Java Just in Time:
Collected concepts after chapter 10

‘John Latham, School of Computer Science, Manchester LBMy,eUK‘

April 15, 2011

Contents

1 Computer basics
1.1 Computer basics: hardware (p@e 3)
1.2 Computer basics: hardware: processor (page 3).
1.3 Computer basics: hardware: memory (page3)
1.4 Computer basics: hardware: persistent storage ﬁage
15 Computer basics: hardware: input and output deviceg .
1.6 Computer basics: software (p 3)
1.7 Computer basics: software: machine code (@ -
1.8 Computer basics: software: operating system (| e4) .
1.9 Computer basics: software: application program (page 4

1.10 Computer basics: data (p@e 3)
1.11 Computer basics: data: files (page5)
1.12 Computer basics: data: files: text files (page5)

1.13 Computer basics: data: files: binary files (page 5)

\2 Java toolé

2.1 Java tools: text editor (pa@ 5) . .
2.2 Java tools: javac compiler (p 9 ...
2.3 Java tools: java interpreter (pa\%& 9 ...
3 Operating environment
3.1 Operating environment: programs are commands @ge 7)....
3.2 Operating environment: standard output (;ﬁge 7). ..
3.3 Operating environment. command line arguments (@ge 8). .
4 Class
4.1 Class: programs are divided into classes (@e 16)
4.2 Class: public class (pagel16)
4.3 Class: definition (page16)
4.4 Class: objects: contain a group of variables (page 158)

10000

.. 00®
. 10005

CONTENTS

4.5 Class: objects: are instances of a class (@e 158) 10006
4.6 Class: objects: this reference (p180) 10006
4.7 Class: is atype (pa61) 0¥00
4.8 Class: making instances with new (p@&) 10007
4.9 Class: accessing instance variables (page 164) 10008

10008
5.1 Method (page 118) . « .+« v v oo 10008
5.2 Method: main method: programs contain a main methods(@l . 10008
5.3 Method: main method: is public (p 17) .o 10009
54 Method: main method: is static (p 17) . . oo 10009
5.5 Method: main method: is void (page 17) 00a9
5.6 Method: main method: is the program starting point (. . . . 10010
5.7 Method: main method: always has the same heading|(pgge 18. 10010
5.8 Method: private (pa8) 1m0
5.9 Method: accepting parameters (p118) 10010
5.10 Method: accepting parameters: of a class type (page 164. . . . 10012
5.11 Method: calling a method 19) 10012
5.12 Method: void methods (page 120) 001B
5.13 Method: returning avalue (page 122) 10013
5.14 Method: returning a value: of a class type (176) 10014
5.15 Method: changing parameters does not affect argur(mgé 12121) . 10015
5.16 Method: constructor methods (p59) 10015
5.17 Method: class versus instance methods (@e 166) 10017
5.18 Method: a method may have no parameters 173) 10018

6 Command line argumenté 10018
6.1 Command line arguments: program arguments are paseminc(pag 10018
6.2 Command line arguments: program arguments are accegsedex (pag)10019
6.3 Command line arguments: length of the list (e 79)10019
6.4 Command line arguments: list index can be avariable@ .. . 10019

7 Tiée 10019
7.1 TYPE (PAGE36) . « o o o 10019
7.2 Type: Sting (PAgE 135) .« .« « v o e 102
7.3 Type: String: literal (pagﬁ8) 10020
7.4 Type: String: literal: must be ended on the same Iinee(. . . 10020
7.5 Type: String: literal: escape sequences (e 49)10020
7.6 Type: String: concatenation (pagei26)10021
7.7 Type: String: conversion: from int (p38 C e e e 10021
7.8 Type: String: conversion: from double (55) c e e e, . 10022
7.9 Type: String: conversion: from object (page 177) 10022
710 Type: int(PAgE 36) oot 1802
7.11 Type: double (pag%!ﬂ))02
7.12 Type: casting an int to a double (p@ 79) . . 10024
7.13 Type: boolean (page 133) 2400
7.14 Type:long (page 145) 1402

10001

CONTENTS

7.15 Type: short (pa5) 200
7.16 Type: byte (page 145) 102
7.17 Type:char(page 145) 802
7.18 Type: char: literal (padﬁ%) 10025
7.19 Type: char: literal: escape sequences (ﬁb 146) 10025
7.20 Type: float (pa6) 102
7.21 Type: primitive versus reference (p162) 10026

8 Standard AP 10026
8.1 Standard API: System: out.printin() (péﬁ 18) 10026
8.2 Standard API: System: out.printin(): with no argum@aq) . . 10026
8.3 Standard API: System: out.print() (p ﬁ 98) 10027
8.4 Standard API: System: out.printf() (page 126) 10027
8.5 Standard API: System: out.printf(): zero padding ([@) 10028
8.6 Standard API: Integer: parselnt() (p@ 41) . C e e ... 10029
8.7 Standard API: Double: parseDouble() (page54) 10030
8.8 Standard API: Math: pow() (pagel73) 0030
8.9 Standard API: Math: abs() (page87) 003D
8.10 Standard API: Math: Pl (page 87) oo oo v 0031

9 Statement 10031
9.1 Statement (pa8) 10031
9.2 Statement: simple statements are ended with a semi-qmtgéﬁ) 10031
9.3 Statement: assignment statement (;ﬁe 37)10031
9.4 Statement: assignment statement: assigning a Iitehaaé%pag@?) 10031
9.5 Statement: assignment statement: assigning an expressue (page 38)10032
9.6 Statement: assignment statement: updating a vari) . .. 10032
9.7 Statement: assignment statement: updating a varistiidethand operators (p@S?)J
9.8 Statement: if else statement (p@ 60) 10033
9.9 Statement: if else statement: nested (e 62) . 10034
9.10 Statement: if statement (p 64) 10035
9.11 Statement: compound statement (e 66)10035
9.12 Statement: while loop (pagel71) 10036
9.13 Statement: forloop (page 77) 003
9.14 Statement: for loop: multiple statements in for upda@éﬁ) . . 10038
9.15 Statement: statements can be nested within each pﬂgﬂfﬁ) . . . 10039
9.16 Statement: switch statement with breaks (@7) -10039
9.17 Statement: switch statement without breaks (page 110). 10040
9.18 Statement: do while loop (p12) 10041

10 Error 10042
10.1 EMOr(Page 20) . . o v oo 10042
10.2 Error: syntactic error (paO) 10042
10.3 Error: semantic error (page22)o 10043
104 Error: compile time error (pagel22) 10043
10.5 Error: run time error (p4) 0043
10.6 Error: logical error (page29) 10043

10002

CONTENTS

11

Execution
11.1
11.2
11.3

12

Code clarit\}

12.1
12.2
12.3
12.4
12.5

13 Desién

13.1
13.2

14

Variable
14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10
14.11
14.12
14.13
14.14
14.15

15

Expression
151
15.2
15.3
154
155
15.6
15.7
15.8
15.9
15.10
15.11

10044
Execution: sequential execution (p%zs) C e e e . . 10044
Execution: conditional execution %ég 60)10044
Execution: repeated execution (page 70) 10044
10044
Code clarity: layout (pal) 10044
Code clarity: layout: indentation (pﬁsz) C e e e+ ewe. .. 10045
Code clarity: layout: splitting long lines (p@%) 10046
Code clarity: comments (page 82) 10046
Code clarity: comments: marking ends of code consn(lpxagéfB) . 10047
10047
Design: hard coding (pa%@ 00417
Design: pseudo code (p 73) 0480
10048
Variable (pag@G) 1®04
Variable: int variable (pa@?) 10049
Variable: a value can be assigned when a variable iaMb(pag@Z)lOMg
Variable: double variable (page54) 10049
Variable: can be defined within a compound statemeg’e@ . .. 10050
Variable: local variables (page 124) 10050
Variable: class variables (page 124) 10051
Variable: a group of variables can be declared togépa®)) . . 10051
Variable: boolean variable e{e133) e (0 0 L% X
Variable: char variable (p45 P 100 1XC
Variable: instance variables (page 159) 10053
Variable: instance variables: should be private kﬁaLdE(pag) 10054
Variable: of a class type (pége 161) 10054

Variable: of a class type: stores a reference to amb(qxjagé 16&) . 10054
Variable: of a class type: stores a reference to artblgeoid misunderstanding (pa@

10057
Expression: arithmetic (p38) 10057
Expression: arithmetic: int division truncates reepmhg 10057
Expression: arithmetic: associativity and int diots{page 52) . . . 10057
Expression: arithmetic: double division (p@ 55)10058
Expression: arithmetic: remainder operator (pagé 149. 10058
Expression: brackets and precedence (@ge 45) 10058
Expression: associativity 48) N £ 00151
Expression: boolean (page60) 0060
Expression: boolean: relational operators (page 60). 10061
Expression: boolean: logical operators (page 128). 10061
Expression: conditional expression (page 94) 10063

10003

1 Computer basics

1.1 Computer basics: hardware (page 3)

The physical parts of a computer are knowrhasdware. You can see them, and touch them.

1.2 Computer basics: hardware: processor (page 3)

Thecentral processing unit(CPU) is the part of thénardware that actually obeys instructions.
It does this dumbly — computers are not inherently intetlige

1.3 Computer basics: hardware: memory (page 3)

Thecomputer memoryis part of the computer which is capable of storing and reitngpdata
for short term use. This includes theachine codeinstructions that theentral processing
unit is obeying, and any other data that the computer is currenihking with. For example,
itis likely that an image from a digital camera is stored ia tomputer memory while you are
editing or displaying it, as are the machine code instrastior the image editing program.

The computer memory requires electrical power in order moeraber its data — it igolatile
memory and will forget its contents when the power is turned off.

An important feature of computer memory is that its contexais be accessed and changed
in any order required. This is known asndom accessand such memory is calle@ndom
access memonpr jJustRAM .

1.4 Computer basics: hardware: persistent storage (page 3)

For longer term storage ofata, computers uspersistent storagedevices such asard discs
andDVD ROM s. These are capable of holding much more information doamputer mem-
ory, and are persistent in that they do not need power to remethéénformation stored on
them. However, the time taken to store and retrieve datauch longer than for computer
memory. Also, these devices cannot as easily be accessedndam order.

1.5 Computer basics: hardware: input and output devices (pge 3)

Some parts of thbardware are dedicated to receiving input from or producing outpuht®
outside world. Keyboards and mice are examplempfit devices. Displays and printers are

10004

1.6 Computer basics: software (page 3)

examples obutput devices.

1.6 Computer basics: software (pagel3)

One part of a computer you cannot see isdiware. This is stored owomputer media such
asDVD ROMs, and ultimately inside the computer, as lots of numbers the instructions
that the computer will obey. The closest you get to seeingghirbe if you look at the silver
surface of a DVD ROM with a powerful magnifying glass!

1.7 Computer basics: software: machine code (page 3)

The instructions that theentral processing unitobeys are expressed in a language known
asmachine code This is a verylow level language meaning that each instruction gets the
computer to do only a very simple thing, such as dleition of two numbers, or sending a
byte to a printer.

1.8 Computer basics: software: operating system (page 4)

A collection of software which is dedicated to making the computer generally usabtbger
than being able to solvemarticular task, is known as aoperating system The most popular
examples for modern personal computers are Microsoft Wisd®lac OS X and Linux. The
latter two are implementations of Unix, which was first cauaed in the early 1970s. The fact
it is still in widespread use today, especially by comput@fgssionals, is proof that it is a
thoroughly stable and wetlesigred and integrated platform for the expert (or budding ejpert
computer scientist.

1.9 Computer basics: software: application program (page j

A piece ofsoftware which is dedicated to solving a particular task, or appiaatis known as
anapplication program. For example, an image editing program.

1.10 Computer basics: data (page'3)

Another part of the computer that you cannot see igl#&. Like software it is stored as
lots of numbers. Computers are processing and produciregatlathe time. For example, an
image from a digital camera is data. You can only see the i@atdnen you display it using

10005

1.11 Computer basics: data: files (page 5)

some image displaying or editing software, but even thit &growing you the actual data that
makes up the picture. The names and addresses of your fiieadsther example of data.

1.11 Computer basics: data: files (page 5)

Whendata is stored inpersistent storage such as on aard disc, it is organized into chunks

of related information known ades. Files have hames and can be accessed by the computer
through theoperating system For example, the image from a digital camera would probably
be stored in a jpeg file, which is a particular type of image &led the name of this file would
probably end inj pg or. | peg.

1.12 Computer basics: data: files: text files (page 5)

A text file is a type offile that containglata stored directly asharacters in a human readable
form. This means if you were to send the raw contents dirdatlthe printer, you would
(for most printers) be immediately able to read it. Exampletext files includeREADME. t xt

that sometimes comes witloftware you are installing, or source text for a document to be
processed by theé'TeX[6] document processing system, such as the ones useddageohis
book (prior to publication). As you will see shortly, a mordgdresting example for you, is
computer programsource coddfiles.

1.13 Computer basics: data: files: binary files (page 5)

A binary file is another kind ofile in which data is stored adinary (base 2) numbers, and
S0 is not human readable. For example, the image from a biogitaera is probably stored as
a jpeg file, and if you were to look directly at its contentshea than use somapplication
program to display it, you would see what appears to be nonsense! i&reisting example of
a binary file is themachine codeinstructions of a program.

2 Javatools

2.1 Javatools: text editor (page b)

A text editor is a program that allows the user to type and ¢eit files. You may well
have usecdot epad under Microsoft Windows; that is a text editor. More likelpwy have
usedM crosoft Wrd. If you have, you should note that it is not a text editor, iaigord

processor Although you can save your documents as text files, it is nscoremon to save

10006

2.2 Javatools: javac compiler (page 9)

them as doc files, which is actually &inary file format.M crosoft Wrd is not a good tool
to use for creating prograsource codefiles.

If you are using arntegrated development environmento support your programming, then
the text editor will be built in to it. If not, there are a pletia of text editors available which
are suited to Java programming.

