard API: Double: parseDouble() (page 54)

auto-unboxing. Whenever amnnt value is given where alinteger is required, theé nt is au-
tomaticallyboxed (wrapped up) into aewInteger object. And whenever (@ferenceto) an
Integer is given where ainnt is required, thentValue() instance methodis automatically
used to unbox thent value.

For example, here is some code that explicitly wraps up atrd&s an nt .

Integer aninteger = new Integer(10);
int anint = aninteger.intValue() + 1;
System.out.printin(anint);

The following code would have exactly the same effect — bathila print out11.

Integer aninteger = 10;
int anint = aninteger + 1;
System.out.printin(anint);

Whilst this convenience can often make tme andinteger types work seamlessly together,
it is important to remember the difference between them:. is a primitive type, whereas
Integer is areference type So, for example, aarray of teni nt values would take as much
memory as ten times the space of ome value (plus a little). By contrast, an array of ten
Integer objects would hold tereferences, each referring to an object storingian value.

8.21 Standard API: Double: parseDouble() (page 54)

One simple way to turn gext data string, say"123.456" into thereal (fractional decimal
number) it represents is to use the following.

Double.parseDouble("123.456");

Double is aclass(that is, a piece of code) that comes with Java. Infideble there is a
method (section of code) callegarseDouble . This method takes a text data string given to
it in its brackets, converts it into afbubl e andreturn s that number. Aun time error will
occur if the given string does not represent a number. Fanple

doubl e firstArgument = Double.parseDouble(args[0]);

would take the firstcommand line argumentand, assuming it represents a number, would
turn it into the number it represents, then store that nuritbérstArgument . To represent

a number, the string must be a sequence of digits, possibhyanecimal point and maybe a
negative sign in front. If instead the first argument was sother text data string, it would
produce a run time error.

19058

8.22 Standard API: Math: pow() (page 73)

8.22 Standard API: Math: pow() (page 73)

Java does not have aperator to compute powers. Instead, there is a standéadscalled
Math which contains a collection of usefulethods, includingpow() . This takes two numbers,
separated by a comma, and gives the value of the first numbedr® the power of the second.

For example, thexpressionMath.pow(2, 10) produces the value of2which is1024.

8.23 Standard API: Math: abs() (page 87)

Java does not have aperator to yield theabsolute valueof a number, that is, its value
ignoring its sign. Instead, the standatdsscalledMath contains amethod, calledabs. This
method takes a number and gives its absolute value.

For example, thexpressionMath.abs(-2.7) produces the valug7 , as does the expression
Math.abs(3.4 - 0.7)

8.24 Standard API: Math: PI (page/87)

The standardlasscalledMath contains a constant value call@d that is set to the most ac-
curate value oftthat can be represented using thebl e numbertype. We can refer to this
value usingMath.PI , as in the following example.

doubl e circleArea = Math.PI * circleRadius * circleRadius;

8.25 Standard API: Math: random() (page 205)

The standaratlassjava.lang.Math contains aclass methodcalledrandom. This takes no
method argument andreturns somedoubl e value,r, such that @ <r < 1.0 is true. The
value is chosen in a pseudo random fashion, usingigorithm which exhibits the character-
istics of an approximately uniform distribution of randonmnbers.

8.26 Standard API: Math: round() (page/289)

The standaratlassjava.lang.Math contains aclass methodcalledround . This takes a
doubl e method argumentandreturns al ong value which is the nearest whole number to
the given one. If we wish to turn that result into iam then we would of courseastit, as in
the following example.

19059

8.27 Standard API: Scanner (page 188)

i nt myPennies = ... Obtain this somehow.
i nt myNearlyPounds = (int) Math.round(myPennies / 100.0);

8.27 Standard API: Scanner (page 188)

Since the advent of Java 5.0 there is a standtasiscalledjava.util. Scanner which pro-
vides some simple features to read ingata. In particular, it can be used to re&8gstem.in
by passing that to itsonstructor method as follows.

i nport java.util.Scanner;

Scanner inputScanner = new Scanner(System.in);

Each time we want a line of text we invoke thextLine() instance method

String line = inputScanner.nextLine();

Or maybe we want to read ameger usingnextint()

i nt aNumber = inputScanner.nextint();
Il Skip past anything on the same line following the number.
inputScanner.nextLine();

EssentiallySystem.in accesses thetandard input as a stream dbytes of data. AScanner
turns these bytes into a streamobiaracters (i.e.char values) and offers a variety of instance
methods to scan these into whole lines, or various tokeraratga bywhite space such as
spaces, tabs and end of lines. Some of these instance meiteddsged below.

Public method interfaces for classScanner (some of them).

Method | Return | Arguments | Description

nextLine String Returns all the text from the current point in the
character stream up to the next end of line, gs a
String

nextint i nt Skips any spaces, tabs and end of lines and then

reads characters which represent an integer, |land
returns that value as annt. It does not skip
spaces, tabs or end of lines following those char-
The characters must represent an integer, or
arun time error will occur.

8.28 Standard API: Scanner: for a file (page 306)

Public method interfaces for classScanner (some of them).
Method | Return | Arguments | Description
nextBoolean bool ean Similar tonextint() except for ool ean value.
nextByte byt e Similar tonextint() except for ayt e value.
nextDouble doubl e Similar tonextint() except for adoubl e value.
nextFloat f | oat Similar tonextint() except for & | oat value.
nextLong | ong Similar tonextint() except for d ong value.
nextShort short Similar tonextint() ~ except for ashort value.

There are very many more features in this class, includia@tility to change what is consid-
ered to be characters that separate the various tokens.

8.28 Standard API: Scanner: for a file (page 306)

The standardlassjava.util.Scanner can be used to read the contents dfl@ such as
my-data.txt , as follows.

i nport java.io.File;
i nport java.util.Scanner;

Scanner input = new Scanner(new File("my-data.txt"));

java.io.File is a standard class used to represent file names.

Having obtained &canner for the file, we can then use its variomstance method, such as
nextLine() , to read thalata.

If we desire to read every line of the file, we might also usehimNextLine() instance

method — thigeturn st r ue orf al se depending on whether there are more lines in the file.

whi | e (input.hasNextLine())
{

String line = input.nextLine();

} I while

19061

8.29 Standard API: String (page 233)

8.29 Standard API: String (page 233)

Strings in Java arebjects of the standardlassjava.lang.String . This class is defined in
the same way as any other, but the Java language also knoutssaioay literal s and the string
concatenation operator So, strings are semi-built-in to Java. All the other bunltypes are
primitive type s, butString is areference type

When we write
String name = "Java";

we are asking for an object ¢fpe String to be created, containing the tekva , and for a
referenceto that object to be placed in thariable calledname. So, even though we do not
use the special wordew, whenever we write a string literal in our code, we are askarga
new String object to be created.

String name

———

A String object

J a|Vv |a

The text of aString is stored as a sequencedbfaracters, each of these is a member of the
char type. This text cannot be change&lring s areimmutable objects.

8.30 Standard API: String: some instance methods (page 234)

Strings havenstance method, some of which are listed below.

Public method interfaces for classSt ri ng (some of them).
Method | Return | Arguments | Description
charAt char i nt This return s thecharacter at the specifiectring
index. The characters are indexed from zero up-
wards.

19062

8.31 Standard API: String: format() (page 301)

Public method interfaces for classSt ri ng (some of them).

Method | Return | Arguments | Description

compareTo int String Compares the text of this with the given other, us-
ing lexicographic ordering (alphabetic/dictionary
order). Return$ if they are equal, a negativet if

this isless thanthe other, a positivent otherwise.

endsWith bool ean | String Returnst rue if and only if the text of this string
ends with that of the given other.

equals bool ean | String Returnst r ue if and only if this string contains the
same text as the given other.

indexOf i nt String Returns the index within this string of the first oc-
currence of the given other string, or -1 if it does not
occur.

length i nt Returns the length of this string.

startsWith bool ean | String Returnst r ue if and only if the text of this string
starts with that of the given other.

substring String int Returns anewstring that is a substring of this string.

The substring begins with the character at the given
index and extends to the end of this string.
substring String int, int Returns a new string that is a substring of this string.

The substring begins at the first given index and |ex-

tends to the character at the second index minus pne.
toLowerCase | String Returns a new string which is the same as this pne
except that all upper case letters are replaced with
their corresponding lower case letter.
toUpperCase | String Returns a new string which is the same as this pne
except that all lower case letters are replaced With
their corresponding upper case letter.

8.31 Standard API: String: format() (page 301)

The standardlassjava.lang.String has aclass methodo produce formatte8tring rep-
resentations of values. It is calléetmat and was introduced in Java 5.0. It works with a
format specifier string in precisely the same way 8gstem.out.printf() except that the
result isreturn ed rather than printed.

For example, the code

System.out.printin(String.format("The distance betwee n %s and %s is %1.2f.",
pl, p2, pl.distanceFromPoint(p2)));

19063

8.32 Standard API: String: split() (page 313)

has precisely the same effect as the following. (Observésthe

System.out.printf("The distance between %s and %s is %1.2f on",
pl, p2, pl.distanceFromPoint(p2));

8.32 Standard API: String: split() (page/313)

One of the manynstance method in the standardlassjava.lang.String is calledsplit

It returns anarray of String s in which eacharray elementis a portion of theString

to which the instance method belongs. How the string is spiit portions depends on the
method argumentgiven tosplit) . This argument is anoth&tring containing aregular
expressiondescribing what separates the portions.

Here are some examples.

String and regular expression Resulting array
"The-cat-sat-on-the-mat".split("-") { "The", "cat", "sat",

"on", "the", "mat" }
"The--cat--sat--on--the--mat".split("-") { "The", ™, "cat",

" sat", "™, "on",

" "the”, ™, "mat" }
"The--cat--sat--on--the--mat".split("-+") { "The", "cat", "sat",

"on", "the", "mat" }
"The-cat--sat---on----the--mat".split("-+") { "The", "cat", "sat",

"on", "the", "mat" }

In the last two examples, the regular expressioh means “one or more hyphens”.

8.33 Standard API: Character (page 342)

The standardlassjava.lang.Character contains manylass method to help with manip-
ulation ofcharacters, including the following.

Public method interfaces for clasChar act er (some of them).

Method | Return | Arguments | Description

iIsWhitespace bool ean | char Returnst r ue if the givenchar is a white space
character, (e.g.space charactey tab character,
new line character), orf al se otherwise.

isDigit bool ean | char Returnst r ue if the givenchar is a digit (e.g.’0’ ,
'8), orfal se otherwise.

19064

8.34 Standard API: Object (page 422)

Public method interfaces for clasChar act er (some of them).

Method | Return | Arguments | Description

isLetter bool ean | char Returnst r ue if the givenchar is a letter (e.g'A’ ,
'a’), orfal se otherwise.

isLetterOrDigit bool ean | char Returnst r ue if the givenchar is a letter or a digit,
or f al se otherwise.

isLowerCase bool ean | char Returnsg r ue if the givenchar is a lower case lettel
or f al se otherwise.

iIsUpperCase bool ean | char Returnst r ue if the givenchar is an upper case lef
ter, orf al se otherwise.

toLowerCase char char Returns the lower case equivalent of the givear
if it is an upper case letter, or the givehar ifitis
not3

toUpperCase char char Returns the upper case equivalent of the gisesr
if it is a lower case letter, or the givarar if it is
not?!

8.34 Standard API: Object (page 422)

All objects in Java are alsimstances of the standardlasscalledjava.lang.Object . Unless
a class is explicitly declared textend some other class, then it implicitly exten@$ject
directly. This means all classes in Java reside in a siimgieritance hierarchy, which is a
tree structure with the clag3bject at its root. Every class hassaperclass except for the
classObject .

TheObject class has oneonstructor method and it takes nanethod argumens.

public class Object

{

publ i ¢ Object()
{

... Code here to actually create an object,
.. allocating memory for it, etc..
} Il Object

} Il class Object

3For maximum portability of code to different regions of thenid, it is better to use th8tring versions of
these methods.

19065

8.35 Standard API: Object: toString() (page 427)

8.35 Standard API: Object: toString() (page 427)

The classjava.lang.Object has atoString() instance method This produces &tring
consisting of (a representation of) ttype of theobject followed by a@’ and ahexadecimal
(i.e. base 16) number which is (by default) unique to thedbj€lasses which do not provide
their own versionnherit this default one.

9 Statement

9.1 Statement (page 18)

A command in a programming language, such as Java, whichgriakecomputer perform
a task is known as atatement System.out.printin("l will output whatever | am
told to") is an example of a statement.

9.2 Statement: simple statements are ended with a semi-cal¢page 18)

All simple statemens in Java must be ended by a semi-colph (This is a rule of the Java
languagesyntax.

9.3 Statement: assignment statement (page 37)

An assignment statements a Javastatementwhich is used to give a value tovariable, or
change its existing value. This is only allowed if the value ave assigning hastgpe which
matches the type of the variable.

9.4 Statement: assignment statement: assigning a literablue (page 37)

We can assign kteral value, that is a constant, to\ariable using anassignment statement
such as the following.

noOfPeopleLivinginMyStreet = 47;

We use a singlequal sign(=), with the name of the variable to the left of it, and the valee
wish it to be given on the right. In the above example,ittteger literal 47 will be placed into
the variablenoOfPeopleLivinginMyStreet . Assuming the variable was declared asiran
variable then this assignment would be allowed because 47 isian

19066

9.5 Statement: assignment statement: assigning an expressue (page 38)

9.5 Statement: assignment statement: assigning an expressvalue (page
38)

More generally than just assigningliteral value, we can use aassignment statemento
assign the value of aexpressionto avariable. For example, assuming we have the variable

i nt noOfPeopleTolnviteToTheStreetParty;
then the code
noOfPeopleTolnviteToTheStreetParty = noOfPeopleLiving InMyStreet + 4;

whenexecutel, wouldevaluatethe expression on the right of tequal sign(=) and then place
the resulting value in the variabh®OfPeopleTolnviteToTheStreetParty

9.6 Statement: assignment statement: updating a variablepage 70)

Javavariables have a name and a value, and this value can change. For exanegdiollowing
code is one way of working out the maximum of two numbers.

int X
int vy,
int z
... Code here that gives values to x, y and z.

i nt maximumOfXYandZ = x;
i f (maximumOfXYandZ < vy)
maximumOfXYandZ = vy;

i f (maximumOfXYandZ < z)
maximumOfXYandzZ = z;

See that the variableaximumOfXYandZ is given a value which then might get changed, so that
after the end of the secoridstatementit holds the correct value.

A very common thing we want the computer to do, typically desaloop, is to perform a

variable update. This is when a variable has its value changed to a new valughvidfhbased
on its current one. For example, the code

count = count + 1,

will add one to the value of the variabteunt . Such examples remind us thatassignment
statementis not a definition ofequality, despite Java’s use of the singlgual sign

19067

9.7 Statement: assignment statement: updating a varstiethand operators (page 87)

9.7 Statement: assignment statement: updating a variableshorthand
operators (page 87)

The need to undertakevariable update is so common, that Java provides varishgrthand
operators for certain types of update.

Here are some of the most commonly used ones.

Operator | Name Example | Longhand meaning
++ postfix increment X++ X =x+1
postfix decrement X-- X=x-1
+= compound assignment: add to X +=y X =X+y
-= compound assignment: subtract fram -= y X =X-Y
*= compound assignment: multiply by| x *= y X=X*y
I= compound assignment: divideby | x /=y X=x1ly

The point of thesgostfix increment, postfix decrementandcompound assignmenbpera-
tors is not so much to save typing when a program is beingemritbut to make the program
easier to read. Once you are familiar with them, you will Bggrfeom the shorter and more
obvious code.

There is also a historical motivation. In the early days @&f pnhogramming language C, from
which Java inherits much of itsyntax, these shorthandperators caused theompiler to

produce more efficient code than their longhand countesp@iite modern Java compiler with
the latest optimization technology should remove this eomc

9.8 Statement: assignment statement: is an expression (pag50)

In Java, theassignment statements actually anexpression The= symbol is anoperator,
which takes aariable as its leftoperand, and an expression as its right operand. It evaluates
the expression, assigns it to the varialled theryields the value of the expression as its result.

This allows us to writéhorrible code, such as the following.

int x =10,y = 20, z;

int result = (z=x*y)+(y=2z%*2)
This is an example of the more general ideasife effect expressios — expressions that
change the value of some variables while they are bevwaduated. Generally speaking, side

effect expressions are bad idea, as their use leads to catlés ttifficult to understand and
hence maintain — as the above example illustrates!

19068

9.9 Statement: if else statement (page 60)

However, there are a few appropriate uses of treating asgighstatements as expressions.
One is when we wish to assign the same value to a number oblesian one go.

as

and so makes sense. However, situations where we wish tosgueral variables the same
value at once are not actually very common.

9.9 Statement: if else statement (page 60)

Theif else statementis one way in Java of havingpnditional execution It essentially con-
sists of three parts: eondition or boolean expressiona statementwhich will be executel
when the condition isr ue (thetrue part), and another statement which will be executed when
the condition i al se (thefalse part). The whole statement starts with tfeserved wordi f .
This is followed by the condition, written in brackets. Nexmes the statement for the true
part, then the reserved woetlse and finally the statement for the false part.

For example, assuming we have tregiable noOfPeopleTolnviteToTheStreetParty con-
taining the number suggested by its name, then the code

i f (noOfPeopleTolnviteToTheStreetParty > 100)
System.out.printin("We will need a big sound system!");
el se
System.out.printin("We should be okay with a normal HiFi.");

will cause the computer to compare the current valu®06fPeopleTolnviteToTheStreetParty

with the numberl00, and if it is greater then print out the messatje will need a big

sound system! or otherwise print out the messa@é should be okay with a normal

HiFi. — it will never print out both messages. Notice the bracketsiiad the condition and
the semi-colons at the end of the two statements inside thlgef statement. Notice also the
way we lay out the code to make it easy to read, splitting tinesliat sensible places and adding
moreindentation at the start of the two inner statements.

19069

9.10 Statement: if else statement: nested (page 62)

9.10 Statement: if else statement: nested (page 62)

Thetrue part or false part statements inside ahelse statementmay be any valid Javstate-
ment, including other if else statements. When we place an ifgsement inside another, we
say they aremested

For example, study the following code.

i f (noOfPeopleTolnviteToTheStreetParty > 300)

System.out.printin("We will need a Mega master 500 Watt amp lifier!™);
el se
i f (noOfPeopleTolnviteToTheStreetParty > 100)
System.out.printin(*"We will need a Maxi Master 150 Watt amp lifier!™);
el se
System.out.printin("We should be okay with a normal HiFi.");
Depending on the value obOfPeopleTolnviteToTheStreetParty , this will report one of

threemessages. Notice the way we have laid out the code above is fhifowing the usual
rules that inner statements have mardentation than those they are contained in, so the
second if else statement has more spaces because it liigstims first one. However, typically
we make an exception to this rule for if else statements destthe false part of another, and
we would actually lay out the code as follows.

i f (noOfPeopleTolnviteToTheStreetParty > 300)

System.out.printin("We will need a Mega master 500 Watt amp lifier!™);
el se if (noOfPeopleTolnviteToTheStreetParty > 100)

System.out.printin("We will need a Maxi Master 150 Watt amp lifier!™);
el se

System.out.printin("We should be okay with a normal HiFi.");

This layout reflects ouabstractthinking that the collection of statementsase construct
offering three choices, even though it is implemented usivmif else statements. This idea
extends to cases where we want many choices, using manylnestee statements, without
the indentation having to increase for each choice.

9.11 Statement: if statement (page 64)

Sometimes we want the computerdgecutesome code depending oncandition, but do
nothing if the condition is al se. We could implement this using ainelse statementwith an
emptyfalse part. For example, consider the following code.

19070

9.12 Statement: compound statement (page 66)

i f (noOfPeopleTolnviteToTheStreetParty > 500)
System.out.printin("You may need an entertainment licens el");
el se ;

This will print the message if theariable has a valugreater than 500, or otherwise exe-
cute theempty statementbetween theeserved wordel se and the semi-colon. Such empty
statements do nothing, as you would probably expect!

It is quite common to wish nothing to be done when the condliss al se, and so Java offers
us theif statement This is similar to the if else statement, except it simplgsloot have the
wordel se, nor a false part.

i f (noOfPeopleTolnviteToTheStreetParty > 500)
System.out.printin("You may need an entertainment licens el");

9.12 Statement: compound statement (page 66)

The Javaompound statements simply a list of any number aftatemens between an open-
ing left brace {) and a closing right brace). You could think of the body of anethod, e.g.
main() , as being a compound statement if that is helpful. The meaisirstraightforward:
when the computegxecutes a compound statement, it merely executes each statensetd in
it, in turn. More precisely of course, the Jasampiler turns thesource codento byte code
that has this effect when thertual machine executes theompiled program.

We can have a compound statement wherever we can have anyflgtadement, but it is most
useful when combined with statements which have anothtmsent within them, such ak
else statemerd andif statements.

For example, the following code reports three messages thesariable has a valugreater
than 500.

i f (noOfPeopleTolnviteToTheStreetParty > 500)

{
System.out.printin("You may need an entertainment licens el");
System.out.printin("Also hire some street cleaners for th e next day?");
System.out.printin("You should consider a bulk discount o n lemonade!");
}

When thecondition of the if statement isr ue, the body of the if statement is executed. This
single statement is itself a compound statement, and sdtee statements within it are exe-
cuted. Itis for this sort of purpose that the compound stateraxists.

19071

9.13 Statement: while loop (page 71)

Note how we lay out the compound statement, with the openiaggoat the samiedentation
as the if statement, the statements within it having extdemtation, and the closing brace
lining up with the opening one.

Less usefully, a compound statement can be empty, as in ltbeiiog example.

i f (noOfPeopleTolnviteToTheStreetParty > 500)

{
System.out.printin("You may need an entertainment licens el");
System.out.printin("Also hire some street cleaners for th e next day?");
System.out.printin("You should consider a bulk discount o n lemonade!");

}

el se {}

As you might expect, the meaning of an empty compound stateisithe same as the meaning
of anempty statement

9.13 Statement: while loop (page 71)

The while loop is one way in Java of havingepeated execution It essentially consists of
two parts: acondition, and astatementwhich will be executeal repeatedly while the condition
istrue. The whole statement starts with theserved wordwhi | e. This is followed by the
condition, written in brackets. Next comes the statemertetgepeated, known as tlhemop
body.

