
Java Just in Time:
Collected concepts after chapter 03

John Latham, School of Computer Science, Manchester University, UK.

April 15, 2011

Contents

1 Computer basics 3000
1.1 Computer basics: hardware (page 3) 3000
1.2 Computer basics: hardware: processor (page 3) 3000
1.3 Computer basics: hardware: memory (page 3) 3000
1.4 Computer basics: hardware: persistent storage (page 3). 3001
1.5 Computer basics: hardware: input and output devices (page 3) 3001
1.6 Computer basics: software (page 3)3001
1.7 Computer basics: software: machine code (page 3) 3001
1.8 Computer basics: software: operating system (page 4) 3001
1.9 Computer basics: software: application program (page 4) 3002
1.10 Computer basics: data (page 3) . 3002
1.11 Computer basics: data: files (page 5) 3002
1.12 Computer basics: data: files: text files (page 5) 3002
1.13 Computer basics: data: files: binary files (page 5) 3003

2 Java tools 3003
2.1 Java tools: text editor (page 5) .3003
2.2 Java tools: javac compiler (page 9)3003
2.3 Java tools: java interpreter (page 9) 3004

3 Operating environment 3004
3.1 Operating environment: programs are commands (page 7) 3004
3.2 Operating environment: standard output (page 7) 3004
3.3 Operating environment: command line arguments (page 8). 3004

4 Class 3005
4.1 Class: programs are divided into classes (page 16) 3005
4.2 Class: public class (page 16) . 3005
4.3 Class: definition (page 16) . 3005

3000

CONTENTS

5 Method 3006
5.1 Method: main method: programs contain a main method (page 17) . 3006
5.2 Method: main method: is public (page 17)3006
5.3 Method: main method: is static (page 17) 3006
5.4 Method: main method: is void (page 17) 3006
5.5 Method: main method: is the program starting point (page17) 3007
5.6 Method: main method: always has the same heading (page 18) . . . 3007

6 Command line arguments 3007
6.1 Command line arguments: program arguments are passed tomain (page 17)3007
6.2 Command line arguments: program arguments are accessedby index (page 26)3008

7 Type 3008
7.1 Type (page 36) . 3008
7.2 Type: String: literal (page 18) .3008
7.3 Type: String: literal: must be ended on the same line (page 21) . . . 3008
7.4 Type: String: literal: escape sequences (page 49) 3008
7.5 Type: String: concatenation (page 26) 3009
7.6 Type: String: conversion: from int (page 38) 3010
7.7 Type: String: conversion: from double (page 55) 3010
7.8 Type: int (page 36) . 3010
7.9 Type: double (page 54) . 3011

8 Standard API 3011
8.1 Standard API: System: out.println() (page 18) 3011
8.2 Standard API: Integer: parseInt() (page 41) 3011
8.3 Standard API: Double: parseDouble() (page 54) 3012

9 Statement 3012
9.1 Statement (page 18) . 3012
9.2 Statement: simple statements are ended with a semi-colon (page 18) 3013
9.3 Statement: assignment statement (page 37) 3013
9.4 Statement: assignment statement: assigning a literal value (page 37) 3013
9.5 Statement: assignment statement: assigning an expression value (page 38)3013

10 Error 3014
10.1 Error (page 20) . 3014
10.2 Error: syntactic error (page 20) 3014
10.3 Error: semantic error (page 22) .3014
10.4 Error: compile time error (page 22) 3014
10.5 Error: run time error (page 24) . 3015
10.6 Error: logical error (page 29) .3015

11 Execution 3015
11.1 Execution: sequential execution (page 23) 3015

12 Code clarity 3016
12.1 Code clarity: layout (page 31) .3016

3001

12.2 Code clarity: layout: indentation (page 32) 3016
12.3 Code clarity: layout: splitting long lines (page 43) 3017

13 Design 3018
13.1 Design: hard coding (page 36) . 3018

14 Variable 3018
14.1 Variable (page 36) . 3018
14.2 Variable: int variable (page 37) 3019
14.3 Variable: a value can be assigned when a variable is declared (page 42)3019
14.4 Variable: double variable (page 54) 3019

15 Expression 3020
15.1 Expression: arithmetic (page 38) 3020
15.2 Expression: arithmetic: int division truncates result (page 52) 3020
15.3 Expression: arithmetic: associativity and int division (page 52) . . . 3020
15.4 Expression: arithmetic: double division (page 55) 3021
15.5 Expression: brackets and precedence (page 45) 3021
15.6 Expression: associativity (page 48) 3022

1 Computer basics

1.1 Computer basics: hardware (page 3)

The physical parts of a computer are known ashardware. You can see them, and touch them.

1.2 Computer basics: hardware: processor (page 3)

Thecentral processing unit(CPU) is the part of thehardware that actually obeys instructions.
It does this dumbly – computers are not inherently intelligent.

1.3 Computer basics: hardware: memory (page 3)

Thecomputer memory is part of the computer which is capable of storing and retrieving data
for short term use. This includes themachine codeinstructions that thecentral processing
unit is obeying, and any other data that the computer is currentlyworking with. For example,
it is likely that an image from a digital camera is stored in the computer memory while you are
editing or displaying it, as are the machine code instructions for the image editing program.

3002

1.4 Computer basics: hardware: persistent storage (page 3)

The computer memory requires electrical power in order to remember its data – it isvolatile
memory and will forget its contents when the power is turned off.