2.2 Javatools: javac compiler (page 9)

The Javacompiler is calledj avac. Java program source is saved by the programmetenta
file that has the suffixj ava. For example, the text filgel | oWr | d. j ava might contain the
source text of a program that printel | 0 wor| d! on thestandard output. This text file
can then beompiled by the Java compiler, by giving its name ascanmand line argument
Thus the command

javac HelloWrld.java

will produce thebyte codeversion of it in thefile Hel | oWor | d. cl ass. Like machine code
files, byte code is stored ininary files as numbers, and so is not human readable.

2.3 Javatools: java interpreter (page 9)

When the end user wants to run a Java program, he or she inv@ewa interpreter with the
name of the program as it®emmand line argument The program must, of course, have been
compiled first! For example, to run thiel | oWor | d program we would issue the following
command.

java Hellovrld

This makes theentral processing unitrun the interpreter ovirtual machine j ava, which
itself thenexecutes the program named as its first argument. Notice that thexsyféiva is
needed when compiling the program, but no suffix is used whbening it. In our example
here, the virtual machine finds thte codefor the program in thdile Hel | oWor | d. cl ass
which must have been previously produced bydbmpiler.

10007

3 Operating environment

3.1 Operating environment: programs are commands (page! 7)

When a program iexecutel, the name of it is passed to thperating systemwhich finds and
loads thdfile of that name, and then starts the program. This might be hiffden you if you
are used to starting programs from a menu or browser ineerfad it happens nevertheless.

3.2 Operating environment: standard output (page 7)

When programgxecute they have something called tkeandard output in which they can
produce text results. If they aren from some kind otommand line interface such as a Unix
shell or a Microsoft WindowsCommand Prompt, then this output appears in that interface
while the program is running. (If they are invoked througimedntegrated development
environment, browser, or menu, then this output might get displayed mespop-up box, or
special console window.)

3.3 Operating environment: command line arguments (page 8)

Programs can be, and often are, gicemmand line argumens to vary their behaviour.

4 Class

4.1 Class: programs are divided into classes (page 16)

In Java, the source text for a program is separated into pieakkedclases. The source
text for each class is (usually) stored in a sepaféiee Classes have a name, and if the
name isHel | oWor | d then the text for the class is saved by the programmer irtekiefile

Hel | oWor | d. j ava.

One reason for dividing programs into pieces is to make thasreeto manage — programs to
perform complex tasks typically contain thousands of lioetext. Another reason is to make
it easier to share the pieces between more than one prograchsaftware reuseis beneficial
to programmer productivity.

Every program has at least one class. The name of this clafigeftect the intention of the
program. By convention, class names start with an upperletise

10008

4.2 Class: public class (page 16)

4.2 Class: public class (page 16)

A classcan be declared as beipgblic, which means it can be accessed from anywhere in the
running Java environment; in particular thietual machine itself can access it. The source
text for a public class definition starts with thresserved wordpubl i c. A reserved word is one
which is part of the Java language, rather than a word chogehebprogrammer for use as,
say, the name of a program.

4.3 Class: definition (page 16)

After stating whether it hapublic access, alassnext has theeserved wordcl ass, then its
name, then a left bracg its body of text and finally a closing right bracp (

public class MyFabul ousProgram

{
Lots of stuff here.

}...

4.4 Class: objects: contain a group of variables (page 158)

We can group a collection efariables into one entity by creating asbject. For example, we
might wish to represent a point in two dimensional spaceguaitx and ay value to make up
a coordinate. We would probably wish to combine p@andy variables into a single object, a
Poi nt .

4.5 Class: objects: are instances of a class (page 158)

Before we can makebjects, we need to tell Java how the objects are tadwestructed. For
example, to make &oi nt object, we would need to tell Java that there are to be a pair of
variables inside it, calleck andy, and tell it whatypes these variables have, and how they get
their values. We achieve this by writingclasswhich will act as a template for the creation of
objects. We need to write such a template class for each Kiotject we wish to have. For
example, we would write Boi nt class describing how to makei nt objects. If, on the other
hand, we wanted to group together a load of variables desgrédttributes of wardrobes, so we
could make objects each of which represents a single waedtbbn we would probably call
that clas3far dr obe. Java lets us choose any name that we feel is appropriaepegserved
words (although by convention we always start the name with aaldptter).

Once we have described the template, we can get Java to migkesalf that class atin time.
We say that these objects anstances of the class. So, for example, particufar nt objects

10009

4.6 Class: objects: this reference (page 180)

would all be instances of thiéoi nt class. We can create as many differBoitnt objects as
we wish, each containing its ownandy variables, all from the one template, th& nt class.

4.6 Class: objects: this reference (page 180)

Sometimes, irconstructor methods or ininstance method of aclasswe wish to refer to

the object that the constructor is creating, or to which the instancéhotbelongs. For this
purpose, whenever thieserved wordt hi s is used in or as aexpressionit means aeference

to the object that is being created by the constructor oraWat the instance method, etc.. We
can only use théhis referencein places where it makes sense, such as constructor methods,
instance methods andstance variable initializations. So,t hi s (when used in this way)
behaves somewhat like an extra instance variable in eaeltpbutomatically set up to contain

a reference to that object.

For example, in &oi nt class we may wish to have an instance method that yields & poin
which is half way between the origin amdi s point.

publ i ¢ Point hal f Thi sPoi nt ()

{
return hal f WayPoi nt (new Point (0, 0));

+ 11 hal f Thi sPoi nt
An alternative implementation would be as follows.

publi ¢ Point hal f Thi sPoi nt ()

{
return new Point(0, 0).halfWyPoint(this);
} 11 hal f Thi sPoi nt

4.7 Class: is atype (page 161)

A type is essentially aetof values. The nt type is all the whole numbers that can be repre-
sented using 3Binary digit s, thedoubl e type is all thereal numbers that can be represented
using thedouble precisiontechnique and theool ean type contains the valuas ue and

fal se. A classcan be used as a template for creatitgects, and so is regarded in Java as a
type: the set of all objects that can be created whichretances of that class. For example, a
Poi nt class is a type which is the set of &tli nt objects that can be created.

10010

4.8 Class: making instances with new (page 162)

4.8 Class: making instances with new (page 162)

An instance of a classis created by calling theonstructor method of the class, using the
reserved wordnew, and supplyingnethod argument for themethod parameters. Atrun
time when this code i€xecutal, the Javavirtual machine, with the help of the constructor
method code, creates abject which is an instance of the class. Although it is not stated in
its heading, a constructor method alwagturns a value, which is aeferenceto the newly
created object. This reference can then be storedariable, if we wish. For example, if we
have aPoi nt class, then we might have the following code.

Poi nt toplLeft = new Poi nt (-20, 40);
Poi nt bottomleft = new Point(-20, -40);
Poi nt t opRi ght = new Poi nt (20, 40);
Poi nt bottonRi ght = new Point (20, -40);

This declares four variables, tfpe Poi nt and creates four instances of the clBssnt rep-
resenting the four corners of a rectangle. The four vargabéeh contain a reference to one of
the points. This is illustrated in the following diagram.

A Point object A Point object

Point topLeft private double x -20 Point topRight private double x 20

= | L=

private double y

private double y 40

A Point object A Point object

Point bottomLeft private double x -20 Point bottomRight private double x 20

—— P ~—— P

private double y -40 private double y -40

All four Poi nt objects each have twiastance variables, calledx andy.

4.9 Class: accessing instance variables (page 164)

Theinstance variables of anobject can be accessed by takingederenceto the object and
appending a dot (| and then the name of tivariable. For example, if the variablel contains
a reference to &oi nt object, andPoi nt objects have an instance variable calkkedhen the
codepl. x is the instance variabbe belonging to théoi nt referred to bypl.

10011

5 Method

5.1 Method (page 118)

A methodin Java is a section of code, dedicated to performing a peatitask. All programs
have amain method which is the starting point of the program. We can have othethods
too, and we can give them any name we like — although we shbwéya choose a name which
suits the purpose. By convention, method names start withvarlcase letter. For example,
System out. println() isamethod which prints a line of text. Apart from its slighgtrange
spelling, the namer i nt | n does reflect the meaning of the method.

5.2 Method: main method: programs contain a main method (pag/17)

All Java programs contain a section of code caltedn, and this is where the computer will
start toexecutethe program. Such sections of code are caftexthods because they contain
instructions on how to do something. Th&ain method always starts with the following
heading.

public static void main(String[] args)

5.3 Method: main method: is public (page 17)

Themain method starts with theeserved wordpubl i ¢, which means it can be accessed from
anywhere in the running Java environment. This is necess#rg program could not bein
by thevirtual machine if the starting point was not accessible to it.

public

5.4 Method: main method: is static (page 17)

The main method of the program has theeserved wordst at i ¢ which means it is allowed
to be used in thestatic context A context relates to the use obmputer memory during
therunning of the program. When thertual machine loads a program, it creates the static
context for it, allocating computer memory to store the pangand it-data, etc.. Adynamic
contextis a certain kind of allocation of memory which is made latiering the running of the
program. The program would not be able to start if the mairhieegtivas not allowed to run in
the static context.

public static

10012

5.5 Method: main method: is void (page 17)

5.5 Method: main method: is void (page 17)

In general, anethod (section of code) might calculate some kindarfction or formula, and
return the answer as a result. For example, the result might be aewtila method returns
a result then this must be stated in its heading. If it doestheh we write theeserved word
voi d, which literally means (among other definitions) ‘withowaintents’. Themain method
does not return a value.

public static void

5.6 Method: main method: is the program starting point (pagel?)

The starting part, omain method, of the program is always calledi n, because it is the main
part of the program.

public static void main

5.7 Method: main method: always has the same heading (page)18
Themain method of a Java program must always have a heading like this.
public static void main(String[] args)

This is true even if we do not intend to use ammmand line argumens. So a typical single
classprogram might look like the following.

public class MyFabul ousProgram

{
public static void main(String[] args)
{
... Stuff here to performthe task.
}
}

5.8 Method: private (page 118)

A method should be declared with private visibility modifier if it is not intended to be
usable from outside thelassit is defined in. This is done by writing theeserved word
pri vat e instead ofpubl i ¢ in the heading.

10013

5.9 Method: accepting parameters (page 118)

5.9 Method: accepting parameters (page 118)

A method may be givermethod parameters which enable it to vary its effect based on their
values. This is similar to a program being givammmand line argumens, indeed the argu-
ments given to a program are passed as parameters noaihenethod.

Parameters are declared in the heading of the method. Forpdxamain methods have the
following heading.

public static void main(String[] args)

The text inside the brackets is the declaration of the patensie A method can have any
number of parameters, including zero. If there is more the they are separated by commas
(,). Each parameter consists dfyge and a name. For example, the following method is given
two parameters, @oubl e and ani nt .

private static void printHeightPerYear(doubl e height, int age)

{
Systemout.printIn("At age " + age + ", height per year ratiois "
+ height / age);
} Il printHeight Per Year

You should think of parameters as being likariables defined inside the method, except that
they are given initial values before the method bodgxecutel. For example, the single
parameter to the main method is a variable which is givéstaf strings before the method
begins execution, these strings being the command lineveegts supplied to the program.

The names of the parameters are not important to Java — asaptiey all have different
names! The names only mean something to the human readenh) w8hof course important.
The above method could easily have been written as follows.

private static void printHeightPerYear(double howTall, int howd d)

{
Systemout.printIn("At age " + howdd + ", height per year ratiois "

+ howTal | / howd d);
} [1 printHeightPerYear

You might think the first version is subjectively nicer th&ae second, but clearly both are better
than this next one!

private static void printHeightPerYear(double d, int i)

10014

5.10 Method: accepting parameters: of a class type (page 164

{
Systemout.printIn("At age " + i + ", height per year ratiois "
+d/ i);
} Il printHeight Per Year

And that is only marginally better than calling the paramgtsayx andy. However, Java does
not care — it is not clever enough to be able to, as it can hawenderstanding of the problem
being solved by the code.

5.10 Method: accepting parameters: of a class type (page 164

The method parameters of amethod can be of anytype, including clases. A parameter
which is of a class type must be givemgthod argumentvalue of that type when the method
is invoked, for example eeferenceto anobject which is aninstanceof the class named as the
parameter type.

5.11 Method: calling a method (page 119)

The body of anethod is executel when some other code refers to it usingethod call. For
example, the program calls a method namdt | n when it executeSystem out . printIn("Hello
wor | d!'") . For another example, if we have a method, namradt Hei ght Per Year , which

prints out a height to age ratio when it is given a height (irires) and an age, then we could
make it print the ratio between the heightt and the agé4 using the following method call.

print Hei ght Per Year (1. 6, 14);

When we call a method we supplyr@ethod argumentfor eachmethod parameter, separat-
ing them by commas {. These argument values are copied into the correspondirzgeters
of the method — the first argument goes into the first parantésecond into the second, and
so on.

The arguments passed to a method may be the current valvesiables. For example, the
above code could have been written as follows.

doubl e personHei ght = 1.6;
int personAge = 14,

print Hei ght Per Year (per sonHei ght, personAge);

10015

5.12 Method: void methods (page 120)

As you may expect, the arguments to a method are actergtisessiors rather than juditeral
values or variables. These expressions evaluated at the time the method is called. So we
might have the following.

doubl e growt hLast Year = 0.02;

print Hei ght Per Year (per sonHei ght - growt hLast Year, personAge - 1);

5.12 Method: void methods (page 120)

Often, amethod might calculate some kind dinction or formula, perhaps based on its
method parameters, andreturn the answer as a result. The result might bei an or a
doubl e or some othetype. If a method returns a result then theturn type of the result
must be stated in its heading. If it does not, then we writeatbed voi d instead, which liter-
ally means (among other definitions) ‘without contents’r Ewample, thenain method of a
program does not return a result — it is alwaywsa method.

public static void main(String[] args)

5.13 Method: returning a value (page 122)

A method may return a result back to the code that called it. If this is so, we decthe
return type of the result in the method heading, in place of taserved wordvoi d. Such
methods are often callatbn-void methods. For example, the following method takes a Cel-
sius temperature, and returns the corresponding Fahtesathee.

private static doubl e celsiusToFahrenheit (doubl e celsiusVal ue)

{

doubl e fahrenheitValue = celsiusValue * 9/ 5 + 32;
return fahrenheitVal ue;
} Il cel si usToFahrenhei t

The method is declared with a return typedolubl e, by writing thattype name before the
method name.

