Java Just in Time:

Collected concepts after chapter 04

‘John Latham, School of Computer Science, Manchester UJNy,eUK‘

April 15, 2011

Contents

1 Computer basics
1.1 Computer basics: hardware (p@e 3 .
1.2 Computer basics: hardware: processor (page 3)
1.3 Computer basics: hardware: memory (page3)
1.4 Computer basics: hardware: persistent storage ﬁag.e 3) ...
15 Computer basics: hardware: input and output devicege(Ba. . . .
1.6 Computer basics: software (page3)
1.7 Computer basics: software: machine code (@ €3). . ..
1.8 Computer basics: software: operating system (page 4)
1.9 Computer basics: software: application program (page 4

1.10 Computer basics:
1.11 Computer basics:
1.12 Computer basics:
1.13 Computer basics:

\2 Java tool%

2.1 Java tools: text editor (pa@ 5;

2.2 Java tools: javac compiler (p 9 ...
2.3 Java tools: java interpreter (p 9 ...
3 Operating environment
3.1 Operating environment: programs are commands @ge 7)... .
3.2 Operating environment: standard output (@ge 7. e
3.3 Operating environment: command line arguments (@ge 8). ..
4 Class
4.1 Class: programs are divided into classes (@e 16)
4.2 Class: publicclass (pagel/16)
4.3 Class: definition (pagel6)

data (pfng
data: files (page5)
data: files: text files (page5)

data: files: binary files (page 5)

4000

CONTENTS

4006
5.1 Method: main method: programs contain a main methode(@dy . 4006
5.2 Method: main method: is public (p 17) . 4006
5.3 Method: main method: is static (p i 4006
54 Method: main method: is void (page 17) 0o0e!
5.5 Method: main method: is the program starting point (.. . . 4007
5.6 Method: main method: always has the same heading (page 18. 4007

6 Command line argumenté 4007
6.1 Command line arguments: program arguments are paseminc(pag 4007
6.2 Command line arguments: program arguments are acdegsedex (pag)4008

7 Type 4008
7.1 TYPE (PAUE 36) . « v o e 4008
7.2 Type: String: literal (pad:l8) 4008
7.3 Type: String: literal: must be ended on the same Imee(. . 4008
7.4 Type: String: literal: escape seuences (@e 49)4008
7.5 Type: String: concatenation (p 264009
7.6 Type: String: conversion: from int (p ge 34010
7.7 Type: String: conversion: from double (page 55) . e e+ ..., . 4010
7.8 TYPE: INE(PAGE 36) « « + o o o e 4010
7.9 Type: double (pa54) 4011

8 Standard AP 4011
8.1 Standard API: System: out.println()%@ 18)4011
8.2 Standard API: Integer: parselnt() (p ... 4011
8.3 Standard API: Double: parseDouble() (pag 54) C e e .. 4012

9 Statement 4012
9.1 Statement (paﬁS) 4012
9.2 Statement: simple statements are ended with a semm- (mkgi) 4013
9.3 Statement: assignment statement (e 37) . C .4013
9.4 Statement: assignment statement: assigning a Iltehm‘(pag@ﬂ 4013
9.5 Statement: assignment statement: assigning an expresdue (page 38)4013
9.6 Statement: if else statement (p@ 60) 4014
9.7 Statement: if else statement: nested (e 62)4014
9.8 Statement: if statement (p@&) T [Y
9.9 Statement: compound statement (ie 66) 4016

10 Error 4017
10.1 EmOr(Page 20) . . o v oo 4017
10.2 Error: syntactic error (pae 4017
10.3 Error: semantic error (pa 4017
10.4 Error: compile time error i!%a 22) .. 4017
10.5 Error: run time error (page24), 018
10.6 Error: logical error (page29) 4018

11 Execution 4018

4001

111 Execution: sequential execution (p%&) C e e e 4018

11.2 Execution: conditional execution (p 60)4019
12 Code clarity 4019
12.1 Code clarity: layout (paﬁg@—iﬂ) 4019
12.2 Code clarity: layout: indentation (pﬁSZ) C e e e e . .. 4019
12.3 Code clarity: layout: splitting long lines (p@%) 4020
13 Design 4021
13.1 Design: hard coding (pa36) 0214
14 Variable 4021
14.1 Variable (PAgE36)t ot 4021
14.2 Variable: int variable (pa@?) 4022
14.3 Variable: a value can be assigned when a variable iaMb(pag@ZMOZZ
14.4 Variable: double variable (page54) 4022
15 Expression 4023
15.1 Expression: arithmetic (p38) 4023
15.2 Expression: arithmetic: int division truncates reemrhg4023
15.3 Expression: arithmetic: associativity and int dots{page 52) . . . 4023
15.4 Expression: arithmetic: double division @ 55)4024
15.5 Expression: brackets and precedence (%ge 45) 4024
15.6 Expression: associativit 48) e e e e ... 4025
15.7 Expression: boolean (p 60) 0264
15.8 Expression: boolean: relational operators (e 60). 4026

1 Computer basics

1.1 Computer basics: hardware (page 3)

The physical parts of a computer are knowrhasdware. You can see them, and touch them.

1.2 Computer basics: hardware: processor (page 3)

Thecentral processing unit(CPU) is the part of thénardware that actually obeys instructions.
It does this dumbly — computers are not inherently intetlige

4002

1.3 Computer basics: hardware: memory (page 3)

1.3 Computer basics: hardware: memory (page|3)

Thecomputer memoryis part of the computer which is capable of storing and reitngedata
for short term use. This includes tiheachine codeinstructions that theentral processing
unit is obeying, and any other data that the computer is currendhking with. For example,
it is likely that an image from a digital camera is stored ia tomputer memory while you are
editing or displaying it, as are the machine code instrustior the image editing program.

The computer memory requires electrical power in order moeraber its data — it igolatile
memory and will forget its contents when the power is turned off.

An important feature of computer memory is that its conterais be accessed and changed
in any order required. This is known ssndom accessand such memory is calle@gndom
access memoryr justRAM.

1.4 Computer basics: hardware: persistent storage (page 3)

For longer term storage ofata, computers uspersistent storagedevices such asard discs
andDVD ROM s. These are capable of holding much more information toamputer mem-
ory, and are persistent in that they do not need power to remetnéénformation stored on
them. However, the time taken to store and retrieve datauh longer than for computer
memory. Also, these devices cannot as easily be accessednda@m order.