For example, the following code is a long winded and ineffitigay of giving thevariable x
the value2l.

int X =1;
while (X < 20)
X=X+ 2

The variable starts off with the value and then repeatedly h&sadded to it, until it is no
longerless than20. This is when théoop ends, and will have the valuel.

Notice the brackets around the condition and the semi-catidine end of the statement inside
the loop. Notice also the way we lay out the code to make it &asgad, splitting the lines at
sensible places and adding mandentation at the start of the inner statement.

Observe the similarity between the while loop and ifthgtatement — the only difference in
syntaxis the first word. There is a similarity in meaning too: the Mhoop executes its body
zero ormoretimes, whereas the if statement executes its body zemmetime. However,
if statements arenotloops and you should avoid the common novice phrase “if logp&n
referring to them!

19072

9.14 Statement: for loop (page 77)

9.14 Statement: for loop (page 77)

Another kind ofloopin Java is thdor loop, which is best suited for situations when the number
of iterations of theloop body is known before the loop starts. We shall describe it usieg th
following simple example.

for (int count = 1; count <= 10; count = count + 1)
System.out.printin("Counting " + count);

Thestatementstarts with theeserved wordf or , which is followed by three items in brackets,
separated by semi-colons. Then comes the loop body, whiahsiagle statement (often a
compound statementof course). The first of the three items in bracketsfigranitialization ,
which is performed once just before the loop starts. Typithls involves declaring sariable
and giving an initial value to it, as in the above examplecount = 1 . The second item is
thecondition for continuing the loop — the loop will onlgxecuteand will continue to execute
while that condition is r ue. In the example above the conditiorcmint <= 10 . Finally, the
third item, afor update, is a statement which is executed at #red of each iteration of the
loop, that isafter the loop body has been executed. This is typically used toginéhe value
of the variable declared in the first item, as in our exanspimt = count + 1

So the overall effect of our simple example is: dectamant and set its value tb, check that it
is less than10, print outCounting 1 , add one t@ount , check again, print ouounting 2
add one taount , check again, and so on until the conditiof i$ se when the value ofount
has reachedl.

We do not really need the for loop, as thile loop is sufficient. For example, the code above
could have been written as follows.

int count = 1,

whi | e (count <= 10)

{
System.out.printin("Counting " + count);
count = count + 1;

}

However you will see that the for loop version has placedttogreall the code associated with
the control of the loop, making it easier to read, as well agla shorter.

There is one very subtle difference between the for loop dmtbwoop versions of the example
above, concerning trecopeof the variablecount |, that is the area of code in which the variable
can be used. Variables declared in the initialization piatfor loop can only be used in the for
loop —they do not exist elsewhere. This is an added benefd#ingdor loops when appropriate:
the variable, which is used solely to control the loop, cam@oaccidentally used in the rest of
the code.

19073

9.15 Statement: for loop: multiple statements in for upgpsge 136)

9.15 Statement: for loop: multiple statements in for update(page 136)

Javafor loops are permitted to have more than @tatementin their for update, that is, the
part which isexecutel after theloop body. Rather than always being one statement, this part
may be a list of statements with commas lpetween them.

One appropriate use for this feature is to have a for loopekatutes twice, once each for the
two possible values of aoolean variable

For example, the following code prints out scenarios to &, people to live in the city of
Manchester!

bool ean isRaining = true;
bool ean haveUmbrella = true;
for (int countU = 1; countU <= 2; countU++, haveUmbrella = !haveUmbre lla)
for (int countR = 1; countR <= 2; countR++, isRaining = lisRaining)
{
System.out.printin("lt is" + (isRaining ? ™ : " not") + " rai ning.");

System.out.printin
("You have " + (haveUmbrella ? "an" : "no") + " umbrella."”);
i f (isRaining && 'haveUmbrella)
System.out.printin("You get wet!");
el se
System.out.printin("You stay dry.");
System.out.printin();
+ I for

9.16 Statement: statements can be nested within each othgrage 92)

Statements that control execution flow, suchcamgps andif else statemens have othestate-
ments inside them. These inner statements can be any kind ofrstateincluding those that
control the flow of execution. This allows quite complagorithms to be constructed with
unlimited nesting of different and same kinds of controtestaents.

For example, one simple (but inefficient) way to print outtio@-negative multiples ofwhich
lie betweery (> 0) andzinclusive, is as follows.

for (int number = 0; number <= z; number += x)
i f (number >=y)
System.out.printin(*A multiple of " + x + " between " + vy
+"and "+ z + " is " + number);

19074

9.17 Statement: switch statement with breaks (page 107)

9.17 Statement: switch statement with breaks (page 107)

Java provides aonditional execution statementwhich is ideal for situations where there are
many choices based on some value, such as a number,dmpiagto specific fixed values for
each choice. lItis called trewitch statement The following example code will applaud the
user when they have correctly guessed the winning numk0gfencourage them when they
are one out, or insult them otherwise.

i nt userGuess = Integer.parselnt(args[0]);

swi tch (userGuess)

{

case 99. case 101
System.out.printin("You are close!");
br eak;

case 100:
System.out.printin("Bingo! You win!");
System.out.printin("You have guessed correctly.");
br eak;

defaul t:
System.out.printin("You are pathetic!");
System.out.printin("Have another guess.");
br eak;

+ Il switch

The switch statement starts with theserved wordswi t ch followed by a bracketeéxpres-
sion of a type that has discrete values, suchias (notably notdoubl e). The body of the
statement is enclosed in braceSaqd}), and consists of a list of entries. Each of these starts
with a list of labels, comprising the reserved wattse followed by a value and then a colon
(). After the labels we have one or more statements, typiealtiing with abreak statement

One (at most) label is allowed to be the reserved waeifchul t followed by a colon — usually
written at the end of the list.

When a switch statement executel, the expression isvaluated and then each label in the
body is examined in turn to find one whose value is equal todh#te expression. If such
a match is found, the statements associated with that labedha@cuted, down to the special
break statementwhich causes the execution of the switch statement to eradmiétch is not
found, then instead the statements associated witheth&ul t label are executed, or if there
is nodef aul t then nothing is done.

9.18 Statement: switch statement without breaks (page 110)

A less common form of thewitch statementis when we omit thdreak statemens at the end
of the list of statements associated with each setafse labels. This, perhaps surprisingly,

19075

9.18 Statement: switch statement without breaks (page 110)

causes execution to “fall through” to the statements aasetiwith the next set afase labels.
Most of the time we daot want this to happen — so we have to be careful to remember the
break statements.

We can also mix the styles — having break statements for satrieg and not for some others.
The following code is a bizarre, but interesting way of dogsagnething reasonably simple. It
serves as an illustration of the switch statement, and ag#efor you. It takes twintegers,
the second of which is meant to be in the range one to ten, apaitsua result which is some
function of the two numbers. What is that result?

i nt value = Integer.parselnt(args[0]);
i nt power = Integer.parselnt(args[1]);

i nt valueToThePowerl
i nt valueToThePower2
i nt valueToThePower4
i nt valueToThePower8

int result = 1;
swi tch (power)
{
case 10: result *=
case 9. result *=
case 8. result *=
br eak;
case 7. result *=
case 6. result *=
case 5. result *=
case 4. result *=
br eak;
case 3. result *=
case 2. result *=
br eak;
case 1. result *=
br eak;
+ Il switch

value;

valueToThePowerl * valueToThePowerl;
valueToThePower2 * valueToThePower?2;
valueToThePower4 * valueToThePower4;

valueToThePowerl;
valueToThePowerl;
valueToThePowers8;

valueToThePowerl;
valueToThePowerl;
valueToThePowerl;
valueToThePower4;

valueToThePowerl;
valueToThePower2;

valueToThePowerl;

System.out.printin(result);

If you find the semantics of the switch statement somewhé&tgaat, then do not worry — you

are not alone! Java inherited it from C, where it was designede to ease the work of the
compiler than to be a good construct for the programmer. You will firgldtvitch statement is

less commonly used than tiifeelse statement and the majority of times you use it, you will

want to have break statements on every setagk labels. Unfortunately, due to them being
optional, accidentally missing them off does not causerapile time error.

19076

9.19 Statement: do while loop (page 112)

9.19 Statement: do while loop (page 112)

Thedo while loopis the third way in Java of havingpeated execution It is similar to the
while loop but instead of having theondition at the start of théoop, it appears at the end.
This means the condition evaluated after theloop body is executel rather than before. The
whole statement starts with thereserved worddo. This is followed by the statement to be
repeated, then the reserved ward | e and finally the condition, written in brackets.

For example, the following code is a long winded and ineffitigay of giving thevariable x
the value?l.

int x =1;
do

X += 2:
while (x < 20);

Observe the semi-colon that is needed after the condition.

Of course, the body of the do while loop might be@mpound statementin which case we
might lay out the code as follows.

int X =0
int y = 100;
do
{
X++;
Y-
} while (x =)

The above is a long winded and inefficient way of giving both ¥ariablesx andy the value
50.

Note that, because the condition is evaluattdr the body is executed, the body is executed at
least once. This is in contrast to the while loop, which migde have its body executed zero
times.

9.20 Statement: for-each loop: on arrays (page 293)

Java 5.0 introduced a nestatement called theenhanced for statement more commonly
known as thdor-each Ioo;ﬂ

4The popular name for this loop may seem odd, because theeaolndis not used in it, but the meaning of
the statement is similar to a concept in languages such §¢ Bewhich does use the phrafke each . And we
actually say ‘for each’ when we read out the Java statement.

19077

9.20 Statement: for-each loop: on arrays (page 293)

It is best explained by example. Suppose we have the follpwin

doubl e[] myFingerLengths = new doubl e[10];

... Code here to assign values to the array elements.

Then we can find the sum of tlagray elements with the following for-each loop.

doubl e myTotalFingerLength = 0;
for (doubl e fingerLength : myFingerLengths)
myTotalFingerLength += fingerLength;

This is saying that we want toop over all the elements in therray which isreferenced by
myFingerLengths , storing each elementin turn in the variafibgerLength , and addingitto
the value ofmyTotalFingerLength . In other words ‘for eacfingerLength in myFingerLengths
addfingerLength ~ to myTotalFingerLength ’

The above for-each loop is actually a shorthand for the ¥atg for loop.

doubl e myTotalFingerLength = 0;
for (int index = 0; index < myFingerLengths.length; index++)

{

doubl e fingerLength = myFingerLengths[index];
myTotalFingerLength += fingerLength;
+ Il for

Here is the general case of the for-each loop when used wifigawheranArray is a variable
referring to some array witlarray base type SomeType and elementName is any suitable
variable name.

for (SomeType elementName : anArray)
... Statement using elementName.

This general case is simply a shorthand for the following.

for (int index = 0; index < anArray.length; index++)
{

SomeType elementName = anArray[index];

... Statement using elementName.
+ Il for

19078

9.21 Statement: try statement (page 344)

A for-each loop can and should be used instead of a for loopeiceg where we wish to loop
over all the elements of a single array, anddney index is only used to access (not change)
the elements of that array. In other words, for processingre/the element values matter, but
their position in the array is not directly used, and therenly one array. So, for example, the
following code cannot be replaced with a for-each loop.

i nt weightedSum = 0;
for (int index = 0; index < numbers.length; index++)
weightedSum += numbers[index] * index;

Neither can this.

for (int index = 0; index < numbers.length; index++)
otherNumbers[index] = numbers[index];

Finally, a common error (even in some Java text books!) ikittktthat a for-each loop can be
used tochangethe array elements. For example, the following codmpiles without errors,
but it does not do what you might expect!

i nt[] numbers = new i nt [100];
for (int number : numbers)
number = 10;

The for-each loop above is a shorthand for the following,clihyiou can see achieves nothing.

for (int index = 0; index < numbers.length; index++)

{

i nt number = numbers[index];
number = 10;
} Il for

9.21 Statement: try statement (page 344)

The try statement is used to implemengxception catchingin Java. It uses theeserved
wordst ry andcat ch, as follows.

try

{

... Code here that might cause an exception to happen.

19079

9.22 Statement: try statement: with multiple catch claypage 347)

I try
cat ch (Exception exception)

{

... Code here to deal with the exception.
} Il catch

The statementconsists of two parts, thigy block and thecatch clause When the try state-
ment isexecutal, the code inside the try block is obeyed as usual. Howevat,some point
during this execution aaxceptionoccurs, arinstanceof java.lang.Exception is created,
and then control immediately transfers to the catch clalibe.newly create@xception ob-
ject is available to the code in the catch clause, asxaeption parameter which is a bit like
amethod parameter. For this reason, we must declare a name (gpd) for the exception in
the round brackets following the reserved woed ch.

For example, the followingnethod computes the mean average ofamay of i nt values,
dealing with the possibility of theeference being thenull reference or the array being an
empty array, by catching the exception anceturning zero instead.

private doubl e average(int[] anArray)

{
try

{

i nt total = anArray[0];

for (int i = 1; 1 < anArray.length; i++)
total += anArray[il;

return total / (doubl e) anArray.length;

o try
cat ch (Exception exception)

{
Il Report the exception and carry on.
System.err.printin(exception);
return O;
} Il catch
} Il average

Note: unlike most Javatatemens that may contain other statements, the two parts of the try

statement must both lm®mpound statemens, even if they only contain one statement!

9.22 Statement: try statement: with multiple catch clausegpage 347)

Thetry statement may have more than ommatch clause each of which is designed tatcha

different kind ofexception When an exception occurs in thg block, the execution control
transfers to the first matching catch clause, if there is onepntinues to propagate out of the
try statement if there is not.

19080

9.22 Statement: try statement: with multiple catch claypage 347)

For example, consider the followingethod which finds the largest of some numbers stored
in anarray of String objects.

private int maximum(String[] anArray)
{
try

{

i nt maximumSoFar = Integer.parselnt(anArray[0]);
for (int i =1, i < anArray.length; i++)
{
i nt thisNumber = Integer.parselnt(anArrayfi]);
i f (thisNumber > maximumSoFar)
maximumSoFar = thisNumber;
+ 1l for
return maximumSoFar;

A try
cat ch(NumberFormatException exception)

{

System.err.printin("Cannot parse item as an int: "
+ exception.getMessage());

return O;

} Il catch
cat ch(ArraylndexOutOfBoundsException exception)

{

System.err.printin("There is no maximum, as there are no nu mbers!");

return O;
} Il catch
} Il maximum

If the arrayreferenced by themethod parameteris anempty array, that is, it has no elements,
then anArrayindexOutOfBoundsException object will be created when the code tries to
access the firsirray element This will be caught by the second catch clause. If, on theroth
hand, one of the strings in the array does not represeanitatnen aNumberFormatException
object will be created inside tiparseint) method, and this will be caught by the first catch
clause.

However, if the givermethod argumentwas actually theaull reference, that is, there is no

array at all — not even an empty one, theNwiPointerException object is created when
the code tries to follow the array reference to access elereea of it.

i nt maximumSoFar = Integer.parselnt(anArray[0]);

The codanArray[0] means “follow the reference in thvariable anArray to the array refer-
enced by it, and then get the value storedrady index 0 in that array.” In this example there
is no catch clause matching\allPointerException , SO the execution control transfers out

19081

9.23 Statement: try statement: with finally (page 451)

of the try statement altogether, and out of the method. Ihtle¢hod call was itself inside the
following try statement, then thiéullPointerException would get caught there.

try

{

int max = maximum(nul I);

I try
cat ch (NullPointerException exception)
{
System.err.printin("Silly me!");
} Il catch

9.23 Statement: try statement: with finally (page 451)

The try statement may optionally be given &inally block, which is a piece of code that
will be executa at the end of the whole try statement, regardless of whekiedry block
successfully completes, or if@tch clauseis executed, or if control is beinprown out of
the try statement.

The general form of &y finally statement is as follows.

try
{

... Code here that might cause an exception to happen.

I try
cat ch (SomeException exception)

{
... Code here to deal with SomeException types of exception.
} Il catch
cat ch (AnotherException exception)
{
... Code here to deal with AnotherException types of excepti on.
} Il catch
.. more catch clauses as required.
finally
{
... Code here that will be run, no matter what,
... as the last thing the statement does.
+ 1l finally

19082

9.24 Statement: throw statement (page 350)

9.24 Statement: throw statement (page 350)

Thethrow statementis used when we wish our code to trigger #eeptionmechanism of
Java. It consists of theserved wordt hr ow, followed by areferenceto anException object.
When thestatementis executal, the Javairtual machine finds the closedty statement that

is currently being executed, which hasatch clausethat matches the kind of exception being
thrown, and transfers execution control to that catch @alishere is no matching catch clause
to be found, then the exception is reported andtitinead is terminated.

For example, here wiarow aninstanceof the generajava.lang.Exception classwithout
a specific message.

t hrow new Exception();
This next one has a message.
t hrow new Exception("This is the message associated with the excepti on");

And finally, this example is throwing an instance jafa.lang.NumberFormatException
with a message.

NumberFormatException exception
= new NumberFormatException("Only digits please");
t hr ow exception;

10 Error

10.1 Error (pagel 20)

When we write thesource codefor a Java program, it is very easy for us to get something
wrong. In particular, there are lots of rules of the languidgé our program must obey in order
for it to be a valid program.

10.2 Error: syntactic error (page 20)

One kind of error we might make in our programsystactic errors. This is when we break
thesyntaxrules of the language. For example, we might miss out a ajdsiacket, or insert an

19083

10.3 Error: semantic error (page 22)

extra one, etc.. This is rather like missing out a word in desase of natural language, making
it grammatically incorrect. The sign below, seen strappeti¢ back of a poodle, contains bad
grammar — it has ais missing.

My other dog an AIsatia:I

Syntactic errors in Java result in tbempiler giving us an error message. They can possibly
confuse the compiler, resulting in it thinking many morentig are wrong too!

10.3 Error: semantic error (page/22)

Another kind of error we might make is semantic error, when we obey the rules of the
syntax but what we have written does not make any sense — it has nangemémeaning).
Another sign on a different poodle might say

My other dog is a Porsch'.

which is senseless because a Porsche is a kind of car, not a dog

10.4 Error: compile time error (pagel22)

Javasyntactic errors and mangemantic errors can be detected for us by tbempiler when
it processes our program. Errors that the compiler can tatecalledcompile time errors.

10.5 Error: run time error (page 24)

Another kind of error we can get with programsris) time error s. These are errors which
are detected when the prograntus rather than when it isompiled. In Java this means the
errors are detected and reported bywihtual machine, java .

Java calls run time erroexceptiors. Unfortunately, the error messages producegd\ay can
look very cryptic to novice programmers. A typical one migbtas follows.

Exception in thread "main” java.lang.NoSuchMethodError: main

You can get the best clue to what has caused the error by pldghlp at the words either side
of the colon (). In the above example, the message is sayingdtet cannot find thenethod
calledmain .

19084

10.6 Error: logical error (page 29)

10.6 Error: logical error (page 29)

The most tricky kind of error we can make in our programs iegical error. For these
mistakes we do not get an error message fromctimapiler, nor do we get one atun time
from thevirtual machine. These are the kind of errors for which the Java program we hav
written is meaningful as far as Java is concerned, it is just our program does the wrong
thing compared with what we wanted. There is no way the canpit virtual machine can
help us with these kinds of error: they are far, far too stapidnderstand theroblemwe were
trying to solve with our program.

For this reason, many logical errors, especially very suintles, manage to slip through unde-
tected by human program testing, and end upwass in the final product — we have all heard
stories of computer generated demands for unpaid bills négativeamounts, etc..

11 Execution

11.1 Execution: sequential execution (page 23)

Programs generally consist of more than stegement in a list. We usually place these on
separate lines to enhance human readability, althouglddegnot care about that. Statements
in such a list arexecuta sequentially, one after the other. More correctly, theadampiler
turns each one into correspondibgte codes, and thevirtual machine executes each collec-
tion of byte codes in turn. This is known asquential execution

11.2 Execution: conditional execution (page 60)

Having a computer always obey a list of instructions in aaierorder is not sufficient to solve
many problems. We often need the computer to do some thinlgsuoder certain circum-
stances, rather than every time the programurs. This is known agonditional execution
because we get the computeeteecutecertain instructionsonditionally, based on the values
of thevariables in the program.

11.3 Execution: repeated execution (page 70)

Having a computer always obey instructions just once withmrun of a program is not
sufficient to solve many problems. We often need the compatdo some things more than
once. In general, we might want some instructions t@xecutal, zero, one or many times.
This is known agepeated executioniteration, or looping. The number of times a loop of
instructions is executed will depend on soceadition involving thevariables in the program.

19085

11.4 Execution: parallel execution — threads (page 253)

11.4 Execution: parallel execution — threads (page 253)

Computers appear to be able to perform more than one task aathe time. For example, we
can run several programs at once and they run in parallehédgerating systemlevel, each
program runs in a separgbeocess and the computer shares dsntral processing unittime
fairly between the current processes.

The Javavirtual machine has a built-in notion of processes, callbdeads, which allows for

a single program to be doing more than one thing at a time. Véh#&awva program is started,
the virtual machine creates one thread, calledrian thread, which is set off torun the
body of themain method. This executes thestatemens in the main method, including the
statements of anyethod calls it finds. Upon reaching the end of the main method, this threa
terminates, which causes the virtual machine to exit if as the only thread existing at the
time. If, however there are any other threads which have abterminated, then the virtual
machine continues to run them. It exits the program only wdiktine threads have ended.

11.5 Execution: parallel execution —threads: the GUI eventhread (page
254)

When we have a program that placegraphical user interface (GUI) window on the screen,
the Javavirtual machine creates anothdéhread, which we shall call th&sUI event thread.
This is created when the first window of the program is showsaAesult of this, the program
doesnot end when themain thread reaches the end of thmain method — this is of course
what we want for a program with a GUI.

(In reality, the virtual machine creates several GUI evergads, but it suffices to think of there
being just the one.)

