Java Just in Time:
Collected concepts after chapter 09

‘John Latham, School of Computer Science, Manchester UJNy,eUK‘

April 15, 2011

Contents

1 Computer basics
1.1 Computer basics: hardware (p@e 3 .
1.2 Computer basics: hardware: processor (page 3)
1.3 Computer basics: hardware: memory (page3)
1.4 Computer basics: hardware: persistent storage ﬁag.es C
15 Computer basics: hardware: input and output devicege(Ba. . . .
1.6 Computer basics: software (page3)
1.7 Computer basics: software: machine code (@ €3). . ..
1.8 Computer basics: software: operating system (page 4)
1.9 Computer basics: software: application program (page 4

1.10 Computer basics:
1.11 Computer basics:
1.12 Computer basics:
1.13 Computer basics:

\2 Java tool%

2.1 Java tools: text editor (pa@ 5;

2.2 Java tools: javac compiler (p 9 ...

2.3 Java tools: java interpreter (p 9 ...
3 Operating environment

3.1 Operating environment: programs are commands @ge 7)... .

3.2 Operating environment: standard output (@ge 7. e

3.3 Operating environment: command line arguments (@ge 8). ..
4 Class

4.1 Class: programs are divided into classes (@e 16)

4.2 Class: publicclass (pagel/16)

4.3 Class: definition (page 16)

data (pfng
data: files (page5)
data: files: text files (page5)

data: files: binary files (page 5)

9000

CONTENTS

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13

9006
Method (PAGE L18) . « . « v v v e e e e 9006
Method: main method: programs contain a main methode(@dy . 9006
Method: main method: is public (p 17) . 9006
Method: main method: is static (p 17) . . .o 9006
Method: main method: is void (page 17) 00®
Method: main method: is the program starting point (. 9007
Method: main method: always has the same heading (page 18. 9007
Method: private (pa8) B0O0
Method: accepting parameters 0 118) 9008
Method: calling a method 19) 9009
Method: void methods (pajzo 01m®
Method: returning a value (page 122) 9010

Method: changing parameters does not affect argur(mgé 1221) 9011

6 Command line argumenté

6.1
6.2
6.3
6.4

7 Type
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19

9011

Command line arguments: program arguments are paseminc(pagé 7)9011

\8 Standard API

8.1
8.2
8.3
8.4

Command line arguments: program arguments are acdegsedex (page 26)9011
Command line arguments: length of the list (ie 79) . 9012
Command line arguments: list index can be a vanableedﬁ; . 9012
9012
TYPE (PAGE36) .« « o v o 9012
Type: String (pai5) 9012
Type: String: literal (pad:l8) 9012
Type: String: literal: must be ended on the same Imee(. 9013
Type: String: literal: escape seuences (@e 49) 9013
Type: String: concatenation (p 26 9014
Type: String: conversion: from int (pag 3 9014
Type: String: conversion: from double’ (page 55) C e e eee... . 9015
Type: int (pagﬁ 9015
Type: double (pageb4) 9015
Type: casting an int to a double (pﬁ 79) 9015
Type: boolean (page 133) 6901
Type:long (page 145) 9016
Type: short (pa@lS) ®01
Type: byte (page 145) 9016
Type: char (pac@S) 9016
Type: char: literal (pa5) 9017
Type: char: literal: escape sequences (ﬁb 146) . 9017
Type: float (padﬁ%) 9017
9017
Standard API: System: out.printin() (pﬁ 18) : .. . 9017
Standard API: System: out.printIn(): with no argumqeratg(éfB) . . 9018
Standard API: System: out.print() (page 98) . 9018
Standard API: System: out.printf() (page 126) 9019

9001

CONTENTS

8.5 Standard API: System: out.printf(): zero padding ([@) 9020
8.6 Standard API: Integer: parselnt() (p@ 41) 9020
8.7 Standard API: Double: parseDouble() (page54) 9021
8.8 Standard API: Math: pow() (pagel73)\ 023
8.9 Standard API: Math: abs() (page87) 022
8.10 Standard API: Math: Pl (page 87) v v v oo vt 02®
9 Statement 9022
9.1 Statement (pa8) 9022
9.2 Statement: simple statements are ended with a semi-qmtgéﬁ) 9022
9.3 Statement: assignment statement (;@e 379023
9.4 Statement: assignment statement: assigning a Iitahmda%pagﬁ?) 9023
9.5 Statement: assignment statement: assigning an expressue (pag§8)9023
9.6 Statement: assignment statement: updating a vari) .. .9023
9.7 Statement: assignment statement: updating a varstidethand operators (p@S?)S
9.8 Statement: if else statement (p@ 60) 9025
9.9 Statement: if else statement. nested (@e 62)9025
9.10 Statement: if statement (p@ 64) 9026
9.11 Statement: compound statement (e 66)9027
9.12 Statement: while loop (page'71) 9028
9.13 Statement: forloop (page 77) o 028
9.14 Statement: for loop: multiple statements in for upda@éﬁ) .. 9029
9.15 Statement: statements can be nested within each p 92). . . 9030
9.16 Statement: switch statement with breaks (@7) - -...9030
9.17 Statement: switch statement without breaks (page 110). 9031
9.18 Statement: do while loop (page 112) 9032
10 Error 9033
10.1 EMOr(Page 20) . . o v oo 9033
10.2 Error: syntactic error (paO) 9033
10.3 Error: semantic error (page 22)o 9034
10.4 Error: compile time error (page22) 9034
10.5 Error: run time error (p4) 039
10.6 Error: logical error (page29) 9035
11 Execution 9035
11.1 Execution: sequential execution (pﬁ 23)9035
11.2 Execution: conditional execution 60)9035
11.3 Execution: repeated execution (p 40) 9035
12 Code clarity 9036
12.1 Code clarity: layout (paﬁg@—iﬂ) 9036
12.2 Code clarity: layout: indentation (pﬁSZ) C e e e e e .. 9036
12.3 Code clarity: layout: splitting long lines (pdg€43) 9037
12.4 Code clarity: comments (p 82) 9037
12.5 Code clarity: comments: marking ends of code conSr(lpxatg) . 9038
13 Design 9038

9002

13.1 Design: hard coding (pa6) 033

13.2 Design: pseudocode (page 73) 3990
14 Variable 9039
14.1 Variable (PAgE 36)t ot 9039
14.2 Variable: int variable (pa@?) 9040
14.3 Variable: a value can be assigned when a variable ian&b{pagﬁZ)QMO
14.4 Variable: double variable (page 54)ot 9040

14.5 Variable: can be defined within a compound statemeg’e@ .. 9041

14.6 Variable: local variables (page 124) 9042
14.7 Variable: class variables (page124) 9042
14.8 Variable: a group of variables can be declared togépa® .. 9042
14.9 Variable: boolean variable (page 133) 9043
14.10 Variable: char variable (page 145) 9044
15 Expression 9044
15.1 Expression: arithmetic (pagFe\?;S) 9044
15.2 Expression: arithmetic: int division truncates reemﬁhgée@@ 9045
15.3 Expression: arithmetic: associativity and int dots{page 52) . . . 9045
154 Expression: arithmetic: double division (p@ 55)9045
15.5 Expression: arithmetic: remainder operator (pagé¢ 149. 9046
15.6 Expression: brackets and precedence (@ge 45) 9046
15.7 Expression: associativit dﬁ—e\48) e e e e e 9047
15.8 Expression: boolean (page 60) 0489
15.9 Expression: boolean: relational operators (| 9049
15.10 Expression: boolean: logical operators . 9049
15.11 Expression: conditional expression (page 94) 9051

1 Computer basics

1.1 Computer basics: hardware (page 3)

The physical parts of a computer are knowrhasdware. You can see them, and touch them.

1.2 Computer basics: hardware: processor (page 3)

Thecentral processing unit(CPU) is the part of thénardware that actually obeys instructions.
It does this dumbly — computers are not inherently intetlige

9003

1.3 Computer basics: hardware: memory (page 3)

1.3 Computer basics: hardware: memory (page|3)

Thecomputer memoryis part of the computer which is capable of storing and reitngedata
for short term use. This includes tiheachine codeinstructions that theentral processing
unit is obeying, and any other data that the computer is currendhking with. For example,
it is likely that an image from a digital camera is stored ia tomputer memory while you are
editing or displaying it, as are the machine code instrustior the image editing program.

The computer memory requires electrical power in order moeraber its data — it igolatile
memory and will forget its contents when the power is turned off.

An important feature of computer memory is that its conterais be accessed and changed
in any order required. This is known ssndom accessand such memory is calle@gndom
access memoryr justRAM.

1.4 Computer basics: hardware: persistent storage (page 3)

For longer term storage ofata, computers uspersistent storagedevices such asard discs
andDVD ROM s. These are capable of holding much more information toamputer mem-
ory, and are persistent in that they do not need power to remetnéénformation stored on
them. However, the time taken to store and retrieve datauh longer than for computer
memory. Also, these devices cannot as easily be accessednda@m order.

1.5 Computer basics: hardware: input and output devices (pge.3)

Some parts of thbardware are dedicated to receiving input from or producing outpuht®
outside world. Keyboards and mice are examplempfit devices. Displays and printers are
examples obutput devices.

1.6 Computer basics: software (pagel3)

One part of a computer you cannot see isdaffware. This is stored ocomputer media such
asDVD ROMs, and ultimately inside the computer, as lots of numberis the instructions
that the computer will obey. The closest you get to seeingghirbe if you look at the silver
surface of a DVD ROM with a powerful magnifying glass!

9004

1.7 Computer basics: software: machine code (page 3)

1.7 Computer basics: software: machine code (page 3)

The instructions that theentral processing unitobeys are expressed in a language known
asmachine code This is a verylow level language meaning that each instruction gets the
computer to do only a very simple thing, such as dleition of two numbers, or sending a
byte to a printer.

1.8 Computer basics: software: operating system (page 4)

A collection of software which is dedicated to making the computer generally usabtber
than being able to solvemarticular task, is known as aoperating system The most popular
examples for modern personal computers are Microsoft Wisgddac OS X and Linux. The
latter two are implementations of Unix, which was first cauaed in the early 1970s. The fact
it is still in widespread use today, especially by comput@fgssionals, is proof that it is a
thoroughly stable and wetlesigred and integrated platform for the expert (or budding ejpert
computer scientist.

1.9 Computer basics: software: application program (page p

A piece ofsoftware which is dedicated to solving a particular task, or appiaatis known as
anapplication program. For example, an image editing program.

1.10 Computer basics: data (page'3)

Another part of the computer that you cannot see iglét. Like software it is stored as
lots of numbers. Computers are processing and produciregatlathe time. For example, an
image from a digital camera is data. You can only see the i@atdnen you display it using
some image displaying or editing software, but even thit &growing you the actual data that
makes up the picture. The names and addresses of your fiieadsther example of data.

1.11 Computer basics: data: files (pagel5)

Whendata is stored inpersistent storage such as on &ard disc, it is organized into chunks

of related information known ades. Files have names and can be accessed by the computer
through theoperating system For example, the image from a digital camera would probably
be stored in a jpeg file, which is a particular type of image &led the name of this file would
probably end inj pg or. | peg.

9005

1.12 Computer basics: data: files: text files (nage 5)

1.12 Computer basics: data: files: text files (page 5)

A text file is a type offile that containglata stored directly asharacters in a human readable
form. This means if you were to send the raw contents dirdctlthe printer, you would
(for most printers) be immediately able to read it. Examplietext files includeREADME. t xt

that sometimes comes wigoftware you are installing, or source text for a document to be
processed by théTeX[6] document processing system, such as the ones useddagathis
book (prior to publication). As you will see shortly, a morgdaresting example for you, is
computer prograrmsource codefiles.