1.5 Computer basics: hardware: input and output devices (pge.3)

Some parts of thbardware are dedicated to receiving input from or producing outpuht®
outside world. Keyboards and mice are examplempfit devices. Displays and printers are
examples obutput devices.

1.6 Computer basics: software (pagel3)

One part of a computer you cannot see isdaffware. This is stored ocomputer media such
asDVD ROMs, and ultimately inside the computer, as lots of numberis the instructions
that the computer will obey. The closest you get to seeingghirbe if you look at the silver
surface of a DVD ROM with a powerful magnifying glass!

4003

1.7 Computer basics: software: machine code (page 3)

1.7 Computer basics: software: machine code (page 3)

The instructions that theentral processing unitobeys are expressed in a language known
asmachine code This is a verylow level language meaning that each instruction gets the
computer to do only a very simple thing, such as dleition of two numbers, or sending a
byte to a printer.

1.8 Computer basics: software: operating system (page 4)

A collection of software which is dedicated to making the computer generally usabtber
than being able to solvemarticular task, is known as aoperating system The most popular
examples for modern personal computers are Microsoft Wisgddac OS X and Linux. The
latter two are implementations of Unix, which was first cauaed in the early 1970s. The fact
it is still in widespread use today, especially by comput@fgssionals, is proof that it is a
thoroughly stable and wetlesigred and integrated platform for the expert (or budding ejpert
computer scientist.

1.9 Computer basics: software: application program (page p

A piece ofsoftware which is dedicated to solving a particular task, or appiaatis known as
anapplication program. For example, an image editing program.

1.10 Computer basics: data (page'3)

Another part of the computer that you cannot see iglét. Like software it is stored as
lots of numbers. Computers are processing and produciregatlathe time. For example, an
image from a digital camera is data. You can only see the i@atdnen you display it using
some image displaying or editing software, but even thit &growing you the actual data that
makes up the picture. The names and addresses of your fiieadsther example of data.

1.11 Computer basics: data: files (pagel5)

Whendata is stored inpersistent storage such as on &ard disc, it is organized into chunks

of related information known ades. Files have names and can be accessed by the computer
through theoperating system For example, the image from a digital camera would probably
be stored in a jpeg file, which is a particular type of image &led the name of this file would
probably end inj pg or. | peg.

4004

1.12 Computer basics: data: files: text files (nage 5)

1.12 Computer basics: data: files: text files (page 5)

A text file is a type offile that containglata stored directly asharacters in a human readable
form. This means if you were to send the raw contents dirdctlthe printer, you would
(for most printers) be immediately able to read it. Examplietext files includeREADME. t xt

that sometimes comes wigoftware you are installing, or source text for a document to be
processed by théTeX[6] document processing system, such as the ones useddagathis
book (prior to publication). As you will see shortly, a morgdaresting example for you, is
computer prograrmsource codefiles.

1.13 Computer basics: data: files: binary files (page 5)

A binary file is another kind ofile in which data is stored adinary (base 2) numbers, and
so is not human readable. For example, the image from a bagitaera is probably stored as
a jpeg file, and if you were to look directly at its contentshex than use somapplication
program to display it, you would see what appears to be nonsense! &reisting example of
a binary file is theanachine codeinstructions of a program.

2 Javatools

2.1 Javatools: text editor (page 5)

A text editor is a program that allows the user to type and ¢elt files. You may well
have usecdot epad under Microsoft Windows; that is a text editor. More likelply have
usedM crosoft Wrd. If you have, you should note that it is not a text editor, iaigord
processor Although you can save your documents as text files, it is ncoramon to save
them as doc files, which is actually &inary file format.M crosoft Wrd is not a good tool
to use for creating prograsource codefiles.

If you are using arntegrated development environmento support your programming, then

the text editor will be built in to it. If not, there are a pletia of text editors available which
are suited to Java programming.

2.2 Javatools: javac compiler (page 9)

The Javacompiler is calledj avac. Java program source is saved by the programmetenta
file that has the suffixj ava. For example, the text filgel | oWor | d. j ava might contain the
source text of a program that printel | 0 wor| d! on thestandard output. This text file

4005

2.3 Javatools: java interpreter (page 9)

can then beompiled by the Java compiler, by giving its name asognmand line argument
Thus the command

javac Hel loWrld.java

will produce thebyte codeversion of it in thefile Hel | oWor | d. cl ass. Like machine code
files, byte code is stored oinary files as numbers, and so is not human readable.

2.3 Javatools: java interpreter (page 9)

When the end user wants to run a Java program, he or she infeew a interpreter with the
name of the program as it®emmand line argument The program must, of course, have been
compiled first! For example, to run thieel | oWor | d program we would issue the following
command.

java Hell ovrld

This makes theentral processing unitrun the interpreter ovirtual machine j ava, which
itself thenexecutes the program named as its first argument. Notice that thexsyféiva is
needed when compiling the program, but no suffix is used whbening it. In our example
here, the virtual machine finds tlgyte codefor the program in thdile Hel | oWor | d. cl ass
which must have been previously produced byadbmpiler.

3 Operating environment

3.1 Operating environment: programs are commands (page! 7)

When a program iexecutel, the name of it is passed to thperating systemwhich finds and
loads thdfile of that name, and then starts the program. This might be hittden you if you
are used to starting programs from a menu or browser ingerfad it happens nevertheless.

3.2 Operating environment: standard output (page 7)

When programgxecute they have something called tke&andard output in which they can
produce text results. If they aren from some kind otommand line interface such as a Unix
shell or a Microsoft WindowsCommand Prompt, then this output appears in that interface
while the program is running. (If they are invoked througimsdntegrated development
environment, browser, or menu, then this output might get displayed mespop-up box, or
special console window.)

4006

3.3 Operating environment: command line arguments (page 8)

3.3 Operating environment: command line arguments (page 8)

Programs can be, and often are, giecemmand line argumens to vary their behaviour.

4 Class

4.1 Class: programs are divided into classes (page 16)

In Java, the source text for a program is separated into piegkbedclas®es. The source
text for each class is (usually) stored in a sepaféee Classes have a name, and if the
name isHel | oWor | d then the text for the class is saved by the programmer irtekiefile

Hel | oWorl d. j ava.

One reason for dividing programs into pieces is to make thasreeto manage — programs to
perform complex tasks typically contain thousands of lioext. Another reason is to make
it easier to share the pieces between more than one prograchsaftware reuseis beneficial
to programmer productivity.