The GUI event thread spends most of its life asleep — quiilyginothing. When the end user
of the program does something that might be of interest tptbgram, theoperating system
informs the virtual machine, which in turn wakes up the GU¢mivthread. Such interesting
things include moving the mouse into, out of, or within a womdbelonging to the program,
pressing a mouse key while the mouse is over such a windomgypkeyboard key while
a window of the program has keyboard focus, etc.. These shang collectively known as
evens.

When it is woken up, the GUI event thread looks to see what tiighe changed as a result of
the end user’s action. For example, he or she may have prassed button belonging to the
program. For each event which is definitely interesting,@# event threaskxecutes some
code which is designed to process that event. Then it godstbateep again.

19086

11.6 Execution: event driven programming (page 254)

11.6 Execution: event driven programming (page 254)

A large part of writing programs witgraphical user interfaces (GUI s) is about constructing
the code which will process thesents associated with the end user’s actions. This is known as
event driven programming. Essentially, thenain method sets up the GUI of the program via
method calls, and then it ends. From then on, the code associated witkegsimg GUI events
does all the work — when the end user does things which cagbeesents to happen. That is,
the program becomes driven by the events.

12 Code clarity

12.1 Code clarity: layout (page 31)

Java does not care how we lay our code out, as long as we usevguteespaceto separate
adjacent symbols that would otherwise be treated as one dyifnthey were joined. For
examplepublic void with no space between the words would be treated as the siygileol
publicvoid and no doubt causea@mpile time error. So, if we were crazy, we could write
all our progransource codeon one line with the minimum amount of space between symbols!

public class HelloSolarSystem {public static void main(String[Jargs) {System.out.printin("Hello Mercury!");System.out.prin tin("Hellc

Oh dear — it ran off the side of the page (and that was with alenfaht too). Let us split it up
into separate lines so that it fits on the page.

public class HelloSolarSystem {public static void main(String[Jargs) {
System.out.printin("Hello Mercury!");System.out.prin tin(

"Hello Venus!");System.out.printin("Hello Earth!");Sy stem.out.printin
("Hello Mars!");System.out.printin("Hello Jupiter!"); System.out.
printin("Hello Saturn!");System.out.printin("Hello Ur anus!");System.
out.printin("Hello Neptune!");System.out.printin("Go odbye Pluto!); 1}

Believe it or not, this program would stidlompile andrun okay, but hopefully you will agree
that it is not very easy fousto read. Layout is very important to the human reader, and
programmers must take care and pride in laying out theirparog as they are written. So we
split our progransensibly rather than arbitrarily, into separate lines, andingentation (i.e.
spaces at the start of some lines), to maximize the reatyabilour code.

19087

12.2 Code clarity: layout: indentation (page 32)

12.2 Code clarity: layout: indentation (page 32)

A classcontains structurasestedwithin each other. The outer-most structure is the clas#ts
consisting of its heading and then containing it's body wittihe braces. The body contains
items such as thmain method. This in turn consists of a heading and a body contained withi
braces.

The idea ofindentation is that the more nested a part of the code is, the more spaas #th
the start of its lines. So the class itself has no spacesidbbdy, within the braces, has two
or three. Then the body of the main method has two or three .mvane should be consistent:
always use the same number of spaces per nesting level.l$bi@@ood idea to avoid using
tab characters as they can often look okay on your screen, but not line upgrhp when the
code is printed.

In addition, another rule of thumb is that opening brad@ssbould have the same amount of
indentation as the matching closing bragg (You will find that principle being used through-
out this book. However, some people prefer a style whereingdamaces are placed at the end
of lines, which this author believes is less clear.

public class HelloWorld {

public static void main(String[] args) {
System.out.printin("Hello world!");

}
}

12.3 Code clarity: layout: splitting long lines (page 43)

One of the features of good layout is to keep source coddines from getting too long. Very
long lines cause the reader to have to work harder in ho@tege movement to scan the code.
When code with long lines is viewed on the screen, the reatlegrenas to use a horizontal
scroll bar to see them, or make the window so wide that othed@ws cannot be placed next
to it. Worst of all, when code with long lines is printed on pagthere is a good chance that the
long lines will disappear off the edge of the page! At verystethey will be wrapped onto the
next line making the code messy and hard to read.

So a good rule of thumb is to keep your source code lines sttber 80characters long. You
can do this simply in mogext editors by never making the text window too wide and never
using the horizontal scroll bar while writing the code.

When we do have atatementthat is quite long, we simply split it into separate lines atec
fully chosen places. When we choose such places, we beamioh tiiat most human readers
scan down the left hand side of the code lines, rather thaheeary word. So, if a line is a
continuation of a previous line, it is important to make thiwious at the start of it. This means

19088

12.4 Code clarity: comments (page 82)

using an appropriate amountioentation, and choosing the split so that the first symbol on
the continued line is not one which could normally start &esteent.

A little thought at the writing stage quickly leads to a hatfityood practise which seriously
reduces the effort required to read programs once they ateemr Due tobug fixing and
general maintenance over the lifetime of a real prograngdlde is read many more times than
it is written!

12.4 Code clarity: comments (page 82)

In addition to having careful layout ariddentation in our programs, we can also enhance
human readability by usingommens. These are pieces of text which are ignored by the
compiler, but help describe to the human reader what the program caksaav it works.

For example, every program should have comments at thessidrtg what it does and briefly
how it is used. Alsoyariables can often benefit from a comment before their declaration
explaining what they are used for. As appropriate, therelshilse comments in the code too,
beforecertain parts of it, explaining what these netdtemens are going to do.

One form of comment in Java starts with the symbal The rest of that source line is then the
text of the comment. For example

/I This is a comment, ignored by the compiler.

12.5 Code clarity: comments: marking ends of code construst(page 83)

Another good use alomments is to mark every closing bracg)with a comment saying what
code construct it is ending. The following skeleton exangolée illustrates this.

public class SomeClass

{

public static void main(String[] args)

{

\./;A.1i le (..)

{

} // while
} // main

19089

12.6 Code clarity: comments: multi-line comments (page) 189

} Il class SomeClass

12.6 Code clarity: comments: multi-line comments (page 1§9

Another form ofcommentin Java allows us to have text which spans several lines.€eT$tast
with the symbol* and end with the symbdl , which typically will be several lines later in
the code. These symbols, and all text between them, is igriayréhecompiler.

Less usefully, we can have the start and end symbols on the k&aen with program code on
either side of the comment, if we wish.

13 Design

13.1 Design: hard coding (page 36)

Programs typically process inpdata, and produce output data. The input data might be
given ascommand line argumens, or it might be supplied by the user through somser
interface such as graphical user interfaceor GUI. It might be obtained fronfiles stored on
the computer.

Sometimes input data might be built into the program. Sudh tasaid to béhard coded
This can be quite common while we are developing a programnanidaven’t yet written the
code that obtains the data from the appropriate place. kraises it might be appropriate to
have it hard coded in the final version of the program, if suata@nly rarely changes.

13.2 Design: pseudo code (page 73)

As our programs get a little more complex, it becomes hardrite\them straight into theext
editor. Instead we need esignthembeforewe implement them.

We do not design programs by starting at the first word andngnati the last, like we do when
we implement them. Instead we can start wherever it suitstygieally at the trickiest bit.

Neither do we express our designs in Java — that would be ehbagltb do, as Java forces our
mind to be cluttered with trivia which, although essentethie final code, is distracting during
the design.

Instead, we express oatgorithm designs inpseudo codewhich is a kind of informal pro-
gramming language that has all unnecessary trivia ignd@edfor example, we do not bother

19090

13.3 Design: object oriented design (page 184)

writing the semi-colons at the end sfatemens, or the brackets rountbnditions etc.. We
might not bother writing thelassheading, nor thenethod heading, if it is obvious to us what
we are designing. And so on.

Also, during design in pseudo code, we can vary the levabstraction to suit us —we do not
have to be constrained to use only the features that areabiaih Java.

13.3 Design: object oriented design (page 184)

When we are developing programs in abject oriented programming language, such as
Java, we should use the principleatfject oriented design We start by identifying thelasses
we shall have in the program, by examining thquirements statementof the problem which
the program is to solve. This is recognizing the idea thablems inherently involve interac-
tions between ‘real world’ objects. These will be modelledour program, by it creating
objects which ardanstances of the classes we identify.

In this view then, an object is an entity which has some kinalgject state which might
change over time, and some kindaddject behaviour which might be based on its state.

From the requirements, we think carefully about the statetha behaviour of the objects in
the problem. Then we decide how to model their behaviourgisstance method, and their
state usingnstance variables. There may, in general, be a needdlass variables andclass
methods too.

13.4 Design: object oriented design: noun identification (pge 185)

One way to analyse threquirements statementin order to decide whatlasss to have in the
program, is to simply go through the requirements and lighal nouns and noun phrases we
can find. This is calledhoun identification and is useful because the objects inherent in the
solution to most problems actually appear as nouns in theripgéisn of the problem. Some of
the nouns will relate t@bjects that will exist atrun time, and some will relate to classes in
the program.

It is not the case that every noun found will be a class or arappf course, and sometimes
we need classes that do not appear as nouns in the requieentémiever, the technique is
usually a good way of starting the process.

13.5 Design: object oriented design: encapsulation (pag81)

An important principle irobject oriented designis the idea oencapsulation A well designed
classencapsulates the behaviour of tbiejects that can be created from it, in such a way

19091

13.6 Design: Sorting a list (page 295)

that in order to use the class, one only needs to know abopuiiic methods (including
constructor methods) and what they mean, rather than how they work and wistance
variables the class may have. To help achieve good encapsulatiorgllae the principle of
putting the logic where the data is— all the code pertaining to the behaviour of particular
objects are included in their class, rather than sprinktedrad the various different classes of
the program.

Encapsulation is an instanceatifstraction. Abstraction is the process of ignoring detail which
is not necessary for us to know (at the moment). We can usesa @lighout having to know
how it works, for example, if it is written by somebody elser, ®@e candesignthe details of
one class at a time for our programs, without at that momenghbmncerned with the details
of how the other classes work.

For an example which has little to do with Java, assume yoa hust bought a cheap DVD TV
recorder from your local supermarket. Do you need to know laworks in order to use it?
Do you need to remove the case lid in order to use it? No, you eéd to know about the
buttons on theutsideof the case. That is, until it breaks (after all it was a cheap)oOnly

at that point do you, or perhaps better still a TV gadget esmjimeed to remove the case and
poke around inside.

13.6 Design: Sorting a list (page 295)

A list of items, such as aarray, contains those items in some, perhaps arbitrary, ordeofwe
ten want to rearrange them intepecificorder, without losing or gaining any. This is known as
sorting. For example, a list of numbers may be sorted into asognli descending numerical
order, a list of names may be sorted alphabetically, etc..

There are many differergtlgorithms for sorting lists, includindpubble sort, insertion sort,
selection sort quick sort, merge sort tree sort

13.7 Design: Sorting a list: bubble sort (page 296)

Onealgorithm for sorting is known asubble sort. This works by passing through thist
looking at adjacent items, and swapping them over if theyiratbe wrong order. One pass
through is not enough to ensure the list gets completelyedpso more passes must be made
until it is. However, after the first pass, the ‘highest’ itetimat is, the one that should end up
being furthest from the start of the list, must actually béhatend of the list.

For example suppose we start with the following list and viskort it into ascending order.

145]78]12[79|60] 17|

19092

13.7 Design: Sorting a list: bubble sort (page 296)

On the first pass, we compare 45 with 78, which are in ordertlaenl 78 with 12 which need
swapping. Next we compare 78 with 79, and so on. Eventuallgneeup with 79 being at the
end of the list.

Start 45 78 12 79 60 17
45<=78 | okay | 45 <= 78 12 79 60 17
78> 12 swap| 45 12 <= 78 79 60 17
78<=179 | okay 45 12 718 <= 79 60 17
79>60 |swap| 45 12 78 60 <= 79 17
79>17 |swap| 45 12 78 60 |17<= |79

The highest number, 79, is in place, but the preceding itemaat yet sorted.

After the second pass, the second highest item must be a¢thdtinate place in the list, and
so on. It follows that, if there ard items in the list, theN — 1 passes are enough to guarantee
the whole list is sorted. Furthermore, the first pass neettsotoatN — 1 adjacent pairs, but
the next pass can look at one less, because we know the higgmess in the right place at the
end. The very last pass only needs to look at one pair, aseadittier items must be in place by
then.

Going back to our example, here are the results at the enc ofetkt passes.

Pass
2 121 45|60 | 17| 78| 79
12145 1760| 78| 79
12| 17,45|60| 78| 79
1211714560 | 78| 79

gl w

Notice that pass 5 was actually unnecessary aarttay became sorted after pass 4.

Here is somgseudo coddor sortinganArray using bubble sort.

for passCount = 1 to anArray length - 1
for pairLeftindex = 0 to anArray length - 1 - passCount
if items in anArray at pairLeftindex and pairLeftindex + 1
are out of order
swap them over

This can be improved by observing that the list may get sdsfdre the maximum number
of passes needed to guarantee it. For example it could bedstrtstart with! Here is an
alternativedesign

19093

13.8 Design: Searching a list: linear search (page 323)

int unsortedLength = anArray length
boolean changedOnThisPass
do
changedOnThisPass = false
for pairLeftindex = 0 to unsortedLength - 2
if items in anArray at pairLeftindex and pairLeftindex + 1
are out of order
swap them over
changedOnThisPass = true
end-if
end-for
unsortedLength--
while changedOnThisPass

13.8 Design: Searching a list: linear search (page 323)

The simplest way to find an item inlest of items, such as aarray, is to perform dinear

search— starting at the front and looking at each item in turn. Faaregle, the following
array search methodfinds the position of a givennt in a givenarray, orreturns-1 if the

number is not found.

private int posOfint(int[] anArray, i nt toFind)
{
i nt searchPos = 0;
whi | e (searchPos < anArray.length && anArray[searchPos] != toFi nd)
searchPos++;
i f (searchPos == anArray.length) return -1;
el se return searchPos;

} I posOfint

If the value oftoFind is not in the array, then eventually the valueseérchPos will reach

anArray.length . At that point the firstonjunct of thewhile loop condition, searchPos <
anArray.length ~ becomes al se and hence so does thenjunction itself, without it evaluat-
ing the second conjunanpArray[searchPos] != toFind . If on the other hand we swapped

over the two conjuncts, whesearchPos reaches that same value the (now) first conjunct
would cause aArrayindexOutOfBoundsException

/I Definitely silly code.
whi | e (anArray[searchPos] = toFind && searchPos < anArray.leng th)
searchPos++;

19094

13.9 Design: UML (page 381)

13.9 Design: UML (page 381)

Many professional Java programmers express thesigrs using theJnified Modelling Lan-
guage(UML). This is a collection of diagram types which can be used twsbarious rela-
tionships between entities, suchagects andclasss.

13.10 Design: UML: class diagram (page 381)

A UML class diagram can be used to representiaheritance hierarchy. Eachclassappears
as a box with its name, its@ariables and itamethods. Items which argrivate are marked with
a- andpublic ones are marked with-a

14 Variable

14.1 Variable (page 36)

A variable in Java is an entity that can holddata item. It has a name and a value. It is rather
like the notion of a variable in algebra (although it is nottquhe same thing). The name of
a variable does not change — it is carefully chosen by therpromer to reflect the meaning
of the entity it represents in relation to the problem beiatyed by the program. However,
the valueof a variable can (in general) be changed — we can vary it. éléme name of the
concept: avariable is an entity that has a (possibly) varying value.

The Javacompiler implements variables by mapping their names aramputer memory
locations, in which the values associated with the vargild be stored atun time.

So one view of a variable is that it is a box, like a pigeon hisieyhich a value can be placed. If
we wish, we can get the program to place a different valueanhltbx, replacing the previous;
and we can do this as many times as we want to.

Variables only have values at run time, when the programnsing. Their names, created by
the programmer, are already fixed by the time the progracomspiled. Variables also have

one more attribute — thiype of the data they are allowed to contain. This too is choseinbéy t
programmer.

14.2 Variable: int variable (page 37)

In Javavariables must be declared invariable declaration before they can be used. This is
done by the programmer stating ttyge and then the name of the variable. For example the

19095

14.3 \Variable: a value can be assigned when a variable iam@et{page 42)

code
i nt noOfPeopleLivinginMyStreet;

declares amt variable, that is a variable the value of which will be ant , and which has the
namenoOfPeopleLivinginMyStreet . Observe the semi-colon X which, according to the
Javasyntaxrules, is needed to terminate the variable declaratiomuAtime, this variable is
allowed to hold annteger (whole number). Its value can change, but it will always bé @n
The name of a variable should reflect its intended meaninghigncase, it would seem from
its name that the programmer intends the variable to alweltgsthe number of people living
in his or her street. The programmer would write code to engat this meaning is always
reflected by its value at run time.

By convention, variable names start with a lower case |edtat consist of a number of words,
with the first letter of each subsequent word capitalized.

14.3 \Variable: a value can be assigned when a variable is dacéd (page
42)

Java permits us to assign a value i@maable at the same time as declaring it. You could regard
this as a kind oaissignment statemenin which the variable is also declared at the same time.
For example

i nt noOfHousesInMyStreet = 26;

14.4 Variable: double variable (page 54)

We can declarelouble variables in Java, that isariables which have théype doubl e. For
example the code

doubl e meanAgeOfPeopleLivinginMyHouse;

declares avariable of typedoubl e, with the namemeanAgeOfPeopleLivinginMyHouse . At

run time, this variable is allowed to holddoubl e data item, that is aeal (fractional decimal
number). The value of this variable can change, but it willagls be aoubl e, including of
course, approximations @fholenumbers such a&.0 .

19096

14.5 \Variable: can be defined within a compound statemege(p2)

14.5 Variable: can be defined within a compound statement (e 92)

We can declarewariable within the body of anethod, such asnain() , (practically) anywhere
where we can havestatement The variable can then be used from that point onwards within
the method body. The area of code in which a variable may beigsmlled itsscope

However, if we declare a variable within@mpound statement its scope is restricted to
the compound statement: it does not exist after the end ofahgound statement. This is
a good thing, as it allows us to localize our variables to tkecepoint of their use, and so
avoid cluttering up other parts of the code with variablesilable to be used but which have
no relevance.

Consider the following symbolic example.

public static void main(String[] args)

{

int X = ..
.. X is available here.
while (..
{
.. X is available here.
inty=..
.. X and y are available here.
} I while
.. X is available here, but not vy,
.. S0 we cannot accidentally refer to y instead of x.
} Il main

The variablex can be used from the point of its definition onwards up to theeadrthe method,
whereas the variablg can only be used from the point of its definition up to the endhef
compound statement which is the body of tbep.

14.6 Variable: local variables (page 124)

When we declargariables inside anethod, they are local to that method and only exist while
that method is running — they cannot be accessed by otheodgtiihey are known dscal
variables or method variables. Also, different methods can have variables with the same
name — they are different variables.

19097

14.7 Variable: class variables (page 124)

14.7 Variable: class variables (page 124)

We can declargariables directly inside alass outside of anynethods. Suclclass variables
exist from the moment the class is loaded intovinial machine until the end of the program,
and they can be accessed by any method in the class. For exahgplollowing are three class
variables which might be used to store the components of/todate.

private static int presentDay;
private static int presentMonth;
private static int presentYear;

Notice that we use theeserved wordst at i ¢ in their declaration. Also, class variables have a
visibility modifier — the above have all been declared as beninvate, which means they can
only be accessed by code inside the class which has dechened t

14.8 Variable: a group of variables can be declared togethepage 129)

Java permits us to declare a groupvafiables which have the santgpe in one declaration,
by writing the type followed by a comma-separated list ofthgable names. For example

int X,V

declares two variables, both of typet . We can even assign values to the variables, as in the
following.

i nt minimumVotingAge = 18, minimumArmyAge = 16;

This shorthand is not as useful as one might think, becaus®ewke, we typically have a
commentbefore each variable explaining what its meaning is. Howeave can sometimes
have one comment which describes a group of variables.

14.9 Variable: boolean variable (page 133)

Thebool ean type can be used in much the same way as anddoubl e, in the sense that we
can havéboolean variables andmethods can havéool ean as theirreturn type.

For example, consider the following code.

19098

14.9 \Variable: boolean variable (page 133)

if (agel < age2 || agel == age2 && heightl <= height2)
System.out.printin("You are in the correct order."”);

el se
System.out.printin("Please swap over.");

We could, if we wished, write it using@ol ean variable.

bool ean correctOrder = agel < age? || agel == age2 && heightl <= height 2;
i f (correctOrder)

System.out.printin("You are in the correct order.");
el se

System.out.printin("Please swap over.");

Some people would argue that this makes for more readabés esdn effect, we have named
thecondition in a helpful way. How appropriate that is would depend on hbwiaus the code

is otherwise, which is context dependent and ultimatelyesaiive. Of course, the motive for
storing the condition value in\aariable is less subjective if we wish to use it more than once.

bool ean correctOrder = agel < age2 || agel == age2 && heightl <= height 2;
i f (correctOrder)

System.out.printin("You are in the correct order."”);
el se

System.out.printin("Please swap over.");

... Lots of stuff here.
i f (lcorrectOrder)

System.out.printin("Don't forget to swap over!");

Many novice programmers, and even some so-called expédrés) writing the code above may
have actually written the following.

bool ean correctOrder;
if (agel < age2 || agel == age2 && heightl <= height2)

correctOrder = true;
el se
correctOrder = fal se;
i f (correctOrder == true)
System.out.printin("You are in the correct order."”);
el se

System.out.printin("Please swap over.");

... Lots of stuff here.

19099

14.10 \Variable: char variable (page 145)

i f (correctOrder == fal se)
System.out.printin("Don’t forget to swap over!");

There are threterrible things wrong with this code (two of them are the same realigentify
them,and do not write code like thht

14.10 Variable: char variable (page 145)

We can declarehar variables in Java, that isariables which have théype char . For exam-
ple the code

char firstLetter = 'J’;

declares a variable of typghar , with the namdirstLetter . At run time, this variable is
allowed to hold ahar dataitem, that is a singleharacter.