1.13 Computer basics: data: files: binary files (page 5)

A binary file is another kind ofile in which data is stored adinary (base 2) numbers, and
so is not human readable. For example, the image from a bagitaera is probably stored as
a jpeg file, and if you were to look directly at its contentshex than use somapplication
program to display it, you would see what appears to be nonsense! &reisting example of
a binary file is theanachine codeinstructions of a program.

2 Javatools

2.1 Javatools: text editor (page 5)

A text editor is a program that allows the user to type and ¢elt files. You may well
have usecdot epad under Microsoft Windows; that is a text editor. More likelply have
usedM crosoft Wrd. If you have, you should note that it is not a text editor, iaigord
processor Although you can save your documents as text files, it is ncoramon to save
them as doc files, which is actually &inary file format.M crosoft Wrd is not a good tool
to use for creating prograsource codefiles.

If you are using arntegrated development environmento support your programming, then

the text editor will be built in to it. If not, there are a pletia of text editors available which
are suited to Java programming.

2.2 Javatools: javac compiler (page 9)

The Javacompiler is calledj avac. Java program source is saved by the programmetenta
file that has the suffixj ava. For example, the text filgel | oWor | d. j ava might contain the
source text of a program that printel | 0 wor| d! on thestandard output. This text file

9006

2.3 Javatools: java interpreter (page 9)

can then beompiled by the Java compiler, by giving its name asognmand line argument
Thus the command

javac Hel loWrld.java

will produce thebyte codeversion of it in thefile Hel | oWor | d. cl ass. Like machine code
files, byte code is stored oinary files as numbers, and so is not human readable.

2.3 Javatools: java interpreter (page 9)

When the end user wants to run a Java program, he or she infeew a interpreter with the
name of the program as it®emmand line argument The program must, of course, have been
compiled first! For example, to run thieel | oWor | d program we would issue the following
command.

java Hell ovrld

This makes theentral processing unitrun the interpreter ovirtual machine j ava, which
itself thenexecutes the program named as its first argument. Notice that thexsyféiva is
needed when compiling the program, but no suffix is used whbening it. In our example
here, the virtual machine finds tlgyte codefor the program in thdile Hel | oWor | d. cl ass
which must have been previously produced byadbmpiler.

3 Operating environment

3.1 Operating environment: programs are commands (page! 7)

When a program iexecutel, the name of it is passed to thperating systemwhich finds and
loads thdfile of that name, and then starts the program. This might be hittden you if you
are used to starting programs from a menu or browser ingerfad it happens nevertheless.

3.2 Operating environment: standard output (page 7)

When programgxecute they have something called tke&andard output in which they can
produce text results. If they aren from some kind otommand line interface such as a Unix
shell or a Microsoft WindowsCommand Prompt, then this output appears in that interface
while the program is running. (If they are invoked througimsdntegrated development
environment, browser, or menu, then this output might get displayed mespop-up box, or
special console window.)

9007

3.3 Operating environment: command line arguments (page 8)

3.3 Operating environment: command line arguments (page 8)

Programs can be, and often are, giecemmand line argumens to vary their behaviour.

4 Class

4.1 Class: programs are divided into classes (page 16)

In Java, the source text for a program is separated into piegkbedclas®es. The source
text for each class is (usually) stored in a sepaféee Classes have a name, and if the
name isHel | oWor | d then the text for the class is saved by the programmer irtekiefile

Hel | oWorl d. j ava.

One reason for dividing programs into pieces is to make thasreeto manage — programs to
perform complex tasks typically contain thousands of lioext. Another reason is to make
it easier to share the pieces between more than one prograchsaftware reuseis beneficial
to programmer productivity.

Every program has at least one class. The name of this clafigeftect the intention of the
program. By convention, class names start with an upperletise

4.2 Class: public class (page 16)

A classcan be declared as beipgblic, which means it can be accessed from anywhere in the
running Java environment; in particular thietual machine itself can access it. The source
text for a public class definition starts with tresserved wordpubl i c. A reserved word is one
which is part of the Java language, rather than a word chogéhebprogrammer for use as,
say, the name of a program.

4.3 Class: definition (page 16)

After stating whether it hagublic access, alassnext has theeserved wordcl ass, then its
name, then a left brac€) its body of text and finally a closing right bracp (

public class M/Fabul ousProgram

{
Lots of stuff here.

}...

9008

5 Method

5.1 Method (page 118)

A methodin Java is a section of code, dedicated to performing a peatitask. All programs
have amain method which is the starting point of the program. We can have othethods
too, and we can give them any name we like — although we shbwéya choose a name which
suits the purpose. By convention, method names start withvarlcase letter. For example,
System out. println() isamethod which prints a line of text. Apart from its slighgtrange
spelling, the namer i nt | n does reflect the meaning of the method.

5.2 Method: main method: programs contain a main method (pag/17)

All Java programs contain a section of code caltedn, and this is where the computer will
start toexecutethe program. Such sections of code are caftexthods because they contain
instructions on how to do something. Th&ain method always starts with the following
heading.

public static void main(String[] args)

5.3 Method: main method: is public (page 17)

Themain method starts with theeserved wordpubl i ¢, which means it can be accessed from
anywhere in the running Java environment. This is necess#rg program could not bein
by thevirtual machine if the starting point was not accessible to it.

public

5.4 Method: main method: is static (page 17)

The main method of the program has theeserved wordst at i ¢ which means it is allowed
to be used in thestatic context A context relates to the use obmputer memory during
therunning of the program. When thertual machine loads a program, it creates the static
context for it, allocating computer memory to store the pangand it-data, etc.. Adynamic
contextis a certain kind of allocation of memory which is made latiering the running of the
program. The program would not be able to start if the mairhieegtivas not allowed to run in
the static context.

public static

9009

5.5 Method: main method: is void (page 17)

5.5 Method: main method: is void (page 17)

In general, anethod (section of code) might calculate some kindarfction or formula, and
return the answer as a result. For example, the result might be aewtila method returns
a result then this must be stated in its heading. If it doestheh we write theeserved word
voi d, which literally means (among other definitions) ‘withowaintents’. Themain method
does not return a value.

public static void

5.6 Method: main method: is the program starting point (pagel?)

The starting part, omain method, of the program is always calledi n, because it is the main
part of the program.

public static void main

5.7 Method: main method: always has the same heading (page)18
Themain method of a Java program must always have a heading like this.
public static void main(String[] args)

This is true even if we do not intend to use ammmand line argumens. So a typical single
classprogram might look like the following.

public class MyFabul ousProgram

{
public static void main(String[] args)
{
... Stuff here to performthe task.
}
}

5.8 Method: private (page 118)

A method should be declared with private visibility modifier if it is not intended to be
usable from outside thelassit is defined in. This is done by writing theeserved word
pri vat e instead ofpubl i ¢ in the heading.

9010

5.9 Method: accepting parameters (page 118)

5.9 Method: accepting parameters (page 118)

A method may be givermethod parameters which enable it to vary its effect based on their
values. This is similar to a program being givammmand line argumens, indeed the argu-
ments given to a program are passed as parameters noaihenethod.

Parameters are declared in the heading of the method. Forpdxamain methods have the
following heading.

public static void main(String[] args)

The text inside the brackets is the declaration of the patensie A method can have any
number of parameters, including zero. If there is more the they are separated by commas
(,). Each parameter consists dfyge and a name. For example, the following method is given
two parameters, @oubl e and ani nt .

private static void printHeightPerYear(doubl e height, int age)

{
Systemout.printIn("At age " + age + ", height per year ratiois "
+ height / age);
} Il printHeight Per Year

You should think of parameters as being likariables defined inside the method, except that
they are given initial values before the method bodgxecutel. For example, the single
parameter to the main method is a variable which is givéstaf strings before the method
begins execution, these strings being the command lineveegts supplied to the program.

The names of the parameters are not important to Java — asaptiey all have different
names! The names only mean something to the human readenh) w8hof course important.
The above method could easily have been written as follows.

private static void printHeightPerYear(double howTall, int howd d)

{
Systemout.printIn("At age " + howdd + ", height per year ratiois "

+ howTal | / howd d);
} [1 printHeightPerYear

You might think the first version is subjectively nicer th&ae second, but clearly both are better
than this next one!

private static void printHeightPerYear(double d, int i)

9011

5.10 Method: calling a method (page 119)

{

Systemout.printIn("At age " + i + ", height per year ratiois "
+d/ i);
} Il printHeight Per Year

And that is only marginally better than calling the paramgtsayx andy. However, Java does
not care — it is not clever enough to be able to, as it can hawenderstanding of the problem
being solved by the code.

5.10 Method: calling a method (page 119)

The body of anethod is executel when some other code refers to it usingethod call. For
example, the program calls a method namdt | n when it executeSyst em out . printIn("Hell o
wor | d!'") . For another example, if we have a method, namradt Hei ght Per Year , which

prints out a height to age ratio when it is given a height (irires and an age, then we could
make it print the ratio between the height and the agé4 using the following method call.

print Hei ght PerYear (1.6, 14);

When we call a method we supplyr@ethod argumentfor eachmethod parameter, separat-
ing them by commas {. These argument values are copied into the correspondiragpeters
of the method — the first argument goes into the first parantésecond into the second, and
So on.

The arguments passed to a method may be the current valvesia@bles. For example, the

above code could have been written as follows.

doubl e personHei ght = 1.6;

int personAge = 14,

print Hei ght Per Year (per sonHei ght, personAge);
As you may expect, the arguments to a method are actergtlyessiors rather than juditeral
values or variables. These expressions evaluated at the time the method is called. So we
might have the following.

doubl e growt hLast Year = 0.02;

print Hei ght Per Year (per sonHei ght - growt hLast Year, personAge - 1);

9012

5.11 Method: void methods (page 120)

5.11 Method: void methods (page 120)

Often, amethod might calculate some kind dinction or formula, perhaps based on its
method parameters, andreturn the answer as a result. The result might bei an or a
doubl e or some othetype. If a method returns a result then theturn type of the result
must be stated in its heading. If it does not, then we writentbed voi d instead, which liter-
ally means (among other definitions) ‘without contents’r Ewample, thenain method of a
program does not return a result — it is alwaywsa method.

public static void main(String[] args)

5.12 Method: returning a value (page 122)

A method may return a result back to the code that called it. If this is so, we decthe
return type of the result in the method heading, in place of taserved wordvoi d. Such
methods are often calletbn-void methods. For example, the following method takes a Cel-
sius temperature, and returns the corresponding Fahtesathee.

private static doubl e celsiusToFahrenheit (doubl e celsiusVal ue)

{

doubl e fahrenheitValue = celsiusValue * 9/ 5 + 32;
return fahrenheitVal ue;
} Il cel si usToFahrenhei t

The method is declared with a return typedolubl e, by writing thattype name before the
method name.

The return statement is how we specify what value is to be returned as the resulhef t
method. Thestatementcauses the execution of the method to end, and control tefeainack
to the code that called the method.

The result of a non-void method can be used irgpression For example, the method above
might be used as follows.

doubl e cel siusVal ue = Doubl e. parseDoubl e(args[0]);
Systemout. println("The Fahrenheit value of "
+ celsiusValue + " Celsius is "
+ cel si usToFahrenhei t(cel siusValue) + ".");

The return statement takes any expression after the reseme ret urn. So our method
above could be implemented using just one statement.