Every program has at least one class. The name of this clafigeftect the intention of the
program. By convention, class names start with an upperletise

4.2 Class: public class (page 16)

A classcan be declared as beipgblic, which means it can be accessed from anywhere in the
running Java environment; in particular thietual machine itself can access it. The source
text for a public class definition starts with tresserved wordpubl i c. A reserved word is one
which is part of the Java language, rather than a word chogéhebprogrammer for use as,
say, the name of a program.

4.3 Class: definition (page 16)

After stating whether it hagublic access, alassnext has theeserved wordcl ass, then its
name, then a left brac€) its body of text and finally a closing right bracp (

public class M/Fabul ousProgram

{
Lots of stuff here.

}...

4007

5 Method

5.1 Method: main method: programs contain a main method (pag/17)

All Java programs contain a section of code caltedn, and this is where the computer will
start toexecutethe program. Such sections of code are caflexthods because they contain
instructions on how to do something. Theain method always starts with the following
heading.

public static void main(String[] args)

5.2 Method: main method: is public (page 17)

Themain method starts with theeserved wordpubl i ¢, which means it can be accessed from
anywhere in the running Java environment. This is necess#trg program could not bein
by thevirtual machine if the starting point was not accessible to it.

public

5.3 Method: main method: is static (page 17)

The main method of the program has theeserved wordst at i ¢ which means it is allowed
to be used in thatatic context A context relates to the use obmputer memory during
therunning of the program. When thartual machine loads a program, it creates the static
context for it, allocating computer memory to store the pangand itdata, etc.. Adynamic
contextis a certain kind of allocation of memory which is made latiering the running of the
program. The program would not be able to start if the mairhogktvas not allowed to run in
the static context.

public static

5.4 Method: main method: is void (page 17)

In general, anethod (section of code) might calculate some kindafction or formula, and
return the answer as a result. For example, the result might be aewutila method returns
a result then this must be stated in its heading. If it doestheh we write theeserved word
voi d, which literally means (among other definitions) ‘withowaintents’. Themain method
does not return a value.

4008

5.5 Method: main method: is the program starting point (fEge

public static void

5.5 Method: main method: is the program starting point (pagel7)

The starting part, omain method, of the program is always calledi n, because it is the main
part of the program.

public static void main

5.6 Method: main method: always has the same heading (page)18

Themain method of a Java program must always have a heading like this.
public static void main(String[] args)

This is true even if we do not intend to use ampmmand line argumens. So a typical single
classprogram might look like the following.

public class MyFabul ousProgram

{
public static void main(String[] args)
{
... Stuff here to performthe task.
}
}

6 Command line arguments

6.1 Command line arguments: program arguments are passed tmain
(page 17)

Programs can be givasommand line argumens which typically affect their behaviour. Ar-
guments given to a Java program are strings ofdesd, and there can be any number of them
in alist. In Java,String[] means ‘list of strings’. We have to give a name for this listga
usually we call itar gs. The chosen name allows us to refer to the given data frommwiitie
program, should we wish to.

public static void main(String[] args)

4009

6.2 Command line arguments: program arguments are acdegsedex (page 26)

6.2 Command line arguments: program arguments are accessdwy in-
dex (page 26)

The command line argumens given to themain method are alist of strings. These are
the text data string arguments supplied on tteommand line The strings arendexed by
integers (whole numbers) starting from zero. We can access theithdilstrings by placing
the index value in square brackets after the name of theSstassuming that we call the list
ar gs, thenar gs[0] is the first command line argument given to the program, ifdh®one.

7 Type

7.1 Type (page 36)

Programs can process various different kinddath, such as numbers, text data, images etc..
The kind of a data item is known as tige.

7.2 Type: String: literal (page/18)

In Java, we can havestring literal , that is a fixed piece of text to be useddaga, by enclosing
it in double quotes. It is called a string literal, because @type of data which is a string of
characters, exactly as listed. Such a piece of data might be used assages® the user.

"This is a fixed piece of text data -- a string literal”

7.3 Type: String: literal: must be ended on the same line (pag21)

In Javastring literal s must be ended on the same line they are started on.

7.4 Type: String: literal: escape sequences (page 49)

We can have aew line characterembedded in atring literal by using theescape sequence
\ n. For example, the following code will print out three linassiandard output.

Systemout.printIn("This text\nspans three\nlines.");

It will generate the following.

4010

7.5 Type: String: concatenation (page 26)

This text
spans three
l'i nes.

There are other escape sequences we can use, includindlomarfg.

Sequence| Name Effect

\b Backspace Moves the cursor back one place, so the obsir-
acter will over-print the previous.

\'t Tab (horizontal tab) Moves the cursor to the next ‘tab stop’.

\n New line (line feed)| Moves the cursor to the next line.

\ f Form feed Moves to a new page on many (text) printers.

\r Carriage return Moves the cursor to the start of the current line, so
characters will over-print those already printed.

\" Double quote Without the backslash escape, this would mark|the
end of the string literal.

\’ Single quote This is just for consistency — we don’t need to es-
cape a single quote in a string literal.

\\ Backslash Well, sometimes you want the backslash charagter
itself.

Note: System out . pri ntl n() always ends the line with the platform dependere separa-
tor, which on Linux is a new line character but on Microsoft Windois acarriage return
character followed by a new line character. In practice you may noteethe difference, but
the above code is not strictly the same as using three segsysttem out . println() calls
and is not 100% portable.

7.5 Type: String: concatenation (page 26)

The + operator, when used with two stringperands, produces a string which is tloen-
catenation of the two strings. For exampledel 1o " + "wor| d" produces a string which is
Hel | o (including the space) concatenated with the stwoig d, and so has the same value as
"Hell o world".

There would not be much point concatenating togetherdtriag literal s like this, compared
with having one string literal which is already the text wentvaWWe would be more likely to
use concatenation when at least one of the operands is netiavidue, i.e. is &ariable value.
For example; Hel 1o " + args[0] produces a string which il | 0 (including the space)
concatenated with the firsbommand line argumentgiven when the program rsin.

The resulting string can be used anywhere that a singlegsiiteral could be used. For ex-

ampleSystemout. printIn("Hello " + args[0]) would print the resulting string on the
standard output.

4011

7.6 Type: String: conversion: from int (page 38)

7.6 Type: String: conversion: from int (page 38)

The Javeoperator + is used for botraddition andconcatenation- it is anoverloaded op-
erator. If at least one of th@perands is atext data string, then Java uses concatenation,
otherwise it uses addition. When only one of the two operasdsstring, and the other is
some othetype of data, for example amnt , the Javaompiler is clever enough to understand
the programmer wishes that data to be converted into a diefye the concatenation takes
place. It is important to note the difference betweerndeger and the decimal digit string we
usually use to represent it. For example, ithteger literal 123 is ani nt , a number; whereas
thestring literal " 123" is a text data string — a string of 3 separelt@racters.