14.11 Variable: instance variables (page 159)

Thevariables that we wish to have insid#bjects are callednstance variables because they
belong to thanstances of aclass We declare them in much the same way as we declass
variables, except without theeserved wordst at i c. For example, the following code is part
of the definition of &oint class with two instance variables to be used to store the cneris
of aPoint object.

public class Point

{

private double X;
private double V;

} Il class Point

Like class variables, instance variables have a visibititydifier — the above variables have
both been declared as beipgvate, which means they can only be accessed by code inside
the class which has declared them.

Class variables belong to the class in which they are detlarel they are createdrain time

in thestatic contextwhen the class is loaded into thigtual machine. There is only one copy
of each class variable. By contrast, instance variablesraa@ed dynamically, in dynamic
context, when the object they are part of is created duringrtire of the program. There are
as many copies of each instance variable as there are iastahthe class: each object has its
own set of instance variables.

19100

14.12 \Variable: instance variables: should be private Bgude(page 175)

14.12 Variable: instance variables: should be private by dault (page
175)

Java allows us to givpublic visibility to our instance variables if we wish, but generally it
is a good idea to define them psvate. This permits us to alter the way we implement the
class without it affecting the code in other classes. For exapntpke programmer who has the
job of maintaining aPoint class with instance variablesandy, might decide it was better
to re-implement the class to use instance variables the¢ ste polar coordinate radius and
angle instead. This might be because some methods being added to the class would work
much more easily in the polar coordinate system. Because émely instance variables had
originally been made private, the programmer would know tivere could not be any mention
of them in other classes. So it would be safe to replace theimavies of a different name
and which work differently. To make the points behave theesambefore, the values given to
the constructor method would be converted from andy values to polar values, before being
stored, and th@String() method could convert them back again.

14.13 Variable: of a class type (page 161)

As aclassis atype, we can use one in much the same way as we use the built-in syEsas
i nt, doubl e andbool ean. This means we can declarevariable whose type is a class. For
example, if we have a clag®int then we can have variables of typeint .

Point pl;
Point p2;

The above defines twlocal variables ormethod variables of typePoint . We also can have
class variables and evelinstance variables whose type is a class.

14.14 Variable: of a class type: stores a reference to an olge(page 162)

There is one important difference betweevaaiable whosetype is a built-inprimitive type,
such ad nt and one whose type is@dass With the former, Java knows from the type how
much memory will be needed for the variable. For exampldpable variable needs more
memory than amnt variable, but all variables of typént need the same amount of memory,
as do those of typeoubl e. Java needs this information so that it knows how to allocate
memory addresses for variables.

By contrast, it is not possible to calculate how much memahyb& needed to store avbject,
becausénstances of different classes will have different sizes, and in saaees it is possible
for different instances of the same class to have differeetss The only time the size of an
object is reliably known is when it is created,rah time.

19101

14.15 \Variable: of a class type: stores a reference to arcblgeoid misunderstanding
(page 170)

To deal with this situation in a systematic way, variableschlare of a class type do not store
an object, but instead storeeferenceto an object. A reference to an object is essentially the
memory address at which the object resides in memory, andlyskaown at run time when
the object is created. Because they are really just memaineaskes, the size of all references
is the same, and is fixed. So by using references in variabeslass type, rather than actually
storing objects, Java knows how much memory to allocaterfgisach variable.

Strictly speaking then, a type which is a class, is actudlly/set of possiblereferencego
instances of the class, rather than the set of actual irssaghemselves.

14.15 Variable: of a class type: stores a reference to an olge avoid
misunderstanding (page 170)

Students new to the idea mferences often fail to appreciate their significance, and make one
or sometimes both of the following two mistakes.

1. Misconception: Avariable is anobject.

2. Misconception: A variable contains an object.

Neither of these are true, as we have already said: variéblesclass typg can contain a
referenceto an object. A common question is “why do we have to witte twice in the
following?”.

Date someBirthday
= new Date(birthDate.day, birthDate.month, birthDate.year + 1);

It is because we are doing three things.

1. We are declaring a variable.
2. We areconstructing an object.

3. We are storing a reference to that object in the variable.

So we can have a variable without an object.
Date someBirthday;

And we can have an object without a variable — could that b&aulse

19102

14.15 \Variable: of a class type: stores a reference to arcblgeoid misunderstanding
(page 170)

new Date(birthDate.day, birthDate.month, birthDate.year + 1);

Yes, it can be useful: for example, when we want to use objastonce, straight after con-
structing them.

System.out.println(new Point(3, 4).distanceFromPoint(new Point(45, 60)));

If we wish, we can have two variables referring to the sameaibj

Date theSameBirthday = someBirthday;

Also, we can change the value of a variable making it referddfarent object.

someBirthday = new Date(someBirthday.day, someBirthday.month,
someBirthday.year + 1);

This creates aew Date object, and stores theeferenceto it in someBirthday — overwriting
the reference to the previobDate object. This is illustrated in the following diagram.

A Date object

Date someBirthday

public int day 01

public int year 2010

someBirthday = new Date(someBirthday.day, someBirthday.month, someBirthday.year + 1);

A Date object A Date object

Date someBirthday public int day 01 public int day 01

public int month public int month

2010 public int year 2011

public int year

19103

14.16 \Variable: of a class type: null reference (page 192)

14.16 Variable: of a class type: null reference (page 192)

When anobject is created, theonstructor method returns areferenceto it, which is then
used for all accesses to the object. Typically, this refegas stored in aariable.

Point p1 = new Point(75, 150);

There is a special reference value, known asrthik reference, which does not refer to an
object. We can talk about it using tiheserved wordnul | . It is used, for example, as a value
for a variable when we do not want it to refer to any object & thoment in time.

Point p2 = null;

So, in the example code here we have ®emt variablespl andp2, but (atrun time) only
onePoint object.

Suppose th@oint classhasinstance method getX() andgetY() with their obvious imple-

mentations. Then obtaining thevalue of the object referenced Ipy is fine; the following
code would prinf/5.

System.out.printin(p1.getX());

However, the similar code involving? would cause aun time error (anexception called
NullPointerException).

System.out.printin(p2.getX());

This is because there is no object referenced)yand so any attempt to access the referenced
object must fail.

14.17 Variable: of a class type: holding the same referencesgdome other
variable (page 216)

A variable which is of aclass typecan hold aeferenceto anyinstanceof that class (plus the
null reference). There is nothing to stop two (or more) variables havingdame reference
value. For example, the following code creates Boiat object and has it referred to by two
variables.

19104

14.17 \Variable: of a class type: holding the same refereac®me other variable (page
216)

Point p1 = new Point(10, 30);

Point p2 = pl;
Point p1 A Point object
o—
private double x 10
Point p2
kZ/) private double y 30

This reminds us that a variablenst itself an object, but merely a holder for a reference to an
object.

Having two or morevariables refer to the samebject can cause us no problems if it is an
immutable object because we cannot change the object’s state no matter whiEble we
use to access it. So, in effect, the object(s) referred theywo variables behave the same as
they would if they were two different objects. The followicgde has the sanedfectas the
above fragment, almost no matter what we do withandp2 subsequently.

new Point(10, 30);

Point pl

new Point(10, 30);

Point p2

The only behavioural difference between the two fragmentheconditions p1 == p2 and
pl != p2 which aretrue andf al se respectively for the first code fragment, and the other
way round for the second one.

If, on the other hand, anbject referenced by more than one variables amutable objectwe
have to be careful because any change made via any one ofrthble@a causes the change to
occur in the (same) object referred to by the other varialles may be, and often is, exactly
what we want, or it may be a problem if odesignis poor or if we have made a mistake in our
code and the variables were not meant to share the object.

Consider the following simple example.

public class Employee

19105

14.17 \Variable: of a class type: holding the same refereac®me other variable (page
216)

private final String name;
private int salary;

publ i ¢ Employee(String requiredName, i nt initialSalary)

{

name = requiredName;
salary = initialSalary;
} Il Employee

public String getName()

{

return name,
} Il getName

public void setSalary(int newSalary)

{

salary = newSalary;
} Il setSalary

public int getSalary()

{

return salary,
} Il getSalary

} Il class Employee

Employee debora = new Employee("Debs", 50000);
Employee sharmane = new Employee("Shaz", 40000);

Employee worstEmployee = debora;
Employee bestEmployee = sharmane;

Now let us have an accidental piece of code.

worstEmployee = bestEmployee;

Then we carry on with intentional code.

19106

14.18 \Variable: final variables (page 194)

bestEmployee.setSalary(55000);
worstEmployee.setSalary(0);

System.out.printin("Our best employee, " + bestEmployee. getName()
+ " is paid " + bestEmployee.getSalary());
System.out.printin("Our worst employee, " + worstEmploye e.getName()

+ ", is paid " + worstEmployee.getSalary());

The effect of the accidental sharing is to give Sharmane, ishaur best employee, a pay
increase to 55,000 immediately followed by a pay cut to zexcabhsevorstEmployee and
bestEmployee are both referring to the same object, the one which is altores to by
sharmane . Meanwhile our worst employee, Debora, gets to keep her0b0,6urther more,
the report only actually talks about Sharmane in both castex

Our best employee, Shaz, is paid 0
Our worst employee, Shaz, is paid 0

14.18 Variable: final variables (page 194)

When we declare gariable we can write theeserved wordfi nal as one of itanodifiers
before thetype name. This means that once the variable has been given a tadlesalue
cannot be altered.

If an instance variableis declared to be @inal variable then it must be explicitly assigned a
value by the time thebject it belongs to has finished beimgnstructed. This would be done

either by assigning a value in thrariable declaration, or via anassignment statemeninside
the constructor method.

14.19 Variable: final variables: class constant (page 205)

A class variablewhich is declared to befaal variable (i.e. itsmodifiers include theeserved
wordsst ati ¢ andfi nal) is also known in Java asa@ass constant An example of this is the
variable in the classjava.lang.Math calledPI .

public static final double Pl = 3.14159265358979323846;

By convention, class constants are usually named using capital letters with the words
separated by underscore} (

19107

14.20 \Variable: final variables: class constant: a set oicelsqpage 308)

14.20 Variable: final variables: class constant: a set of chices (page 308)

One use otlass constans is to define a set of options for the users alass without them
having to know what values have been chosen to model eaamepthey instead use the name
of one or more class constants to represent their choices.

For example, the following could be possible directionsilatse in a class that is part of a
game that permits simple movement of some game entity.

public static final int UP = 0
public static final int DOWN = 1
public static final int LEFT = 2
public static final int RIGHT = 3;

Apart from leading to more readable code, this techniquesyiis more flexibility: the main-
tainer of thesource codemight decide for some reason to change the values (but noathes)
of the four constants. This should not cause any code out$itthe class to need rewriting.

14.21 \Variable: final variables: class constant: a set of choes: danger-
ous (page 308)

The use of nt class constans to model a small set of options does have two dangers.

e The constants could be used for other purposes — e.g. thé&ylwewsed inappropriately
in somearithmetic expression

e Someone may accidentally use another value which is not one of the constants in
places where a constant should be used. ddrepiler would accept it because it is an
int.

14.22 Variable: of an array type (page 287)

We can declargariables of anarray type rather like we can of any othéype. For example,
here is a variable of typiat[]

i nt[] salaries;

As arrays areobjects, they are accessed wieferences. So amarray variable atrun time
holds either aeferenceto an array or theaull reference. The following diagram shows the
above variable referring to an arrayioft values.

19108

14.23 Variable: initial value (page 453)

int[] salaries

15000 | 25000 | 17750 |23950

14.23 Variable: initial value (page 453)

Whenclass variables, instance variables, andarray elements are created, they are given a
default initial value by thevirtual machine (unless they are also final variables). In contrast,
the compiler forceslocal variables (method variables) andfinal variables to be initialized

by our code.

It is dangerous tauietly rely on default values when they happen to be the initial eglu
we desire, mainly because anyone looking at our code (ingdudurselves) cannot tell the
difference between us doing that and having forgotten tiaiise! Another reason is that
sometimes you, or a reader of your program, may misrememibatrinitial value there is for a
variable of a particulaitype. So, one rule of thumb is to always perform our own initidii@a

to make it clear we have not overlooked it. However, where ithaon-trivial (e.g. for array
elements), we instead write a clemmmentstating that we are happy the default value is what
we want, and what that value is.

15 Expression

15.1 Expression: arithmetic (page 38)

We can havarithmetic expressiors in Java rather like we can in mathematics. These can con-
tain literal values, that is constants, such as theeger literals1 and18. They can also con-
tain variables which have already been declared, apérators to combine sub-expressions
together. Four commoarithmetic operators areaddition (+), subtraction (-), multiplica-

tion (*) anddivision (/). Note the use of an asterisk for multiplication, and a faxhglash for
division — computer keyboards do not have multiply or divsgenbols.

These four operators at@nary infix operator s, because they take twaperands, one on
either side of the operatof. and- can also be used as theary prefix operators, plus and
minus respectively, as ib .

When anexpressionis evaluatel (expression evaluatiof Java replaces each variable with
its current value and works out the result of the expressepedding on the meaning of the
operators. For example, if the variabi@fPeopleLivinginMyStreet had the valud7 then
the expressionoOfPeopleLivinginMyStreet + 4 would evaluate t&1.

19109

15.2 Expression: arithmetic: int division truncates re§oége 52)

15.2 Expression: arithmetic: int division truncates resut (page 52)

The fourarithmetic operators, +, -, * and/ of Java behave very similarly to the corresponding
operators in mathematics. There is however one seriouerelifte to look out for. When
the division operator is given twointegers (whole numbers) it usaateger division which
always yields an integer as its result, by throwing away aagtfonal part of the answer. So,
8 / 2 gives the answet as you might expect, b8t / 2 also givest —not4.5 as it would in
mathematics. It does not round to the nearest whole nuntladways rounds towards zero. In
mathematic45 / 4 gives3.75 . In Java it yields3 not4.

15.3 Expression: arithmetic: associativity and int divison (page 52)

Like theoperators + and- , the operator$ and/ have equabperator precedencgbut higher
than+ and-) and also havéeft associativity.

However, there is an extra complication to consider becthesdava operator truncates its
answer when given twimtegers. Consider the following twarithmetic expressiors.

Expression | Implicit brackets | Value
9*4/2 | (9*4) /2 18
9/2*4 | (9/2)*4 16

In mathematics one would expect to get the same answer framtheseexpressiors, but not
in Javal

15.4 Expression: arithmetic: double division (page 55)

The Javalivision operator, / , usesdouble division and produces doubl e result if at least
one of itsoperands is adoubl e. The result will be the best approximation to the actual arsw
of the division.

Expression| Result | Type of Result
812 4 int

8120 4.0 double

91/2 4 int

9/ 20 4.5 double

90/ 2 45 double

9.0/ 20 45 double

19110

15.5 Expression: arithmetic: double division: by zero @281)

15.5 Expression: arithmetic: double division: by zero (pag/291)

When using thelouble division operation in Java, if the numerator is not zero but the denom-
inator is zero, the result we get is a modelinfinity . This is represented, for example by
System.out.printin() , aslInfinity

However, if both the numerator and the denominator are zeeanstead get a model of the
conceptnot a number, which is represented &&N

This behaviour of double division is in contrastiteger division, which produces aaxcep-
tion if the denominator is zero.

15.6 Expression: arithmetic: remainder operator (page 149

Anotherarithmetic operator in Java is theemainder operator, also known as thenodulo
operator,% When used with twonteger operands, it yields the remainder obtained from
dividing the first operand by the second. As an example, thewong method determines
whether a givemnt method parameteris an even number.

public static bool ean iSEven(int number)

{

return number % 2 == 0;
} Il isEven

15.7 Expression: arithmetic: shift operators (page 473)

Some morarithmetic operators in Java are thghift operators, <<, >> and>>>. Theleft shift
operator, <<, yields the number obtained by shifting the fiogterand left by the number of
bits given in the second operand, placing zeroes in that mahgmmigst places. Thensigned
right shift operator,>>>, similarly shifts rightwards, placing zeroes on the leftheBigned
right shift operator,>>, is the same, except it places ones on the left if the numbegbe
shifted is negative.

For example1000 is 0001111101000 in binary.

4096 2048 1024 512 256 128 64 32 16 8 4 2 1
0 0 0 1 1 1 1 1 O 1 0 0 O
0+ 0+ 0+ 512+ 256+ 128+ 64+ 32+ 0+ 8+ O+ 0O+ 0=1000

When this is shifted left by three placé80p0 << 3, we get the resuB000 which is1111101000000
in binary.

19111

15.8 Expression: arithmetic: integer bitwise operatoes)@p474)

4096 2048 1024 512 256 128 64 32 16 8 4 2 1
1 1 1 1 1 0 1 O 0 0 O O O©O
4096+ 2048+ 1024+ 512+ 256+ O+ 64+ 0+ 0O+ O+ O+ O+ 0=8p00

Whereas1000 >> 3 and1000 >>> 3 both yield0000001111101 in binary, which is125.

4096 2048 1024 512 256 128 64 32 16 8 4 2 1
0 0 0 0 0 0 1 1 1 1 1 0 1
0+ 0+ 0+ 0+ O+ O+ 64+ 32+ 16+ 8+ 4+ 0+ 1=125

Shifting left by n bits, has the same effect anltiplication by 2" and discarding any over-
flow. Signed shifting right byn bits has the same effect as dividing by&hd discarding any
remainder.

15.8 Expression: arithmetic: integer bitwise operators (pge 474)

The operators |, & and”, when applied to numerioperands, have the effect of amteger
bitwise or, integer bitwise and andinteger bitwise exclusive or respectively. The result is
obtained by pairing the correspondibis of each operand according to the following table.

bit n of | bit nof || bit n of bit n of bit n of
opl op2 opl | op2 |opl & op2 | opl "~ op2
0 0 0 0 0

0 1 1 0 1
1 0 1 0 1
1 1 1 1 0

For example, the valugd00 which is1111101000 in binary, when anded with the valuz3
which is0000010111 in binary, yields0000000000 — because they have no corresponding bit
values in common. When they are instead or-ed together, W y£111111 in binary, which

is 1023. This happens to be the samel®80 + 23, butinteger bitwise or is the same as
addition only when the two numbers have no corresponding bits witlsémee value.

15.9 Expression: brackets and precedence (page 45)

In addition tooperators andvariables, expressiors in Java can have round brackets in them.
As in mathematics, brackets are used to define the strudttine expression by grouping parts
of it into sub-expressions. For example, the following twpressions have different structures,
and thus very different values.

2+ 4) * 8
2+ (4 *8)

19112

15.10 Expression: associativity (page 48)

The value of the first expression is made fromalaelition of 2 and4 and thermultiplication
of the resultings by 8 to get48. The second expressionasaluated by multiplying4 with 8
to get32 and then adding to that result, ending up witd4.

To help us see the structure of these two expressions, leaustdem agxpression tres.

2+4)*8 2+ (4*8)

What if there were no brackets?
2+4*8

Java allows us to have expressions without any bracketspoe generally, without brackets
aroundeverysub-expression. It provides rules to define what the stradisuch an expression
is, 1.e., where the missing brackets should go. If you lodtkhat in the above expression, you
will see that it has an operator on either side of it. In a seiiige+ operator and th& operator
are both fighting to have theas anoperand. Rather like a tug of war; is pulling the4 to the
left, and* is tugging it to the right. The question is, which one wins?a)as in mathematics,
provides the answer by having varying levelopkrator precedence The* and/ operators
have a higher precedence thiaand- , which meang fights harder thas, so it wins!2 + 4

* 8 evaluates t@4.

15.10 Expression: associativity (page 48)

The principle ofoperator precedenceis insufficient to disambiguate adixpressiors which
are not fully bracketed. For example, consider the follapexpressions.

10+7 + 3
10+7 -3
10 -7 + 3
10 -7 -3

In all four expressions, thé is being fought over by twmperators which have the same
precedence: either twe, two -, or one of each. So where should the missing brackets go?
The expression tres could have one of the two following structures, wher is the first
operator, an®P2is the second.

19113

15.11 Expression: boolean (page 60)

10 OP1 (7 OP2 3) (10 OP1 7) OP2 3

OP1 __0P2
[\ / \
10 OP2 OP1 3
[\ [\

7 3 10 7

Let us see whether it makes a difference to the results ofbeessions.

Expression Value
(10 +7) +3 |20
10 + (7 +3) |20
(10 +7) -3 14
10 + (7 - 3) 14
(10 - 7) + 3
10 - (7 + 3)
(10 - 7) - 3
10 - (7 - 3)

o OO o

As you can see, it does make a difference sometimes — in tlasges gvhen the first operator
is subtraction (-). So how does Java resolve this problem? As in mathema#iea,aperators
have anoperator associativityas well as a precedence. The operators, * and/ all have
left associativity which means that when two of these operators of equal pracedse both
fighting over oneoperand, it is the left operator that wins. If you like, the tug of wakes
place on sloping ground with the left operator having theaatixge of being lower down than
the right one!

Expression | Implicit brackets | Value
10+7+3|(10+7) +3 20
10+7-3 |(10+7)-3 14
10-7+3 |(10-7)+3 6
10-7-3 |(10-7) -3 0

The operator$ and/ also have equal precedence (but higher thand-) so similar situations
arise with those too.

15.11 Expression: boolean (page 60)

An expressionwhich whenevaluated yields eithen r ue or f al se is known as acondition,
and is typically used for controllingonditional execution Conditions are also calldzbolean
expressiors.

19114

15.13 Expression: boolean: logical operators (page 128)

15.12 Expression: boolean: relational operators (page 60)

Java gives us sirelational operators for comparing values such as numbers, which we can use
to make upconditions. These are abinary infix operator s, that is they take twoperands,
one either side of theperator. They yieldt r ue or f al se depending on the given values.

Operator | Title Description
== Equal This is theequal operator, which provides the notion pf
equality. a == b yieldst r ue if and only if the value of
a is the same as the value Iof

I= Not equal This is thenot equal operator, providing the the notign
of not equality. a '= b yieldstrue if and only if the
value ofa is notthe same as the value lof

< Less than This is theless thanoperator.a < b yieldst r ue if and
only if the value ofa is less than the value of

> Greater than This is thegreater than operator.a > b yieldst r ue if
and only if the value o# is greater than the value bf

<= Less than or equal | This is theless than or equaloperator.a <= b yields

true if and only if the value of is less than value df,
or is equal to it.

