Java Just in Time:
Collected concepts after chapter 13

‘John Latham, School of Computer Science, Manchester LBMy,eUK‘

April 15, 2011

Contents

1 Computer basics
1.1 Computer basics: hardware (p@e 3)
1.2 Computer basics: hardware: processor (page 3).
1.3 Computer basics: hardware: memory (page3)
1.4 Computer basics: hardware: persistent storage ﬁage
15 Computer basics: hardware: input and output deviceg .
1.6 Computer basics: software (p 3)
1.7 Computer basics: software: machine code (@ -
1.8 Computer basics: software: operating system (| e4) .
1.9 Computer basics: software: application program (page 4

1.10 Computer basics: data (p@e 3)
1.11 Computer basics: data: files (page5)
1.12 Computer basics: data: files: text files (page5)

1.13 Computer basics: data: files: binary files (page 5)

\2 Java toolé

2.1 Java tools: text editor (pa@ 5) . .
2.2 Java tools: javac compiler (p 9 ...
2.3 Javatools: javainterpreter (page9)

2.4 Java tools: javadoc (p23)

3 Operating environment

3.1 Operating environment: programs are commands @ge 7)....
3.2 Operating environment: standard output (;ﬁge 7). ..
3.3 Operating environment: command line arguments (@ge 8). .
3.4 Operating environment: standard input (page 187) .

4 Class
4.1 Class: programs are divided into classes (e 16) . ..o
4.2 Class: public class (pa@lG)

13000

CONTENTS

4.3 Class: definition (padﬁG) 0aB
4.4 Class: objects: contain a group of variables page 158) 13007
4.5 Class: objects: are instances of a class (page 158) 13007
4.6 Class: objects: this reference (p180) 13007
4.7 Class: objects: may be mutable or immutable (193). . . . 13008
4.8 Class: objects: compareTo() (p22) 13008
4.9 Class:isatype (page 161) 0830
4.10 Class: making instances with new (p62) 13009
4.11 Class: accessing instance variables m 164) 13010
4.12 Class: importing classes (p@%) 13010
4.13 Class:stub(page 191) i it 1130
4.14 Class: extending another class (ﬁMS) C e e o 13011
13012
5.1 Method (PAage 118) . « .« « v v o 13012
5.2 Method: main method: programs contain a main methode(@dy . 13012
5.3 Method: main method: is public (pﬁl?) 13012
54 Method: main method: is static (p WIYN/S- 13012
5.5 Method: main method: is void (page 17) 3013
5.6 Method: main method: is the program starting point (... . 13013
5.7 Method: main method: always has the same heading (page 18. 13013
5.8 Method: private (pa8) 130
5.9 Method: accepting parameters (p@lw) 13014
5.10 Method: accepting parameters: of a class type ﬂﬁe 164. . . . 13015
5.11 Method: calling a method pjg?llg) 13015
5.12 Method: void methods (page 120) 3016
5.13 Method: returning avalue (page 122) 13016
5.14 Method: returning a value: of a class type (176)13017
5.15 Method: returning a value: multiple returns (p196) 13018
5.16 Method: changing parameters does not affect argur(mgé 1221) . 13018
5.17 Method: changing parameters does not affect argumauttseferenced objects can b
5.18 Method: constructor methods (pﬁhsg) 13019
5.19 Method: constructor methods: more than one (ﬁé 203). . . . 13021
5.20 Method: class versus instance methods (@e 166) 13021
5.21 Method: a method may have no parameters @ 173) 13022
5.22 Method: return with no value (p 06) 13022
5.23 Method: accessor methods (page207) 13023
5.24 Method: mutator methods (page 207) 13023
5.25 Method: overloaded methods (p@ZB?) 13023
6 Command line arguments 13024
6.1 Command line arguments: program arguments are paseminc(pagﬁ? 13024
6.2 Command line arguments: program arguments are accegsedex (pag)13024
6.3 Command line arguments: length of the list (dﬁe 79)13024
6.4 Command line arguments: list index can be a variable@ .. . 13024
7 Tiée 13025

13001

CONTENTS

7.1 TYPE (PAGE36) « « o o v e
7.2 Type: String (pai5)
7.3 Type: String: literal (pad:l8)
7.4 Type: String: literal: must be ended on the same Imee(.
7.5 Type: String: literal: escape seuences (e 49)
7.6 Type: String: concatenation (p 26
7.7 Type: String: conversion: from int (pag 3
7.8 Type: String: conversion: from double (p 55)
7.9 Type: String: conversion: from object (page 177) .
7.10 Type: String: conversion: from object: null referen@pagi) .
7.11 Type: int (pag@
7.12 Type: double (pa4)
7.13 Type: casting an int to a double (p@ 79) . . e
7.14 Type: boolean (page 133)
7.15 Type:long (page 145)
7.16 Type: short (paiﬁ)
7.17 Type: byte (page 145)
7.18 Type: char (page 145)
7.19 Type: char: literal (padﬁ%)
7.20 Type: char: literal: escape sequences (ﬁb 146) . .
7.21 Type: char: comparisons (page 238)
7.22 Type: char: castln to and from int (p-38)
7.23 Type: float (page 146)
7.24 Type: primitive versus reference (p@l&)
8 Standard API
8.1 Standard API: System: out.printin() (pﬁ 18) e
8.2 Standard API: System: out.printIn(): with no argumqﬂatg(éfB) .
8.3 Standard API: System: out.print() (p 98)
8.4 Standard API: System: out.printf() (page 126) PR
8.5 Standard API: System: out.printf(): zero padding ([ﬁ@)
8.6 Standard API: System: in (page 187)
8.7 Standard API: System: getProperty() (p (p-195)
8.8 Standard API: System: getProperty(): Ilne.separ 19)
8.9 Standard API: System: currentTimeMillis() (page 262).. . .
8.10 Standard API: Integer: parselnt() (p
8.11 Standard API: Double: parseDouble() (page 54)
8.12 Standard API: Math: pow() (page 73)
8.13 Standard API: Math: abs() (page 87)
8.14 Standard API: Math: Pl (page 87) oo v i
8.15 Standard API: Math: rand%l(p-%)
8.16 Standard API: Scanner (88).
8.17 Standard API: String (pa 0e233)
8.18 Standard API: String: some instance methods (ie 234). . ..
9 Statement
9.1 Statement (pa8)

CONTENTS

9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17
9.18

10 Error
10.1
10.2
10.3
10.4
10.5

10.6

Execution
11.1
11.2
11.3
11.4
11.5
11.6

11

Code clarity
12.1
12.2
12.3
12.4
12.5
12.6

13 Desién

13.1
13.2
13.3
13.4
13.5

12

Statement:
Statement:
Statement:
Statement:

Statement: assignment statement: updating a vari (70) . . . 13043
Statement: assignment statement: updating a varistibethand operators (p87)]
Statement: if else statement (p@ 60) 13044
Statement: if else statement. nested (@e 62) . 13045
Statement: if statement (péﬁ 64) 13046
Statement: compound statement (ﬁ@e 66) 13046
Statement: while loop (pagel71) 13047
Statement: for loop (page 77) 3048
Statement: for loop: multiple statements in for upcﬂp@é 136) . . 13049
Statement: statements can be nested within each p). . . 13050
Statement: switch statement with breaks (page 107) 13050
Statement: switch statement without breaks (page 110). 13051
Statement: do while loop (pdgﬂlZ) 13052
13053
Error (pag@O) 13053
Error: syntactic error (paO) 13053
Error: semantic error (pa2 13054
Error: compile time error (page22) 13054
Error: run time error (pda_iém) 3034
Error: logical error (page29) 13054
13055
Execution: sequential execution (pﬁ 23) .+ w .. . 13055
Execution: conditional execution (page 60) 13055
Execution: repeated execution (p F40) J 13055
Execution: parallel execution — threads (253) - -«13055
Execution: parallel execution — threads: the GUI etlaeiad (pag)13056
Execution: event driven programming (p@M) . e .. . 13056
13057
Code clarity: layout (paﬁg@—iﬂ) 13057
Code clarity: layout: indentation (pﬁSZ) e e e e e e, .. 13057
Code clarity: layout: splitting long lines (p@%) 13058
Code clarity: comments (p 82) 13058
Code clarity: comments: marking ends of code consn(lpxagéfB) . 13059
Code clarity: comments: multi-line comments (189 13059
13060
Design: hard coding (pa%@ 306D
Design: pseudo code (p 73) 0603
Design: object oriented design (p184) : . 13060
Design: object oriented design: noun identificati 185). . . . 13061
Design: object oriented design: encapsulation (p8@g 1 13061

simple statements are ended with a serm'-(mkg) 13042
assignment statement (e 37)13042
assignment statement: assigning a Iitahmda%pagﬁ?) 13042
assignment statement: assigning an ekpresdue (pagﬁ8)13043

13003

CONTENTS

14 Variable 13062
14.1 Variable (pag@G) 1306
14.2 Variable: int variable (paﬁ?) 13062
14.3 Variable: a value can be assigned when a variable |3Mb(pag@2)13063
14.4 Variable: double variable (page54) 13063
14.5 Variable: can be defined within a compound statemeg“e@ . . 13063
14.6 Variable: local variables (page 124) . e e oo ... 13064
14.7 Variable: class variables (page 124) . . . e+ ... 13064
14.8 Variable: a group of vanables can be declared toge 5 . . 13065
14.9 Variable: boolean variable o e 33) 13065
14.10 \Variable: char variable (p .+ 13066
14.11 Variable: instance variables (p ge 59) C 13067
14.12 Variable: instance variables: should be prlvate kb&u]dpagéﬁ) 13067
14.13 Variable: of a class type (pdg?]tm) 13068

14.14 Variable: of a class type: stores a reference to am:b(q:;agé 16&) . 13068
14.15 Variable: of a class type: stores a reference to acblgeoid misunderstanding (pa@

14.16 Variable: of a class type: null reference (dﬁ 192). .. . 13070
14.17 Variable: of a class type: holding the same referes-me other varlable (page 21¢
14.18 Variable: final variables (pa94) .. v 13074
14.19 Variable: final variables: class constant (ﬁﬁ 205) 13074
15 Expression 13075
15.1 Expression: arithmetic (p38) 13075
15.2 Expression: arithmetic: int division truncates reeprhg 13075
15.3 Expression: arithmetic: associativity and mtdms(pag) . 13075
154 Expression: arithmetic: double division (p 55 . 13076
15.5 Expression: arithmetic: remainder operator(149 13076
15.6 Expression: brackets and precedence e45) 13076
15.7 Expression: associativit 48) C e e e ... 13077
15.8 Expression: boolean (p 60) 3078
15.9 Expression: boolean: relational operators (page 60) 13079
15.10 Expression: boolean: logical operators (page 128) 13079
15.11 Expression: conditional expression(c e w 13081
16 Package 13082
16.1 Package (page 187)o i 13082
16.2 Package: java.util (pa88) 13082
16.3 Package: java.awt and javax.swing (@245) s13082
17 GUIAPI 13083
17.1 GUI API: JFrame (paée 2@5) 18308
17.2 GUI API: JFrame: setTitle() (page 246)13083
173 GUIAPI: JFrame: getContentPane() (page 246)13083
174 GUIAPI: JFrame: setDefaultCloseOperation() (pagd 24. 13083
175 GUIAPI: JFrame: pack() (page 247)o oo oot 3084
17.6 GUI API: JFrame: setVisible() (page 248) 13084
17.7 GUIAPI: Container (page 246) 083

13004

17.8 GUIAPI: Container: add() (page 246) 13084
17.9 GUI API: Container: add(): adding with a position coastt (pag)13085

17.10 GUI API: Container: setLayout() (page 250) 13085
17.11 GUIAPL JLabel (page 246) v v oo 083
17.12 GUI API: JLabel: setText() (page 258)13085
17.13 GUI API: LayoutManager (page 249) 13085
17.14 GUI API: LayoutManager: FlowLayout (page 249) 13086
17.15 GUI API: LayoutManager: FlowLayout: alignment (pﬁ} . . . 13086
17.16 GUI API: LayoutManager: GridLayout (page 251) 13086
17.17 GUI API: LayoutManager: BorderLayout (page 267) 13087
17.18 GUI API: Listeners (page 254) oo 3088
17.19 GUI API: Listeners: ActionListener interface (p@ 13090

17.20 GUI API: Listeners: ActionListener interface: actierformed() (pade 2@8)13090
17.21 GUI API: JButton (pade 236) 09a
17.22 GUI API: JButton: addActionListener

17.23 GUI API: JButton: setEnabled() (page 266) eeee.. . 13091
17.24 GUI API: JButton: setText() (page 267) 13091
17.25 GUI API: ActionEvent (page 258) 3091
17.26 GUI API: ActionEvent: getSource() (page 280) 13091
17.27 GUI API: JTextField (page 265) oo .. 13092
17.28 GUI API: JTextField: getText() (page 265) 13092
17.29 GUI API: JTextField: setText() (page 265) 13092
17.30 GUI API: JTextField: setEnabled() (page267) 13092
17.31 GUI API: JTextField: initial value (page 274) 13092
17.32 GUIAPI: JTextArea (page 267) oo 3093
17.33 GUI API: JTextArea: setText() (page 269)13093
17.34 GUI API: JTextArea: append() (pd%ﬁGg) C e e e e oo13093
17.35 GUI API: JPanel (paO 093
17.36 GUI API: JScrollPane (pa%M) 13093
18 Interface 13094
18.1 Interface (paﬁ?) aB0

1 Computer basics

1.1 Computer basics: hardware (page 3)

The physical parts of a computer are knowrhasdware. You can see them, and touch them.

13005

1.2 Computer basics: hardware: processor (page 3)

1.2 Computer basics: hardware: processor (page 3)

Thecentral processing unit(CPU) is the part of thénardware that actually obeys instructions.
It does this dumbly — computers are not inherently intetlige

1.3 Computer basics: hardware: memory (page|3)

Thecomputer memoryis part of the computer which is capable of storing and reitngedata
for short term use. This includes theachine codeinstructions that theentral processing
unit is obeying, and any other data that the computer is currendhking with. For example,
it is likely that an image from a digital camera is stored ia tomputer memory while you are
editing or displaying it, as are the machine code instrastior the image editing program.

The computer memory requires electrical power in order moeraber its data — it igolatile
memory and will forget its contents when the power is turned off.

An important feature of computer memory is that its conteras be accessed and changed
in any order required. This is known ssndom accessand such memory is calle@gndom
access memoryr justRAM.

1.4 Computer basics: hardware: persistent storage (page 3)

For longer term storage ofata, computers uspersistent storagedevices such asard discs
andDVD ROM s. These are capable of holding much more information toamputer mem-
ory, and are persistent in that they do not need power to remethnéénformation stored on
them. However, the time taken to store and retrieve datau longer than for computer
memory. Also, these devices cannot as easily be accessednda@m order.

1.5 Computer basics: hardware: input and output devices (pge.3)

Some parts of thbardware are dedicated to receiving input from or producing outpuht®
outside world. Keyboards and mice are examplempfit devices. Displays and printers are
examples obutput devices.

1.6 Computer basics: software (pagel3)

One part of a computer you cannot see isdffware. This is stored ocomputer media such
asDVD ROMs, and ultimately inside the computer, as lots of numberis the instructions

13006

1.7 Computer basics: software: machine code (page 3)

that the computer will obey. The closest you get to seeingghirbe if you look at the silver
surface of a DVD ROM with a powerful magnifying glass!

1.7 Computer basics: software: machine code (page 3)

The instructions that theentral processing unitobeys are expressed in a language known
asmachine code This is a verylow level language meaning that each instruction gets the
computer to do only a very simple thing, such as dleition of two numbers, or sending a
byte to a printer.

1.8 Computer basics: software: operating system (page 4)

A collection of software which is dedicated to making the computer generally usabtber
than being able to solvemarticular task, is known as aoperating system The most popular
examples for modern personal computers are Microsoft WisgdtMac OS X and Linux. The
latter two are implementations of Unix, which was first cauwed in the early 1970s. The fact
it is still in widespread use today, especially by comput@fgssionals, is proof that it is a
thoroughly stable and wetlesigred and integrated platform for the expert (or budding ejpert
computer scientist.

1.9 Computer basics: software: application program (page p

A piece ofsoftware which is dedicated to solving a particular task, or appiaatis known as
anapplication program. For example, an image editing program.

1.10 Computer basics: data (page'3)

Another part of the computer that you cannot see iglét. Like software it is stored as
lots of numbers. Computers are processing and produciregatlathe time. For example, an
image from a digital camera is data. You can only see the i@atdnen you display it using
some image displaying or editing software, but even thi$ growing you the actual data that
makes up the picture. The names and addresses of your fiieadsther example of data.

1.11 Computer basics: data: files (pagel5)

Whendata is stored inpersistent storage such as on &ard disc, it is organized into chunks
of related information known ades. Files have hames and can be accessed by the computer

13007

1.12 Computer basics: data: files: text files (nage 5)

through theoperating system For example, the image from a digital camera would probably
be stored in a jpeg file, which is a particular type of image &led the name of this file would
probably end inj pg or. | peg.

1.12 Computer basics: data: files: text files (page 5)

A text file is a type offile that containglata stored directly asharacters in a human readable
form. This means if you were to send the raw contents dirdatlthe printer, you would
(for most printers) be immediately able to read it. Examplietext files includeREADME. t xt

that sometimes comes wigoftware you are installing, or source text for a document to be
processed by théTeX[6] document processing system, such as the ones useddagathis
book (prior to publication). As you will see shortly, a morgdaresting example for you, is
computer programsource coddfiles.

1.13 Computer basics: data: files: binary files (page 5)

A binary file is another kind ofile in which data is stored adinary (base 2) numbers, and
so is not human readable. For example, the image from a bagitaera is probably stored as
a jpeg file, and if you were to look directly at its contentshex than use somapplication
program to display it, you would see what appears to be nonsense! &reisting example of
a binary file is themachine codeinstructions of a program.

2 Javatools

2.1 Javatools: text editor (page 5)

A text editor is a program that allows the user to type and ¢eit files. You may well
have usecdot epad under Microsoft Windows; that is a text editor. More likelply have
usedM crosoft Wrd. If you have, you should note that it is not a text editor, iaigord
processor Although you can save your documents as text files, it is nsoremon to save
them as doc files, which is actually &inary file format.M crosoft Wrd is not a good tool
to use for creating prograsource codefiles.

If you are using arntegrated development environmento support your programming, then

the text editor will be built in to it. If not, there are a pletia of text editors available which
are suited to Java programming.

13008

2.2 Javatools: javac compiler (page 9)

2.2 Javatools: javac compiler (page|9)

The Javacompiler is calledj avac. Java program source is saved by the programmeterta
file that has the suffixj ava. For example, the text filgel | oWor | d. j ava might contain the
source text of a program that printel | 0 worl d! on thestandard output. This text file
can then beompiled by the Java compiler, by giving its name ascanmand line argument
Thus the command

javac HelloWrld.java

will produce thebyte codeversion of it in thefile Hel | oWor | d. cl ass. Like machine code
files, byte code is stored oinary files as numbers, and so is not human readable.

2.3 Javatools: java interpreter (page 9)

When the end user wants to run a Java program, he or she in@ew a interpreter with the
name of the program as itemmand line argument The program must, of course, have been
compiled first! For example, to run thieel | oWor | d program we would issue the following
command.

java Hell ovrld

This makes theentral processing unitrun the interpreter ovirtual machine j ava, which
itself thenexecutes the program named as its first argument. Notice that thexsyfiva is
needed when compiling the program, but no suffix is used whening it. In our example
here, the virtual machine finds thte codefor the program in thdile Hel | oWor | d. cl ass
which must have been previously produced bydbmpiler.

2.4 Javatools: javadoc (page 223)

A classwhich is intended to be reusable in many programs should iissedocumentation to
enable another programmer to use it without having to lodkeimplementation code. In Java
this is achieved by the implementer of the class writlog commens in the code, and then
processing them with thgavadoc program. This tool produces a web page which describes
the class from the information in the doc comments and froensthucture of the class itself,
and this page is linked to the pages for other classes as@pism For example, the heading of
eachpublic method is documented on the web page, with the description of thoaddbeing
taken byj avadoc from the doc comment which the implementer supplied for tle¢hmd.

The resulting user documentation produced &yadoc can be placed anywhere we wish —on
a web server for example. Meanwhile tbeeirce of that documentation is kept with tiseurce

13009

2.4 Java tools: javadoc (page 223)

codefor the class, indeed it is inside the safile. This excellent idea makes it easy for the
programmer to maintain information on how to use the cladseasr she alters the code, but
without restricting where the final documentation can be put

A doc comment starts with the symbol* and ends with¥/. These are written in certain
places as follows.

A comment before the start of the class (after amport statements) describing its
purpose.

e A comment before each pubNariable describing the meaning of that variable.

e A comment before each public method describing what it dites)ethod parameters
andreturn value.

e Optionally, a comment before eaphivate variable and method. This is less useful than
documentation for public items as normal users of the classal have access to the
private ones. So, many programmers do not write doc comnienthese (although
of course they do write ordinagomments!). On the other hand, some take the view
that anybody who needs toaintain the class is, in effect, a user of both the pulainci
private parts, and so user documentation of the whole ctasishienefit.