The return statement is how we specify what value is to be returned as the resulhef t
method. Thestatementcauses the execution of the method to end, and control tefaainack
to the code that called the method.

The result of a non-void method can be used irgpression For example, the method above
might be used as follows.

10016

5.14 Method: returning a value: of a class type (page 176)

doubl e cel siusVal ue = Doubl e. parseDoubl e(args[0]);
Systemout. println("The Fahrenheit value of "
+ celsiusValue + " Celsius is "
+ cel siusToFahrenhei t(cel siusValue) + ".");

The return statement takes any expression after the reseme ret urn. So our method
above could be implemented using just one statement.

private static doubl e celsiusToFahrenheit (doubl e celsiusVal ue)

{

return celsiusValue * 9/ 5 + 32;
} Il cel si usToFahrenhei t

5.14 Method: returning a value: of a class type (page 176)

A method may return a result back to the code that called it, and this may be oftgps,
including aclass In such cases, the value returned will typically beeferenceto anobject
which is aninstanceof the class named as theturn type.

For example, in &oi nt class withinstance variables x andy, we might have amnstance
method to return aPoi nt which is half way along a straight line between tR® nt and a
given otherPoi nt .

publ i c Point hal f WayPoi nt (Poi nt ot her)

{
double newX = (x + other.x) / 2;
double newY = (y + other.y) / 2
return new Point(newX, newyY);

+ 11 hal f WayPoi nt

The method createsrsew objectand then returns a reference to it. This might be used as
follows.

Poi nt pl
Poi nt p2

new Point(3, 4);
new Point (45, 60);

Poi nt hal f WayBet weenP1AndP2 = pl. hal f WayPoi nt (p2) ;

The reference to the neRoi nt returned by the instance method, is stored in\haable
hal f WayBet weenP1AndP2. It would, of course, be the poiiR4,32). This is illustrated in the
following diagram.

10017

5.15 Method: changing parameters does not affect argurfesme 124)

A Point object A Point object
Point pl = new Point (3, 4) private double x 3 Poi nt p2 = new Poi nt (45, 60)| private double x 45
L mp—a— g — — >
private double y 4 private double y 60
A Point object
Poi nt hal f wayBet weenP1AndP2 = pl. hal f wayPoi nt (p2) private double x 24
- __—— >
private double y 32

5.15 Method: changing parameters does not affect argumentpage 124)

We can think ofmethod parameters as being likevariables defined inside thenethod, but
which are given their initial value by the code that calls thethod. This means the method
can change the values of the parameters, like it can for dmgr etariable defined in it. Such
changes have no effect on the environment of the code thatlddle method, regardless of
where themethod argumentvalues came from. An argument value, be it a literal constant
taken straight from a variable, or the result of some moregerexpression is simply copied
into the corresponding parameter at the time the methodledcarhis is known asall by
value.

5.16 Method: constructor methods (page 159)

A classwhich is to be used as a template for makoigects should be given aonstructor
method. This is a special kind ainethod which contains instructions for tr@nstruction of
objects that arenstances of the class. A constructor method always has the same mathe a
class it is defined in. It is usually declared as bemplic, but we do not specify aeturn
type or write thereserved wordvoi d. Constructor methods can haneethod parametesrs,
and typically these are the initial values for some or alh&fihstance variables.

For example, the following might be a constructor methodaf@oi nt class, which has two
instance variables, andy.

publi ¢ Poi nt (doubl e requiredX double requiredY)

{
X = requiredX;
y = requiredy;
} Il Point

10018

5.16 Method: constructor methods (page 159)

This says that in order to construct an object which is anams# of the clas®oi nt, we
need to supply twaoubl e values, the first will be placed in theinstance variable, and the
second in thg instance variable. Constructor methods are called in dainvay to any other
method, except that we precede theethod call with thereserved wordnew. For example,
the following code would creatersew object, which is an instance of the cld&s nt, and in
which the instance variablesandy have the values. 4 and- 19. 9 respectively.

new Point(7.4, -19.9);

We can create as maRgi nt objects as we wish, each of them having their own pair of csta
variables, and so having possibly different valuesxf@andy. These next fouPoi nt objects
are the coordinates of a rectangle which is centred arowndrifjin of a graph, point (0, 0).

new Poi nt (-20, 40);
new Point (-20, -40);
new Point (20, 40);
new Point (20, -40);

This is illustrated in the following diagram.

A Point object A Point object
private double x =20 private double x 20
private double y 40 private double y 40

A Point object A Point object
private double x -20 private double x 20
private double y -40 private double y -40

All four Poi nt objects each have two instance variables, cadladdy.

10019

5.17 Method: class versus instance methods (page 166)

5.17 Method: class versus instance methods (page 166)

When we define anethod, we can write theeserved wordst ati c in its heading, meaning
that it can beexecutel in the static context that is, it can be used as soon as thessis
loaded into thevirtual machine. These are known adass method, because they belong to
the class. By contrast, if we omit teeat i c modifier then the method is anstance method
This means it can only be run indynamic context attached to a particulanstance of the
class.

This parallels the distinction betweetass variables andinstance variables. There is one
copy of a class variable, created when the class is loadedreTik one copy of an instance
variable for every instance, created when the instancesed.

We can think of methods in the same way: class methods bebdhg tlass they are defined in,
and there is one copy of their coderah time, ready for use immediately. Instance methods
belong to an instance, and there are as many copies of the@tndetime as there are instances.
Of course, the virtual machine does not really make copigb@ttode of instance methods,
but it behaves as though it does, in the sense that when an instance metbreédsted, it runs

in the context of the instance that it belongs to.

For example, suppose we hav@a nt class with instance variablesandy. We might wish
to have an instance method which takesmethod parameters, butreturn s the distance of a
point from the origin. Pythagoras[18] tells us that this ix? 4-y2. (We can use theqrt ()
method from thévat h class.)

public doubl e di stanceFronQrigin()

{
return Math.sqrt(x * x +y * y);

} [1 distanceFronOrigin

A class method can be accessed by taking the name of the afasappending a dot) and
then the name of the metholdht h. sgrt is a handy example right now.

An instance method belonging to ahject can be accessed by takingederenceto theobject

and appending a dot Y and then the name of the method. For example, ifvidwéable pl

contains a reference toPai nt object, then the codel. di st anceFronOri gi n() invokes the
instance methodi st anceFronOri gi n(), belonging to théoi nt referred to byp1l.

The following code would print the numbessand75.

Poi nt pl
Poi nt p2

new Point(3, 4);
new Poi nt (45, 60);

Systemout. println(pl.distanceFrondigin());
System out. println(p2.distanceFrondigin());

10020

5.18 Method: a method may have no parameters (page 173)

When the method is called v it uses the instance variables of the object referred tplhy
that is the value8 and4 respectively. When the method is called piait uses the value45
and60 instead.

For another example, we may wish to have a method which detesthe distance between a
point and a given other point.

publ i c doubl e di stanceFronPoi nt (Poi nt ot her)

{

doubl e xDi stance
doubl e yDi stance

X - other.x;
y - other.y;

return Math.sqrt(xDistance * xDistance + yDistance * yDistance);
} Il di stanceFronPoi nt

The following code would print the numb@®. 0, twice.

System out. println(pl.distanceFronPoint(p2));
System out. println(p2.distanceFronPoi nt (pl));

5.18 Method: a method may have no parameters (page 173)

The list of method parameters given to anethod may be empty. This is typical for methods
which always have the same effectreturn the same result, or their result depends on the
value ofinstance variables rather than some values in the context where the methotlesl.ca

6 Command line arguments

6.1 Command line arguments: program arguments are passed tmain
(page 17)

Programs can be givasommand line argumens which typically affect their behaviour. Ar-
guments given to a Java program are strings ofdesd, and there can be any number of them
in alist. In Java,String[] means ‘list of strings’. We have to give a name for this listga
usually we call itar gs. The chosen name allows us to refer to the given data frommwiitie
program, should we wish to.

public static void main(String[] args)

10021

6.2 Command line arguments: program arguments are acdegsedex (page 26)

6.2 Command line arguments: program arguments are accessdwy in-
dex (page 26)

The command line argumens given to themain method are alist of strings. These are
the text data string arguments supplied on tteommand line The strings arendexed by
integers (whole numbers) starting from zero. We can access theithdilstrings by placing
the index value in square brackets after the name of theSstassuming that we call the list
ar gs, thenar gs[0] is the first command line argument given to the program, ifdh®one.

6.3 Command line arguments: length of the list (page 79)

The command line argument passed to theain method are alist of strings. We can find
the length of a list by writing a dot followed by the wardngt h, after the name of the list. For
examplear gs. | engt h yields ani nt value which is the number of items in the lastgs.

6.4 Command line arguments: list index can be a variable (pag79)

Theindex used to access the individual items fronlist of strings does not have to be an
integer literal, but can be aint variable or indeed ararithmetic expression For example,
the following code adds together a listinfegers given acommand line argumens.

int sunOXArgs = 0;

for (int arglndex = 0; arglndex < args.length; arglndex = arglndex + 1)
sunf Args = sunf Args + I nteger. parselnt(args[arglndex]);

Systemout.printIn("The sumis " + sunCf Args);

The benefit of being able to usevariable, rather than an integer literal is that the access can
be done in doop which controls the value of the variable: thus the actuali@alsed as the
index is not the same each time.

7 Type

7.1 Type (page 36)

Programs can process various different kinddatg, such as numbers, text data, images etc..
The kind of a data item is known as iigoe.

10022

7.2 Type: String (page 135)

7.2 Type: String (page 135)

Thetype of text data strings, such astring literal values andconcatenatiors of such, is
calledString in Java.

7.3 Type: String: literal (page/18)

In Java, we can havestring literal , that is a fixed piece of text to be useddaga, by enclosing
it in double quotes. It is called a string literal, because @type of data which is a string of
characters, exactly as listed. Such a piece of data might be used assageet the user.

"This is a fixed piece of text data -- a string literal"

7.4 Type: String: literal: must be ended on the same line (pag21)

In Javastring literal s must be ended on the same line they are started on.

7.5 Type: String: literal: escape sequences (page 49)

We can have aew line characterembedded in atring literal by using theescape sequence
\ n. For example, the following code will print out three linassiandard output.

Systemout.printIn("This text\nspans three\nlines.");
It will generate the following.

This text
spans three
l'i nes.

There are other escape sequences we can use, includindiomerfg.

10023

7.6 Type: String: concatenation (page 26)

Sequence| Name Effect

\b Backspace Moves the cursor back one place, so the obsir-
acter will over-print the previous.

\t Tab (horizontal tab) Moves the cursor to the next ‘tab stop’.

\n New line (line feed)| Moves the cursor to the next line.

\ f Form feed Moves to a new page on many (text) printers.

\r Carriage return Moves the cursor to the start of the current line, so
characters will over-print those already printed.

\" Double quote Without the backslash escape, this would mark|the
end of the string literal.

\’ Single quote This is just for consistency — we don’t need to es-
cape a single quote in a string literal.

\\ Backslash Well, sometimes you want the backslash charagter
itself.

Note: System out . pri ntl n() always ends the line with the platform dependere separa-
tor, which on Linux is a new line character but on Microsoft Wimdois acarriage return
character followed by a new line character. In practice you may noteethe difference, but
the above code is not strictly the same as using three sefsysitem out . println() calls
and is not 100% portable.

7.6 Type: String: concatenation (page 26)

The + operator, when used with two stringperands, produces a string which is tloen-
catenation of the two strings. For exampledel | 0 " + "wor| d" produces a string which is
Hel | o (including the space) concatenated with the stwoig d, and so has the same value as
"Hell o world".

There would not be much point concatenating togetherdtriag literal s like this, compared
with having one string literal which is already the text wenivaWe would be more likely to
use concatenation when at least one of the operands is netiavidue, i.e. is &ariable value.
For example;Hel l o " + args[0] produces a string which i€l | 0 (including the space)
concatenated with the firsommand line argumentgiven when the program rsin.

The resulting string can be used anywhere that a singlegdiitaral could be used. For ex-

ampleSystemout. printIn("Hello " + args[0]) would print the resulting string on the
standard output.

7.7 Type: String: conversion: from int (page 38)

The Javeaoperator + is used for botraddition andconcatenation— it is anoverloaded op-
erator. If at least one of th@perands is atext data string, then Java uses concatenation,
otherwise it uses addition. When only one of the two operasdsstring, and the other is

10024

7.8 Type: String: conversion: from double (page 55)

some othetype of data, for example amnt , the Javaompiler is clever enough to understand
the programmer wishes that data to be converted into a diefye the concatenation takes
place. It is important to note the difference betweerngger and the decimal digit string we
usually use to represent it. For example, ititeger literal 123 is ani nt, a number; whereas
thestring literal " 123" is a text data string — a string of 3 separelt@racters.

Suppose theariable noOf Peopl eTol nvi t eToTheSt r eet Party had the valuél, then the
code

Systemout.printIn("Please invite " + noCf Peopl eTol nviteToTheStreet Party);
would print out the following text.
Pl ease invite 51

The number51 would be converted to the strifighl" and then concatenated to the string
"Please invite " before being processed Bystem out. println().

Furthermore, for our convenience, there is a separateoveoSyst em out . printl n() that
takes a singlént rather than a string, and prints its decimal representafibas, the code

System out. print|n(noC Peopl eTol nviteToTheStreet Party);
has the same effect as the following.

Systemout.println("" + noO Peopl eTol nviteToTheStreetParty);

7.8 Type: String: conversion: from double (page 55)

The Javaconcatenation operator +, for joining text data strings can also be used to convert
adoubl e to a string. For example, thexpression"" + 123. 4 has the valué123. 4" .

7.9 Type: String: conversion: from object (page 177)

It is quite common forclasses to have ainstance methodwhich is desigred to produce a
String representation of aabject. It is conventional in Java for suahethods to be called
toStri ng. For example, oi nt class withx andy instance variables might have the follow-
ingtoString() method.

