
Java Just in Time:
Collected concepts after chapter 09

John Latham, School of Computer Science, Manchester University, UK.

April 15, 2011

Contents

1 Computer basics 9000
1.1 Computer basics: hardware (page 3) 9000
1.2 Computer basics: hardware: processor (page 3) 9000
1.3 Computer basics: hardware: memory (page 3) 9000
1.4 Computer basics: hardware: persistent storage (page 3). 9001
1.5 Computer basics: hardware: input and output devices (page 3) 9001
1.6 Computer basics: software (page 3)9001
1.7 Computer basics: software: machine code (page 3) 9001
1.8 Computer basics: software: operating system (page 4) 9001
1.9 Computer basics: software: application program (page 4) 9002
1.10 Computer basics: data (page 3) . 9002
1.11 Computer basics: data: files (page 5) 9002
1.12 Computer basics: data: files: text files (page 5) 9002
1.13 Computer basics: data: files: binary files (page 5) 9003

2 Java tools 9003
2.1 Java tools: text editor (page 5) .9003
2.2 Java tools: javac compiler (page 9)9003
2.3 Java tools: java interpreter (page 9) 9004

3 Operating environment 9004
3.1 Operating environment: programs are commands (page 7) 9004
3.2 Operating environment: standard output (page 7) 9004
3.3 Operating environment: command line arguments (page 8). 9004

4 Class 9005
4.1 Class: programs are divided into classes (page 16) 9005
4.2 Class: public class (page 16) . 9005
4.3 Class: definition (page 16) . 9005

9000

CONTENTS

5 Method 9006
5.1 Method (page 118) . 9006
5.2 Method: main method: programs contain a main method (page 17) . 9006
5.3 Method: main method: is public (page 17)9006
5.4 Method: main method: is static (page 17) 9006
5.5 Method: main method: is void (page 17) 9007
5.6 Method: main method: is the program starting point (page17) 9007
5.7 Method: main method: always has the same heading (page 18) . . . 9007
5.8 Method: private (page 118) . 9007
5.9 Method: accepting parameters (page 118) 9008
5.10 Method: calling a method (page 119)9009
5.11 Method: void methods (page 120) 9010
5.12 Method: returning a value (page 122) 9010
5.13 Method: changing parameters does not affect arguments(page 124) . 9011

6 Command line arguments 9011
6.1 Command line arguments: program arguments are passed tomain (page 17)9011
6.2 Command line arguments: program arguments are accessedby index (page 26)9011
6.3 Command line arguments: length of the list (page 79) 9012
6.4 Command line arguments: list index can be a variable (page 79) . . . 9012

7 Type 9012
7.1 Type (page 36) . 9012
7.2 Type: String (page 135) . 9012
7.3 Type: String: literal (page 18) .9012
7.4 Type: String: literal: must be ended on the same line (page 21) . . . 9013
7.5 Type: String: literal: escape sequences (page 49) 9013
7.6 Type: String: concatenation (page 26) 9014
7.7 Type: String: conversion: from int (page 38) 9014
7.8 Type: String: conversion: from double (page 55) 9015
7.9 Type: int (page 36) . 9015
7.10 Type: double (page 54) . 9015
7.11 Type: casting an int to a double (page 79) 9015
7.12 Type: boolean (page 133) . 9016
7.13 Type: long (page 145) . 9016
7.14 Type: short (page 145) . 9016
7.15 Type: byte (page 145) . 9016
7.16 Type: char (page 145) . 9016
7.17 Type: char: literal (page 145) .9017
7.18 Type: char: literal: escape sequences (page 146) 9017
7.19 Type: float (page 146) . 9017

8 Standard API 9017
8.1 Standard API: System: out.println() (page 18) 9017
8.2 Standard API: System: out.println(): with no argument (page 98) . . 9018
8.3 Standard API: System: out.print() (page 98) 9018
8.4 Standard API: System: out.printf() (page 126) 9019

9001

CONTENTS

8.5 Standard API: System: out.printf(): zero padding (page140) 9020
8.6 Standard API: Integer: parseInt() (page 41) 9020
8.7 Standard API: Double: parseDouble() (page 54) 9021
8.8 Standard API: Math: pow() (page 73) 9022
8.9 Standard API: Math: abs() (page 87) 9022
8.10 Standard API: Math: PI (page 87) 9022

9 Statement 9022
9.1 Statement (page 18) . 9022
9.2 Statement: simple statements are ended with a semi-colon (page 18) 9022
9.3 Statement: assignment statement (page 37) 9023
9.4 Statement: assignment statement: assigning a literal value (page 37) 9023
9.5 Statement: assignment statement: assigning an expression value (page 38)9023
9.6 Statement: assignment statement: updating a variable (page 70) . . . 9023
9.7 Statement: assignment statement: updating a variable:shorthand operators (page 87)9024
9.8 Statement: if else statement (page 60) 9025
9.9 Statement: if else statement: nested (page 62) 9025
9.10 Statement: if statement (page 64) 9026
9.11 Statement: compound statement (page 66) 9027
9.12 Statement: while loop (page 71) .9028
9.13 Statement: for loop (page 77) . 9028
9.14 Statement: for loop: multiple statements in for update(page 136) . . 9029
9.15 Statement: statements can be nested within each other (page 92) . . . 9030
9.16 Statement: switch statement with breaks (page 107) 9030
9.17 Statement: switch statement without breaks (page 110). 9031
9.18 Statement: do while loop (page 112)9032

10 Error 9033
10.1 Error (page 20) . 9033
10.2 Error: syntactic error (page 20) 9033
10.3 Error: semantic error (page 22) .9034
10.4 Error: compile time error (page 22) 9034
10.5 Error: run time error (page 24) . 9034
10.6 Error: logical error (page 29) .9035

11 Execution 9035
11.1 Execution: sequential execution (page 23) 9035
11.2 Execution: conditional execution (page 60) 9035
11.3 Execution: repeated execution (page 70) 9035

12 Code clarity 9036
12.1 Code clarity: layout (page 31) .9036
12.2 Code clarity: layout: indentation (page 32) 9036
12.3 Code clarity: layout: splitting long lines (page 43) 9037
12.4 Code clarity: comments (page 82)9037
12.5 Code clarity: comments: marking ends of code constructs (page 83) . 9038

13 Design 9038

9002

13.1 Design: hard coding (page 36) . 9038
13.2 Design: pseudo code (page 73) . 9039

14 Variable 9039
14.1 Variable (page 36) . 9039
14.2 Variable: int variable (page 37) 9040
14.3 Variable: a value can be assigned when a variable is declared (page 42)9040
14.4 Variable: double variable (page 54) 9040
14.5 Variable: can be defined within a compound statement (page 92) . . 9041
14.6 Variable: local variables (page 124) 9042
14.7 Variable: class variables (page 124) 9042
14.8 Variable: a group of variables can be declared together(page 129) . . 9042
14.9 Variable: boolean variable (page 133) 9043
14.10 Variable: char variable (page 145) 9044

15 Expression 9044
15.1 Expression: arithmetic (page 38) 9044
15.2 Expression: arithmetic: int division truncates result (page 52) 9045
15.3 Expression: arithmetic: associativity and int division (page 52) . . . 9045
15.4 Expression: arithmetic: double division (page 55) 9045
15.5 Expression: arithmetic: remainder operator (page 149) 9046
15.6 Expression: brackets and precedence (page 45) 9046
15.7 Expression: associativity (page 48) 9047
15.8 Expression: boolean (page 60) . 9048
15.9 Expression: boolean: relational operators (page 60) 9049
15.10 Expression: boolean: logical operators (page 128) 9049
15.11 Expression: conditional expression (page 94) 9051

1 Computer basics

1.1 Computer basics: hardware (page 3)

The physical parts of a computer are known ashardware. You can see them, and touch them.

1.2 Computer basics: hardware: processor (page 3)

Thecentral processing unit(CPU) is the part of thehardware that actually obeys instructions.
It does this dumbly – computers are not inherently intelligent.

9003

1.3 Computer basics: hardware: memory (page 3)

1.3 Computer basics: hardware: memory (page 3)

Thecomputer memory is part of the computer which is capable of storing and retrieving data
for short term use. This includes themachine codeinstructions that thecentral processing
unit is obeying, and any other data that the computer is currentlyworking with. For example,
it is likely that an image from a digital camera is stored in the computer memory while you are
editing or displaying it, as are the machine code instructions for the image editing program.

The computer memory requires electrical power in order to remember its data – it isvolatile
memory and will forget its contents when the power is turned off.

An important feature of computer memory is that its contentscan be accessed and changed
in any order required. This is known asrandom accessand such memory is calledrandom
access memoryor justRAM .

1.4 Computer basics: hardware: persistent storage (page 3)

For longer term storage ofdata, computers usepersistent storagedevices such ashard discs
andDVD ROM s. These are capable of holding much more information thancomputer mem-
ory, and are persistent in that they do not need power to rememberthe information stored on
them. However, the time taken to store and retrieve data ismuch longer than for computer
memory. Also, these devices cannot as easily be accessed in arandom order.

1.5 Computer basics: hardware: input and output devices (page 3)

Some parts of thehardware are dedicated to receiving input from or producing output tothe
outside world. Keyboards and mice are examples ofinput devices. Displays and printers are
examples ofoutput devices.

1.6 Computer basics: software (page 3)

One part of a computer you cannot see is itssoftware. This is stored oncomputer media, such
asDVD ROM s, and ultimately inside the computer, as lots of numbers. Itis the instructions
that the computer will obey. The closest you get to seeing it might be if you look at the silver
surface of a DVD ROM with a powerful magnifying glass!

9004

1.7 Computer basics: software: machine code (page 3)

1.7 Computer basics: software: machine code (page 3)

The instructions that thecentral processing unitobeys are expressed in a language known
asmachine code. This is a verylow level language, meaning that each instruction gets the
computer to do only a very simple thing, such as theaddition of two numbers, or sending a
byte to a printer.

1.8 Computer basics: software: operating system (page 4)

A collection ofsoftware which is dedicated to making the computer generally usable,rather
than being able to solve aparticular task, is known as anoperating system. The most popular
examples for modern personal computers are Microsoft Windows, Mac OS X and Linux. The
latter two are implementations of Unix, which was first conceived in the early 1970s. The fact
it is still in widespread use today, especially by computer professionals, is proof that it is a
thoroughly stable and welldesigned and integrated platform for the expert (or budding expert)
computer scientist.

1.9 Computer basics: software: application program (page 4)

A piece ofsoftwarewhich is dedicated to solving a particular task, or application, is known as
anapplication program. For example, an image editing program.

1.10 Computer basics: data (page 3)

Another part of the computer that you cannot see is itsdata. Like software it is stored as
lots of numbers. Computers are processing and producing data all the time. For example, an
image from a digital camera is data. You can only see the picture when you display it using
some image displaying or editing software, but even this isn’t showing you the actual data that
makes up the picture. The names and addresses of your friendsis another example of data.

1.11 Computer basics: data: files (page 5)

Whendata is stored inpersistent storage, such as on ahard disc, it is organized into chunks
of related information known asfiles. Files have names and can be accessed by the computer
through theoperating system. For example, the image from a digital camera would probably
be stored in a jpeg file, which is a particular type of image file, and the name of this file would
probably end in.jpg or .jpeg.