The implementer writes user documentation text as ap@tepimside the doc comments. The
emphasis is on how to use the features, not on how they aremagpited. He or she also
includes variousioc comment tag to help thg avadoc program process the text properly.
Here are some of the most commonly used tags.

Tag Meaning Where used

@ut hor author name(s) State the author of the code, Before the class starts.
@ar amparameter descriptionDescribe a method parameteiBefore a method.

@ et ur n description Describe a method result. | Before a method.

Most doc comments use more than one line, and it is convait{bnt not essential) to start
continuation lines with an asterisk)(neatly lined up with the first asterisk in the opening
comment symbol. The first sentence should be a summary ofttbkewthing being documented
—these are copied to a summary area of the final documentation

For a doc comment tag to be recognized kyadoc, it must be the first word on a line of the
comment, preceded only lwhite space or an asterisk.

Doc comments are sometimes (but wrongly) caje@doc commens.

13010

3 Operating environment

3.1 Operating environment: programs are commands (page! 7)

When a program iexecutel, the name of it is passed to thperating systemwhich finds and
loads thdfile of that name, and then starts the program. This might be hiffden you if you
are used to starting programs from a menu or browser ineerfad it happens nevertheless.

3.2 Operating environment: standard output (page 7)

When programgxecute they have something called tkeandard output in which they can
produce text results. If they aren from some kind otommand line interface such as a Unix
shell or a Microsoft WindowsCommand Prompt, then this output appears in that interface
while the program is running. (If they are invoked througimedntegrated development
environment, browser, or menu, then this output might get displayed mespop-up box, or
special console window.)

3.3 Operating environment: command line arguments (page 8)

Programs can be, and often are, gicemmand line argumens to vary their behaviour.

3.4 Operating environment: standard input (page 187)

In addition tostandard output, when programxecutethey also have atandard input
which allows textdata to be entered into the program as it runs. If they rame from some
kind of command line interface such as a Unishell or a Microsoft WindowsCommand
Prompt, then this input is typically typed on the keyboard by the aser.

4 Class

4.1 Class: programs are divided into classes (page 16)

In Java, the source text for a program is separated into pieakkedclases. The source
text for each class is (usually) stored in a sepafége Classes have a name, and if the
name isHel | oWor | d then the text for the class is saved by the programmer irtekiefile

Hel | oWor | d. j ava.

13011

4.2 Class: public class (page 16)

One reason for dividing programs into pieces is to make thasieeto manage — programs to
perform complex tasks typically contain thousands of lioetext. Another reason is to make
it easier to share the pieces between more than one prograchscftware reuseis beneficial
to programmer productivity.

Every program has at least one class. The name of this clafigettect the intention of the
program. By convention, class names start with an upperletise

4.2 Class: public class (page 16)

A classcan be declared as beipgblic, which means it can be accessed from anywhere in the
running Java environment; in particular thietual machine itself can access it. The source
text for a public class definition starts with thresserved wordpubl i c. A reserved word is one
which is part of the Java language, rather than a word chogehebprogrammer for use as,
say, the name of a program.

4.3 Class: definition (page 16)

After stating whether it hagublic access, alassnext has theeserved wordcl ass, then its
name, then a left bracg) its body of text and finally a closing right bracp (

public class MyFabul ousProgram

{
Lots of stuff here.

}...

4.4 Class: objects: contain a group of variables (page 158)

We can group a collection efariables into one entity by creating avbject. For example, we
might wish to represent a point in two dimensional spaceguainx and ay value to make up
a coordinate. We would probably wish to combine p@ndy variables into a single object, a
Poi nt .

4.5 Class: objects: are instances of a class (page 158)

Before we can makebjects, we need to tell Java how the objects are tadwestructed. For
example, to make &oi nt object, we would need to tell Java that there are to be a pair of
variables inside it, callec andy, and tell it whatypes these variables have, and how they get
their values. We achieve this by writingciasswhich will act as a template for the creation of

13012

4.6 Class: objects: this reference (page 180)

objects. We need to write such a template class for each Kiotject we wish to have. For
example, we would write Boi nt class describing how to makei nt objects. If, on the other
hand, we wanted to group together a load of variables desgrédttributes of wardrobes, so we
could make objects each of which represents a single waedtbbn we would probably call
that clas3/ar dr obe. Java lets us choose any name that we feel is appropriaepegserved
words (although by convention we always start the name with aaldptter).

Once we have described the template, we can get Java to migkesalf that class atin time.

We say that these objects anstances of the class. So, for example, particufar nt objects
would all be instances of theoi nt class. We can create as many differBoitnt objects as
we wish, each containing its ownandy variables, all from the one template, tP@ nt class.

4.6 Class: objects: this reference (page 180)

Sometimes, irconstructor methods or ininstance method of aclasswe wish to refer to

the object that the constructor is creating, or to which the instancéhotebelongs. For this
purpose, whenever thieserved wordt hi s is used in or as aexpressionit means aeference

to the object that is being created by the constructor oravats the instance method, etc.. We
can only use théhis referencein places where it makes sense, such as constructor methods,
instance methods andstance variable initializations. So,t hi s (when used in this way)
behaves somewhat like an extra instance variable in eaelstpbutomatically set up to contain

a reference to that object.

For example, in &oi nt class we may wish to have an instance method that yields d@ poin
which is half way between the origin andi s point.

publ i ¢ Point hal f Thi sPoi nt ()

{
return hal f WayPoi nt (new Point (0, 0));

+ 11 hal f Thi sPoi nt
An alternative implementation would be as follows.

publi ¢ Point hal f Thi sPoi nt ()

{
return new Point(0, 0).halfWyPoint(this);

} 11 hal f Thi sPoi nt

4.7 Class: objects: may be mutable or immutable (page 193)

Sometimes when wedesigna classwe desire that theastances of it areimmutable objects.
This means that once such alject has beermronstructed, itsobject statecannot be changed.

13013

4.8 Class: objects: compareTo() (page 222)

That is, there is no way for the values of tinstance variables to be altered after the object is
constructed.

By contrast, objects which can be altered are knowmatable objects.

4.8 Class: objects: compareTo() (page 222)

Itis quite common to require the ability to compareddmect with another from the saneass
based on somietal order, that is, a notion oless than greater than andequivalence A Java
convention for this is to have anstance methodcalledconpar eTo which takes argference
to) another object as itmethod parameter, andreturns ani nt. A result of0 indicates the
two objects areequivalent, a negative value indicates this object is less than ther,atinel a
positive value indicates this object is greater than theroth

Dat e husbandsBirthday = ...
Date wifesBirthday = ...

i f (husbandsBirthday. conpareTo(w fesBirthday) > 0)
Systemout. println("The husband is older than the wife");
el se if (husbandsBirthday.conpareTo(w fesBirthday) == 0)
Systemout. println("The husband is the same age as the wife");
el se
Systemout. println("The husband is younger than the wfe");

4.9 Class: is atype (page 161)

A typeis essentially @etof values. The nt type is all the whole numbers that can be repre-
sented using 3Binary digit s, thedoubl e type is all thereal numbers that can be represented
using thedouble precisiontechnique and theéool ean type contains the valuas ue and
fal se. A classcan be used as a template for creatitgects, and so is regarded in Java as a
type: the set of all objects that can be created whichretances of that class. For example, a
Poi nt class is a type which is the set of &tli nt objects that can be created.

4.10 Class: making instances with new (page 162)

An instance of a classis created by calling theonstructor method of the class, using the
reserved wordnew, and supplyingnethod argument for themethod parameters. Atrun
time when this code iexecutal, the Javavirtual machine, with the help of the constructor
method code, creates abject which is an instance of the class. Although it is not stated in
its heading, a constructor method alwagturns a value, which is aferenceto the newly

13014

4.11 Class: accessing instance variables (page 164)

created object. This reference can then be storedariable, if we wish. For example, if we
have aPoi nt class, then we might have the following code.

Poi nt toplLeft = new Poi nt (-20, 40);
Poi nt bottomleft = new Point(-20, -40);
Poi nt topRi ght = new Poi nt (20, 40);
Poi nt bottonRi ght = new Point(20, -40);

This declares four variables, tfpe Poi nt and creates four instances of the clBssnt rep-
resenting the four corners of a rectangle. The four vargabéeh contain a reference to one of
the points. This is illustrated in the following diagram.

A Point object A Point object
Point topLeft private double x -20 Point topRight private double x 20
— —— > — —— >
private double y 40 private double y 40
A Point object A Point object
Point bottomLeft private double x -20 Point bottomRight private double x 20
o~ —— P
private double y -40 private double y -40

All four Poi nt objects each have twastance variables, calledx andy.

4.11 Class: accessing instance variables (page 164)

Theinstance variables of anobject can be accessed by takingederenceto the object and
appending a dot | and then the name of tivariable. For example, if the variablgel contains
a reference to &oi nt object, andPoi nt objects have an instance variable calkkedhen the
codepl. x is the instance variabbe belonging to théoi nt referred to byp1l.

4.12 Class: importing classes (page 188)

At the start of the sourcile for a Javaclasswe can write one or morgnport statements.
These start with theeserved wordi nport and then give théully qualified name of a class

13015

4.13 Class: stub (page 191)

that lives in som@ackagesomewhere, followed by a semi-coloi(An import for a class per-
mits us to talk about it from then on, by using only its classiearather than having to always
write its fully qualified name. For example, importingva. uti| . Scanner would mean that
every time we refer t8canner the Javaompiler knows we really meapnava. uti | . Scanner.

i nport java.util.Scanner;

Scanner input Scanner = new Scanner(Systemin);
If we wish, we can import all the classes in a package usinghatead of a class name.
inport java.util.*;

Many programmers consider this to be lazy, and it is bettenpmrt exactly what is needed, if
only to help show precisely what is used by the class. Thesbssthe issue of ambiguity: if
two different packages have classes with the same namdyibutass only needs one of them,
then the lazy approach would cause an unnecessary problem.

However, every Java program has an automatic import foryeslass in the standanoack-
agej ava. | ang, because these classes are used so regularly. That is whanweefer to

j ava. | ang. Syst emandj ava. | ang. | nt eger, etc. as jusbyst emandI nt eger, etc.. In other
words, every class always implicitly includes the follogrimport statement for convenience.

inport java.lang.*;

4.13 Class: stub (page 191)

During development of a program with sevecksss, we often producesdub for the classes
we have not yet implemented. This just contains some or @ahepublic items of the class,
with empty, or almost empty, bodies for theethods. In other words, it is the bare minimum
needed to allow the classes we have so far developeddorbpiled.

Any non-void methods are written with a singleeturn statement to yield some temporary
value of the rightype.

These stubs are then developed into the full class code a ktar stage.

4.14 Class: extending another class (page 245)

A classmay be declared to say thatittends another class, using theserved wordext ends.
For example, the following says that the cléskl oWr | d extends the clagsavax. swi ng. JFr ane.

13016

i nport | avax.sw ng. JFrane;
public class HelloWrld extends JFrane

This means that alhstances of Hel | oWor | d have the properties that any instancel Bfame
would have, but also have all the properties that we additiprdefine in theHel | oWor | d
class. Itis a way of adding properties to a class withoutaltiwhanging the class — the new
class is arextensionof the other one.

5 Method

5.1 Method (page 118)

A methodin Java is a section of code, dedicated to performing a péatitask. All programs
have amain method which is the starting point of the program. We can have othethods
too, and we can give them any name we like — although we shbwéya choose a name which
suits the purpose. By convention, method names start withvarlcase letter. For example,
Systemout. println() isamethod which prints a line of text. Apart from its slighétrange
spelling, the namer i nt | n does reflect the meaning of the method.

5.2 Method: main method: programs contain a main method (pag/17)

All Java programs contain a section of code caltedn, and this is where the computer will
start toexecutethe program. Such sections of code are caftexthods because they contain
instructions on how to do something. Theain method always starts with the following
heading.

public static void main(String[] args)

5.3 Method: main method: is public (page 17)

Themain method starts with theeserved wordpubl i ¢, which means it can be accessed from
anywhere in the running Java environment. This is necess#rg program could not bein
by thevirtual machine if the starting point was not accessible to it.

public

13017

5.4 Method: main method: is static (page 17)

5.4 Method: main method: is static (page 17)

The main method of the program has theeserved wordst at i ¢ which means it is allowed
to be used in thatatic context A context relates to the use obmputer memory during
therunning of the program. When thartual machine loads a program, it creates the static
context for it, allocating computer memory to store the pangand itdata, etc.. Adynamic
contextis a certain kind of allocation of memory which is made latiering the running of the
program. The program would not be able to start if the mairhogktvas not allowed to run in
the static context.

public static

5.5 Method: main method: is void (page 17)

In general, anethod (section of code) might calculate some kindafction or formula, and
return the answer as a result. For example, the result might be aewutfla method returns
a result then this must be stated in its heading. If it doestheh we write theeserved word
voi d, which literally means (among other definitions) ‘withowintents’. Themain method
does not return a value.

public static void

5.6 Method: main method: is the program starting point (pagel?)

The starting part, amain method, of the program is always callewhi n, because it is the main
part of the program.

public static void main

5.7 Method: main method: always has the same heading (page)18
Themain method of a Java program must always have a heading like this.
public static void main(String[] args)

This is true even if we do not intend to use amgmmand line argumens. So a typical single
classprogram might look like the following.

13018

5.8 Method: private (page 118)

public class M/Fabul ousProgram

{
public static void main(String[] args)
{
... Stuff here to performthe task.
}
}

5.8 Method: private (page 118)

A method should be declared with private visibility modifier if it is not intended to be
usable from outside thelassit is defined in. This is done by writing theeserved word
pri vat e instead ofpubl i ¢ in the heading.

5.9 Method: accepting parameters (page 118)

A method may be givermethod parameters which enable it to vary its effect based on their
values. This is similar to a program being givammmand line argumens, indeed the argu-
ments given to a program are passed as parameters noaihenethod.

Parameters are declared in the heading of the method. Forpéxamain methods have the
following heading.

public static void main(String[] args)

The text inside the brackets is the declaration of the patensie A method can have any
number of parameters, including zero. If there is more thas they are separated by commas
(,). Each parameter consists dfyge and a name. For example, the following method is given
two parameters, @oubl e and ani nt .

private static void printHeightPerYear(double height, int age)

{
Systemout.printIn("At age " + age + ", height per year ratiois "
+ height / age);
} Il printHeight Per Year

You should think of parameters as being likariables defined inside the method, except that
they are given initial values before the method bodgxecutel. For example, the single
parameter to the main method is a variable which is givéstaf strings before the method
begins execution, these strings being the command lineveegts supplied to the program.

13019

5.10 Method: accepting parameters: of a class type (page 164

The names of the parameters are not important to Java — asaptiiey all have different
names! The names only mean something to the human readefh) w8hof course important.
The above method could easily have been written as follows.

private static void printHeightPerYear(double howTall, int howd d)

{

Systemout.printIn("At age " + howdd + ", height per year ratiois "
+ howTal | / howd d);
} Il printHeight Per Year

You might think the first version is subjectively nicer th&e second, but clearly both are better
than this next one!

private static void printHeightPerYear(double d, int i)

{

Systemout.printIn("At age " +i + ", height per year ratiois "
+d/ i);
} [1 printHeightPerYear

And that is only marginally better than calling the paramsgtsayx andy. However, Java does
not care — it is not clever enough to be able to, as it can hawenderstanding of the problem
being solved by the code.

5.10 Method: accepting parameters: of a class type (page 164

The method parameters of amethod can be of anytype, including classes. A parameter
which is of a class type must be givemethod argumentvalue of that type when the method
is invoked, for example eeferenceto anobject which is aninstanceof the class named as the
parameter type.

5.11 Method: calling a method (page 119)

The body of anethod is executel when some other code refers to it usingethod call. For
example, the program calls a method namdt | n when it executeSyst em out . printIn("Hell o
wor | d!'"). For another example, if we have a method, napracht Hei ght Per Year , which

prints out a height to age ratio when it is given a height (irires and an age, then we could
make it print the ratio between the height and the agé4 using the following method call.

print Hei ght Per Year (1.6, 14);

13020

5.12 Method: void methods (page 120)

When we call a method we supplyr@ethod argumentfor eachmethod parameter, separat-
ing them by commas {. These argument values are copied into the correspondirzgeters
of the method — the first argument goes into the first parantéesecond into the second, and
SO on.

The arguments passed to a method may be the current valvesiables. For example, the
above code could have been written as follows.

doubl e personHei ght = 1.6;

int personAge = 14,

print Hei ght Per Year (per sonHei ght, personAge);
As you may expect, the arguments to a method are actengtiyessiors rather than juditeral
values or variables. These expressions @valuated at the time the method is called. So we
might have the following.

doubl e growt hLast Year = 0.02;

print Hei ght Per Year (per sonHei ght - growt hLast Year, personAge - 1);

5.12 Method: void methods (page 120)

Often, amethod might calculate some kind dinction or formula, perhaps based on its
method parameters, andreturn the answer as a result. The result might bei an or a
doubl e or some othetype. If a method returns a result then theturn type of the result
must be stated in its heading. If it does not, then we writeatbed voi d instead, which liter-
ally means (among other definitions) ‘without contents’r Ewample, thenain method of a
program does not return a result — it is alwaywsa method.

public static void main(String[] args)

5.13 Method: returning a value (page 122)

A method may return a result back to the code that called it. If this is so, we decthe
return type of the result in the method heading, in place of taserved wordvoi d. Such
methods are often calletbn-void methods. For example, the following method takes a Cel-
sius temperature, and returns the corresponding Fahtevathee.

13021

5.14 Method: returning a value: of a class type (page 176)

private static doubl e celsiusToFahrenheit (doubl e celsiusVal ue)

{

doubl e fahrenheitValue = celsiusValue * 9/ 5 + 32;
return fahrenheitVal ue;
} Il cel siusToFahr enhei t

The method is declared with a return typedolubl e, by writing thattype name before the
method name.

The return statement is how we specify what value is to be returned as the resulhef t
method. Thestatementcauses the execution of the method to end, and control tefeaback
to the code that called the method.

The result of a non-void method can be used irgpression For example, the method above
might be used as follows.

doubl e cel siusVal ue = Doubl e. parseDoubl e(args[0]);
Systemout. println("The Fahrenheit value of "
+ celsiusValue + " Celsius is "
+ cel si usToFahrenhei t (cel siusValue) + ".");

The return statement takes any expression after the resemwel ret urn. So our method
above could be implemented using just one statement.

private static doubl e cel siusToFahrenheit (doubl e celsiusVal ue)

{

return cel siusvValue * 9 / 5 + 32;
} Il cel siusToFahr enhei t

5.14 Method: returning a value: of a class type (page 176)

A method may return a result back to the code that called it, and this may be oftgpe,
including aclass In such cases, the value returned will typically beeferenceto anobject
which is aninstanceof the class named as theturn type.

For example, in &oi nt class withinstance variables x andy, we might have amnstance
method to return aPoi nt which is half way along a straight line between tR® nt and a
given otherPoi nt .

publ i c Point hal f WayPoi nt (Poi nt ot her)
{

doubl e newX = (x + other.x) / 2;

13022

5.15 Method: returning a value: multiple returns (page 196)

doubl e newY = (y + other.y) / 2;
return new Poi nt (newX, newy);
} Il hal f WayPoi nt

The method createsrsew objectand then returns a reference to it. This might be used as
follows.

Point pl = new Point(3, 4);
Poi nt p2 = new Point (45, 60);

Poi nt hal f WayBet weenP1AndP2 = pl. hal f WayPoi nt (p2) ;

The reference to the neRoi nt returned by the instance method, is stored in\haable
hal f WayBet weenP1AndP2. It would, of course, be the poiiR4,32). This is illustrated in the
following diagram.

A Point object A Point object
Point p1 = new Point(3, 4) private double x 3 Point p2 = new Point(45, 60) private double x 45
——_— P P 4
private double y 4 private double y 60
A Point object
Point halfwayBetweenP1AndP2 = p1.halfwayPoint(p2) private double x 24
- ___— —>
private double y 32

5.15 Method: returning a value: multiple returns (page 196)

Thereturn statement is how we specify what value is to leturn ed as the result of aon-
void method. The statementcauses the execution to end, and control to transfer badieto t
code that called thenethod. Typically, this is written as the last statement in the rodttbut
we can actually write one or more anywhere in the method.

The Javacompiler checks to make sure that we have been sensible, and that:

e There is no path through the method that does not end withuenrstatement.

e There is no code in the method that can never be reached duedarker occurring
return statement.

13023

5.16 Method: changing parameters does not affect argurfesme 124)

5.16 Method: changing parameters does not affect argumentpage 124)

We can think ofmethod parameters as being likevariables defined inside thenethod, but
which are given their initial value by the code that calls thethod. This means the method
can change the values of the parameters, like it can for drgr etariable defined in it. Such
changes have no effect on the environment of the code thatlddle method, regardless of
where themethod argumentvalues came from. An argument value, be it a literal constant
taken straight from a variable, or the result of some moregerexpression is simply copied
into the corresponding parameter at the time the methodledcarhis is known asall by
value.