10025

7.10 Type: int (page 36)

public String toString()

{
return”(” +X+"," +y+ll)ll;
} Il toString

For convenience, whenever the Jagapiler finds anobject referenceas anoperand of the
concatenation operatorit assumes that the object'sStri ng() method is to be invoked to
produce the requirest ri ng. For example, consider the following code.

Poi nt pl = new Point (10, 40);
Systemout.println("The point is " + pl.toString());

Thanks to the compiler’s convenient implicit assumptioowth oSt ri ng(), the above code
could, and probably would, have been written as follows.

Poi nt pl = new Point (10, 40);
Systemout.println("The point is " + pl);

For our further convenience, there is a separate versi@psifem out . pri ntl n() that takes
any single object rather than a string, and prints @St ri ng() . Thus, the code

Systemout. println(pl);
has the same effect as the following.

Systemout.printin("" + pl);

7.10 Type: int (page 36)

One of thetypes of data we can use in Java is calledt . A data item which is annt is an
integer (whole number), such d&s - 129934 or 982375, etc..

7.11 Type: double (page 54)

Another of thetypes of data we can use in Java is known aésubl e. A data item which is a
doubl e is areal (fractional decimal number), such @s0, - 129. 934 or 98. 2375, etc.. The
type is callecdoubl e because it uses a means of storing the numbers addleble precision
On computers, real numbers are only approximated, bechagdave to be stored in a finite
amount of memory space, whereas in mathematics we have tlom d infinite decimals.
The double precision storage approach uses twice as muclom@er number than the older
single precisiontechnique, but gives numbers which are much more precise.

10026

7.12 Type: casting an int to a double (page 79)

7.12 Type: casting an int to a double (page 79)

Sometimes we have amt value which we wish to be regarded asaubl e. The process of
conversion is known asasing, and we can achieve it by writi@loubl e) in front of thei nt .
For example(doubl e) 5 is thedoubl e value5. 0. Of course, we are most likely to use this
feature to cast the value of amt variable, rather than amteger literal .

7.13 Type: boolean (page 133)

There is atype in Java callethool ean, and this is the type of attonditions used inif else
statemens andoops. It is named after the English mathematician, George Bobtese work
in 1847 established the basis of modern logic[12]. The typeains just twdooolean literal
values called r ue andf al se. For example5 <= 5 is aboolean expressionwhich, because
it has novariables in it, always has the same value wrenraluated. Whereas thexpression
agel < age2 || agel == age2 && heightl <= hei ght 2 has a value which depends on
the values of the variables in it.

7.14 Type: long (page 145)

Thetypeint allows for the storage dhtegers in the range-23! through to 31— 1. This
is because it uses folnytes, i.e. 32binary digits. 21— 1 is 2147483647. Although this is
plenty for most purposes, we sometimes need whole numbarkigger range. The typeng
representfong integers and uses eight bytes, i.e. Bds. Al ong variable can store numbers
from —2%3 through to $3— 1. The value of ¥ —1 is 9223372036854775807.

A long literal is written with anL on the end, to distinguish it from ant literal , as in- 15L
and2147483648L.

7.15 Type: short (page 145)

Thetype short representshort integers using twobytes, i.e. 16binary digits. A short
variable can store numbers from2° through to 2°— 1. The value of ¥ —1 is 32767. We
would typically use this type when we have a huge numbéantefjers, which happen to lie in
the restricted range, and we are concerned about the amiomneinoory (orfile space) needed
to store them.

10027

7.16 Type: byte (page 145)

7.16 Type: byte (page 145)

Thetype byt e representintegers using just ondyte, i.e. 8binary digits. Abyt e variable
can store numbers from2’ through to Z — 1. The value of 2— 1 is 127.

7.17 Type: char (page 145)

Characters in Java are represented bytype char . A char variable can store a singlehar-
acter at any time.

7.18 Type: char: literal (page 145)

A character literal can be written in our program by enclosing it in single quokes example
' J’ is a character literal.

7.19 Type: char: literal: escape sequences (page 146)

When writing acharacter literal we can use the sanescape sequeneethat are available
within string literal s. These include the following.

char backspace = '\b’; char tab = "\t’";

char newine ='\n’; char fornfeed = "\f’;
char carriageReturn ="\r’; char doubl eQuote = "\"";
char singleQuote = "\""; char backslash = "\\";

7.20 Type: float (page 146)

Thetype f 1 oat is for real (fractional decimal) numbers, using tHeating point represen-
tation with a single precisionstorage. It uses only folsytes per number, compared with
doubl e which employsdouble precisionstorage and so is far more accurate, but needs eight
bytes per number.

A float literal is written with anf or F on the end, as if. OF, - 129. 934F or 98. 2375f .

10028

7.21 Type: primitive versus reference (page 162)

7.21 Type: primitive versus reference (page 162)

Eachtype in Java is either arimitive type or areference type Values of primitive types have
a size which is known atompile time. For example, everynt value comprises foubytes.
Types for which the size of an individual value is only knowmun time, such a<lasss, are
known as reference types because the values are alwaysadces aeference

8 Standard API

8.1 Standard API: System: out.printin() (page 18)
The simplest way to print a messagestandard output is to use:
Systemout.printIn("This text will appear on standard output”);

Systemis aclass(that is, a piece of code) that comes with Java as part dpfdication
program interface (API) — a large number of classes designed to support our Javeapneg
Inside Syst emthere is a thing calledut, and this has amethod (section of code) called
println. So overall, this method is call&yst em out. pri ntln. The method takes a string
of text given to it in its brackets, and displays that textloa standard output of the program.

8.2 Standard API: System: out.printin(): with no argument (page 98)

TheclassSyst emalso contains a version of tlv@t . pri nt| n() methodwhich takes no argu-
ments. This outputs nothing exceptew line. It has the same effect as callifgst em out . println()
with an empty string as its argument, that is

Systemout. println();

has the same effect as the following.
Systemout.printin("");

So, for example

Systemout.print("Hello world!");
Systemout. println();

10029

8.3 Standard API: System: out.print() (page 98)

would have the same effect as the following.
Systemout.printIn("Hello world!");

System out. println() with no argument is most useful when we need to end a line which
has been generated a piece at a time, or when we want to haaelalible.

8.3 Standard API: System: out.print() (page 98)

TheclassSyst emcontains anethodout . pri nt () whichis almostthe sameast . printin().
The only difference is thatut . print () does not produce@ew line after printing its output.
This means that any output printed after this will appear@nsame line. For example

Systemout.print("Hello");
Systemout.print(" ");
Systemout. println("world™);

would have the same effect as the following.
Systemout.printIn("Hello world!");

Systemout. print() is most useful when the output is being generated a pieceiateq t
often within aloop.

8.4 Standard API: System: out.printf() (page 126)

TheclassSyst emcontains anethodout . printf (), introduced in Java 5.0, which is similar
toout. print () exceptthat we can use it to produce formatted output of galue

A simple use of this is to take anteger value and have it printed witbpace paddingto a
given positive integer field width. This means the outputtaors leading spaces followed by
the usual representation of the integer, such that the nuoflharacters printed is at least
the given field width.

The following code fragment includes an example which granstring representation 23,
with leading spaces so that the result has a width of ten cteas

Systemout. println("1234567890");
Systemout. printf("%0d%", 123);

10030

8.5 Standard API: System: out.printf(): zero padding (nE4@)

Here is the effect of these twsiatemens.

1234567890
123

The first%tellsout . printf () that we wish it to format something, tié tells it the minimum
total width to produce, and the following letter says whatckof conversion to perform. A
tells it to produce the representation of a decimal wholelmemwhich is given after thiermat
specifier string, as the secontiethod argument The % tellsout . printf() to output the
platform dependerine separator.

The method can be asked to format a floating point value, ssieli@ubl e. In such cases we

give the minimum total width, a dot }, the number of decimal places, andfaoonversion.
For example,

Systemout.printf("%.2f%", 123.456);

needs more than the given minimum widthlofand so produces the following.
123. 46

Whereas, the format specifier in

Systemout. println("1234567890");
Systemout. printf("9%0.2f %", 123.456);

prints a total of ten characters for the number, two of whighdecimal places.

1234567890
123. 46

8.5 Standard API: System: out.printf(): zero padding (pagel40)

We can ask
Systemout. printf() for zero paddingrather tharspace paddingof a number by placing
a leading zero on the desired minimum width in fbemat specifier.

The following code fragment contains an example which pranstring representation 23,
with leading zeroes so that the result is tdaracters long.

10031

8.6 Standard API: Integer: parseint() (page 41)

Systemout. println("1234567890");
Systemout. printf("%10d%", 123);

Here is the effect.

1234567890
0000000123

Similarly,

Systemout. println("1234567890");
Systemout. printf("%10.2f %", 123.456);

produces the following.

1234567890
0000123. 46

8.6 Standard API: Integer: parselnt() (page 41)

One simple way to turn &ext data string, say" 123" into theinteger (whole number) it
represents is to use the following.

I nteger. parselnt("123");

I nt eger is aclass(that is, a piece of code) that comes with Java. Insitteeger there is a
method (section of code) calleplar sel nt. This method takes a text data string given to it in
its brackets, converts it into amt andreturns that number. Aun time error will occur if
the given string does not representian value.

For example

int firstArgument;
firstArgument = Integer.parselnt(args[0]);

would take the firstcommand line argumentand, assuming it represents a number (i.e. itis a
string of digits with a possible sign in front), would turninto the number it represents, then
store that number ifi r st Argument . If instead the first argument was some other text data
string, it would produce a run time error.

10032

8.7 Standard API: Double: parseDouble() (page 54)

8.7 Standard API: Double: parseDouble() (page 54)

One simple way to turn gext data string, say" 123. 456" into thereal (fractional decimal
number) it represents is to use the following.

Doubl e. par seDoubl e("123. 456") ;

Doubl e is aclass(that is, a piece of code) that comes with Java. Inflagl e there is a
method (section of code) callegar seDoubl e. This method takes a text data string given to
it in its brackets, converts it into afbubl e andreturn s that number. Aun time error will
occur if the given string does not represent a number. Fanpla

doubl e firstArgument = Doubl e. parseDoubl e(args[0]);

would take the firscommand line argumentand, assuming it represents a number, would
turn it into the number it represents, then store that nurnrberr st Ar gunent . To represent

a number, the string must be a sequence of digits, possibhyarecimal point and maybe a
negative sign in front. If instead the first argument was soiher text data string, it would
produce a run time error.

8.8 Standard API: Math: pow() (pagel73)

Java does not have aperator to compute powers. Instead, there is a standéadscalled
Mat h which contains a collection of usefulethods, includingpow() . This takes two numbers,
separated by a comma, and gives the value of the first numbedr® the power of the second.

For example, thexpressionMat h. pow(2, 10) produces the value of2which is1024.

8.9 Standard API: Math: abs() (page 87)

Java does not have aperator to yield theabsolute valueof a number, that is, its value
ignoring its sign. Instead, the standatdsscalledMat h contains anethod, calledabs. This
method takes a number and gives its absolute value.

For example, thexpressionMat h. abs(- 2. 7) produces the valu& 7, as does the expression
Mat h. abs(3.4 - 0.7).

10033

8.10 Standard API: Math: PI (page 87)

8.10 Standard API: Math: PI (page/87)

The standardlasscalledMat h contains a constant value call@t that is set to the most ac-
curate value oftthat can be represented using thebl e numbertype. We can refer to this
value using\at h. Pl , as in the following example.

double circleArea = Math. Pl * circleRadius * circl eRadius;

9 Statement

9.1 Statement (page 18)

A command in a programming language, such as Java, whichgriakecomputer perform
a task is known as atatement Systemout.printin("l wll output whatever | am
told to") is an example of a statement.

9.2 Statement: simple statements are ended with a semi-cal¢page 18)

All simple statemens in Java must be ended by a semi-colph (This is a rule of the Java
languagesyntax.

9.3 Statement: assignment statement (page 37)

An assignment statements a Javastatementwhich is used to give a value tovariable, or
change its existing value. This is only allowed if the value ave assigning hastgpe which
matches the type of the variable.

9.4 Statement: assignment statement: assigning a literahlue (page 37)

We can assign kteral value, that is a constant, to\ariable using anassignment statement
such as the following.

noOr Peopl eLi vi ngl nMySt reet = 47,

10034

9.5 Statement: assignment statement: assigning an expressue (page 38)

We use a singlequal sign(=), with the name of the variable to the left of it, and the vales
wish it to be given on the right. In the above example,ittteger literal 47 will be placed into
the variablenoOf Peopl eLi vi ngl nMySt r eet . Assuming the variable was declared asiran
variable then this assignment would be allowed because 47 isian

9.5 Statement: assignment statement: assigning an expressvalue (page
38)

More generally than just assigningdliteral value, we can use aassignment statemento
assign the value of aexpressionto avariable. For example, assuming we have the variable

i nt noCf Peopl eTol nviteToTheSt reet Party;
then the code
noOf Peopl eTol nviteToTheStreet Party = noOf Peopl eLi vi ngl nMyStreet + 4;

whenexecutal, wouldevaluatethe expression on the right of tequal sign(=) and then place
the resulting value in the variabt@Cf Peopl eTol nvi t eToTheSt reet Party.

9.6 Statement: assignment statement: updating a variablepage 70)

Javavariables have a name and a value, and this value can change. For exanegdiollowing
code is one way of working out the maximum of two numbers.

int X;
int vy,
int z;
Code here that gives values to x, y and z.

i nt maxi nunf XYandZ = x;
i f (maxi munOF XYandZ < y)
maxi munoF XYandZ = vy;
i f (maxi munOF XYandZ < z)
maxi munof XYandZ = z;

See that the variableaxi nunr XYandZ is given a value which then might get changed, so that
after the end of the seconitdstatementit holds the correct value.