9013

5.13 Method: changing parameters does not affect argurfiesme 124)

private static doubl e celsiusToFahrenheit (doubl e celsiusVal ue)

{

return celsiusValue * 9 / 5 + 32;
} Il cel siusToFahr enhei t

5.13 Method: changing parameters does not affect argumen{page 124)

We can think ofmethod parameters as being likerariables defined inside thenethod, but
which are given their initial value by the code that calls thethod. This means the method
can change the values of the parameters, like it can for drgr etariable defined in it. Such
changes have no effect on the environment of the code thedddle method, regardless of
where themethod argumentvalues came from. An argument value, be it a literal constant
taken straight from a variable, or the result of some moregerexpression is simply copied
into the corresponding parameter at the time the methodlledcaThis is known agall by
value.

6 Command line arguments

6.1 Command line arguments: program arguments are passed tmain
(page 17)

Programs can be givasommand line argumens which typically affect their behaviour. Ar-
guments given to a Java program are strings ofdesd, and there can be any number of them
in alist. In Java,String[] means ‘list of strings’. We have to give a name for this lisid a
usually we call itar gs. The chosen name allows us to refer to the given data frommwiitie
program, should we wish to.

public static void main(String[] args)

6.2 Command line arguments: program arguments are accessdwy in-
dex (page 26)

The command line argumens given to themain method are alist of strings. These are
the text data string arguments supplied on tteommand line The strings arendexed by
integers (whole numbers) starting from zero. We can access theithdiVstrings by placing
the index value in square brackets after the name of theSstassuming that we call the list
ar gs, thenar gs[0] is the first command line argument given to the program, ifdh®one.

9014

6.3 Command line arguments: length of the list (nage 79)

6.3 Command line arguments: length of the list (page 79)

The command line argument passed to theain method are alist of strings. We can find
the length of a list by writing a dot followed by the wardngt h, after the name of the list. For
examplear gs. | engt h yields ani nt value which is the number of items in the lastgs.

6.4 Command line arguments: list index can be a variable (pag79)

The index used to access the individual items fronlist of strings does not have to be an
integer literal, but can be aint variable or indeed ararithmetic expression For example,
the following code adds together a listinfegers given acommand line argumens.

int sunOXArgs = 0;

for (int arglndex = 0; arglndex < args.length; arglndex = arglndex + 1)
sunf Args = sunf Args + I nteger. parselnt(args[arglndex]);

Systemout.printIn("The sumis " + sunOf Args);

The benefit of being able to usevariable, rather than an integer literal is that the access can
be done in doop which controls the value of the variable: thus the actual®alsed as the
index is not the same each time.

7 Type

7.1 Type (page 36)

Programs can process various different kinddatg, such as numbers, text data, images etc..
The kind of a data item is known as tige.

7.2 Type: String (page 135)

Thetype of text data strings, such astring literal values andconcatenatiors of such, is
calledStringin Java.

7.3 Type: String: literal (page[18)

In Java, we can havesdring literal , that is a fixed piece of text to be useddata, by enclosing
it in double quotes. It is called a string literal, because atype of data which is a string of

9015

7.4 Type: String: literal: must be ended on the same lineg|2dg

characters, exactly as listed. Such a piece of data might be used assagest® the user.

"This is a fixed piece of text data -- a string literal"

7.4 Type: String: literal: must be ended on the same line (pag21)

In Javastring literal s must be ended on the same line they are started on.

7.5 Type: String: literal: escape sequences (page 49)

We can have aew line characterembedded in atring literal by using theescape sequence
\ n. For example, the following code will print out three linassiandard output.

Systemout.println("This text\nspans three\nlines.");
It will generate the following.

This text
spans three
l'i nes.

There are other escape sequences we can use, includindlomarfg.

Sequencel Name Effect

\b Backspace Moves the cursor back one place, so the roker-
acter will over-print the previous.

\'t Tab (horizontal tab) Moves the cursor to the next ‘tab stop’.

\n New line (line feed)| Moves the cursor to the next line.

\ f Form feed Moves to a new page on many (text) printers.

\r Carriage return Moves the cursor to the start of the current line, so
characters will over-print those already printed.

\" Double quote Without the backslash escape, this would mark|the
end of the string literal.

\’ Single quote This is just for consistency — we don't need to es-
cape a single quote in a string literal.

\\ Backslash Well, sometimes you want the backslash character
itself.

Note: System out . println() always ends the line with the platform dependerd separa-
tor, which on Linux is a new line character but on Microsoft Windois acarriage return

9016

7.6 Type: String: concatenation (page 26)

character followed by a new line character. In practice you may noteethe difference, but
the above code is not strictly the same as using three sefsysitem out . println() calls
and is not 100% portable.

7.6 Type: String: concatenation (page 26)

The + operator, when used with two stringperands, produces a string which is tloen-
catenation of the two strings. For exampledel |0 " + "wor| d" produces a string which is
Hel | o (including the space) concatenated with the stwoig d, and so has the same value as
"Hell o world".

There would not be much point concatenating togetherdtriag literal s like this, compared
with having one string literal which is already the text wentvaWWe would be more likely to
use concatenation when at least one of the operands is netiavikue, i.e. is &ariable value.
For example;Hel o " + args[0] produces a string which il | 0 (including the space)
concatenated with the firsbommand line argumentgiven when the program rsin.

The resulting string can be used anywhere that a singlegdiitaral could be used. For ex-
ampleSystemout. printIn("Hello " + args[0]) would print the resulting string on the
standard output.

7.7 Type: String: conversion: from int (page 38)

The Javaoperator + is used for botraddition andconcatenation— it is anoverloaded op-
erator. If at least one of th@perands is atext data string, then Java uses concatenation,
otherwise it uses addition. When only one of the two operasdsstring, and the other is
some othetype of data, for example amnt , the Javaompiler is clever enough to understand
the programmer wishes that data to be converted into a diefye the concatenation takes
place. It is important to note the difference betweernaeger and the decimal digit string we
usually use to represent it. For example, ititeger literal 123 is ani nt, a number; whereas
thestring literal " 123" is a text data string — a string of 3 separelt@racters.

Suppose theariable noOf Peopl eTol nvi t eToTheSt r eet Party had the valuél, then the
code

Systemout.printIn("Please invite " + noCf Peopl eTol nviteToTheStreet Party);
would print out the following text.

Pl ease invite 51

9017

7.8 Type: String: conversion: from double (page 55)

The number51 would be converted to the strifighl" and then concatenated to the string
"Please invite " before being processed Bystem out. println().

Furthermore, for our convenience, there is a separateoveodSyst em out . printl n() that
takes a singlént rather than a string, and prints its decimal representafibas, the code

System out. println(noC Peopl eTol nviteToTheStreet Party);
has the same effect as the following.

Systemout.println("" + noO Peopl eTol nviteToTheStreetParty);

7.8 Type: String: conversion: from double (page 55)

The Javaconcatenation operator +, for joining text data strings can also be used to convert
adoubl e to a string. For example, thexpression"" + 123. 4 has the valué123. 4" .

7.9 Type: int (page 36)

One of thetypes of data we can use in Java is callédt . A data item which is annt is an
integer (whole number), such &5 - 129934 or 982375, etc..

7.10 Type: double (page 54)

Another of thetypes of data we can use in Java is known @subl e. A data item which is a
doubl e is areal (fractional decimal number), such @s0, - 129. 934 or 98. 2375, etc.. The
type is callecdoubl e because it uses a means of storing the numbers aédleble precision
On computers, real numbers are only approximated, bechagdave to be stored in a finite
amount of memory space, whereas in mathematics we have tlomn d infinite decimals.
The double precision storage approach uses twice as muclomyp@er number than the older
single precisiontechnique, but gives numbers which are much more precise.

7.11 Type: casting an int to a double (page 79)

Sometimes we have amt value which we wish to be regarded asaubl e. The process of
conversion is known asasing, and we can achieve it by writigloubl e) in front of thei nt .
For example(doubl) 5 is thedoubl e value5. 0. Of course, we are most likely to use this
feature to cast the value of amt variable, rather than amteger literal .

9018

7.12 Type: boolean (page 133)

7.12 Type: boolean (page 133)

There is atype in Java calletbool ean, and this is the type of altonditions used inf else
statemens andloops. It is named after the English mathematician, George Boblese work
in 1847 established the basis of modern logic[12]. The typeains just twdooolean literal
values called r ue andf al se. For example5 <= 5 is aboolean expressionwhich, because
it has novariables in it, always has the same value wrenraluated. Whereas thexpression
agel < age2 || agel == age2 && height1l <= height2 has a value which depends on
the values of the variables in it.

7.13 Type: long (page 145)

Thetypeint allows for the storage dhtegers in the range-23! through to 31— 1. This
is because it uses folytes, i.e. 32binary digits. 21— 1 is 2147483647. Although this is
plenty for most purposes, we sometimes need whole numbarsigger range. The typeng
representfong integers and uses eight bytes, i.e. bds. Al ong variable can store numbers
from —2%3 through to 83— 1. The value of $—1 is 9223372036854775807.

A long literal is written with anL on the end, to distinguish it from ant literal , as in- 15L
and2147483648L.

7.14 Type: short (page 145)

Thetype short representshort integers using twobytes, i.e. 16binary digits. A short
variable can store numbers from2° through to 2°— 1. The value of ®—1 is 32767. We
would typically use this type when we have a huge numbéantefers, which happen to lie in
the restricted range, and we are concerned about the amionmetnaory (orfile space) needed
to store them.

7.15 Type: byte (page 145)

Thetype byt e representintegers using just ondyte, i.e. 8binary digits. Abyt e variable
can store numbers from2’ through to Z — 1. The value of 2— 1 is 127.

7.16 Type: char (page 145)

Characters in Java are represented bytype char . A char variable can store a singlehar-
acter at any time.

9019

7.17 Type: char: literal (page 145)

7.17 Type: char: literal (page 145)

A character literal can be written in our program by enclosing it in single quokes example
' J’ is a character literal.

7.18 Type: char: literal: escape sequences (page 146)

When writing acharacter literal we can use the sanescape sequenesethat are available
within string literal s. These include the following.

char backspace = '\b’; char tab = "\t’";

char newine ='\n’; char fornfFeed = "\f’;
char carriageReturn ="\r’; char doubl eQuote = "\"";
char singleQuote = "\""; char backslash = "\\";

7.19 Type: float (page 146)

Thetype f 1 oat is for real (fractional decimal) numbers, using tleating point represen-
tation with a single precisionstorage. It uses only folsytes per number, compared with
doubl e which employsdouble precisionstorage and so is far more accurate, but needs eight
bytes per number.

A float literal is written with anf or F on the end, as if. OF, - 129. 934F or 98. 2375f .

8 Standard API

8.1 Standard API: System: out.printin() (page 18)

The simplest way to print a messagestandard output is to use:
Systemout.printIn("This text will appear on standard output”);

Systemis aclass(that is, a piece of code) that comes with Java as part apgpdication
program interface (API) — a large number of classes designed to support our Javeapneg
Inside Syst emthere is a thing calledut , and this has amethod (section of code) called
println. So overall, this method is call&yst em out . pri ntl n. The method takes a string
of text given to it in its brackets, and displays that textloa standard output of the program.

9020

8.2 Standard API: System: out.printin(): with no argumeraige 98)

8.2 Standard API: System: out.println(): with no argument (page 98)

TheclassSyst emalso contains a version of tlvat . pri nt| n() methodwhich takes no argu-
ments. This outputs nothing exceptew line. It has the same effect as callifgst em out . println()
with an empty string as its argument, that is

Systemout. println();

has the same effect as the following.
Systemout.printin("");

So, for example

Systemout.print("Hello world!");
Systemout.println();

would have the same effect as the following.
Systemout.printIn("Hello world!");

Systemout. println() with no argument is most useful when we need to end a line which
has been generated a piece at a time, or when we want to haaelalible.