>= Greater than or equalThis is thegreater than or equal operator. a >= b
yieldstr ue if and only if the value ofa is greater thar
value ofb, or is equal to it.

15.13 Expression: boolean: logical operators (page 128)

For somealgorithms, we neecdtonditions onloops etc. that are more complex than can be
made simply by using theelational operators. Java provides us witlogical operators to
enable us to glue together simple conditions into biggesoie three most commonly used
logical operators areonditional and, conditional or andlogical not.

Operator | Title | Posh title Description

&& and | conjunction | c1 && c2 istrue if and only if both conditiong1
andc2 evaluateto true. Both of the two condi-
tions, known agonjuncts, must be r ue to satisfy
the combined condition.

| or disjunction | cl || c2 istrue if and only if at least one of thg
conditionscl andc2 evaluate tatrue. The com-
bined condition is satisfied, unless both of the two
conditions, known adisjuncts, aref al se.
! not | negation Ic istrue if and only if the conditiorc evaluates tg
f al se. This operator negates the given condition.

D

We can define thesgperators usingruth table s, where ? means tloperandis not evaluated.

19115

15.13 Expression: boolean: logical operators (page 128)

cl c2 cl && c2 || cl c2 cl || c2 c ic
true true true true ? true

true fal se
true false | fal se false | true true

false | true
false | ? fal se false | false | fal se

Using these operators, we can make up complex conditioob,asithe following.

agel < age? || agel == age2 && heightl <= height2

As with thearithmetic operators, Java definesperator precedenceandoperator associa-
tivity to disambiguate complex conditions that are not fully bede#l, such as the one above.
&&and|| have alower precedence than the relational operators vamda lower precedence
than the arithmetic ones. has a very high precedence (even more so than the arithnpetie o
ators) andk& has a higher precedence than So the above exampéxpressionhas implicit
brackets as follows.

(agel < age?) || ((agel == age2) && (heightl <= height2))

This might be part of a program thaorts people standing in a line by age, but when they
are the same age, it sorts them by height. Assuming thantivariablesagel andheightl
contain the age and height of one person, and the other twabl@s similarly contain that
data for another, then the following code might be used to tellgh& to swap their order if
necessary.

if (agel < age2 || agel == age2 && heightl <= height2)
System.out.printin("You are in the correct order.");

el se
System.out.printin("Please swap over.");

We might have, perhaps less clearly, chosen to write tha¢ esdollows.

if (I(agel < age2 || agel == age2 && heightl <= height2))
System.out.printin("Please swap over.");

el se
System.out.printin("You are in the correct order.");

You might find it tricky, but it's worth convincing yourselfyet another way of writing code
with the same effect would be as follows.

if (agel > age2 || agel == age2 && heightl > height2)
System.out.printin("Please swap over.");

el se
System.out.printin("You are in the correct order.");

19116

15.14 Expression: boolean: logical operators: conditiqrege 323)

In mathematics, we are used to writing expressions sughxag < zto mean true, if and only
if y lies in the rangex to z, inclusive. In Java, such expressions need to be writtenas y
&& y <= z.

Also, in everyday language we are used to using the words &mttior’ where they have very
similar meanings to the associated Java operators. Howegesay things like “my mother’s
age is 46 or 47”. In Java, we would need to wnitgMumAge == 46 || myMumAge == 47
to capture the same meaning. Another example, “my brothreraged 10 and 12", might be
coded asnyBrotherlAge == 10 && myBrother2Age == 12

However, there are times in everyday language when we sal/ \ainen we really mean “or”
in logic, and hence would uge in Java. For example, “the two possible ages for my dad are
49and53” is really the same as saying “my dad’s age io4®ny dad’s age is 53”.

15.14 Expression: boolean: logical operators: conditiongpage 323)

Thelogical operators&&and|| in Java are calledonditional and andconditional or because
they have an important property, which distinguishes themmftheir classical logic counter-
parts. They are lazy. This means that if they can determiaie tbsult after evaluating their
left operand, they will notevaluatetheir right one. That is, if the firstisjunct of | evaluates
tot r ue it will not evaluate the second; and if the fitginjunct of && evaluates td al se it will
not evaluate the second. This allows us to safely vadteditions such as the followingiata

== nul | || data.length ==

15.15 Expression: conditional expression (page 94)

The conditional operator in Java permits us to writeonditional expressiors which have
different sub-expressiorevaluated depending on sonmndition. The general form is

c?el:e2

wherec is some condition, andl ande2 are twoexpressiors of sometype. The condition

is evaluated, and if the value is ue thenel is evaluated and its value becomes the result of
the expression. If the conditionisal se thene?2 is evaluated and its value becomes the result
instead.

For example
int maxXY = x >y ? X 1y,

is another way of achieving the same effect as the following.

19117

i nt maxXxy,

if (x>y)
maxXyY

el se
maxXyY

"
2

Y;

16 Package

16.1 Package (page 187)

There are hundreds ofas®s that come with Java in iggoplication program interface (API),
and even more that are available around the world for reusiogr programs if we wish. To
help manage this huge number of classes, they are grougedalt¢ctions of related classes,
called packages. But even this is not enough to make things manageable, dages are
grouped into a hierarchy in a rather similar way to how a wegjbmizedile systemis arranged
into directories and sub-directories. For example, therene group of standard packages
calledjava and another calle@dvax .

16.2 Package: java.util (page 188)

One of the standard Japackages in the package groypva is calledutii . This means its

full name isjava.util — the package addressing mechanism uses a §lot (huch the same
way as Unix uses a slash, or Microsoft Windows uses a badkdiaseparate directories in a
filename pathjava.util contains many generally useful utilitjases. For example, there is

a class calle@canner which lives there, so itlully qualified name is java.util.Scanner
This fully qualified name is unique: if someone else was tatera class calleScanner then
it would not be in the same package, so the two would not beuseal

We can refer to a class using its fully qualified name, for epi@nthe following declares a
variable of type java.util.Scanner and creates aimstanceof the class too.

java.util.Scanner inputScanner = new java.util.Scanner(System.in);

16.3 Package: java.awt and javax.swing (page 245)

Inside the group opackages known agava , there is one calledwt, so the the full name
of the package igva.awt . It contains theclas®s that make up the original Jageaphical
user interfacesystem known as th&bstract Windowing Toolkit (AWT). For example, there

19118

is a class that lives insidava.awt called Container , and so itsfully qualified name is
java.awt.Container

Another groupjavax contains a package callegling and this is the set of classes which
make up the more modettava Swingsystem, which is built on top of AWT. For example,
there is a class that lives insigwax.swing calledJFrame , and so its fully qualified name is

javax.swing.JFrame

Java programs that providezUI typically need to use classes from both these packages.

17 GUIAPI

17.1 GUI API: JFrame (page 245)

Eachinstanceof theclassjavax.swing.JFrame corresponds to a window that appears on the
screen.

17.2 GUI API: JFrame: setTitle() (page 246)

The class javax.swing.JFrame has aninstance methodcalled setTitte which takes a
String to be used as the title of the window. This string typicallyears in the title bar
of the window, depending upon what window manager the usgsirgg (in Unix worlds there
iIs a massive variety of window managers to choose from).

17.3 GUI API: JFrame: getContentPane() (page 246)

The classjavax.swing.JFrame has annstance methodcalledgetContentPane whichre-
turn s thecontent paneof the JFrame . This is the part of thdFrame that holds theyraphical
user interface (GUI) components of the window. It is anstanceof java.awt.Container

17.4 GUI API: JFrame: setDefaultCloseOperation() (page 24)

Theclass

javax.swing.JFrame has aninstance methodcalled setDefaultCloseOperation which
takes anethod parameterthat specifies what th#rame should do when the end user presses
the close button on the title bar of the window. There are fmssible settings as follows.

19119

17.5 GUI API: JFrame: pack() (page 247)

Do nothing on close- Don't do anything.

Hide on close- Hide the window, so that it is no longer visible, but do nostdey it.

Dispose on close- Destroy the window.

Exit on close— Exit the whole program.

The parameter is actually amt , but we do not need to know what exact value to give as a
method argument, because there are fodlass constarg defined inJFrame which have the
right values.

public static final int DO_NOTHING_ON_CLOSE = ?;
public static final int HIDE ON CLOSE = ?

public static final int DISPOSE ON_CLOSE = ?;
public static final int EXIT_ ON _CLOSE = ?;

We simply use whichever class constant suits us, as in thenwiolg example.

setDefaultCloseOperation(DISPOSE_ON_CLOSE);

17.5 GUI API: JFrame: pack() (page 247)

Theclassjavax.swing.JFrame has arinstance methodcalledpack . This makes théFrame
arrange itself ready for being shown on the screen. It woutdle sizes and positions of all
its components, and (in general) the size of the windowfit3gpically pack() is called after
all thegraphical user interface (GUI) components have been added toiRame .

17.6 GUI API: JFrame: setVisible() (page 248)

The classjavax.swing.JFrame has aninstance methodcalledsetVisible . This takes a
bool ean method parameter, and if this value is r ue then it makes théFrame object cause
the window it represents to appear on the physical screatisappear otherwise.

17.7 GUI API: Container (page 246)

The classjava.awt.Container implements part of graphical user interface (GUI). An
instanceof the class is a component that is allowed to contain otherpoments.

19120

17.8 GUI API: Container: add() (page 246)

17.8 GUI API: Container: add() (page 246)

The classjava.awt.Container has aninstance methodcalledadd which takes agraph-
ical user interface (GUI) component and includes it in the collection of componeatbé
displayed within the container.

17.9 GUI API: Container: add(): adding with a position constraint (page
268)

Theclassjava.awt.Container has anotheinstance methodcalledadd which takes graph-
ical user interface (GUI) component and some othebject constraining how the compo-
nent should be positioned. This is intended for use \Watfout managers that use position
constraints, such gava.awt.BorderLayout . For example, the following code makes the
JLabel appear in the north position afyContainer .

myContainer.setLayout(new BorderLayout());
myContainer.add(new JLabel("This is in the north"), BorderLayout.NORTH);

17.10 GUI API: Container: setLayout() (page 250)

The classjava.awt.Container has aninstance methodcalledsetLayout which takes an
instance of one of thelayout manager classes, and uses that to lay outgtaphical user

interface (GUI) components each time a lay out is needed, for example, Wwigewindow it

is part of ispacked.

17.11 GUI API: JLabel (page 246)

The classjavax.swing.JLabel implements a particular part ofgraphical user interface
(GUI) which simply displays a small piece of text, that is, a laddle label text is specified as
aString method argumentto one of theJLabel constructor methods.

17.12 GUI API: JLabel: setText() (page 258)

Theclassjavax.swing.JLabel has annstance methodcalledsetText which takes &tring
method argumentand changes the text of the label to it.

19121

17.13 GUI API: LayoutManager (page 249)

17.13 GUI API: LayoutManager (page 249)

A layout manageris aclasswhich contains the logic for laying ographical user interface
(GUI) components within amstanceof java.awt.Container in some set pattern. There are
various types of layout manager, including the followingsthaommon ones.

e java.awt.FlowLayout — arrange the components in a horizontal line.
e java.awt.GridLayout — arrange the components in a grid.
e java.awt.BorderLayout — arrange the components with one at the centre, and one at

each of the four sides.

17.14 GUI API: LayoutManager: FlowLayout (page249)

The classjava.awt.FlowLayout is alayout manager which positions all the components
within aninstanceof
java.awt.Container in a horizontal row. The components appear in the order thenew

added to the container.

17.15 GUI API: LayoutManager: FlowLayout: alignment (page/278)

Theclass

java.awt.FlowLayout can be given an alignment mode, passedrasthod argumentto one
of its constructor methods. It affects the behaviour of the layout in cases when thepooant
is larger than is needed to hold the components that are in it.

The argument is annt value, and should be an appropri&iass constant including the
following.

e FlowLayout.CENTER - the laid out items are centred in the container.

e FlowLayout.LEFT —the laid out items are on the left of the container, with wilspace
on the right.

e FlowLayout.RIGHT — the laid out items are on the right of the container, withsetu
space on the left.

If we do not specify an alignment then centred alignment exlus

19122

17.16 GUI API: LayoutManager: GridLayout (page 251)

17.16 GUI API: LayoutManager: GridLayout (page 251)

The classjava.awt.GridLayout is alayout manager which positions all the components
within aninstanceof
java.awt.Container in a rectangular grid. The container is divided into equadd rectan-

gles, and one component is placed in each rectangle. Theawnis appear in the order they
were added to the container, filling up one row at a time.

When we create @ridLayout object, we provide a pair afnt method arguments to thecon-
structor method, the first specifies the number of rows, and the second the @uohbolumns.
One of these values should be zero. For example, the folepaamstructs a GridLayout
which has three rows, and as many columns as are needed depepdn the number of
components being laid out.

new GridLayout(3, 0);

This next example constructaidLayout which has two columns, and as many rows as are
needed depending upon the number of components being laid ou

new GridLayout(0, 2);

If both the rows and columns arguments are non-zero, thercolumns argument is totally
ignored Neither values may be negative, and at least one of themIpeusbn-zero, otherwise
we get arun time error .

We can also specify the horizontal and vertical gaps that ish % have between items in the
grid. These can be given via a constructor method that takessfguments.

new GridLayout(0, 5, 10, 20);

The above example create$adLayout that has five columns, with a horizontal gap of 10
pixels between each column, and a vertical gap of 20 pixdigd®n each row. A pixel is the
smallest unit of display position. Its exact size will degem the resolution and physical size
of the computer monitor.

17.17 GUI API: LayoutManager: BorderLayout (page(267)

The classjava.awt.BorderLayout is alayout manager which has slots for five compo-
nents, one at the centre, and one at each of the four sideachtha centre. The names

19123

17.18 GUI API: Listeners (page 254)

of these positions are modelled using fielass constarg called BorderLayout. CENTER
BorderLayout. NORTH ,BorderLayout.SOUTH ,BorderLayout. WEST .andBorderLayout.EAST

A BorderLayout is designed to be used when there is gna@phical user interface (GUI)
component which is in some sense the main component, for @raadTextArea which
contains some result of the program. We can put this irBtinderLayout. CENTER position
and some other component above in BoederLayout. NORTH position, and/or below in the
BorderLayout. SOUTH position, and/or to the left in thBorderLayout WEST position and/or
to the right in theBorderLayout. EAST position.

This is shown in the following diagram.

BorderLayout. NORTH

BorderLayout. CENTER

-
(%)}
=
5
o
>
©
:l
]
'9
]
m

BorderLayout.EAST

BorderLayout.SOUTH

17.18 GUI API: Listeners (page 254)

Java uses bistener model for the processing graphical user interface (GUI) events. When
something happens that needs dealing with, such as the enghnessing a GUI button, the
GUI event thread creates ambject representing the event before doing any processing that
may be required. The event has erent source which is some Java GUI object associated
with the cause of the event. For example, an event createaibet¢he end user has pressed a
button will have that button as its source. Each possiblateseurce keeps a set lidtener
objects that have been registered as wishing to be ‘toldi #ent is created from that source.
The GUI event thread processes the event by simply callingrcplarinstance method
belonging to each of these listeners.

Let us consider aabstractexample. Suppose we have some object that can be an everg,sour

19124

17.18 GUI API: Listeners (page 254)

for example it might be a button. To keep it an abstract examet us say it is amstanceof
SomeKindOfEventSource

SomeKindOfEventSource source = new SomeKindOfEventSource(...);

Suppose also we wish events from that source to be procegseuie code that we write. Let
us put that in alasscalledSomeKindOfEventListener for this abstract example.

public class SomeKindOfEventListener

{

public void processSomeKindOfEvent(SomeKindOfEvent e)

{

... Code that deals with the event.
} Il processSomeKindOfEvent
} Il class SomeKindOfEventListener

To link our code to the event source, we would make an instaff®éemeKindOfEventListener
and register it with the event source as a listener.

SomeKindOfEventListener listener = new SomeKindOfEventListener(...);

source.addSomeKindOfListener(listener);

The above code (or rather a concrete version of it) wouldcalfy be run in themain thread
during the set up of the GUI. The following diagram illusesithe finished relationship be-
tween the source and listener objects.

19125

17.19 GUI API: Listeners: ActionListener interface (padge’ 2

SomeKindOfEventSource source SomeKindOfEventListener listener

A SomeKindOfEventSource object A SomeKindOfEventListener obj

set of listeners o

[processSomeKindOfEvent)

GddSomeKindOvaentListener]

Now when an event happens, the GUI event thread can look aetiw listeners in the source
object, and call therocessSomeKindOfEvent() instance method belonging to each of them.
So, when ouisource object generates an event, trecessSomeKindOfEvent() instance
method in outistener object is called.

Java Swing actually has several different kinds of listefioersupporting different kinds of

event. The above example is just ahstraction of this idea, so daot take the names
SomeKindOfEventSource , SomeKindOfEventListener , processSomeKindOfEvent andaddSomeKindOfLis
literally — each type of event has corresponding names tleatppropriate to it. For ex-

ample, events generated by GUI buttons are knowAcéisnEvent s and are processed by
ActionListener objects which have aactionPerformed() instance method and are linked

to the event source by aaddActionListener() instance method.

17.19 GUI API: Listeners: ActionListener interface (page 57)

The standardnterface called java.awt.event.ActionListener contains a body-les-
stance methodwhich is calledactionPerformed . The intention is that a full implementation
of this instance method will contain code to proces®@entcaused by the user doing some-
thing like pressing graphical user interface (GUI) button.

19126

17.20 GUI API: Listeners: ActionListener interface: actiRerformed() (page 258)

17.20 GUI API: Listeners: ActionListener interface: actionPerformed()
(page 258)

After creating aninstance of java.awt.event.ActionEvent when the end user has per-
formed an ‘action’ such as pressing a button, &i¢l event thread finds out from thaevent
source which ActionListener objects have registered with it as wanting to be told about
theevent The GUI event thread then invokes tinstance methodcalledactionPerformed
belonging to each of those registedationListener s, passing théctionEvent object as a
method argument

So, the heading of thactionPerformed) instance method is as follows.
public void actionPerformed(ActionEvent event)

Each implementation of the method will perform whatevek iasappropriate as a response to
the particular action in a particular program.

17.21 GUI API: JButton (page 256)

The classjavax.swing.JButton implements a particular part ofgaaphical user interface
(GUI) which offers a button for the end user to ‘press’ using theiseo The text to be displayed
on the button is specified assaing method argumentto theJButton constructor method.

17.22 GUI API: JButton: addActionListener() (page 256)

Theclassjavax.swing.JButton has annstance methodcalledaddActionListener . This
takes as itsnethod parameter an ActionListener object, and remembers it as beindis
tener interested in processing tlegentcaused by an end-user pressing this button.

public void addActionListener(ActionListener listener)

{

... Remember that listener wants to be informed of action eve nts.
} Il addActionListener

17.23 GUI API: JButton: setEnabled() (page 266)

The classjavax.swing.JButton has annstance methodcalledsetEnabled , which takes a
bool ean method parameter. If it is given the valug al se, the button becomes disabled, that
is any attempt to press it has no effect. If instead the paiemiet r ue, the button becomes
enabled. When in the disabled state, the button will typrdabk ‘greyed out’.

19127

17.24 GUI API: JButton: setText() (page 267)

17.24 GUI API: JButton: setText() (page 267)

The class javax.swing.JButton has aninstance methodcalled setText which takes a
String and changes the text label displayed on the button, to trengiethod argument

17.25 GUI API: ActionEvent (page 258)

When theGUI event thread detects that the end user has performed an ‘action’, sucteas-p
ing a button, it creates anstance of the classjava.awt.event.ActionEvent in which it
stores information about thevent For example, it stores geference to the event source
object, such as the button that was pressed.

17.26 GUI API: ActionEvent: getSource() (page 280)

The classjava.awt.event.ActionEvent has annstance methodcalledgetSource which
return s areferenceto theobject that caused thevent

17.27 GUI API: JTextField (page 265)

The classjavax.swing.JTextField implements a particular part ofgaaphical user inter-
face(GUI) which allows a user to enter a small piece of text. One ottrestructor methods
of the class takes a singlat method parameter. This is the minimum number aharacters
of text we would like the field to be wide enough to display.

We can also use dTextField to display a small piece of text generated from within the
program.

17.28 GUI API: JTextField: getText() (page 265)

Theclassjavax.swing.JTextField has arinstance methodcalledgetText which takes no
method argument andreturn s the text contents of the text field, aStang

17.29 GUI API: JTextField: setText() (page 265)

The classjavax.swing.JTextField has annstance methodcalledsetText which takes a
String as itsmethod argumentand changes the text of the text field to the given value.

19128

17.30 GUI API: JTextField: setEnabled() (page 267)

17.30 GUI API: JTextField: setEnabled() (page 267)

The classjavax.swing.JTextField has aninstance methodcalled setEnabled , which
takes abool ean method parameter. If it is given the valuef al se, the text field becomes
disabled, that is any attempt to type into it has no effecindtead the parametertis ue, the
text field becomes enabled. When in the disabled state,xhidlel will typically look ‘greyed
out’.

17.31 GUI API: JTextField: initial value (page(274)

Theclassjavax.swing.JTextField has aconstructor methodwhich takes &tring method
parameter to be used as the initial value for the text inside the texdfiel

JTextField nameJTextField = new JTextField("Type your name here."”);

17.32 GUI API: JTextArea (page 267)

The classjavax.swing.JTextArea implements a particular part ofgraphical user inter-
face (GUI) which displays a larger piece of text, consisting of mudtilines. The size of the
text area can be specifiedm&thod argument to theconstructor method, as the number of
rows (lines) and the number of columns (characters per.line)

17.33 GUI API: JTextArea: setText() (page 269)

The classjavax.swing.JTextArea has aninstance methodcalled setText which takes

a String as amethod argument and changes the text of the text area to the given value.
This String may containnew line characters in it, and the text area will display the text
appropriately as separate lines.

17.34 GUI API: JTextArea: append() (page 269)

The classjavax.swing.JTextArea has aninstance methodcalled append which takes a
String and appends it onto the end of the text already in the text afewy required line
breaks must be made by including explicéw line characters.