10035

9.7 Statement: assignment statement: updating a varstiethand operators (page 87)

A very common thing we want the computer to do, typically desaloop, is to perform a
variable update. This is when a variable has its value changed to a new valughvidhbased
on its current one. For example, the code

count = count + 1;

will add one to the value of the variabdeunt . Such examples remind us thatassignment
statementis not a definition ofequality, despite Java’s use of the singlgual sign

9.7 Statement. assignment statement: updating a variableshorthand
operators (page 87)

The need to undertakevariable update is so common, that Java provides varish®rthand
operators for certain types of update.

Here are some of the most commonly used ones.

Operator | Name Example | Longhand meaning
++ postfix increment X++ X =x +1
- - postfix decrement X- - X =x -1
+= compound assignment: add to X =y | X=X +y
-= compound assignment: subtractfram -=y |x = x -y
*= compound assignment: multiply byl x *=y |x = x *y
/= compound assignment: divideby |x /=y |x=x1Yy

The point of thesgostfix increment, postfix decrementandcompound assignmenbpera-
tors is not so much to save typing when a program is beingemitbut to make the program
easier to read. Once you are familiar with them, you will Bgrfieom the shorter and more
obvious code.

There is also a historical motivation. In the early days @& pnhogramming language C, from
which Java inherits much of itsyntax, these shorthandperators caused theompiler to
produce more efficient code than their longhand countespd@itte modern Java compiler with
the latest optimization technology should remove this eomc

9.8 Statement: if else statement (page 60)

Theif else statementis one way in Java of havingponditional execution It essentially con-
sists of three parts: eondition or boolean expressiona statementwhich will be executel
when the condition isr ue (thetrue part), and another statement which will be executed when

10036

9.9 Statement: if else statement: nested (page 62)

the condition ig al se (thefalse part). The whole statement starts with tfreserved wordi f .
This is followed by the condition, written in brackets. Nexmes the statement for the true
part, then the reserved woetlse and finally the statement for the false part.

For example, assuming we have tragiable noOf Peopl eTol nvi t eToTheSt r eet Party con-
taining the number suggested by its name, then the code

i f (noOk Peopl eTol nviteToTheStreetParty > 100)
Systemout.printIn("We wll need a big sound system");

el se
Systemout. printIn("W should be okay with a normal HFi.");

will cause the computer to compare the current valueOf Peopl eTol nvi t eToTheSt reet Party
with the numberl00, and if it is greater then print out the messalgew || need a big
sound system or otherwise print out the messa@é shoul d be okay with a normal

H Fi . — it will never print out both messages. Notice the bracketsired the condition and
the semi-colons at the end of the two statements inside thlgef statement. Notice also the
way we lay out the code to make it easy to read, splitting tiesliat sensible places and adding
moreindentation at the start of the two inner statements.

9.9 Statement: if else statement: nested (page 62)

Thetrue part or false part statements inside ahelse statementmay be any valid Javstate-
ment, including other if else statements. When we place an ifglsement inside another, we
say they aremested

For example, study the following code.

i f (noCf Peopl eTol nviteToTheSt reet Party > 300)
Systemout.printIn("We wll need a Mega master 500 Watt anplifier!");
el se
i f (noOf Peopl eTol nviteToTheStreet Party > 100)
Systemout.printin("We will need a Maxi Master 150 Watt anplifier!");
el se
Systemout. println("W shoul d be okay with a normal HFi.");

Depending on the value obO Peopl eTol nvi t eToTheSt reet Party, this will report one of
three messages. Notice the way we have laid out the code above is fhitowing the usual
rules that inner statements have mardentation than those they are contained in, so the
second if else statement has more spaces because it liigstims first one. However, typically
we make an exception to this rule for if else statements destthe false part of another, and
we would actually lay out the code as follows.

10037

9.10 Statement: if statement (page 64)

i f (noCf Peopl eTol nviteToTheSt reet Party > 300)

Systemout.printIn("We will need a Mega master 500 Watt anplifier!");
el se if (noCf Peopl eTol nviteToTheStreetParty > 100)

Systemout.printIn("We wll need a Maxi Master 150 Watt anplifier!");
el se

Systemout. printIn("W should be okay with a normal HFi.");

This layout reflects ouabstract thinking that the collection of statementsase construct
offering three choices, even though it is implemented usivmif else statements. This idea
extends to cases where we want many choices, using manylnestee statements, without
the indentation having to increase for each choice.

9.10 Statement: if statement (page 64)

Sometimes we want the computerdgecutesome code depending oncandition, but do
nothing if the condition is al se. We could implement this using ainelse statementwith an
emptyfalse part. For example, consider the following code.

i f (noOk Peopl eTol nviteToTheStreetParty > 500)
Systemout. println("You may need an entertainnent |icense!");
el se ;

This will print the message if theariable has a valugyreater than 500, or otherwise exe-
cute theempty statementbetween theeserved wordel se and the semi-colon. Such empty
statements do nothing, as you would probably expect!

It is quite common to wish nothing to be done when the condliisd al se, and so Java offers
us theif statement This is similar to the if else statement, except it simplgsloot have the
wordel se, nor a false part.

i f (noCf Peopl eTol nviteToTheStreet Party > 500)
Systemout. println("You may need an entertainnent |icense!");

9.11 Statement: compound statement (page 66)

The Javaompound statements simply a list of any number aftatemens between an open-
ing left brace () and a closing right braceg). You could think of the body of anethod, e.g.
mai n(), as being a compound statement if that is helpful. The meaisirstraightforward:
when the computegxecutes a compound statement, it merely executes each statensetd in
it, in turn. More precisely of course, the Jasampiler turns thesource codeinto byte code
that has this effect when thertual machine executes theompiled program.

10038

9.12 Statement: while loop (page 71)

We can have a compound statement wherever we can have anyflatadement, but it is most
useful when combined with statements which have anothtrsent within them, such at
else statemerg andif statements.

For example, the following code reports three messages thes@ariable has a valugreater
than 500.

i f (noOk Peopl eTol nviteToTheStreetParty > 500)

{
Systemout. println("You may need an entertainnent |icense!");
Systemout.printIn("Also hire some street cleaners for the next day?");
Systemout. println("You should consider a bulk discount on |emnade!");

}

When thecondition of the if statement isr ue, the body of the if statement is executed. This
single statement is itself a compound statement, and sttae statements within it are exe-
cuted. It is for this sort of purpose that the compound stateraxists.

Note how we lay out the compound statement, with the openiagebat the samiedentation
as the if statement, the statements within it having extdemtation, and the closing brace
lining up with the opening one.

Less usefully, a compound statement can be empty, as in ltbeiiog example.

i f (noOf Peopl eTol nviteToTheStreet Party > 500)

{
Systemout.printIn("You may need an entertainnent |icense!");
Systemout.printIn("Also hire some street cleaners for the next day?");
Systemout. println("You should consider a bulk discount on | enmonade!");

¥

el se {}

As you might expect, the meaning of an empty compound stateisithe same as the meaning
of anempty statement

9.12 Statement: while loop (page 71)

The while loop is one way in Java of havingepeated execution It essentially consists of
two parts: acondition, and astatementwhich will be executel repeatedly while the condition
istrue. The whole statement starts with threserved wordwhi | e. This is followed by the

condition, written in brackets. Next comes the statementet@epeated, known as theop
body.

10039

9.13 Statement: for loop (page 77)

For example, the following code is a long winded and ineffitigay of giving thevariable x
the value?l.

int x =1,
while (x < 20)
X =X + 2;

The variable starts off with the value and then repeatedly h@sadded to it, until it is no
longerless than20. This is when théoop ends, and will have the value1.

Notice the brackets around the condition and the semi-catidine end of the statement inside
the loop. Notice also the way we lay out the code to make it asgad, splitting the lines at
sensible places and adding mamdentation at the start of the inner statement.

Observe the similarity between the while loop and ithetatement — the only difference in
syntaxis the first word. There is a similarity in meaning too: the hoop executes its body
zero ormore times, whereas the if statement executes its body zemm®time. However,
if statements arenot loops and you should avoid the common novice phrase “if logpén
referring to them!

9.13 Statement: for loop (page 77)

Another kind ofloopin Java is thdor loop, which is best suited for situations when the number
of iterations of theloop body is known before the loop starts. We shall describe it usieg th
following simple example.

for (int count = 1; count <= 10; count = count + 1)
Systemout. printlIn("Counting " + count);

Thestatementstarts with theeserved wordf or , which is followed by three items in brackets,
separated by semi-colons. Then comes the loop body, whiahsiagle statement (often a
compound statementof course). The first of the three items in bracketsfigranitialization ,
which is performed once just before the loop starts. Typithls involves declaring sariable
and giving an initial value to it, as in the above exampié count = 1. The second item is
thecondition for continuing the loop — the loop will onlgxecuteand will continue to execute
while that condition ig r ue. In the example above the conditiorcisunt <= 10. Finally, the
third item, afor update, is a statement which is executed at #mel of each iteration of the
loop, that isafter the loop body has been executed. This is typically used toginéhe value
of the variable declared in the first item, as in our exanoplent = count + 1.

So the overall effect of our simple example is: dectarent and set its value tb, check that it
is less thanl0, print outCount i ng 1, add one ta@ount, check again, print ouounti ng 2,

10040

9.14 Statement: for loop: multiple statements in for upgpsge 136)

add one ta@ount , check again, and so on until the conditiof és se when the value ofount
has reachedl.

We do not really need the for loop, as thile loop is sufficient. For example, the code above
could have been written as follows.

int count = 1;

while (count <= 10)

{
Systemout. println("Counting " + count);
count = count + 1;

}

However you will see that the for loop version has placedttogreall the code associated with
the control of the loop, making it easier to read, as well agla shorter.

There is one very subtle difference between the for loop dmtewoop versions of the example
above, concerning trecopeof the variablecount , that is the area of code in which the variable
can be used. Variables declared in the initialization piatfor loop can only be used in the for
loop —they do not exist elsewhere. This is an added benefdingdor loops when appropriate:
the variable, which is used solely to control the loop, carm@oaccidentally used in the rest of
the code.

9.14 Statement: for loop: multiple statements in for update(page 136)

Javafor loops are permitted to have more than @tatementin their for update, that is, the
part which isexecutel after theloop body. Rather than always being one statement, this part
may be a list of statements with commas lfetween them.

One appropriate use for this feature is to have a for loopeketutes twice, once each for the
two possible values of laoolean variable

For example, the following code prints out scenarios to l&im people to live in the city of
Manchester!

bool ean i sRaining = true;
bool ean haveUnbrella = true;
for (int countU = 1; countU <= 2; countUt++, haveUnbrella = !'haveUnbrell a)

for (int countR = 1; countR <= 2; countR++, isRaining = !isRaining)
{
Systemout.printin("It is" + (isRaining ? "" : " not") + " raining.");
Systemout. println
("You have " + (haveUnbrella ? "an" : "no") + " unbrella.");

10041

9.15 Statement: statements can be nested within each ptusr 02)

if (isRaining & !haveUnbrella)
Systemout.printIn("You get wet!");
el se
Systemout. println("You stay dry.");
Systemout. printin();
} Il for

9.15 Statement: statements can be nested within each othgrage 92)

Statements that control execution flow, suchcaps andif else statemens have othestate-
ments inside them. These inner statements can be any kind ofrstatgincluding those that
control the flow of execution. This allows quite complabgorithms to be constructed with
unlimited nesting of different and same kinds of controtestzents.

For example, one simple (but inefficient) way to print outtio@-negative multiples ofwhich
lie betweery (> 0) andzinclusive, is as follows.

for (int nunber = 0; nunber <= z; nunber += X)
if (nunber >=vy)
Systemout.printIn("A nultiple of " + x + " between " + vy
+"and " +z + " is " + number);

9.16 Statement: switch statement with breaks (page 107)

Java provides aonditional execution statementwhich is ideal for situations where there are
many choices based on some value, such as a number,dpgiato specific fixed values for
each choice. Itis called trewitch statement The following example code will applaud the
user when they have correctly guessed the winning numkgfencourage them when they
are one out, or insult them otherwise.

int userCuess = Integer.parselnt(args[0]);

switch (userCuess)
{
case 99: case 101:
Systemout. println("You are close!");
br eak;
case 100:
Systemout. println("Bingo! You win!");
Systemout. println("You have guessed correctly.");
br eak;
defaul t:
Systemout.println("You are pathetic!");

10042

9.17 Statement: switch statement without breaks (page 110)

Systemout. println("Have another guess.");
br eak;
Il switch

The switch statement starts with theserved wordswi t ch followed by a bracketeéxpres-
sion of a type that has discrete values, suchias (notably notdoubl e). The body of the
statement is enclosed in braceSaqd}), and consists of a list of entries. Each of these starts
with a list of labels, comprising the reserved wette followed by a value and then a colon
(). After the labels we have one or more statements, typiealtiing with abreak statement

One (at most) label is allowed to be the reserved waeifchul t followed by a colon — usually
written at the end of the list.

When a switch statement executel, the expression isvaluated and then each label in the
body is examined in turn to find one whose value is equal todgh#ite expression. If such
a match is found, the statements associated with that labeba@cuted, down to the special
break statementwhich causes the execution of the switch statement to eradmiétch is not
found, then instead the statements associated withethaul t label are executed, or if there
is nodef aul t then nothing is done.

9.17 Statement: switch statement without breaks (page 110)

A less common form of thewitch statementis when we omit théreak statemens at the end

of the list of statemens associated with each setafse labels. This, perhaps surprisingly,
causes execution to “fall through” to the statements aasetiwith the next set efase labels.
Most of the time we daot want this to happen — so we have to be careful to remember the
break statements.