An important feature of computer memory is that its contentscan be accessed and changed
in any order required. This is known asrandom accessand such memory is calledrandom
access memoryor justRAM .

1.4 Computer basics: hardware: persistent storage (page 3)

For longer term storage ofdata, computers usepersistent storagedevices such ashard discs
andDVD ROM s. These are capable of holding much more information thancomputer mem-
ory, and are persistent in that they do not need power to rememberthe information stored on
them. However, the time taken to store and retrieve data ismuch longer than for computer
memory. Also, these devices cannot as easily be accessed in arandom order.

1.5 Computer basics: hardware: input and output devices (page 3)

Some parts of thehardware are dedicated to receiving input from or producing output tothe
outside world. Keyboards and mice are examples ofinput devices. Displays and printers are
examples ofoutput devices.

1.6 Computer basics: software (page 3)

One part of a computer you cannot see is itssoftware. This is stored oncomputer media, such
asDVD ROM s, and ultimately inside the computer, as lots of numbers. Itis the instructions
that the computer will obey. The closest you get to seeing it might be if you look at the silver
surface of a DVD ROM with a powerful magnifying glass!

1.7 Computer basics: software: machine code (page 3)

The instructions that thecentral processing unitobeys are expressed in a language known
asmachine code. This is a verylow level language, meaning that each instruction gets the
computer to do only a very simple thing, such as theaddition of two numbers, or sending a
byte to a printer.

3003

1.8 Computer basics: software: operating system (page 4)

1.8 Computer basics: software: operating system (page 4)

A collection ofsoftware which is dedicated to making the computer generally usable,rather
than being able to solve aparticular task, is known as anoperating system. The most popular
examples for modern personal computers are Microsoft Windows, Mac OS X and Linux. The
latter two are implementations of Unix, which was first conceived in the early 1970s. The fact
it is still in widespread use today, especially by computer professionals, is proof that it is a
thoroughly stable and welldesigned and integrated platform for the expert (or budding expert)
computer scientist.

1.9 Computer basics: software: application program (page 4)

A piece ofsoftwarewhich is dedicated to solving a particular task, or application, is known as
anapplication program. For example, an image editing program.

1.10 Computer basics: data (page 3)

Another part of the computer that you cannot see is itsdata. Like software it is stored as
lots of numbers. Computers are processing and producing data all the time. For example, an
image from a digital camera is data. You can only see the picture when you display it using
some image displaying or editing software, but even this isn’t showing you the actual data that
makes up the picture. The names and addresses of your friendsis another example of data.

1.11 Computer basics: data: files (page 5)

Whendata is stored inpersistent storage, such as on ahard disc, it is organized into chunks
of related information known asfiles. Files have names and can be accessed by the computer
through theoperating system. For example, the image from a digital camera would probably
be stored in a jpeg file, which is a particular type of image file, and the name of this file would
probably end in.jpg or .jpeg.

1.12 Computer basics: data: files: text files (page 5)

A text file is a type offile that containsdata stored directly ascharacters in a human readable
form. This means if you were to send the raw contents directlyto the printer, you would
(for most printers) be immediately able to read it. Examplesof text files includeREADME.txt
that sometimes comes withsoftware you are installing, or source text for a document to be
processed by the LATEX[6] document processing system, such as the ones used to produce this

3004

1.13 Computer basics: data: files: binary files (page 5)

book (prior to publication). As you will see shortly, a more interesting example for you, is
computer programsource codefiles.

1.13 Computer basics: data: files: binary files (page 5)

A binary file is another kind offile in which data is stored asbinary (base 2) numbers, and
so is not human readable. For example, the image from a digital camera is probably stored as
a jpeg file, and if you were to look directly at its contents, rather than use someapplication
program to display it, you would see what appears to be nonsense! An interesting example of
a binary file is themachine codeinstructions of a program.

2 Java tools

2.1 Java tools: text editor (page 5)

A text editor is a program that allows the user to type and edittext files. You may well
have usednotepad under Microsoft Windows; that is a text editor. More likely you have
usedMicrosoft Word. If you have, you should note that it is not a text editor, it isa word
processor. Although you can save your documents as text files, it is morecommon to save
them as.doc files, which is actually abinary file format.Microsoft Word is not a good tool
to use for creating programsource codefiles.

If you are using anintegrated development environmentto support your programming, then
the text editor will be built in to it. If not, there are a plethora of text editors available which
are suited to Java programming.

2.2 Java tools: javac compiler (page 9)

The Javacompiler is calledjavac. Java program source is saved by the programmer in atext
file that has the suffix.java. For example, the text fileHelloWorld.java might contain the
source text of a program that printsHello world! on thestandard output. This text file
can then becompiled by the Java compiler, by giving its name as acommand line argument.
Thus the command

javac HelloWorld.java

will produce thebyte codeversion of it in thefile HelloWorld.class. Like machine code
files, byte code is stored inbinary files as numbers, and so is not human readable.

3005

2.3 Java tools: java interpreter (page 9)

2.3 Java tools: java interpreter (page 9)

When the end user wants to run a Java program, he or she invokesthejava interpreter with the
name of the program as itscommand line argument. The program must, of course, have been
compiled first! For example, to run theHelloWorld program we would issue the following
command.

java HelloWorld

This makes thecentral processing unitrun the interpreter orvirtual machine java, which
itself thenexecutes the program named as its first argument. Notice that the suffix .java is
needed when compiling the program, but no suffix is used whenrunning it. In our example
here, the virtual machine finds thebyte codefor the program in thefile HelloWorld.class
which must have been previously produced by thecompiler.