Suppose therariable noO Peopl eTol nvi t eToTheStreet Party had the valuél, then the
code

Systemout.println("Please invite " + noO Peopl eTol nviteToTheStreet Party);
would print out the following text.
Please invite 51

The numberb1l would be converted to the stridgpl" and then concatenated to the string
"Please invite " before being processed Bystem out. printin().

Furthermore, for our convenience, there is a separateoveo$iSyst em out . println() that
takes a singlént rather than a string, and prints its decimal representafibns, the code

System out. println(noC Peopl eTol nviteToTheStreet Party);
has the same effect as the following.

Systemout.printIn("" + noCf Peopl eTol nviteToTheStreet Party);

7.7 Type: String: conversion: from double (page 55)

The Javaconcatenation operator +, for joining text data strings can also be used to convert
adoubl e to a string. For example, thexpression"" + 123. 4 has the valué123. 4".

7.8 Type: int (page 36)

One of thetypes of data we can use in Java is callédt . A data item which is annt is an
integer (whole number), such & - 129934 or 982375, etc..

4012

7.9 Type: double (page 54)

7.9 Type: double (page 54)

Another of thetypes of data we can use in Java is known @subl e. A data item which is a
doubl e is areal (fractional decimal number), such @s0, - 129. 934 or 98. 2375, etc.. The
type is callecdoubl e because it uses a means of storing the numbers addleble precision
On computers, real numbers are only approximated, bechagéave to be stored in a finite
amount of memory space, whereas in mathematics we have tlon d infinite decimals.
The double precision storage approach uses twice as muclomy@er number than the older
single precisiontechnique, but gives numbers which are much more precise.

8 Standard API

8.1 Standard API: System: out.printin() (page 18)
The simplest way to print a messagestandard output is to use:
Systemout.println("This text will appear on standard output");

Systemis aclass(that is, a piece of code) that comes with Java as part dpfdication
program interface (API) — a large number of classes designed to support our Javeapneg
Inside Syst emthere is a thing calledut, and this has amethod (section of code) called
println. So overall, this method is calle&tyst em out . pri ntl n. The method takes a string
of text given to it in its brackets, and displays that textlo& $standard output of the program.

8.2 Standard API: Integer: parselnt() (page 41)

One simple way to turn #&ext data string, say" 123" into theinteger (whole number) it
represents is to use the following.

I nteger. parselnt("123");

I nt eger is aclass(that is, a piece of code) that comes with Java. Insitdeeger there is a
method (section of code) callepar sel nt . This method takes a text data string given to it in
its brackets, converts it into amt andreturns that number. Aun time error will occur if
the given string does not representi am value.

For example

4013

8.3 Standard API: Double: parseDouble() (page 54)

int firstArgument;
firstArgunment = Integer.parselnt(args[0]);

would take the firstcommand line argumentand, assuming it represents a number (i.e. itis a
string of digits with a possible sign in front), would turniiito the number it represents, then
store that number ifi r st Argument . If instead the first argument was some other text data
string, it would produce a run time error.

8.3 Standard API: Double: parseDouble() (page 54)

One simple way to turn gext data string, say" 123. 456" into thereal (fractional decimal
number) it represents is to use the following.

Doubl e. par seDoubl e("123. 456") ;

Doubl e is aclass(that is, a piece of code) that comes with Java. Ingagbl e there is a
method (section of code) calledar seDoubl e. This method takes a text data string given to
it in its brackets, converts it into afbubl e andreturn s that number. Aun time error will
occur if the given string does not represent a number. Fanpia

doubl e firstArgument = Doubl e. parseDoubl e(args[0]);

would take the firscommand line argumentand, assuming it represents a number, would
turn it into the number it represents, then store that nuritberr st Ar gunent . To represent

a number, the string must be a sequence of digits, possilbhyamlecimal point and maybe a
negative sign in front. If instead the first argument was sother text data string, it would
produce a run time error.

9 Statement

9.1 Statement (page 18)

A command in a programming language, such as Java, whichsriakecomputer perform
a task is known as atatement Systemout.printin("l wll output whatever | am
told to") is an example of a statement.

4014

9.2 Statement: simple statements are ended with a senm-@Gadge 18)

9.2 Statement: simple statements are ended with a semi-caol@page 18)

All simple statemens in Java must be ended by a semi-colph (This is a rule of the Java
languagesyntax.

9.3 Statement: assignment statement (page 37)

An assignment statements a Javastatementwhich is used to give a value tovariable, or
change its existing value. This is only allowed if the value ave assigning hastgpe which
matches the type of the variable.

9.4 Statement: assignment statement: assigning a literablue (page 37)

We can assign bteral value, that is a constant, to\ariable using anassignment statement
such as the following.

noCf Peopl eLi vi ngl nMyStreet = 47,

We use a singlequal sign(=), with the name of the variable to the left of it, and the vaies
wish it to be given on the right. In the above example,ittteger literal 47 will be placed into
the variablenoOf Peopl eLi vi ngl nMySt r eet . Assuming the variable was declared asiran
variable then this assignment would be allowed because 47 isian

9.5 Statement: assignment statement: assigning an expressvalue (page
38)

More generally than just assigningliteral value, we can use aassignment statemento
assign the value of aexpressionto avariable. For example, assuming we have the variable

i nt noCf Peopl eTol nviteToTheSt reet Party;
then the code
noOr Peopl eTol nviteToTheStreet Party = noOf Peopl eLi vi ngl nMyStreet + 4;

whenexecutel, wouldevaluatethe expression on the right of tlegual sign(=) and then place
the resulting value in the variabh® O Peopl eTol nvit eToTheStreet Party.

4015

9.6 Statement: if else statement (page 60)

9.6 Statement: if else statement (page 60)

Theif else statementis one way in Java of havingpnditional execution It essentially con-
sists of three parts: eondition or boolean expressiona statementwhich will be executel
when the condition isr ue (thetrue part), and another statement which will be executed when
the condition i al se (thefalse part). The whole statement starts with tfeserved wordi f .
This is followed by the condition, written in brackets. Nexdmes the statement for the true
part, then the reserved woetlse and finally the statement for the false part.