9005

1.12 Computer basics: data: files: text files (page 5)

1.12 Computer basics: data: files: text files (page 5)

A text file is a type offile that containsdata stored directly ascharacters in a human readable
form. This means if you were to send the raw contents directlyto the printer, you would
(for most printers) be immediately able to read it. Examplesof text files includeREADME.txt
that sometimes comes withsoftware you are installing, or source text for a document to be
processed by the LATEX[6] document processing system, such as the ones used to produce this
book (prior to publication). As you will see shortly, a more interesting example for you, is
computer programsource codefiles.

1.13 Computer basics: data: files: binary files (page 5)

A binary file is another kind offile in which data is stored asbinary (base 2) numbers, and
so is not human readable. For example, the image from a digital camera is probably stored as
a jpeg file, and if you were to look directly at its contents, rather than use someapplication
program to display it, you would see what appears to be nonsense! An interesting example of
a binary file is themachine codeinstructions of a program.

2 Java tools

2.1 Java tools: text editor (page 5)

A text editor is a program that allows the user to type and edittext files. You may well
have usednotepad under Microsoft Windows; that is a text editor. More likely you have
usedMicrosoft Word. If you have, you should note that it is not a text editor, it isa word
processor. Although you can save your documents as text files, it is morecommon to save
them as.doc files, which is actually abinary file format.Microsoft Word is not a good tool
to use for creating programsource codefiles.

If you are using anintegrated development environmentto support your programming, then
the text editor will be built in to it. If not, there are a plethora of text editors available which
are suited to Java programming.

2.2 Java tools: javac compiler (page 9)

The Javacompiler is calledjavac. Java program source is saved by the programmer in atext
file that has the suffix.java. For example, the text fileHelloWorld.java might contain the
source text of a program that printsHello world! on thestandard output. This text file

9006

2.3 Java tools: java interpreter (page 9)

can then becompiled by the Java compiler, by giving its name as acommand line argument.
Thus the command

javac HelloWorld.java

will produce thebyte codeversion of it in thefile HelloWorld.class. Like machine code
files, byte code is stored inbinary files as numbers, and so is not human readable.

2.3 Java tools: java interpreter (page 9)

When the end user wants to run a Java program, he or she invokesthejava interpreter with the
name of the program as itscommand line argument. The program must, of course, have been
compiled first! For example, to run theHelloWorld program we would issue the following
command.

java HelloWorld

This makes thecentral processing unitrun the interpreter orvirtual machine java, which
itself thenexecutes the program named as its first argument. Notice that the suffix .java is
needed when compiling the program, but no suffix is used whenrunning it. In our example
here, the virtual machine finds thebyte codefor the program in thefile HelloWorld.class
which must have been previously produced by thecompiler.

3 Operating environment

3.1 Operating environment: programs are commands (page 7)

When a program isexecuted, the name of it is passed to theoperating systemwhich finds and
loads thefile of that name, and then starts the program. This might be hidden from you if you
are used to starting programs from a menu or browser interface, but it happens nevertheless.

3.2 Operating environment: standard output (page 7)

When programsexecute, they have something called thestandard output in which they can
produce text results. If they arerun from some kind ofcommand line interface, such as a Unix
shell or a Microsoft WindowsCommand Prompt, then this output appears in that interface
while the program is running. (If they are invoked through some integrated development
environment, browser, or menu, then this output might get displayed in some pop-up box, or
special console window.)

9007

3.3 Operating environment: command line arguments (page 8)

3.3 Operating environment: command line arguments (page 8)

Programs can be, and often are, givencommand line arguments to vary their behaviour.

4 Class

4.1 Class: programs are divided into classes (page 16)

In Java, the source text for a program is separated into pieces calledclasses. The source
text for each class is (usually) stored in a separatefile. Classes have a name, and if the
name isHelloWorld then the text for the class is saved by the programmer in thetext file
HelloWorld.java.

One reason for dividing programs into pieces is to make them easier to manage – programs to
perform complex tasks typically contain thousands of linesof text. Another reason is to make
it easier to share the pieces between more than one program – suchsoftware reuseis beneficial
to programmer productivity.

Every program has at least one class. The name of this class shall reflect the intention of the
program. By convention, class names start with an upper caseletter.

4.2 Class: public class (page 16)

A classcan be declared as beingpublic, which means it can be accessed from anywhere in the
running Java environment; in particular thevirtual machine itself can access it. The source
text for a public class definition starts with thereserved wordpublic. A reserved word is one
which is part of the Java language, rather than a word chosen by the programmer for use as,
say, the name of a program.

4.3 Class: definition (page 16)

After stating whether it haspublic access, aclassnext has thereserved wordclass, then its
name, then a left brace ({), its body of text and finally a closing right brace (}).

public class MyFabulousProgram
{

... Lots of stuff here.
}

9008

5 Method

5.1 Method (page 118)

A method in Java is a section of code, dedicated to performing a particular task. All programs
have amain method which is the starting point of the program. We can have other methods
too, and we can give them any name we like – although we should always choose a name which
suits the purpose. By convention, method names start with a lower case letter. For example,
System.out.println() is a method which prints a line of text. Apart from its slightly strange
spelling, the nameprintln does reflect the meaning of the method.

5.2 Method: main method: programs contain a main method (page 17)

All Java programs contain a section of code calledmain, and this is where the computer will
start toexecutethe program. Such sections of code are calledmethods because they contain
instructions on how to do something. Themain method always starts with the following
heading.

public static void main(String[] args)

5.3 Method: main method: is public (page 17)

Themain methodstarts with thereserved wordpublic, which means it can be accessed from
anywhere in the running Java environment. This is necessary– the program could not berun
by thevirtual machine if the starting point was not accessible to it.

public

5.4 Method: main method: is static (page 17)

Themain method of the program has thereserved wordstatic which means it is allowed
to be used in thestatic context. A context relates to the use ofcomputer memory during
the running of the program. When thevirtual machine loads a program, it creates the static
context for it, allocating computer memory to store the program and itsdata, etc.. Adynamic
context is a certain kind of allocation of memory which is made later,during the running of the
program. The program would not be able to start if the main method was not allowed to run in
the static context.

public static

9009

5.5 Method: main method: is void (page 17)

5.5 Method: main method: is void (page 17)

In general, amethod (section of code) might calculate some kind offunction or formula, and
return the answer as a result. For example, the result might be a number. If a method returns
a result then this must be stated in its heading. If it does not, then we write thereserved word
void, which literally means (among other definitions) ‘without contents’. Themain method
does not return a value.

public static void

5.6 Method: main method: is the program starting point (page17)

The starting part, ormain method, of the program is always calledmain, because it is the main
part of the program.

public static void main

5.7 Method: main method: always has the same heading (page 18)

Themain method of a Java program must always have a heading like this.

public static void main(String[] args)

This is true even if we do not intend to use anycommand line arguments. So a typical single
classprogram might look like the following.

public class MyFabulousProgram
{

public static void main(String[] args)
{

... Stuff here to perform the task.
}

}

5.8 Method: private (page 118)

A method should be declared with aprivate visibility modifier if it is not intended to be
usable from outside theclass it is defined in. This is done by writing thereserved word
private instead ofpublic in the heading.

9010

5.9 Method: accepting parameters (page 118)

5.9 Method: accepting parameters (page 118)

A method may be givenmethod parameters which enable it to vary its effect based on their
values. This is similar to a program being givencommand line arguments, indeed the argu-
ments given to a program are passed as parameters to themain method.

Parameters are declared in the heading of the method. For example, main methods have the
following heading.

public static void main(String[] args)

The text inside the brackets is the declaration of the parameters. A method can have any
number of parameters, including zero. If there is more than one, they are separated by commas
(,). Each parameter consists of atype and a name. For example, the following method is given
two parameters, adouble and anint.

private static void printHeightPerYear(double height, int age)
{

System.out.println("At age " + age + ", height per year ratio is "
+ height / age);

} // printHeightPerYear

You should think of parameters as being likevariables defined inside the method, except that
they are given initial values before the method body isexecuted. For example, the single
parameter to the main method is a variable which is given alist of strings before the method
begins execution, these strings being the command line arguments supplied to the program.

The names of the parameters are not important to Java – as longas they all have different
names! The names only mean something to the human reader, which is of course important.
The above method could easily have been written as follows.

private static void printHeightPerYear(double howTall, int howOld)
{

System.out.println("At age " + howOld + ", height per year ratio is "
+ howTall / howOld);

} // printHeightPerYear

You might think the first version is subjectively nicer than the second, but clearly both are better
than this next one!

private static void printHeightPerYear(double d, int i)

9011

5.10 Method: calling a method (page 119)

{

System.out.println("At age " + i + ", height per year ratio is "
+ d / i);

} // printHeightPerYear

And that is only marginally better than calling the parameters, sayx andy. However, Java does
not care – it is not clever enough to be able to, as it can have nounderstanding of the problem
being solved by the code.

5.10 Method: calling a method (page 119)

The body of amethod is executed when some other code refers to it using amethod call. For
example, the program calls a method namedprintlnwhen it executesSystem.out.println("Hello
world!"). For another example, if we have a method, namedprintHeightPerYear, which
prints out a height to age ratio when it is given a height (in metres) and an age, then we could
make it print the ratio between the height1.6 and the age14 using the following method call.

printHeightPerYear(1.6, 14);

When we call a method we supply amethod argument for eachmethod parameter, separat-
ing them by commas (,). These argument values are copied into the corresponding parameters
of the method – the first argument goes into the first parameter, the second into the second, and
so on.

The arguments passed to a method may be the current values ofvariables. For example, the
above code could have been written as follows.

double personHeight = 1.6;
int personAge = 14;

printHeightPerYear(personHeight, personAge);

As you may expect, the arguments to a method are actuallyexpressions rather than justliteral
values or variables. These expressions areevaluated at the time the method is called. So we
might have the following.

double growthLastYear = 0.02;

printHeightPerYear(personHeight - growthLastYear, personAge - 1);

9012

5.11 Method: void methods (page 120)

5.11 Method: void methods (page 120)

Often, amethod might calculate some kind offunction or formula, perhaps based on its
method parameters, andreturn the answer as a result. The result might be anint or a
double or some othertype. If a method returns a result then thereturn type of the result
must be stated in its heading. If it does not, then we write theword void instead, which liter-
ally means (among other definitions) ‘without contents’. For example, themain method of a
program does not return a result – it is always avoid method.

public static void main(String[] args)

5.12 Method: returning a value (page 122)

A method may return a result back to the code that called it. If this is so, we declare the
return type of the result in the method heading, in place of thereserved wordvoid. Such
methods are often callednon-void methods. For example, the following method takes a Cel-
sius temperature, and returns the corresponding Fahrenheit value.

private static double celsiusToFahrenheit(double celsiusValue)
{

double fahrenheitValue = celsiusValue * 9 / 5 + 32;
return fahrenheitValue;

} // celsiusToFahrenheit

The method is declared with a return type ofdouble, by writing thattype name before the
method name.

The return statement is how we specify what value is to be returned as the result of the
method. Thestatementcauses the execution of the method to end, and control to transfer back
to the code that called the method.

The result of a non-void method can be used in anexpression. For example, the method above
might be used as follows.

double celsiusValue = Double.parseDouble(args[0]);
System.out.println("The Fahrenheit value of "

+ celsiusValue + " Celsius is "
+ celsiusToFahrenheit(celsiusValue) + ".");

The return statement takes any expression after the reserved word return. So our method
above could be implemented using just one statement.