3 Operating environment

3.1 Operating environment: programs are commands (page 7)

When a program isexecuted, the name of it is passed to theoperating systemwhich finds and
loads thefile of that name, and then starts the program. This might be hidden from you if you
are used to starting programs from a menu or browser interface, but it happens nevertheless.

3.2 Operating environment: standard output (page 7)

When programsexecute, they have something called thestandard output in which they can
produce text results. If they arerun from some kind ofcommand line interface, such as a Unix
shell or a Microsoft WindowsCommand Prompt, then this output appears in that interface
while the program is running. (If they are invoked through some integrated development
environment, browser, or menu, then this output might get displayed in some pop-up box, or
special console window.)

3.3 Operating environment: command line arguments (page 8)

Programs can be, and often are, givencommand line arguments to vary their behaviour.

3006

4 Class

4.1 Class: programs are divided into classes (page 16)

In Java, the source text for a program is separated into pieces calledclasses. The source
text for each class is (usually) stored in a separatefile. Classes have a name, and if the
name isHelloWorld then the text for the class is saved by the programmer in thetext file
HelloWorld.java.

One reason for dividing programs into pieces is to make them easier to manage – programs to
perform complex tasks typically contain thousands of linesof text. Another reason is to make
it easier to share the pieces between more than one program – suchsoftware reuseis beneficial
to programmer productivity.

Every program has at least one class. The name of this class shall reflect the intention of the
program. By convention, class names start with an upper caseletter.

4.2 Class: public class (page 16)

A classcan be declared as beingpublic, which means it can be accessed from anywhere in the
running Java environment; in particular thevirtual machine itself can access it. The source
text for a public class definition starts with thereserved wordpublic. A reserved word is one
which is part of the Java language, rather than a word chosen by the programmer for use as,
say, the name of a program.

4.3 Class: definition (page 16)

After stating whether it haspublic access, aclassnext has thereserved wordclass, then its
name, then a left brace ({), its body of text and finally a closing right brace (}).

public class MyFabulousProgram
{

... Lots of stuff here.
}

3007

5 Method

5.1 Method: main method: programs contain a main method (page 17)

All Java programs contain a section of code calledmain, and this is where the computer will
start toexecutethe program. Such sections of code are calledmethods because they contain
instructions on how to do something. Themain method always starts with the following
heading.

public static void main(String[] args)

5.2 Method: main method: is public (page 17)

Themain methodstarts with thereserved wordpublic, which means it can be accessed from
anywhere in the running Java environment. This is necessary– the program could not berun
by thevirtual machine if the starting point was not accessible to it.

public

5.3 Method: main method: is static (page 17)

Themain method of the program has thereserved wordstatic which means it is allowed
to be used in thestatic context. A context relates to the use ofcomputer memory during
the running of the program. When thevirtual machine loads a program, it creates the static
context for it, allocating computer memory to store the program and itsdata, etc.. Adynamic
context is a certain kind of allocation of memory which is made later,during the running of the
program. The program would not be able to start if the main method was not allowed to run in
the static context.

public static

5.4 Method: main method: is void (page 17)

In general, amethod (section of code) might calculate some kind offunction or formula, and
return the answer as a result. For example, the result might be a number. If a method returns
a result then this must be stated in its heading. If it does not, then we write thereserved word
void, which literally means (among other definitions) ‘without contents’. Themain method
does not return a value.

3008

5.5 Method: main method: is the program starting point (page17)

public static void

5.5 Method: main method: is the program starting point (page17)

The starting part, ormain method, of the program is always calledmain, because it is the main
part of the program.

public static void main

5.6 Method: main method: always has the same heading (page 18)

Themain method of a Java program must always have a heading like this.

public static void main(String[] args)

This is true even if we do not intend to use anycommand line arguments. So a typical single
classprogram might look like the following.

public class MyFabulousProgram
{

public static void main(String[] args)
{

... Stuff here to perform the task.
}

}

6 Command line arguments

6.1 Command line arguments: program arguments are passed tomain
(page 17)

Programs can be givencommand line arguments which typically affect their behaviour. Ar-
guments given to a Java program are strings of textdata, and there can be any number of them
in a list. In Java,String[] means ‘list of strings’. We have to give a name for this list, and
usually we call itargs. The chosen name allows us to refer to the given data from within the
program, should we wish to.

public static void main(String[] args)

3009

6.2 Command line arguments: program arguments are accessedby index (page 26)

6.2 Command line arguments: program arguments are accessedby in-
dex (page 26)

The command line arguments given to themain method are alist of strings. These are
the text data string arguments supplied on thecommand line. The strings areindexed by
integers (whole numbers) starting from zero. We can access the individual strings by placing
the index value in square brackets after the name of the list.So, assuming that we call the list
args, thenargs[0] is the first command line argument given to the program, if there is one.

7 Type

7.1 Type (page 36)

Programs can process various different kinds ofdata, such as numbers, text data, images etc..
The kind of a data item is known as itstype.

7.2 Type: String: literal (page 18)

In Java, we can have astring literal , that is a fixed piece of text to be used asdata, by enclosing
it in double quotes. It is called a string literal, because itis a type of data which is a string of
characters, exactly as listed. Such a piece of data might be used as a message to the user.