For example, assuming we have tragiable noOf Peopl eTol nvi t eToTheSt r eet Party con-
taining the number suggested by its name, then the code

i f (noOk Peopl eTol nviteToTheStreetParty > 100)
Systemout.printIn("We wll need a big sound system");

el se
Systemout. println("W should be okay with a normal HFi.");

will cause the computer to compare the current valueOf Peopl eTol nvi t eToTheSt reet Party
with the numberl00, and if it is greater then print out the messagewi || need a big
sound system or otherwise print out the messa@é shoul d be okay with a normal

H Fi . — it will never print out both messages. Notice the bracketsired the condition and
the semi-colons at the end of the two statements inside thlgefstatement. Notice also the
way we lay out the code to make it easy to read, splitting tinesliat sensible places and adding
moreindentation at the start of the two inner statements.

9.7 Statement: if else statement: nested (page 62)

Thetrue part or false part statements inside ahelse statementmay be any valid Javstate-
ment, including other if else statements. When we place an ifgsement inside another, we
say they aremested

For example, study the following code.

i f (noOk Peopl eTol nviteToTheStreet Party > 300)
Systemout.printIn("We wll need a Mega master 500 Watt anplifier!");
el se
i f (noOf Peopl eTol nviteToTheStreet Party > 100)
Systemout.printin("We will need a Maxi Master 150 Watt anplifier!");
el se
Systemout. printin("W shoul d be okay with a normal HFi.");

Depending on the value obO Peopl eTol nvi t eToTheSt r eet Party, this will report one of
three messages. Notice the way we have laid out the code above is fhifowing the usual

4016

9.8 Statement: if statement (page 64)

rules that inner statements have mardentation than those they are contained in, so the
second if else statement has more spaces because it liidstims first one. However, typically
we make an exception to this rule for if else statements destthe false part of another, and
we would actually lay out the code as follows.

i f (noCf Peopl eTol nviteToTheSt reet Party > 300)

Systemout.printin("We will need a Mega master 500 Watt anplifier!");
el se if (noCf Peopl eTol nviteToTheStreetParty > 100)

Systemout.printIn("We wll need a Maxi Master 150 Watt anplifier!");
el se

Systemout. printIn("W should be okay with a normal HFi.");

This layout reflects ouabstract thinking that the collection of statementsase construct
offering three choices, even though it is implemented usivmif else statements. This idea
extends to cases where we want many choices, using manylnestee statements, without
the indentation having to increase for each choice.

9.8 Statement: if statement (page 64)

Sometimes we want the computerdgecutesome code depending oncandition, but do
nothing if the condition is al se. We could implement this using ainelse statementwith an
emptyfalse part. For example, consider the following code.

i f (noCf Peopl eTol nviteToTheSt reet Party > 500)
Systemout. println("You may need an entertainnent |icense!");
el se ;

This will print the message if theariable has a valugyreater than 500, or otherwise exe-
cute theempty statementbetween theeserved wordel se and the semi-colon. Such empty
statements do nothing, as you would probably expect!

It is quite common to wish nothing to be done when the condliss al se, and so Java offers

us theif statement This is similar to the if else statement, except it simplgslaot have the
wordel se, nor a false part.

i f (noOf Peopl eTol nviteToTheStreetParty > 500)
Systemout. println("You may need an entertainnent |icense!");

4017

9.9 Statement: compound statement (page 66)

9.9 Statement: compound statement (page 66)

The Javaompound statements simply a list of any number aftatemens between an open-
ing left brace () and a closing right braceg). You could think of the body of anethod, e.g.
mai n(), as being a compound statement if that is helpful. The meaisirstraightforward:
when the computegxecutes a compound statement, it merely executes each statensedd in
it, in turn. More precisely of course, the Jas@mpiler turns thesource codento byte code
that has this effect when thertual machine executes theompiled program.

We can have a compound statement wherever we can have anyflgtadement, but it is most
useful when combined with statements which have anothtmsent within them, such ak
else statemerg andif statements.

For example, the following code reports three messages thlesariable has a valugreater
than 500.

i f (noOk Peopl eTol nviteToTheStreet Party > 500)
{

Systemout.printIn("You may need an entertainnent |icense!");
Systemout.printIn("Also hire some street cleaners for the next day?");
Systemout. println("You shoul d consider a bulk discount on | emonade!");

}

When thecondition of the if statement isr ue, the body of the if statement is executed. This
single statement is itself a compound statement, and sdtee statements within it are exe-
cuted. It is for this sort of purpose that the compound stateraxists.

Note how we lay out the compound statement, with the openiagebat the samiedentation
as the if statement, the statements within it having extdemtation, and the closing brace
lining up with the opening one.

Less usefully, a compound statement can be empty, as in ltbevilog example.

i f (noOk Peopl eTol nviteToTheStreetParty > 500)

{
Systemout.println("You may need an entertainnent |icense!");
Systemout.println("Also hire sone street cleaners for the next day?");
Systemout. println("You shoul d consider a bulk discount on | emonade!");

}

else {}

As you might expect, the meaning of an empty compound stateisithe same as the meaning
of anempty statement

4018

10 Error

10.1 Error (page 20)

When we write thesource codefor a Java program, it is very easy for us to get something
wrong. In particular, there are lots of rules of the languidgé our program must obey in order
for it to be a valid program.

10.2 Error: syntactic error (page|20)

One kind of error we might make in our programsystactic errors. This is when we break
thesyntaxrules of the language. For example, we might miss out a gjdsiacket, or insert an
extra one, etc.. This is rather like missing out a word in desgre of natural language, making
it grammatically incorrect. The sign below, seen strappeiti¢ back of a poodle, contains bad
grammar — it has ans missing.

My other dog an AIsatia:I

Syntactic errors in Java result in teempiler giving us an error message. They can possibly
confuse the compiler, resulting in it thinking many morentig are wrong too!

10.3 Error: semantic error (page 22)

Another kind of error we might make is semantic error, when we obey the rules of the
syntax but what we have written does not make any sense — it has nangemémeaning).
Another sign on a different poodle might say

My other dog is a Porsch'.

which is senseless because a Porsche is a kind of car, not a dog

10.4 Error: compile time error (page22)

Javasyntactic errors and mangemantic errors can be detected for us by tbempiler when
it processes our program. Errors that the compiler can tatecalledcompile time errors.

4019

10.5 Error: run time error (page 24)

10.5 Error: run time error (page 24)

Another kind of error we can get with programsris1 time error s. These are errors which
are detected when the prograntus rather than when it isompiled. In Java this means the
errors are detected and reported by\thtual machine, j ava.