9013

5.13 Method: changing parameters does not affect arguments(page 124)

private static double celsiusToFahrenheit(double celsiusValue)
{

return celsiusValue * 9 / 5 + 32;
} // celsiusToFahrenheit

5.13 Method: changing parameters does not affect arguments(page 124)

We can think ofmethod parameters as being likevariables defined inside themethod, but
which are given their initial value by the code that calls themethod. This means the method
can change the values of the parameters, like it can for any other variable defined in it. Such
changes have no effect on the environment of the code that called the method, regardless of
where themethod argument values came from. An argument value, be it a literal constant,
taken straight from a variable, or the result of some more complexexpression, is simply copied
into the corresponding parameter at the time the method is called. This is known ascall by
value.

6 Command line arguments

6.1 Command line arguments: program arguments are passed tomain
(page 17)

Programs can be givencommand line arguments which typically affect their behaviour. Ar-
guments given to a Java program are strings of textdata, and there can be any number of them
in a list. In Java,String[] means ‘list of strings’. We have to give a name for this list, and
usually we call itargs. The chosen name allows us to refer to the given data from within the
program, should we wish to.

public static void main(String[] args)

6.2 Command line arguments: program arguments are accessedby in-
dex (page 26)

The command line arguments given to themain method are alist of strings. These are
the text data string arguments supplied on thecommand line. The strings areindexed by
integers (whole numbers) starting from zero. We can access the individual strings by placing
the index value in square brackets after the name of the list.So, assuming that we call the list
args, thenargs[0] is the first command line argument given to the program, if there is one.

9014

6.3 Command line arguments: length of the list (page 79)

6.3 Command line arguments: length of the list (page 79)

Thecommand line arguments passed to themain method are alist of strings. We can find
the length of a list by writing a dot followed by the wordlength, after the name of the list. For
example,args.length yields anint value which is the number of items in the listargs.

6.4 Command line arguments: list index can be a variable (page 79)

The index used to access the individual items from alist of strings does not have to be an
integer literal , but can be anint variable or indeed anarithmetic expression. For example,
the following code adds together a list ofintegers given ascommand line arguments.

int sumOfArgs = 0;
for (int argIndex = 0; argIndex < args.length; argIndex = argIndex + 1)
sumOfArgs = sumOfArgs + Integer.parseInt(args[argIndex]);

System.out.println("The sum is " + sumOfArgs);

The benefit of being able to use avariable, rather than an integer literal is that the access can
be done in aloop which controls the value of the variable: thus the actual value used as the
index is not the same each time.

7 Type

7.1 Type (page 36)

Programs can process various different kinds ofdata, such as numbers, text data, images etc..
The kind of a data item is known as itstype.

7.2 Type: String (page 135)

The type of text data strings, such asstring literal values andconcatenations of such, is
calledString in Java.

7.3 Type: String: literal (page 18)

In Java, we can have astring literal , that is a fixed piece of text to be used asdata, by enclosing
it in double quotes. It is called a string literal, because itis a type of data which is a string of

9015

7.4 Type: String: literal: must be ended on the same line (page 21)

characters, exactly as listed. Such a piece of data might be used as a message to the user.

"This is a fixed piece of text data -- a string literal"

7.4 Type: String: literal: must be ended on the same line (page 21)

In Java,string literal s must be ended on the same line they are started on.

7.5 Type: String: literal: escape sequences (page 49)

We can have anew line characterembedded in astring literal by using theescape sequence
\n. For example, the following code will print out three lines on standard output.

System.out.println("This text\nspans three\nlines.");

It will generate the following.

This text
spans three
lines.

There are other escape sequences we can use, including the following.

Sequence Name Effect
\b Backspace Moves the cursor back one place, so the nextchar-

acter will over-print the previous.
\t Tab (horizontal tab) Moves the cursor to the next ‘tab stop’.
\n New line (line feed) Moves the cursor to the next line.
\f Form feed Moves to a new page on many (text) printers.
\r Carriage return Moves the cursor to the start of the current line, so

characters will over-print those already printed.
\" Double quote Without the backslash escape, this would mark the

end of the string literal.
\’ Single quote This is just for consistency – we don’t need to es-

cape a single quote in a string literal.
\\ Backslash Well, sometimes you want the backslash character

itself.

Note:System.out.println() always ends the line with the platform dependentline separa-
tor , which on Linux is a new line character but on Microsoft Windows is acarriage return

9016

7.6 Type: String: concatenation (page 26)

character followed by a new line character. In practice you may not notice the difference, but
the above code is not strictly the same as using three separate System.out.println() calls
and is not 100% portable.

7.6 Type: String: concatenation (page 26)

The + operator, when used with two stringoperands, produces a string which is thecon-
catenationof the two strings. For example"Hello " + "world" produces a string which is
Hello (including the space) concatenated with the stringworld, and so has the same value as
"Hello world".

There would not be much point concatenating together twostring literal s like this, compared
with having one string literal which is already the text we want. We would be more likely to
use concatenation when at least one of the operands is not a fixed value, i.e. is avariable value.
For example,"Hello " + args[0] produces a string which isHello (including the space)
concatenated with the firstcommand line argumentgiven when the program isrun .

The resulting string can be used anywhere that a single string literal could be used. For ex-
ampleSystem.out.println("Hello " + args[0]) would print the resulting string on the
standard output.

7.7 Type: String: conversion: from int (page 38)

The Javaoperator + is used for bothaddition andconcatenation– it is anoverloaded op-
erator. If at least one of theoperands is atext data string, then Java uses concatenation,
otherwise it uses addition. When only one of the two operandsis a string, and the other is
some othertype of data, for example anint, the Javacompiler is clever enough to understand
the programmer wishes that data to be converted into a stringbefore the concatenation takes
place. It is important to note the difference between aninteger and the decimal digit string we
usually use to represent it. For example, theinteger literal 123 is anint, a number; whereas
thestring literal "123" is a text data string – a string of 3 separatecharacters.

Suppose thevariable noOfPeopleToInviteToTheStreetParty had the value51, then the
code

System.out.println("Please invite " + noOfPeopleToInviteToTheStreetParty);

would print out the following text.

Please invite 51

9017

7.8 Type: String: conversion: from double (page 55)

The number51 would be converted to the string"51" and then concatenated to the string
"Please invite " before being processed bySystem.out.println().

Furthermore, for our convenience, there is a separate version ofSystem.out.println() that
takes a singleint rather than a string, and prints its decimal representation. Thus, the code

System.out.println(noOfPeopleToInviteToTheStreetParty);

has the same effect as the following.

System.out.println("" + noOfPeopleToInviteToTheStreetParty);

7.8 Type: String: conversion: from double (page 55)

The Javaconcatenation operator, +, for joining text data strings can also be used to convert
adouble to a string. For example, theexpression"" + 123.4 has the value"123.4".

7.9 Type: int (page 36)

One of thetypes of data we can use in Java is calledint. A data item which is anint is an
integer (whole number), such as0, -129934 or 982375, etc..

7.10 Type: double (page 54)

Another of thetypes of data we can use in Java is known asdouble. A data item which is a
double is a real (fractional decimal number), such as0.0, -129.934 or 98.2375, etc.. The
type is calleddouble because it uses a means of storing the numbers calleddouble precision.
On computers, real numbers are only approximated, because they have to be stored in a finite
amount of memory space, whereas in mathematics we have the notion of infinite decimals.
The double precision storage approach uses twice as much memory per number than the older
single precisiontechnique, but gives numbers which are much more precise.

7.11 Type: casting an int to a double (page 79)

Sometimes we have anint value which we wish to be regarded as adouble. The process of
conversion is known ascasting, and we can achieve it by writing(double) in front of theint.
For example,(double)5 is thedouble value5.0. Of course, we are most likely to use this
feature to cast the value of anint variable , rather than aninteger literal .

9018

7.12 Type: boolean (page 133)

7.12 Type: boolean (page 133)

There is atype in Java calledboolean, and this is the type of allconditions used inif else
statements andloops. It is named after the English mathematician, George Boolewhose work
in 1847 established the basis of modern logic[12]. The type contains just twoboolean literal
values calledtrue andfalse. For example,5 <= 5 is aboolean expression, which, because
it has novariables in it, always has the same value whenevaluated. Whereas theexpression
age1 < age2 || age1 == age2 && height1 <= height2 has a value which depends on
the values of the variables in it.

7.13 Type: long (page 145)

The type int allows for the storage ofintegers in the range−231 through to 231−1. This
is because it uses fourbytes, i.e. 32binary digit s. 231−1 is 2147483647. Although this is
plenty for most purposes, we sometimes need whole numbers ina bigger range. The typelong
representslong integers and uses eight bytes, i.e. 64bits. A long variable can store numbers
from −263 through to 263−1. The value of 263−1 is 9223372036854775807.

A long literal is written with anL on the end, to distinguish it from anint literal , as in-15L
and2147483648L.

7.14 Type: short (page 145)

The type short representsshort integers using twobytes, i.e. 16binary digit s. A short
variable can store numbers from−215 through to 215−1. The value of 215−1 is 32767. We
would typically use this type when we have a huge number ofintegers, which happen to lie in
the restricted range, and we are concerned about the amount of memory (orfile space) needed
to store them.

7.15 Type: byte (page 145)

The type byte representsintegers using just onebyte, i.e. 8binary digit s. A byte variable
can store numbers from−27 through to 27−1. The value of 27−1 is 127.

7.16 Type: char (page 145)

Characters in Java are represented by thetype char. A char variable can store a singlechar-
acter at any time.

9019

7.17 Type: char: literal (page 145)

7.17 Type: char: literal (page 145)

A character literal can be written in our program by enclosing it in single quotes. For example
’J’ is a character literal.

7.18 Type: char: literal: escape sequences (page 146)

When writing acharacter literal we can use the sameescape sequences that are available
within string literal s. These include the following.

char backspace = ’\b’; char tab = ’\t’;
char newline = ’\n’; char formFeed = ’\f’;
char carriageReturn = ’\r’; char doubleQuote = ’\"’;
char singleQuote = ’\’’; char backslash = ’\\’;

7.19 Type: float (page 146)

The type float is for real (fractional decimal) numbers, using thefloating point represen-
tation with a single precisionstorage. It uses only fourbytes per number, compared with
double which employsdouble precisionstorage and so is far more accurate, but needs eight
bytes per number.

A float literal is written with anf or F on the end, as in0.0F, -129.934F or 98.2375f.

8 Standard API

8.1 Standard API: System: out.println() (page 18)

The simplest way to print a message onstandard output is to use:

System.out.println("This text will appear on standard output");

System is a class(that is, a piece of code) that comes with Java as part of itsapplication
program interface (API) – a large number of classes designed to support our Java programs.
Inside System there is a thing calledout, and this has amethod (section of code) called
println. So overall, this method is calledSystem.out.println. The method takes a string
of text given to it in its brackets, and displays that text on the standard output of the program.

9020

8.2 Standard API: System: out.println(): with no argument (page 98)

8.2 Standard API: System: out.println(): with no argument (page 98)

TheclassSystem also contains a version of theout.println() methodwhich takes no argu-
ments. This outputs nothing except anew line. It has the same effect as callingSystem.out.println()
with an empty string as its argument, that is

System.out.println();

has the same effect as the following.

System.out.println("");

So, for example

System.out.print("Hello world!");
System.out.println();

would have the same effect as the following.