19129

17.35 GUI API: JPanel (page 270)

17.35 GUI API: JPanel (page 270)

The classjavax.swing.JPanel is anextensionof the olderjava.awt.Container , Which
means that it is a component that is allowed to contain otberponents, and it haaid()
instance methoda allowing us to add components toJBanel is designed to work well with
the rest of thelava Swing packageand is the recommended kind of container to use when we
wish to group a collection of components so that they areeddeas one for layout purposes.

17.36 GUI API: JScrollPane (page 274)

The classjavax.swing.JScrollPane implements a particular part ofgraphical user in-
terface (GUI) which provides a scrolling facility over another componen

The simplest way to use it is to invoke thenstructor method which takes a GUI component
as amethod parameter. This creates aScrollPane object which provides a scrollable view
of the given component.

As an example, consider the following code which add$eatArea to thecontent paneof a
JFrame .

Container contents = getContentPane();
contents.add(new JTextArea(15, 20));

To make theJTextArea scrollable, we would replace the above with the followinglean-
stead.

Container contents = getContentPane();
contents.add(new JScrollPane(new JTextArea(15, 20)));

17.37 GUI API: Color (page 400)

Theclassjava.awt.Color implements colours to be usedgraphical user interfaces. Each
Color object comprises four values in the range 0 to 255, one for each giriheary colours
red, green and blue, and a fourth component (alpha) for typaci

For convenience, the class includes a numbecla$s constarg containingreferences to
Color objects which represent some common colours.

public static final Color black = new Color(0, 0, 0, 255);

19130

public static final Color white
public static final Color red
public static final Color green
public static final Color blue

new Color(255, 255, 255, 255);
new Color(255, 0, 0, 255);
new Color(0, 255, 0, 255);
new Color(0, 0, 255, 255);

public static final Color lightGray = new Color(192, 192, 192, 255);
public static final Color gray new Color(128, 128, 128, 255);
public static final Color darkGray new Color(64, 64, 64, 255);

public static final Color pink (

public static final Color orange new Color(255, 200, 0, 255);
public static final Color yellow new Color(255, 255, 0, 255);
public static final Color magenta = new Color(255, 0, 255, 255);
public static final Color cyan = new Color(0, 255, 255, 255);

new Color(255, 175, 175, 255);

Among many other features, there isiastance methodgetRGB() whichreturns a unique
i nt for eachequivalentcolour, based on the four component values.

18 Interface

18.1 Interface (page 257)

An interface is like aclass except all thanstance method in it must have no bodies. Itis
used as the basis of a kind of contract, in the sense that itbmaleclared that some class
plements an interface. This means that it supplies full definitiarsall the body-less instance
methods listed in the interface. For example, the followdnde

public class MyClass inplenents Somelnterface

{

} Il MyClass

says that the class being definstyClass , provides full definitions for all the instance methods
listed in the interfac&omelnterface . So, for example, if anethod somewhere hasraethod
parameter of type Somelnterface , then annstanceof MyClass could be supplied as a corre-
spondingmethod argument as it satisfies the requirements of being of tgpmelnterface

19131

19 Array

19.1 Array (page 286)

An array is a fixed size, ordered collectiohst) of items of some particuldype. The items
are stored next to each otheraoamputer memory atrun time. As an example, the following
is a representation of an array of 8t values, which happen to be the firspBme numbers
(excluding 1).

Each box, orarray element, contains a value, which can be changed if desired. In other
words, each element is a separagiable. At the same time, the array as a whole is a single
entity. This is rather similar to the idea of abject havinginstance variables, except that the
elements of an array must all be of the same type.

Indeed, arrays in Jaae objects.

19.2 Array: array creation (page 287)

We can create aarray in Java using theeserved wordnew, like we do with othemobjects.
However, instead of following this with the name o€lass we can state tharray base type
and then, in square brackets, the size of the array. For drathp following creates an array
of tendoubl e values.

new doubl e[10]

At run time, this code yields aferenceto thenewly created array, which we typically would
want to store in aariable.

doubl e[] myFingerLengths = new doubl e[10];

Thanks to the use of references, the size of an array doeserdtto be known atompile
time, because theompiler does not need to allocate memory for it. This meansiattime
we can create an array which is the right size for the actatd being processed.

19132

19.3 Array: array creation: initializer (page 320)

i nt noOfEmployees = Integer.parselnt(args[0]);

String[] employeeNames = new String[noOfEmployees];

19.3 Array: array creation: initializer (page

When we declare aarray variable we can at the same time create the actual array by listing
the array elements which are to be placed in it, using amray initializer . This isinstead

of saying how big the array is. Java counts tigs, creates an array that big, and assigns the
elements in the order listed. For example, the followingecdeclares aarray variable which
refers to an array containing the first eiglime numbers (excluding 1).

i nt[] smallPrimes = {2, 3, 5 7,11, 13, 17, 19 s
This is just a shorthand for the following.

i nt[] smallPrimes = new i nt [8];

smallPrimes[0]=2; smallPrimes[1]=3; smallPrimes|[2]=5;
smallPrimes[3]=7; smallPrimes[4]=11; smallPrimes[5]=1 3;
smallPrimes[6]=17; smallPrimes[7]=19;

19.4 Array: element access (page 288)

The array elements in anarray can be accessed individually via array index. This is a
whole numbegreater than or equalto zero. The first element in an array is indexed by zero,
the second by one, and so on. To access an element, we weferenceto the array, followed

by the index within left and right square brackets.

For example, assuming we have the array
doubl e[] myFingerLengths = new doubl e[10];

and somehow we have placed the lengths of my fingers and thuntdbthe ten elements of

myFingerLengths , then the following code would compute the total length offimgers and
thumbs.

doubl e myTotalFingerLength = 0;
for (int index = 0; index < 10; index++)
myTotalFingerLength += myFingerLengths[index];

19133

19.5 Array: element access: in two-dimensional arrays€/289)

So, arrays are a bit like ordinagbjects with the array elements beingstance variables,
except that the number of instance variables is chosen wWieeartay is created, they are all
the samdype, they are ‘named’ by indices rather than names, and theyaessed using a
differentsyntax.

19.5 Array: element access: in two-dimensional arrays (pag330)

Each grid element in &wo-dimensional array is indexed by two indices — the firsirray
index accesses the roarray, and the second accessesdhgy elementwithin that row. For
example, given the code

i nt [][] myzDArray = new i nt [5][4],

thenmy2DArray[0] is areferenceto the first row, and smy2DArray[0][0] s the first element
in the first row. Similarlymy2DArray[4][3] is the last element in the last row.

19.6 Array: length (page 292)

Everyarray in Java has public instance variablecalledlength , of typei nt, which contains
thearray length or size of the array. It is, of coursefiaal variable, so we cannot change its
value.

int[] myArray = new i nt [25];
i nt myArrayLength = myArray.length;

In the above code fragment, thariable myArrayLength ~ will have the value5.

19.7 Array: empty array (pagel292)

When we create aarray we say how manwrray elements it should have, and this number
can be zero. Although such ampty array may not seem of much use, it still exists — we can
access itarray length for example.

i nt[] myEmptyArray = new i nt [0];
System.out.printin(myEmptyArray.length);

The above code will output zero, whereas the following codecause arun time error (in
fact aNullPointerException), because there is no array so we cannot ask for its length.

19134

19.8 Array: of objects (page 301)

i nt[] myNonArray = nul | ;
System.out.printin(myNonArray.length);

19.8 Array: of objects (page 301)

An array can contain values of artype, includingobjects. Of course, as with any other kind
of variable, thearray elements of an array with array base typewhich is aclass actually
containreferences to the objects.

The most obvious example of an array of objects, iscti@mand line argumens passed to
themain method.

public static void main(String[] args)

The following diagram shows the aboweethod parameter referring to an array, with the
array elements themselves referringstong objects.

String[] args String object

0 "Quick Hackers" I
tring object

! "15049" I
tring object

2 "Top Soft" I
tring object

3 "49959" I
tring object

N "Middle Ware" I
tring object

7 "27750" I

19.9 Array: partially filled array (page

An array has a fixed size, specified when it is createga#tially filled array is one in which
not all of thearray elements are used, only a leading portion of them. The size of thisquor
is typically stored in a separat@riable.

19135

19.10 Array: partially filled array: deleting an elementgpat04)

For example, suppose we have an array of 100 elements, ofiwiii@lly none are in use.

private final int MAX NO _OF ITEMS = 100;
private int noOfltemsinArray = 0;
private SomeType[] anArray = new SomeType[MAX_NO_OF_ITEMS];

We can add another item into the array, or do nothing if it I &s follows.

i f (noOfltemsinArray < MAX_NO_OF_ITEMS)
{

anArray[noOfltemsInArray] = aNewltem;
noOfltemsInArray++;
L

19.10 Array: partially filled array: deleting an element (page 404)

The simplest way to delete array element from apartially filled array with an arbitrary
order, is to replace the unwanted item with the one at the &tictawsed portion and decrement
the count of items.

i nt indexToBeDeleted = ...
noOfltemsInArray--;
anArray[indexToBeDeleted] = anArray[noOfltemsInArray] ;

19.11 Array: array extension (page 311)

If we are using goartially filled array then we may need to worry about the problem of it
becoming full when we still wish to add more items into it. Tgrénciple ofarray extension
deals with this by making aew, biggerarray and copying items from the original into it.

We start by making an array of a certain size, with no items.in i

private static final int INITIAL_ARRAY_SIZE = 100;

private static final int ARRAY_RESIZE_FACTOR = 2;

private int noOfltemsinArray = 0;

private SomeType[] anArray = new SomeType[INITIAL_ARRAY_SIZE];

When we come to add an item, we make a bigger array if required.

19136

19.12 Array: shallow copy (page 314)

i f (noOfltemsIinArray == anArray.length)

{
SomeType[] biggerArray

= new SomeType[anArray.length * ARRAY_RESIZE FACTOR];
for (int index = 0; index < noOfltemsInArray; index++)
biggerArray[index] = anArray[index];
anArray = biggerArray;
J /A

anArray[noOfltemsInArray] = aNewltem;
noOfltemsInArray++;

The new array does not need to be twice as big as the origusalaj least one element bigger.
However, increasing the size by only one at a time would be siee to the need for copying
the existing elements across.

19.12 Array: shallow copy (page 314)

When we copy am@rray containingreferences toobjects, we can either makeshallow copy
or adeep copy A shallow copy contains the same references, so the olgecdsip being
shared between the two arrays. A deep copy contains refsaocopiesof the original
objects.

19.13 Array: array of arrays (page[329)

The array elements of anarray may be of anytype, including arrays. This means the ele-
ments of the array aneferences to other arrays. For example, the following diagram shows
anarray variable which contains a reference to an array of arrayismfvalues.

19137

19.14 Array: array of arrays: two-dimensional arrays (p28@)

int[][] myArray 0 1 2 3 4

2
23
1 3 1 2 3
-1 |108 | 99 I 97 |-367| 12 0 I
The type of the variable i®t[]] , thatisi nt array, array. The variable references an array

of 5 values, the first of which is a reference to an array of 5lpens, the second a reference to
an array of 3 numbers, the third is a reference to an array ofdbers, the fourth is theull
referenceand the final element is a reference to an array of 3 numbeeselérrays could be
created, ready for the numbers to be put in them, as follows.

int[][] myArray = new i nt [5][];
myArray[0] = new i nt [5];
myArray[l] = new int[3];
myArray[2] = new int [4];
myArray[3] = nul | ;

myArray[4] = new int[3];

19.14 Array: array of arrays: two-dimensional arrays (page330)

A very common situation when we have amay of arrays, is that none of tharay elements

are thenull reference and all of the arrays theeferenceare the same length. This is known
as atwo-dimensional array, and is essentially a model of a rectangular grid. For exantpé
following diagram shows &ariable which contains a reference to a two-dimensional array of
i nt values.

19138

19.14 Array: array of arrays: two-dimensional arrays (p28@)

int[][] my2DArray

17 |-999 | 3 99

0 23 99 -7 27
1
0 1 2 3
2
57 |-93 | 30 | 79
3
0 1 2 3
4
1 -10 0 768

The above two-dimensional array could be created (withHmithumbers being assigned into it
yet) by the following code.

i nt][] my2DArray = new i nt [5][];
my2DArray[0] = new i nt [4];
my2DArray[l] = new int [4];
my2DArray[2] = new i nt [4];
my2DArray[3] = new i nt [4];
my2DArray[4] = new i nt [4];

Two-dimensional arrays are so common, that Java providesmhand notation for defining
them. The shorthand for the above example is as follows.

i nt [][] myzDArray = new i nt [5][4],

The codenew int[5][4] makes an array of length 5 get createdusitime, and also 5 arrays
of length 4, which are capable of holdihgt values, with these latter 5 arrays being referenced
by the 5 elements in the first array.

19139

20 Exception

20.1 Exception (page 340)

A runtime error is called arexceptionin Java. There is a standarihsscalledjava.lang.Exception
which is used to record and handle exceptions. When an egoapsituation happens, an-
stanceof this class is created, containing information about thierestored in itsnstance
variables. In particular, it includes atack trace containing the source line numbengthod
name and class name at which the error occurred. This staglcahtains the same informa-
tion for the method that called the one that failed, and saight back up to the main method
(for an error occurring in themain thread).

20.2 Exception: getMessage() (page 345)

When annstanceof java.lang.Exception Is created, it may be given a text message helping
to describe the reason for the error. This may be retrievad fnException object via its
getMessage() instance method

20.3 Exception: there are many types of exception (page 347)

Theclassjava.lang.Exception is a general model a@xceptiors. Java also has many classes
for modelling exceptions which are more specific to a paldickind of error. Here are a few
of the ones from thgava.lang package each listed with an example error situation which
causes aimstanceof the exception class to be created.

19140

20.4 Exception: creating exceptions (page 350)

Exception class Example use
ArrayindexOutOfBoundsException When some code tries to accessaaray el-
ementusing anarray index which is not in
the range of tharray being indexed.
lllegalArgumentException When amethod is passed anethod argu-
ment which is inappropriate in some way.
NumberFormatException In the parselnt() method of the
java.lang.Integer class when it g
asked to interpret an invalidString
method argument as arnnt. (Ac-
tually, NumberFormatException is
a particular kind of the more genergl
lllegalArgumentException)
ArithmeticException When aninteger division has a denominatar
which is zero.
NullPointerException When we have code that tries to access |the
object referenceal by avariable, but the vari-
able actually contains thaull reference.

20.4 Exception: creating exceptions (page 350)

The standardlassjava.lang.Exception has a number afonstructor methods enabling us

to createnstances of it. One of these takes moethod argument, and creates dtxception

that has no message associated with it. A second construetbod takes 8tring which is to

be used as the message. The other kinésoéption such ag\rraylndexOutOfBoundsException :
lllegalArgumentException , NumberFormatException , ArithmeticException andNullPointerException
also have these two constructor methods.

20.5 Exception: creating exceptions: with a cause (page 3b7

The standaradlassjava.lang.Exception also has two moreonstructor methods enabling
us to createnstances which know about anothexceptionthat caused this one to be created.
One of these takes the message andetteeption causethe other just takes the cause (and
hence has no message). Whenevetlwew a new exception inside aatch clauseit is good
practice to include the caught exception as the cause ofeveone.

Many of the other kinds of exception also have these two coctstr methods.

19141

20.6 Exception: getCause() (page 366)

20.6 Exception: getCause() (page 366)

The exception causestored inside arkxception may be retrieved via itgetCause() in-
stance method This will return thenull reference if no cause was given.

20.7 Exception: inheritance hierarchy (page 434)

All exceptiors in Java are modelled asstances ofclases. For example, the clagsa.lang.Exception
models a very general idea of exception, g@vd.lang.ArraylndexOutOfBoundsException

a much more specific kind. The different kinds of exceptianaranged in amheritance hi-
erarchy, with those classes near the top being models of quite gemeraptions, and those
at the bottom being very specific. An instanceAofayindexOutOfBoundsException 5
created when aarray index is out of the legal range for tharray. This class is aub-
classof the more genergva.lang.IndexOutOfBoundsException . A different subclass of
IndexOutOfBoundsException is called

java.lang.StringIndexOutOfBoundsException . Instances of this are created in circum-
stances such as supplying an illegathod argumentto thecharAt() instance methodof a
String . The clas$ndexOutOfBoundsException is itself a subclass gdva.lang.RuntimeException
the kind of exception that Java does mequire us tocatch, although we sometimes do, and
this class is a subclass Bfception

We can show this relationship inl@ML class diagram, including theconstructor methods
and some of theublic instance methods.

19142

20.7 Exception: inheritance hierarchy (page 434)

Throwable

+ Throwable()

+ Throwable(message: String)

+ Throwable(message: String, cause: Throwable)
+ Throwable(cause: Throwable)

+ getMessage(): String

+ getCause(): Throwable

+ toString(): String

? ?

Error Exception
+ Error() + Exception()
+ Error(message: String) + Exception(message: String)
+ Error(message: String, cause: Throwable) + Exception(message: String, cause: Throwable)
+ Error(cause: Throwable) + Exception(cause: Throwable)
RuntimeException IOException
+ RuntimeException() + I0Exception()
+ RuntimeException(message: String) + IOException(message: String)
+ RuntimeException(message: String, cause: Throwable)
+ RuntimeException(cause: Throwable)

}

IndexOutOfBoundsException

+ IndexOutOfBoundsException()
+ IndexOutOfBoundsException(message: String)

! }

ArraylndexOutOfBoundsException StringIndexOutOfBoundsException

+ ArraylndexOutOfBoundsException() + StringIndexOutOfBoundsException()

+ ArraylndexOutOfBoundsException(message: String) + StringlndexOutOfBoundsException(message: String)
+ ArraylndexOutOfBoundsException(index: int) + StringlndexOutOfBoundsException(index: int)

You can see thdixception isitself a subclass of something even more general caitadang.Throwable
and there is a separate subclas$twbéwable called

java.lang.Error . The classThrowable is thetype of all objects that can behrown and
handled by catches oftey statement. Error is the type ofThrowable s which represent such
serious conditions, that it is unlikely a program would kasttrying to catch them. For exam-

ple, java.lang.OutOfMemoryError is a subclass ofrror , and an instance of it is thrown

when thevirtual machine has run out of memory to create any more objects. Catchirgg thi
kind of condition is unlikely to be helpful in most situatinand so Java does not force us

to. They are examples oihchecked exceptios. However, ultimately the programmer knows
best, scError scanbe caught if desired.

Exception is the type ofThrowable which represents conditions that should typically be

caught at some point. If method contains code that could cause Exteption , or one of
its subclasses, to be thrown, then tdoepiler forces the exception to either be caught within

19143

20.8 Exception: making our own exception classes (page 435)

the method, or declared in thierows clauseof the method — they arehecked exceptios.

However, theRuntimeException class (and its subclasses) represents the kind of possible
exception which programmers usually avoid in the first pldéa example, whelooping an
array index over an array, the code would probably be writtense the correct values, and
so avoid arArraylndexOutOfBoundsException exception. It would be highly inconvenient

to haveto write acatch clauseor a throws clause even though we know the exceptions are
avoided, and so Java relaxes the rule for this subclass —tdleegreunchecked exceptios.

Of course, this means we must discipline ourselves: edpetiacode intended fosoftware
reuse weshouldwrite catch or throws clauses if we have not eliminated tresimlity of these
exceptions!

The diagram above is only a sample. There are almost 80 divbciasses dException in
the standard classes in Java 6.0, includavg.io.lOException — instances of that can be
thrown when processinijes. There are nearly 50 direct subclasseRuitimeException

One advantage of thisheritance hierarchy is that when we catch exceptions, we can decide
how general or specific we need to be. For example, the fatigwiiagment of code could
cause arArraylndexOutOfBoundsException to be thrown in some circumstances, and in
other cases &tringindexOutOfBoundsException

i nt arraylndex, stringindex;
String[] listOfStrings;

... Code here to populate the above array,
.. and set arraylndex and stringindex.

char ¢ = listOfStrings[arrayIndex].charAt(stringindex)

We can catch any exceptions of tyfseaylndexOutOfBoundsException , caused byrrayindex
having a bad value. Alternatively we can catch exceptionsed by the value afringindex
being unsuitable, that BtringIndexOutOfBoundsException exceptions. If we wish, we can
have twocatch clause, one for each. However, the exception inheritance hieyaatiows us
the option of having one catch clause to deal with both, it tekaappropriate, by catching
IndexOutOfBoundsException

20.8 Exception: making our own exception classes (page 435)

Another advantage afxceptiors being arranged in anheritance hierarchy is that we can
easily make our own exceptiaiases. Sometimes, the leaf classes at the bottom of the stan-
dard exception inheritance hierarchy tree are not quiteiBp@nough to suit the errors that
can occur in our own code. They are, obviouslgsigred to be appropriate to the standard
classes. So, whenever we wishttwow an exception, we should ask ourselves whether there

19144

is a standard exception that nicely captures the meanirgadtor, and if not, we should make
our own exception class that does.

Making a new exception class is very easy. All we need to ddv@a®se one of the standard
classes which is closest to characterizing what we wantj@aice asubclassof it. Often this
standard class will be eithgwa.lang.Exception itself orjava.lang.RuntimeException

We would choose the former if we want ours todbeecked exceptios, or the latter if we want
them to beunchecked exceptios because we believe the circumstances leading to them can
be and typically should be avoided.

Most often, our own exception classes contain nothing but émnstructor methods, one
with no method parameters, one which takes &tring for the message associated with the
exception, one which has both a message affcavable exception causgand one which has
only a cause. These simply invoke the corresponding caststrmethod from theuperclass

21 Inheritance

21.1 Inheritance (page 373)

A classcan be used to model a categoryatfjects with certain characteristics that exist in
some way in the requirements of the program. However, somestihe requirements exhibit
sub-categories of objects. For example, a program whicksgyded to simulate traffic move-
ment to help with road planning would probably have a claied@dehicle , representing the
category of all road vehicles. This would contain propsradich are common to all vehicles,
such as average speed, and the relationship between tkgiop@nd traffic lights, etc.. Sub-
categories of vehicle might be bicycle, private car, tans,dorry etc.. These all have different
specific properties — for example bicycles can be secureatysuitable fixed objects, such as
railings and of course bicycle stands, whereas cars negrades and metered side streets, etc..
Lorries need specific access and unloading points at spptaftes, such as shops that require
regular deliveries. The road simulation would probably titarmodel people wishing to move
about on the roads, and in this respect, bicycles, privatg taxis and buses have a current
and maximum number of passengers. Lorries might insteael daurrent and maximum load
capacity. The behaviour of taxis and buses respectiveittirine properties of taxi ranks and
bus stops. And so on.