8.3 Standard API: System: out.print() (page 98)

TheclassSyst emcontains anethodout . pri nt () whichis almostthe sameast . printin().
The only difference is thatut . print () does not produceew line after printing its output.
This means that any output printed after this will appearnansame line. For example

Systemout.print("Hello");
Systemout.print(" ");
Systemout. println("worldl™);

would have the same effect as the following.
Systemout.printin("Hello world!");

Systemout. print () is most useful when the output is being generated a pieceiateq t
often within aloop.

9021

8.4 Standard API: System: out.printf() (page 126)

8.4 Standard API: System: out.printf() (page 126)

TheclassSyst emcontains amethodout . printf (), introduced in Java 5.0, which is similar
toout. print () except that we can use it to produce formatted output of galue

A simple use of this is to take anteger value and have it printed witBpace paddingto a
given positive integer field width. This means the outputtaors leading spaces followed by
the usual representation of the integer, such that the nuoflmharacters printed is at least
the given field width.

The following code fragment includes an example which granstring representation 23,
with leading spaces so that the result has a width of ten cteasa

Systemout. println("1234567890");
Systemout.printf("%0d%", 123);

Here is the effect of these twsiatemens.

1234567890
123

The first%tellsout . printf () that we wish it to format something, tié tells it the minimum
total width to produce, and the following letter says whatdkof conversion to perform. A
tells it to produce the representation of a decimal wholelmemwhich is given after thiermat
specifier string, as the secomtiethod argument The% tellsout . printf() to output the
platform dependeriine separator.

The method can be asked to format a floating point value, ssi@li@ubl e. In such cases we

give the minimum total width, a dot |, the number of decimal places, andfagonversion.
For example,

Systemout.printf("%.2f%", 123.456);

needs more than the given minimum widthlofand so produces the following.
123. 46

Whereas, the format specifier in

Systemout. println("1234567890");
Systemout. printf("9%0.2f %", 123.456);

9022

8.5 Standard API: System: out.printf(): zero padding (nE4@)

prints a total of ten characters for the number, two of whiehdecimal places.

1234567890
123. 46

8.5 Standard API: System: out.printf(): zero padding (pagel40)

We can ask
Systemout. printf() for zero paddingrather tharspace paddingof a number by placing
a leading zero on the desired minimum width in thenat specifier.

The following code fragment contains an example which pranstring representation 23,
with leading zeroes so that the result is tdraracters long.

Systemout. println("1234567890");
Systemout. printf("%10d%", 123);

Here is the effect.

1234567890
0000000123

Similarly,

Systemout. println("1234567890");
Systemout. printf("9%10.2f %", 123.456);

produces the following.

1234567890
0000123. 46

8.6 Standard API: Integer: parselnt() (page 41)

One simple way to turn &xt data string, say" 123" into theinteger (whole number) it
represents is to use the following.

9023

8.7 Standard API: Double: parseDouble() (page 54)

I nt eger. parselnt("123");

I nt eger is aclass(that is, a piece of code) that comes with Java. Insideeger there is a
method (section of code) callepar sel nt . This method takes a text data string given to it in
its brackets, converts it into amt andreturns that number. Aun time error will occur if
the given string does not representi am value.

For example

int firstArgument;
firstArgunment = Integer.parselnt(args[0]);

would take the firstcommand line argumentand, assuming it represents a number (i.e. itis a
string of digits with a possible sign in front), would turniiito the number it represents, then
store that number ifi r st Argurment . If instead the first argument was some other text data
string, it would produce a run time error.

8.7 Standard API: Double: parseDouble() (page 54)

One simple way to turn gext data string, say" 123. 456" into thereal (fractional decimal
number) it represents is to use the following.

Doubl e. par seDoubl e("123. 456") ;

Doubl e is aclass(that is, a piece of code) that comes with Java. Inflaél e there is a
method (section of code) calledar seDoubl e. This method takes a text data string given to
it in its brackets, converts it into afbubl e andreturn s that number. Aun time error will
occur if the given string does not represent a number. Fanple

doubl e firstArgument = Doubl e. parseDoubl e(args[0]);

would take the firscommand line argumentand, assuming it represents a number, would
turn it into the number it represents, then store that nurnrberr st Ar gunent . To represent

a number, the string must be a sequence of digits, possibhyamlecimal point and maybe a
negative sign in front. If instead the first argument was sother text data string, it would
produce a run time error.

9024

8.8 Standard API: Math: pow() (page 73)

8.8 Standard API: Math: pow() (page/73)

Java does not have aperator to compute powers. Instead, there is a standéadscalled
Mat h which contains a collection of usefulethods, includingpow() . This takes two numbers,
separated by a comma, and gives the value of the first numbedr® the power of the second.

For example, thexpressionMat h. pow(2, 10) produces the value of2which is1024.

8.9 Standard API: Math: abs() (page 87)

Java does not have aperator to yield theabsolute valueof a number, that is, its value
ignoring its sign. Instead, the standatdsscalledMat h contains anethod, calledabs. This
method takes a number and gives its absolute value.

For example, thexpressionMat h. abs(-2. 7) produces the valu2 7, as does the expression
Math.abs(3.4 - 0.7).

8.10 Standard API: Math: PI (page/87)

The standardlasscalledMat h contains a constant value call@t that is set to the most ac-
curate value oftthat can be represented using thebl e numbertype. We can refer to this
value using\at h. Pl , as in the following example.

double circleArea = Math.Pl * circleRadius * circl eRadi us;

9 Statement

9.1 Statement (page 18)

A command in a programming language, such as Java, whichsriakecomputer perform
a task is known as atatement Systemout.printin("l wll output whatever | am
told to") is an example of a statement.

9.2 Statement: simple statements are ended with a semi-col@page 18)

All simple statemens in Java must be ended by a semi-colph (This is a rule of the Java
languagesyntax.

9025

9.3 Statement: assignment statement (page 37)

9.3 Statement: assignment statement (page 37)

An assignment statements a Javastatementwhich is used to give a value tovariable, or
change its existing value. This is only allowed if the value ave assigning hastgpe which
matches the type of the variable.

9.4 Statement: assignment statement: assigning a literablue (page 37)

We can assign kteral value, that is a constant, to\ariable using anassignment statement
such as the following.

noCf Peopl eLi vi ngl nMyStreet = 47,

We use a singlequal sign(=), with the name of the variable to the left of it, and the vales
wish it to be given on the right. In the above example,ittteger literal 47 will be placed into
the variablenoOf Peopl eLi vi ngl nMySt r eet . Assuming the variable was declared asiran
variable then this assignment would be allowed because 47 isian

9.5 Statement: assignment statement: assigning an expressvalue (page
38)

More generally than just assigningliteral value, we can use aassignment statemento
assign the value of aexpressionto avariable. For example, assuming we have the variable

i nt noOf Peopl eTol nvi teToTheSt reet Party;
then the code
noOf Peopl eTol nvi teToTheStreet Party = noOf Peopl eLi vi ngl nMyStreet + 4;

whenexecutal, wouldevaluatethe expression on the right of tequal sign(=) and then place
the resulting value in the variabh®O Peopl eTol nvit eToTheStreet Party.

9.6 Statement: assignment statement: updating a variablepage 70)

Javavariables have a name and a value, and this value can change. For exanegdiollowing
code is one way of working out the maximum of two numbers.

9026

9.7 Statement: assignment statement: updating a varstiethand operators (page 87)

int X
int y,
int z;
Code here that gives values to x, y and z.

i nt maxi nunf XYandZ = x;
i f (maxi nunOf XYandZ < y)
maxi munoF XYandZ = vy;
i f (maxi munOF XYandZ < z)
maxi munof XYandzZ = z;

See that the variableaxi nunf XYandZ is given a value which then might get changed, so that
after the end of the secoridstatementit holds the correct value.

A very common thing we want the computer to do, typically desaloop, is to perform a

variable update. This is when a variable has its value changed to a new valughvidbased
on its current one. For example, the code

count = count + 1;

will add one to the value of the variabdeunt . Such examples remind us thatassignment
statementis not a definition ofequality, despite Java’s use of the singlgual sign

9.7 Statement. assignment statement: updating a variableshorthand
operators (page 87)

The need to undertakevariable update is so common, that Java provides varishgrthand
operators for certain types of update.

Here are some of the most commonly used ones.

Operator | Name Example | Longhand meaning
++ postfix increment X++ X =x +1
- - postfix decrement X- - X =x -1
+= compound assignment: add to X +=y [X =X +Yy
-= compound assignment: subtractfram -=y |x = x -y
*= compound assignment: multiplyby| x *=y | x = x * y
/= compound assignment: divideby |x /=y |x=x1Yy

The point of thesgostfix increment, postfix decrementandcompound assignmenbpera-
tors is not so much to save typing when a program is beingemitbut to make the program

9027

9.8 Statement: if else statement (page 60)

easier to read. Once you are familiar with them, you will Bgrfieom the shorter and more
obvious code.

There is also a historical motivation. In the early days @& phogramming language C, from
which Java inherits much of itsyntax, these shorthandperators caused theompiler to
produce more efficient code than their longhand countespd@ite modern Java compiler with
the latest optimization technology should remove this eomc

9.8 Statement: if else statement (page 60)

Theif else statementis one way in Java of havingpnditional execution It essentially con-
sists of three parts: eondition or boolean expressiona statementwhich will be executel
when the condition isr ue (thetrue part), and another statement which will be executed when
the condition i al se (thefalse part). The whole statement starts with tfeserved wordi f .
This is followed by the condition, written in brackets. Nexmes the statement for the true
part, then the reserved woetlse and finally the statement for the false part.

For example, assuming we have tregiable noOf Peopl eTol nvi t eToTheSt r eet Party con-
taining the number suggested by its name, then the code

i f (noCf Peopl eTol nviteToTheSt reet Party > 100)
Systemout.printIn("W wll need a big sound system");

el se
Systemout. println("W should be okay with a normal HFi.");

will cause the computer to compare the current valum6f Peopl eTol nvi t eToTheSt reet Party
with the numberl00, and if it is greater then print out the messagewi || need a big
sound system or otherwise print out the messa@é shoul d be okay with a nornal

H Fi . — it will never print out both messages. Notice the bracketsiiad the condition and
the semi-colons at the end of the two statements inside thlgefstatement. Notice also the
way we lay out the code to make it easy to read, splitting tinesliat sensible places and adding
moreindentation at the start of the two inner statements.

9.9 Statement: if else statement: nested (page 62)

Thetrue part or false part statements inside ahelse statementmay be any valid Javstate-
ment, including other if else statements. When we place an ifgsement inside another, we
say they aremested

For example, study the following code.

9028

9.10 Statement: if statement (page 64)

i f (noCf Peopl eTol nviteToTheSt reet Party > 300)
Systemout.printIn("We will need a Mega master 500 Watt anplifier!");
el se
i f (noOf Peopl eTol nviteToTheStreetParty > 100)
Systemout.printin("We will need a Maxi Master 150 Watt anplifier!");

el se
Systemout. println("W shoul d be okay with a normal HFi.");

Depending on the value o Peopl eTol nvi t eToTheSt r eet Par ty, this will report one of
three messages. Notice the way we have laid out the code above is fhifowing the usual
rules that inner statements have mardentation than those they are contained in, so the
second if else statement has more spaces because it livdestims first one. However, typically
we make an exception to this rule for if else statements destthe false part of another, and
we would actually lay out the code as follows.

i f (noCf Peopl eTol nviteToTheSt reet Party > 300)

Systemout.printin("We wll need a Mega master 500 Watt anplifier!");
el se if (noCf Peopl eTol nviteToTheStreetParty > 100)

Systemout.printIn("We wll need a Maxi Master 150 Watt anplifier!");
el se

Systemout. printIn("W should be okay with a normal HFi.");

This layout reflects ouabstract thinking that the collection of statementsase construct
offering three choices, even though it is implemented usivif else statements. This idea
extends to cases where we want many choices, using manylnestee statements, without
the indentation having to increase for each choice.