System.out.println("Hello world!");

System.out.println() with no argument is most useful when we need to end a line which
has been generated a piece at a time, or when we want to have a blank line.

8.3 Standard API: System: out.print() (page 98)

TheclassSystem contains amethodout.print()which is almost the same asout.println().
The only difference is thatout.print() does not produce anew lineafter printing its output.
This means that any output printed after this will appear on the same line. For example

System.out.print("Hello");
System.out.print(" ");
System.out.println("world!");

would have the same effect as the following.

System.out.println("Hello world!");

System.out.print() is most useful when the output is being generated a piece at a time,
often within aloop.

9021

8.4 Standard API: System: out.printf() (page 126)

8.4 Standard API: System: out.printf() (page 126)

TheclassSystem contains amethod out.printf(), introduced in Java 5.0, which is similar
to out.print() except that we can use it to produce formatted output of values.

A simple use of this is to take aninteger value and have it printed withspace paddingto a
given positive integer field width. This means the output contains leading spaces followed by
the usual representation of the integer, such that the number of characters printed is at least
the given field width.

The following code fragment includes an example which prints a string representation of123,
with leading spaces so that the result has a width of ten characters.

System.out.println("1234567890");
System.out.printf("%10d%n", 123);

Here is the effect of these twostatements.

1234567890
123

The first% tellsout.printf() that we wish it to format something, the10 tells it the minimum
total width to produce, and the following letter says what kind of conversion to perform. Ad
tells it to produce the representation of a decimal whole number, which is given after theformat
specifier string, as the secondmethod argument. The%n tells out.printf() to output the
platform dependentline separator.

The method can be asked to format a floating point value, such as adouble. In such cases we
give the minimum total width, a dot (.), the number of decimal places, and anf conversion.
For example,

System.out.printf("%1.2f%n", 123.456);

needs more than the given minimum width of1, and so produces the following.

123.46

Whereas, the format specifier in

System.out.println("1234567890");
System.out.printf("%10.2f%n", 123.456);

9022

8.5 Standard API: System: out.printf(): zero padding (page140)

prints a total of ten characters for the number, two of which are decimal places.

1234567890
123.46

8.5 Standard API: System: out.printf(): zero padding (page140)

We can ask
System.out.printf() for zero padding rather thanspace paddingof a number by placing
a leading zero on the desired minimum width in theformat specifier.

The following code fragment contains an example which prints a string representation of123,
with leading zeroes so that the result is tencharacters long.

System.out.println("1234567890");
System.out.printf("%010d%n", 123);

Here is the effect.

1234567890
0000000123

Similarly,

System.out.println("1234567890");
System.out.printf("%010.2f%n", 123.456);

produces the following.

1234567890
0000123.46

8.6 Standard API: Integer: parseInt() (page 41)

One simple way to turn atext data string, say"123" into the integer (whole number) it
represents is to use the following.

9023

8.7 Standard API: Double: parseDouble() (page 54)

Integer.parseInt("123");

Integer is a class(that is, a piece of code) that comes with Java. InsideInteger there is a
method (section of code) calledparseInt. This method takes a text data string given to it in
its brackets, converts it into anint andreturn s that number. Arun time error will occur if
the given string does not represent anint value.

For example

int firstArgument;
firstArgument = Integer.parseInt(args[0]);

would take the firstcommand line argumentand, assuming it represents a number (i.e. it is a
string of digits with a possible sign in front), would turn itinto the number it represents, then
store that number infirstArgument. If instead the first argument was some other text data
string, it would produce a run time error.

8.7 Standard API: Double: parseDouble() (page 54)

One simple way to turn atext data string, say"123.456" into the real (fractional decimal
number) it represents is to use the following.

Double.parseDouble("123.456");

Double is a class(that is, a piece of code) that comes with Java. InsideDouble there is a
method (section of code) calledparseDouble. This method takes a text data string given to
it in its brackets, converts it into andouble andreturn s that number. Arun time error will
occur if the given string does not represent a number. For example

double firstArgument = Double.parseDouble(args[0]);

would take the firstcommand line argumentand, assuming it represents a number, would
turn it into the number it represents, then store that numberin firstArgument. To represent
a number, the string must be a sequence of digits, possibly with a decimal point and maybe a
negative sign in front. If instead the first argument was someother text data string, it would
produce a run time error.

9024

8.8 Standard API: Math: pow() (page 73)

8.8 Standard API: Math: pow() (page 73)

Java does not have anoperator to compute powers. Instead, there is a standardclasscalled
Math which contains a collection of usefulmethods, includingpow(). This takes two numbers,
separated by a comma, and gives the value of the first number raised to the power of the second.

For example, theexpressionMath.pow(2, 10) produces the value of 210 which is1024.

8.9 Standard API: Math: abs() (page 87)

Java does not have anoperator to yield theabsolute valueof a number, that is, its value
ignoring its sign. Instead, the standardclasscalledMath contains amethod, calledabs. This
method takes a number and gives its absolute value.

For example, theexpressionMath.abs(-2.7) produces the value2.7, as does the expression
Math.abs(3.4 - 0.7).

8.10 Standard API: Math: PI (page 87)

The standardclasscalledMath contains a constant value calledPI that is set to the most ac-
curate value ofπ that can be represented using thedouble numbertype. We can refer to this
value usingMath.PI, as in the following example.

double circleArea = Math.PI * circleRadius * circleRadius;

9 Statement

9.1 Statement (page 18)

A command in a programming language, such as Java, which makes the computer perform
a task is known as astatement. System.out.println("I will output whatever I am
told to") is an example of a statement.

9.2 Statement: simple statements are ended with a semi-colon (page 18)

All simple statements in Java must be ended by a semi-colon (;). This is a rule of the Java
languagesyntax.

9025

9.3 Statement: assignment statement (page 37)

9.3 Statement: assignment statement (page 37)

An assignment statementis a Javastatementwhich is used to give a value to avariable, or
change its existing value. This is only allowed if the value we are assigning has atype which
matches the type of the variable.

9.4 Statement: assignment statement: assigning a literal value (page 37)

We can assign aliteral value, that is a constant, to avariable using anassignment statement
such as the following.

noOfPeopleLivingInMyStreet = 47;

We use a singleequal sign(=), with the name of the variable to the left of it, and the valuewe
wish it to be given on the right. In the above example, theinteger literal 47 will be placed into
the variablenoOfPeopleLivingInMyStreet. Assuming the variable was declared as anint
variable then this assignment would be allowed because 47 is anint.

9.5 Statement: assignment statement: assigning an expression value (page
38)

More generally than just assigning aliteral value, we can use anassignment statementto
assign the value of anexpressionto avariable. For example, assuming we have the variable

int noOfPeopleToInviteToTheStreetParty;

then the code

noOfPeopleToInviteToTheStreetParty = noOfPeopleLivingInMyStreet + 4;

whenexecuted, wouldevaluatethe expression on the right of theequal sign(=) and then place
the resulting value in the variablenoOfPeopleToInviteToTheStreetParty.

9.6 Statement: assignment statement: updating a variable (page 70)

Javavariables have a name and a value, and this value can change. For example, the following
code is one way of working out the maximum of two numbers.

9026

9.7 Statement: assignment statement: updating a variable:shorthand operators (page 87)

int x;
int y;
int z;
... Code here that gives values to x, y and z.

int maximumOfXYandZ = x;
if (maximumOfXYandZ < y)
maximumOfXYandZ = y;

if (maximumOfXYandZ < z)
maximumOfXYandZ = z;

See that the variablemaximumOfXYandZ is given a value which then might get changed, so that
after the end of the secondif statement it holds the correct value.

A very common thing we want the computer to do, typically inside a loop, is to perform a
variable update. This is when a variable has its value changed to a new value which is based
on its current one. For example, the code

count = count + 1;

will add one to the value of the variablecount. Such examples remind us that anassignment
statementis not a definition ofequality, despite Java’s use of the singleequal sign!

9.7 Statement: assignment statement: updating a variable:shorthand
operators (page 87)

The need to undertake avariable update is so common, that Java provides variousshorthand
operators for certain types of update.

Here are some of the most commonly used ones.

Operator Name Example Longhand meaning
++ postfix increment x++ x = x + 1
-- postfix decrement x-- x = x - 1
+= compound assignment: add to x += y x = x + y
-= compound assignment: subtract fromx -= y x = x - y
*= compound assignment: multiply by x *= y x = x * y
/= compound assignment: divide by x /= y x = x / y

The point of thesepostfix increment, postfix decrementandcompound assignmentopera-
tors is not so much to save typing when a program is being written, but to make the program

9027

9.8 Statement: if else statement (page 60)

easier to read. Once you are familiar with them, you will benefit from the shorter and more
obvious code.

There is also a historical motivation. In the early days of the programming language C, from
which Java inherits much of itssyntax, these shorthandoperators caused thecompiler to
produce more efficient code than their longhand counterparts. The modern Java compiler with
the latest optimization technology should remove this concern.

9.8 Statement: if else statement (page 60)

The if else statementis one way in Java of havingconditional execution. It essentially con-
sists of three parts: acondition or boolean expression, a statementwhich will be executed
when the condition istrue (thetrue part), and another statement which will be executed when
the condition isfalse (thefalse part). The whole statement starts with thereserved wordif.
This is followed by the condition, written in brackets. Nextcomes the statement for the true
part, then the reserved wordelse and finally the statement for the false part.

For example, assuming we have thevariable noOfPeopleToInviteToTheStreetParty con-
taining the number suggested by its name, then the code

if (noOfPeopleToInviteToTheStreetParty > 100)
System.out.println("We will need a big sound system!");

else

System.out.println("We should be okay with a normal HiFi.");

will cause the computer to compare the current value ofnoOfPeopleToInviteToTheStreetParty
with the number100, and if it is greater then print out the messageWe will need a big
sound system! or otherwise print out the messageWe should be okay with a normal
HiFi. – it will never print out both messages. Notice the brackets around the condition and
the semi-colons at the end of the two statements inside the ifelse statement. Notice also the
way we lay out the code to make it easy to read, splitting the lines at sensible places and adding
moreindentation at the start of the two inner statements.

9.9 Statement: if else statement: nested (page 62)

Thetrue part or false part statements inside anif else statementmay be any valid Javastate-
ment, including other if else statements. When we place an if elsestatement inside another, we
say they arenested.

For example, study the following code.

9028

9.10 Statement: if statement (page 64)

if (noOfPeopleToInviteToTheStreetParty > 300)
System.out.println("We will need a Mega master 500 Watt amplifier!");

else

if (noOfPeopleToInviteToTheStreetParty > 100)
System.out.println("We will need a Maxi Master 150 Watt amplifier!");

else

System.out.println("We should be okay with a normal HiFi.");

Depending on the value ofnoOfPeopleToInviteToTheStreetParty, this will report one of
three messages. Notice the way we have laid out the code above – thisis following the usual
rules that inner statements have moreindentation than those they are contained in, so the
second if else statement has more spaces because it lives inside the first one. However, typically
we make an exception to this rule for if else statements nested in the false part of another, and
we would actually lay out the code as follows.

if (noOfPeopleToInviteToTheStreetParty > 300)
System.out.println("We will need a Mega master 500 Watt amplifier!");

else if (noOfPeopleToInviteToTheStreetParty > 100)
System.out.println("We will need a Maxi Master 150 Watt amplifier!");

else

System.out.println("We should be okay with a normal HiFi.");

This layout reflects ourabstract thinking that the collection of statements isone construct
offering three choices, even though it is implemented usingtwo if else statements. This idea
extends to cases where we want many choices, using many nested if else statements, without
the indentation having to increase for each choice.