We can also mix the styles — having break statements for satrieg and not for some others.
The following code is a bizarre, but interesting way of dosmgnething reasonably simple. It
serves as an illustration of the switch statement, and agaegfor you. It takes twantegers,
the second of which is meant to be in the range one to ten, apatsua result which is some
function of the two numbers. What is that result?

int val ue
int power

I nteger. parselnt(args[0]);
I nteger. parselnt(args[1]);

val ue;

val ueToThePower1 * val ueToThePower 1
val ueToThePower 2 * val ueToThePower 2
val ueToThePower 4 * val ueToThePower 4;

i nt val ueToThePower 1
i nt val ueToThePower 2
i nt val ueToThePower 4
i nt val ueToThePower 8

int result = 1;

swi tch (power)

10043

9.18 Statement: do while loop (page 112)

case 10: result *= val ueToThePower 1;

case 9: result *= val ueToThePower 1;

case 8: result *= val ueToThePower 8;
br eak;

case 7: result *= valueToThePower 1;

case 6: result *= valueToThePower 1;

case 5: result *= val ueToThePower 1;

case 4: result *= val ueToThePower4;
br eak;

case 3: result *= valueToThePower 1;

case 2: result *= val ueToThePower 2;
br eak;

case 1: result *= valueToThePower1;
br eak;

Il switch

Systemout.printin(result);

If you find the semantics of the switch statement somewhé&tgaat, then do not worry — you

are not alone! Java inherited it from C, where it was designede to ease the work of the
compiler than to be a good construct for the programmer. You will firelgtvitch statement is

less commonly used than tiifeelse statement and the majority of times you use it, you will

want to have break statements on every setagk labels. Unfortunately, due to them being
optional, accidentally missing them off does not causerapile time error.

9.18 Statement: do while loop (page 112)

Thedo while loopis the third way in Java of havingpeated execution It is similar to the
while loop but instead of having theondition at the start of théoop, it appears at the end.
This means the condition evaluated after theloop body is executel rather than before. The
whole statementstarts with thereserved worddo. This is followed by the statement to be
repeated, then the reserved ward | e and finally the condition, written in brackets.

For example, the following code is a long winded and ineffitigay of giving thevariable x
the value21.

int X = 1;
do

X += 2;
while (x < 20);

Observe the semi-colon that is needed after the condition.

10044

Of course, the body of the do while loop might be@ampound statement in which case we
might lay out the code as follows.

int X = 0;
int y = 100;
do
{

X++;

y--,

} while (x I'=y);

The above is a long winded and inefficient way of giving both variablesx andy the value
50.

Note that, because the condition is evaluatie' the body is executed, the body is executed at
least once. This is in contrast to the while loop, which migdate have its body executed zero
times.

10 Error

10.1 Error (page 20)

When we write thesource codefor a Java program, it is very easy for us to get something
wrong. In particular, there are lots of rules of the languidgé our program must obey in order
for it to be a valid program.

10.2 Error: syntactic error (page 20)

One kind of error we might make in our programsystactic errors. This is when we break
thesyntaxrules of the language. For example, we might miss out a ajdsiacket, or insert an
extra one, etc.. This is rather like missing out a word in desare of natural language, making
it grammatically incorrect. The sign below, seen strappeiti¢ back of a poodle, contains bad
grammar — it has ans missing.

My other dog an AIsatia:I

Syntactic errors in Java result in teempiler giving us an error message. They can possibly
confuse the compiler, resulting in it thinking many morentis are wrong too!

10045

10.3 Error: semantic error (page 22)

10.3 Error: semantic error (page 22)

Another kind of error we might make is semantic error, when we obey the rules of the
syntax but what we have written does not make any sense — it has naniemémeaning).
Another sign on a different poodle might say

My other dog is a Porsch'.

which is senseless because a Porsche is a kind of car, not a dog

10.4 Error: compile time error (page|22)

Javasyntactic errors and manygemantic errors can be detected for us by tbempiler when
it processes our program. Errors that the compiler can tatecalledcompile time errors.

10.5 Error: run time error (page 24)

Another kind of error we can get with programsris1 time error s. These are errors which
are detected when the prograntus rather than when it isompiled. In Java this means the
errors are detected and reported bywhtial machine, j ava.

Java calls run time erroexceptiors. Unfortunately, the error messages producegdama can
look very cryptic to novice programmers. A typical one migbtas follows.

Exception in thread "nmain" java.lang. NoSuchMet hodError: main

You can get the best clue to what has caused the error by pldghlp at the words either side
of the colon (). In the above example, the message is saying that cannot find thenethod
calledmai n.

10.6 Error: logical error (page 29)

The most tricky kind of error we can make in our programs ieg@cal error. For these
mistakes we do not get an error message fromctirapiler, nor do we get one aun time
from thevirtual machine. These are the kind of errors for which the Java program we hav
written is meaningful as far as Java is concerned, it is jugt our program does the wrong
thing compared with what we wanted. There is no way the campit virtual machine can
help us with these kinds of error: they are far, far too stapidnderstand thproblemwe were
trying to solve with our program.

10046

For this reason, many logical errors, especially very sutnles, manage to slip through unde-
tected by human program testing, and end upws in the final product — we have all heard
stories of computer generated demands for unpaid bills meghtive amounts, etc..

11 Execution

11.1 Execution: sequential execution (page 23)

Programs generally consist of more than stetement in a list. We usually place these on
separate lines to enhance human readability, althoughd@®gnot care about that. Statements
in such a list arexecuta sequentially, one after the other. More correctly, theadampiler
turns each one into correspondibgte codes, and thevirtual machine executes each collec-
tion of byte codes in turn. This is known asquential execution

11.2 Execution: conditional execution (page 60)

Having a computer always obey a list of instructions in aasarbrder is not sufficient to solve
many problems. We often need the computer to do some thingsuoder certain circum-
stances, rather than every time the programurs. This is known agonditional execution
because we get the computeeteecutecertain instructionsonditionally, based on the values
of thevariables in the program.

11.3 Execution: repeated execution (page 70)

Having a computer always obey instructions just once withsrun of a program is not
sufficient to solve many problems. We often need the compatdo some things more than
once. In general, we might want some instructions t@xecutel, zero, one or many times.
This is known agepeated executioniteration, or looping. The number of times a loop of
instructions is executed will depend on socoadition involving thevariables in the program.

12 Code clarity

12.1 Code clarity: layout (page 31)

Java does not care how we lay our code out, as long as we usevditeespaceto separate
adjacent symbols that would otherwise be treated as one dyiinthey were joined. For

10047

12.2 Code clarity: layout: indentation (page 32)

examplepubl i ¢ voi d with no space between the words would be treated as the siygiieol
publ i cvoi d and no doubt causea@mpile time error. So, if we were crazy, we could write
all our progransource codeon one line with the minimum amount of space between symbols!

public class HelloSol ar System{public static void main(String[]args){Systemout.println("Hello Mercury!");Systemout.println("He

Oh dear — it ran off the side of the page (and that was with alenfaht too). Let us split it up
into separate lines so that it fits on the page.

public class HelloSol arSystem{public static void main(String[]args){
Systemout.printin("Hello Mercury!"); Systemout. println(

"Hello Venus!"); Systemout.printin("Hello Earth!"); Systemout.println
("Hello Mars!™"); Systemout.printin("Hello Jupiter!"); System out.
printIn("Hello Saturn!");Systemout.printin("Hello Uanus!"); System
out.printIn("Hello Neptune!"); Systemout.println("Goodbye Pluto!");}}

Believe it or not, this program would stitompile andrun okay, but hopefully you will agree
that it is not very easy fous to read. Layout is very important to the human reader, and
programmers must take care and pride in laying out theirnarag as they are written. So we
split our progransensibly, rather than arbitrarily, into separate lines, andingentation (i.e.
spaces at the start of some lines), to maximize the reatyatilour code.

12.2 Code clarity: layout: indentation (page 32)

A classcontains structurasestedwithin each other. The outer-most structure is the clas# ts
consisting of its heading and then containing it's body wittine braces. The body contains
items such as theain method. This in turn consists of a heading and a body contained withi
braces.

The idea ofindentation is that the more nested a part of the code is, the more spaas #th
the start of its lines. So the class itself has no spacesibbdy, within the braces, has two
or three. Then the body of the main method has two or three .mfane should be consistent:
always use the same number of spaces per nesting level.l$bisa@ood idea to avoid using
tab characters as they can often look okay on your screen, but not line upgrhp when the
code is printed.

In addition, another rule of thumb is that opening brad@ssfiould have the same amount of
indentation as the matching closing bragg (vou will find that principle being used through-

out this book. However, some people prefer a style whereingdamaces are placed at the end
of lines, which this author believes is less clear.

public class HelloWrld {

10048

12.3 Code clarity: layout: splitting long lines (page 43)

public static void main(String[] args) {
Systemout.printin("Hello world!");
}
}

12.3 Code clarity: layout: splitting long lines (page 43)

One of the features of good layout is to keep source coddines from getting too long. Very
long lines cause the reader to have to work harder in hor@tege movement to scan the code.
When code with long lines is viewed on the screen, the reatlegrehas to use a horizontal
scroll bar to see them, or make the window so wide that othedaws cannot be placed next
to it. Worst of all, when code with long lines is printed on paghere is a good chance that the
long lines will disappear off the edge of the page! At verystetghey will be wrapped onto the
next line making the code messy and hard to read.

So a good rule of thumb is to keep your source code lines sttbeie 80characters long. You
can do this simply in modext editors by never making the text window too wide and never
using the horizontal scroll bar while writing the code.

When we do have atatementthat is quite long, we simply split it into separate lines atec
fully chosen places. When we choose such places, we beamuh tlét most human readers
scan down the left hand side of the code lines, rather thahaeeary word. So, if a line is a
continuation of a previous line, it is important to make tiwious at the start of it. This means
using an appropriate amountiofdentation, and choosing the split so that the first symbol on
the continued line is not one which could normally start éesteent.

A little thought at the writing stage quickly leads to a hatfitgood practise which seriously
reduces the effort required to read programs once they dteemr Due tobug fixing and
general maintenance over the lifetime of a real prograngdlde is read many more times than
it is written!

12.4 Code clarity: comments (page 82)

In addition to having careful layout aniddentation in our programs, we can also enhance
human readability by usingomments. These are pieces of text which are ignored by the
compiler, but help describe to the human reader what the program dhalsaay it works.

For example, every program should have comments at thesstgrtg what it does and briefly
how it is used. Alsoyariables can often benefit from a comment before their declaration
explaining what they are used for. As appropriate, therellshioe comments in the code too,
before certain parts of it, explaining what these netdtemens are going to do.

10049

12.5 Code clarity: comments: marking ends of code constifpetgée 83)

One form of comment in Java starts with the symblal The rest of that source line is then the
text of the comment. For example

[/ This is a coment, ignored by the conpiler.

12.5 Code clarity: comments: marking ends of code construst(page 83)

Another good use afommens is to mark every closing bracg)(with a comment saying what
code construct it is ending. The following skeleton exangolée illustrates this.

public class Soned ass

{
public static void main(String[] args)
{
while (...)
{
Y11 while
} Il main

} Il class Sonmed ass

13 Design

13.1 Design: hard coding (page 36)

Programs typically process inpdata, and produce output data. The input data might be
given ascommand line argumens, or it might be supplied by the user through somser
interface such as graphical user interfaceor GUI . It might be obtained frorfiles stored on
the computer.

Sometimes input data might be built into the program. Sudh tasaid to béhard coded
This can be quite common while we are developing a programnanidaven’t yet written the
code that obtains the data from the appropriate place. kratises it might be appropriate to
have it hard coded in the final version of the program, if suata@nly rarely changes.

10050

13.2 Design: pseudo code (page 73)

13.2 Design: pseudo code (pagel|73)

As our programs get a little more complex, it becomes hardrie\them straight into theext
editor. Instead we need esignthembefore we implement them.

We do not design programs by starting at the first word andngnali the last, like we do when
we implement them. Instead we can start wherever it suitstygieally at the trickiest bit.

Neither do we express our designs in Java — that would be ehbagltb do, as Java forces our
mind to be cluttered with trivia which, although essentmhe final code, is distracting during
the design.

Instead, we express oatgorithm designs inpseudo codewhich is a kind of informal pro-
gramming language that has all unnecessary trivia ign@edfor example, we do not bother
writing the semi-colons at the end sfatemens, or the brackets rountbnditions etc.. We
might not bother writing thelassheading, nor thenethod heading, if it is obvious to us what
we are designing. And so on.

Also, during design in pseudo code, we can vary the levabstraction to suit us —we do not
have to be constrained to use only the features that areablaih Java.

14 Variable

14.1 Variable (page 36)

A variable in Java is an entity that can holddata item. It has a name and a value. It is rather
like the notion of a variable in algebra (although it is nottquhe same thing). The name of
a variable does not change — it is carefully chosen by therpromer to reflect the meaning
of the entity it represents in relation to the problem beiatyed by the program. However,
the value of a variable can (in general) be changed — we can vary it. éléme name of the
concept: avariable is an entity that has a (possibly) varying value.

The Javacompiler implements variables by mapping their names aramputer memory
locations, in which the values associated with the varmbldl be stored atun time.

So one view of a variable is that it is a box, like a pigeon himleyhich a value can be placed. If
we wish, we can get the program to place a different valueahltbx, replacing the previous;
and we can do this as many times as we want to.

Variables only have values at run time, when the programnsiing. Their names, created by
the programmer, are already fixed by the time the progracomspiled. Variables also have
one more attribute — thigpe of the data they are allowed to contain. This too is choseméy t
programmer.

10051

14.2 \Variable: int variable (page 37)

14.2 \Variable: int variable (page 37)

In Javayvariables must be declared invariable declaration before they can be used. This is
done by the programmer stating ttygpe and then the name of the variable. For example the
code

i nt noOf Peopl eLi vi ngl nM/St reet ;

declares amt variable, that is a variable the value of which will be ant , and which has the
namenoO Peopl eLi vi ngl nM/St reet . Observe the semi-colon X which, according to the
Javasyntaxrules, is needed to terminate the variable declaratiomuAtime, this variable is
allowed to hold annteger (whole number). Its value can change, but it will always bé @n
The name of a variable should reflect its intended meaninghisncase, it would seem from
its name that the programmer intends the variable to alwelgthe number of people living
in his or her street. The programmer would write code to enthat this meaning is always
reflected by its value at run time.

By convention, variable names start with a lower case ledtet consist of a number of words,
with the first letter of each subsequent word capitalized.