9.10 Statement: if statement (page 64)

Sometimes we want the computerdgecutesome code depending oncandition, but do
nothing if the condition is al se. We could implement this using ainelse statementwith an
emptyfalse part. For example, consider the following code.

i f (noCf Peopl eTol nviteToTheSt reet Party > 500)
Systemout. println("You may need an entertainnent |icense!");
el se ;

This will print the message if theariable has a valugreater than 500, or otherwise exe-
cute theempty statementbetween theeserved wordel se and the semi-colon. Such empty
statements do nothing, as you would probably expect!

It is quite common to wish nothing to be done when the condliss al se, and so Java offers

us theif statement This is similar to the if else statement, except it simplgsloot have the
wordel se, nor a false part.

9029

9.11 Statement: compound statement (page 66)

i f (noCf Peopl eTol nviteToTheSt reet Party > 500)
Systemout.printIn("You may need an entertainnent |icense!");

9.11 Statement: compound statement (page 66)

The Javaompound statements simply a list of any number aftatemens between an open-
ing left brace () and a closing right bracg). You could think of the body of anethod, e.g.
mai n(), as being a compound statement if that is helpful. The meaisirstraightforward:
when the computegxecutes a compound statement, it merely executes each statensetd in
it, in turn. More precisely of course, the Jasampiler turns thesource codento byte code
that has this effect when thertual machine executes theompiled program.

We can have a compound statement wherever we can have amyflgtadlement, but it is most
useful when combined with statements which have anothtmsent within them, such ak
else statemerg andif statements.

For example, the following code reports three messages thlesariable has a valugreater
than 500.

i f (noOk Peopl eTol nviteToTheStreetParty > 500)
{

Systemout.printIn("You may need an entertainnent |icense!");
Systemout.printIn("Also hire some street cleaners for the next day?");
Systemout. println("You shoul d consider a bulk discount on | emonade!");

}

When thecondition of the if statement isr ue, the body of the if statement is executed. This
single statement is itself a compound statement, and sdtee statements within it are exe-
cuted. It is for this sort of purpose that the compound stateraxists.

Note how we lay out the compound statement, with the openiagebat the samiedentation
as the if statement, the statements within it having extdemtation, and the closing brace
lining up with the opening one.

Less usefully, a compound statement can be empty, as in ltbevilag example.

i f (noOk Peopl eTol nviteToTheStreetParty > 500)

{
Systemout.println("You may need an entertainnent |icense!");
Systemout.printIn("Also hire some street cleaners for the next day?");
Systemout. println("You shoul d consider a bulk discount on |emnade!");

}
else {}

9030

9.12 Statement: while loop (page 71)

As you might expect, the meaning of an empty compound stateisithe same as the meaning
of anempty statement

9.12 Statement: while loop (page 71)

The while loop is one way in Java of havingepeated execution It essentially consists of
two parts: acondition, and astatementwhich will be executel repeatedly while the condition
istrue. The whole statement starts with thesserved wordwhi | e. This is followed by the
condition, written in brackets. Next comes the statementet@epeated, known as theop
body.

For example, the following code is a long winded and ineffitigay of giving thevariable x
the value?l.

int x =1,
while (x < 20)
X =X + 2;

The variable starts off with the value and then repeatedly h&sadded to it, until it is no
longerless than20. This is when théoop ends, and will have the value1.

Notice the brackets around the condition and the semi-catidine end of the statement inside
the loop. Notice also the way we lay out the code to make it asgad, splitting the lines at
sensible places and adding mandentation at the start of the inner statement.

Observe the similarity between the while loop and ithetatement — the only difference in
syntaxis the first word. There is a similarity in meaning too: the Mhoop executes its body
zero ormore times, whereas the if statement executes its body zemm®time. However,
if statements arenot loops and you should avoid the common novice phrase “if logpén
referring to them!

9.13 Statement: for loop (page 77)

Another kind ofloopin Java is thdor loop, which is best suited for situations when the number
of iterations of theloop body is known before the loop starts. We shall describe it usieg th
following simple example.

for (int count = 1; count <= 10; count = count + 1)
Systemout. println("Counting " + count);

9031

9.14 Statement: for loop: multiple statements in for upgpsge 136)

Thestatementstarts with theeserved wordf or , which is followed by three items in brackets,
separated by semi-colons. Then comes the loop body, whiahsiagle statement (often a
compound statementof course). The first of the three items in bracketsfigranitialization ,
which is performed once just before the loop starts. Typithls involves declaring sariable
and giving an initial value to it, as in the above examplé count = 1. The second item is
thecondition for continuing the loop — the loop will onlgxecuteand will continue to execute
while that condition ig r ue. In the example above the conditiorcisunt <= 10. Finally, the
third item, afor update, is a statement which is executed at #mel of each iteration of the
loop, that isafter the loop body has been executed. This is typically used tog#éhe value
of the variable declared in the first item, as in our exaneplent = count + 1.

So the overall effect of our simple example is: dectarent and set its value tb, check that it
is less thanl0, print outCount i ng 1, add one ta@ount, check again, print oufounti ng 2,
add one ta@ount , check again, and so on until the conditiom & se when the value ofount
has reachedl.

We do not really need the for loop, as tikile loop is sufficient. For example, the code above
could have been written as follows.

int count = 1;

while (count <= 10)

{
Systemout. println("Counting " + count);
count = count + 1;

}

However you will see that the for loop version has placedttogreall the code associated with
the control of the loop, making it easier to read, as well atla shorter.

There is one very subtle difference between the for loop dmtbwoop versions of the example
above, concerning threcopeof the variableount , that is the area of code in which the variable
can be used. Variables declared in the initialization piatfor loop can only be used in the for
loop —they do not exist elsewhere. This is an added benef#infjdor loops when appropriate:
the variable, which is used solely to control the loop, cartmeoaccidentally used in the rest of
the code.

9.14 Statement: for loop: multiple statements in for update(page 136)

Javafor loops are permitted to have more than @tatementin their for update, that is, the
part which isexecutel after theloop body. Rather than always being one statement, this part
may be a list of statements with commas lfetween them.

One appropriate use for this feature is to have a for loopek@tutes twice, once each for the
two possible values of laoolean variable

9032

9.15 Statement: statements can be nested within each ptusr 02)

For example, the following code prints out scenarios to lim people to live in the city of
Manchester!

bool ean i sRaining = true;
bool ean haveUnbrella = true;
for (int countU = 1; countU <= 2; count Ut+, haveUnbrella = !'haveUnbrell a)

for (int countR = 1; countR <= 2; countR++, isRaining = !isRaining)
{
Systemout.printin("It is" + (isRaining ? "" : " not") + " raining.");
Systemout. println
("You have " + (haveUnbrella ? "an" : "no") + " umbrella.");

if (isRaining & !haveUnbrella)
Systemout.printin("You get wet!");
el se
Systemout. printIn("You stay dry.");
Systemout. printin();
Il for

9.15 Statement: statements can be nested within each othgrage 92)

Statements that control execution flow, suchcaps andif else statemens have othestate-
ments inside them. These inner statements can be any kind ofretateincluding those that
control the flow of execution. This allows quite complabgorithms to be constructed with
unlimited nesting of different and same kinds of controtestaents.

For example, one simple (but inefficient) way to print outtio@-negative multiples ofwhich
lie betweery (> 0) andzinclusive, is as follows.

for (int nunber = 0; nunber <= z; nunber += X)
if (nunber >=y)
Systemout.printin("A nultiple of " + x + " between " +y
+"and " +z + " is " + nunber);

9.16 Statement: switch statement with breaks (page 107)

Java provides aonditional execution statementwhich is ideal for situations where there are
many choices based on some value, such as a number,dmpiatto specific fixed values for
each choice. Itis called trewitch statement The following example code will applaud the
user when they have correctly guessed the winning numkldgfencourage them when they
are one out, or insult them otherwise.

int userCuess = Integer.parselnt(args[0]);

9033

9.17 Statement: switch statement without breaks (page 110)

swi tch (userGuess)

{

case 99: case 101:
Systemout.println("You are close!");
br eak;
case 100:
Systemout. println("Bingo! You win'");
Systemout. println("You have guessed correctly.");
br eak;
defaul t:
Systemout.printin("You are pathetic!");
Systemout. println("Have another guess.");

br eak;
Il switch

The switch statement starts with theserved wordswi t ch followed by a bracketeéxpres-
sion of a type that has discrete values, suchias (notably notdoubl e). The body of the
statement is enclosed in braceSagd}), and consists of a list of entries. Each of these starts
with a list of labels, comprising the reserved wette followed by a value and then a colon
(). After the labels we have one or more statements, typiealtiing with abreak statement

One (at most) label is allowed to be the reserved waeifchul t followed by a colon — usually
written at the end of the list.

When a switch statement executel, the expression isvaluated and then each label in the
body is examined in turn to find one whose value is equal todh#te expression. If such
a match is found, the statements associated with that labeb@cuted, down to the special
break statementwhich causes the execution of the switch statement to eradmiétch is not
found, then instead the statements associated witheth&ul t label are executed, or if there
is nodef aul t then nothing is done.

9.17 Statement: switch statement without breaks (page 110)

A less common form of thewitch statementis when we omit théreak statemens at the end

of the list of statements associated with each setafse labels. This, perhaps surprisingly,
causes execution to “fall through” to the statements aasetiwith the next set efase labels.
Most of the time we daot want this to happen — so we have to be careful to remember the
break statements.

We can also mix the styles — having break statements for satmeg and not for some others.
The following code is a bizarre, but interesting way of dosmgnething reasonably simple. It
serves as an illustration of the switch statement, and agdegfor you. It takes twantegers,
the second of which is meant to be in the range one to ten, apdtsia result which is some
function of the two numbers. What is that result?

9034

9.18 Statement: do while loop (page 112)

int val ue
int power

I nt eger. parselnt(args[0]);
I nt eger. parselnt(args[1]);

i nt val ueToThePower1 = val ue;

int val ueToThePower2 = val ueToThePower1 * val ueToThePower 1;
i nt val ueToThePower4 = val ueToThePower?2 * val ueToThePower 2;
i nt val ueToThePower 8 = val ueToThePower4 * val ueToThePower 4;

int result = 1;

swi tch (power)

{

case 10: result *= val ueToThePower 1;
case 9: result *= valueToThePower1;

case 8. result *= val ueToThePower 8;
br eak;

case 7. result *= val ueToThePower1;

case 6: result *= val ueToThePower1;

case 5. result *= val ueToThePower1;

case 4. result *= val ueToThePower 4;
br eak;

case 3. result *= val ueToThePower1;

case 2. result *= val ueToThePower 2;
br eak;

case 1. result *= val ueToThePower1;
br eak;

Il switch

Systemout.printin(result);

If you find the semantics of the switch statement somewhé&tgaat, then do not worry — you

are not alone! Java inherited it from C, where it was designede to ease the work of the
compiler than to be a good construct for the programmer. You will firelgtvitch statement is

less commonly used than tiifeelse statement and the majority of times you use it, you will

want to have break statements on every setagk labels. Unfortunately, due to them being
optional, accidentally missing them off does not causerapile time error.