9.10 Statement: if statement (page 64)

Sometimes we want the computer toexecutesome code depending on acondition, but do
nothing if the condition isfalse. We could implement this using anif else statementwith an
emptyfalse part. For example, consider the following code.

if (noOfPeopleToInviteToTheStreetParty > 500)
System.out.println("You may need an entertainment license!");

else ;

This will print the message if thevariable has a valuegreater than 500, or otherwise exe-
cute theempty statementbetween thereserved wordelse and the semi-colon. Such empty
statements do nothing, as you would probably expect!

It is quite common to wish nothing to be done when the condition isfalse, and so Java offers
us theif statement. This is similar to the if else statement, except it simply does not have the
wordelse, nor a false part.

9029

9.11 Statement: compound statement (page 66)

if (noOfPeopleToInviteToTheStreetParty > 500)
System.out.println("You may need an entertainment license!");

9.11 Statement: compound statement (page 66)

The Javacompound statementis simply a list of any number ofstatements between an open-
ing left brace ({) and a closing right brace (}). You could think of the body of amethod, e.g.
main(), as being a compound statement if that is helpful. The meaning is straightforward:
when the computerexecutes a compound statement, it merely executes each statement inside
it, in turn. More precisely of course, the Javacompiler turns thesource codeinto byte code
that has this effect when thevirtual machine executes thecompiled program.

We can have a compound statement wherever we can have any kindof statement, but it is most
useful when combined with statements which have another statement within them, such asif
else statements andif statements.

For example, the following code reports three messages whenthevariable has a valuegreater
than 500.

if (noOfPeopleToInviteToTheStreetParty > 500)
{

System.out.println("You may need an entertainment license!");
System.out.println("Also hire some street cleaners for the next day?");
System.out.println("You should consider a bulk discount on lemonade!");

}

When thecondition of the if statement istrue, the body of the if statement is executed. This
single statement is itself a compound statement, and so the three statements within it are exe-
cuted. It is for this sort of purpose that the compound statement exists.

Note how we lay out the compound statement, with the opening brace at the sameindentation
as the if statement, the statements within it having extra indentation, and the closing brace
lining up with the opening one.

Less usefully, a compound statement can be empty, as in the following example.

if (noOfPeopleToInviteToTheStreetParty > 500)
{

System.out.println("You may need an entertainment license!");
System.out.println("Also hire some street cleaners for the next day?");
System.out.println("You should consider a bulk discount on lemonade!");

}

else {}

9030

9.12 Statement: while loop (page 71)

As you might expect, the meaning of an empty compound statement is the same as the meaning
of anempty statement!

9.12 Statement: while loop (page 71)

The while loop is one way in Java of havingrepeated execution. It essentially consists of
two parts: acondition, and astatementwhich will beexecuted repeatedly while the condition
is true. The whole statement starts with thereserved wordwhile. This is followed by the
condition, written in brackets. Next comes the statement tobe repeated, known as theloop
body.

For example, the following code is a long winded and inefficient way of giving thevariable x
the value21.

int x = 1;
while (x < 20)
x = x + 2;

The variable starts off with the value1, and then repeatedly has2 added to it, until it is no
longerless than20. This is when theloop ends, andx will have the value21.

Notice the brackets around the condition and the semi-colonat the end of the statement inside
the loop. Notice also the way we lay out the code to make it easyto read, splitting the lines at
sensible places and adding moreindentation at the start of the inner statement.

Observe the similarity between the while loop and theif statement – theonly difference in
syntax is the first word. There is a similarity in meaning too: the while loop executes its body
zero ormore times, whereas the if statement executes its body zero orone time. However,
if statements arenot loops and you should avoid the common novice phrase “if loop”when
referring to them!

9.13 Statement: for loop (page 77)

Another kind ofloop in Java is thefor loop, which is best suited for situations when the number
of iterations of theloop body is known before the loop starts. We shall describe it using the
following simple example.

for (int count = 1; count <= 10; count = count + 1)
System.out.println("Counting " + count);

9031

9.14 Statement: for loop: multiple statements in for update(page 136)

Thestatementstarts with thereserved wordfor, which is followed by three items in brackets,
separated by semi-colons. Then comes the loop body, which isa single statement (often a
compound statementof course). The first of the three items in brackets is afor initialization ,
which is performed once just before the loop starts. Typically this involves declaring avariable
and giving an initial value to it, as in the above exampleint count = 1. The second item is
thecondition for continuing the loop – the loop will onlyexecuteand will continue to execute
while that condition istrue. In the example above the condition iscount <= 10. Finally, the
third item, afor update, is a statement which is executed at theend of each iteration of the
loop, that isafter the loop body has been executed. This is typically used to change the value
of the variable declared in the first item, as in our examplecount = count + 1.

So the overall effect of our simple example is: declarecount and set its value to1, check that it
is less than10, print outCounting 1, add one tocount, check again, print outCounting 2,
add one tocount, check again, and so on until the condition isfalse when the value ofcount
has reached11.

We do not really need the for loop, as thewhile loop is sufficient. For example, the code above
could have been written as follows.

int count = 1;
while (count <= 10)
{

System.out.println("Counting " + count);
count = count + 1;

}

However you will see that the for loop version has placed together all the code associated with
the control of the loop, making it easier to read, as well as a little shorter.

There is one very subtle difference between the for loop and while loop versions of the example
above, concerning thescopeof the variablecount, that is the area of code in which the variable
can be used. Variables declared in the initialization part of a for loop can only be used in the for
loop – they do not exist elsewhere. This is an added benefit of using for loops when appropriate:
the variable, which is used solely to control the loop, cannot be accidentally used in the rest of
the code.

9.14 Statement: for loop: multiple statements in for update(page 136)

Javafor loops are permitted to have more than onestatementin their for update, that is, the
part which isexecuted after theloop body. Rather than always being one statement, this part
may be a list of statements with commas (,) between them.

One appropriate use for this feature is to have a for loop thatexecutes twice, once each for the
two possible values of aboolean variable.

9032

9.15 Statement: statements can be nested within each other (page 92)

For example, the following code prints out scenarios to helptrain people to live in the city of
Manchester!

boolean isRaining = true;
boolean haveUmbrella = true;
for (int countU = 1; countU <= 2; countU++, haveUmbrella = !haveUmbrella)
for (int countR = 1; countR <= 2; countR++, isRaining = !isRaining)
{

System.out.println("It is" + (isRaining ? "" : " not") + " raining.");
System.out.println

("You have " + (haveUmbrella ? "an" : "no") + " umbrella.");
if (isRaining && !haveUmbrella)
System.out.println("You get wet!");

else

System.out.println("You stay dry.");
System.out.println();

} // for

9.15 Statement: statements can be nested within each other (page 92)

Statements that control execution flow, such asloops andif else statements have otherstate-
ments inside them. These inner statements can be any kind of statement, including those that
control the flow of execution. This allows quite complexalgorithms to be constructed with
unlimited nesting of different and same kinds of control statements.

For example, one simple (but inefficient) way to print out thenon-negative multiples ofx which
lie betweeny (≥ 0) andz inclusive, is as follows.

for (int number = 0; number <= z; number += x)
if (number >= y)

System.out.println("A multiple of " + x + " between " + y
+ "and " + z + " is " + number);

9.16 Statement: switch statement with breaks (page 107)

Java provides aconditional execution statementwhich is ideal for situations where there are
many choices based on some value, such as a number, beingequal to specific fixed values for
each choice. It is called theswitch statement. The following example code will applaud the
user when they have correctly guessed the winning number of100, encourage them when they
are one out, or insult them otherwise.

int userGuess = Integer.parseInt(args[0]);

9033

9.17 Statement: switch statement without breaks (page 110)

switch (userGuess)
{

case 99: case 101:
System.out.println("You are close!");
break;

case 100:
System.out.println("Bingo! You win!");
System.out.println("You have guessed correctly.");
break;

default:
System.out.println("You are pathetic!");
System.out.println("Have another guess.");
break;

} // switch

The switch statement starts with thereserved wordswitch followed by a bracketedexpres-
sion of a type that has discrete values, such asint (notably notdouble). The body of the
statement is enclosed in braces, ({ and}), and consists of a list of entries. Each of these starts
with a list of labels, comprising the reserved wordcase followed by a value and then a colon
(:). After the labels we have one or more statements, typicallyending with abreak statement.
One (at most) label is allowed to be the reserved worddefault followed by a colon – usually
written at the end of the list.

When a switch statement isexecuted, the expression isevaluated and then each label in the
body is examined in turn to find one whose value is equal to thatof the expression. If such
a match is found, the statements associated with that label are executed, down to the special
break statementwhich causes the execution of the switch statement to end. Ifa match is not
found, then instead the statements associated with thedefault label are executed, or if there
is nodefault then nothing is done.

9.17 Statement: switch statement without breaks (page 110)

A less common form of theswitch statementis when we omit thebreak statements at the end
of the list of statements associated with each set ofcase labels. This, perhaps surprisingly,
causes execution to “fall through” to the statements associated with the next set ofcase labels.
Most of the time we donot want this to happen – so we have to be careful to remember the
break statements.

We can also mix the styles – having break statements for some entries, and not for some others.
The following code is a bizarre, but interesting way of doingsomething reasonably simple. It
serves as an illustration of the switch statement, and as a puzzle for you. It takes twointegers,
the second of which is meant to be in the range one to ten, and outputs a result which is some
function of the two numbers. What is that result?

9034

9.18 Statement: do while loop (page 112)

int value = Integer.parseInt(args[0]);
int power = Integer.parseInt(args[1]);

int valueToThePower1 = value;
int valueToThePower2 = valueToThePower1 * valueToThePower1;
int valueToThePower4 = valueToThePower2 * valueToThePower2;
int valueToThePower8 = valueToThePower4 * valueToThePower4;

int result = 1;

switch (power)
{

case 10: result *= valueToThePower1;
case 9: result *= valueToThePower1;
case 8: result *= valueToThePower8;

break;
case 7: result *= valueToThePower1;
case 6: result *= valueToThePower1;
case 5: result *= valueToThePower1;
case 4: result *= valueToThePower4;

break;
case 3: result *= valueToThePower1;
case 2: result *= valueToThePower2;

break;
case 1: result *= valueToThePower1;

break;
} // switch

System.out.println(result);

If you find the semantics of the switch statement somewhat inelegant, then do not worry – you
are not alone! Java inherited it from C, where it was designedmore to ease the work of the
compiler than to be a good construct for the programmer. You will find the switch statement is
less commonly used than theif else statement, and the majority of times you use it, you will
want to have break statements on every set ofcase labels. Unfortunately, due to them being
optional, accidentally missing them off does not cause acompile time error.

9.18 Statement: do while loop (page 112)

Thedo while loop is the third way in Java of havingrepeated execution. It is similar to the
while loop but instead of having thecondition at the start of theloop, it appears at the end.
This means the condition isevaluated after the loop body is executed rather than before. The
whole statementstarts with thereserved word do. This is followed by the statement to be
repeated, then the reserved wordwhile and finally the condition, written in brackets.

For example, the following code is a long winded and inefficient way of giving thevariable x

9035

the value21.

int x = 1;
do

x += 2;
while (x < 20);

Observe the semi-colon that is needed after the condition.