14.3 \Variable: a value can be assigned when a variable is dacéd (page
42)

Java permits us to assign a value i@aable at the same time as declaring it. You could regard
this as a kind oaissignment statemenin which the variable is also declared at the same time.
For example

int noOf HousesI nM/Street = 26;

14.4 Variable: double variable (page 54)

We can declarelouble variables in Java, that isariables which have théype doubl e. For
example the code

doubl e meanAgeO Peopl eLi vi ngl nM/House;

declares avariable of typedoubl e, with the namereanAge Peopl eLi vi ngl nMyHouse. At

run time, this variable is allowed to holddoubl e data item, that is aeal (fractional decimal
number). The value of this variable can change, but it willagls be aoubl e, including of
course, approximations @fhole numbers such a40. 0.

10052

14.5 \Variable: can be defined within a compound statemege(p2)

14.5 Variable: can be defined within a compound statement (e 92)

We can declarewariable within the body of anethod, such asmi n() , (practically) anywhere
where we can havestatement The variable can then be used from that point onwards within
the method body. The area of code in which a variable may beigsmlled itsscope

However, if we declare a variable within@mpound statement its scope is restricted to
the compound statement: it does not exist after the end ofahgound statement. This is
a good thing, as it allows us to localize our variables to tkecepoint of their use, and so
avoid cluttering up other parts of the code with variablesilable to be used but which have
no relevance.

Consider the following symbolic example.

public static void main(String[] args)

{
int X = ...
. x is available here.
while (...)
{
. X is available here.
inty=...
. X and y are available here.
} Il while
. X is available here, but not vy,
. S0 we cannot accidentally refer to y instead of x.
} /Il main

The variablex can be used from the point of its definition onwards up to theeadrthe method,
whereas the variablg can only be used from the point of its definition up to the endhef
compound statement which is the body of tbep.

14.6 Variable: local variables (page 124)

When we declargariables inside anethod, they are local to that method and only exist while
that method is running — they cannot be accessed by otheodgtiThey are known dscal
variables or method variables. Also, different methods can have variables with the same
name — they are different variables.

10053

14.7 Variable: class variables (page 124)

14.7 Variable: class variables (page 124)

We can declargariables directly inside alass outside of anynethods. Suclclass variables
exist from the moment the class is loaded intovinial machine until the end of the program,
and they can be accessed by any method in the class. For exahgplollowing are three class
variables which might be used to store the components of/todate.

private static int presentDay;
private static int presentMnth;
private static int presentYear;

Notice that we use theeserved wordst at i ¢ in their declaration. Also, class variables have a
visibility modifier — the above have all been declared as bemngate, which means they can
only be accessed by code inside the class which has dechemed t

14.8 Variable: a group of variables can be declared togethepage 129)

Java permits us to declare a groupvafiables which have the santgpe in one declaration,
by writing the type followed by a comma-separated list ofthgable names. For example

int X, y;

declares two variables, both of typet . We can even assign values to the variables, as in the
following.

int mni nunVotingAge = 18, m ni numAr nyAge = 16;

This shorthand is not as useful as one might think, becaus®ewke, we typically have a
commentbefore each variable explaining what its meaning is. Howeave can sometimes
have one comment which describes a group of variables.

14.9 Variable: boolean variable (page 133)

Thebool ean type can be used in much the same way as anddoubl e, in the sense that we
can havéboolean variables andmethods can havéool ean as theirreturn type.

For example, consider the following code.

10054

14.9 \Variable: boolean variable (page 133)

if (agel < age2 || agel == age2 && heightl <= height?2)
Systemout.printIn("You are in the correct order.");
el se
Systemout. println("Please swap over.");

We could, if we wished, write it using@ol ean variable.

bool ean correct Order = agel < age2 || agel == age2 && heightl <= height?2;
if (correctQOrder)

Systemout.printIn("You are in the correct order.");
el se

Systemout.println("Please swap over.");

Some people would argue that this makes for more readabées esdn effect, we have named
thecondition in a helpful way. How appropriate that is would depend on hbwiaus the code

is otherwise, which is context dependent and ultimatelyesaiive. Of course, the motive for
storing the condition value in\aariable is less subjective if we wish to use it more than once.

bool ean correctOrder = agel < age2 || agel == age2 && heightl <= height2;
if (correctOrder)

Systemout.printIn("You are in the correct order.");
el se

Systemout. println("Please swap over.");

Lots of stuff here.

if (!correctOrder)
Systemout.printIn("Don't forget to swap over!");

Many novice programmers, and even some so-called expédrés) writing the code above may
have actually written the following.

bool ean correct O der;

if (agel < age2 || agel == age2 && heightl <= height2)
correctOrder = true;

el se
correct Order = fal se;

if (correctOrder == true)
Systemout.printIn("You are in the correct order.");
el se

Systemout. println("Please swap over.");

Lots of stuff here.

10055

14.10 Variable: char variable (page 145)

if (correctOrder == fal se)
Systemout.printin("Don't forget to swap over!");

There are threterriblethings wrong with this code (two of them are the same realigentify
them,and do not write code like that!

14.10 Variable: char variable (page 145)

We can declarehar variables in Java, that isariables which have théype char . For exam-
ple the code

char firstlLetter ="'J";

declares a variable of typghar , with the namd i rstLetter. At run time, this variable is
allowed to hold ahar dataitem, that is a singleharacter.

14.11 Variable: instance variables (page 159)

Thevariables that we wish to have insidebjects are callednstance variables because they
belong to thanstances of aclass We declare them in much the same way as we declass
variables, except without theeserved wordst at i c. For example, the following code is part
of the definition of &oi nt class with two instance variables to be used to store the cneris
of aPoi nt object.

public class Point

{

private double X;
private double V;

} Il class Point

Like class variables, instance variables have a visibititydifier — the above variables have
both been declared as beipgvate, which means they can only be accessed by code inside
the class which has declared them.

Class variables belong to the class in which they are detlarel they are createdrain time

in thestatic contextwhen the class is loaded into thigtual machine. There is only one copy
of each class variable. By contrast, instance variablesraa@ed dynamically, in dynamic
context, when the object they are part of is created duringrtire of the program. There are
as many copies of each instance variable as there are iastahthe class: each object has its
own set of instance variables.

10056

14.12 \Variable: instance variables: should be private Bgude(page 175)

14.12 Variable: instance variables: should be private by dault (page
175)

Java allows us to givpublic visibility to our instance variables if we wish, but generally it
is a good idea to define them psvate. This permits us to alter the way we implement the
class without it affecting the code in other classes. For exapntpke programmer who has the
job of maintaining aPoi nt class with instance variablesandy, might decide it was better
to re-implement the class to use instance variables the¢ ste polar coordinate radius and
angle instead. This might be because some methods being added to the class would work
much more easily in the polar coordinate system. Because émely instance variables had
originally been made private, the programmer would know titvere could not be any mention
of them in other classes. So it would be safe to replace theim avies of a different name
and which work differently. To make the points behave theesambefore, the values given to
the constructor method would be converted from andy values to polar values, before being
stored, and theoSt ri ng() method could convert them back again.

14.13 Variable: of a class type (page 161)

As aclassis atype, we can use one in much the same way as we use the built-in syEsas
i nt, doubl e andbool ean. This means we can declaresariable whose type is a class. For
example, if we have a clagsi nt then we can have variables of typei nt .

Poi nt p1;
Poi nt p2;

The above defines twlocal variables ormethod variables of typePoi nt . We also can have
class variables and evelinstance variables whose type is a class.

14.14 Variable: of a class type: stores a reference to an olge(page 162)

There is one important difference betweevaaiable whosetype is a built-inprimitive type,
such ad nt and one whose type is@dass With the former, Java knows from the type how
much memory will be needed for the variable. For exampldpable variable needs more
memory than amnt variable, but all variables of typént need the same amount of memory,
as do those of typeoubl e. Java needs this information so that it knows how to allocate
memory addresses for variables.

By contrast, it is not possible to calculate how much memahyb& needed to store avbject,
becausénstances of different classes will have different sizes, and in saamees it is possible
for different instances of the same class to have differemetss The only time the size of an
object is reliably known is when it is created,rah time.

10057

14.15 \Variable: of a class type: stores a reference to arcblgeoid misunderstanding
(page 170)

To deal with this situation in a systematic way, variableschlare of a class type do not store
an object, but instead storeeferenceto an object. A reference to an object is essentially the
memory address at which the object resides in memory, andlyskaown at run time when
the object is created. Because they are really just memailneaskes, the size of all references
is the same, and is fixed. So by using references in variabkeslass type, rather than actually
storing objects, Java knows how much memory to allocaterfgisach variable.

Strictly speaking then, a type which is a class, is actudlly/set of possiblereferences to
instances of the class, rather than the set of actual irssahemselves.

14.15 Variable: of a class type: stores a reference to an olge avoid
misunderstanding (page 170)

Students new to the idea mferences often fail to appreciate their significance, and make one
or sometimes both of the following two mistakes.

1. Misconception: Avariable is anobject.

2. Misconception: A variable contains an object.

Neither of these are true, as we have already said: variéblesclass typg can contain a
reference to an object. A common question is “why do we have to wibat¢e twice in the
following?”.

Dat e soneBi rt hday
= new Date(birthDate.day, birthDate.nonth, birthDate.year + 1);

It is because we are doing three things.

1. We are declaring a variable.
2. We areconstructing an object.

3. We are storing a reference to that object in the variable.

So we can have a variable without an object.
Dat e soneBirt hday;

And we can have an object without a variable — could that b&aulse

10058

14.15 \Variable: of a class type: stores a reference to arcblgeoid misunderstanding
(page 170)

new Date(birthDate.day, birthDate.nonth, birthDate.year + 1);

Yes, it can be useful: for example, when we want to use objastonce, straight after con-
structing them.

Systemout. println(new Point(3, 4).distanceFronPoint(new Point (45, 60)));

If we wish, we can have two variables referring to the sameaibj

Date theSaneBirthday = someBirthday;

Also, we can change the value of a variable making it referddfarent object.

soneBi rthday = new Dat e(sonmeBirt hday. day, soneBirthday. nonth,
soneBi rt hday. year + 1);

This creates aew Dat e object, and stores theeferenceto it in someBi r t hday — overwriting
the reference to the previolat e object. This is illustrated in the following diagram.

A Date object

Dat e soneBi rt hday

public int day 01

public int year 2010

soneBi rt hday = new Dat e(soneBirt hday. day, soneBirthday. nonth, soneBirthday.year + 1);

A Date object A Date object

Date someBirthday public int day | 01 public int day | 01

public int month public int nonth

2010 public int year 2011

public int year

10059

15 Expression

15.1 Expression: arithmetic (page 38)

We can havarithmetic expressiors in Java rather like we can in mathematics. These can con-
tain literal values, that is constants, such as theeger literals1 and18. They can also con-
tain variables which have already been declared, apérators to combine sub-expressions
together. Four commoarithmetic operators areaddition (+), subtraction (-), multiplica-

tion (*) anddivision (/). Note the use of an asterisk for multiplication, and a faxhglash for
division — computer keyboards do not have multiply or divsgenbols.

These four operators at@nary infix operator s, because they take twaperands, one on
either side of the operatof. and- can also be used as theary prefix operators, plus and
minus respectively, as in5.

When anexpressionis evaluatel (expression evaluatiof Java replaces each variable with
its current value and works out the result of the expressepedding on the meaning of the
operators. For example, if the variableCf Peopl eLi vi ngl nMySt r eet had the valud7 then
the expressionoCO Peopl eLi vi ngl nMySt reet + 4 would evaluate t&1.

15.2 Expression: arithmetic: int division truncates resut (page 52)

The fourarithmetic operators, +, -, * and/ of Java behave very similarly to the corresponding
operators in mathematics. There is however one seriouerelifte to look out for. When
the division operator is given twointegers (whole numbers) it usaateger division which
always yields an integer as its result, by throwing away aagtional part of the answer. So,
8 | 2 gives the answet as you might expect, b8t / 2 also givest —not4. 5 as it would in
mathematics. It does not round to the nearest whole nuntladways rounds towards zero. In
mathematic45 / 4 gives3. 75. In Java it yields3 not4.

15.3 Expression: arithmetic: associativity and int divison (page 52)

Like theoperators + and- , the operators and/ have equabperator precedencgbut higher
than+ and-) and also havéeft associativity.

However, there is an extra complication to consider becthesdava operator truncates its
answer when given twimtegers. Consider the following twarithmetic expressiors.

Expression | Implicit brackets | Value
9* 4/ 2\(9* 4/ 2 18
9/ 2*4\|(9/ 2 *4 16

10060

15.4 Expression: arithmetic: double division (page 55)

In mathematics one would expect to get the same answer framtheseexpressiors, but not
in Javal

15.4 Expression: arithmetic: double division (page 55)

The Javalivision operator, / , usesdouble division and produces doubl e result if at least
one of itsoperands is adoubl e. The result will be the best approximation to the actual arsw
of the division.

Expression | Result | Type of Result
8/ 2 4 i nt

81 2.0 4.0 doubl e

9/ 2 4 i nt

9/ 2.0 4.5 doubl e

9.0/ 2 4.5 doubl e

9.0/ 2.0 | 4.5 doubl e

15.5 Expression: arithmetic: remainder operator (page 149

Anotherarithmetic operator in Java is theemainder operator, also known as thenodulo
operator,% When used with twaonteger operands, it yields the remainder obtained from
dividing the first operand by the second. As an example, thewiong method determines
whether a givemnt method parameteris an even number.

public static bool ean i SEven(int number)

{

return nunber %2 == 0;
} Il isEven

15.6 Expression: brackets and precedence (page 45)

In addition tooperators andvariables, expressiors in Java can have round brackets in them.
As in mathematics, brackets are used to define the strudttine expression by grouping parts
of it into sub-expressions. For example, the following twpressions have different structures,
and thus very different values.

(2+4) *8
2 + (4 * 8)

10061

15.7 Expression: associativity (page 48)

The value of the first expression is made fromalaelition of 2 and4 and thermultiplication
of the resultings by 8 to get48. The second expressionasaluated by multiplying4 with 8
to get32 and then adding to that result, ending up witd4.