Java calls run time erroexceptiors. Unfortunately, the error messages producepawma can
look very cryptic to novice programmers. A typical one migbtas follows.

Exception in thread "main" java.lang. NoSuchMet hodError: main

You can get the best clue to what has caused the error by pldghlp at the words either side
of the colon (). In the above example, the message is saying that cannot find thenethod
calledmai n.

10.6 Error: logical error (page 29)

The most tricky kind of error we can make in our programs iegical error. For these
mistakes we do not get an error message fromctimapiler, nor do we get one aun time
from thevirtual machine. These are the kind of errors for which the Java program we hav
written is meaningful as far as Java is concerned, it is just our program does the wrong
thing compared with what we wanted. There is no way the campit virtual machine can
help us with these kinds of error: they are far, far too stapidnderstand thproblemwe were
trying to solve with our program.

For this reason, many logical errors, especially very suinles, manage to slip through unde-
tected by human program testing, and end upwass in the final product — we have all heard
stories of computer generated demands for unpaid bills megative amounts, etc..

11 Execution

11.1 Execution: sequential execution (page 23)

Programs generally consist of more than stetement in a list. We usually place these on
separate lines to enhance human readability, althouglddegnot care about that. Statements
in such a list areexecutel sequentially, one after the other. More correctly, thedawmpiler
turns each one into correspondibgte codes, and thevirtual machine executes each collec-
tion of byte codes in turn. This is known asquential execution

4020

11.2 Execution: conditional execution (page 60)

11.2 Execution: conditional execution (page 60)

Having a computer always obey a list of instructions in aaierorder is not sufficient to solve
many problems. We often need the computer to do some thinlgsuoder certain circum-
stances, rather than every time the programurs. This is known agonditional execution
because we get the computeeteecutecertain instructionsonditionally, based on the values
of thevariables in the program.

12 Code clarity

12.1 Code clarity: layout (page 31)

Java does not care how we lay our code out, as long as we usevguteespaceto separate
adjacent symbols that would otherwise be treated as one dyithey were joined. For
examplepubl i ¢ voi d with no space between the words would be treated as the siygiieol

publ i cvoi d and no doubt causea@mpile time error. So, if we were crazy, we could write
all our progransource codeon one line with the minimum amount of space between symbols!

public class HelloSol ar System{public static void main(String[]args){Systemout.println("Hello Mercury!");Systemout.println("He

Oh dear — it ran off the side of the page (and that was with alenfaht too). Let us split it up
into separate lines so that it fits on the page.

public class HelloSol ar System{public static void main(String[]args){
Systemout.printin("Hello Mercury!"); Systemout. println(

"Hello Venus!"); Systemout.printin("Hello Earth!"); Systemout.println
("Hello Mars!™"); Systemout.printin("Hello Jupiter!"); System out.
printin("Hello Saturn!"); Systemout.printin("Hello U anus!"); System
out.printIn("Hello Neptune!"); Systemout.println("Goodbye Pluto!"); }}

Believe it or not, this program would stitompile andrun okay, but hopefully you will agree
that it is not very easy fous to read. Layout is very important to the human reader, and
programmers must take care and pride in laying out theirnarog as they are written. So we
split our progransensibly, rather than arbitrarily, into separate lines, andingentation (i.e.
spaces at the start of some lines), to maximize the reatjabilour code.

12.2 Code clarity: layout: indentation (page 32)

A classcontains structurasestedwithin each other. The outer-most structure is the clasff|ts
consisting of its heading and then containing it's body witthe braces. The body contains

4021

12.3 Code clarity: layout: splitting long lines (page 43)

items such as theain method. This in turn consists of a heading and a body contained withi
braces.

The idea ofindentation is that the more nested a part of the code is, the more spaas #th
the start of its lines. So the class itself has no spacesihbbdy, within the braces, has two
or three. Then the body of the main method has two or three .mfane should be consistent:
always use the same number of spaces per nesting level.l$bisaood idea to avoid using
tab characters as they can often look okay on your screen, but not line upgrhp when the
code is printed.

In addition, another rule of thumb is that opening brad@ssfiould have the same amount of
indentation as the matching closing bragg (You will find that principle being used through-

out this book. However, some people prefer a style whereingdamaces are placed at the end
of lines, which this author believes is less clear.

public class HelloWrld {

public static void main(String[] args) {
Systemout.printin("Hello world!");
}
}

12.3 Code clarity: layout: splitting long lines (page 43)

One of the features of good layout is to keep source coddines from getting too long. Very
long lines cause the reader to have to work harder in ho@tege movement to scan the code.
When code with long lines is viewed on the screen, the reatlegrehas to use a horizontal
scroll bar to see them, or make the window so wide that othed@ws cannot be placed next
to it. Worst of all, when code with long lines is printed on pathere is a good chance that the
long lines will disappear off the edge of the page! At verystethey will be wrapped onto the
next line making the code messy and hard to read.

So a good rule of thumb is to keep your source code lines sttber 80characters long. You
can do this simply in mogext editors by never making the text window too wide and never
using the horizontal scroll bar while writing the code.

When we do have atatementthat is quite long, we simply split it into separate lines atec
fully chosen places. When we choose such places, we beamioh tiiat most human readers
scan down the left hand side of the code lines, rather thaheeary word. So, if a line is a
continuation of a previous line, it is important to make tiwious at the start of it. This means
using an appropriate amountiofdentation, and choosing the split so that the first symbol on
the continued line is not one which could normally start &esteent.

A little thought at the writing stage quickly leads to a hatfityood practise which seriously
reduces the effort required to read programs once they ateemr Due tobug fixing and

4022

general maintenance over the lifetime of a real prograngdlde is read many more times than
it is written!

13 Design

13.1 Design: hard coding (page 36)

Programs typically process inpdata, and produce output data. The input data might be
given ascommand line argumens, or it might be supplied by the user through somser
interface such as graphical user interfaceor GUI . It might be obtained frorfiles stored on
the computer.

Sometimes input data might be built into the program. Sudh tasaid to béhard coded
This can be quite common while we are developing a programnanidaven’t yet written the
code that obtains the data from the appropriate place. kratises it might be appropriate to
have it hard coded in the final version of the program, if suafa @nly rarely changes.