Of course, the body of the do while loop might be acompound statement, in which case we
might lay out the code as follows.

int x = 0;
int y = 100;
do

{

x++;
y--;

} while (x != y);

The above is a long winded and inefficient way of giving both the variablesx andy the value
50.

Note that, because the condition is evaluatedafter the body is executed, the body is executed at
least once. This is in contrast to the while loop, which mighthave have its body executed zero
times.

10 Error

10.1 Error (page 20)

When we write thesource codefor a Java program, it is very easy for us to get something
wrong. In particular, there are lots of rules of the languagethat our program must obey in order
for it to be a valid program.

10.2 Error: syntactic error (page 20)

One kind of error we might make in our programs issyntactic errors. This is when we break
thesyntax rules of the language. For example, we might miss out a closing bracket, or insert an

9036

10.3 Error: semantic error (page 22)

extra one, etc.. This is rather like missing out a word in a sentence of natural language, making
it grammatically incorrect. The sign below, seen strapped to the back of a poodle, contains bad
grammar – it has anis missing.

My other dog an Alsatian.

Syntactic errors in Java result in thecompiler giving us an error message. They can possibly
confuse the compiler, resulting in it thinking many more things are wrong too!

10.3 Error: semantic error (page 22)

Another kind of error we might make is asemantic error, when we obey the rules of the
syntax but what we have written does not make any sense – it has no semantics (meaning).
Another sign on a different poodle might say

My other dog is a Porsche.

which is senseless because a Porsche is a kind of car, not a dog.

10.4 Error: compile time error (page 22)

Javasyntactic errors and manysemantic errors can be detected for us by thecompiler when
it processes our program. Errors that the compiler can detect are calledcompile time errors.

10.5 Error: run time error (page 24)

Another kind of error we can get with programs isrun time error s. These are errors which
are detected when the program isrun rather than when it iscompiled. In Java this means the
errors are detected and reported by thevirtual machine, java.

Java calls run time errorsexceptions. Unfortunately, the error messages produced byjava can
look very cryptic to novice programmers. A typical one mightbe as follows.

Exception in thread "main" java.lang.NoSuchMethodError: main

You can get the best clue to what has caused the error by just looking at the words either side
of the colon (:). In the above example, the message is saying thatjava cannot find themethod
calledmain.

9037

10.6 Error: logical error (page 29)

10.6 Error: logical error (page 29)

The most tricky kind of error we can make in our programs is alogical error . For these
mistakes we do not get an error message from thecompiler, nor do we get one atrun time
from thevirtual machine. These are the kind of errors for which the Java program we have
written is meaningful as far as Java is concerned, it is just that our program does the wrong
thing compared with what we wanted. There is no way the compiler or virtual machine can
help us with these kinds of error: they are far, far too stupidto understand theproblem we were
trying to solve with our program.

For this reason, many logical errors, especially very subtle ones, manage to slip through unde-
tected by human program testing, and end up asbugs in the final product – we have all heard
stories of computer generated demands for unpaid bills withnegative amounts, etc..

11 Execution

11.1 Execution: sequential execution (page 23)

Programs generally consist of more than onestatement, in a list. We usually place these on
separate lines to enhance human readability, although Javadoes not care about that. Statements
in such a list areexecuted sequentially, one after the other. More correctly, the Java compiler
turns each one into correspondingbyte codes, and thevirtual machine executes each collec-
tion of byte codes in turn. This is known assequential execution.

11.2 Execution: conditional execution (page 60)

Having a computer always obey a list of instructions in a certain order is not sufficient to solve
many problems. We often need the computer to do some things only under certain circum-
stances, rather than every time the program isrun . This is known asconditional execution,
because we get the computer toexecutecertain instructionsconditionally, based on the values
of thevariables in the program.

11.3 Execution: repeated execution (page 70)

Having a computer always obey instructions just once withinthe run of a program is not
sufficient to solve many problems. We often need the computerto do some things more than
once. In general, we might want some instructions to beexecuted, zero, one or many times.
This is known asrepeated execution, iteration , or looping. The number of times a loop of
instructions is executed will depend on somecondition involving thevariables in the program.

9038

12 Code clarity

12.1 Code clarity: layout (page 31)

Java does not care how we lay our code out, as long as we use somewhite spaceto separate
adjacent symbols that would otherwise be treated as one symbol if they were joined. For
examplepublic void with no space between the words would be treated as the singlesymbol
publicvoid and no doubt cause acompile time error. So, if we were crazy, we could write
all our programsource codeon one line with the minimum amount of space between symbols!

public class HelloSolarSystem{public static void main(String[]args){System.out.println("Hello Mercury!");System.out.println("Hello

Oh dear – it ran off the side of the page (and that was with a smaller font too). Let us split it up
into separate lines so that it fits on the page.

public class HelloSolarSystem{public static void main(String[]args){
System.out.println("Hello Mercury!");System.out.println(
"Hello Venus!");System.out.println("Hello Earth!");System.out.println
("Hello Mars!");System.out.println("Hello Jupiter!");System.out.
println("Hello Saturn!");System.out.println("Hello Uranus!");System.
out.println("Hello Neptune!");System.out.println("Goodbye Pluto!");}}

Believe it or not, this program would stillcompile andrun okay, but hopefully you will agree
that it is not very easy forus to read. Layout is very important to the human reader, and
programmers must take care and pride in laying out their programs as they are written. So we
split our programsensibly, rather than arbitrarily, into separate lines, and useindentation (i.e.
spaces at the start of some lines), to maximize the readability of our code.

12.2 Code clarity: layout: indentation (page 32)

A classcontains structuresnestedwithin each other. The outer-most structure is the class itself,
consisting of its heading and then containing it’s body within the braces. The body contains
items such as themain method. This in turn consists of a heading and a body contained within
braces.

The idea ofindentation is that the more nested a part of the code is, the more space it has at
the start of its lines. So the class itself has no spaces, but its body, within the braces, has two
or three. Then the body of the main method has two or three more. You should be consistent:
always use the same number of spaces per nesting level. It is also a good idea to avoid using
tab characters as they can often look okay on your screen, but not line up properly when the
code is printed.

9039

12.3 Code clarity: layout: splitting long lines (page 43)

In addition, another rule of thumb is that opening braces ({) should have the same amount of
indentation as the matching closing brace (}). You will find that principle being used through-
out this book. However, some people prefer a style where opening braces are placed at the end
of lines, which this author believes is less clear.

public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello world!");
}

}

12.3 Code clarity: layout: splitting long lines (page 43)

One of the features of good layout is to keep oursource codelines from getting too long. Very
long lines cause the reader to have to work harder in horizontal eye movement to scan the code.
When code with long lines is viewed on the screen, the reader either has to use a horizontal
scroll bar to see them, or make the window so wide that other windows cannot be placed next
to it. Worst of all, when code with long lines is printed on paper there is a good chance that the
long lines will disappear off the edge of the page! At very least, they will be wrapped onto the
next line making the code messy and hard to read.

So a good rule of thumb is to keep your source code lines shorter than 80characters long. You
can do this simply in mosttext editors by never making the text window too wide and never
using the horizontal scroll bar while writing the code.

When we do have astatementthat is quite long, we simply split it into separate lines at care-
fully chosen places. When we choose such places, we bear in mind that most human readers
scan down the left hand side of the code lines, rather than read every word. So, if a line is a
continuation of a previous line, it is important to make thisobvious at the start of it. This means
using an appropriate amount ofindentation, and choosing the split so that the first symbol on
the continued line is not one which could normally start a statement.

A little thought at the writing stage quickly leads to a habitof good practise which seriously
reduces the effort required to read programs once they are written. Due tobug fixing and
general maintenance over the lifetime of a real program, thecode is read many more times than
it is written!

12.4 Code clarity: comments (page 82)

In addition to having careful layout andindentation in our programs, we can also enhance
human readability by usingcomments. These are pieces of text which are ignored by the
compiler, but help describe to the human reader what the program does and how it works.

9040

12.5 Code clarity: comments: marking ends of code constructs (page 83)

For example, every program should have comments at the startsaying what it does and briefly
how it is used. Also,variables can often benefit from a comment before their declaration
explaining what they are used for. As appropriate, there should be comments in the code too,
before certain parts of it, explaining what these nextstatements are going to do.

One form of comment in Java starts with the symbol//. The rest of that source line is then the
text of the comment. For example

// This is a comment, ignored by the compiler.

12.5 Code clarity: comments: marking ends of code constructs (page 83)

Another good use ofcomments is to mark every closing brace (}) with a comment saying what
code construct it is ending. The following skeleton examplecode illustrates this.

public class SomeClass
{

public static void main(String[] args)
{

...
while (...)
{

...

...

...
} // while
...

} // main

} // class SomeClass

13 Design

13.1 Design: hard coding (page 36)

Programs typically process inputdata, and produce output data. The input data might be
given ascommand line arguments, or it might be supplied by the user through someuser
interface such as agraphical user interfaceor GUI . It might be obtained fromfiles stored on
the computer.

9041

13.2 Design: pseudo code (page 73)

Sometimes input data might be built into the program. Such data is said to behard coded.
This can be quite common while we are developing a program andwe haven’t yet written the
code that obtains the data from the appropriate place. In other cases it might be appropriate to
have it hard coded in the final version of the program, if such data only rarely changes.

13.2 Design: pseudo code (page 73)

As our programs get a little more complex, it becomes hard to write them straight into thetext
editor. Instead we need todesignthembefore we implement them.

We do not design programs by starting at the first word and ending at the last, like we do when
we implement them. Instead we can start wherever it suits us –typically at the trickiest bit.

Neither do we express our designs in Java – that would be a bad thing to do, as Java forces our
mind to be cluttered with trivia which, although essential in the final code, is distracting during
the design.

Instead, we express ouralgorithm designs inpseudo code, which is a kind of informal pro-
gramming language that has all unnecessary trivia ignored.So, for example, we do not bother
writing the semi-colons at the end ofstatements, or the brackets roundconditions etc.. We
might not bother writing theclassheading, nor themethod heading, if it is obvious to us what
we are designing. And so on.

Also, during design in pseudo code, we can vary the level ofabstraction to suit us – we do not
have to be constrained to use only the features that are available in Java.

14 Variable

14.1 Variable (page 36)

A variable in Java is an entity that can hold adata item. It has a name and a value. It is rather
like the notion of a variable in algebra (although it is not quite the same thing). The name of
a variable does not change – it is carefully chosen by the programmer to reflect the meaning
of the entity it represents in relation to the problem being solved by the program. However,
the value of a variable can (in general) be changed – we can vary it. Hence the name of the
concept: avariable is an entity that has a (possibly) varying value.

The Javacompiler implements variables by mapping their names ontocomputer memory
locations, in which the values associated with the variables will be stored atrun time .

So one view of a variable is that it is a box, like a pigeon hole,in which a value can be placed. If
we wish, we can get the program to place a different value in that box, replacing the previous;

9042

14.2 Variable: int variable (page 37)

and we can do this as many times as we want to.

Variables only have values at run time, when the program isrunning. Their names, created by
the programmer, are already fixed by the time the program iscompiled. Variables also have
one more attribute – thetype of the data they are allowed to contain. This too is chosen by the
programmer.