9.18 Statement: do while loop (page 112)

Thedo while loop s the third way in Java of havingpeated execution It is similar to the
while loop but instead of having theondition at the start of théoop, it appears at the end.
This means the condition evaluated after theloop body is executa rather than before. The
whole statementstarts with thereserved worddo. This is followed by the statement to be
repeated, then the reserved ward | e and finally the condition, written in brackets.

For example, the following code is a long winded and ineffitigay of giving thevariable x

9035

the value?l.

int X = 1;
do

X += 2;
while (x < 20);

Observe the semi-colon that is needed after the condition.

Of course, the body of the do while loop might be@mpound statementin which case we
might lay out the code as follows.

int X = 0;
int y = 100;
do
{

X++;

y--,

} while (x I'=y)

The above is a long winded and inefficient way of giving both ¥ariablesx andy the value
50.

Note that, because the condition is evaluatie the body is executed, the body is executed at
least once. This is in contrast to the while loop, which migde have its body executed zero
times.

10 Error

10.1 Error (page 20)

When we write thesource codefor a Java program, it is very easy for us to get something
wrong. In particular, there are lots of rules of the languidgé our program must obey in order
for it to be a valid program.

10.2 Error: syntactic error (page|20)

One kind of error we might make in our programsystactic errors. This is when we break
thesyntaxrules of the language. For example, we might miss out a ajdsiacket, or insert an

9036

10.3 Error: semantic error (page 22)

extra one, etc.. This is rather like missing out a word in d@esase of natural language, making
it grammatically incorrect. The sign below, seen strappeti¢ back of a poodle, contains bad
grammar — it has ans missing.

My other dog an AIsatia:I

Syntactic errors in Java result in teempiler giving us an error message. They can possibly
confuse the compiler, resulting in it thinking many morentig are wrong too!

10.3 Error: semantic error (page 22)

Another kind of error we might make is semantic error, when we obey the rules of the
syntax but what we have written does not make any sense — it has nanemémeaning).
Another sign on a different poodle might say

My other dog is a Porsch'.

which is senseless because a Porsche is a kind of car, not a dog

10.4 Error: compile time error (page 22)

Javasyntactic errors and mangemantic errors can be detected for us by tbempiler when
it processes our program. Errors that the compiler can tatecalledcompile time errors.

10.5 Error: run time error (page 24)

Another kind of error we can get with programsris) time error s. These are errors which
are detected when the progranrus rather than when it isompiled. In Java this means the
errors are detected and reported by\h&ial machine, j ava.

Java calls run time erroexceptiors. Unfortunately, the error messages producegdama can
look very cryptic to novice programmers. A typical one migbtas follows.

Exception in thread "nain" java.lang. NoSuchMet hodError: main

You can get the best clue to what has caused the error by pldghlp at the words either side
of the colon (). In the above example, the message is saying thet cannot find thenethod
calledmai n.

9037

10.6 Error: logical error (page 29)

10.6 Error: logical error (page 29)

The most tricky kind of error we can make in our programs iegical error. For these
mistakes we do not get an error message fromctimapiler, nor do we get one aun time
from thevirtual machine. These are the kind of errors for which the Java program we hav
written is meaningful as far as Java is concerned, it is just our program does the wrong
thing compared with what we wanted. There is no way the canpit virtual machine can
help us with these kinds of error: they are far, far too stapidnderstand thproblemwe were
trying to solve with our program.

For this reason, many logical errors, especially very suinles, manage to slip through unde-
tected by human program testing, and end upwass in the final product — we have all heard
stories of computer generated demands for unpaid bills negative amounts, etc..

11 Execution

11.1 Execution: sequential execution (page 23)

Programs generally consist of more than stetement in a list. We usually place these on
separate lines to enhance human readability, althoughddmgnot care about that. Statements
in such a list areexecutel sequentially, one after the other. More correctly, thedawmpiler
turns each one into correspondibgte codes, and thevirtual machine executes each collec-
tion of byte codes in turn. This is known asquential execution

11.2 Execution: conditional execution (page 60)

Having a computer always obey a list of instructions in aaierorder is not sufficient to solve
many problems. We often need the computer to do some thinlgsuoder certain circum-
stances, rather than every time the programurs. This is known agonditional execution
because we get the computeeteecutecertain instructionsonditionally, based on the values
of thevariables in the program.

11.3 Execution: repeated execution (page 70)

Having a computer always obey instructions just once withmrun of a program is not
sufficient to solve many problems. We often need the compatdo some things more than
once. In general, we might want some instructions t@xecutal, zero, one or many times.
This is known agepeated executioniteration, or looping. The number of times a loop of
instructions is executed will depend on soceadition involving thevariables in the program.

9038

12 Code clarity

12.1 Code clarity: layout (page 31)

Java does not care how we lay our code out, as long as we usevguteespaceto separate
adjacent symbols that would otherwise be treated as one dyinthey were joined. For
examplepubl i ¢ voi d with no space between the words would be treated as the siygiieol

publ i cvoi d and no doubt causea@mpile time error. So, if we were crazy, we could write
all our progransource codeon one line with the minimum amount of space between symbols!

public class HelloSol arSystem{public static void main(String[]args){Systemout.println("Hello Mercury!");Systemout.println("He

Oh dear — it ran off the side of the page (and that was with alenfaht too). Let us split it up
into separate lines so that it fits on the page.

public class HelloSol arSystem{public static void main(String[]args){
Systemout.printin("Hello Mercury!"); System out. println(

"Hello Venus!"); Systemout.printin("Hello Earth!"); Systemout.println
("Hello Mars!"); Systemout.printin("Hello Jupiter!"); System out.
printIn("Hello Saturn!");Systemout.println("Hello Uanus!"); System
out.printIn("Hello Neptune!"); Systemout.println("CGoodbye Pluto!");}}

Believe it or not, this program would stitompile andrun okay, but hopefully you will agree
that it is not very easy fous to read. Layout is very important to the human reader, and
programmers must take care and pride in laying out theirnarag as they are written. So we
split our progransensibly, rather than arbitrarily, into separate lines, andingentation (i.e.
spaces at the start of some lines), to maximize the reatyatilour code.

12.2 Code clarity: layout: indentation (page 32)

A classcontains structurasestedwithin each other. The outer-most structure is the clasfts
consisting of its heading and then containing it's body wittine braces. The body contains
items such as theain method. This in turn consists of a heading and a body contained withi
braces.

The idea ofindentation is that the more nested a part of the code is, the more spaas #th
the start of its lines. So the class itself has no spacesidbbdy, within the braces, has two
or three. Then the body of the main method has two or three .mfane should be consistent:
always use the same number of spaces per nesting level.l$bi@ @ood idea to avoid using
tab characters as they can often look okay on your screen, but not line upgrhp when the
code is printed.

9039

12.3 Code clarity: layout: splitting long lines (page 43)

In addition, another rule of thumb is that opening brad@ssfiould have the same amount of
indentation as the matching closing bragg (You will find that principle being used through-

out this book. However, some people prefer a style whereingdamaces are placed at the end
of lines, which this author believes is less clear.

public class HelloWrld {

public static void main(String[] args) {
Systemout.printin("Hello world!");

}
}

12.3 Code clarity: layout: splitting long lines (page 43)

One of the features of good layout is to keep source coddines from getting too long. Very
long lines cause the reader to have to work harder in ho@tege movement to scan the code.
When code with long lines is viewed on the screen, the reatlegrehas to use a horizontal
scroll bar to see them, or make the window so wide that othedaws cannot be placed next
to it. Worst of all, when code with long lines is printed on pagthere is a good chance that the
long lines will disappear off the edge of the page! At verysteghey will be wrapped onto the
next line making the code messy and hard to read.

So a good rule of thumb is to keep your source code lines sttbeie 80characters long. You
can do this simply in modext editors by never making the text window too wide and never
using the horizontal scroll bar while writing the code.

When we do have atatementthat is quite long, we simply split it into separate lines atec
fully chosen places. When we choose such places, we beamuh it most human readers
scan down the left hand side of the code lines, rather thaheeary word. So, if a line is a
continuation of a previous line, it is important to make tiwious at the start of it. This means
using an appropriate amountiofdentation, and choosing the split so that the first symbol on
the continued line is not one which could normally start éesteent.

A little thought at the writing stage quickly leads to a hatfityood practise which seriously
reduces the effort required to read programs once they dateemr Due tobug fixing and
general maintenance over the lifetime of a real prograngdlde is read many more times than
it is written!

12.4 Code clarity: comments (page 82)

In addition to having careful layout ariddentation in our programs, we can also enhance
human readability by usingomments. These are pieces of text which are ignored by the
compiler, but help describe to the human reader what the program daksaav it works.

9040

12.5 Code clarity: comments: marking ends of code constifpetgée 83)

For example, every program should have comments at thesstgrtg what it does and briefly
how it is used. Alsoyariables can often benefit from a comment before their declaration
explaining what they are used for. As appropriate, therellshioe comments in the code too,
before certain parts of it, explaining what these netdtemens are going to do.

One form of comment in Java starts with the symblal The rest of that source line is then the
text of the comment. For example

[/ This is a comment, ignored by the conpiler.

12.5 Code clarity: comments: marking ends of code construst(page 83)

Another good use alomments is to mark every closing bracg)with a comment saying what
code construct it is ending. The following skeleton exanuolée illustrates this.

public class Soned ass

{
public static void main(String[] args)
{
while (...)
{
Y11 while
} Il main

} Il class Sonmed ass

13 Design

13.1 Design: hard coding (page 36)

Programs typically process inpdata, and produce output data. The input data might be
given ascommand line argumens, or it might be supplied by the user through somser
interface such as graphical user interfaceor GUI . It might be obtained frorfiles stored on
the computer.

9041

13.2 Design: pseudo code (page 73)

Sometimes input data might be built into the program. Sudh tasaid to béhard coded
This can be quite common while we are developing a programnanidaven’t yet written the
code that obtains the data from the appropriate place. kratises it might be appropriate to
have it hard coded in the final version of the program, if suata@nly rarely changes.

13.2 Design: pseudo code (pagel|73)

As our programs get a little more complex, it becomes hardrie\them straight into theext
editor. Instead we need tesignthembefore we implement them.

We do not design programs by starting at the first word andngnali the last, like we do when
we implement them. Instead we can start wherever it suitstygieally at the trickiest bit.

Neither do we express our designs in Java — that would be ehbagltb do, as Java forces our
mind to be cluttered with trivia which, although essentmhe final code, is distracting during
the design.

Instead, we express oatgorithm designs inpseudo codewhich is a kind of informal pro-
gramming language that has all unnecessary trivia ign@edfor example, we do not bother
writing the semi-colons at the end sfatemens, or the brackets rountbnditions etc.. We
might not bother writing thelassheading, nor thenethod heading, if it is obvious to us what
we are designing. And so on.

Also, during design in pseudo code, we can vary the levabstraction to suit us —we do not
have to be constrained to use only the features that areablaih Java.

14 Variable

14.1 Variable (page 36)

A variable in Java is an entity that can holddata item. It has a name and a value. Itis rather
like the notion of a variable in algebra (although it is nottgquhe same thing). The name of
a variable does not change — it is carefully chosen by therpromer to reflect the meaning
of the entity it represents in relation to the problem beialyed by the program. However,
the value of a variable can (in general) be changed — we can vary it. éléme name of the
concept: avariable is an entity that has a (possibly) varying value.

The Javacompiler implements variables by mapping their names aramputer memory
locations, in which the values associated with the varmbldl be stored atun time.

So one view of a variable is that it is a box, like a pigeon hisleyhich a value can be placed. If
we wish, we can get the program to place a different valueahlibx, replacing the previous;

9042

14.2 \Variable: int variable (page 37)

and we can do this as many times as we want to.