14 Variable

14.1 Variable (page 36)

A variable in Java is an entity that can holddata item. It has a name and a value. It is rather
like the notion of a variable in algebra (although it is nottguhe same thing). The name of
a variable does not change — it is carefully chosen by therpromer to reflect the meaning
of the entity it represents in relation to the problem beialyed by the program. However,
the value of a variable can (in general) be changed — we can vary it. éléme name of the
concept: azariable is an entity that has a (possibly) varying value.

The Javacompiler implements variables by mapping their names aramputer memory
locations, in which the values associated with the varmbldl be stored atun time.

So one view of a variable is that it is a box, like a pigeon himleyhich a value can be placed. If
we wish, we can get the program to place a different valueahlibx, replacing the previous;
and we can do this as many times as we want to.

Variables only have values at run time, when the programnsiing. Their names, created by
the programmer, are already fixed by the time the progracomspiled. Variables also have
one more attribute — thigpe of the data they are allowed to contain. This too is choseméy t
programmer.

4023

14.2 \Variable: int variable (page 37)

14.2 \Variable: int variable (page 37)

In Javayvariables must be declared invariable declaration before they can be used. This is
done by the programmer stating ttygpe and then the name of the variable. For example the
code

i nt noOf Peopl eLi vi ngl nM/St reet ;

declares amt variable, that is a variable the value of which will be ant , and which has the
namenoO Peopl eLi vi ngl nM/St reet . Observe the semi-colon X which, according to the
Javasyntaxrules, is needed to terminate the variable declaratiomuAtime, this variable is
allowed to hold annteger (whole number). Its value can change, but it will always bé @n
The name of a variable should reflect its intended meaninghisncase, it would seem from
its name that the programmer intends the variable to alwelgthe number of people living
in his or her street. The programmer would write code to enthat this meaning is always
reflected by its value at run time.

By convention, variable names start with a lower case ledtet consist of a number of words,
with the first letter of each subsequent word capitalized.

14.3 \Variable: a value can be assigned when a variable is dacéd (page
42)

Java permits us to assign a value i@aable at the same time as declaring it. You could regard
this as a kind oaissignment statemenin which the variable is also declared at the same time.
For example

int noOf HousesI nM/Street = 26;

14.4 Variable: double variable (page 54)

We can declarelouble variables in Java, that isariables which have théype doubl e. For
example the code

doubl e meanAgeO Peopl eLi vi ngl nM/House;

declares avariable of typedoubl e, with the namereanAge Peopl eLi vi ngl nMyHouse. At

run time, this variable is allowed to holddoubl e data item, that is aeal (fractional decimal
number). The value of this variable can change, but it willagls be aoubl e, including of
course, approximations @fhole numbers such a40. 0.

4024

15 Expression

15.1 Expression: arithmetic (page 38)

We can havarithmetic expressiors in Java rather like we can in mathematics. These can con-
tain literal values, that is constants, such as theeger literals1 and18. They can also con-
tain variables which have already been declared, apérators to combine sub-expressions
together. Four commoarithmetic operators areaddition (+), subtraction (-), multiplica-

tion (*) anddivision (/). Note the use of an asterisk for multiplication, and a faxhglash for
division — computer keyboards do not have multiply or divsgenbols.

These four operators at@nary infix operator s, because they take twaperands, one on
either side of the operatof. and- can also be used as theary prefix operators, plus and
minus respectively, as in5.

When anexpressionis evaluatel (expression evaluatiof Java replaces each variable with
its current value and works out the result of the expressepedding on the meaning of the
operators. For example, if the variableCf Peopl eLi vi ngl nMySt r eet had the valud?7 then
the expressionoO Peopl eLi vi ngl nMyStreet + 4 would evaluate t&1.

15.2 Expression: arithmetic: int division truncates resut (page 52)

The fourarithmetic operators, +, -, * and/ of Java behave very similarly to the corresponding
operators in mathematics. There is however one seriouerelifte to look out for. When
the division operator is given twointegers (whole numbers) it usaateger division which
always yields an integer as its result, by throwing away aagtional part of the answer. So,
8 | 2 gives the answet as you might expect, b8t / 2 also givest —not4. 5 as it would in
mathematics. It does not round to the nearest whole nuniladways rounds towards zero. In
mathematic45 / 4 gives3. 75. In Java it yields3 not4.

15.3 Expression: arithmetic: associativity and int divison (page 52)

Like theoperators + and- , the operators and/ have equabperator precedencgbut higher
than+ and-) and also havéeft associativity.

However, there is an extra complication to consider becthesdava operator truncates its
answer when given twimtegers. Consider the following twarithmetic expressiors.

Expression | Implicit brackets | Value
9* 4/ 2|(9* 4/ 2 18
9/ 2*4\|(9/ 2 *4 16

4025

15.4 Expression: arithmetic: double division (page 55)

In mathematics one would expect to get the same answer framtheseexpressiors, but not
in Javal

15.4 Expression: arithmetic: double division (page 55)

The Javalivision operator, / , usesdouble division and produces doubl e result if at least
one of itsoperands is adoubl e. The result will be the best approximation to the actual arsw
of the division.

Expression | Result | Type of Result
4 i nt

0 doubl e

i nt

doubl e
doubl e
doubl e

0

© © © © © ©
OO\\\\
NN O

Ll ol

o1 o1 o1

15.5 Expression: brackets and precedence (page 45)

In addition tooperators andvariables, expressiors in Java can have round brackets in them.
As in mathematics, brackets are used to define the strudttine expression by grouping parts
of it into sub-expressions. For example, the following twpressions have different structures,
and thus very different values.

(2+4) * 8
2+ (4+8)

The value of the first expression is made fromalaelition of 2 and4 and thermultiplication
of the resultingg by 8 to get48. The second expressionasaluated by multiplying4 with 8
to get32 and then adding to that result, ending up witd4.

To help us see the structure of these two expressions, leaustdem agxpression tres.

(2 +4) * 8 2 + (4 * 8)

* +
I\ I ___
- 8 2 *
[\ [\

2 4 4 8

4026

15.6 Expression: associativity (page 48)

What if there were no brackets?
2+4*8

Java allows us to have expressions without any bracketspoe generally, without brackets
aroundevery sub-expression. It provides rules to define what the stradisuch an expression
is, i.e., where the missing brackets should go. If you loakat in the above expression, you
will see that it has an operator on either side of it. In a sethg2+ operator and th& operator
are both fighting to have thieas anoperand. Rather like a tug of wa; is pulling the4 to the
left, and* is tugging it to the right. The question is, which one wins@a)as in mathematics,
provides the answer by having varying levelopkrator precedence The* and/ operators
have a higher precedence thaand- , which meang fights harder thas, so itwins!2 + 4

* 8 evaluates t@4.