14.2 Variable: int variable (page 37)

In Java,variables must be declared in avariable declaration before they can be used. This is
done by the programmer stating thetype and then the name of the variable. For example the
code

int noOfPeopleLivingInMyStreet;

declares anint variable , that is a variable the value of which will be anint, and which has the
namenoOfPeopleLivingInMyStreet. Observe the semi-colon (;) which, according to the
Javasyntax rules, is needed to terminate the variable declaration. Atrun time , this variable is
allowed to hold aninteger (whole number). Its value can change, but it will always be anint.
The name of a variable should reflect its intended meaning. Inthis case, it would seem from
its name that the programmer intends the variable to always hold the number of people living
in his or her street. The programmer would write code to ensure that this meaning is always
reflected by its value at run time.

By convention, variable names start with a lower case letter, and consist of a number of words,
with the first letter of each subsequent word capitalized.

14.3 Variable: a value can be assigned when a variable is declared (page
42)

Java permits us to assign a value to avariable at the same time as declaring it. You could regard
this as a kind ofassignment statementin which the variable is also declared at the same time.
For example

int noOfHousesInMyStreet = 26;

14.4 Variable: double variable (page 54)

We can declaredouble variables in Java, that isvariables which have thetype double. For
example the code

9043

14.5 Variable: can be defined within a compound statement (page 92)

double meanAgeOfPeopleLivingInMyHouse;

declares avariable of typedouble, with the namemeanAgeOfPeopleLivingInMyHouse. At
run time , this variable is allowed to hold adouble data item, that is areal (fractional decimal
number). The value of this variable can change, but it will always be adouble, including of
course, approximations ofwhole numbers such as40.0.

14.5 Variable: can be defined within a compound statement (page 92)

We can declare avariable within the body of amethod, such asmain(), (practically) anywhere
where we can have astatement. The variable can then be used from that point onwards within
the method body. The area of code in which a variable may be used is called itsscope.

However, if we declare a variable within acompound statement, its scope is restricted to
the compound statement: it does not exist after the end of thecompound statement. This is
a good thing, as it allows us to localize our variables to the exact point of their use, and so
avoid cluttering up other parts of the code with variables available to be used but which have
no relevance.

Consider the following symbolic example.

public static void main(String[] args)
{

...
int x = ...
... x is available here.
while (...)
{

... x is available here.
int y = ...
... x and y are available here.

} // while
... x is available here, but not y,
... so we cannot accidentally refer to y instead of x.

} // main

The variablex can be used from the point of its definition onwards up to the end of the method,
whereas the variabley can only be used from the point of its definition up to the end ofthe
compound statement which is the body of theloop.

9044

14.6 Variable: local variables (page 124)

14.6 Variable: local variables (page 124)

When we declarevariables inside amethod, they are local to that method and only exist while
that method is running – they cannot be accessed by other methods. They are known aslocal
variables or method variables. Also, different methods can have variables with the same
name – they are different variables.

14.7 Variable: class variables (page 124)

We can declarevariables directly inside aclass, outside of anymethods. Suchclass variables
exist from the moment the class is loaded into thevirtual machine until the end of the program,
and they can be accessed by any method in the class. For example, the following are three class
variables which might be used to store the components of today’s date.

private static int presentDay;
private static int presentMonth;
private static int presentYear;

Notice that we use thereserved wordstatic in their declaration. Also, class variables have a
visibility modifier – the above have all been declared as beingprivate, which means they can
only be accessed by code inside the class which has declared them.

14.8 Variable: a group of variables can be declared together(page 129)

Java permits us to declare a group ofvariables which have the sametype in one declaration,
by writing the type followed by a comma-separated list of thevariable names. For example

int x, y;

declares two variables, both of typeint. We can even assign values to the variables, as in the
following.

int minimumVotingAge = 18, minimumArmyAge = 16;

This shorthand is not as useful as one might think, because ofcourse, we typically have a
comment before each variable explaining what its meaning is. However, we can sometimes
have one comment which describes a group of variables.

9045

14.9 Variable: boolean variable (page 133)

14.9 Variable: boolean variable (page 133)

Theboolean type can be used in much the same way asint anddouble, in the sense that we
can haveboolean variables andmethods can haveboolean as theirreturn type .

For example, consider the following code.

if (age1 < age2 || age1 == age2 && height1 <= height2)
System.out.println("You are in the correct order.");

else

System.out.println("Please swap over.");

We could, if we wished, write it using aboolean variable.

boolean correctOrder = age1 < age2 || age1 == age2 && height1 <= height2;
if (correctOrder)
System.out.println("You are in the correct order.");

else

System.out.println("Please swap over.");

Some people would argue that this makes for more readable code, as in effect, we have named
thecondition in a helpful way. How appropriate that is would depend on how obvious the code
is otherwise, which is context dependent and ultimately subjective. Of course, the motive for
storing the condition value in avariable is less subjective if we wish to use it more than once.

boolean correctOrder = age1 < age2 || age1 == age2 && height1 <= height2;
if (correctOrder)
System.out.println("You are in the correct order.");

else

System.out.println("Please swap over.");

... Lots of stuff here.

if (!correctOrder)
System.out.println("Don’t forget to swap over!");

Many novice programmers, and even some so-called experts, when writing the code above may
have actually written the following.

boolean correctOrder;
if (age1 < age2 || age1 == age2 && height1 <= height2)
correctOrder = true;

9046

14.10 Variable: char variable (page 145)

else

correctOrder = false;

if (correctOrder == true)
System.out.println("You are in the correct order.");

else

System.out.println("Please swap over.");

... Lots of stuff here.

if (correctOrder == false)
System.out.println("Don’t forget to swap over!");

There are threeterrible things wrong with this code (two of them are the same really) –identify
them,and do not write code like that!

14.10 Variable: char variable (page 145)

We can declarechar variables in Java, that isvariables which have thetype char. For exam-
ple the code

char firstLetter = ’J’;

declares a variable of typechar, with the namefirstLetter. At run time , this variable is
allowed to hold achar data item, that is a singlecharacter.

15 Expression

15.1 Expression: arithmetic (page 38)

We can havearithmetic expressions in Java rather like we can in mathematics. These can con-
tain literal values, that is constants, such as theinteger literals1 and18. They can also con-
tain variables which have already been declared, andoperators to combine sub-expressions
together. Four commonarithmetic operators areaddition (+), subtraction (-), multiplica-
tion (*) anddivision (/). Note the use of an asterisk for multiplication, and a forward slash for
division – computer keyboards do not have multiply or dividesymbols.

These four operators arebinary infix operator s, because they take twooperands, one on
either side of the operator.+ and- can also be used as theunary prefix operators, plus and
minus respectively, as in-5.

9047

15.2 Expression: arithmetic: int division truncates result (page 52)

When anexpressionis evaluated (expression evaluation) Java replaces each variable with
its current value and works out the result of the expression depending on the meaning of the
operators. For example, if the variablenoOfPeopleLivingInMyStreet had the value47 then
the expressionnoOfPeopleLivingInMyStreet + 4 would evaluate to51.

15.2 Expression: arithmetic: int division truncates result (page 52)

The fourarithmetic operators,+, -, * and/ of Java behave very similarly to the corresponding
operators in mathematics. There is however one serious difference to look out for. When
the division operator is given twointegers (whole numbers) it usesinteger division which
always yields an integer as its result, by throwing away any fractional part of the answer. So,
8 / 2 gives the answer4 as you might expect, but9 / 2 also gives4 – not4.5 as it would in
mathematics. It does not round to the nearest whole number, it always rounds towards zero. In
mathematics15 / 4 gives3.75. In Java it yields3 not4.

15.3 Expression: arithmetic: associativity and int division (page 52)

Like theoperators+ and-, the operators* and/ have equaloperator precedence(but higher
than+ and-) and also haveleft associativity.

However, there is an extra complication to consider becausethe Java/ operator truncates its
answer when given twointegers. Consider the following twoarithmetic expressions.

Expression Implicit brackets Value
9 * 4 / 2 (9 * 4) / 2 18
9 / 2 * 4 (9 / 2) * 4 16

In mathematics one would expect to get the same answer from both theseexpressions, but not
in Java!

15.4 Expression: arithmetic: double division (page 55)

The Javadivision operator, /, usesdouble division and produces adouble result if at least
one of itsoperands is adouble. The result will be the best approximation to the actual answer
of the division.

9048

15.5 Expression: arithmetic: remainder operator (page 149)

Expression Result Type of Result
8 / 2 4 int
8 / 2.0 4.0 double
9 / 2 4 int
9 / 2.0 4.5 double
9.0 / 2 4.5 double
9.0 / 2.0 4.5 double

15.5 Expression: arithmetic: remainder operator (page 149)

Anotherarithmetic operator in Java is theremainder operator, also known as themodulo
operator,%. When used with twointeger operands, it yields the remainder obtained from
dividing the first operand by the second. As an example, the following method determines
whether a givenint method parameter is an even number.

public static boolean isEven(int number)
{

return number % 2 == 0;
} // isEven

15.6 Expression: brackets and precedence (page 45)

In addition tooperators andvariables,expressions in Java can have round brackets in them.
As in mathematics, brackets are used to define the structure of the expression by grouping parts
of it into sub-expressions. For example, the following two expressions have different structures,
and thus very different values.

(2 + 4) * 8
2 + (4 * 8)

The value of the first expression is made from theaddition of 2 and4 and thenmultiplication
of the resulting6 by 8 to get48. The second expression isevaluated by multiplying4 with 8
to get32 and then adding2 to that result, ending up with34.

To help us see the structure of these two expressions, let us draw them asexpression trees.

9049

15.7 Expression: associativity (page 48)

(2 + 4) * 8

*
___/ \

+ 8
/ \

2 4

2 + (4 * 8)

+
/ ___

2 *
/ \

4 8

What if there were no brackets?

2 + 4 * 8

Java allows us to have expressions without any brackets, or more generally, without brackets
aroundevery sub-expression. It provides rules to define what the structure of such an expression
is, i.e., where the missing brackets should go. If you look atthe4 in the above expression, you
will see that it has an operator on either side of it. In a sense, the+ operator and the* operator
are both fighting to have the4 as anoperand. Rather like a tug of war,+ is pulling the4 to the
left, and* is tugging it to the right. The question is, which one wins? Java, as in mathematics,
provides the answer by having varying levels ofoperator precedence. The* and/ operators
have a higher precedence than+ and-, which means* fights harder than+, so it wins! 2 + 4
* 8 evaluates to34.

15.7 Expression: associativity (page 48)

The principle ofoperator precedenceis insufficient to disambiguate allexpressions which
are not fully bracketed. For example, consider the following expressions.

10 + 7 + 3
10 + 7 - 3
10 - 7 + 3
10 - 7 - 3

In all four expressions, the7 is being fought over by twooperators which have the same
precedence: either two+, two -, or one of each. So where should the missing brackets go?
The expression trees could have one of the two following structures, whereOP1 is the first
operator, andOP2 is the second.

9050

15.8 Expression: boolean (page 60)

10 OP1 (7 OP2 3)

OP1
/ ___

10 OP2
/ \

7 3

(10 OP1 7) OP2 3

___OP2
/ \

OP1 3
/ \

10 7

Let us see whether it makes a difference to the results of the expressions.