Variables only have values at run time, when the programnsiing. Their names, created by
the programmer, are already fixed by the time the progracomspiled. Variables also have
one more attribute — thiype of the data they are allowed to contain. This too is choseméy t
programmer.

14.2 Variable: int variable (page 37)

In Javayvariables must be declared invariable declaration before they can be used. This is
done by the programmer stating ttype and then the name of the variable. For example the
code

i nt noOf Peopl eLi vi ngl nM/St reet ;

declares amt variable, that is a variable the value of which will be ant , and which has the
namenoO Peopl eLi vi ngl nM/St reet . Observe the semi-colon X which, according to the
Javasyntaxrules, is needed to terminate the variable declaratiomuAtime, this variable is
allowed to hold annteger (whole number). Its value can change, but it will always bé @n
The name of a variable should reflect its intended meaninghisncase, it would seem from
its name that the programmer intends the variable to alwaidsthe number of people living
in his or her street. The programmer would write code to enthat this meaning is always
reflected by its value at run time.

By convention, variable names start with a lower case ledtet consist of a number of words,
with the first letter of each subsequent word capitalized.

14.3 \Variable: a value can be assigned when a variable is dacéd (page
42)

Java permits us to assign a value i@maable at the same time as declaring it. You could regard
this as a kind ofssignment statemenin which the variable is also declared at the same time.
For example

int noCf HousesI nWStreet = 26;

14.4 Variable: double variable (page 54)

We can declarelouble variables in Java, that isariables which have théype doubl e. For
example the code

9043

14.5 \Variable: can be defined within a compound statemege(p2)

doubl e meanAgeO Peopl eLi vi ngl nM/House;

declares avariable of typedoubl e, with the namereanAge Peopl eLi vi ngl nMyHouse. At

run time, this variable is allowed to hold@oubl e data item, that is aeal (fractional decimal
number). The value of this variable can change, but it willagls be aoubl e, including of
course, approximations @fhole numbers such a40. 0.

14.5 Variable: can be defined within a compound statement (e 92)

We can declarewariable within the body of anethod, such asmi n(), (practically) anywhere
where we can havestatement The variable can then be used from that point onwards within
the method body. The area of code in which a variable may beéigsmlled itsscope

However, if we declare a variable within@mpound statement its scope is restricted to
the compound statement: it does not exist after the end ofahgound statement. This is
a good thing, as it allows us to localize our variables to tkecepoint of their use, and so
avoid cluttering up other parts of the code with variablesilable to be used but which have
no relevance.

Consider the following symbolic example.

public static void main(String[] args)

{
int X = ...
... X is available here.
while (...)
{
. X is available here.
inty =...
. X and y are available here.
I while
. X is available here, but not vy,
. S0 we cannot accidentally refer toy instead of x.
} [l main

The variablex can be used from the point of its definition onwards up to theeadrthe method,
whereas the variablg can only be used from the point of its definition up to the endhef
compound statement which is the body of tbep.

9044

14.6 \Variable: local variables (page 124)

14.6 Variable: local variables (page 124)

When we declargariables inside anethod, they are local to that method and only exist while
that method is running — they cannot be accessed by otheongtihey are known dscal
variables or method variables. Also, different methods can have variables with the same
name — they are different variables.

14.7 Variable: class variables (page 124)

We can declargariables directly inside alass outside of anynethods. Suchclass variables
exist from the moment the class is loaded intovimeial machine until the end of the program,
and they can be accessed by any method in the class. For exahgplollowing are three class
variables which might be used to store the components of/tedate.

private static int presentDay;
private static int presentMnth;
private static int presentYear;

Notice that we use theeserved wordst at i ¢ in their declaration. Also, class variables have a
visibility modifier — the above have all been declared as beninate, which means they can
only be accessed by code inside the class which has decheed t

14.8 Variable: a group of variables can be declared togethepage 129)

Java permits us to declare a groupvafiables which have the santgpe in one declaration,
by writing the type followed by a comma-separated list ofthgable names. For example

int X, y;

declares two variables, both of typet . We can even assign values to the variables, as in the
following.

i nt mninunVotingAge = 18, m ni numArnyAge = 16;

This shorthand is not as useful as one might think, becausewfke, we typically have a
comment before each variable explaining what its meaning is. Howeawve can sometimes
have one comment which describes a group of variables.

9045

14.9 \Variable: boolean variable (page 133)

14.9 Variable: boolean variable (page 133)

Thebool ean type can be used in much the same way as anddoubl e, in the sense that we
can havéboolean variables andmethods can havéool ean as theirreturn type.

For example, consider the following code.

if (agel < age2 || agel == age2 && heightl <= height2)
Systemout.println("You are in the correct order.");
el se
Systemout. println("Please swap over.");

We could, if we wished, write it usingla@ol ean variable.

bool ean correct Order = agel < age2 || agel == age2 && heightl <= height?2;
if (correctOrder)

Systemout.printIn("You are in the correct order.");
el se

Systemout. println("Please swap over.");

Some people would argue that this makes for more readabée asdn effect, we have named
thecondition in a helpful way. How appropriate that is would depend on hbwiaus the code

is otherwise, which is context dependent and ultimatelyesaiive. Of course, the motive for
storing the condition value in\aariable is less subjective if we wish to use it more than once.

bool ean correctOrder = agel < age2 || agel == age2 && heightl <= height2;
if (correctOrder)

Systemout.println("You are in the correct order.");
el se

Systemout. println("Please swap over.");

Lots of stuff here.
if (!correctOrder)

Systemout.printIn("Don't forget to swap over!");

Many novice programmers, and even some so-called expédres) writing the code above may
have actually written the following.

bool ean correct O der;
if (agel < age2 || agel == age2 && heightl <= height2)
correctOrder = true;

9046

14.10 Variable: char variable (page 145)

el se
correctOrder = fal se;

if (correctOder == true)
Systemout.println("You are in the correct order.");
el se

Systemout. println("Please swap over.");
Lots of stuff here.
if (correctOrder == fal se)

Systemout.printIn("Don't forget to swap over!");

There are threterriblethings wrong with this code (two of them are the same realigentify
them,and do not write code like that!

14.10 Variable: char variable (page 145)

We can declarehar variables in Java, that isariables which have théype char . For exam-
ple the code

char firstLetter ='J";

declares a variable of typehar , with the namd i rst Letter. At run time, this variable is
allowed to hold ahar dataitem, that is a singleharacter.

15 Expression

15.1 Expression: arithmetic (pagée 38)

We can havarithmetic expressiors in Java rather like we can in mathematics. These can con-
tain literal values, that is constants, such as theeger literals 1 and18. They can also con-
tain variables which have already been declared, apérators to combine sub-expressions
together. Four commoarithmetic operators areaddition (+), subtraction (-), multiplica-

tion (*) anddivision (/). Note the use of an asterisk for multiplication, and a faxhslash for
division — computer keyboards do not have multiply or divsgenbols.

These four operators at@nary infix operator s, because they take twaperands, one on

either side of the operatot. and- can also be used as theary prefix operators, plus and
minus respectively, as in5.

9047

15.2 Expression: arithmetic: int division truncates re§oége 52)

When anexpressionis evaluatel (expression evaluatiof Java replaces each variable with
its current value and works out the result of the expressepedding on the meaning of the
operators. For example, if the variableX Peopl eLi vi ngl nMySt r eet had the valud7 then
the expressionoC Peopl eLi vi ngl nMyStreet + 4 would evaluate t&1.

15.2 Expression: arithmetic: int division truncates resut (page 52)

The fourarithmetic operators, +, -, * and/ of Java behave very similarly to the corresponding
operators in mathematics. There is however one seriouerelifte to look out for. When
the division operator is given twointegers (whole numbers) it usaateger division which
always yields an integer as its result, by throwing away aagtional part of the answer. So,
8 | 2 gives the answet as you might expect, b8t / 2 also givest —not4. 5 as it would in
mathematics. It does not round to the nearest whole nuntlaways rounds towards zero. In
mathematic45 / 4 gives3. 75. In Java it yields3 not4.

15.3 Expression: arithmetic: associativity and int divison (page 52)

Like theoperators+ and- , the operator$ and/ have equabperator precedencgbut higher
than+ and-) and also havéeft associativity.

However, there is an extra complication to consider becthesdava operator truncates its
answer when given twimtegers. Consider the following twarithmetic expressiors.

Expression | Implicit brackets | Value
9* 4/ 2|(9* 4/ 2 18
9/ 2*4\|(9/ 2 *4 16

In mathematics one would expect to get the same answer framtheseexpressiors, but not
in Javal

15.4 Expression: arithmetic: double division (page 55)

The Javadivision operator, / , usesdouble division and produces doubl e result if at least
one of itsoperands is adoubl e. The result will be the best approximation to the actual arsw
of the division.

9048

15.5 Expression: arithmetic: remainder operator (page 149

Expression | Result | Type of Result
8/ 2 4 i nt

81 2.0 4.0 doubl e

9/ 2 4 i nt

9/ 2.0 4.5 doubl e

9.0/ 2 4.5 doubl e

9.0/ 2.0 | 4.5 doubl e

15.5 Expression: arithmetic: remainder operator (page 149

Anotherarithmetic operator in Java is theemainder operator, also known as thenodulo
operator,% When used with twonteger operands, it yields the remainder obtained from
dividing the first operand by the second. As an example, thewing method determines
whether a givemnt method parameteris an even number.

public static bool ean i SEven(int number)

{

return nunber %2 == 0;
} Il isEven

15.6 Expression: brackets and precedence (page 45)

In addition tooperators andvariables, expressiors in Java can have round brackets in them.
As in mathematics, brackets are used to define the strudttine expression by grouping parts
of it into sub-expressions. For example, the following twpressions have different structures,
and thus very different values.

(2 +4) * 8
2+ (4*8)

The value of the first expression is made fromalaelition of 2 and4 and thermultiplication
of the resultings by 8 to get48. The second expressionasaluated by multiplying4 with 8
to get32 and then adding to that result, ending up wit84.

To help us see the structure of these two expressions, leaustdem agxpression tres.

9049

15.7 Expression: associativity (page 48)

(2 +4) * 8 2 + (4% 8)

* +
I\ I ___
- 8 2 *
[\ [\

2 4 4 8

What if there were no brackets?
2+4*8

Java allows us to have expressions without any bracketspooe generally, without brackets
aroundevery sub-expression. It provides rules to define what the stradisuch an expression
is, i.e., where the missing brackets should go. If you loakatt in the above expression, you
will see that it has an operator on either side of it. In a sethg2+ operator and th& operator
are both fighting to have thieas anoperand. Rather like a tug of was is pulling the4 to the
left, and* is tugging it to the right. The question is, which one wins@a)as in mathematics,
provides the answer by having varying levelopkrator precedence The* and/ operators
have a higher precedence thaand- , which meang fights harder tham, so itwins!2 + 4

* 8 evaluates t@4.

15.7 Expression: associativity (page 48)

The principle ofoperator precedenceis insufficient to disambiguate adixpressiors which
are not fully bracketed. For example, consider the foll@\empressions.

10 + 7 + 3
10+7 - 3
10 - 7 + 3
10 - 7 - 3

In all four expressions, thé is being fought over by twmperators which have the same
precedence: either twe, two -, or one of each. So where should the missing brackets go?
The expression trees could have one of the two following structures, whépé is the first
operator, an@P2 is the second.

9050

15.8 Expression: boolean (page 60)

10 OPL (7 OP2 3) (10 OPL 7) OP2 3

Let us see whether it makes a difference to the results ofbeessions.