15.6 Expression: associativity (page 48)

The principle ofoperator precedenceis insufficient to disambiguate adixpressiors which
are not fully bracketed. For example, consider the foll@yempressions.

10 + 7 + 3
10+7 - 3
10 - 7 + 3
10 - 7 - 3

In all four expressions, thé is being fought over by twmperators which have the same
precedence: either twe, two -, or one of each. So where should the missing brackets go?
The expression trees could have one of the two following structures, whépé is the first
operator, an@P2 is the second.

10 OPL (7 OP2 3) (10 OPL 7) OP2 3

Let us see whether it makes a difference to the results ofbeessions.

4027

15.7 Expression: boolean (page 60)

Expression Value
(10 +7) +3]20
10 + (7 + 3) | 20
(10 + 7) - 3|14
10 + (7 - 3) |14
(10 - 7) +31|6
10- (7+3) |0
(10 -7 - 3]0
10 - (7 - 3) |6

As you can see, it does make a difference sometimes — in tlases avhen the first operator
is subtraction (-). So how does Java resolve this problem? As in mathema#iea,aperators
have anoperator associativityas well as a precedence. The operatgrs, * and/ all have
left associativity which means that when two of these operators of equal pracedse both
fighting over oneoperand, it is the left operator that wins. If you like, the tug of wakes
place on sloping ground with the left operator having theaatizge of being lower down than
the right one!

Expression | Implicit brackets | Value
10+7+3[(10+7) +3 |20

10+7-3|(10+7) -3 14
10 - 7+3|(10-7) +3 6
10 - 7-3|(10-7) - 3 0

The operator$ and/ also have equal precedence (but higher thand-) so similar situations
arise with those too.

15.7 Expression: boolean (page 60)

An expressionwhich whenevaluated yields eithen r ue or f al se is known as acondition,
and is typically used for controllingonditional execution Conditions are also calldzbolean
expressiors.

15.8 Expression: boolean: relational operators (page 60)

Java gives us sipelational operators for comparing values such as numbers, which we can use
to make upconditions. These are abinary infix operator s, that is they take twoperands,
one either side of theperator. They yieldt r ue or f al se depending on the given values.

4028

15.8 Expression: boolean: relational operators (page 60)

Operator | Title Description

== Equal This is theequal operator, which provides the notion pf
equality. a == b yieldst r ue if and only if the value of
a is the same as the value Iof

I = Not equal This is thenot equal operator, providing the the notign
of not equality. a ! = b yieldstrue if and only if the
value ofa is not the same as the value lof

< Less than This is theless thanoperator.a < b yieldst rue if and
only if the value ofa is less than the value of

> Greater than This is thegreater than operator.a > b yieldst r ue if
and only if the value o is greater than the value bf

<= Less than or equal | This is theless than or equaloperator.a <= b yields

true if and only if the value of is less than value df,
or is equal to it.

>= Greater than or equalThis is thegreater than or equal operator. a >= b
yieldst rue if and only if the value ofa is greater thar
value ofb, or is equal to it.

4029

	Computer basics
	Computer basics: hardware (page 3)
	Computer basics: hardware: processor (page 3)
	Computer basics: hardware: memory (page 3)
	Computer basics: hardware: persistent storage (page 3)
	Computer basics: hardware: input and output devices (page 3)
	Computer basics: software (page 3)
	Computer basics: software: machine code (page 3)
	Computer basics: software: operating system (page 4)
	Computer basics: software: application program (page 4)
	Computer basics: data (page 3)
	Computer basics: data: files (page 5)
	Computer basics: data: files: text files (page 5)
	Computer basics: data: files: binary files (page 5)

	Java tools
	Java tools: text editor (page 5)
	Java tools: javac compiler (page 9)
	Java tools: java interpreter (page 9)

	Operating environment
	Operating environment: programs are commands (page 7)
	Operating environment: standard output (page 7)
	Operating environment: command line arguments (page 8)

	Class
	Class: programs are divided into classes (page 16)
	Class: public class (page 16)
	Class: definition (page 16)

	Method
	Method: main method: programs contain a main method (page 17)
	Method: main method: is public (page 17)
	Method: main method: is static (page 17)
	Method: main method: is void (page 17)
	Method: main method: is the program starting point (page 17)
	Method: main method: always has the same heading (page 18)

	Command line arguments
	Command line arguments: program arguments are passed to main (page 17)
	Command line arguments: program arguments are accessed by index (page 26)

	Type
	Type (page 36)
	Type: String: literal (page 18)
	Type: String: literal: must be ended on the same line (page 21)
	Type: String: literal: escape sequences (page 49)
	Type: String: concatenation (page 26)
	Type: String: conversion: from int (page 38)
	Type: String: conversion: from double (page 55)
	Type: int (page 36)
	Type: double (page 54)

	Standard API
	Standard API: System: out.println() (page 18)
	Standard API: Integer: parseInt() (page 41)
	Standard API: Double: parseDouble() (page 54)

	Statement
	Statement (page 18)
	Statement: simple statements are ended with a semi-colon (page 18)
	Statement: assignment statement (page 37)
	Statement: assignment statement: assigning a literal value (page 37)
	Statement: assignment statement: assigning an expression value (page 38)
	Statement: if else statement (page 60)
	Statement: if else statement: nested (page 62)
	Statement: if statement (page 64)
	Statement: compound statement (page 66)

	Error
	Error (page 20)
	Error: syntactic error (page 20)
	Error: semantic error (page 22)
	Error: compile time error (page 22)
	Error: run time error (page 24)
	Error: logical error (page 29)

	Execution
	Execution: sequential execution (page 23)
	Execution: conditional execution (page 60)

	Code clarity
	Code clarity: layout (page 31)
	Code clarity: layout: indentation (page 32)
	Code clarity: layout: splitting long lines (page 43)

	Design
	Design: hard coding (page 36)

	Variable
	Variable (page 36)
	Variable: int variable (page 37)
	Variable: a value can be assigned when a variable is declared (page 42)
	Variable: double variable (page 54)

	Expression
	Expression: arithmetic (page 38)
	Expression: arithmetic: int division truncates result (page 52)
	Expression: arithmetic: associativity and int division (page 52)
	Expression: arithmetic: double division (page 55)
	Expression: brackets and precedence (page 45)
	Expression: associativity (page 48)
	Expression: boolean (page 60)
	Expression: boolean: relational operators (page 60)