"This is a fixed piece of text data -- a string literal"

7.3 Type: String: literal: must be ended on the same line (page 21)

In Java,string literal s must be ended on the same line they are started on.

7.4 Type: String: literal: escape sequences (page 49)

We can have anew line characterembedded in astring literal by using theescape sequence
\n. For example, the following code will print out three lines on standard output.

System.out.println("This text\nspans three\nlines.");

It will generate the following.

3010

7.5 Type: String: concatenation (page 26)

This text
spans three
lines.

There are other escape sequences we can use, including the following.

Sequence Name Effect
\b Backspace Moves the cursor back one place, so the nextchar-

acter will over-print the previous.
\t Tab (horizontal tab) Moves the cursor to the next ‘tab stop’.
\n New line (line feed) Moves the cursor to the next line.
\f Form feed Moves to a new page on many (text) printers.
\r Carriage return Moves the cursor to the start of the current line, so

characters will over-print those already printed.
\" Double quote Without the backslash escape, this would mark the

end of the string literal.
\’ Single quote This is just for consistency – we don’t need to es-

cape a single quote in a string literal.
\\ Backslash Well, sometimes you want the backslash character

itself.

Note:System.out.println() always ends the line with the platform dependentline separa-
tor , which on Linux is a new line character but on Microsoft Windows is acarriage return
character followed by a new line character. In practice you may not notice the difference, but
the above code is not strictly the same as using three separate System.out.println() calls
and is not 100% portable.

7.5 Type: String: concatenation (page 26)

The + operator, when used with two stringoperands, produces a string which is thecon-
catenationof the two strings. For example"Hello " + "world" produces a string which is
Hello (including the space) concatenated with the stringworld, and so has the same value as
"Hello world".

There would not be much point concatenating together twostring literal s like this, compared
with having one string literal which is already the text we want. We would be more likely to
use concatenation when at least one of the operands is not a fixed value, i.e. is avariable value.
For example,"Hello " + args[0] produces a string which isHello (including the space)
concatenated with the firstcommand line argumentgiven when the program isrun .

The resulting string can be used anywhere that a single string literal could be used. For ex-
ampleSystem.out.println("Hello " + args[0]) would print the resulting string on the
standard output.

3011

7.6 Type: String: conversion: from int (page 38)

7.6 Type: String: conversion: from int (page 38)

The Javaoperator + is used for bothaddition andconcatenation– it is anoverloaded op-
erator. If at least one of theoperands is atext data string, then Java uses concatenation,
otherwise it uses addition. When only one of the two operandsis a string, and the other is
some othertype of data, for example anint, the Javacompiler is clever enough to understand
the programmer wishes that data to be converted into a stringbefore the concatenation takes
place. It is important to note the difference between aninteger and the decimal digit string we
usually use to represent it. For example, theinteger literal 123 is anint, a number; whereas
thestring literal "123" is a text data string – a string of 3 separatecharacters.

Suppose thevariable noOfPeopleToInviteToTheStreetParty had the value51, then the
code

System.out.println("Please invite " + noOfPeopleToInviteToTheStreetParty);

would print out the following text.

Please invite 51

The number51 would be converted to the string"51" and then concatenated to the string
"Please invite " before being processed bySystem.out.println().

Furthermore, for our convenience, there is a separate version ofSystem.out.println() that
takes a singleint rather than a string, and prints its decimal representation. Thus, the code

System.out.println(noOfPeopleToInviteToTheStreetParty);

has the same effect as the following.

System.out.println("" + noOfPeopleToInviteToTheStreetParty);

7.7 Type: String: conversion: from double (page 55)

The Javaconcatenation operator, +, for joining text data strings can also be used to convert
adouble to a string. For example, theexpression"" + 123.4 has the value"123.4".

7.8 Type: int (page 36)

One of thetypes of data we can use in Java is calledint. A data item which is anint is an
integer (whole number), such as0, -129934 or 982375, etc..

3012

7.9 Type: double (page 54)

7.9 Type: double (page 54)

Another of thetypes of data we can use in Java is known asdouble. A data item which is a
double is a real (fractional decimal number), such as0.0, -129.934 or 98.2375, etc.. The
type is calleddouble because it uses a means of storing the numbers calleddouble precision.
On computers, real numbers are only approximated, because they have to be stored in a finite
amount of memory space, whereas in mathematics we have the notion of infinite decimals.
The double precision storage approach uses twice as much memory per number than the older
single precisiontechnique, but gives numbers which are much more precise.

8 Standard API

8.1 Standard API: System: out.println() (page 18)

The simplest way to print a message onstandard output is to use:

System.out.println("This text will appear on standard output");

System is a class(that is, a piece of code) that comes with Java as part of itsapplication
program interface (API) – a large number of classes designed to support our Java programs.
Inside System there is a thing calledout, and this has amethod (section of code) called
println. So overall, this method is calledSystem.out.println. The method takes a string
of text given to it in its brackets, and displays that text on the standard output of the program.

8.2 Standard API: Integer: parseInt() (page 41)

One simple way to turn atext data string, say"123" into the integer (whole number) it
represents is to use the following.

Integer.parseInt("123");

Integer is a class(that is, a piece of code) that comes with Java. InsideInteger there is a
method (section of code) calledparseInt. This method takes a text data string given to it in
its brackets, converts it into anint andreturn s that number. Arun time error will occur if
the given string does not represent anint value.