5.17 Method: changing parameters does not affect argumentsut ref-
erenced objects can be changed (page 208)

All method parameters obtain their values from the correspondimgthod argument us-
ing thecall by value principle. This means aethod cannot have any effect on the calling
environment via its method parameters if they are pfimitive type.

However, if a method parameter is ofeference typethen there is nothing to stop the code
in the method following theeference supplied as the argument, and altering the state of the
object it refers to (if it is amutable object). Indeed, such behaviour is often exactly what we
want.

In the abstract example below, assume tiangeSt at e() is aninstance methodin theclass
SoneC ass which alters the values of some of timstance variables.

public static void changeSonet hi ng(SoneC ass object, SoneType val ue)

{

obj ect.changeState(value); // This really changes the object referred to.
object = null; Il This has no effect outside of this nethod.

} Il changeSonet hi ng
Soned ass variable = new Somed ass();

changeSonet hi ng(vari abl e, soneVal ueO SoneType) ;

At the end of the above code, the change caused by the firsofittee method has had an
impact outside of the method, whereas the second line hasdadch effect.

13024

5.18 Method: constructor methods (page 159)

5.18 Method: constructor methods (page 159)

A classwhich is to be used as a template for makoigects should be given aonstructor
method. This is a special kind afethod which contains instructions for theonstruction of
objects that arenstances of the class. A constructor method always has the same mathe a
class it is defined in. It is usually declared as bemuplic, but we do not specify aturn
type or write thereserved wordvoi d. Constructor methods can haneethod parameters,
and typically these are the initial values for some or allh&fibstance variables.

For example, the following might be a constructor methodaf®oi nt class, which has two
instance variables, andy.

publ i ¢ Poi nt (doubl e requiredX double requiredY)

{
X = requiredX;
y = requiredy;
} /1 Point

This says that in order to construct an object which is anams# of the clas®oi nt, we
need to supply twaoubl e values, the first will be placed in theinstance variable, and the
second in thg instance variable. Constructor methods are called in dainvay to any other
method, except that we precede theethod call with thereserved wordnew. For example,
the following code would creatersew object, which is an instance of the cld%s nt, and in
which the instance variablesandy have the valueg. 4 and- 19. 9 respectively.

new Point(7.4, -19.9);

We can create as maRgi nt objects as we wish, each of them having their own pair of csta
variables, and so having possibly different valuesxf@andy. These next fouPoi nt objects
are the coordinates of a rectangle which is centred arowndrifin of a graph, point (0, 0).

new Point (-20, 40);
new Point (-20, -40);
new Point (20, 40);
new Point (20, -40);

This is illustrated in the following diagram.

13025

5.19 Method: constructor methods: more than one (page 203)

A Point object A Point object
private double x =20 private double x 20
private double y 40 private double y 40

A Point object A Point object
private double x =20 private double x 20
private double y -40 private double y -40

All four Poi nt objects each have two instance variables, cadladdy.

5.19 Method: constructor methods: more than one (page 203)

A classcan have more than omenstructor methodas long as the number, order andigres
of themethod parameters are different. This distinction is necessary so thattmapiler can
tell which constructor should be used whenddoject is being created.

5.20 Method: class versus instance methods (page 166)

When we define anethod, we can write the@eserved wordst ati c in its heading, meaning
that it can beexecute in the static context that is, it can be used as soon as thessis
loaded into thevirtual machine. These are known adass method, because they belong to
the class. By contrast, if we omit teeat i ¢ modifier then the method is anstance method
This means it can only be run indynamic context attached to a particulanstance of the
class.

This parallels the distinction betweetass variables andinstance variables. There is one
copy of a class variable, created when the class is loadedreTik one copy of an instance
variable for every instance, created when the instancesed.

We can think of methods in the same way: class methods beddhg tlass they are defined in,

and there is one copy of their coderah time, ready for use immediately. Instance methods
belong to an instance, and there are as many copies of thetndetime as there are instances.

13026

5.20 Method: class versus instance methods (page 166)

Of course, the virtual machine does not really make copidgb@tode of instance methods,
but it behaves as though it does, in the sense that when an instance metbreédsted, it runs
in the context of the instance that it belongs to.

For example, suppose we hav@a nt class with instance variablesandy. We might wish
to have an instance method which takesmethod parameters, butreturn s the distance of a
point from the origin. Pythagoras[18] tells us that this ix2 4 y2. (We can use theqrt ()
method from thavat h class.)

public doubl e distanceFronOrigin()

{
return Math.sqrt(x * x +y * y);

} [1 distanceFronOrigin

A class method can be accessed by taking the name of the afasappending a dot Y and
then the name of the metholdht h. sgrt is a handy example right now.

An instance method belonging to ahject can be accessed by takingederenceto theobject

and appending a dot Y and then the name of the method. For example, ifdugable pl

contains a reference toPai nt object, then the codel. di st anceFronOri gi n() invokes the
instance methodi st anceFronOri gi n(), belonging to théoi nt referred to byp1l.

The following code would print the numbessand75.

Poi nt pl
Poi nt p2

new Point(3, 4);
new Poi nt (45, 60);

Systemout. println(pl.distanceFronOigin());
Systemout. println(p2.distanceFrondigin());

When the method is called v it uses the instance variables of the object referred tplhy
that is the value8 and4 respectively. When the method is called piait uses the value45
and60 instead.

For another example, we may wish to have a method which detesthe distance between a
point and a given other point.

publ i ¢ doubl e di stanceFronPoi nt (Poi nt ot her)

{

doubl e xDi stance
doubl e yDi stance

X - other.x;
y - other.y;

return Math.sqrt(xDi stance * xDistance + yDistance * yDistance);
} [1 di stanceFronPoi nt

13027

5.21 Method: a method may have no parameters (page 173)

The following code would print the numb@e. 0, twice.

System out. println(pl.distanceFronPoint(p2));
System out. println(p2.distanceFronPoint(pl));

5.21 Method: a method may have no parameters (page 173)

The list ofmethod parameters given to anethod may be empty. This is typical for methods
which always have the same effectreturn the same result, or their result depends on the
value ofinstance variables rather than some values in the context where the methotlesl.ca

5.22 Method: return with no value (page 206)

A void method may contairreturn statements which do not have an associateturn value

— just thereserved wordr et ur n. These cause the execution of thethodto end, and control
to transfer back to the code that called the method. Eveywathod behaves as though it has
an implicit return statement at the end, unless it has onkcgtkpwritten.

The use of return statements throughout the body of a metéodifs us to design them using
a single entry, multiple exit principle: every call of the method starts at the beginning,
depending orronditions the execution may exit at various points.

5.23 Method: accessor methods (page 207)

A public instance methodwhose job itis to reveal all or some part of thigject state without
changing it, is known as a@ccessor method Perhaps the most obvious example of this is an
instance method callegkt SomeVar i abl e, wheresoneVar i abl e is the name of amstance
variable. However, a welldesigred classwith goodencapsulationdoes not systematically
reveal to its user what its instance variables are. Hencentire general idea of an accessor
method: it exposes the value of sor@ature, which might or might not be directly imple-
mented as an instance variable.

5.24 Method: mutator methods (pagée 207)

A public instance methodwhose job it is to set or update all or some part ofdhgect state

is known as amutator method. Perhaps the most obvious example of this is an instance
method calledet SonmeVari abl e, wheresomeVar i abl e is the name of amstance variable
However, the more general idea of a mutator method is thaainges the value of some feature,
which might or might not be directly implemented as an inséavariable.

13028

5.25 Method: overloaded methods (page 237)

Obviously, onlymutable objects have mutator methods.

5.25 Method: overloaded methods (page 237)

The method signature of a method is its name and list tfpes of its method parameters.
Java permits us to hawaverloaded method, that is, more than onaethod with the same
name within onelass as long as they have different signatures. E.g. they mag aalfferent
number of parameters, different types, the same types batdifferent order, etc.. If two
methods had the same signature thenctirapiler could never know which one was intended
by amethod callwith method argument matching both of them.

For example, the metho8ystem out. println() can be used with no arguments, with a
singleStri ng as an argument, or with an argument of some other type, suchtasr any
object. These are in fact different methods with the same name!

6 Command line arguments

6.1 Command line arguments: program arguments are passed tmain
(page 17)

Programs can be givasommand line argumens which typically affect their behaviour. Ar-
guments given to a Java program are strings ofdesd, and there can be any number of them
in alist. In Java,String[] means ‘list of strings’. We have to give a name for this lisid a
usually we call itar gs. The chosen name allows us to refer to the given data fromimwilie
program, should we wish to.

public static void main(String[] args)

6.2 Command line arguments: program arguments are accessdwy in-
dex (page 26)

The command line argumens given to themain method are alist of strings. These are
the text data string arguments supplied on tteommand line The strings arendexed by
integers (whole numbers) starting from zero. We can access theithdilstrings by placing
the index value in square brackets after the name of theSstassuming that we call the list
ar gs, thenar gs[0] is the first command line argument given to the program, ifdh&one.

13029

6.3 Command line arguments: length of the list (nage 79)

6.3 Command line arguments: length of the list (page 79)

The command line argument passed to theain method are alist of strings. We can find
the length of a list by writing a dot followed by the wardngt h, after the name of the list. For
examplear gs. | engt h yields ani nt value which is the number of items in the lastgs.

6.4 Command line arguments: list index can be a variable (pag79)

The index used to access the individual items fronlist of strings does not have to be an
integer literal, but can be aint variable or indeed ararithmetic expression For example,
the following code adds together a listinfegers given acommand line argumens.

int sunOXArgs = 0;

for (int arglndex = 0; arglndex < args.length; arglndex = arglndex + 1)
sunf Args = sunf Args + I nteger. parselnt(args[arglndex]);

Systemout.printIn("The sumis " + sunOf Args);

The benefit of being able to usevariable, rather than an integer literal is that the access can
be done in doop which controls the value of the variable: thus the actual®alsed as the
index is not the same each time.

7 Type

7.1 Type (page 36)

Programs can process various different kinddatg, such as numbers, text data, images etc..
The kind of a data item is known as tige.

7.2 Type: String (page 135)

Thetype of text data strings, such astring literal values andconcatenatiors of such, is
calledStringin Java.

7.3 Type: String: literal (page[18)

In Java, we can havesdring literal , that is a fixed piece of text to be useddata, by enclosing
it in double quotes. It is called a string literal, because atype of data which is a string of

13030

7.4 Type: String: literal: must be ended on the same lineg|2dg

characters, exactly as listed. Such a piece of data might be used assagest® the user.

"This is a fixed piece of text data -- a string literal"

7.4 Type: String: literal: must be ended on the same line (pag21)

In Javastring literal s must be ended on the same line they are started on.

7.5 Type: String: literal: escape sequences (page 49)

We can have aew line characterembedded in atring literal by using theescape sequence
\ n. For example, the following code will print out three linassiandard output.

Systemout.println("This text\nspans three\nlines.");
It will generate the following.

This text
spans three
l'i nes.

There are other escape sequences we can use, includindlomarfg.

Sequencel Name Effect

\b Backspace Moves the cursor back one place, so the roker-
acter will over-print the previous.

\'t Tab (horizontal tab) Moves the cursor to the next ‘tab stop’.

\n New line (line feed)| Moves the cursor to the next line.

\ f Form feed Moves to a new page on many (text) printers.

\r Carriage return Moves the cursor to the start of the current line, so
characters will over-print those already printed.

\" Double quote Without the backslash escape, this would mark|the
end of the string literal.

\’ Single quote This is just for consistency — we don't need to es-
cape a single quote in a string literal.

\\ Backslash Well, sometimes you want the backslash character
itself.

Note: System out . println() always ends the line with the platform dependerd separa-
tor, which on Linux is a new line character but on Microsoft Windois acarriage return

13031

7.6 Type: String: concatenation (page 26)

character followed by a new line character. In practice you may noteethe difference, but
the above code is not strictly the same as using three sefsysitem out . println() calls
and is not 100% portable.

7.6 Type: String: concatenation (page 26)

The + operator, when used with two stringperands, produces a string which is tloen-
catenation of the two strings. For exampledel |0 " + "wor| d" produces a string which is
Hel | o (including the space) concatenated with the stwoig d, and so has the same value as
"Hell o world".

There would not be much point concatenating togetherdtriag literal s like this, compared
with having one string literal which is already the text wentvaWWe would be more likely to
use concatenation when at least one of the operands is netiavikue, i.e. is &ariable value.
For example;Hel o " + args[0] produces a string which il | 0 (including the space)
concatenated with the firsbommand line argumentgiven when the program rsin.

The resulting string can be used anywhere that a singlegdiitaral could be used. For ex-
ampleSystemout. printIn("Hello " + args[0]) would print the resulting string on the
standard output.

7.7 Type: String: conversion: from int (page 38)

The Javaoperator + is used for botraddition andconcatenation— it is anoverloaded op-
erator. If at least one of th@perands is atext data string, then Java uses concatenation,
otherwise it uses addition. When only one of the two operasdsstring, and the other is
some othetype of data, for example amnt , the Javaompiler is clever enough to understand
the programmer wishes that data to be converted into a diefye the concatenation takes
place. It is important to note the difference betweernaeger and the decimal digit string we
usually use to represent it. For example, ititeger literal 123 is ani nt, a number; whereas
thestring literal " 123" is a text data string — a string of 3 separelt@racters.

Suppose theariable noOf Peopl eTol nvi t eToTheSt r eet Party had the valuél, then the
code

Systemout.printIn("Please invite " + noCf Peopl eTol nviteToTheStreet Party);
would print out the following text.

Pl ease invite 51

13032

7.8 Type: String: conversion: from double (page 55)

The number51 would be converted to the strifighl" and then concatenated to the string
"Please invite " before being processed Bystem out. println().

Furthermore, for our convenience, there is a separateoveodSyst em out . printl n() that
takes a singlént rather than a string, and prints its decimal representafibas, the code

System out. print|n(noC Peopl eTol nviteToTheStreet Party);
has the same effect as the following.

Systemout.println("" + noO Peopl eTol nviteToTheStreetParty);

7.8 Type: String: conversion: from double (page 55)

The Javaconcatenation operator +, for joining text data strings can also be used to convert
adoubl e to a string. For example, thexpression"" + 123. 4 has the valué123. 4" .

7.9 Type: String: conversion: from object (page 177)

It is quite common forclasses to have ainstance methodwhich is desigred to produce a
String representation of aabject. It is conventional in Java for suahethods to be called
toStri ng. For example, &oi nt class withx andy instance variables might have the follow-
ingtoString() method.

public String toString()

{
return "(" + X + ", +y + ")
} Il toString

For convenience, whenever the Jaeapiler finds anobject referenceas anoperand of the
concatenation operatorit assumes that the object'®St ri ng() method is to be invoked to
produce the requirest ri ng. For example, consider the following code.

Poi nt pl = new Point(10, 40);
Systemout.println("The point is " + pl.toString());

Thanks to the compiler’s convenient implicit assumptioowtt oSt ri ng() , the above code
could, and probably would, have been written as follows.

13033

7.10 Type: String: conversion: from object: null referefjoage 211)

Point pl = new Point (10, 40);
Systemout.println("The point is " + pl);

For our further convenience, there is a separate versi@psifem out . printl n() that takes
any single object rather than a string, and prints @St ri ng() . Thus, the code

Systemout. println(pl);
has the same effect as the following.

Systemout.println("" + pl);

7.10 Type: String: conversion: from object: null reference(page 211)

For convenience, whenever the Jagapiler finds anobject referenceas anoperand of the
concatenation operatorit assumes that the object®St ri ng() instance methodis to be
invoked to produce the requirétiri ng. However, the reference might be thell reference
in which case there is no object on which to invokét ri ng() , so instead, the stririghul | *
is used.

In fact, assumingoneSt ri ng is someSt ri ng andnyVar is avariable of areference type
then the code:

soneString + nyVar

is actually treated as follows.

soneString + (nyVar == nul |
? "null"
» (nyVar.toString() == null ? "null" : myVar.toString()))

The same applies to the first operand of string concatenttilbat is an object reference.
For this reason, most Java programmers prefer tb'use myVar rather thamyVar . t oSt ring()

when they wish to convert the object referencednbyar to a string, because it avoids the pos-
sibility of an exceptionif myVar contains the null reference.

7.11 Type: int (page 36)

One of thetypes of data we can use in Java is callédt . A data item which is annt is an
integer (whole number), such ds - 129934 or 982375, etc..

13034

7.12 Type: double (page 54)

7.12 Type: double (page 54)

Another of thetypes of data we can use in Java is known @subl e. A data item which is a
doubl e is areal (fractional decimal number), such @s0, - 129. 934 or 98. 2375, etc.. The
type is callecdoubl e because it uses a means of storing the numbers addleble precision
On computers, real numbers are only approximated, bechagéave to be stored in a finite
amount of memory space, whereas in mathematics we have tlon d infinite decimals.
The double precision storage approach uses twice as muclomy@er number than the older
single precisiontechnique, but gives numbers which are much more precise.

7.13 Type: casting an int to a double (page 79)

Sometimes we have amt value which we wish to be regarded asaubl e. The process of
conversion is known asasing, and we can achieve it by writi{@loubl) in front of thei nt .
For example(doubl e) 5 is thedoubl e value5. 0. Of course, we are most likely to use this
feature to cast the value of amt variable, rather than amteger literal .

7.14 Type: boolean (page 133)

There is atype in Java calletbool ean, and this is the type of altonditions used inif else
statemens andoops. It is named after the English mathematician, George Bobtese work
in 1847 established the basis of modern logic[12]. The typeains just twdooolean literal
values called r ue andf al se. For example5 <= 5 is aboolean expressionwhich, because
it has novariables in it, always has the same value wrenraluated. Whereas thexpression
agel < age2 || agel == age2 && height1 <= height2 has a value which depends on
the values of the variables in it.

7.15 Type: long (page 145)

Thetypeint allows for the storage dhtegers in the range-23! through to 31— 1. This
is because it uses folaytes, i.e. 32binary digits. 21— 1 is 2147483647. Although this is
plenty for most purposes, we sometimes need whole numbarkigger range. The typeng
representfong integers and uses eight bytes, i.e. bds. Al ong variable can store numbers
from —2%3 through to $3— 1. The value of 2 —1 is 9223372036854775807.

A long literal is written with anL on the end, to distinguish it from ant literal , as in- 15L
and2147483648L.

13035

7.16 Type: short (page 145)

7.16 Type: short (page 145)

Thetype short representshort integers using twobytes, i.e. 16binary digits. A short
variable can store numbers from2° through to 2°— 1. The value of -1 is 32767. We
would typically use this type when we have a huge numbéantefjers, which happen to lie in
the restricted range, and we are concerned about the amionetnaory (orfile space) needed
to store them.

7.17 Type: byte (page 145)

Thetype byt e representintegers using just ondyte, i.e. 8binary digits. A byt e variable
can store numbers from2’ through to Z — 1. The value of 2— 1 is 127.

7.18 Type: char (page 145)

Characters in Java are represented bytype char . A char variable can store a singlehar-
acter at any time.

7.19 Type: char: literal (page 145)

A character literal can be written in our program by enclosing it in single quokes example
' J' is a character literal.

7.20 Type: char: literal: escape sequences (page 146)

When writing acharacter literal we can use the sanescape sequenesethat are available
within string literal s. These include the following.

char backspace = '\b’; char tab = "\t’";

char newine ='\n’; char fornfFeed = "\f’;
char carriageReturn ="\r’; char doubl eQuote = "\"";
char singleQuote = "\""; char backslash = "\\";

7.21 Type: char: comparisons (page 238)

Values oftype char may be compared using the usuyal<=, ==, ! =, >= and > relational
operators. Characters are stored in the computer using nunosbacacter codes — each one

13036

7.22 Type: char: casting to and from int (page 238)

has a unigue number — and when teltaracters are compared, the result is formed from the
same comparison on the two numbers.

Generally speaking we do not need to know the actual numisad for specific characters.
However, there are certain properties that are useful tavksiach as that the number fok' is
oneless thanthat for’ B', which is one less than the number used fGr, and so on. In other
words, the upper case alphabetic letters have contiguaradier codes. The same is true of
the lower case alphabet, and also the digit charatf®rshrough to' 9’ . The character codes
for the digits are all less than those for the upper caseasgttéhich are all less than those for
the lower case letters.

For example, the followingnethod checks whether a given character is a lower case alphabetic
character.

public static bool ean isLowerCase(char aChar)

{

return aChar >= 'a' && aChar <= '7';
} Il isLowerCase

A method similar to this is provided in the standa&tessj ava. | ang. Char act er. That one
also works forlocales (i.e. languages) other than English.

Another property worth remembering is that, for the Engtishracters, the code for each upper
case letter is 32 less than the code for the correspondingy loase letter.

7.22 Type: char: casting to and from int (page 238)

The numericcharacter codeused to store aharacter may be obtained bgasing achar
value to an nt . We can achieve this by writing nt) in front of it. For example(int)’ A
is the numeric code used to store a capital A.

We can also convert in the opposite direction, by castingranto achar. For example, at
the end of the following fragment of code, thaariable | et t er B will contain an upper case B

charact

int codeForA = (int) A ;
char letterB = (char) (codeForA + 1);

The following method returns the upper case equivalent of a given character, if it is @&tow
case letter, or the original character if not. It assumesathitity of the method sLower Case() .