Expression Value
(10 + 7) + 3 20
10 + (7 + 3) 20
(10 + 7) - 3 14
10 + (7 - 3) 14
(10 - 7) + 3 6
10 - (7 + 3) 0
(10 - 7) - 3 0
10 - (7 - 3) 6

As you can see, it does make a difference sometimes – in these cases when the first operator
is subtraction (-). So how does Java resolve this problem? As in mathematics, Java operators
have anoperator associativityas well as a precedence. The operators+, -, * and/ all have
left associativitywhich means that when two of these operators of equal precedence are both
fighting over oneoperand, it is the left operator that wins. If you like, the tug of war takes
place on sloping ground with the left operator having the advantage of being lower down than
the right one!

Expression Implicit brackets Value
10 + 7 + 3 (10 + 7) + 3 20
10 + 7 - 3 (10 + 7) - 3 14
10 - 7 + 3 (10 - 7) + 3 6
10 - 7 - 3 (10 - 7) - 3 0

The operators* and/ also have equal precedence (but higher than+ and-) so similar situations
arise with those too.

15.8 Expression: boolean (page 60)

An expressionwhich whenevaluated yields eithertrue or false is known as acondition,
and is typically used for controllingconditional execution. Conditions are also calledboolean
expressions.

9051

15.10 Expression: boolean: logical operators (page 128)

15.9 Expression: boolean: relational operators (page 60)

Java gives us sixrelational operators for comparing values such as numbers, which we can use
to make upconditions. These are allbinary infix operator s, that is they take twooperands,
one either side of theoperator. They yieldtrue or false depending on the given values.

Operator Title Description
== Equal This is theequal operator, which provides the notion of

equality. a == b yieldstrue if and only if the value of
a is the same as the value ofb.

!= Not equal This is thenot equal operator, providing the the notion
of not equality. a != b yields true if and only if the
value ofa is not the same as the value ofb.

< Less than This is theless thanoperator.a < b yieldstrue if and
only if the value ofa is less than the value ofb.

> Greater than This is thegreater than operator.a > b yieldstrue if
and only if the value ofa is greater than the value ofb.

<= Less than or equal This is theless than or equaloperator.a <= b yields
true if and only if the value ofa is less than value ofb,
or is equal to it.

>= Greater than or equalThis is thegreater than or equal operator. a >= b
yieldstrue if and only if the value ofa is greater than
value ofb, or is equal to it.

15.10 Expression: boolean: logical operators (page 128)

For somealgorithms, we needconditions on loops etc. that are more complex than can be
made simply by using therelational operators. Java provides us withlogical operators to
enable us to glue together simple conditions into bigger ones. The three most commonly used
logical operators areconditional and, conditional or andlogical not.

Operator Title Posh title Description
&& and conjunction c1 && c2 is true if and only if both conditionsc1

andc2 evaluate to true. Both of the two condi-
tions, known asconjuncts, must betrue to satisfy
the combined condition.

|| or disjunction c1 || c2 is true if and only if at least one of the
conditionsc1 andc2 evaluate totrue. The com-
bined condition is satisfied, unless both of the two
conditions, known asdisjuncts, arefalse.

! not negation !c is true if and only if the conditionc evaluates to
false. This operator negates the given condition.

We can define theseoperators usingtruth table s, where ? means theoperand is not evaluated.

9052

15.10 Expression: boolean: logical operators (page 128)

c1 c2 c1 && c2
true true true

true false false

false ? false

c1 c2 c1 || c2
true ? true

false true true

false false false

c !c
true false

false true

Using these operators, we can make up complex conditions, such as the following.

age1 < age2 || age1 == age2 && height1 <= height2

As with thearithmetic operators, Java definesoperator precedenceandoperator associa-
tivity to disambiguate complex conditions that are not fully bracketed, such as the one above.
&& and|| have a lower precedence than the relational operators whichhave a lower precedence
than the arithmetic ones.! has a very high precedence (even more so than the arithmetic oper-
ators) and&& has a higher precedence than||. So the above exampleexpressionhas implicit
brackets as follows.

(age1 < age2) || ((age1 == age2) && (height1 <= height2))

This might be part of a program thatsorts people standing in a line by age, but when they
are the same age, it sorts them by height. Assuming that theint variables age1 andheight1
contain the age and height of one person, and the other two variables similarly contain that
data for another, then the following code might be used to tell thepair to swap their order if
necessary.

if (age1 < age2 || age1 == age2 && height1 <= height2)
System.out.println("You are in the correct order.");

else

System.out.println("Please swap over.");

We might have, perhaps less clearly, chosen to write that code as follows.

if (!(age1 < age2 || age1 == age2 && height1 <= height2))
System.out.println("Please swap over.");

else

System.out.println("You are in the correct order.");

You might find it tricky, but it’s worth convincing yourself:yet another way of writing code
with the same effect would be as follows.

if (age1 > age2 || age1 == age2 && height1 > height2)
System.out.println("Please swap over.");

else

System.out.println("You are in the correct order.");

9053

15.11 Expression: conditional expression (page 94)

In mathematics, we are used to writing expressions such asx ≤ y ≤ z to mean true, if and only
if y lies in the rangex to z, inclusive. In Java, such expressions need to be written asx <= y
&& y <= z.

Also, in everyday language we are used to using the words ‘and’ and ‘or’ where they have very
similar meanings to the associated Java operators. However, we say things like “my mother’s
age is 46 or 47”. In Java, we would need to writemyMumAge == 46 || myMumAge == 47
to capture the same meaning. Another example, “my brothers are aged 10 and 12”, might be
coded asmyBrother1Age == 10 && myBrother2Age == 12.

However, there are times in everyday language when we say “and” when we really mean “or”
in logic, and hence would use|| in Java. For example, “the two possible ages for my dad are
49 and 53” is really the same as saying “my dad’s age is 49or my dad’s age is 53”.

15.11 Expression: conditional expression (page 94)

The conditional operator in Java permits us to writeconditional expressions which have
different sub-expressionsevaluated depending on somecondition. The general form is

c ? e1 : e2

wherec is some condition, ande1 ande2 are twoexpressions of sometype. The condition
is evaluated, and if the value istrue thene1 is evaluated and its value becomes the result of
the expression. If the condition isfalse thene2 is evaluated and its value becomes the result
instead.

For example

int maxXY = x > y ? x : y;

is another way of achieving the same effect as the following.

int maxXY;
if (x > y)
maxXY = x;

else

maxXY = y;

9054

	Computer basics
	Computer basics: hardware (page 3)
	Computer basics: hardware: processor (page 3)
	Computer basics: hardware: memory (page 3)
	Computer basics: hardware: persistent storage (page 3)
	Computer basics: hardware: input and output devices (page 3)
	Computer basics: software (page 3)
	Computer basics: software: machine code (page 3)
	Computer basics: software: operating system (page 4)
	Computer basics: software: application program (page 4)
	Computer basics: data (page 3)
	Computer basics: data: files (page 5)
	Computer basics: data: files: text files (page 5)
	Computer basics: data: files: binary files (page 5)

	Java tools
	Java tools: text editor (page 5)
	Java tools: javac compiler (page 9)
	Java tools: java interpreter (page 9)

	Operating environment
	Operating environment: programs are commands (page 7)
	Operating environment: standard output (page 7)
	Operating environment: command line arguments (page 8)

	Class
	Class: programs are divided into classes (page 16)
	Class: public class (page 16)
	Class: definition (page 16)

	Method
	Method (page 118)
	Method: main method: programs contain a main method (page 17)
	Method: main method: is public (page 17)
	Method: main method: is static (page 17)
	Method: main method: is void (page 17)
	Method: main method: is the program starting point (page 17)
	Method: main method: always has the same heading (page 18)
	Method: private (page 118)
	Method: accepting parameters (page 118)
	Method: calling a method (page 119)
	Method: void methods (page 120)
	Method: returning a value (page 122)
	Method: changing parameters does not affect arguments (page 124)

	Command line arguments
	Command line arguments: program arguments are passed to main (page 17)
	Command line arguments: program arguments are accessed by index (page 26)
	Command line arguments: length of the list (page 79)
	Command line arguments: list index can be a variable (page 79)

	Type
	Type (page 36)
	Type: String (page 135)
	Type: String: literal (page 18)
	Type: String: literal: must be ended on the same line (page 21)
	Type: String: literal: escape sequences (page 49)
	Type: String: concatenation (page 26)
	Type: String: conversion: from int (page 38)
	Type: String: conversion: from double (page 55)
	Type: int (page 36)
	Type: double (page 54)
	Type: casting an int to a double (page 79)
	Type: boolean (page 133)
	Type: long (page 145)
	Type: short (page 145)
	Type: byte (page 145)
	Type: char (page 145)
	Type: char: literal (page 145)
	Type: char: literal: escape sequences (page 146)
	Type: float (page 146)

	Standard API
	Standard API: System: out.println() (page 18)
	Standard API: System: out.println(): with no argument (page 98)
	Standard API: System: out.print() (page 98)
	Standard API: System: out.printf() (page 126)
	Standard API: System: out.printf(): zero padding (page 140)
	Standard API: Integer: parseInt() (page 41)
	Standard API: Double: parseDouble() (page 54)
	Standard API: Math: pow() (page 73)
	Standard API: Math: abs() (page 87)
	Standard API: Math: PI (page 87)

	Statement
	Statement (page 18)
	Statement: simple statements are ended with a semi-colon (page 18)
	Statement: assignment statement (page 37)
	Statement: assignment statement: assigning a literal value (page 37)
	Statement: assignment statement: assigning an expression value (page 38)
	Statement: assignment statement: updating a variable (page 70)
	Statement: assignment statement: updating a variable: shorthand operators (page 87)
	Statement: if else statement (page 60)
	Statement: if else statement: nested (page 62)
	Statement: if statement (page 64)
	Statement: compound statement (page 66)
	Statement: while loop (page 71)
	Statement: for loop (page 77)
	Statement: for loop: multiple statements in for update (page 136)
	Statement: statements can be nested within each other (page 92)
	Statement: switch statement with breaks (page 107)
	Statement: switch statement without breaks (page 110)
	Statement: do while loop (page 112)

	Error
	Error (page 20)
	Error: syntactic error (page 20)
	Error: semantic error (page 22)
	Error: compile time error (page 22)
	Error: run time error (page 24)
	Error: logical error (page 29)

	Execution
	Execution: sequential execution (page 23)
	Execution: conditional execution (page 60)
	Execution: repeated execution (page 70)

	Code clarity
	Code clarity: layout (page 31)
	Code clarity: layout: indentation (page 32)
	Code clarity: layout: splitting long lines (page 43)
	Code clarity: comments (page 82)
	Code clarity: comments: marking ends of code constructs (page 83)

	Design
	Design: hard coding (page 36)
	Design: pseudo code (page 73)

	Variable
	Variable (page 36)
	Variable: int variable (page 37)
	Variable: a value can be assigned when a variable is declared (page 42)
	Variable: double variable (page 54)
	Variable: can be defined within a compound statement (page 92)
	Variable: local variables (page 124)
	Variable: class variables (page 124)
	Variable: a group of variables can be declared together (page 129)
	Variable: boolean variable (page 133)
	Variable: char variable (page 145)

	Expression
	Expression: arithmetic (page 38)
	Expression: arithmetic: int division truncates result (page 52)
	Expression: arithmetic: associativity and int division (page 52)
	Expression: arithmetic: double division (page 55)
	Expression: arithmetic: remainder operator (page 149)
	Expression: brackets and precedence (page 45)
	Expression: associativity (page 48)
	Expression: boolean (page 60)
	Expression: boolean: relational operators (page 60)
	Expression: boolean: logical operators (page 128)
	Expression: conditional expression (page 94)