For example

3013

8.3 Standard API: Double: parseDouble() (page 54)

int firstArgument;
firstArgument = Integer.parseInt(args[0]);

would take the firstcommand line argumentand, assuming it represents a number (i.e. it is a
string of digits with a possible sign in front), would turn itinto the number it represents, then
store that number infirstArgument. If instead the first argument was some other text data
string, it would produce a run time error.

8.3 Standard API: Double: parseDouble() (page 54)

One simple way to turn atext data string, say"123.456" into the real (fractional decimal
number) it represents is to use the following.

Double.parseDouble("123.456");

Double is a class(that is, a piece of code) that comes with Java. InsideDouble there is a
method (section of code) calledparseDouble. This method takes a text data string given to
it in its brackets, converts it into andouble andreturn s that number. Arun time error will
occur if the given string does not represent a number. For example

double firstArgument = Double.parseDouble(args[0]);

would take the firstcommand line argumentand, assuming it represents a number, would
turn it into the number it represents, then store that numberin firstArgument. To represent
a number, the string must be a sequence of digits, possibly with a decimal point and maybe a
negative sign in front. If instead the first argument was someother text data string, it would
produce a run time error.

9 Statement

9.1 Statement (page 18)

A command in a programming language, such as Java, which makes the computer perform
a task is known as astatement. System.out.println("I will output whatever I am
told to") is an example of a statement.

3014

9.2 Statement: simple statements are ended with a semi-colon (page 18)

9.2 Statement: simple statements are ended with a semi-colon (page 18)

All simple statements in Java must be ended by a semi-colon (;). This is a rule of the Java
languagesyntax.

9.3 Statement: assignment statement (page 37)

An assignment statementis a Javastatementwhich is used to give a value to avariable, or
change its existing value. This is only allowed if the value we are assigning has atype which
matches the type of the variable.

9.4 Statement: assignment statement: assigning a literal value (page 37)

We can assign aliteral value, that is a constant, to avariable using anassignment statement
such as the following.

noOfPeopleLivingInMyStreet = 47;

We use a singleequal sign(=), with the name of the variable to the left of it, and the valuewe
wish it to be given on the right. In the above example, theinteger literal 47 will be placed into
the variablenoOfPeopleLivingInMyStreet. Assuming the variable was declared as anint
variable then this assignment would be allowed because 47 is anint.

9.5 Statement: assignment statement: assigning an expression value (page
38)

More generally than just assigning aliteral value, we can use anassignment statementto
assign the value of anexpressionto avariable. For example, assuming we have the variable

int noOfPeopleToInviteToTheStreetParty;

then the code

noOfPeopleToInviteToTheStreetParty = noOfPeopleLivingInMyStreet + 4;

whenexecuted, wouldevaluatethe expression on the right of theequal sign(=) and then place
the resulting value in the variablenoOfPeopleToInviteToTheStreetParty.

3015

10 Error

10.1 Error (page 20)

When we write thesource codefor a Java program, it is very easy for us to get something
wrong. In particular, there are lots of rules of the languagethat our program must obey in order
for it to be a valid program.

10.2 Error: syntactic error (page 20)

One kind of error we might make in our programs issyntactic errors. This is when we break
thesyntax rules of the language. For example, we might miss out a closing bracket, or insert an
extra one, etc.. This is rather like missing out a word in a sentence of natural language, making
it grammatically incorrect. The sign below, seen strapped to the back of a poodle, contains bad
grammar – it has anis missing.

My other dog an Alsatian.

Syntactic errors in Java result in thecompiler giving us an error message. They can possibly
confuse the compiler, resulting in it thinking many more things are wrong too!

10.3 Error: semantic error (page 22)

Another kind of error we might make is asemantic error, when we obey the rules of the
syntax but what we have written does not make any sense – it has no semantics (meaning).
Another sign on a different poodle might say

My other dog is a Porsche.

which is senseless because a Porsche is a kind of car, not a dog.

10.4 Error: compile time error (page 22)

Javasyntactic errors and manysemantic errors can be detected for us by thecompiler when
it processes our program. Errors that the compiler can detect are calledcompile time errors.

3016

10.5 Error: run time error (page 24)

10.5 Error: run time error (page 24)

Another kind of error we can get with programs isrun time error s. These are errors which
are detected when the program isrun rather than when it iscompiled. In Java this means the
errors are detected and reported by thevirtual machine, java.

Java calls run time errorsexceptions. Unfortunately, the error messages produced byjava can
look very cryptic to novice programmers. A typical one mightbe as follows.

Exception in thread "main" java.lang.NoSuchMethodError: main

You can get the best clue to what has caused the error by just looking at the words either side
of the colon (:). In the above example, the message is saying thatjava cannot find themethod
calledmain.

10.6 Error: logical error (page 29)

The most tricky kind of error we can make in our programs is alogical error . For these
mistakes we do not get an error message from thecompiler, nor do we get one atrun time
from thevirtual machine. These are the kind of errors for which the Java program we have
written is meaningful as far as Java is concerned, it is just that our program does the wrong
thing compared with what we wanted. There is no way the compiler or virtual machine can
help us with these kinds of error: they are far, far too stupidto understand theproblem we were
trying to solve with our program.

For this reason, many logical errors, especially very subtle ones, manage to slip through unde-
tected by human program testing, and end up asbugs in the final product – we have all heard
stories of computer generated demands for unpaid bills withnegative amounts, etc..