LActually, the cast in the first line fromhar toi nt would be implicit, but it is good style to write it anyway.
In the second line, the cast fromt to char is required.

13037

7.23 Type: float (page 146)

public static char toUpperCase(char aChar)

{
i f (isLowerCase(aChar))

return (char) ((int)aChar - (int)’a + (int)"A);
el se
return aChar;
} I1 toUpperCase

A method similar to this is provided in the standa&tessj ava. | ang. Char act er. That one
also works forlocales (i.e. languages) other than English.

7.23 Type: float (page 146)

Thetype f 1 oat is for real (fractional decimal) numbers, using tleating point represen-
tation with a single precisionstorage. It uses only fousytes per number, compared with
doubl e which employsdouble precisionstorage and so is far more accurate, but needs eight
bytes per number.

A float literal is written with anf or F on the end, as ifi. OF, - 129. 934F or 98. 2375f .

7.24 Type: primitive versus reference (page 162)

Eachtype in Java is either arimitive type or areference type Values of primitive types have
a size which is known atompile time. For example, everynt value comprises foubytes.
Types for which the size of an individual value is only knowmun time, such aglases, are
known as reference types because the values are alwaysadces aeference

8 Standard API

8.1 Standard API: System: out.printin() (page 18)
The simplest way to print a messagestandard output is to use:
Systemout.println("This text will appear on standard output");

Systemis aclass(that is, a piece of code) that comes with Java as part dpfdication
program interface (API) — a large number of classes designed to support our Javeapneg
Inside Syst emthere is a thing calledut, and this has amethod (section of code) called

13038

8.2 Standard API: System: out.printin(): with no argumeraige 98)

println. So overall, this method is calle&tyst em out . pri ntl n. The method takes a string
of text given to it in its brackets, and displays that textlo& $standard output of the program.

8.2 Standard API: System: out.printin(): with no argument (page 98)

TheclassSyst emalso contains a version of thvet . print| n() methodwhich takes no argu-
ments. This outputs nothing exceptew line. It has the same effect as callifgst em out . println()
with an empty string as its argument, that is

Systemout. println();

has the same effect as the following.
Systemout. printin("");

So, for example

Systemout.print("Hello world!");
Systemout. println();

would have the same effect as the following.
Systemout.printIn("Hello world!");

Systemout. println() with no argument is most useful when we need to end a line which
has been generated a piece at a time, or when we want to hazelalible.

8.3 Standard API: System: out.print() (page 98)

TheclassSyst emcontains anethodout . pri nt () whichis almostthe sameast . printin().
The only difference is thatut . print () does not produce@ew line after printing its output.
This means that any output printed after this will appearensame line. For example

Systemout.print("Hello");
Systemout.print(" ");
Systemout. println("world!");

13039

8.4 Standard API: System: out.printf() (page 126)

would have the same effect as the following.
Systemout.printin("Hello world!");

Systemout. print() is most useful when the output is being generated a pieceiateq t
often within aloop.

8.4 Standard API: System: out.printf() (page 126)

TheclassSyst emcontains anethodout . printf (), introduced in Java 5.0, which is similar
toout. print () except that we can use it to produce formatted output of galue

A simple use of this is to take anteger value and have it printed witbpace paddingto a
given positive integer field width. This means the outputtaors leading spaces followed by
the usual representation of the integer, such that the nuofbsharacters printed is at least
the given field width.

The following code fragment includes an example which granstring representation 23,
with leading spaces so that the result has a width of ten cteaga

Systemout. println("1234567890");
Systemout.printf("%0d%", 123);

Here is the effect of these twgiatemens.

1234567890
123

The first%tellsout . printf () that we wish it to format something, tié tells it the minimum
total width to produce, and the following letter says whatdkof conversion to perform. A

tells it to produce the representation of a decimal wholelmemwhich is given after thiermat

specifier string, as the seconahethod argument The % tellsout . printf () to output the
platform dependeriine separator.

The method can be asked to format a floating point value, ssi@li@ubl e. In such cases we
give the minimum total width, a dot J, the number of decimal places, andfagonversion.
For example,

Systemout.printf("%.2f%", 123.456);

13040

8.5 Standard API: System: out.printf(): zero padding (nE4@)

needs more than the given minimum widthlofand so produces the following.
123. 46
Whereas, the format specifier in

Systemout. println("1234567890");
Systemout. printf("%0. 2f %", 123.456);

prints a total of ten characters for the number, two of whiehdecimal places.

1234567890
123. 46

8.5 Standard API: System: out.printf(): zero padding (pagel140)

We can ask
Systemout. printf() for zero paddingrather tharspace paddingof a number by placing
a leading zero on the desired minimum width in fbenat specifier.

The following code fragment contains an example which pranstring representation 23,
with leading zeroes so that the result is tdraracters long.

Systemout. println("1234567890");
Systemout. printf("%10d%", 123);

Here is the effect.

1234567890
0000000123

Similarly,

Systemout. println("1234567890");
Systemout. printf("%10.2f %", 123.456);

produces the following.

1234567890
0000123. 46

13041

8.6 Standard API: System: in (page 187)

8.6 Standard API: System: in (page 187)

Inside theSyst emclass in addition to theclass variablecalledout , there is another called.
This contains aeferenceto anobject which represents thetandard input of the program.

Perhaps surprisingly, unlike tleandard output, the standard input in Java is not easy to use
as itis, and we typically access it via some other means, asielScanner .

8.7 Standard API: System: getProperty() (page 195)

When a program isunning, varioussystem property values hold information about such
things as the Java version and platform being used, the hoewaty of the user, etc.. The
class methodSyst em get Property() takes the name of such a property as$itsi ng method
parameter andreturn s the corresponding ri ng value.

8.8 Standard API: System: getProperty(): line.separator page 195)

System get Property() maps the namei ne. separ at or onto thesystem property which
is theline separator for the platform in use.

8.9 Standard API: System: currentTimeMillis() (page 262)

The classj ava. | ang. Syst em contains aclass methodcalledcurrent TimeM | | i s which
returns the current date and time expressed as the number of mdliigs since midnight,
January 1, 1970. This value i3 ang.

8.10 Standard API: Integer: parselnt() (page 41)

One simple way to turn #&ext data string, say" 123" into theinteger (whole number) it
represents is to use the following.

I nt eger. parselnt("123");

I nt eger is aclass(that is, a piece of code) that comes with Java. Insitdeeger there is a
method (section of code) callepar sel nt . This method takes a text data string given to it in
its brackets, converts it into amt andreturns that number. Aun time error will occur if
the given string does not representi am value.

13042

8.11 Standard API: Double: parseDouble() (page 54)

For example

int firstArgument;
firstArgunment = Integer.parselnt(args[0]);

would take the firstcommand line argumentand, assuming it represents a number (i.e. itis a
string of digits with a possible sign in front), would turniito the number it represents, then
store that number ihi r st Argument . If instead the first argument was some other text data
string, it would produce a run time error.

8.11 Standard API: Double: parseDouble() (page 54)

One simple way to turn gext data string, say" 123. 456" into thereal (fractional decimal
number) it represents is to use the following.

Doubl e. par seDoubl e("123. 456") ;

Doubl e is aclass(that is, a piece of code) that comes with Java. Inflaél e there is a
method (section of code) calledar seDoubl e. This method takes a text data string given to
it in its brackets, converts it into afbubl e andreturn s that number. Aun time error will
occur if the given string does not represent a number. Fanpia

doubl e firstArgument = Doubl e. parseDoubl e(args[0]);

would take the firscommand line argumentand, assuming it represents a number, would
turn it into the number it represents, then store that nuritberr st Ar gunent . To represent

a number, the string must be a sequence of digits, possibhyamlecimal point and maybe a
negative sign in front. If instead the first argument was soiher text data string, it would
produce a run time error.

8.12 Standard API: Math: pow() (page 73)

Java does not have aperator to compute powers. Instead, there is a standéadscalled
Mat h which contains a collection of usefodethods, includingpow() . This takes two numbers,
separated by a comma, and gives the value of the first numbedr® the power of the second.

For example, thexpressionMat h. pow(2, 10) produces the value off2which is1024.

13043

8.13 Standard API: Math: abs() (page 87)

8.13 Standard API: Math: abs() (page 87)

Java does not have aperator to yield theabsolute valueof a number, that is, its value
ignoring its sign. Instead, the standatdsscalledMat h contains anethod, calledabs. This
method takes a number and gives its absolute value.

For example, thexpressionMat h. abs(- 2. 7) produces the valu& 7, as does the expression
Math. abs(3.4 - 0.7).

8.14 Standard API: Math: PI (page[87)

The standaratlasscalledMat h contains a constant value call@d that is set to the most ac-
curate value oftthat can be represented using thbl e numbertype. We can refer to this
value using\at h. Pl , as in the following example.

double circleArea = Math. Pl * circleRadius * circl eRadius;

8.15 Standard API: Math: random() (page 205)

The standaratlassj ava. | ang. Mat h contains aclass methodcalledr andom This takes no
method argument andreturns somedoubl e value,r, such that @ <r < 1.0 is true. The
value is chosen in a pseudo random fashion, usingigorithm which exhibits the character-
istics of an approximately uniform distribution of randonmnbers.

8.16 Standard API: Scanner (page 188)

Since the advent of Java 5.0 there is a standtsiscalledj ava. uti | . Scanner which pro-
vides some simple features to read ingata. In particular, it can be used to re8glst em i n
by passing that to itsonstructor method as follows.

i nport java.util.Scanner;

Scanner input Scanner = new Scanner (Systemin);

Each time we want a line of text we invoke thext Li ne() instance method

String line = inputScanner.nextLine();

13044

8.17 Standard API: String (page 233)

Or maybe we want to read amteger usingnextint ().

int aNumber = input Scanner.nextInt();
Il Skip past anything on the same |ine follow ng the number.
i nput Scanner . next Li ne();

EssentiallySyst em i n accesses thetandard input as a stream dbytes of data. AScanner
turns these bytes into a streamobiaracters (i.e.char values) and offers a variety of instance
methods to scan these into whole lines, or various tokersratgnl bywhite space such as
spaces, tabs and end of lines. Some of these instance meiteddsed below.

Public method interfaces for classScanner (some of them).

Method | Return | Arguments | Description

next Li ne String Returns all the text from the current point in the
character stream up to the next end of line, ds a
String.

next I nt i nt Skips any spaces, tabs and end of lines and then

reads characters which represent an integer,|and
returns that value as annt. It does not skip
spaces, tabs or end of lines following those char-
acters. The characters must represent an integer, or
arun time error will occur.

next Bool ean | bool ean Similar tonext I nt () except for ool ean value.
next Byt e byt e Similar tonext I nt () except for eyt e value.
next Doubl e | doubl e Similar tonext | nt () except for adoubl e value.
next Fl oat f | oat Similar tonext I nt () except for & | oat value.
next Long | ong Similar tonext I nt () except for d ong value.
next Short short Similar tonext I nt () except for ashort value.

There are very many more features in this class, includiagbility to change what is consid-
ered to be characters that separate the various tokens.

8.17 Standard API: String (page 233)

Strings in Java arebjects of the standardlassj ava. | ang. Stri ng. This class is defined in
the same way as any other, but the Java language also knoutssaioa literal s and the string
concatenation operator So, strings are semi-built-in to Java. All the other bunltypes are
primitive type s, butSt ri ng is areference type

13045

8.18 Standard API: String: some instance methods (page 234)

When we write

String name = "Java";

we are asking for an object ¢fpe St ri ng to be created, containing the tektva, and for a
referenceto that object to be placed in thariable calledname. So, even though we do not
use the special wordew, whenever we write a string literal in our code, we are askarga
new St ri ng object to be created.

String name

o~——— P

A String object

J/a|Vv |a

The text of aStri ng is stored as a sequencedbfaracters, each of these is a member of the
char type. This text cannot be changefr i ngs areimmutable objects.

8.18 Standard API: String: some instance methods (page 234)

Strings havenstance method, some of which are listed below.

Public method interfaces for classSt ri ng (some of them).

Method | Return | Arguments | Description

char At char int This return s thecharacter at the specifiecstring
index. The characters are indexed from zero up-
wards.

conpareTo i nt String Compares the text of this with the given other, us-

ing lexicographic ordering (alphabetic/dictionary
order). Return$ if they are equal, a negativet if
this isless thanthe other, a positivent otherwise.

endsWth bool ean | String Returnst rue if and only if the text of this string
ends with that of the given other.
equal s bool ean | String Returnst r ue if and only if this string contains the

same text as the given other.

13046

Public method interfaces for classSt ri ng (some of them).

Method | Return | Arguments | Description

i ndexOr i nt String

Returns the index within this string of the first o

currence of the given other string, or -1 if it does not

OCcCur.

| engt h i nt

Returns the length of this string.

startsWth | bool ean | String

Returnst r ue if and only if the text of this string
starts with that of the given other.

substring String |int

Returns anewstring that is a substring of this strin
The substring begins with the character at the gi
index and extends to the end of this string.

substring String |int, int

Returns a new string that is a substring of this stri
The substring begins at the first given index and
tends to the character at the second index minus

t oLower Case | String

Returns a new string which is the same as this
except that all upper case letters are replaced
their corresponding lower case letter.

0.
ven

ng.
ex-
one.
one
with

t oUpper Case | String

Returns a new string which is the same as this
except that all lower case letters are replaced V

one
vith

their corresponding upper case letter.

9 Statement

9.1 Statement (page 18)

A command in a programming language, such as Java, whichsriakecomputer perform
a task is known as atatement Systemout.printin("l wll output whatever | am
told to") is an example of a statement.

9.2 Statement: simple statements are ended with a semi-col@page 18)

All simple statemens in Java must be ended by a semi-colph (This is a rule of the Java

languagesyntax.

13047

9.3 Statement: assignment statement (page 37)

9.3 Statement: assignment statement (page 37)

An assignment statements a Javastatementwhich is used to give a value tovariable, or
change its existing value. This is only allowed if the value ave assigning hastgpe which
matches the type of the variable.

9.4 Statement: assignment statement: assigning a literablue (page 37)

We can assign kteral value, that is a constant, to\ariable using anassignment statement
such as the following.

noCf Peopl eLi vi ngl nMyStreet = 47,

We use a singlequal sign(=), with the name of the variable to the left of it, and the vales
wish it to be given on the right. In the above example,ittteger literal 47 will be placed into
the variablenoOf Peopl eLi vi ngl nMySt r eet . Assuming the variable was declared asiran
variable then this assignment would be allowed because 47 isian

9.5 Statement: assignment statement: assigning an expressvalue (page
38)

More generally than just assigningliteral value, we can use aassignment statemento
assign the value of aexpressionto avariable. For example, assuming we have the variable

i nt noOf Peopl eTol nvi teToTheSt reet Party;
then the code
noOf Peopl eTol nvi teToTheStreet Party = noOf Peopl eLi vi ngl nMyStreet + 4;

whenexecutal, wouldevaluatethe expression on the right of tequal sign(=) and then place
the resulting value in the variabh®O Peopl eTol nvit eToTheStreet Party.

9.6 Statement: assignment statement: updating a variablepage 70)

Javavariables have a name and a value, and this value can change. For exanegdiollowing
code is one way of working out the maximum of two numbers.

13048

9.7 Statement: assignment statement: updating a varstiethand operators (page 87)

int X
int y,
int z;
Code here that gives values to x, y and z.

i nt maxi nunf XYandZ = x;
i f (maxi nunOf XYandZ < y)
maxi munoF XYandZ = vy;
i f (maxi munOF XYandZ < z)
maxi munof XYandzZ = z;

See that the variableaxi nunf XYandZ is given a value which then might get changed, so that
after the end of the secoridstatementit holds the correct value.

A very common thing we want the computer to do, typically desaloop, is to perform a

variable update. This is when a variable has its value changed to a new valughvidbased
on its current one. For example, the code

count = count + 1;

will add one to the value of the variabdeunt . Such examples remind us thatassignment
statementis not a definition ofequality, despite Java’s use of the singlgual sign

9.7 Statement. assignment statement: updating a variableshorthand
operators (page 87)

The need to undertakevariable update is so common, that Java provides varishgrthand
operators for certain types of update.

Here are some of the most commonly used ones.

Operator | Name Example | Longhand meaning
++ postfix increment X++ X =x +1
- - postfix decrement X- - X =x -1
+= compound assignment: add to X +=y [X =X +Yy
-= compound assignment: subtractfram -=y |x = x -y
*= compound assignment: multiplyby| x *=y | x = x * y
/= compound assignment: divideby |x /=y |x=x1Yy

The point of thesgostfix increment, postfix decrementandcompound assignmenbpera-
tors is not so much to save typing when a program is beingemitbut to make the program

13049

9.8 Statement: if else statement (page 60)

easier to read. Once you are familiar with them, you will Bgrfieom the shorter and more
obvious code.

There is also a historical motivation. In the early days @& phogramming language C, from
which Java inherits much of itsyntax, these shorthandperators caused theompiler to
produce more efficient code than their longhand countespd@ite modern Java compiler with
the latest optimization technology should remove this eomc

9.8 Statement: if else statement (page 60)

Theif else statementis one way in Java of havingpnditional execution It essentially con-
sists of three parts: eondition or boolean expressiona statementwhich will be executel
when the condition isr ue (thetrue part), and another statement which will be executed when
the condition i al se (thefalse part). The whole statement starts with tfeserved wordi f .
This is followed by the condition, written in brackets. Nexmes the statement for the true
part, then the reserved woetlse and finally the statement for the false part.

For example, assuming we have tregiable noOf Peopl eTol nvi t eToTheSt r eet Party con-
taining the number suggested by its name, then the code

i f (noCf Peopl eTol nviteToTheSt reet Party > 100)
Systemout.printIn("W wll need a big sound system");

el se
Systemout. println("W should be okay with a normal HFi.");

will cause the computer to compare the current valum6f Peopl eTol nvi t eToTheSt reet Party
with the numberl00, and if it is greater then print out the messagewi || need a big
sound system or otherwise print out the messa@é shoul d be okay with a nornal

H Fi . — it will never print out both messages. Notice the bracketsiiad the condition and
the semi-colons at the end of the two statements inside thlgefstatement. Notice also the
way we lay out the code to make it easy to read, splitting tinesliat sensible places and adding
moreindentation at the start of the two inner statements.

9.9 Statement: if else statement: nested (page 62)

Thetrue part or false part statements inside ahelse statementmay be any valid Javstate-
ment, including other if else statements. When we place an ifgsement inside another, we
say they aremested

For example, study the following code.

13050

9.10 Statement: if statement (page 64)

i f (noCf Peopl eTol nviteToTheSt reet Party > 300)
Systemout.printIn("We will need a Mega master 500 Watt anplifier!");
el se
i f (noOf Peopl eTol nviteToTheStreetParty > 100)
Systemout.printin("We will need a Maxi Master 150 Watt anplifier!");

el se
Systemout. println("W shoul d be okay with a normal HFi.");

Depending on the value o Peopl eTol nvi t eToTheSt r eet Par ty, this will report one of
three messages. Notice the way we have laid out the code above is fhifowing the usual
rules that inner statements have mardentation than those they are contained in, so the
second if else statement has more spaces because it livdestims first one. However, typically
we make an exception to this rule for if else statements destthe false part of another, and
we would actually lay out the code as follows.

i f (noCf Peopl eTol nviteToTheSt reet Party > 300)

Systemout.printin("We wll need a Mega master 500 Watt anplifier!");
el se if (noCf Peopl eTol nviteToTheStreetParty > 100)

Systemout.printIn("We wll need a Maxi Master 150 Watt anplifier!");
el se

Systemout. printIn("W should be okay with a normal HFi.");

This layout reflects ouabstract thinking that the collection of statementsase construct
offering three choices, even though it is implemented usivif else statements. This idea
extends to cases where we want many choices, using manylnestee statements, without
the indentation having to increase for each choice.

9.10 Statement: if statement (page 64)

Sometimes we want the computerdgecutesome code depending oncandition, but do
nothing if the condition is al se. We could implement this using ainelse statementwith an
emptyfalse part. For example, consider the following code.

i f (noCf Peopl eTol nviteToTheSt reet Party > 500)
Systemout. println("You may need an entertainnent |icense!");
el se ;

This will print the message if theariable has a valugreater than 500, or otherwise exe-
cute theempty statementbetween theeserved wordel se and the semi-colon. Such empty
statements do nothing, as you would probably expect!

It is quite common to wish nothing to be done when the condliss al se, and so Java offers

us theif statement This is similar to the if else statement, except it simplgsloot have the
wordel se, nor a false part.

13051

9.11 Statement: compound statement (page 66)

i f (noCf Peopl eTol nviteToTheSt reet Party > 500)
Systemout.printIn("You may need an entertainnent |icense!");

9.11 Statement: compound statement (page 66)

The Javaompound statements simply a list of any number aftatemens between an open-
ing left brace () and a closing right bracg). You could think of the body of anethod, e.g.
mai n(), as being a compound statement if that is helpful. The meaisirstraightforward:
when the computegxecutes a compound statement, it merely executes each statensetd in
it, in turn. More precisely of course, the Jasampiler turns thesource codento byte code
that has this effect when thertual machine executes theompiled program.