Expression Value
(10 +7) + 3|20
10 + (7 + 3) | 20
(10 +7) - 3|14
10 + (7 - 3) |14
(10 - 7) + 3|6
10 - (7 +3) |0
(10 - 7) - 3]0
10 - (7 - 3) | 6

As you can see, it does make a difference sometimes — in tlasges gvhen the first operator
is subtraction (-). So how does Java resolve this problem? As in mathema#iea,aperators
have anoperator associativityas well as a precedence. The operatgrs, * and/ all have
left associativity which means that when two of these operators of equal pracedse both
fighting over oneoperand, it is the left operator that wins. If you like, the tug of wakes
place on sloping ground with the left operator having theaatixge of being lower down than
the right one!

Expression | Implicit brackets | Value
10+7+3|(10+7) +3 20

10+7-3[(10+7) -3 |14
10-7+3[(10-7) +3 |6
10-7-3[(10-7) -3 |0

The operator$ and/ also have equal precedence (but higher thand-) so similar situations
arise with those too.

15.8 Expression: boolean (page 60)

An expressionwhich whenevaluated yields eithen r ue or f al se is known as acondition,
and is typically used for controllingonditional execution Conditions are also calldzbolean
expressiors.

9051

15.10 Expression: boolean: logical operators (page 128)

15.9 Expression: boolean: relational operators (page 60)

Java gives us sirelational operators for comparing values such as numbers, which we can use
to make upconditions. These are abinary infix operator s, that is they take twoperands,
one either side of theperator. They yieldt r ue or f al se depending on the given values.

Operator | Title Description
== Equal This is theequal operator, which provides the notion pf
equality. a == b yieldst r ue if and only if the value of
a is the same as the value Iof

I = Not equal This is thenot equal operator, providing the the notign
of not equality. a ! = b yieldstrue if and only if the
value ofa is not the same as the value lof

< Less than This is theless thanoperator.a < b yieldst r ue if and
only if the value ofa is less than the value of

> Greater than This is thegreater than operator.a > b yieldst r ue if
and only if the value o is greater than the value bf

<= Less than or equal | This is theless than or equaloperator.a <= b yields

true if and only if the value of is less than value df,
or is equal to it.

>= Greater than or equalThis is thegreater than or equal operator. a >= b
yieldstrue if and only if the value ofa is greater thar
value ofb, or is equal to it.

15.10 Expression: boolean: logical operators (page 128)

For somealgorithms, we needtonditions onloops etc. that are more complex than can be
made simply by using theelational operators. Java provides us witlogical operators to
enable us to glue together simple conditions into biggesoie three most commonly used
logical operators areonditional and, conditional or andlogical not.

Operator | Title | Posh title Description

&& and | conjunction | c1 && c2 istrue if and only if both conditiong1
andc?2 evaluateto true. Both of the two condi-
tions, known agonjuncts, must be r ue to satisfy
the combined condition.

| | or disjunction | cl || c2istrue if and only if at least one of thg
conditionscl andc?2 evaluate tarue. The com-
bined condition is satisfied, unless both of the two
conditions, known adisjuncts, aref al se.
! not | negation I'cistrue if and only if the conditiorc evaluates tg
f al se. This operator negates the given condition.

D

We can define thes®perators usingruth table s, where ? means tloperandis not evaluated.

9052

15.10 Expression: boolean: logical operators (page 128)

cl c2 cl & c2 || cl c2 cl || c2 c c
true true true true ? true

true fal se
true false | fal se false | true true

false | true
false | ? fal se false | false | fal se

Using these operators, we can make up complex conditionk,asithe following.

agel < age? || agel == age2 && heightl <= height2

As with thearithmetic operators, Java definesperator precedenceandoperator associa-
tivity to disambiguate complex conditions that are not fully bede#d, such as the one above.
&& and| | have alower precedence than the relational operators vianda lower precedence
than the arithmetic ones. has a very high precedence (even more so than the arithnpetie o
ators) andk& has a higher precedence thgn So the above exampéxpressionhas implicit
brackets as follows.

(agel < age?) || ((agel == age2) && (heightl <= height2))

This might be part of a program thaorts people standing in a line by age, but when they
are the same age, it sorts them by height. Assuming thanthvariablesagel andhei ght 1
contain the age and height of one person, and the other twabl@s similarly contain that
data for another, then the following code might be used to tellgh& to swap their order if
necessary.

if (agel < age2 || agel == age2 && heightl <= height2)
Systemout.println("You are in the correct order.");
el se
Systemout. println("Please swap over.");

We might have, perhaps less clearly, chosen to write tha¢ esdollows.

if (!(agel < age2 || agel == age2 && heightl <= height2))
Systemout. println("Please swap over.");

el se
Systemout.println("You are in the correct order.");

You might find it tricky, but it's worth convincing yourselfyet another way of writing code
with the same effect would be as follows.

if (agel > age2 || agel == age2 && heightl > height2)
Systemout. println("Please swap over.");

el se
Systemout.println("You are in the correct order.");

9053

15.11 Expression: conditional expression (page 94)

In mathematics, we are used to writing expressions sugthxag < zto mean true, if and only
if y lies in the rangex to z, inclusive. In Java, such expressions need to be written &s y
&& y <= z.

Also, in everyday language we are used to using the words &utt'or’ where they have very
similar meanings to the associated Java operators. Howegesay things like “my mother’s
age is 46 or 47”. In Java, we would need to wmtg\umAge == 46 || nyMimAge == 47
to capture the same meaning. Another example, “my brothreraged 10 and 12", might be
coded aswyBrot her 1Age == 10 && nyBrot her 2Age == 12.

However, there are times in everyday language when we say/ \ainen we really mean “or”

in logic, and hence would uge in Java. For example, “the two possible ages for my dad are
49 and 53" is really the same as saying “my dad’s age isod®ny dad’s age is 53”.

15.11 Expression: conditional expression (page 94)

The conditional operator in Java permits us to writeonditional expressiors which have
different sub-expressiorevaluated depending on son@ndition. The general form is

c ?el: e2

wherec is some condition, andl ande2 are twoexpressiors of sometype. The condition

is evaluated, and if the value is ue thenel is evaluated and its value becomes the result of
the expression. If the conditionisal se thene? is evaluated and its value becomes the result
instead.

For example
int mxXY =x >y ?Xx:vy;
is another way of achieving the same effect as the following.

int maxXy,
if (x >Yy)
maxxXyY = X;
el se
maxxy = vy;

9054

	Computer basics
	Computer basics: hardware (page 3)
	Computer basics: hardware: processor (page 3)
	Computer basics: hardware: memory (page 3)
	Computer basics: hardware: persistent storage (page 3)
	Computer basics: hardware: input and output devices (page 3)
	Computer basics: software (page 3)
	Computer basics: software: machine code (page 3)
	Computer basics: software: operating system (page 4)
	Computer basics: software: application program (page 4)
	Computer basics: data (page 3)
	Computer basics: data: files (page 5)
	Computer basics: data: files: text files (page 5)
	Computer basics: data: files: binary files (page 5)

	Java tools
	Java tools: text editor (page 5)
	Java tools: javac compiler (page 9)
	Java tools: java interpreter (page 9)

	Operating environment
	Operating environment: programs are commands (page 7)
	Operating environment: standard output (page 7)
	Operating environment: command line arguments (page 8)

	Class
	Class: programs are divided into classes (page 16)
	Class: public class (page 16)
	Class: definition (page 16)

	Method
	Method (page 118)
	Method: main method: programs contain a main method (page 17)
	Method: main method: is public (page 17)
	Method: main method: is static (page 17)
	Method: main method: is void (page 17)
	Method: main method: is the program starting point (page 17)
	Method: main method: always has the same heading (page 18)
	Method: private (page 118)
	Method: accepting parameters (page 118)
	Method: calling a method (page 119)
	Method: void methods (page 120)
	Method: returning a value (page 122)
	Method: changing parameters does not affect arguments (page 124)

	Command line arguments
	Command line arguments: program arguments are passed to main (page 17)
	Command line arguments: program arguments are accessed by index (page 26)
	Command line arguments: length of the list (page 79)
	Command line arguments: list index can be a variable (page 79)

	Type
	Type (page 36)
	Type: String (page 135)
	Type: String: literal (page 18)
	Type: String: literal: must be ended on the same line (page 21)
	Type: String: literal: escape sequences (page 49)
	Type: String: concatenation (page 26)
	Type: String: conversion: from int (page 38)
	Type: String: conversion: from double (page 55)
	Type: int (page 36)
	Type: double (page 54)
	Type: casting an int to a double (page 79)
	Type: boolean (page 133)
	Type: long (page 145)
	Type: short (page 145)
	Type: byte (page 145)
	Type: char (page 145)
	Type: char: literal (page 145)
	Type: char: literal: escape sequences (page 146)
	Type: float (page 146)

	Standard API
	Standard API: System: out.println() (page 18)
	Standard API: System: out.println(): with no argument (page 98)
	Standard API: System: out.print() (page 98)
	Standard API: System: out.printf() (page 126)
	Standard API: System: out.printf(): zero padding (page 140)
	Standard API: Integer: parseInt() (page 41)
	Standard API: Double: parseDouble() (page 54)
	Standard API: Math: pow() (page 73)
	Standard API: Math: abs() (page 87)
	Standard API: Math: PI (page 87)

	Statement
	Statement (page 18)
	Statement: simple statements are ended with a semi-colon (page 18)
	Statement: assignment statement (page 37)
	Statement: assignment statement: assigning a literal value (page 37)
	Statement: assignment statement: assigning an expression value (page 38)
	Statement: assignment statement: updating a variable (page 70)
	Statement: assignment statement: updating a variable: shorthand operators (page 87)
	Statement: if else statement (page 60)
	Statement: if else statement: nested (page 62)
	Statement: if statement (page 64)
	Statement: compound statement (page 66)
	Statement: while loop (page 71)
	Statement: for loop (page 77)
	Statement: for loop: multiple statements in for update (page 136)
	Statement: statements can be nested within each other (page 92)
	Statement: switch statement with breaks (page 107)
	Statement: switch statement without breaks (page 110)
	Statement: do while loop (page 112)

	Error
	Error (page 20)
	Error: syntactic error (page 20)
	Error: semantic error (page 22)
	Error: compile time error (page 22)
	Error: run time error (page 24)
	Error: logical error (page 29)

	Execution
	Execution: sequential execution (page 23)
	Execution: conditional execution (page 60)
	Execution: repeated execution (page 70)

	Code clarity
	Code clarity: layout (page 31)
	Code clarity: layout: indentation (page 32)
	Code clarity: layout: splitting long lines (page 43)
	Code clarity: comments (page 82)
	Code clarity: comments: marking ends of code constructs (page 83)

	Design
	Design: hard coding (page 36)
	Design: pseudo code (page 73)

	Variable
	Variable (page 36)
	Variable: int variable (page 37)
	Variable: a value can be assigned when a variable is declared (page 42)
	Variable: double variable (page 54)
	Variable: can be defined within a compound statement (page 92)
	Variable: local variables (page 124)
	Variable: class variables (page 124)
	Variable: a group of variables can be declared together (page 129)
	Variable: boolean variable (page 133)
	Variable: char variable (page 145)

	Expression
	Expression: arithmetic (page 38)
	Expression: arithmetic: int division truncates result (page 52)
	Expression: arithmetic: associativity and int division (page 52)
	Expression: arithmetic: double division (page 55)
	Expression: arithmetic: remainder operator (page 149)
	Expression: brackets and precedence (page 45)
	Expression: associativity (page 48)
	Expression: boolean (page 60)
	Expression: boolean: relational operators (page 60)
	Expression: boolean: logical operators (page 128)
	Expression: conditional expression (page 94)