11 Execution

11.1 Execution: sequential execution (page 23)

Programs generally consist of more than onestatement, in a list. We usually place these on
separate lines to enhance human readability, although Javadoes not care about that. Statements
in such a list areexecuted sequentially, one after the other. More correctly, the Java compiler
turns each one into correspondingbyte codes, and thevirtual machine executes each collec-
tion of byte codes in turn. This is known assequential execution.

3017

12 Code clarity

12.1 Code clarity: layout (page 31)

Java does not care how we lay our code out, as long as we use somewhite spaceto separate
adjacent symbols that would otherwise be treated as one symbol if they were joined. For
examplepublic void with no space between the words would be treated as the singlesymbol
publicvoid and no doubt cause acompile time error. So, if we were crazy, we could write
all our programsource codeon one line with the minimum amount of space between symbols!

public class HelloSolarSystem{public static void main(String[]args){System.out.println("Hello Mercury!");System.out.println("Hello

Oh dear – it ran off the side of the page (and that was with a smaller font too). Let us split it up
into separate lines so that it fits on the page.

public class HelloSolarSystem{public static void main(String[]args){
System.out.println("Hello Mercury!");System.out.println(
"Hello Venus!");System.out.println("Hello Earth!");System.out.println
("Hello Mars!");System.out.println("Hello Jupiter!");System.out.
println("Hello Saturn!");System.out.println("Hello Uranus!");System.
out.println("Hello Neptune!");System.out.println("Goodbye Pluto!");}}

Believe it or not, this program would stillcompile andrun okay, but hopefully you will agree
that it is not very easy forus to read. Layout is very important to the human reader, and
programmers must take care and pride in laying out their programs as they are written. So we
split our programsensibly, rather than arbitrarily, into separate lines, and useindentation (i.e.
spaces at the start of some lines), to maximize the readability of our code.

12.2 Code clarity: layout: indentation (page 32)

A classcontains structuresnestedwithin each other. The outer-most structure is the class itself,
consisting of its heading and then containing it’s body within the braces. The body contains
items such as themain method. This in turn consists of a heading and a body contained within
braces.

The idea ofindentation is that the more nested a part of the code is, the more space it has at
the start of its lines. So the class itself has no spaces, but its body, within the braces, has two
or three. Then the body of the main method has two or three more. You should be consistent:
always use the same number of spaces per nesting level. It is also a good idea to avoid using
tab characters as they can often look okay on your screen, but not line up properly when the
code is printed.

3018

12.3 Code clarity: layout: splitting long lines (page 43)

In addition, another rule of thumb is that opening braces ({) should have the same amount of
indentation as the matching closing brace (}). You will find that principle being used through-
out this book. However, some people prefer a style where opening braces are placed at the end
of lines, which this author believes is less clear.

public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello world!");
}

}

12.3 Code clarity: layout: splitting long lines (page 43)

One of the features of good layout is to keep oursource codelines from getting too long. Very
long lines cause the reader to have to work harder in horizontal eye movement to scan the code.
When code with long lines is viewed on the screen, the reader either has to use a horizontal
scroll bar to see them, or make the window so wide that other windows cannot be placed next
to it. Worst of all, when code with long lines is printed on paper there is a good chance that the
long lines will disappear off the edge of the page! At very least, they will be wrapped onto the
next line making the code messy and hard to read.

So a good rule of thumb is to keep your source code lines shorter than 80characters long. You
can do this simply in mosttext editors by never making the text window too wide and never
using the horizontal scroll bar while writing the code.

When we do have astatementthat is quite long, we simply split it into separate lines at care-
fully chosen places. When we choose such places, we bear in mind that most human readers
scan down the left hand side of the code lines, rather than read every word. So, if a line is a
continuation of a previous line, it is important to make thisobvious at the start of it. This means
using an appropriate amount ofindentation, and choosing the split so that the first symbol on
the continued line is not one which could normally start a statement.

A little thought at the writing stage quickly leads to a habitof good practise which seriously
reduces the effort required to read programs once they are written. Due tobug fixing and
general maintenance over the lifetime of a real program, thecode is read many more times than
it is written!

3019

13 Design

13.1 Design: hard coding (page 36)

Programs typically process inputdata, and produce output data. The input data might be
given ascommand line arguments, or it might be supplied by the user through someuser
interface such as agraphical user interfaceor GUI . It might be obtained fromfiles stored on
the computer.

Sometimes input data might be built into the program. Such data is said to behard coded.
This can be quite common while we are developing a program andwe haven’t yet written the
code that obtains the data from the appropriate place. In other cases it might be appropriate to
have it hard coded in the final version of the program, if such data only rarely changes.

14 Variable

14.1 Variable (page 36)

A variable in Java is an entity that can hold adata item. It has a name and a value. It is rather
like the notion of a variable in algebra (although it is not quite the same thing). The name of
a variable does not change – it is carefully chosen by the programmer to reflect the meaning
of the entity it represents in relation to the problem being solved by the program. However,
the value of a variable can (in general) be changed – we can vary it. Hence the name of the
concept: avariable is an entity that has a (possibly) varying value.

The Javacompiler implements variables by mapping their names ontocomputer memory
locations, in which the values associated with the variables will be stored atrun time .

So one view of a variable is that it is a box, like a pigeon hole,in which a value can be placed. If
we wish, we can get the program to place a different value in that box, replacing the previous;
and we can do this as many times as we want to.

Variables only have values at run time, when the program isrunning. Their names, created by
the programmer, are already fixed by the time the program iscompiled. Variables also have
one more attribute – thetype of the data they are allowed to contain. This too is chosen by the
programmer.