We can have a compound statement wherever we can have amyflgtadlement, but it is most
useful when combined with statements which have anothtmsent within them, such ak
else statemerg andif statements.

For example, the following code reports three messages thlesariable has a valugreater
than 500.

i f (noOk Peopl eTol nviteToTheStreetParty > 500)
{

Systemout.printIn("You may need an entertainnent |icense!");
Systemout.printIn("Also hire some street cleaners for the next day?");
Systemout. println("You shoul d consider a bulk discount on | emonade!");

}

When thecondition of the if statement isr ue, the body of the if statement is executed. This
single statement is itself a compound statement, and sdtee statements within it are exe-
cuted. It is for this sort of purpose that the compound stateraxists.

Note how we lay out the compound statement, with the openiagebat the samiedentation
as the if statement, the statements within it having extdemtation, and the closing brace
lining up with the opening one.

Less usefully, a compound statement can be empty, as in ltbevilag example.

i f (noOk Peopl eTol nviteToTheStreetParty > 500)

{
Systemout.println("You may need an entertainnent |icense!");
Systemout.printIn("Also hire some street cleaners for the next day?");
Systemout. println("You shoul d consider a bulk discount on |emnade!");

}
else {}

13052

9.12 Statement: while loop (page 71)

As you might expect, the meaning of an empty compound stateisithe same as the meaning
of anempty statement

9.12 Statement: while loop (page 71)

The while loop is one way in Java of havingepeated execution It essentially consists of
two parts: acondition, and astatementwhich will be executel repeatedly while the condition
istrue. The whole statement starts with thesserved wordwhi | e. This is followed by the
condition, written in brackets. Next comes the statementet@epeated, known as theop
body.

For example, the following code is a long winded and ineffitigay of giving thevariable x
the value?l.

int x =1,
while (x < 20)
X =X + 2;

The variable starts off with the value and then repeatedly h&sadded to it, until it is no
longerless than20. This is when théoop ends, and will have the value1.

Notice the brackets around the condition and the semi-catidine end of the statement inside
the loop. Notice also the way we lay out the code to make it asgad, splitting the lines at
sensible places and adding mandentation at the start of the inner statement.

Observe the similarity between the while loop and ithetatement — the only difference in
syntaxis the first word. There is a similarity in meaning too: the Mhoop executes its body
zero ormore times, whereas the if statement executes its body zemm®time. However,
if statements arenot loops and you should avoid the common novice phrase “if logpén
referring to them!

9.13 Statement: for loop (page 77)

Another kind ofloopin Java is thdor loop, which is best suited for situations when the number
of iterations of theloop body is known before the loop starts. We shall describe it usieg th
following simple example.

for (int count = 1; count <= 10; count = count + 1)
Systemout. println("Counting " + count);

13053

9.14 Statement: for loop: multiple statements in for upgpsge 136)

Thestatementstarts with theeserved wordf or , which is followed by three items in brackets,
separated by semi-colons. Then comes the loop body, whiahsiagle statement (often a
compound statementof course). The first of the three items in bracketsfigranitialization ,
which is performed once just before the loop starts. Typithls involves declaring sariable
and giving an initial value to it, as in the above examplé count = 1. The second item is
thecondition for continuing the loop — the loop will onlgxecuteand will continue to execute
while that condition ig r ue. In the example above the conditiorcisunt <= 10. Finally, the
third item, afor update, is a statement which is executed at #mel of each iteration of the
loop, that isafter the loop body has been executed. This is typically used tog#éhe value
of the variable declared in the first item, as in our exaneplent = count + 1.

So the overall effect of our simple example is: dectarent and set its value tb, check that it
is less thanl0, print outCount i ng 1, add one ta@ount, check again, print oufounti ng 2,
add one ta@ount , check again, and so on until the conditiom & se when the value ofount
has reachedl.

We do not really need the for loop, as tikile loop is sufficient. For example, the code above
could have been written as follows.

int count = 1;

while (count <= 10)

{
Systemout. println("Counting " + count);
count = count + 1;

}

However you will see that the for loop version has placedttogreall the code associated with
the control of the loop, making it easier to read, as well atla shorter.

There is one very subtle difference between the for loop dmtbwoop versions of the example
above, concerning threcopeof the variableount , that is the area of code in which the variable
can be used. Variables declared in the initialization piatfor loop can only be used in the for
loop —they do not exist elsewhere. This is an added benef#infjdor loops when appropriate:
the variable, which is used solely to control the loop, cartmeoaccidentally used in the rest of
the code.

9.14 Statement: for loop: multiple statements in for update(page 136)

Javafor loops are permitted to have more than @tatementin their for update, that is, the
part which isexecutel after theloop body. Rather than always being one statement, this part
may be a list of statements with commas lfetween them.

One appropriate use for this feature is to have a for loopek@tutes twice, once each for the
two possible values of laoolean variable

13054

9.15 Statement: statements can be nested within each ptusr 02)

For example, the following code prints out scenarios to lim people to live in the city of
Manchester!

bool ean i sRaining = true;
bool ean haveUnbrella = true;
for (int countU = 1; countU <= 2; count Ut+, haveUnbrella = !'haveUnbrell a)

for (int countR = 1; countR <= 2; countR++, isRaining = !isRaining)
{
Systemout.printin("It is" + (isRaining ? "" : " not") + " raining.");
Systemout. println
("You have " + (haveUnbrella ? "an" : "no") + " umbrella.");

if (isRaining & !haveUnbrella)
Systemout.printin("You get wet!");
el se
Systemout. printIn("You stay dry.");
Systemout. printin();
Il for

9.15 Statement: statements can be nested within each othgrage 92)

Statements that control execution flow, suchcaps andif else statemens have othestate-
ments inside them. These inner statements can be any kind ofretateincluding those that
control the flow of execution. This allows quite complabgorithms to be constructed with
unlimited nesting of different and same kinds of controtestaents.

For example, one simple (but inefficient) way to print outtio@-negative multiples ofwhich
lie betweery (> 0) andzinclusive, is as follows.

for (int nunber = 0; nunber <= z; nunber += X)
if (nunber >=y)
Systemout.printin("A nultiple of " + x + " between " +y
+"and " +z + " is " + nunber);

9.16 Statement: switch statement with breaks (page 107)

Java provides aonditional execution statementwhich is ideal for situations where there are
many choices based on some value, such as a number,dmpiatto specific fixed values for
each choice. Itis called trewitch statement The following example code will applaud the
user when they have correctly guessed the winning numkldgfencourage them when they
are one out, or insult them otherwise.

int userCuess = Integer.parselnt(args[0]);

13055

9.17 Statement: switch statement without breaks (page 110)

swi tch (userGuess)

{

case 99: case 101:
Systemout.println("You are close!");
br eak;
case 100:
Systemout. println("Bingo! You win'");
Systemout. println("You have guessed correctly.");
br eak;
defaul t:
Systemout.printin("You are pathetic!");
Systemout. println("Have another guess.");

br eak;
Il switch

The switch statement starts with theserved wordswi t ch followed by a bracketeéxpres-
sion of a type that has discrete values, suchias (notably notdoubl e). The body of the
statement is enclosed in braceSagd}), and consists of a list of entries. Each of these starts
with a list of labels, comprising the reserved wette followed by a value and then a colon
(). After the labels we have one or more statements, typiealtiing with abreak statement

One (at most) label is allowed to be the reserved waeifchul t followed by a colon — usually
written at the end of the list.

When a switch statement executel, the expression isvaluated and then each label in the
body is examined in turn to find one whose value is equal todh#te expression. If such
a match is found, the statements associated with that labeb@cuted, down to the special
break statementwhich causes the execution of the switch statement to eradmiétch is not
found, then instead the statements associated witheth&ul t label are executed, or if there
is nodef aul t then nothing is done.

9.17 Statement: switch statement without breaks (page 110)

A less common form of thewitch statementis when we omit théreak statemens at the end

of the list of statements associated with each setafse labels. This, perhaps surprisingly,
causes execution to “fall through” to the statements aasetiwith the next set efase labels.
Most of the time we daot want this to happen — so we have to be careful to remember the
break statements.

We can also mix the styles — having break statements for satmeg and not for some others.
The following code is a bizarre, but interesting way of dosmgnething reasonably simple. It
serves as an illustration of the switch statement, and agdegfor you. It takes twantegers,
the second of which is meant to be in the range one to ten, apdtsia result which is some
function of the two numbers. What is that result?

13056

9.18 Statement: do while loop (page 112)

int val ue
int power

I nt eger. parselnt(args[0]);
I nt eger. parselnt(args[1]);

i nt val ueToThePower1 = val ue;

int val ueToThePower2 = val ueToThePower1 * val ueToThePower 1;
i nt val ueToThePower4 = val ueToThePower?2 * val ueToThePower 2;
i nt val ueToThePower 8 = val ueToThePower4 * val ueToThePower 4;

int result = 1;

swi tch (power)

{

case 10: result *= val ueToThePower 1;
case 9: result *= valueToThePower1;

case 8. result *= val ueToThePower 8;
br eak;

case 7. result *= val ueToThePower1;

case 6: result *= val ueToThePower1;

case 5. result *= val ueToThePower1;

case 4. result *= val ueToThePower 4;
br eak;

case 3. result *= val ueToThePower1;

case 2. result *= val ueToThePower 2;
br eak;

case 1. result *= val ueToThePower1;
br eak;

Il switch

Systemout.printin(result);

If you find the semantics of the switch statement somewhé&tgaat, then do not worry — you

are not alone! Java inherited it from C, where it was designede to ease the work of the
compiler than to be a good construct for the programmer. You will firelgtvitch statement is

less commonly used than tiifeelse statement and the majority of times you use it, you will

want to have break statements on every setagk labels. Unfortunately, due to them being
optional, accidentally missing them off does not causerapile time error.

9.18 Statement: do while loop (page 112)

Thedo while loop s the third way in Java of havingpeated execution It is similar to the
while loop but instead of having theondition at the start of théoop, it appears at the end.
This means the condition evaluated after theloop body is executa rather than before. The
whole statementstarts with thereserved worddo. This is followed by the statement to be
repeated, then the reserved ward | e and finally the condition, written in brackets.

For example, the following code is a long winded and ineffitigay of giving thevariable x

13057

the value?l.

int X = 1;
do

X += 2;
while (x < 20);

Observe the semi-colon that is needed after the condition.

Of course, the body of the do while loop might be@mpound statementin which case we
might lay out the code as follows.

int X = 0;
int y = 100;
do
{

X++;

y--,

} while (x I'=y)

The above is a long winded and inefficient way of giving both ¥ariablesx andy the value
50.

Note that, because the condition is evaluatie the body is executed, the body is executed at
least once. This is in contrast to the while loop, which migde have its body executed zero
times.

10 Error

10.1 Error (page 20)

When we write thesource codefor a Java program, it is very easy for us to get something
wrong. In particular, there are lots of rules of the languidgé our program must obey in order
for it to be a valid program.

10.2 Error: syntactic error (page|20)

One kind of error we might make in our programsystactic errors. This is when we break
thesyntaxrules of the language. For example, we might miss out a ajdsiacket, or insert an

13058

10.3 Error: semantic error (page 22)

extra one, etc.. This is rather like missing out a word in d@esase of natural language, making
it grammatically incorrect. The sign below, seen strappeti¢ back of a poodle, contains bad
grammar — it has ans missing.

My other dog an AIsatia:I

Syntactic errors in Java result in teempiler giving us an error message. They can possibly
confuse the compiler, resulting in it thinking many morentig are wrong too!

10.3 Error: semantic error (page 22)

Another kind of error we might make is semantic error, when we obey the rules of the
syntax but what we have written does not make any sense — it has nanemémeaning).
Another sign on a different poodle might say

My other dog is a Porsch'.

which is senseless because a Porsche is a kind of car, not a dog

10.4 Error: compile time error (page 22)

Javasyntactic errors and mangemantic errors can be detected for us by tbempiler when
it processes our program. Errors that the compiler can tatecalledcompile time errors.

10.5 Error: run time error (page 24)

Another kind of error we can get with programsris) time error s. These are errors which
are detected when the progranrus rather than when it isompiled. In Java this means the
errors are detected and reported by\h&ial machine, j ava.

Java calls run time erroexceptiors. Unfortunately, the error messages producegdama can
look very cryptic to novice programmers. A typical one migbtas follows.

Exception in thread "nain" java.lang. NoSuchMet hodError: main

You can get the best clue to what has caused the error by pldghlp at the words either side
of the colon (). In the above example, the message is saying thet cannot find thenethod
calledmai n.

13059

10.6 Error: logical error (page 29)

10.6 Error: logical error (page 29)

The most tricky kind of error we can make in our programs iegical error. For these
mistakes we do not get an error message fromctimapiler, nor do we get one aun time
from thevirtual machine. These are the kind of errors for which the Java program we hav
written is meaningful as far as Java is concerned, it is just our program does the wrong
thing compared with what we wanted. There is no way the canpit virtual machine can
help us with these kinds of error: they are far, far too stapidnderstand thproblemwe were
trying to solve with our program.

For this reason, many logical errors, especially very suinles, manage to slip through unde-
tected by human program testing, and end upwass in the final product — we have all heard
stories of computer generated demands for unpaid bills negative amounts, etc..

11 Execution

11.1 Execution: sequential execution (page 23)

Programs generally consist of more than stetement in a list. We usually place these on
separate lines to enhance human readability, althoughddmgnot care about that. Statements
in such a list areexecutel sequentially, one after the other. More correctly, thedawmpiler
turns each one into correspondibgte codes, and thevirtual machine executes each collec-
tion of byte codes in turn. This is known asquential execution

11.2 Execution: conditional execution (page 60)

Having a computer always obey a list of instructions in aaierorder is not sufficient to solve
many problems. We often need the computer to do some thinlgsuoder certain circum-
stances, rather than every time the programurs. This is known agonditional execution
because we get the computeeteecutecertain instructionsonditionally, based on the values
of thevariables in the program.

11.3 Execution: repeated execution (page 70)

Having a computer always obey instructions just once withmrun of a program is not
sufficient to solve many problems. We often need the compatdo some things more than
once. In general, we might want some instructions t@xecutal, zero, one or many times.
This is known agepeated executioniteration, or looping. The number of times a loop of
instructions is executed will depend on soceadition involving thevariables in the program.

13060

11.4 Execution: parallel execution — threads (page 253)

11.4 Execution: parallel execution — threads (page 253)

Computers appear to be able to perform more than one task aathe time. For example, we
can run several programs at once and they run in parallehédgerating systemlevel, each
program runs in a separgbeocess and the computer shares dsntral processing unittime
fairly between the current processes.

The Javavirtual machine has a built-in notion of processes, callbdeads, which allows for

a single program to be doing more than one thing at a time. Véh#&awva program is started,
the virtual machine creates one thread, callednian thread, which is set off torun the
body of themain method. This executes thestatemens in the main method, including the
statements of anyethod calls it finds. Upon reaching the end of the main method, this threa
terminates, which causes the virtual machine to exit if s the only thread existing at the
time. If, however there are any other threads which have abterminated, then the virtual
machine continues to run them. It exits the program only wdiktine threads have ended.

11.5 Execution: parallel execution —threads: the GUI eventhread (page
254)

When we have a program that placegraphical user interface (GUI) window on the screen,
the Javavirtual machine creates anothdéhread, which we shall call th&sUI event thread.
This is created when the first window of the program is showsaAesult of this, the program
doesnot end when themain thread reaches the end of thmain method — this is of course
what we want for a program with a GUI.

(In reality, the virtual machine creates several GUI evieregads, but it suffices to think of there
being just the one.)

The GUI event thread spends most of its life asleep — quiilyginothing. When the end user
of the program does something that might be of interest tptbgram, theoperating system
informs the virtual machine, which in turn wakes up the GU¢mivthread. Such interesting
things include moving the mouse into, out of, or within a womdbelonging to the program,
pressing a mouse key while the mouse is over such a windomgypkeyboard key while
a window of the program has keyboard focus, etc.. These shang collectively known as
evens.

When it is woken up, the GUI event thread looks to see what tiighe changed as a result of
the end user’s action. For example, he or she may have prassed button belonging to the
program. For each event which is definitely interesting,@# event threaskxecutes some
code which is designed to process that event. Then it godstbateep again.

13061

11.6 Execution: event driven programming (page 254)

11.6 Execution: event driven programming (page 254)

A large part of writing programs witraphical user interfaces (GUI s) is about constructing
the code which will process thesents associated with the end user’s actions. This is known as
event driven programming. Essentially, thenain method sets up the GUI of the program via
method calls, and then it ends. From then on, the code associated witkegsimg GUI events
does all the work — when the end user does things which cagbeesents to happen. That is,
the program becomes driven by the events.

12 Code clarity

12.1 Code clarity: layout (page 31)

Java does not care how we lay our code out, as long as we usevguteespaceto separate
adjacent symbols that would otherwise be treated as one dyifnthey were joined. For
examplepubl i ¢ voi d with no space between the words would be treated as the siygileol
publ i cvoi d and no doubt causea@mpile time error. So, if we were crazy, we could write
all our progransource codeon one line with the minimum amount of space between symbols!

public class HelloSolarSystem {public static voi d main(String[largs) {System.out.printin("Hello Mercury!");System.out.prin

Oh dear — it ran off the side of the page (and that was with alenfaht too). Let us split it up
into separate lines so that it fits on the page.

public class HelloSol arSystem{public static void main(String[]args){
Systemout.println("Hello Mercury!"); Systemout. println(

"Hello Venus!"); Systemout.printin("Hello Earth!"); Systemout.println
("Hello Mars!"); Systemout.printin("Hello Jupiter!"); System out.
printIn("Hello Saturn!");Systemout.printin("Hello Uanus!"); System
out.printIn("Hello Neptune!"); Systemout.println("Goodbye Pluto!");}}

Believe it or not, this program would stidlompile andrun okay, but hopefully you will agree
that it is not very easy fous to read. Layout is very important to the human reader, and
programmers must take care and pride in laying out theirqarog as they are written. So we
split our progransensibly, rather than arbitrarily, into separate lines, andingentation (i.e.
spaces at the start of some lines), to maximize the reatyatilour code.

13062

tin("Hellc

12.2 Code clarity: layout: indentation (page 32)

12.2 Code clarity: layout: indentation (page 32)

A classcontains structurasestedwithin each other. The outer-most structure is the clas#ts
consisting of its heading and then containing it's body wittihe braces. The body contains
items such as thmain method. This in turn consists of a heading and a body contained withi
braces.

The idea ofindentation is that the more nested a part of the code is, the more spaas #th
the start of its lines. So the class itself has no spacesidbbdy, within the braces, has two
or three. Then the body of the main method has two or three .mfane should be consistent:
always use the same number of spaces per nesting level.l$bi@ @ood idea to avoid using
tab characters as they can often look okay on your screen, but not line upgrhp when the
code is printed.

In addition, another rule of thumb is that opening brad@ssbould have the same amount of
indentation as the matching closing bragg (You will find that principle being used through-

out this book. However, some people prefer a style whereingdamaces are placed at the end
of lines, which this author believes is less clear.

public class HelloWrld {

public static void main(String[] args) {
Systemout.printin("Hello world!");

}
}

12.3 Code clarity: layout: splitting long lines (page 43)

One of the features of good layout is to keep source coddines from getting too long. Very
long lines cause the reader to have to work harder in ho@tege movement to scan the code.
When code with long lines is viewed on the screen, the reatlegrehas to use a horizontal
scroll bar to see them, or make the window so wide that othed@ws cannot be placed next
to it. Worst of all, when code with long lines is printed on pathere is a good chance that the
long lines will disappear off the edge of the page! At verystethey will be wrapped onto the
next line making the code messy and hard to read.

So a good rule of thumb is to keep your source code lines sttber 80characters long. You
can do this simply in modext editors by never making the text window too wide and never
using the horizontal scroll bar while writing the code.

When we do have atatementthat is quite long, we simply split it into separate lines atec
fully chosen places. When we choose such places, we beamioh tiiat most human readers
scan down the left hand side of the code lines, rather thaheeary word. So, if a line is a
continuation of a previous line, it is important to make tiwious at the start of it. This means

13063

12.4 Code clarity: comments (page 82)

using an appropriate amountioentation, and choosing the split so that the first symbol on
the continued line is not one which could normally start &esteent.

A little thought at the writing stage quickly leads to a hatfityood practise which seriously
reduces the effort required to read programs once they dteemr Due tobug fixing and
general maintenance over the lifetime of a real prograngdlde is read many more times than
it is written!

12.4 Code clarity: comments (page 82)

In addition to having careful layout ariddentation in our programs, we can also enhance
human readability by usingommens. These are pieces of text which are ignored by the
compiler, but help describe to the human reader what the program daksaav it works.

For example, every program should have comments at thesaiarg what it does and briefly
how it is used. Alsoyariables can often benefit from a comment before their declaration
explaining what they are used for. As appropriate, therelshile comments in the code too,
before certain parts of it, explaining what these netdtemens are going to do.

One form of comment in Java starts with the symbal The rest of that source line is then the
text of the comment. For example

/1 This is a coment, ignored by the conpiler.