We would want to model these sub-categories as separases|asach with whatever prop-
erties they specifically need, and yet still model the idest they are all vehicles with the
general properties. lnbject oriented programming we signify this relationship by having
superclasgs andsubclas®s. A superclass is something which models the generalargted
certain objects, and a subclass models a sub-category ¥ thfgjects. So, we might decide
thatVehicle is the superclass of all road vehicles, and that the &@lagsle models the sub-
category of bicycles, and have the clasBegateCar , Taxi , Bus, Lorry , etc. for the other
specific sub-categories.

19145

21.2 Inheritance: a subclass extends its superclass/(@@j)e 3

By saying that a class is a subclass of another, its supsrelasare modelling this arela-
tionship. So, in the above example, a bicyide vehicle, that is, afnstanceof Bicycle is
also an instance dfehicle

The relationship between superclasses and their subsleskaown asnheritance because
the subclasseasherit the general properties from the superclass, as well asgddiynspecific
properties of their own.

21.2 Inheritance: a subclass extends its superclass (pagées}

A subclassis said to be amxtensionof its superclass because, in addition toheriting the
properties of the superclass, it may have more propertéghlb superclass does not have. We
state the relationship by declaring in the heading for thekss that iextends the superclass.
For example, in a program to simulate traffic flow we might hidaesfollowing.

public class Bicycle extends Vehicle

{

public void chainToRailings(Railings railings)

{
} Il chainToRailings

} Il class Bicycle

So aBicycle object has all the properties of\&hicle , but also has the feature of being able
to be chained to railings.

As well as being used to represénarelationships between the moaésses of our programs,
subclasses are commonly used in gingphical user interface parts of our programs. For ex-
ample, the following says that tiielloworld class is a subclass of tiaax.swing.JFrame
class. This mearigelloWorld is an extension afFrame, that is, annstanceof HelloWorld

is aJFrame object too, but with extra properties that a plaiframe object does not have.

i nport javax.swing.JFrame;
public class HelloWorld extends JFrame
{
... Code to add a JLabel with the text "Hello World!" in it.
} Il class Helloworld

19146

21.3 Inheritance: invoking the superclass constructayé(®v9)

21.3 Inheritance: invoking the superclass constructor (pge 379)

In the body of theconstructor method of asubclasswe typically start by invoking a construc-
tor method of itssuperclass This is done by writing theeserved wordsuper followed by
the appropriatenethod argument in brackets. Such superclass constructor callmust be
the firststatementin the body of the constructor method, and furthermore, tipesclass must
have a constructor method which matches the supplied amgsme

For example, in a traffic flow simulation program, when a vihis added to the simulation it
probably would always be given a position, direction andentrspeed.

public class Vehicle

{

publ i ¢ Vehicle(Position requiredPosition,
Direction requiredDirection, Speed requiredSpeed)

{
... Code that does something with requiredPosition,
... requiredDirection and requiredSpeed.

} Il Vehicle

} Il class Vehicle

Instead of creating plaiNehicle objects we would makenstances of a subclass, such as
Bicycle . We would still supply the position, direction and currepeed information to the
constructor method dicycle , and it would most likely simply pass it on to the constructor
method ofVehicle

public class Bicycle extends Vehicle

{
publ i ¢ Bicycle(Position position, Direction direction, Speed sp eed)
{
super (position, direction, speed);
... Code specific to making a Bicycle, if any, goes here.
} Il Bicycle

} Il class Bicycle

21.4 Inheritance: invoking the superclass constructor: inplicitly (page
423)

In the body of aconstructor method, if the first statementis not asuperclass constructor
call (usingsuper), nor is it analternative constructor call (usingt hi s), then a call to the

19147

21.5 Inheritance: overriding a method (page 380)

constructor method of theuperclasswhich has nanethod argumens, is assumed. This is
because the first work which is done by a constructor methost tmelito actually create the
object, that is, allocate memory for it, and this is done inside tbestructor method of the
java.lang.Object class

21.5 Inheritance: overriding a method (page 380)

Theinstance method of asuperclassareinherit ed by itssubclasgs. Sometimes, the defini-
tion of an instance method needs to be changed in a subciagkidh case the subclass simply
redefines it. The subclass versioverrides the inherited definition. To override an instance
method, the redefinition must have the same naméyges of method parameters otherwise

it is a definition of a differentmethod It must also still be an instance method, and have the
samereturn type. (Actually, the return type of the new instance method caa babclass of
the return type of the one in the superclass.)

For example, in a traffic flow simulation program, most kindlsehicle probably perform an
emergency stop in much the same way. However, a bicycle plpdaes it differently to most.

public class Vehicle

{

public void emergencyStop()

{

... General code for most vehicles.
} Il emergencyStop

} Il class Vehicle

public class Bicycle extends Vehicle

{

public void emergencyStop()

{

... Specific code for bicycles.
} Il emergencyStop

} Il class Bicycle

21.6 Inheritance: overriding a method: @Override annotaton (page
430)

Java 5.0 introduced an idea call@anotations. These allow us to provide additional informa-
tion to thecompiler which can then be used to help in various ways. In particti@over-

19148

21.7 Inheritance: abstract class (page 385)

ride annotation, @Override , can be written immediately before the heading ofirsstance
methodthat we believeverrides one from thesuperclass or is amethod implementationof
anabstract methodin the superclass. The compiler will complain if this is no¢ tase, thus
protecting us from accidentally getting tineethod signature wrong — perhaps misspelling
the method name or mis-ordering threethod parameter types and creating anverloaded
method, etc..

21.7 Inheritance: abstract class (page 385)

If we wish that noinstances of a particularclassshould be made, we can declare it as an
abstract class This is done by including theeserved wordabst r act before the word!| ass

in its heading. Thecompiler will produce an error if any code attempts to create a direct
instance of an abstract class.

For example, in a program that simulates traffic flow, it iglkthat we do not wish any direct
instances of the clas&hicle to be made, onlgubclases of it.

public abstract class Vehicle

{

} Il class Vehicle

public class Bicycle extends Vehicle
{
} Il class Bicycle
The following code would produce an error message from tinepder.
Vehicle v = new Vehicle(...);

Whereas this code would be allowed.

Bicycle b = new Bicycle(...);

21.8 Inheritance: abstract method (page 386)

An abstract classis permitted to havabstract methods declared in it. These arastance
methods which havemodifiers (such agubl i ¢ — but notst ati ¢), return type, name and

19149

21.9 Inheritance: polymorphism (page 390)

method parameters as usual, but also include theserved word abst ract and instead of
a body defined within braces, the heading is followed by a sman (). This declares
only themethod interface i.e. themethod signatureandreturn type, and not themethod
implementation.

For example, in a traffic flow simulation program, the abstcd@ssVehicle might have an
abstract method that decides whether the vehicle can passalparticular route. It may well
be that each kind of vehicle needs to implement this in a iffeway.

public abstract class Vehicle

{

public abstract bool ean canPassDown(Route r);

} Il class Vehicle

All subclasgs of the abstract class must either provide a method impitatien of all the
abstract methods, or themselves be abstract classes. Vé¢henteran abstract method, we are
saying that all (non-abstract) subclasses of the absti@ss contain an instance method with
the given method interface (name, method parameters amd tgpe), but the implementations
of the instance method are provided by the subclassesr thdreone being defined here. This
saves us having to provide an implementation that is ne\et,us cases whemverysubclass
would override it with their own version.

public class Bicycle extends Vehicle

{

publi c bool ean canPassDown(Route r)

{
... Code for deciding if this bicycle can pass down the route.
} Il canPassDown

} Il class Bicycle

When a subclass defines a non-abstract instance method sha¢$o defined in itsuper-
class we say that ibverrides the one from the superclass. When it defines an instanceteth
which is declared as an abstract method in its superclassawé provides anethod im-

plementation. We can think of an override asplacingthe method implementation from the
superclass.

21.9 Inheritance: polymorphism (page 390)

An instance of a subclassis also an instance of itsuperclass For example, in a traffic
flow simulation program, if thelassBicycle is a subclass o¥ehicle , then an instance of

19150

21.10 Inheritance: polymorphism: dynamic method bindpage 391)

Bicycle isaBicycle and also iis aVehicle . It may be treated asBicycle , because thatis
its type. However, it also may be treated a¥ehicle because that is also its type. It Hasth
these forms. We say that it molymorphic, which means ‘has many forms’. Java supports
polymorphism via the use ofnheritance.

21.10 Inheritance: polymorphism: dynamic method binding page 391)

In general, a&lassmight have asubclasswhich mightoverride some of itanstance method.
Also, abstract methods are designed to have differentethod implementatiors in different
subclasses. Thus, when tb@mpiler produces théyte codefor amethod callon an instance
method, it does not know which actuakthod implementationwill get used — the same call
could invoke different versions of the method at differemments, depending on the value of
theobject referenceatrun time.

For example, assume we have the chascle with the instance methasiergencyStop()
and subclasBoshCar that does not override it, and another subcBisgle that does. Which
version of the method is called by the second line in the Yalg code?

Vehicle funRide = Math.random() < 0.5 ? new PoshCar(...) : new Bicycle(...);
funRide.emergencyStop();

Only at run time can the answer be determined: the referancedsinfunRide refers either

to aPoshCar object, in which case the version froviehicle is used, or &icycle object, in
which case the version froicycle is used. The process of determining at run time which
actual method to invoke is known dgnamic method binding.

As a programmer, we have to be aware of this principle, becauseans that our code might

not behave as we expected it to in some subclass where someingtance methods have been
replaced with ones that do something different to what weevesipecting. Instance methods
which are declared gwivate are safe — they cannot be overridden because they are not even
visible in any subclass.

21.11 Inheritance: final methods and classes (page 391)

If we wish that nasubclassmayoverride a particulapublic instance method we can declare
it as afinal method by including thereserved wordfi nal in its heading. This should be
used with care — it may be that future requirements dictaedlsubclass which has not yet
been written needs its own version of the instance methddt Wwould not be able to have one
without us removing théi nal modifier in thesuperclass

Similarly, we can state that @assis afinal classand cannot have any subclasses at all, by
includingf i nal in the class heading.

19151

21.12 Inheritance: adding more object state (page 393)

21.12 Inheritance: adding more object state (page 393)

A subclassis said to be amxtensionof its superclass because in general it may add more
properties that the superclass does not have. One waxst@fdng is to add morebject state
that is, additionainstance variables.

21.13 Inheritance: adding more instance methods (page 395)

Another way ofextendng thesuperclassn a subclasss to add morenstance method. This
is especially likely to be desired if the subclass also hatiatal instance variables.

21.14 Inheritance: testing for an instance of a class (page?3)

Thereserved wordi nst anceof is abinary infix operator which takes ambject reference
as its leftoperand, and aclassname as its right operand. It yieldsue if the reference refers
to an object whichs an instanceof the named class (including being an instance @iflaclass
of the named class)al se otherwise.

For example, in a traffic flow simulation program, if the claasdemis a subclass dicycle
which is a subclass ofehicle , then the following code might be found.

Vehicle vehicle = new Tandem(...);

... Code that might change what vehicle refers to.

i f (vehicle instanceof Bicycle)
... Code that is only run if vehicle is still referring to a Bic ycle,
... perhaps still the original Tandem.

21.15 Inheritance: casting to a subclass (page 397)

An instanceof asubclass is a instance of itsuperclasstoo. This means something which is
of the subclass/pe can always be used wherever the superclass type is reqemedxample,
in a traffic flow simulation program, Bicycle is a subclass d¥ehicle , then the following
would be permitted.

Vehicle vehiclel = new Bicycle(...);

However, obviously not every instance of a superclass © afsinstance of a particular one
of its subclasses, and so something of the superclass typetautomatically be used where
something of a subclass type is required.

19152

21.16 Inheritance: is a versus has a (page 406)

For example, the following is not permitted.

Vehicle vehiclel = new Bicycle(...);

Bicycle bicyclel = vehiclel;
The problem is in the last line vehiclel is definitely of typeVehicle , but as far as Java is
concerned, its value might not be of tyBeeycle , and so a&ompile time error will result.
If we are convinced that it is safe to treat something of thmestlass type as though it is of a
particular subclass type, then we @astthe value to that subclass, by preceding the value with
the name of the subclass in brackets. For example, the fiolfpis appropriate if we are sure
that after the code represented.as has beerxecutel, the value of theariable vehiclel
is still areferenceto aBicycle object.

Vehicle vehiclel = new Bicycle(...);

Bicycle bicyclel = (Bicycle)vehiclel;
Thecompiler will accept this on face value, but the type cast is checkedratime. If it turns

out that the value being cast to a subtype is not a referenae tabject of that type, then a
ClassCastException object isthrown.

A common misunderstanding is thatlasscast somehow changes the object that is being cast.
Rather, it merelychecksthat the object is already of the stated type. This is in @sttto a

primitive type cast, such as convertingdaubl e into ani nt , which really does create a new
value from the old one.

21.16 Inheritance: is a versus has a (page 406)

When aclass A, is asubclassof another classB, we say that aobject of type Ais aB.

If, on the other hand, a clas§, has annstance variableof type D, we say that an object of
typeC has abD.

21.17 Inheritance: using an overridden method (page 414)

A subclasscanoverride aninstance methoddefined in asuperclass but sometimes the be-
haviour of the new version is based on that of the one it israliag. This means we need

19153

21.18 Inheritance: constructor chaining (page 423)

to have amethod call to thesuperclassersion, which we can do by prepending the instance
method name with theeserved wordsuper and a dot.

For example, in a traffic flow simulation program where mostlkiof vehicle probably perform
an emergency stop in much the same way, perhaps a bicyclewioer is based on the more
general one.

public class Vehicle

{

public void emergencyStop()

{

... General code for most vehicles.
} Il emergencyStop

} Il class Vehicle

public class Bicycle extends Vehicle

{

public void emergencyStop()

{

... Specific code for bicycles.

super .emergencyStop();

... More specific code for bicycles.
} Il emergencyStop

} Il class Bicycle

This super. notation can be used in any instance method of the subclasgust in the
overriding method.

21.18 Inheritance: constructor chaining (pagée 423)

Whenever aconstructor method is invoked, the first thing done is either a call to another
constructor method in the sanskass or to a constructor method in tleeiperclass This in
turn does the same, all the way up tihleritance hierarchy until eventually the construc-
tor method of thgava.lang.Object class is called. This process is knowncasstructor
chaining.

Such chaining must always be possible for every class we yaitelse we would not be able to
haveobjects created atun time — it is the constructor method @hbject that actually creates
an object. So, one rule is that at least one constructor rdethevery class mustot start with

a call to another constructor method of the same class!

19154

22 File 10 API

22.1 File IO API: IOException (page 450)

When processinfiles, there is much potential for things to go wrong. For exangitempting
to read a file that does not exist, or the end user running ofilecgpace while writing a file,
or theoperating systemexperiencing a disk or network filestore problem, and so os.aA
result, most of the operations we can perform on files in Jew&apable othrowing anex-
ception, of thetype java.io.|OException . As you might expect, there are masybclases
of I0Exception , includingjava.io.FileNotFoundException

IOException s itself a directsubclassof java.lang.Exception , rather than
java.lang.RuntimeException and thusnstances of it arechecked exceptios, that is, we
must writecatch clause orthrows clauses for them. This is because the errors which cause
them are not generally avoidable by writing code.

22.2 File IO API: InputStream (page|451)

The basic building block for readingata in Java, is theslassjava.io.InputStream . This
provides a view of the data adgte stream— a continuous sequence loftes.

The simplest way to access these bytes, one by one, is viadtd{¢ instance method This
takes nanethod argument andreturn s the next byte from the stream. However, if there are
no more bytes, because all of them have been read (or theneomasn the first place), then it
returns the numbet instead. If something goes wrong during the read, the®&xception

is thrown.

The value returned bgead() must be able to distinguistt from the byte valu€55, which
is the same ad in 8-bit number representation. For this reason, the résalttually an nt
rather than ayt e.

As an example, here is possible skeleton code to proceswealdta in atnputStream . This

is another appropriate use of treatingassignment statements anexpression we have a
loop which terminates when the result of some expression is ainerélue, and we also want
to use that result inside the body of the loop. Notice that eednto put brackets around the
assignment statement; this is becatibas a lowepperator precedencehan the= operator.

InputStream inputData;
try

{

inputData = ... Code to set up inputData.
i nt currentByte;
whi | e ((currentByte = inputData.read()) != -1)

19155

22.3 File 10 API: InputStreamReader (page 456)

{
... Code to do something with currentByte.
} I while
I try
cat ch (IOException exception)
{
System.err.printin("Ooops -- that didn’'t work! " + excepti on.getMessage());
} Il catch
finally
{
try { if (inputData != nul 1) inputData.close(); }
cat ch (IOException exception)
{ System.err.printin("Could not close input " + exception); }
Il finally

Notice how we have usedtgy finally statement to make sure that there is an attempthose
thelnputStream even if something else goes wrong. It is a good idea to enseidasge input
and/or output streams when we have finished with them. Fanpbe on someperating
systens that do not separate the notiongitef name from file contents, a file cannot be deleted
or renamed if a program has it open for reading or writing. iiddally, if we do not close
output streams then the data might never get written to gt rion!

22.3 File 10 API: InputStreamReader (page 456)

If we wish to treat arinputStream as a sequence @haracters, rather than a sequence of
bytes, we can wrap it up in amstance of the classjava.io.InputStreamReader . This
provides annstance methodcalledread , whichreturn s the nextharacterfrom the wrapped
up InputStream , or -1 if there are no more to be read. To achieve this, the instaretbod
reads one or more bytes from the underlyimgtStream for each character.

InputStreamReader has twoconstructor methods, one takes just amputStream which

it wraps up. It will (usually) use the the defadile encodingin operation on the computer
where the program isun. The second constructor method takes bothnpatStream and
the character encoding which is to be used — permitting usad character streams that were
generated under a differeloicale

22.4 File 10 API: BufferedReader (page 459)

Whilst the classjava.io.InputStreamReader convertsbytes into characters, it does not
provide annstance methodto read a whole line of characters in one go. Instead, thistiom-
ality is provided byjava.io.BufferedReader . This class wraps up dnputStreamReader

object and provides the instance methreddLine() , as well agead() for a single character

19156

22.5 File 10 API: FilelnputStream (page 462)

(and othemethods). We can create BufferedReader object by providing theonstructor
method with aninstanceof InputStreamReader , which we wish it to wrap up.

The instance methadadLine() takes nanethod arguments andreturn's aString , contain-
ing the next line of the input from the underlyihgputStreamReader ; or thenull reference
if there are no more lines to be read.

22.5 File 10 API: FileInputStream (page|462)

To readbytes from afile, we use annstanceof the classjava.io.FilelnputStream . This
is asubclassof java.io.InputStream which reads its input bytes from a file.

22.6 File 10 API: FileReader (page 462)

To readcharacters instead ofbytes from afile, we can wrap &ilelnputStream in an
InputStreamReader . For convenience we can instead creataatanceof java.io.FileReader
which then creates the requir&delnputStream and InputStreamReader internally for
us. FileReader is a subclassof java.io.InputStreamReader , and so has &ad() in-
stance methodto read acharacter, and can be wrapped insideBafferedReader to obtain
areadLine() instance method. One of tlednstructor methods of FileReader takes the
name of the file to be accessed.

Here is a possible skeleton userdéReader

FileReader fileReader;
try

{

fleReader = new FileReader("my-data.txt");
i nt currentCharacter;
whi | e ((currentCharacter = fileReader.read()) != -1)
{
... do something with currentCharacter.
} Illwhile

+ Ity
cat ch (IOException exception)

{

System.err.printin(exception.getMessage());
} Il catch
finally
{

try { if (fileReader != nul 1) fileReader.close(); }

cat ch (IOException exception)

{ System.err.printin("Could not close input file " + excepti on); }

Il finally

19157

22.7 File 10 API: OutputStream (page 462)

22.7 File 10 API: OutputStream (page 462)

The basic building block for writinglata in Java, is thelassjava.io.OutputStream . Like
java.io.InputStream , this provides a view of the data asogte stream OutputStream
has, amongst others, arstance methodwrite() to write a singlebyte.

22.8 File 10 API: OutputStreamWriter (page 462)

If we wish to treat arOutputStream as a sequence characters, rather than a sequence of

bytes, we can wrap it up in amstanceof the classjava.io.OutputStreamWriter . This is
analogous to
java.io.InputStreamReader for InputStream objects. OutputStreamWriter ~ has, amongst

others, annstance methodwrite() to write a single character.

22.9 File IO API: FileOutputStream (page/463)

To write bytes to afile, we use annstanceof theclassjava.io.FileOutputStream . Thisis
asubclassof java.io.OutputStream which writes its output bytes to a file.

22.10 File 10O API: FileWriter (page 463)

To write characters instead ofbytes to afile, we can wrap &ileOutputStream in an
OutputStreamWriter . For convenience we can instead creataatanceof java.io.FileWriter :
which then creates the requiriteOutputStream andOutputStreamWriter internally for

us. FileWriter is asubclassof java.io.OutputStreamWriter , and so has arite() in-
stance methodo write a character. One of tlwenstructor methods of FileWriter ~ takes the
name of the file to be written to.

Here is a possible skeleton useFgéWriter . Notice the call to thelose() instance method
in thefinally block — it is a good idea ta@losefiles, especially for output files, when we have
finished with them. If we do not, then it is possible tluzta written into theFileWriter

might still be waiting in memory buffers, and never get varittinto the physical file.