3020

14.2 Variable: int variable (page 37)

14.2 Variable: int variable (page 37)

In Java,variables must be declared in avariable declaration before they can be used. This is
done by the programmer stating thetype and then the name of the variable. For example the
code

int noOfPeopleLivingInMyStreet;

declares anint variable , that is a variable the value of which will be anint, and which has the
namenoOfPeopleLivingInMyStreet. Observe the semi-colon (;) which, according to the
Javasyntax rules, is needed to terminate the variable declaration. Atrun time , this variable is
allowed to hold aninteger (whole number). Its value can change, but it will always be anint.
The name of a variable should reflect its intended meaning. Inthis case, it would seem from
its name that the programmer intends the variable to always hold the number of people living
in his or her street. The programmer would write code to ensure that this meaning is always
reflected by its value at run time.

By convention, variable names start with a lower case letter, and consist of a number of words,
with the first letter of each subsequent word capitalized.

14.3 Variable: a value can be assigned when a variable is declared (page
42)

Java permits us to assign a value to avariable at the same time as declaring it. You could regard
this as a kind ofassignment statementin which the variable is also declared at the same time.
For example

int noOfHousesInMyStreet = 26;

14.4 Variable: double variable (page 54)

We can declaredouble variables in Java, that isvariables which have thetype double. For
example the code

double meanAgeOfPeopleLivingInMyHouse;

declares avariable of typedouble, with the namemeanAgeOfPeopleLivingInMyHouse. At
run time , this variable is allowed to hold adouble data item, that is areal (fractional decimal
number). The value of this variable can change, but it will always be adouble, including of
course, approximations ofwhole numbers such as40.0.

3021

15 Expression

15.1 Expression: arithmetic (page 38)

We can havearithmetic expressions in Java rather like we can in mathematics. These can con-
tain literal values, that is constants, such as theinteger literals1 and18. They can also con-
tain variables which have already been declared, andoperators to combine sub-expressions
together. Four commonarithmetic operators areaddition (+), subtraction (-), multiplica-
tion (*) anddivision (/). Note the use of an asterisk for multiplication, and a forward slash for
division – computer keyboards do not have multiply or dividesymbols.

These four operators arebinary infix operator s, because they take twooperands, one on
either side of the operator.+ and- can also be used as theunary prefix operators, plus and
minus respectively, as in-5.

When anexpressionis evaluated (expression evaluation) Java replaces each variable with
its current value and works out the result of the expression depending on the meaning of the
operators. For example, if the variablenoOfPeopleLivingInMyStreet had the value47 then
the expressionnoOfPeopleLivingInMyStreet + 4 would evaluate to51.

15.2 Expression: arithmetic: int division truncates result (page 52)

The fourarithmetic operators,+, -, * and/ of Java behave very similarly to the corresponding
operators in mathematics. There is however one serious difference to look out for. When
the division operator is given twointegers (whole numbers) it usesinteger division which
always yields an integer as its result, by throwing away any fractional part of the answer. So,
8 / 2 gives the answer4 as you might expect, but9 / 2 also gives4 – not4.5 as it would in
mathematics. It does not round to the nearest whole number, it always rounds towards zero. In
mathematics15 / 4 gives3.75. In Java it yields3 not4.

15.3 Expression: arithmetic: associativity and int division (page 52)

Like theoperators+ and-, the operators* and/ have equaloperator precedence(but higher
than+ and-) and also haveleft associativity.

However, there is an extra complication to consider becausethe Java/ operator truncates its
answer when given twointegers. Consider the following twoarithmetic expressions.

Expression Implicit brackets Value
9 * 4 / 2 (9 * 4) / 2 18
9 / 2 * 4 (9 / 2) * 4 16

3022

15.4 Expression: arithmetic: double division (page 55)

In mathematics one would expect to get the same answer from both theseexpressions, but not
in Java!

15.4 Expression: arithmetic: double division (page 55)

The Javadivision operator, /, usesdouble division and produces adouble result if at least
one of itsoperands is adouble. The result will be the best approximation to the actual answer
of the division.

Expression Result Type of Result
8 / 2 4 int
8 / 2.0 4.0 double
9 / 2 4 int
9 / 2.0 4.5 double
9.0 / 2 4.5 double
9.0 / 2.0 4.5 double

15.5 Expression: brackets and precedence (page 45)

In addition tooperators andvariables,expressions in Java can have round brackets in them.
As in mathematics, brackets are used to define the structure of the expression by grouping parts
of it into sub-expressions. For example, the following two expressions have different structures,
and thus very different values.

(2 + 4) * 8
2 + (4 * 8)

The value of the first expression is made from theaddition of 2 and4 and thenmultiplication
of the resulting6 by 8 to get48. The second expression isevaluated by multiplying4 with 8
to get32 and then adding2 to that result, ending up with34.

To help us see the structure of these two expressions, let us draw them asexpression trees.

(2 + 4) * 8

*
___/ \

+ 8
/ \

2 4

2 + (4 * 8)

+
/ ___

2 *
/ \

4 8

3023

15.6 Expression: associativity (page 48)

What if there were no brackets?