12.5 Code clarity: comments: marking ends of code construst(page 83)

Another good use alomments is to mark every closing bracg)with a comment saying what
code construct it is ending. The following skeleton exangolée illustrates this.

public class SomeC ass

{
public static void main(String[] args)
{
while (...)
{
Y/l while
Y Il main

13064

12.6 Code clarity: comments: multi-line comments (page) 189

} Il class Somed ass

12.6 Code clarity: comments: multi-line comments (page 1§9

Another form ofcommentin Java allows us to have text which spans several lines.€eT$tast
with the symbol * and end with the symbdl/ , which typically will be several lines later in
the code. These symbols, and all text between them, is igriayréhecompiler.

Less usefully, we can have the start and end symbols on the lsaen with program code on
either side of the comment, if we wish.

13 Design

13.1 Design: hard coding (page 36)

Programs typically process inpdata, and produce output data. The input data might be
given ascommand line argumens, or it might be supplied by the user through somser
interface such as graphical user interfaceor GUI. It might be obtained fronfiles stored on
the computer.

Sometimes input data might be built into the program. Sudh tasaid to bénard coded
This can be quite common while we are developing a programnanidaven’t yet written the
code that obtains the data from the appropriate place. kraises it might be appropriate to
have it hard coded in the final version of the program, if suata@nly rarely changes.

13.2 Design: pseudo code (page 73)

As our programs get a little more complex, it becomes hardrite\them straight into theext
editor. Instead we need esignthembefore we implement them.

We do not design programs by starting at the first word andngnati the last, like we do when
we implement them. Instead we can start wherever it suitstygieally at the trickiest bit.

Neither do we express our designs in Java — that would be ehbagltb do, as Java forces our
mind to be cluttered with trivia which, although essentetlhie final code, is distracting during
the design.

Instead, we express oatgorithm designs inpseudo codewhich is a kind of informal pro-
gramming language that has all unnecessary trivia ignd@edfor example, we do not bother

13065

13.3 Design: object oriented design (page 184)

writing the semi-colons at the end sfatemens, or the brackets rountbnditions etc.. We
might not bother writing thelassheading, nor thenethod heading, if it is obvious to us what
we are designing. And so on.

Also, during design in pseudo code, we can vary the levabstraction to suit us — we do not
have to be constrained to use only the features that areablaih Java.

13.3 Design: object oriented design (page 184)

When we are developing programs in abject oriented programming language, such as
Java, we should use the principleatfject oriented design We start by identifying thelasses
we shall have in the program, by examining thquirements statementof the problem which
the program is to solve. This is recognizing the idea thablems inherently involve interac-
tions between ‘real world’ objects. These will be modelledour program, by it creating
objects which ardanstances of the classes we identify.

In this view then, an object is an entity which has some kinalgect state which might
change over time, and some kindaifject behaviourwhich might be based on its state.

From the requirements, we think carefully about the statetha behaviour of the objects in
the problem. Then we decide how to model their behaviourgisstance method, and their
state usingnstance variables. There may, in general, be a needdlass variables andclass
methods too.

13.4 Design: object oriented design: noun identification (pge 185)

One way to analyse threquirements statementin order to decide whatlasss to have in the
program, is to simply go through the requirements and lighal nouns and noun phrases we
can find. This is calledhoun identification and is useful because the objects inherent in the
solution to most problems actually appear as nouns in theripgéisn of the problem. Some of
the nouns will relate t@bjects that will exist atrun time, and some will relate to classes in
the program.

It is not the case that every noun found will be a class or arappf course, and sometimes
we need classes that do not appear as nouns in the requieentémever, the technique is
usually a good way of starting the process.

13.5 Design: object oriented design: encapsulation (pag81)

An important principle irobject oriented designis the idea oencapsulation A well designed
classencapsulates the behaviour of tblejects that can be created from it, in such a way

13066

that in order to use the class, one only needs to know abopuiiic methods (including
constructor methods) and what they mean, rather than how they work and wistance
variables the class may have. To help achieve good encapsulatiorgllae the principle of
putting the logic where the data is— all the code pertaining to the behaviour of particular
objects are included in their class, rather than sprinktedrad the various different classes of
the program.

Encapsulation is an instanceatifstraction. Abstraction is the process of ignoring detail which
is not necessary for us to know (at the moment). We can usesa @lighout having to know
how it works, for example, if it is written by somebody elser, ®@e candesignthe details of
one class at a time for our programs, without at that momenghbmncerned with the details
of how the other classes work.

For an example which has little to do with Java, assume yosa fusst bought a cheap DVD TV
recorder from your local supermarket. Do you need to know howorks in order to use it?
Do you need to remove the case lid in order to use it? No, yoy oe¢d to know about the
buttons on theutside of the case. That is, until it breaks (after all it was a chea@)oOnly

at that point do you, or perhaps better still a TV gadget ezgyimeed to remove the case and
poke around inside.

14 Variable

14.1 Variable (page 36)

A variable in Java is an entity that can holddata item. It has a name and a value. It is rather
like the notion of a variable in algebra (although it is nottgquhe same thing). The name of
a variable does not change — it is carefully chosen by therpromer to reflect the meaning
of the entity it represents in relation to the problem beiatyed by the program. However,
the value of a variable can (in general) be changed — we can vary it. éléme name of the
concept: avariable is an entity that has a (possibly) varying value.

The Javacompiler implements variables by mapping their names aramputer memory
locations, in which the values associated with the varetld be stored atun time.

So one view of a variable is that it is a box, like a pigeon hisleyhich a value can be placed. If
we wish, we can get the program to place a different valueahltbx, replacing the previous;
and we can do this as many times as we want to.

Variables only have values at run time, when the programnsiing. Their names, created by
the programmer, are already fixed by the time the progracomspiled. Variables also have
one more attribute — thigpe of the data they are allowed to contain. This too is choseinbéy t
programmer.

13067

14.2 \Variable: int variable (page 37)

14.2 \Variable: int variable (page 37)

In Javayvariables must be declared invariable declaration before they can be used. This is
done by the programmer stating ttygpe and then the name of the variable. For example the
code

i nt noOf Peopl eLi vi ngl nM/St reet ;

declares amt variable, that is a variable the value of which will be ant , and which has the
namenoO Peopl eLi vi ngl nM/St reet . Observe the semi-colon X which, according to the
Javasyntaxrules, is needed to terminate the variable declaratiomuAtime, this variable is
allowed to hold annteger (whole number). Its value can change, but it will always bé @n
The name of a variable should reflect its intended meaninghisncase, it would seem from
its name that the programmer intends the variable to alwelgthe number of people living
in his or her street. The programmer would write code to enthat this meaning is always
reflected by its value at run time.

By convention, variable names start with a lower case ledtet consist of a number of words,
with the first letter of each subsequent word capitalized.

14.3 \Variable: a value can be assigned when a variable is dacéd (page
42)

Java permits us to assign a value i@aable at the same time as declaring it. You could regard
this as a kind oaissignment statemenin which the variable is also declared at the same time.
For example

int noOf HousesI nM/Street = 26;

14.4 Variable: double variable (page 54)

We can declarelouble variables in Java, that isariables which have théype doubl e. For
example the code

doubl e meanAgeO Peopl eLi vi ngl nM/House;

declares avariable of typedoubl e, with the namereanAge Peopl eLi vi ngl nMyHouse. At

run time, this variable is allowed to holddoubl e data item, that is aeal (fractional decimal
number). The value of this variable can change, but it willagls be aoubl e, including of
course, approximations @fhole numbers such a40. 0.

13068

14.5 \Variable: can be defined within a compound statemege(p2)

14.5 Variable: can be defined within a compound statement (e 92)

We can declarewariable within the body of anethod, such asmi n() , (practically) anywhere
where we can havestatement The variable can then be used from that point onwards within
the method body. The area of code in which a variable may beigsmlled itsscope

However, if we declare a variable within@mpound statement its scope is restricted to
the compound statement: it does not exist after the end ofahgound statement. This is
a good thing, as it allows us to localize our variables to tkecepoint of their use, and so
avoid cluttering up other parts of the code with variablesilable to be used but which have
no relevance.

Consider the following symbolic example.

public static void main(String[] args)

{
int X = ...
. x is available here.
while (...)
{
. X is available here.
inty=...
. X and y are available here.
} Il while
. X is available here, but not vy,
. S0 we cannot accidentally refer to y instead of x.
} /Il main

The variablex can be used from the point of its definition onwards up to theeadrthe method,
whereas the variablg can only be used from the point of its definition up to the endhef
compound statement which is the body of tbep.

14.6 Variable: local variables (page 124)

When we declargariables inside anethod, they are local to that method and only exist while
that method is running — they cannot be accessed by otheodgtiThey are known dscal
variables or method variables. Also, different methods can have variables with the same
name — they are different variables.

13069

14.7 Variable: class variables (page 124)

14.7 Variable: class variables (page 124)

We can declargariables directly inside alass outside of anynethods. Suclclass variables
exist from the moment the class is loaded intovinial machine until the end of the program,
and they can be accessed by any method in the class. For exahgplollowing are three class
variables which might be used to store the components of/todate.

private static int presentDay;
private static int presentMnth;
private static int presentYear;

Notice that we use theeserved wordst at i ¢ in their declaration. Also, class variables have a
visibility modifier — the above have all been declared as bemngate, which means they can
only be accessed by code inside the class which has dechemed t

14.8 Variable: a group of variables can be declared togethepage 129)

Java permits us to declare a groupvafiables which have the santgpe in one declaration,
by writing the type followed by a comma-separated list ofthgable names. For example

int X, y;

declares two variables, both of typet . We can even assign values to the variables, as in the
following.

int mni nunVotingAge = 18, m ni numAr nyAge = 16;

This shorthand is not as useful as one might think, becaus®ewke, we typically have a
commentbefore each variable explaining what its meaning is. Howeave can sometimes
have one comment which describes a group of variables.

14.9 Variable: boolean variable (page 133)

Thebool ean type can be used in much the same way as anddoubl e, in the sense that we
can havéboolean variables andmethods can havéool ean as theirreturn type.

For example, consider the following code.

13070

14.9 \Variable: boolean variable (page 133)

if (agel < age2 || agel == age2 && heightl <= height?2)
Systemout.printIn("You are in the correct order.");
el se
Systemout. println("Please swap over.");

We could, if we wished, write it using@ol ean variable.

bool ean correct Order = agel < age2 || agel == age2 && heightl <= height?2;
if (correctQOrder)

Systemout.printIn("You are in the correct order.");
el se

Systemout.println("Please swap over.");

Some people would argue that this makes for more readabées esdn effect, we have named
thecondition in a helpful way. How appropriate that is would depend on hbwiaus the code

is otherwise, which is context dependent and ultimatelyesaiive. Of course, the motive for
storing the condition value in\aariable is less subjective if we wish to use it more than once.

bool ean correctOrder = agel < age2 || agel == age2 && heightl <= height2;
if (correctOrder)

Systemout.printIn("You are in the correct order.");
el se

Systemout. println("Please swap over.");

Lots of stuff here.

if (!correctOrder)
Systemout.printIn("Don't forget to swap over!");

Many novice programmers, and even some so-called expédrés) writing the code above may
have actually written the following.

bool ean correct O der;

if (agel < age2 || agel == age2 && heightl <= height2)
correctOrder = true;

el se
correct Order = fal se;

if (correctOrder == true)
Systemout.printIn("You are in the correct order.");
el se

Systemout. println("Please swap over.");

Lots of stuff here.

13071

14.10 Variable: char variable (page 145)

if (correctOrder == fal se)
Systemout.printin("Don't forget to swap over!");

There are threterriblethings wrong with this code (two of them are the same realigentify
them,and do not write code like that!

14.10 Variable: char variable (page 145)

We can declarehar variables in Java, that isariables which have théype char . For exam-
ple the code

char firstlLetter ="'J";

declares a variable of typghar , with the namd i rstLetter. At run time, this variable is
allowed to hold ahar dataitem, that is a singleharacter.

14.11 Variable: instance variables (page 159)

Thevariables that we wish to have insidebjects are callednstance variables because they
belong to thanstances of aclass We declare them in much the same way as we declass
variables, except without theeserved wordst at i c. For example, the following code is part
of the definition of &oi nt class with two instance variables to be used to store the cneris
of aPoi nt object.

public class Point

{

private double X;
private double V;

} Il class Point

Like class variables, instance variables have a visibititydifier — the above variables have
both been declared as beipgvate, which means they can only be accessed by code inside
the class which has declared them.

Class variables belong to the class in which they are detlarel they are createdrain time

in thestatic contextwhen the class is loaded into thigtual machine. There is only one copy
of each class variable. By contrast, instance variablesraa@ed dynamically, in dynamic
context, when the object they are part of is created duringrtire of the program. There are
as many copies of each instance variable as there are iastahthe class: each object has its
own set of instance variables.

13072

14.12 \Variable: instance variables: should be private Bgude(page 175)

14.12 Variable: instance variables: should be private by dault (page
175)

Java allows us to givpublic visibility to our instance variables if we wish, but generally it
is a good idea to define them psvate. This permits us to alter the way we implement the
class without it affecting the code in other classes. For exapntpke programmer who has the
job of maintaining aPoi nt class with instance variablesandy, might decide it was better
to re-implement the class to use instance variables the¢ ste polar coordinate radius and
angle instead. This might be because some methods being added to the class would work
much more easily in the polar coordinate system. Because émely instance variables had
originally been made private, the programmer would know titvere could not be any mention
of them in other classes. So it would be safe to replace theim avies of a different name
and which work differently. To make the points behave theesambefore, the values given to
the constructor method would be converted from andy values to polar values, before being
stored, and theoSt ri ng() method could convert them back again.

14.13 Variable: of a class type (page 161)

As aclassis atype, we can use one in much the same way as we use the built-in syEsas
i nt, doubl e andbool ean. This means we can declaresariable whose type is a class. For
example, if we have a clagsi nt then we can have variables of typei nt .

Poi nt p1;
Poi nt p2;

The above defines twlocal variables ormethod variables of typePoi nt . We also can have
class variables and evelinstance variables whose type is a class.

14.14 Variable: of a class type: stores a reference to an olge(page 162)

There is one important difference betweevaaiable whosetype is a built-inprimitive type,
such ad nt and one whose type is@dass With the former, Java knows from the type how
much memory will be needed for the variable. For exampldpable variable needs more
memory than amnt variable, but all variables of typént need the same amount of memory,
as do those of typeoubl e. Java needs this information so that it knows how to allocate
memory addresses for variables.

By contrast, it is not possible to calculate how much memahyb& needed to store avbject,
becausénstances of different classes will have different sizes, and in saamees it is possible
for different instances of the same class to have differemetss The only time the size of an
object is reliably known is when it is created,rah time.

13073

14.15 \Variable: of a class type: stores a reference to arcblgeoid misunderstanding
(page 170)

To deal with this situation in a systematic way, variableschlare of a class type do not store
an object, but instead storeeferenceto an object. A reference to an object is essentially the
memory address at which the object resides in memory, andlyskaown at run time when
the object is created. Because they are really just memailneaskes, the size of all references
is the same, and is fixed. So by using references in variabkeslass type, rather than actually
storing objects, Java knows how much memory to allocaterfgisach variable.

Strictly speaking then, a type which is a class, is actudlly/set of possiblereferences to
instances of the class, rather than the set of actual irssahemselves.

14.15 Variable: of a class type: stores a reference to an olge avoid
misunderstanding (page 170)

Students new to the idea mferences often fail to appreciate their significance, and make one
or sometimes both of the following two mistakes.

1. Misconception: Avariable is anobject.

2. Misconception: A variable contains an object.

Neither of these are true, as we have already said: variéblesclass typg can contain a
reference to an object. A common question is “why do we have to wibat¢e twice in the
following?”.

Dat e soneBi rt hday
= new Date(birthDate.day, birthDate.nonth, birthDate.year + 1);

It is because we are doing three things.

1. We are declaring a variable.
2. We areconstructing an object.

3. We are storing a reference to that object in the variable.

So we can have a variable without an object.
Dat e soneBirt hday;

And we can have an object without a variable — could that b&aulse

13074

14.15 \Variable: of a class type: stores a reference to arcblgeoid misunderstanding
(page 170)

new Date(birthDate.day, birthDate.nonth, birthDate.year + 1);

Yes, it can be useful: for example, when we want to use objastonce, straight after con-
structing them.

Systemout. println(new Point(3, 4).distanceFronPoint(new Point (45, 60)));

If we wish, we can have two variables referring to the sameaibj

Date theSaneBirthday = someBirthday;

Also, we can change the value of a variable making it referddfarent object.

soneBi rthday = new Dat e(sonmeBirt hday. day, soneBirthday. nonth,
soneBi rt hday. year + 1);

This creates aew Dat e object, and stores theeferenceto it in someBi r t hday — overwriting
the reference to the previolat e object. This is illustrated in the following diagram.

A Date object

Date someBirthday

public int day 01

public int year 2010

someBirthday = new Date(someBirthday.day, someBirthday.month, someBirthday.year + 1);

A Date object A Date object

Date someBirthday public int day 01 public int day 01

public int month public int month

2010 public int year 2011

public int year

13075

14.16 \Variable: of a class type: null reference (page 192)

14.16 Variable: of a class type: null reference (page 192)

When anobject is created, theonstructor method returns areferenceto it, which is then
used for all accesses to the object. Typically, this refegas stored in aariable.

Poi nt pl = new Point(75, 150);

There is a special reference value, known asrthik reference, which does not refer to an
object. We can talk about it using tiheserved wordnul | . It is used, for example, as a value
for a variable when we do not want it to refer to any object & thoment in time.

Point p2 = null;

So, in the example code here we have ®gont variablespl andp2, but (atrun time) only
onePoi nt object.

Suppose th€oi nt classhasinstance method get X() andget Y() with their obvious imple-

mentations. Then obtaining thevalue of the object referenced Ipy is fine; the following
code would prinf5.

Systemout. println(pl.getX());

However, the similar code involving2 would cause aun time error (anexception called
Nul | Poi nt er Except i on).

Systemout. println(p2.getX());

This is because there is no object referencedt)yand so any attempt to access the referenced
object must fail.

14.17 Variable: of a class type: holding the same referencesgdome other
variable (page 216)

A variable which is of aclass typecan hold aeferenceto anyinstanceof that class (plus the
null reference). There is nothing to stop two (or more) variables havingdame reference
value. For example, the following code creates Boient object and has it referred to by two
variables.

13076

14.17 \Variable: of a class type: holding the same refereac®me other variable (page
216)

Poi nt pl = new Point (10, 30);

Poi nt p2 = pl;
Point p1 A Point object
o—
private double x 10
Point p2
kZ/) private double y 30

This reminds us that a variablenst itself an object, but merely a holder for a reference to an
object.

Having two or morevariables refer to the samebject can cause us no problems if it is an
immutable object because we cannot change the object’s state no matter whiEble we
use to access it. So, in effect, the object(s) referred theywo variables behave the same as
they would if they were two different objects. The followicgde has the saneffect as the
above fragment, almost no matter what we do withandp2 subsequently.

new Point (10, 30);

Poi nt pl

new Point (10, 30);

Poi nt p2

The only behavioural difference between the two fragmentbeconditions p1 == p2 and
pl !'= p2 which aretrue andf al se respectively for the first code fragment, and the other
way round for the second one.

If, on the other hand, anbject referenced by more than one variables amutable objectwe
have to be careful because any change made via any one ofrthble@a causes the change to
occur in the (same) object referred to by the other varialles may be, and often is, exactly
what we want, or it may be a problem if odesignis poor or if we have made a mistake in our
code and the variables were not meant to share the object.

Consider the following simple example.

public class Enployee

13077

14.17 \Variable: of a class type: holding the same refereac®me other variable (page
216)

private final String name;
private int salary;

public Enployee(String requiredNane, int initialSalary)

{

name = requiredNane;
salary = initial Salary;
} Il Enpl oyee

public String get Name()
{

return nane,
} 11 get Name

public void setSalary(int newSal ary)

{

salary = newSal ary;
} I setSalary

public int getSalary()

{

return sal ary;
} Il getSalary

} Il class Enployee

Enpl oyee debora = new Enpl oyee(" Debs", 50000);
Enpl oyee sharmane = new Enpl oyee(" Shaz", 40000);

Enpl oyee wor st Enpl oyee = debor a;
Enpl oyee best Enpl oyee = sharmane;

Now let us have an accidental piece of code.

wor st Enpl oyee = best Enpl oyee;

Then we carry on with intentional code.

13078

14.18 \Variable: final variables (page 194)

best Enpl oyee. set Sal ary(55000) ;
wor st Enpl oyee. set Sal ary(0);

Systemout.println("Qur best enployee, " + bestEnployee. get Nane()
+ ", is paid " + bestEnployee.getSalary());
Systemout. println("Qur worst enployee, " + worstEnployee. get Nange()
+ ", is paid " + worstEnmpl oyee.getSalary());

The effect of the accidental sharing is to give Sharmane, ishaur best employee, a pay
increase to 55,000 immediately followed by a pay cut to zexcabhsewr st Enpl oyee and
best Enpl oyee are both referring to the same object, the one which is alores to by
shar mane. Meanwhile our worst employee, Debora, gets to keep her0b0,6urther more,
the report only actually talks about Sharmane in both castex

Qur best enpl oyee, Shaz, is paid 0
Qur worst enployee, Shaz, is paid 0

14.18 Variable: final variables (page 194)

When we declare gariable we can write theeserved wordfi nal as one of itanodifiers
before thetype name. This means that once the variable has been given a tadlesalue
cannot be altered.