FileWriter fileWriter;
try

{

fileWriter = new FileWriter("my-results.txt");
bool ean iFeelLikelt = ...
whi | e (iFeelLikelt)

{

19158

22.11 File 10 API: PrintWriter (page 463)

i nt currentCharacter = ...
fileWriter.write(currentCharacter);

iFeelLikelt = ...
} Il while
I try
cat ch (IOException exception)

{

System.err.printin(exception.getMessage());
} Il catch
finally

{

try { if (fileWriter I= nul 1) fileWriter.close(); }
cat ch (IOException exception)
{ System.err.printin("Could not close output file " + except ion); }
+ Il finally

Notice that thevariable to hold each character is ant . Only the lowest 1®its, which is the
size ofchar, are used bwrite() . This avoids the need for us tastthe value to ahar if
we have in fact just obtained it fromad() of anInputStream

22.11 File 1O API: PrintWriter (page 463)

Whilst the classjava.io.OutputStreamWriter (and itssubclassjava.io.FileWriter)
convertscharacters into bytes, it does not providénstance method to print whole lines
of text, or decimal representations of numbers, etc.. &ustehis functionality is provided by
java.io.PrintWriter . This class wraps up abutputStreamWriter object and provides
instance methodwintin() , andprint() for a range of possiblmethod argumens. Since
Java 5.0 it also hagrintf() . We can create 8rintWriter object by providing thecon-
structor method with aninstanceof OutputStreamWriter ~ , which we wish it to wrap up.

22.12 File 10 API: PrintWriter: checkError() (page 464)

Curiously, thanstance method of thejava.io.PrintWriter classneverthrow anyexcep-
tions! (However, some of itsonstructor methods do.) So, to find out whether something has
gone wrong with the printing, we can use¢teckError() instance method. Thigturns a
bool ean which ist r ue if there has been an errdral se otherwise.

Hence, a typical use dfrintWriter might be as follows.

PrintWriter printWriter;
try

19159

22.13 File 10 API: PrintWriter: versus PrintStream (pag846

{

printWriter = ...
while (..

{

printWriter.write(...);

} I while
I try
cat ch (IOException exception)
{
System.err.printin(exception.getMessage());
} Il catch
finally

{

i f (printWriter 1= nul 1)
{

II' printWriter.close() does not throw an exception.

printWriter.close();

i f (printWriter.checkError())

System.err.printin("Something went wrong with the output ");
L
+ 1l finally

22.13 File 10 API: PrintWriter: versus PrintStream (page 468)

An often asked question is, what is the difference betvj@erio.PrintStream andjava.io.PrintWriter
PrintStream is asubclassof OutputStream , and so hawrite() instance method for writ-

ing bytes, but also haprint() , println() andprintf() instance methods for printing rep-
resentations of things aharacters, (e.g. decimal representationsi of s, String s as lines,

etc.). APrintWriter ~ is a wrapper around anstanceof java.io.OutputStreamWriter and
providesprint() , printin() andprintf() instance methods for printing representations as
characters via th@utputStreamWriter . It does not have any way to write bytes.

The desire to write anixture of bytes and characters to the same stream is highly unusual —
we nearly always want either all bytes or all characterslatier sometimes with the ability to
print representation®rintStream primarily exists forSystem.out andSystem.err , so that

the standard output and thestandard error are each available as a stream of bytes, but can
also be conveniently treated as ‘printable’ — e.g. for emessages, debugging messages, or
very simple programs.

Programs that need to produce representations as a streharatters should u®entWriter
rather thanPrintStream , becausePrintWriter does not have instance methods to write
bytes; we cannot accidentally use them. (And programs tisdt @ produce a stream of bytes
should us®utputStream (includingjava.io.FileOutputStream) rather tharPrintStream .)

19160

22.14 File 10 API: PrintWriter: can also wrap an OutputSimg@age 468)

22.14 File 10 API: PrintWriter: can also wrap an OutputStrea m (page
468)

System.out is anOutputStream (actually itssubclass PrintStream). If we wish to treat it
as aPrintWriter ~ , then we can wrap it up inside &@utputStreamWriter and then inside a
PrintWriter

PrintWriter systemOut = new PrintWriter(new OutputStreamWriter(System.out));

However, for convenience one of tlw®nstructor methods of PrintWriter can take an
OutputStream directly, andconstruct the intermediat®utputStreamWriter internally for
us.

PrintWriter systemOut = new PrintWriter(System.out);

All instances of outputclasses which act as wrappers around some other output olgest
may typically store their output in an internal buffer befeending it to the wrapped up object,
in an effort to speed up overall operation of our programschShwffers ardlushed by calls
to theflush() instance method or when the output isloseal, via theclose() instance
method. For aPrintWriter which is wrapping ugbystem.out , it is likely we would want
to enableautomatic flushing. This ensures thatata is sent all the way through to appearing
at the final destination (e.g. the screen) whenever one qirifit() or printf() instance
methods has finished producing its result (butgnot()). Automatic flushing can be enabled
by using a separate constructor method which takes an adalibtiool ean method argument

PrintWriter systemOut = new PrintWriter(System.out, true);

22.15 File IO API: File (page 469)

Theclassjava.io.File allows us to examine propertiesfies. Although the class is called
File ,itisreally all about filenamesand properties of any files of those names. Coastruc-

tor method of the File class takes the path name of a file as its simy&hod argument
There are a number afistance method, includingexists() ~ whichreturns abool ean in-
dicating whether or not thEile object represents a file that actually exists. In other words,
whether or not the path name given to the constructor methbeiname of a file that currently
exists.

19161

22.16 File 10 API: DataOutputStream (page 479)

22.16 File 10 API: DataOutputStream (page 479)

If we wish to write values of angrimitive type, rather than jusiyt e, to abinary file, we can
use thejava.io.DataOutputStream class This is asubclassof java.io.OutputStream

and aninstanceof it is also a wrapper around &utputStream (including its subclasses such
asjava.io.FileOutputStream). For example, ®ataOutputStream object which writes to
thefile out.dat can beconstructed with the following code.

DataOutputStream out = new DataOutputStream(new FileOutputStream("out.dat"));

DataOutputStream hasinstance method to write all the kinds of primitive type, such as
writelnt() to write ani nt value in fourbytes, andwriteShort() to write ashort value in
two bytes. Thenostsignificant byte of numbers is written first, although if wéeind to read the
data back using the correspondirgadXXX() instance method gdiva.io.DatalnputStream ,
we do not really need to worry about the byte order.

Instances ofava.lang.String can also be written, using theiteUTF() instance method.
This records the information in (a slight variant offike encodingknown as8-bit Unicode
Transformation Format. UTF-8 allows for allUnicodg20] characters to be represented.

22.17 File 10 API: DatalnputStream (page 479)

If we wish to read values fromlainary file which was written using BataOutputStream , we
can use thgava.io.DatalnputStream class This is asubclassof java.io.InputStream

and aninstanceof it is also a wrapper around dmputStream (including its subclasses such
asjava.io.FilelnputStream). For example, ®atalnputStream object which reads from
thefile in.dat can beconstructed with the following code.

DatalnputStream in = new DatalnputStream(new FilelnputStream(“in.dat"));

DatalnputStream hasinstance method to read all the kinds oprimitive type, such as
readint() to read an nt value from fourbytes, andreadShort() to read ashort value
from two bytes. Thamostsignificant byte of numbers is read first, although if we arg ju
readingdata back which was written using the correspondmigeXXX() instance method of
DataOutputStream , we do not really need to worry about the byte order.

Instances ofava.lang.String which were written usingriteUTF() of DataOutputStream
can be read using threadUTF() instance method.

19162

	Computer basics
	Computer basics: hardware (page 3)
	Computer basics: hardware: processor (page 3)
	Computer basics: hardware: memory (page 3)
	Computer basics: hardware: persistent storage (page 3)
	Computer basics: hardware: input and output devices (page 3)
	Computer basics: software (page 3)
	Computer basics: software: machine code (page 3)
	Computer basics: software: operating system (page 4)
	Computer basics: software: application program (page 4)
	Computer basics: data (page 3)
	Computer basics: data: files (page 5)
	Computer basics: data: files: text files (page 5)
	Computer basics: data: files: binary files (page 5)

	Java tools
	Java tools: text editor (page 5)
	Java tools: javac compiler (page 9)
	Java tools: java interpreter (page 9)
	Java tools: javadoc (page 223)
	Java tools: javadoc: throws tag (page 355)

	Operating environment
	Operating environment: programs are commands (page 7)
	Operating environment: standard output (page 7)
	Operating environment: command line arguments (page 8)
	Operating environment: standard input (page 187)
	Operating environment: standard error (page 344)

	Class
	Class: programs are divided into classes (page 16)
	Class: public class (page 16)
	Class: definition (page 16)
	Class: objects: contain a group of variables (page 158)
	Class: objects: are instances of a class (page 158)
	Class: objects: this reference (page 180)
	Class: objects: may be mutable or immutable (page 193)
	Class: objects: compareTo() (page 222)
	Class: is a type (page 161)
	Class: making instances with new (page 162)
	Class: accessing instance variables (page 164)
	Class: importing classes (page 188)
	Class: stub (page 191)
	Class: extending another class (page 245)
	Class: generic class (page 491)
	Class: generic class: bound type parameter (page 496)
	Class: generic class: bound type parameter: extends some class (page 496)
	Class: generic class: where type parameters cannot be used (page 501)
	Class: generic class: used as a raw type (page 502)

	Method
	Method (page 118)
	Method: main method: programs contain a main method (page 17)
	Method: main method: is public (page 17)
	Method: main method: is static (page 17)
	Method: main method: is void (page 17)
	Method: main method: is the program starting point (page 17)
	Method: main method: always has the same heading (page 18)
	Method: private (page 118)
	Method: accepting parameters (page 118)
	Method: accepting parameters: of a class type (page 164)
	Method: accepting parameters: of an array type (page 297)
	Method: calling a method (page 119)
	Method: void methods (page 120)
	Method: returning a value (page 122)
	Method: returning a value: of a class type (page 176)
	Method: returning a value: multiple returns (page 196)
	Method: returning a value: of an array type (page 312)
	Method: changing parameters does not affect arguments (page 124)
	Method: changing parameters does not affect arguments: but referenced objects can be changed (page 208)
	Method: constructor methods (page 159)
	Method: constructor methods: more than one (page 203)
	Method: constructor methods: more than one: using this (page 393)
	Method: constructor methods: default (page 425)
	Method: class versus instance methods (page 166)
	Method: a method may have no parameters (page 173)
	Method: return with no value (page 206)
	Method: accessor methods (page 207)
	Method: mutator methods (page 207)
	Method: overloaded methods (page 237)
	Method: that throws an exception (page 354)
	Method: that throws an exception: RuntimeException (page 358)

	Command line arguments
	Command line arguments: program arguments are passed to main (page 17)
	Command line arguments: program arguments are accessed by index (page 26)
	Command line arguments: length of the list (page 79)
	Command line arguments: list index can be a variable (page 79)

	Type
	Type (page 36)
	Type: String (page 135)
	Type: String: literal (page 18)
	Type: String: literal: must be ended on the same line (page 21)
	Type: String: literal: escape sequences (page 49)
	Type: String: concatenation (page 26)
	Type: String: conversion: from int (page 38)
	Type: String: conversion: from double (page 55)
	Type: String: conversion: from object (page 177)
	Type: String: conversion: from object: null reference (page 211)
	Type: int (page 36)
	Type: double (page 54)
	Type: casting an int to a double (page 79)
	Type: boolean (page 133)
	Type: long (page 145)
	Type: short (page 145)
	Type: byte (page 145)
	Type: char (page 145)
	Type: char: literal (page 145)
	Type: char: literal: escape sequences (page 146)
	Type: char: comparisons (page 238)
	Type: char: casting to and from int (page 238)
	Type: float (page 146)
	Type: primitive versus reference (page 162)
	Type: array type (page 287)
	Type: enum type (page 309)
	Type: enum type: access from another class (page 312)

	Standard API
	Standard API: System: out.println() (page 18)
	Standard API: System: out.println(): with no argument (page 98)
	Standard API: System: out.println(): with any argument (page 427)
	Standard API: System: out.print() (page 98)
	Standard API: System: out.printf() (page 126)
	Standard API: System: out.printf(): zero padding (page 140)
	Standard API: System: out.printf(): string item (page 289)
	Standard API: System: out.printf(): fixed text and many items (page 289)
	Standard API: System: out.printf(): left justification (page 300)
	Standard API: System: in (page 187)
	Standard API: System: in: is an InputStream (page 452)
	Standard API: System: getProperty() (page 195)
	Standard API: System: getProperty(): line.separator (page 195)
	Standard API: System: currentTimeMillis() (page 262)
	Standard API: System: err.println() (page 344)
	Standard API: System: out: is an OutputStream (page 468)
	Standard API: System: err: is an OutputStream (page 468)
	Standard API: Integer: parseInt() (page 41)
	Standard API: Integer: as a box for int (page 487)
	Standard API: Integer: as a box for int: autoboxing (page 494)
	Standard API: Double: parseDouble() (page 54)
	Standard API: Math: pow() (page 73)
	Standard API: Math: abs() (page 87)
	Standard API: Math: PI (page 87)
	Standard API: Math: random() (page 205)
	Standard API: Math: round() (page 289)
	Standard API: Scanner (page 188)
	Standard API: Scanner: for a file (page 306)
	Standard API: String (page 233)
	Standard API: String: some instance methods (page 234)
	Standard API: String: format() (page 301)
	Standard API: String: split() (page 313)
	Standard API: Character (page 342)
	Standard API: Object (page 422)
	Standard API: Object: toString() (page 427)

	Statement
	Statement (page 18)
	Statement: simple statements are ended with a semi-colon (page 18)
	Statement: assignment statement (page 37)
	Statement: assignment statement: assigning a literal value (page 37)
	Statement: assignment statement: assigning an expression value (page 38)
	Statement: assignment statement: updating a variable (page 70)
	Statement: assignment statement: updating a variable: shorthand operators (page 87)
	Statement: assignment statement: is an expression (page 450)
	Statement: if else statement (page 60)
	Statement: if else statement: nested (page 62)
	Statement: if statement (page 64)
	Statement: compound statement (page 66)
	Statement: while loop (page 71)
	Statement: for loop (page 77)
	Statement: for loop: multiple statements in for update (page 136)
	Statement: statements can be nested within each other (page 92)
	Statement: switch statement with breaks (page 107)
	Statement: switch statement without breaks (page 110)
	Statement: do while loop (page 112)
	Statement: for-each loop: on arrays (page 293)
	Statement: try statement (page 344)
	Statement: try statement: with multiple catch clauses (page 347)
	Statement: try statement: with finally (page 451)
	Statement: throw statement (page 350)

	Error
	Error (page 20)
	Error: syntactic error (page 20)
	Error: semantic error (page 22)
	Error: compile time error (page 22)
	Error: run time error (page 24)
	Error: logical error (page 29)

	Execution
	Execution: sequential execution (page 23)
	Execution: conditional execution (page 60)
	Execution: repeated execution (page 70)
	Execution: parallel execution -- threads (page 253)
	Execution: parallel execution -- threads: the GUI event thread (page 254)
	Execution: event driven programming (page 254)

	Code clarity
	Code clarity: layout (page 31)
	Code clarity: layout: indentation (page 32)
	Code clarity: layout: splitting long lines (page 43)
	Code clarity: comments (page 82)
	Code clarity: comments: marking ends of code constructs (page 83)
	Code clarity: comments: multi-line comments (page 189)

	Design
	Design: hard coding (page 36)
	Design: pseudo code (page 73)
	Design: object oriented design (page 184)
	Design: object oriented design: noun identification (page 185)
	Design: object oriented design: encapsulation (page 187)
	Design: Sorting a list (page 295)
	Design: Sorting a list: bubble sort (page 296)
	Design: Searching a list: linear search (page 323)
	Design: UML (page 381)
	Design: UML: class diagram (page 381)

	Variable
	Variable (page 36)
	Variable: int variable (page 37)
	Variable: a value can be assigned when a variable is declared (page 42)
	Variable: double variable (page 54)
	Variable: can be defined within a compound statement (page 92)
	Variable: local variables (page 124)
	Variable: class variables (page 124)
	Variable: a group of variables can be declared together (page 129)
	Variable: boolean variable (page 133)
	Variable: char variable (page 145)
	Variable: instance variables (page 159)
	Variable: instance variables: should be private by default (page 175)
	Variable: of a class type (page 161)
	Variable: of a class type: stores a reference to an object (page 162)
	Variable: of a class type: stores a reference to an object: avoid misunderstanding (page 170)
	Variable: of a class type: null reference (page 192)
	Variable: of a class type: holding the same reference as some other variable (page 216)
	Variable: final variables (page 194)
	Variable: final variables: class constant (page 205)
	Variable: final variables: class constant: a set of choices (page 308)
	Variable: final variables: class constant: a set of choices: dangerous (page 308)
	Variable: of an array type (page 287)
	Variable: initial value (page 453)

	Expression
	Expression: arithmetic (page 38)
	Expression: arithmetic: int division truncates result (page 52)
	Expression: arithmetic: associativity and int division (page 52)
	Expression: arithmetic: double division (page 55)
	Expression: arithmetic: double division: by zero (page 291)
	Expression: arithmetic: remainder operator (page 149)
	Expression: arithmetic: shift operators (page 473)
	Expression: arithmetic: integer bitwise operators (page 474)
	Expression: brackets and precedence (page 45)
	Expression: associativity (page 48)
	Expression: boolean (page 60)
	Expression: boolean: relational operators (page 60)
	Expression: boolean: logical operators (page 128)
	Expression: boolean: logical operators: conditional (page 323)
	Expression: conditional expression (page 94)

	Package
	Package (page 187)
	Package: java.util (page 188)
	Package: java.awt and javax.swing (page 245)

	GUI API
	GUI API: JFrame (page 245)
	GUI API: JFrame: setTitle() (page 246)
	GUI API: JFrame: getContentPane() (page 246)
	GUI API: JFrame: setDefaultCloseOperation() (page 247)
	GUI API: JFrame: pack() (page 247)
	GUI API: JFrame: setVisible() (page 248)
	GUI API: Container (page 246)
	GUI API: Container: add() (page 246)
	GUI API: Container: add(): adding with a position constraint (page 268)
	GUI API: Container: setLayout() (page 250)
	GUI API: JLabel (page 246)
	GUI API: JLabel: setText() (page 258)
	GUI API: LayoutManager (page 249)
	GUI API: LayoutManager: FlowLayout (page 249)
	GUI API: LayoutManager: FlowLayout: alignment (page 278)
	GUI API: LayoutManager: GridLayout (page 251)
	GUI API: LayoutManager: BorderLayout (page 267)
	GUI API: Listeners (page 254)
	GUI API: Listeners: ActionListener interface (page 257)
	GUI API: Listeners: ActionListener interface: actionPerformed() (page 258)
	GUI API: JButton (page 256)
	GUI API: JButton: addActionListener() (page 256)
	GUI API: JButton: setEnabled() (page 266)
	GUI API: JButton: setText() (page 267)
	GUI API: ActionEvent (page 258)
	GUI API: ActionEvent: getSource() (page 280)
	GUI API: JTextField (page 265)
	GUI API: JTextField: getText() (page 265)
	GUI API: JTextField: setText() (page 265)
	GUI API: JTextField: setEnabled() (page 267)
	GUI API: JTextField: initial value (page 274)
	GUI API: JTextArea (page 267)
	GUI API: JTextArea: setText() (page 269)
	GUI API: JTextArea: append() (page 269)
	GUI API: JPanel (page 270)
	GUI API: JScrollPane (page 274)
	GUI API: Color (page 400)

	Interface
	Interface (page 257)

	Array
	Array (page 286)
	Array: array creation (page 287)
	Array: array creation: initializer (page 320)
	Array: element access (page 288)
	Array: element access: in two-dimensional arrays (page 330)
	Array: length (page 292)
	Array: empty array (page 292)
	Array: of objects (page 301)
	Array: partially filled array (page 310)
	Array: partially filled array: deleting an element (page 404)
	Array: array extension (page 311)
	Array: shallow copy (page 314)
	Array: array of arrays (page 329)
	Array: array of arrays: two-dimensional arrays (page 330)

	Exception
	Exception (page 340)
	Exception: getMessage() (page 345)
	Exception: there are many types of exception (page 347)
	Exception: creating exceptions (page 350)
	Exception: creating exceptions: with a cause (page 357)
	Exception: getCause() (page 366)
	Exception: inheritance hierarchy (page 434)
	Exception: making our own exception classes (page 435)

	Inheritance
	Inheritance (page 373)
	Inheritance: a subclass extends its superclass (page 378)
	Inheritance: invoking the superclass constructor (page 379)
	Inheritance: invoking the superclass constructor: implicitly (page 423)
	Inheritance: overriding a method (page 380)
	Inheritance: overriding a method: @Override annotation (page 430)
	Inheritance: abstract class (page 385)
	Inheritance: abstract method (page 386)
	Inheritance: polymorphism (page 390)
	Inheritance: polymorphism: dynamic method binding (page 391)
	Inheritance: final methods and classes (page 391)
	Inheritance: adding more object state (page 393)
	Inheritance: adding more instance methods (page 395)
	Inheritance: testing for an instance of a class (page 397)
	Inheritance: casting to a subclass (page 397)
	Inheritance: is a versus has a (page 406)
	Inheritance: using an overridden method (page 414)
	Inheritance: constructor chaining (page 423)

	File IO API
	File IO API: IOException (page 450)
	File IO API: InputStream (page 451)
	File IO API: InputStreamReader (page 456)
	File IO API: BufferedReader (page 459)
	File IO API: FileInputStream (page 462)
	File IO API: FileReader (page 462)
	File IO API: OutputStream (page 462)
	File IO API: OutputStreamWriter (page 462)
	File IO API: FileOutputStream (page 463)
	File IO API: FileWriter (page 463)
	File IO API: PrintWriter (page 463)
	File IO API: PrintWriter: checkError() (page 464)
	File IO API: PrintWriter: versus PrintStream (page 468)
	File IO API: PrintWriter: can also wrap an OutputStream (page 468)
	File IO API: File (page 469)
	File IO API: DataOutputStream (page 479)
	File IO API: DataInputStream (page 479)