2 + 4 * 8

Java allows us to have expressions without any brackets, or more generally, without brackets
aroundevery sub-expression. It provides rules to define what the structure of such an expression
is, i.e., where the missing brackets should go. If you look atthe4 in the above expression, you
will see that it has an operator on either side of it. In a sense, the+ operator and the* operator
are both fighting to have the4 as anoperand. Rather like a tug of war,+ is pulling the4 to the
left, and* is tugging it to the right. The question is, which one wins? Java, as in mathematics,
provides the answer by having varying levels ofoperator precedence. The* and/ operators
have a higher precedence than+ and-, which means* fights harder than+, so it wins! 2 + 4
* 8 evaluates to34.

15.6 Expression: associativity (page 48)

The principle ofoperator precedenceis insufficient to disambiguate allexpressions which
are not fully bracketed. For example, consider the following expressions.

10 + 7 + 3
10 + 7 - 3
10 - 7 + 3
10 - 7 - 3

In all four expressions, the7 is being fought over by twooperators which have the same
precedence: either two+, two -, or one of each. So where should the missing brackets go?
The expression trees could have one of the two following structures, whereOP1 is the first
operator, andOP2 is the second.

10 OP1 (7 OP2 3)

OP1
/ ___

10 OP2
/ \

7 3

(10 OP1 7) OP2 3

___OP2
/ \

OP1 3
/ \

10 7

Let us see whether it makes a difference to the results of the expressions.

3024

15.6 Expression: associativity (page 48)

Expression Value
(10 + 7) + 3 20
10 + (7 + 3) 20
(10 + 7) - 3 14
10 + (7 - 3) 14
(10 - 7) + 3 6
10 - (7 + 3) 0
(10 - 7) - 3 0
10 - (7 - 3) 6

As you can see, it does make a difference sometimes – in these cases when the first operator
is subtraction (-). So how does Java resolve this problem? As in mathematics, Java operators
have anoperator associativityas well as a precedence. The operators+, -, * and/ all have
left associativitywhich means that when two of these operators of equal precedence are both
fighting over oneoperand, it is the left operator that wins. If you like, the tug of war takes
place on sloping ground with the left operator having the advantage of being lower down than
the right one!

Expression Implicit brackets Value
10 + 7 + 3 (10 + 7) + 3 20
10 + 7 - 3 (10 + 7) - 3 14
10 - 7 + 3 (10 - 7) + 3 6
10 - 7 - 3 (10 - 7) - 3 0

The operators* and/ also have equal precedence (but higher than+ and-) so similar situations
arise with those too.

3025

	Computer basics
	Computer basics: hardware (page 3)
	Computer basics: hardware: processor (page 3)
	Computer basics: hardware: memory (page 3)
	Computer basics: hardware: persistent storage (page 3)
	Computer basics: hardware: input and output devices (page 3)
	Computer basics: software (page 3)
	Computer basics: software: machine code (page 3)
	Computer basics: software: operating system (page 4)
	Computer basics: software: application program (page 4)
	Computer basics: data (page 3)
	Computer basics: data: files (page 5)
	Computer basics: data: files: text files (page 5)
	Computer basics: data: files: binary files (page 5)

	Java tools
	Java tools: text editor (page 5)
	Java tools: javac compiler (page 9)
	Java tools: java interpreter (page 9)

	Operating environment
	Operating environment: programs are commands (page 7)
	Operating environment: standard output (page 7)
	Operating environment: command line arguments (page 8)

	Class
	Class: programs are divided into classes (page 16)
	Class: public class (page 16)
	Class: definition (page 16)

	Method
	Method: main method: programs contain a main method (page 17)
	Method: main method: is public (page 17)
	Method: main method: is static (page 17)
	Method: main method: is void (page 17)
	Method: main method: is the program starting point (page 17)
	Method: main method: always has the same heading (page 18)

	Command line arguments
	Command line arguments: program arguments are passed to main (page 17)
	Command line arguments: program arguments are accessed by index (page 26)

	Type
	Type (page 36)
	Type: String: literal (page 18)
	Type: String: literal: must be ended on the same line (page 21)
	Type: String: literal: escape sequences (page 49)
	Type: String: concatenation (page 26)
	Type: String: conversion: from int (page 38)
	Type: String: conversion: from double (page 55)
	Type: int (page 36)
	Type: double (page 54)

	Standard API
	Standard API: System: out.println() (page 18)
	Standard API: Integer: parseInt() (page 41)
	Standard API: Double: parseDouble() (page 54)

	Statement
	Statement (page 18)
	Statement: simple statements are ended with a semi-colon (page 18)
	Statement: assignment statement (page 37)
	Statement: assignment statement: assigning a literal value (page 37)
	Statement: assignment statement: assigning an expression value (page 38)

	Error
	Error (page 20)
	Error: syntactic error (page 20)
	Error: semantic error (page 22)
	Error: compile time error (page 22)
	Error: run time error (page 24)
	Error: logical error (page 29)

	Execution
	Execution: sequential execution (page 23)

	Code clarity
	Code clarity: layout (page 31)
	Code clarity: layout: indentation (page 32)
	Code clarity: layout: splitting long lines (page 43)

	Design
	Design: hard coding (page 36)

	Variable
	Variable (page 36)
	Variable: int variable (page 37)
	Variable: a value can be assigned when a variable is declared (page 42)
	Variable: double variable (page 54)

	Expression
	Expression: arithmetic (page 38)
	Expression: arithmetic: int division truncates result (page 52)
	Expression: arithmetic: associativity and int division (page 52)
	Expression: arithmetic: double division (page 55)
	Expression: brackets and precedence (page 45)
	Expression: associativity (page 48)