If an instance variableis declared to be @inal variable then it must be explicitly assigned a
value by the time thebject it belongs to has finished beimgnstructed. This would be done

either by assigning a value in thrariable declaration, or via anassignment statemeninside
the constructor method.

14.19 Variable: final variables: class constant (page 205)

A class variablewhich is declared to befaal variable (i.e. itsmodifiers include theeserved
wordsst ati ¢ andfi nal) is also known in Java asa@ass constant An example of this is the
variable in theclassj ava. | ang. Mat h calledPI .

public static final double Pl = 3.14159265358979323846;

By convention, class constants are usually named using capital letters with the words
separated by underscore} (

13079

15 Expression

15.1 Expression: arithmetic (page 38)

We can havarithmetic expressiors in Java rather like we can in mathematics. These can con-
tain literal values, that is constants, such as theeger literals1 and18. They can also con-
tain variables which have already been declared, apérators to combine sub-expressions
together. Four commoarithmetic operators areaddition (+), subtraction (-), multiplica-

tion (*) anddivision (/). Note the use of an asterisk for multiplication, and a faxhglash for
division — computer keyboards do not have multiply or divsgenbols.

These four operators at@nary infix operator s, because they take twaperands, one on
either side of the operatof. and- can also be used as theary prefix operators, plus and
minus respectively, as in5.

When anexpressionis evaluatel (expression evaluatiof Java replaces each variable with
its current value and works out the result of the expressepedding on the meaning of the
operators. For example, if the variableCf Peopl eLi vi ngl nMySt r eet had the valud7 then
the expressionoCO Peopl eLi vi ngl nMySt reet + 4 would evaluate t&1.

15.2 Expression: arithmetic: int division truncates resut (page 52)

The fourarithmetic operators, +, -, * and/ of Java behave very similarly to the corresponding
operators in mathematics. There is however one seriouerelifte to look out for. When
the division operator is given twointegers (whole numbers) it usaateger division which
always yields an integer as its result, by throwing away aagtional part of the answer. So,
8 | 2 gives the answet as you might expect, b8t / 2 also givest —not4. 5 as it would in
mathematics. It does not round to the nearest whole nuntladways rounds towards zero. In
mathematic45 / 4 gives3. 75. In Java it yields3 not4.

15.3 Expression: arithmetic: associativity and int divison (page 52)

Like theoperators + and- , the operators and/ have equabperator precedencgbut higher
than+ and-) and also havéeft associativity.

However, there is an extra complication to consider becthesdava operator truncates its
answer when given twimtegers. Consider the following twarithmetic expressiors.

Expression | Implicit brackets | Value
9* 4/ 2\(9* 4/ 2 18
9/ 2*4\|(9/ 2 *4 16

13080

15.4 Expression: arithmetic: double division (page 55)

In mathematics one would expect to get the same answer framtheseexpressiors, but not
in Javal

15.4 Expression: arithmetic: double division (page 55)

The Javalivision operator, / , usesdouble division and produces doubl e result if at least
one of itsoperands is adoubl e. The result will be the best approximation to the actual arsw
of the division.

Expression | Result | Type of Result
8/ 2 4 i nt

81 2.0 4.0 doubl e

9/ 2 4 i nt

9/ 2.0 4.5 doubl e

9.0/ 2 4.5 doubl e

9.0/ 2.0 | 4.5 doubl e

15.5 Expression: arithmetic: remainder operator (page 149

Anotherarithmetic operator in Java is theemainder operator, also known as thenodulo
operator,% When used with twaonteger operands, it yields the remainder obtained from
dividing the first operand by the second. As an example, thewiong method determines
whether a givemnt method parameteris an even number.

public static bool ean i SEven(int number)

{

return nunber %2 == 0;
} Il isEven

15.6 Expression: brackets and precedence (page 45)

In addition tooperators andvariables, expressiors in Java can have round brackets in them.
As in mathematics, brackets are used to define the strudttine expression by grouping parts
of it into sub-expressions. For example, the following twpressions have different structures,
and thus very different values.

(2+4) *8
2 + (4 * 8)

13081

15.7 Expression: associativity (page 48)

The value of the first expression is made fromalaelition of 2 and4 and thermultiplication
of the resultings by 8 to get48. The second expressionasaluated by multiplying4 with 8
to get32 and then adding to that result, ending up witd4.

To help us see the structure of these two expressions, leaustdem agxpression tres.

(2+4) 8 2+ (4*8)

* +
1\ I\
+ 8 2 *
[\ [\

2 4 4 8

What if there were no brackets?
2+4*8

Java allows us to have expressions without any bracketspoe generally, without brackets
aroundevery sub-expression. It provides rules to define what the stradisuch an expression
is, 1.e., where the missing brackets should go. If you lodtkhat in the above expression, you
will see that it has an operator on either side of it. In a seiiige+ operator and th& operator
are both fighting to have theas anoperand. Rather like a tug of war; is pulling the4 to the
left, and* is tugging it to the right. The question is, which one wins?a)as in mathematics,
provides the answer by having varying levelopkrator precedence The* and/ operators
have a higher precedence thaand- , which meang fights harder tham, so it wins!2 + 4

* 8 evaluates t@4.

15.7 Expression: associativity (page 48)

The principle ofoperator precedenceis insufficient to disambiguate adixpressiors which
are not fully bracketed. For example, consider the follapexpressions.

10 + 7 + 3
10+7 - 3
10 - 7 + 3
10 - 7 - 3

In all four expressions, thé is being fought over by twmperators which have the same
precedence: either twe, two -, or one of each. So where should the missing brackets go?
The expression tres could have one of the two following structures, whépé is the first
operator, an@P2 is the second.

13082

15.8 Expression: boolean (page 60)

10 OPL (7 OP2 3) (10 OPL 7) OP2 3

Let us see whether it makes a difference to the results ofbeessions.

Expression Value
(10 +7) + 3|20
10 + (7 + 3) | 20
(10 +7) - 3|14
10 + (7 - 3) |14
(10 - 7) + 3|6
10 - (7 +3) |0
(10 - 7) - 3]0
10 - (7 - 3) | 6

As you can see, it does make a difference sometimes — in tlasges gvhen the first operator
is subtraction (-). So how does Java resolve this problem? As in mathema#iea,aperators
have anoperator associativityas well as a precedence. The operators, * and/ all have
left associativity which means that when two of these operators of equal pracedse both
fighting over oneoperand, it is the left operator that wins. If you like, the tug of wakes
place on sloping ground with the left operator having theaatixge of being lower down than
the right one!

Expression | Implicit brackets | Value
10+7+3|(10+7) +3 20

10+7-3[(10+7) -3 |14
10-7+3[(10-7) +3 |6
10-7-3[(10-7) -3 |0

The operator$ and/ also have equal precedence (but higher thand-) so similar situations
arise with those too.

15.8 Expression: boolean (page 60)

An expressionwhich whenevaluated yields eithen r ue or f al se is known as acondition,
and is typically used for controllingonditional execution Conditions are also calldzbolean
expressiors.

13083

15.10 Expression: boolean: logical operators (page 128)

15.9 Expression: boolean: relational operators (page 60)

Java gives us sirelational operators for comparing values such as numbers, which we can use
to make upconditions. These are abinary infix operator s, that is they take twoperands,
one either side of theperator. They yieldt r ue or f al se depending on the given values.

Operator | Title Description
== Equal This is theequal operator, which provides the notion pf
equality. a == b yieldst r ue if and only if the value of
a is the same as the value Iof

I = Not equal This is thenot equal operator, providing the the notign
of not equality. a ! = b yieldstrue if and only if the
value ofa is not the same as the value lof

< Less than This is theless thanoperator.a < b yieldst r ue if and
only if the value ofa is less than the value of

> Greater than This is thegreater than operator.a > b yieldst r ue if
and only if the value o# is greater than the value bf

<= Less than or equal | This is theless than or equaloperator.a <= b yields

true if and only if the value of is less than value df,
or is equal to it.

>= Greater than or equalThis is thegreater than or equal operator. a >= b
yieldstr ue if and only if the value ofa is greater thar
value ofb, or is equal to it.

15.10 Expression: boolean: logical operators (page 128)

For somealgorithms, we neecdtonditions onloops etc. that are more complex than can be
made simply by using theelational operators. Java provides us witlogical operators to
enable us to glue together simple conditions into biggesoie three most commonly used
logical operators areonditional and, conditional or andlogical not.

Operator | Title | Posh title Description

&& and | conjunction | c1 && c2 istrue if and only if both conditiong1
andc?2 evaluateto true. Both of the two condi-
tions, known agonjuncts, must be r ue to satisfy
the combined condition.

| | or disjunction | cl || c2istrue if and only if at least one of thg
conditionscl andc?2 evaluate tatrue. The com-
bined condition is satisfied, unless both of the two
conditions, known adisjuncts, aref al se.
! not | negation I'cistrue if and only if the conditiorc evaluates tg
f al se. This operator negates the given condition.

D

We can define thesgperators usingruth table s, where ? means tloperandis not evaluated.

13084

15.10 Expression: boolean: logical operators (page 128)

cl c2 cl & c2 || cl c2 cl || c2 c c
true true true true ? true

true fal se
true false | fal se false | true true

false | true
false | ? fal se false | false | fal se

Using these operators, we can make up complex conditioob,asithe following.

agel < age? || agel == age2 && heightl <= height2

As with thearithmetic operators, Java definesperator precedenceandoperator associa-
tivity to disambiguate complex conditions that are not fully bede#l, such as the one above.
&& and| | have alower precedence than the relational operators viamda lower precedence
than the arithmetic ones. has a very high precedence (even more so than the arithnpetie o
ators) andk& has a higher precedence thgn So the above exampéxpressionhas implicit
brackets as follows.

(agel < age?) || ((agel == age2) && (heightl <= height2))

This might be part of a program thaorts people standing in a line by age, but when they
are the same age, it sorts them by height. Assuming thanthvariablesagel andhei ght 1
contain the age and height of one person, and the other twabl@s similarly contain that
data for another, then the following code might be used to tellgh& to swap their order if
necessary.

if (agel < age2 || agel == age2 && heightl <= height2)
Systemout.printIn("You are in the correct order.");
el se
Systemout. println("Please swap over.");

We might have, perhaps less clearly, chosen to write tha¢ esdollows.

if (!(agel < age2 || agel == age2 && heightl <= height2))
Systemout. println("Please swap over.");

el se
Systemout.println("You are in the correct order.");

You might find it tricky, but it's worth convincing yourselfyet another way of writing code
with the same effect would be as follows.

if (agel > age2 || agel == age2 && heightl > height2)
Systemout. println("Please swap over.");

el se
Systemout.println("You are in the correct order.");

13085

15.11 Expression: conditional expression (page 94)

In mathematics, we are used to writing expressions sughxag < zto mean true, if and only
if y lies in the rangex to z, inclusive. In Java, such expressions need to be written &s y
&& y <= z.

Also, in everyday language we are used to using the words &ttor’ where they have very
similar meanings to the associated Java operators. Howegesay things like “my mother’s
age is 46 or 47”. In Java, we would need to wmtg\umAge == 46 || nyMimAge == 47
to capture the same meaning. Another example, “my brothreraged 10 and 12", might be
coded aswyBrot her 1Age == 10 && nyBrot her 2Age == 12.

However, there are times in everyday language when we sal/ \ainen we really mean “or”

in logic, and hence would uge in Java. For example, “the two possible ages for my dad are
49 and 53" is really the same as saying “my dad’s age isod@ny dad’s age is 53”.

15.11 Expression: conditional expression (page 94)

The conditional operator in Java permits us to writeonditional expressiors which have
different sub-expressiorevaluated depending on somendition. The general form is

c ?el: e2

wherec is some condition, andl ande2 are twoexpressiors of sometype. The condition

is evaluated, and if the value is ue thenel is evaluated and its value becomes the result of
the expression. If the conditionisal se thene2 is evaluated and its value becomes the result
instead.

For example
int mxXY =x >y ? Xx:vy;
is another way of achieving the same effect as the following.

int maxXy,
if (x >y)
maxxXyY = X;
el se
maxxy = vy;

13086

16 Package

16.1 Package (page 187)

There are hundreds ofas®s that come with Java in igpplication program interface (API),
and even more that are available around the world for reusiogr programs if we wish. To
help manage this huge number of classes, they are groupedaitctions of related classes,
called packages. But even this is not enough to make things manageable, dages are
grouped into a hierarchy in a rather similar way to how a wejbmizedile systemis arranged
into directories and sub-directories. For example, therene group of standard packages
calledj ava and another callepavax.

16.2 Package: java.util (page 188)

One of the standard Japackages in the package groypava is calleduti | . This means its
full name isj ava. uti | —the package addressing mechanism uses a fot (uch the same
way as Unix uses a slash, or Microsoft Windows uses a badkdlaseparate directories in a
filename pathj ava. uti| contains many generally useful utilityasses. For example, there is
a class calle&canner which lives there, so ithully qualified name isj ava. uti| . Scanner.
This fully qualified name is unique: if someone else was tatera class calleScanner then

it would not be in the same package, so the two would not beuseal.

We can refer to a class using its fully qualified name, for epi@nthe following declares a
variable of type j ava. uti | . Scanner and creates amstanceof the class too.

java.util.Scanner inputScanner = new java.util.Scanner(Systemin);

16.3 Package: java.awt and javax.swing (page 245)

Inside the group opackages known ag ava, there is one calledwt , so the the full name
of the package igava. awt . It contains theclas®s that make up the original Jageaphical
user interfacesystem known as th&bstract Windowing Toolkit (AWT). For example, there
is a class that lives insideava. awt called Cont ai ner, and so itsfully qualified name is

j ava. awt . Cont ai ner .

Another group,j avax contains a package calleshi ng and this is the set of classes which
make up the more modettava Swingsystem, which is built on top of AWT. For example,
there is a class that lives insigevax. swi ng calledJFr ane, and so its fully qualified name is

j avax. swi ng. JFrane.

Java programs that providezUI typically need to use classes from both these packages.

13087

17 GUIAPI

17.1 GUI API: JFrame (page 245)

Eachinstanceof theclassj avax. swi ng. JFr ane corresponds to a window that appears on the
screen.

17.2 GUI API: JFrame: setTitle() (page 246)

The classj avax. swi ng. JFrane has aninstance methodcalledset Ti t| e which takes a
String to be used as the title of the window. This string typicallypegrs in the title bar
of the window, depending upon what window manager the usesiigy (in Unix worlds there
is a massive variety of window managers to choose from).

17.3 GUI API: JFrame: getContentPane() (page 246)

Theclassj avax. swi ng. JFr ame has annstance methodcalledget Cont ent Pane which re-
turn s thecontent paneof theJFr anme. This is the part of thédFr ane that holds thegraphical
user interface (GUI) components of the window. It is anstanceof j ava. awt . Cont ai ner .

17.4 GUI API: JFrame: setDefaultCloseOperation() (page 24)

Theclass

j avax. swi ng. JFrame has aninstance methodcalledset Def aul t Cl oseQper at i on which
takes anethod parameterthat specifies what thi&r ane should do when the end user presses
the close button on the title bar of the window. There are fmssible settings as follows.

Do nothing on close- Don't do anything.

Hide on close- Hide the window, so that it is no longer visible, but do nostdey it.

Dispose on close- Destroy the window.

Exit on close— Exit the whole program.

The parameter is actually amt , but we do not need to know what exact value to give as a
method argument, because there are fodlass constarg defined inJFr ane which have the
right values.

13088

17.5 GUI API: JFrame: pack() (page 247)

public static final int DO NOTH NG ON CLCSE = ?;
public static final int H DE_ON CLCSE = 7,
public static final int DI SPOSE ON CLCSE = ?;
public static final int EXIT ON CLOSE = ?

We simply use whichever class constant suits us, as in thenwiolg example.

set Def aul t O oseQper ati on(DI SPOSE_ON_CLCOSE) ;

17.5 GUI API: JFrame: pack() (page 247)

Theclass] avax. swi ng. JFr ane has aninstance methodcalledpack. This makes théFr ame
arrange itself ready for being shown on the screen. It wotkslee sizes and positions of all
its components, and (in general) the size of the windowfit3gpically pack() is called after
all thegraphical user interface (GUI) components have been added toiReane.

17.6 GUI API: JFrame: setVisible() (page 248)

The classj avax. swi ng. JFrame has aninstance methodcalledset Vi si bl e. This takes a
bool ean method parameter, and if this value ig r ue then it makes théFr ane object cause
the window it represents to appear on the physical screatisappear otherwise.

17.7 GUI API: Container (page 246)

The classj ava. awt . Cont ai ner implements part of graphical user interface (GUI). An
instanceof the class is a component that is allowed to contain otherpoments.

17.8 GUI API: Container: add() (page246)

The classj ava. awt . Cont ai ner has aninstance methodcalledadd which takes agraph-
ical user interface (GUI) component and includes it in the collection of componeatbe
displayed within the container.

13089

17.9 GUI API: Container: add(): adding with a position coastt (page 268)

17.9 GUI API: Container: add(): adding with a position constraint (page
268)

Theclasg ava. awt . Cont ai ner has anotheinstance methodcalledadd which takes graph-
ical user interface (GUI) component and some othebject constraining how the compo-
nent should be positioned. This is intended for use \d@ffout managers that use position
constraints, such gsava. awt . Bor der Layout . For example, the following code makes the
JLabel appear in the north position of/Cont ai ner .

myCont ai ner. set Layout (new Border Layout ());
myCont ai ner. add(new JLabel ("This is in the north"), BorderLayout.NORTH);

17.10 GUI API: Container: setLayout() (page 250)

The classj ava. awt . Cont ai ner has aninstance methodcalledset Layout which takes an
instance of one of thelayout manager classes, and uses that to lay outgtaphical user

interface (GUI) components each time a lay out is needed, for example, wigewindow it

is part of ispacked.

17.11 GUI API: JLabel (page 246)

The classj avax. swi ng. JLabel implements a particular part ofgraphical user interface
(GUI) which simply displays a small piece of text, that is, a la@dle label text is specified as
aStri ng method argumentto one of theJLabel constructor methods.

17.12 GUI API: JLabel: setText() (page 258)

Theclasg avax. swi ng. JLabel hasannstance methodcalledset Text which takes &t ri ng
method argumentand changes the text of the label to it.

17.13 GUI API: LayoutManager (page 249)

A layout manageris aclasswhich contains the logic for laying ographical user interface
(GUI) components within amstanceof j ava. awt . Cont ai ner in some set pattern. There are
various types of layout manager, including the followingsthaommon ones.

e java. aw . Fl owLayout — arrange the components in a horizontal line.

13090

17.14 GUI API: LayoutManager: FlowLayout (page 249)

e java. awt. Gri dLayout —arrange the components in a grid.

e java. aw . Bor der Layout — arrange the components with one at the centre, and one at

each of the four sides.

17.14 GUI API: LayoutManager: FlowLayout (page249)

Theclassj ava. awt . Fl owLayout is alayout manager which positions all the components
within aninstanceof

j ava. awt . Cont ai ner in a horizontal row. The components appear in the order thenyew
added to the container.

17.15 GUI API: LayoutManager: FlowLayout: alignment (page/278)

Theclass

j ava. awt . Fl owLayout can be given an alignment mode, passedmasthod argumentto one
of its constructor methods. It affects the behaviour of the layout in cases when thepoorant
is larger than is needed to hold the components that are in it.

The argument is annt value, and should be an appropri&iass constant including the
following.

e Fl owLayout . CENTER - the laid out items are centred in the container.

e Fl owLayout . LEFT —the laid out items are on the left of the container, with wilspace
on the right.

e Fl owLayout . RI GHT — the laid out items are on the right of the container, withsetl
space on the left.

If we do not specify an alignment then centred alignment exlus

17.16 GUI API: LayoutManager: GridLayout (page 251)

Theclassj ava. awt . G'i dLayout is alayout manager which positions all the components
within aninstanceof

j ava. awt . Cont ai ner in a rectangular grid. The container is divided into equzéd rectan-
gles, and one component is placed in each rectangle. Theawnfs appear in the order they
were added to the container, filling up one row at a time.

13091

17.17 GUI API: LayoutManager: BorderLayout (page 267)

When we create @ i dLayout object, we provide a pair afnt method arguments to thecon-
structor method, the first specifies the number of rows, and the second the euohbolumns.
One of these values should be zero. For example, the folgpaamstructs aG i dLayout
which has three rows, and as many columns as are needed depepdn the number of
components being laid out.

new GridLayout(3, 0);

This next example construct<ai dLayout which has two columns, and as many rows as are
needed depending upon the number of components being laid ou

new G&idLayout (0, 2);

If both the rows and columns arguments are non-zero, thegolumns argument is totally
ignored! Neither values may be negative, and at least one of them lneusbn-zero, otherwise
we get arun time error .