To help us see the structure of these two expressions, leaustdem agxpression tres.

(2+4) 8 2+ (4*8)

* +
1\ I\
+ 8 2 *
[\ [\

2 4 4 8

What if there were no brackets?
2+4*8

Java allows us to have expressions without any bracketspoe generally, without brackets
aroundevery sub-expression. It provides rules to define what the stradisuch an expression
is, 1.e., where the missing brackets should go. If you lodtkhat in the above expression, you
will see that it has an operator on either side of it. In a seiiige+ operator and th& operator
are both fighting to have theas anoperand. Rather like a tug of war; is pulling the4 to the
left, and* is tugging it to the right. The question is, which one wins?a)as in mathematics,
provides the answer by having varying levelopkrator precedence The* and/ operators
have a higher precedence thaand- , which meang fights harder tham, so it wins!2 + 4

* 8 evaluates t@4.

15.7 Expression: associativity (page 48)

The principle ofoperator precedenceis insufficient to disambiguate adixpressiors which
are not fully bracketed. For example, consider the follapexpressions.

10 + 7 + 3
10+7 - 3
10 - 7 + 3
10 - 7 - 3

In all four expressions, thé is being fought over by twmperators which have the same
precedence: either twe, two -, or one of each. So where should the missing brackets go?
The expression tres could have one of the two following structures, whépé is the first
operator, an@P2 is the second.

10062

15.8 Expression: boolean (page 60)

10 OPL (7 OP2 3) (10 OPL 7) OP2 3

Let us see whether it makes a difference to the results ofbeessions.

Expression Value
(10 +7) + 3|20
10 + (7 + 3) | 20
(10 +7) - 3|14
10 + (7 - 3) |14
(10 - 7) + 3|6
10 - (7 +3) |0
(10 - 7) - 3]0
10 - (7 - 3) | 6

As you can see, it does make a difference sometimes — in tlasges gvhen the first operator
is subtraction (-). So how does Java resolve this problem? As in mathema#iea,aperators
have anoperator associativityas well as a precedence. The operators, * and/ all have
left associativity which means that when two of these operators of equal pracedse both
fighting over oneoperand, it is the left operator that wins. If you like, the tug of wakes
place on sloping ground with the left operator having theaatixge of being lower down than
the right one!

Expression | Implicit brackets | Value
10+7+3|(10+7) +3 20

10+7-3[(10+7) -3 |14
10-7+3[(10-7) +3 |6
10-7-3[(10-7) -3 |0

The operator$ and/ also have equal precedence (but higher thand-) so similar situations
arise with those too.

15.8 Expression: boolean (page 60)

An expressionwhich whenevaluated yields eithen r ue or f al se is known as acondition,
and is typically used for controllingonditional execution Conditions are also calldzbolean
expressiors.

10063

15.10 Expression: boolean: logical operators (page 128)

15.9 Expression: boolean: relational operators (page 60)

Java gives us sirelational operators for comparing values such as numbers, which we can use
to make upconditions. These are abinary infix operator s, that is they take twoperands,
one either side of theperator. They yieldt r ue or f al se depending on the given values.

Operator | Title Description
== Equal This is theequal operator, which provides the notion pf
equality. a == b yieldst r ue if and only if the value of
a is the same as the value Iof

I = Not equal This is thenot equal operator, providing the the notign
of not equality. a ! = b yieldstrue if and only if the
value ofa is not the same as the value lof

< Less than This is theless thanoperator.a < b yieldst r ue if and
only if the value ofa is less than the value of

> Greater than This is thegreater than operator.a > b yieldst r ue if
and only if the value o# is greater than the value bf

<= Less than or equal | This is theless than or equaloperator.a <= b yields

true if and only if the value of is less than value df,
or is equal to it.

>= Greater than or equalThis is thegreater than or equal operator. a >= b
yieldstr ue if and only if the value ofa is greater thar
value ofb, or is equal to it.

15.10 Expression: boolean: logical operators (page 128)

For somealgorithms, we neecdtonditions onloops etc. that are more complex than can be
made simply by using theelational operators. Java provides us witlogical operators to
enable us to glue together simple conditions into biggesoie three most commonly used
logical operators areonditional and, conditional or andlogical not.

Operator | Title | Posh title Description

&& and | conjunction | c1 && c2 istrue if and only if both conditiong1
andc?2 evaluateto true. Both of the two condi-
tions, known agonjuncts, must be r ue to satisfy
the combined condition.

| | or disjunction | cl || c2istrue if and only if at least one of thg
conditionscl andc?2 evaluate tatrue. The com-
bined condition is satisfied, unless both of the two
conditions, known adisjuncts, aref al se.
! not | negation I'cistrue if and only if the conditiorc evaluates tg
f al se. This operator negates the given condition.

D

We can define thesgperators usingruth table s, where ? means tloperandis not evaluated.

10064

15.10 Expression: boolean: logical operators (page 128)

cl c2 cl & c2 || cl c2 cl || c2 c c
true true true true ? true

true fal se
true false | fal se false | true true

false | true
false | ? fal se false | false | fal se

Using these operators, we can make up complex conditioob,asithe following.

agel < age? || agel == age2 && heightl <= height2

As with thearithmetic operators, Java definesperator precedenceandoperator associa-
tivity to disambiguate complex conditions that are not fully bede#l, such as the one above.
&& and| | have alower precedence than the relational operators viamda lower precedence
than the arithmetic ones. has a very high precedence (even more so than the arithnpetie o
ators) andk& has a higher precedence thgn So the above exampéxpressionhas implicit
brackets as follows.

(agel < age?) || ((agel == age2) && (heightl <= height2))

This might be part of a program thaorts people standing in a line by age, but when they
are the same age, it sorts them by height. Assuming thanthvariablesagel andhei ght 1
contain the age and height of one person, and the other twabl@s similarly contain that
data for another, then the following code might be used to tellgh& to swap their order if
necessary.

if (agel < age2 || agel == age2 && heightl <= height2)
Systemout.printIn("You are in the correct order.");
el se
Systemout. println("Please swap over.");

We might have, perhaps less clearly, chosen to write tha¢ esdollows.

if (!(agel < age2 || agel == age2 && heightl <= height2))
Systemout. println("Please swap over.");

el se
Systemout.println("You are in the correct order.");

You might find it tricky, but it's worth convincing yourselfyet another way of writing code
with the same effect would be as follows.

if (agel > age2 || agel == age2 && heightl > height2)
Systemout. println("Please swap over.");

el se
Systemout.println("You are in the correct order.");

10065

15.11 Expression: conditional expression (page 94)

In mathematics, we are used to writing expressions sughxag < zto mean true, if and only
if y lies in the rangex to z, inclusive. In Java, such expressions need to be written &s y
&& y <= z.

Also, in everyday language we are used to using the words &ttor’ where they have very
similar meanings to the associated Java operators. Howegesay things like “my mother’s
age is 46 or 47”. In Java, we would need to wmtg\umAge == 46 || nyMimAge == 47
to capture the same meaning. Another example, “my brothreraged 10 and 12", might be
coded aswyBrot her 1Age == 10 && nyBrot her 2Age == 12.

However, there are times in everyday language when we sal/ \ainen we really mean “or”

in logic, and hence would uge in Java. For example, “the two possible ages for my dad are
49 and 53" is really the same as saying “my dad’s age isod@ny dad’s age is 53”.

15.11 Expression: conditional expression (page 94)

The conditional operator in Java permits us to writeonditional expressiors which have
different sub-expressiorevaluated depending on somendition. The general form is

c ?el: e2

wherec is some condition, andl ande2 are twoexpressiors of sometype. The condition

is evaluated, and if the value is ue thenel is evaluated and its value becomes the result of
the expression. If the conditionisal se thene2 is evaluated and its value becomes the result
instead.

For example
int mxXY =x >y ? Xx:vy;
is another way of achieving the same effect as the following.

int maxXy,
if (x >y)
maxxXyY = X;
el se
maxxy = vy;

10066

	Computer basics
	Computer basics: hardware (page 3)
	Computer basics: hardware: processor (page 3)
	Computer basics: hardware: memory (page 3)
	Computer basics: hardware: persistent storage (page 3)
	Computer basics: hardware: input and output devices (page 3)
	Computer basics: software (page 3)
	Computer basics: software: machine code (page 3)
	Computer basics: software: operating system (page 4)
	Computer basics: software: application program (page 4)
	Computer basics: data (page 3)
	Computer basics: data: files (page 5)
	Computer basics: data: files: text files (page 5)
	Computer basics: data: files: binary files (page 5)

	Java tools
	Java tools: text editor (page 5)
	Java tools: javac compiler (page 9)
	Java tools: java interpreter (page 9)

	Operating environment
	Operating environment: programs are commands (page 7)
	Operating environment: standard output (page 7)
	Operating environment: command line arguments (page 8)

	Class
	Class: programs are divided into classes (page 16)
	Class: public class (page 16)
	Class: definition (page 16)
	Class: objects: contain a group of variables (page 158)
	Class: objects: are instances of a class (page 158)
	Class: objects: this reference (page 180)
	Class: is a type (page 161)
	Class: making instances with new (page 162)
	Class: accessing instance variables (page 164)

	Method
	Method (page 118)
	Method: main method: programs contain a main method (page 17)
	Method: main method: is public (page 17)
	Method: main method: is static (page 17)
	Method: main method: is void (page 17)
	Method: main method: is the program starting point (page 17)
	Method: main method: always has the same heading (page 18)
	Method: private (page 118)
	Method: accepting parameters (page 118)
	Method: accepting parameters: of a class type (page 164)
	Method: calling a method (page 119)
	Method: void methods (page 120)
	Method: returning a value (page 122)
	Method: returning a value: of a class type (page 176)
	Method: changing parameters does not affect arguments (page 124)
	Method: constructor methods (page 159)
	Method: class versus instance methods (page 166)
	Method: a method may have no parameters (page 173)

	Command line arguments
	Command line arguments: program arguments are passed to main (page 17)
	Command line arguments: program arguments are accessed by index (page 26)
	Command line arguments: length of the list (page 79)
	Command line arguments: list index can be a variable (page 79)

	Type
	Type (page 36)
	Type: String (page 135)
	Type: String: literal (page 18)
	Type: String: literal: must be ended on the same line (page 21)
	Type: String: literal: escape sequences (page 49)
	Type: String: concatenation (page 26)
	Type: String: conversion: from int (page 38)
	Type: String: conversion: from double (page 55)
	Type: String: conversion: from object (page 177)
	Type: int (page 36)
	Type: double (page 54)
	Type: casting an int to a double (page 79)
	Type: boolean (page 133)
	Type: long (page 145)
	Type: short (page 145)
	Type: byte (page 145)
	Type: char (page 145)
	Type: char: literal (page 145)
	Type: char: literal: escape sequences (page 146)
	Type: float (page 146)
	Type: primitive versus reference (page 162)

	Standard API
	Standard API: System: out.println() (page 18)
	Standard API: System: out.println(): with no argument (page 98)
	Standard API: System: out.print() (page 98)
	Standard API: System: out.printf() (page 126)
	Standard API: System: out.printf(): zero padding (page 140)
	Standard API: Integer: parseInt() (page 41)
	Standard API: Double: parseDouble() (page 54)
	Standard API: Math: pow() (page 73)
	Standard API: Math: abs() (page 87)
	Standard API: Math: PI (page 87)

	Statement
	Statement (page 18)
	Statement: simple statements are ended with a semi-colon (page 18)
	Statement: assignment statement (page 37)
	Statement: assignment statement: assigning a literal value (page 37)
	Statement: assignment statement: assigning an expression value (page 38)
	Statement: assignment statement: updating a variable (page 70)
	Statement: assignment statement: updating a variable: shorthand operators (page 87)
	Statement: if else statement (page 60)
	Statement: if else statement: nested (page 62)
	Statement: if statement (page 64)
	Statement: compound statement (page 66)
	Statement: while loop (page 71)
	Statement: for loop (page 77)
	Statement: for loop: multiple statements in for update (page 136)
	Statement: statements can be nested within each other (page 92)
	Statement: switch statement with breaks (page 107)
	Statement: switch statement without breaks (page 110)
	Statement: do while loop (page 112)

	Error
	Error (page 20)
	Error: syntactic error (page 20)
	Error: semantic error (page 22)
	Error: compile time error (page 22)
	Error: run time error (page 24)
	Error: logical error (page 29)

	Execution
	Execution: sequential execution (page 23)
	Execution: conditional execution (page 60)
	Execution: repeated execution (page 70)

	Code clarity
	Code clarity: layout (page 31)
	Code clarity: layout: indentation (page 32)
	Code clarity: layout: splitting long lines (page 43)
	Code clarity: comments (page 82)
	Code clarity: comments: marking ends of code constructs (page 83)

	Design
	Design: hard coding (page 36)
	Design: pseudo code (page 73)

	Variable
	Variable (page 36)
	Variable: int variable (page 37)
	Variable: a value can be assigned when a variable is declared (page 42)
	Variable: double variable (page 54)
	Variable: can be defined within a compound statement (page 92)
	Variable: local variables (page 124)
	Variable: class variables (page 124)
	Variable: a group of variables can be declared together (page 129)
	Variable: boolean variable (page 133)
	Variable: char variable (page 145)
	Variable: instance variables (page 159)
	Variable: instance variables: should be private by default (page 175)
	Variable: of a class type (page 161)
	Variable: of a class type: stores a reference to an object (page 162)
	Variable: of a class type: stores a reference to an object: avoid misunderstanding (page 170)

	Expression
	Expression: arithmetic (page 38)
	Expression: arithmetic: int division truncates result (page 52)
	Expression: arithmetic: associativity and int division (page 52)
	Expression: arithmetic: double division (page 55)
	Expression: arithmetic: remainder operator (page 149)
	Expression: brackets and precedence (page 45)
	Expression: associativity (page 48)
	Expression: boolean (page 60)
	Expression: boolean: relational operators (page 60)
	Expression: boolean: logical operators (page 128)
	Expression: conditional expression (page 94)