We can also specify the horizontal and vertical gaps that i8b t@ have between items in the
grid. These can be given via a constructor method that takessfguments.

new GidLayout (0, 5, 10, 20);

The above example create$ia dLayout that has five columns, with a horizontal gap of 10
pixels between each column, and a vertical gap of 20 pixdigd®n each row. A pixel is the
smallest unit of display position. Its exact size will degem the resolution and physical size
of the computer monitor.

17.17 GUI API: LayoutManager: BorderLayout (page|267)

The classj ava. awt . Bor der Layout is alayout manager which has slots for five compo-
nents, one at the centre, and one at each of the four sideacatba centre. The names
of these positions are modelled using fielass constarg calledBor der Layout . CENTER,

Bor der Layout . NORTH, Bor der Layout . SOUTH, Bor der Layout . WEST. andBor der Layout . EAST.

A Bor der Layout is designed to be used when there is gngphical user interface (GUI)
component which is in some sense the main component, for @raay Text Ar ea which
contains some result of the program. We can put this irBtneler Layout . CENTER position
and some other component above in Boeder Layout . NORTH position, and/or below in the
Bor der Layout . SOUTH position, and/or to the left in thBor der Layout . WVEST position and/or
to the right in theBor der Layout . EAST position.

This is shown in the following diagram.

13092

17.18 GUI API: Listeners (page 254)

BorderLayout. NORTH

BorderLayout. CENTER

l_
n
=
..5§
<)
>
®
=
)
°
S
o0

BorderLayout. EAST

BorderLayout.SOUTH

17.18 GUI API: Listeners (page 254)

Java uses bstener model for the processing graphical user interface(GUI) events. When
something happens that needs dealing with, such as the enghessing a GUI button, the
GUI event thread creates ambject representing the event before doing any processing that
may be required. The event has erent source which is some Java GUI object associated
with the cause of the event. For example, an event createaibethe end user has pressed a
button will have that button as its source. Each possiblateseurce keeps a set idtener
objects that have been registered as wishing to be ‘toldi #zent is created from that source.
The GUI event thread processes the event by simply callingracplarinstance method
belonging to each of these listeners.

Let us consider aabstract example. Suppose we have some object that can be an everg sour
for example it might be a button. To keep it an abstract examet us say it is amstanceof
SoneKi ndOf Event Sour ce.

SonmeKi ndOf Event Sour ce source = new SoneKi ndOf Event Source(...);

Suppose also we wish events from that source to be procegseuie code that we write. Let
us put that in alasscalledSoneKi ndCf Event Li st ener for this abstract example.

public class SomeKi ndOf Event Li st ener

{

13093

17.18 GUI API: Listeners (page 254)

public void processSoneKi ndOf Event (SoneKi ndOf Event e)
{
Code that deals with the event.

} Il processSoneKi ndOf Event
} Il class SoneKi ndOr Event Li st ener

To link our code to the event source, we would make an instaffe@eKi ndOf Event Li st ener
and register it with the event source as a listener.

SomeKi ndCf Event Li stener |istener = new SomeKi ndOf Event Li stener(...);
sour ce. addSoneKi ndOr Li st ener (| i stener);
The above code (or rather a concrete version of it) wouldcsipi be run in themain thread

during the set up of the GUI. The following diagram illusesithe finished relationship be-
tween the source and listener objects.

SomeKindOfEventSource source SomeKindOfEventListener listener
A SomeKindOfEventSource object A SomeKindOfEventListener obj
set of listeners o

[processSomeKindOfEvent]

GddSomeKindOvaentListener)

Now when an event happens, the GUI event thread can look aetit listeners in the source
object, and call ther ocessSoneKi ndOf Event () instance method belonging to each of them.
So, when ouisour ce object generates an event, thieocessSonmeKi ndOf Event () instance
method in out i st ener object is called.

13094

17.19 GUI API: Listeners: ActionListener interface (padge’ 2

Java Swing actually has several different kinds of listeéioersupporting different kinds of

event. The above example is just ahstraction of this idea, so dawot take the names

SoneKi ndOf Event Sour ce, SomeKi ndOf Event Li st ener, processSoneKi ndOf Event andaddSoneKi ndCf Li
literally — each type of event has corresponding names tleatppropriate to it. For ex-

ample, events generated by GUI buttons are knowAcasonEvent s and are processed by

Acti onLi st ener objects which have aact i onPer f or ned() instance method and are linked

to the event source by aadAct i onLi st ener () instance method.

17.19 GUI API: Listeners: ActionListener interface (page 57)

The standardnterface calledj ava. awt . event. Acti onLi st ener contains a body-lesm-
stance methodwhich is calledact i onPer f or med. The intention is that a full implementation
of this instance method will contain code to procesgwentcaused by the user doing some-
thing like pressing graphical user interface (GUI) button.

17.20 GUI API: Listeners: ActionListener interface: actionPerformed()
(page 258)

After creating aninstance of j ava. awt . event . Acti onEvent when the end user has per-
formed an ‘action’ such as pressing a button, 8¢l event thread finds out from thaevent
source which Acti onLi st ener objects have registered with it as wanting to be told about
theevent The GUI event thread then invokes tinstance methodcalledact i onPer f or med
belonging to each of those registerd i onLi st ener s, passing théct i onEvent object as a
method argument

So, the heading of thact i onPer f or med() instance method is as follows.
public void actionPerfornmed(ActionEvent event)

Each implementation of the method will perform whatevek iasappropriate as a response to
the particular action in a particular program.

17.21 GUI API: JButton (page 256)

Theclassj avax. swi ng. JBut t on implements a particular part ofgraphical user interface
(GUI) which offers a button for the end user to ‘press’ using theiseo The text to be displayed
on the button is specified asser i ng method argumentto theJBut t on constructor method.

13095

17.22 GUI API: JButton: addActionListener() (page 256)

17.22 GUI API: JButton: addActionListener() (page'256)

Theclassj avax. swi ng. JBut t on has annstance methodcalledaddAct i onLi st ener. This
takes as itsnethod parameteranAct i onLi st ener object, and remembers it as beindis
tener interested in processing tlegentcaused by an end-user pressing this button.

public void addActionLi stener(ActionListener |istener)

{
. Renmenber that |istener wants to be infornmed of action events.
} I/ addActi onLi st ener

17.23 GUI API: JButton: setEnabled() (page 266)

Theclassj avax. swi ng. JBut t on has annstance methodcalledset Enabl ed, which takes a
bool ean method parameter. If it is given the valué al se, the button becomes disabled, that
is any attempt to press it has no effect. If instead the paiemit r ue, the button becomes
enabled. When in the disabled state, the button will typrdabk ‘greyed out’.

17.24 GUI API: JButton: setText() (page 267)

The classj avax. swi ng. JButt on has aninstance methodcalled set Text which takes a
Stri ng and changes the text label displayed on the button, to tlengmethod argument

17.25 GUI API: ActionEvent (page 258)

When theGUI event thread detects that the end user has performed an *action’, sucteas-p
ing a button, it creates anstance of the classj ava. awt . event . Acti onEvent in which it
stores information about thevent For example, it stores geference to the event source
object, such as the button that was pressed.

17.26 GUI API: ActionEvent: getSource() (page 280)

Theclassj ava. awt . event . Acti onEvent has annstance methodcalledget Sour ce which
return s areferenceto theobject that caused thevent

13096

17.27 GUI API: JTextField (page 265)

17.27 GUI API: JTextField (page 265)

Theclassj avax. swi ng. JText Fi el d implements a particular part ofgraphical user inter-
face(GUI) which allows a user to enter a small piece of text. One ottrestructor methods
of the class takes a singlat method parameter. This is the minimum number aharacters
of text we would like the field to be wide enough to display.

We can also use aText Fi el d to display a small piece of text generated from within the
program.

17.28 GUI API: JTextField: getText() (page 265)

Theclass] avax. swi ng. JText Fi el d has arinstance methodcalledget Text which takes no
method argument andreturn s the text contents of the text field, aSta i ng.

17.29 GUI API: JTextField: setText() (page 265)

Theclassj avax. swi ng. JText Fi el d has annstance methodcalledset Text which takes a
String as itsmethod argumentand changes the text of the text field to the given value.

17.30 GUI API: JTextField: setEnabled() (page 267)

The classj avax. swi ng. JText Fi el d has aninstance methodcalled set Enabl ed, which
takes abool ean method parameter. If it is given the valuef al se, the text field becomes
disabled, that is any attempt to type into it has no effecindtead the parametertis ue, the
text field becomes enabled. When in the disabled state,xhidlel will typically look ‘greyed
out’.

17.31 GUI API: JTextField: initial value (page(274)

Theclasg avax. swi ng. JText Fi el d has aconstructor methodwhich takes &t ri ng method
parameter to be used as the initial value for the text inside the texdfiel

JText Field nameJTextFiel d = new JTextFiel d("Type your nane here.");

13097

17.32 GUI API: JTextArea (page 267)

17.32 GUI API: JTextArea (page 267)

The classj avax. swi ng. JText Ar ea implements a particular part ofgraphical user inter-
face (GUI) which displays a larger piece of text, consisting of mudtifines. The size of the
text area can be specified m&thod argument to theconstructor method, as the number of
rows (lines) and the number of columns (characters per.line)

17.33 GUI API: JTextArea: setText() (page 269)

The classj avax. swi ng. JText Area has aninstance methodcalled set Text which takes

a String as amethod argument and changes the text of the text area to the given value.
This String may containnew line characters in it, and the text area will display the text
appropriately as separate lines.

17.34 GUI API: JTextArea: append() (page 269)

The classj avax. swi ng. JText Area has aninstance methodcalled append which takes a
String and appends it onto the end of the text already in the text afewy required line
breaks must be made by including explicgw line characters.

17.35 GUI API: JPanel (page 270)

The classj avax. swi ng. JPanel is anextensionof the olderj ava. awt . Cont ai ner, which
means that it is a component that is allowed to contain otberponents, and it haesdd()
instance method allowing us to add components toJPanel is designed to work well with
the rest of thelava Swing packageand is the recommended kind of container to use when we
wish to group a collection of components so that they areaeddeas one for layout purposes.

17.36 GUI API: JScrollPane (page 274)

The classj avax. swi ng. JScr ol | Pane implements a particular part ofgraphical user in-
terface (GUI) which provides a scrolling facility over another componen

The simplest way to use it is to invoke thenstructor method which takes a GUI component
as amethod parameter. This creates aScr ol | Pane object which provides a scrollable view
of the given component.

As an example, consider the following code which add$ext Ar ea to thecontent paneof a
JFrane.

13098

Cont ai ner contents = get Cont ent Pane();
contents. add(new JText Area(15, 20));

To make thelText Ar ea scrollable, we would replace the above with the followingl€an-
stead.

Cont ai ner contents = get Cont ent Pane();
contents. add(new JScrol | Pane(new JText Area(15, 20)));

18 Interface

18.1 Interface (page 257)

An interface is like aclass except all thanstance method in it must have no bodies. Itis
used as the basis of a kind of contract, in the sense that it@aleclared that some class
plements an interface. This means that it supplies full definitiarsall the body-less instance
methods listed in the interface. For example, the followdnde

public class MO ass inplenents Sonelnterface

{
}/./”M/CIass

says that the class being definBfi(l ass, provides full definitions for all the instance methods
listed in the interfac&omnel nt er f ace. So, for example, if anethod somewhere hasraethod
parameter of type Sonel nt er f ace, then arinstanceof MyC ass could be supplied as a corre-
spondingmethod argument as it satisfies the requirements of being of t§peel nt er f ace.

13099

	Computer basics
	Computer basics: hardware (page 3)
	Computer basics: hardware: processor (page 3)
	Computer basics: hardware: memory (page 3)
	Computer basics: hardware: persistent storage (page 3)
	Computer basics: hardware: input and output devices (page 3)
	Computer basics: software (page 3)
	Computer basics: software: machine code (page 3)
	Computer basics: software: operating system (page 4)
	Computer basics: software: application program (page 4)
	Computer basics: data (page 3)
	Computer basics: data: files (page 5)
	Computer basics: data: files: text files (page 5)
	Computer basics: data: files: binary files (page 5)

	Java tools
	Java tools: text editor (page 5)
	Java tools: javac compiler (page 9)
	Java tools: java interpreter (page 9)
	Java tools: javadoc (page 223)

	Operating environment
	Operating environment: programs are commands (page 7)
	Operating environment: standard output (page 7)
	Operating environment: command line arguments (page 8)
	Operating environment: standard input (page 187)

	Class
	Class: programs are divided into classes (page 16)
	Class: public class (page 16)
	Class: definition (page 16)
	Class: objects: contain a group of variables (page 158)
	Class: objects: are instances of a class (page 158)
	Class: objects: this reference (page 180)
	Class: objects: may be mutable or immutable (page 193)
	Class: objects: compareTo() (page 222)
	Class: is a type (page 161)
	Class: making instances with new (page 162)
	Class: accessing instance variables (page 164)
	Class: importing classes (page 188)
	Class: stub (page 191)
	Class: extending another class (page 245)

	Method
	Method (page 118)
	Method: main method: programs contain a main method (page 17)
	Method: main method: is public (page 17)
	Method: main method: is static (page 17)
	Method: main method: is void (page 17)
	Method: main method: is the program starting point (page 17)
	Method: main method: always has the same heading (page 18)
	Method: private (page 118)
	Method: accepting parameters (page 118)
	Method: accepting parameters: of a class type (page 164)
	Method: calling a method (page 119)
	Method: void methods (page 120)
	Method: returning a value (page 122)
	Method: returning a value: of a class type (page 176)
	Method: returning a value: multiple returns (page 196)
	Method: changing parameters does not affect arguments (page 124)
	Method: changing parameters does not affect arguments: but referenced objects can be changed (page 208)
	Method: constructor methods (page 159)
	Method: constructor methods: more than one (page 203)
	Method: class versus instance methods (page 166)
	Method: a method may have no parameters (page 173)
	Method: return with no value (page 206)
	Method: accessor methods (page 207)
	Method: mutator methods (page 207)
	Method: overloaded methods (page 237)

	Command line arguments
	Command line arguments: program arguments are passed to main (page 17)
	Command line arguments: program arguments are accessed by index (page 26)
	Command line arguments: length of the list (page 79)
	Command line arguments: list index can be a variable (page 79)

	Type
	Type (page 36)
	Type: String (page 135)
	Type: String: literal (page 18)
	Type: String: literal: must be ended on the same line (page 21)
	Type: String: literal: escape sequences (page 49)
	Type: String: concatenation (page 26)
	Type: String: conversion: from int (page 38)
	Type: String: conversion: from double (page 55)
	Type: String: conversion: from object (page 177)
	Type: String: conversion: from object: null reference (page 211)
	Type: int (page 36)
	Type: double (page 54)
	Type: casting an int to a double (page 79)
	Type: boolean (page 133)
	Type: long (page 145)
	Type: short (page 145)
	Type: byte (page 145)
	Type: char (page 145)
	Type: char: literal (page 145)
	Type: char: literal: escape sequences (page 146)
	Type: char: comparisons (page 238)
	Type: char: casting to and from int (page 238)
	Type: float (page 146)
	Type: primitive versus reference (page 162)

	Standard API
	Standard API: System: out.println() (page 18)
	Standard API: System: out.println(): with no argument (page 98)
	Standard API: System: out.print() (page 98)
	Standard API: System: out.printf() (page 126)
	Standard API: System: out.printf(): zero padding (page 140)
	Standard API: System: in (page 187)
	Standard API: System: getProperty() (page 195)
	Standard API: System: getProperty(): line.separator (page 195)
	Standard API: System: currentTimeMillis() (page 262)
	Standard API: Integer: parseInt() (page 41)
	Standard API: Double: parseDouble() (page 54)
	Standard API: Math: pow() (page 73)
	Standard API: Math: abs() (page 87)
	Standard API: Math: PI (page 87)
	Standard API: Math: random() (page 205)
	Standard API: Scanner (page 188)
	Standard API: String (page 233)
	Standard API: String: some instance methods (page 234)

	Statement
	Statement (page 18)
	Statement: simple statements are ended with a semi-colon (page 18)
	Statement: assignment statement (page 37)
	Statement: assignment statement: assigning a literal value (page 37)
	Statement: assignment statement: assigning an expression value (page 38)
	Statement: assignment statement: updating a variable (page 70)
	Statement: assignment statement: updating a variable: shorthand operators (page 87)
	Statement: if else statement (page 60)
	Statement: if else statement: nested (page 62)
	Statement: if statement (page 64)
	Statement: compound statement (page 66)
	Statement: while loop (page 71)
	Statement: for loop (page 77)
	Statement: for loop: multiple statements in for update (page 136)
	Statement: statements can be nested within each other (page 92)
	Statement: switch statement with breaks (page 107)
	Statement: switch statement without breaks (page 110)
	Statement: do while loop (page 112)

	Error
	Error (page 20)
	Error: syntactic error (page 20)
	Error: semantic error (page 22)
	Error: compile time error (page 22)
	Error: run time error (page 24)
	Error: logical error (page 29)

	Execution
	Execution: sequential execution (page 23)
	Execution: conditional execution (page 60)
	Execution: repeated execution (page 70)
	Execution: parallel execution -- threads (page 253)
	Execution: parallel execution -- threads: the GUI event thread (page 254)
	Execution: event driven programming (page 254)

	Code clarity
	Code clarity: layout (page 31)
	Code clarity: layout: indentation (page 32)
	Code clarity: layout: splitting long lines (page 43)
	Code clarity: comments (page 82)
	Code clarity: comments: marking ends of code constructs (page 83)
	Code clarity: comments: multi-line comments (page 189)

	Design
	Design: hard coding (page 36)
	Design: pseudo code (page 73)
	Design: object oriented design (page 184)
	Design: object oriented design: noun identification (page 185)
	Design: object oriented design: encapsulation (page 187)

	Variable
	Variable (page 36)
	Variable: int variable (page 37)
	Variable: a value can be assigned when a variable is declared (page 42)
	Variable: double variable (page 54)
	Variable: can be defined within a compound statement (page 92)
	Variable: local variables (page 124)
	Variable: class variables (page 124)
	Variable: a group of variables can be declared together (page 129)
	Variable: boolean variable (page 133)
	Variable: char variable (page 145)
	Variable: instance variables (page 159)
	Variable: instance variables: should be private by default (page 175)
	Variable: of a class type (page 161)
	Variable: of a class type: stores a reference to an object (page 162)
	Variable: of a class type: stores a reference to an object: avoid misunderstanding (page 170)
	Variable: of a class type: null reference (page 192)
	Variable: of a class type: holding the same reference as some other variable (page 216)
	Variable: final variables (page 194)
	Variable: final variables: class constant (page 205)

	Expression
	Expression: arithmetic (page 38)
	Expression: arithmetic: int division truncates result (page 52)
	Expression: arithmetic: associativity and int division (page 52)
	Expression: arithmetic: double division (page 55)
	Expression: arithmetic: remainder operator (page 149)
	Expression: brackets and precedence (page 45)
	Expression: associativity (page 48)
	Expression: boolean (page 60)
	Expression: boolean: relational operators (page 60)
	Expression: boolean: logical operators (page 128)
	Expression: conditional expression (page 94)

	Package
	Package (page 187)
	Package: java.util (page 188)
	Package: java.awt and javax.swing (page 245)

	GUI API
	GUI API: JFrame (page 245)
	GUI API: JFrame: setTitle() (page 246)
	GUI API: JFrame: getContentPane() (page 246)
	GUI API: JFrame: setDefaultCloseOperation() (page 247)
	GUI API: JFrame: pack() (page 247)
	GUI API: JFrame: setVisible() (page 248)
	GUI API: Container (page 246)
	GUI API: Container: add() (page 246)
	GUI API: Container: add(): adding with a position constraint (page 268)
	GUI API: Container: setLayout() (page 250)
	GUI API: JLabel (page 246)
	GUI API: JLabel: setText() (page 258)
	GUI API: LayoutManager (page 249)
	GUI API: LayoutManager: FlowLayout (page 249)
	GUI API: LayoutManager: FlowLayout: alignment (page 278)
	GUI API: LayoutManager: GridLayout (page 251)
	GUI API: LayoutManager: BorderLayout (page 267)
	GUI API: Listeners (page 254)
	GUI API: Listeners: ActionListener interface (page 257)
	GUI API: Listeners: ActionListener interface: actionPerformed() (page 258)
	GUI API: JButton (page 256)
	GUI API: JButton: addActionListener() (page 256)
	GUI API: JButton: setEnabled() (page 266)
	GUI API: JButton: setText() (page 267)
	GUI API: ActionEvent (page 258)
	GUI API: ActionEvent: getSource() (page 280)
	GUI API: JTextField (page 265)
	GUI API: JTextField: getText() (page 265)
	GUI API: JTextField: setText() (page 265)
	GUI API: JTextField: setEnabled() (page 267)
	GUI API: JTextField: initial value (page 274)
	GUI API: JTextArea (page 267)
	GUI API: JTextArea: setText() (page 269)
	GUI API: JTextArea: append() (page 269)
	GUI API: JPanel (page 270)
	GUI API: JScrollPane (page 274)

	Interface
	Interface (page 257)

