Java Just in Time:
Collected concepts after chapter 02

‘John Latham, School of Computer Science, Manchester UJNy,eUK‘

April 15, 2011

Contents

1 Computer basics
1.1 Computer basics: hardware (p@e 3 .
1.2 Computer basics: hardware: processor (page 3)
1.3 Computer basics: hardware: memory (page3)
1.4 Computer basics: hardware: persistent storage ﬁag.es C
15 Computer basics: hardware: input and output devicege(Ba. . . .
1.6 Computer basics: software (page3)
1.7 Computer basics: software: machine code (@ €3). . ..
1.8 Computer basics: software: operating system (page 4)
1.9 Computer basics: software: application program (page 4
1.10 Computer basics: data (pfgb 3)
1.11 Computer basics: data: files (page5)

1.12 Computer basics:
1.13 Computer basics:

\2 Java tool%

2.1 Java tools: text editor (pa@ 5;

2.2 Java tools: javac compiler (p 9 ...

2.3 Java tools: java interpreter (p 9 ...
3 Operating environment

3.1 Operating environment: programs are commands @ge 7)... .

3.2 Operating environment: standard output (@ge 7. e

3.3 Operating environment: command line arguments (@ge 8). ..
4 Class

4.1 Class: programs are divided into classes (@e 16)

4.2 Class: publicclass (pagel/16)

4.3 Class: definition (pagel6)

data: files: text files (page5)

data: files: binary files (page 5)

2000

5.1 Method: main method:
5.2 Method: main method:
5.3 Method: main method:
5.4 Method: main method:
5.5 Method: main method:
5.6 Method: main method:

6 Command line argumenté

2006
programs contain a main w@g . 2006
is public (p 17) . 2006
is static (p i 2006
isvoid (page/17) [0]0]64
is the program starting point (.. .. 2007
always has the same heading (page 18. 2007

2007

6.1 Command line arguments: program arguments are paseminc(pag 2007
6.2 Command line arguments: program arguments are acdegsedex (pag)2008

7 Type 2008
7.1 Type: String: literal (pade:18) 2008
7.2 Type: String: literal: must be ended on the same Iinee(. . . 2008
7.3 Type: String: concatenation (péﬁ%). C e e e e e2008

8 Standard AP 2009
8.1 Standard API: System: out.printin() (p@ 18) . 2009

9 Statement 2009
9.1 Statement (pa8) 2009
9.2 Statement: simple statements are ended with a semi-qmgéﬁ) 2009

10 Error 2009
101 Emor(page20) . . . oo 2009
10.2 Error: syntacticerror (page 20) 2010
10.3 Error: semantic error (page 22) 2010
10.4 Error: compile time error (page22) 2010
10.5 Error: runtime error (page24) oia
10.6 Error: logical error (page29) 2011

11 Execution 2011
111 Execution: sequential execution (p@ 23) 2011

12 Code clarity 2011
12.1 Code clarity: layout (pal) 2011
12.2 Code clarity: layout: indentation (p@%) e e e e .. 2012

1 Computer basics

1.1 Computer basics: hardware (page 3)

The physical parts of a computer are knowrhasdware. You can see them, and touch them.

2001

1.2 Computer basics: hardware: processor (page 3)

1.2 Computer basics: hardware: processor (page 3)

Thecentral processing unit(CPU) is the part of thénardware that actually obeys instructions.
It does this dumbly — computers are not inherently intetlige

1.3 Computer basics: hardware: memory (page|3)

Thecomputer memoryis part of the computer which is capable of storing and reitngedata
for short term use. This includes theachine codeinstructions that theentral processing
unit is obeying, and any other data that the computer is currendhking with. For example,
it is likely that an image from a digital camera is stored ia tomputer memory while you are
editing or displaying it, as are the machine code instrastior the image editing program.

The computer memory requires electrical power in order moeraber its data — it igolatile
memory and will forget its contents when the power is turned off.

An important feature of computer memory is that its conteras be accessed and changed
in any order required. This is known ssndom accessand such memory is calle@gndom
access memoryr justRAM.

1.4 Computer basics: hardware: persistent storage (page 3)

For longer term storage ofata, computers uspersistent storagedevices such asard discs
andDVD ROM s. These are capable of holding much more information toamputer mem-
ory, and are persistent in that they do not need power to remethnéénformation stored on
them. However, the time taken to store and retrieve datau longer than for computer
memory. Also, these devices cannot as easily be accessednda@m order.

1.5 Computer basics: hardware: input and output devices (pge.3)

Some parts of thbardware are dedicated to receiving input from or producing outpuht®
outside world. Keyboards and mice are examplempfit devices. Displays and printers are
examples obutput devices.

1.6 Computer basics: software (pagel3)

One part of a computer you cannot see isdffware. This is stored ocomputer media such
asDVD ROMs, and ultimately inside the computer, as lots of numberis the instructions

2002

1.7 Computer basics: software: machine code (page 3)

that the computer will obey. The closest you get to seeingghirbe if you look at the silver
surface of a DVD ROM with a powerful magnifying glass!

1.7 Computer basics: software: machine code (page 3)

The instructions that theentral processing unitobeys are expressed in a language known
asmachine code This is a verylow level language meaning that each instruction gets the
computer to do only a very simple thing, such as dleition of two numbers, or sending a
byte to a printer.

1.8 Computer basics: software: operating system (page 4)

A collection of software which is dedicated to making the computer generally usabtber
than being able to solvemarticular task, is known as aoperating system The most popular
examples for modern personal computers are Microsoft WisgdtMac OS X and Linux. The
latter two are implementations of Unix, which was first cauwed in the early 1970s. The fact
it is still in widespread use today, especially by comput@fgssionals, is proof that it is a
thoroughly stable and wetlesigred and integrated platform for the expert (or budding ejpert
computer scientist.

1.9 Computer basics: software: application program (page p

A piece ofsoftware which is dedicated to solving a particular task, or appiaatis known as
anapplication program. For example, an image editing program.

1.10 Computer basics: data (page'3)

Another part of the computer that you cannot see iglét. Like software it is stored as
lots of numbers. Computers are processing and produciregatlathe time. For example, an
image from a digital camera is data. You can only see the i@atdnen you display it using
some image displaying or editing software, but even thi$ growing you the actual data that
makes up the picture. The names and addresses of your fiieadsther example of data.

1.11 Computer basics: data: files (pagel5)

Whendata is stored inpersistent storage such as on &ard disc, it is organized into chunks
of related information known ades. Files have hames and can be accessed by the computer

2003

1.12 Computer basics: data: files: text files (nage 5)

through theoperating system For example, the image from a digital camera would probably
be stored in a jpeg file, which is a particular type of image &led the name of this file would
probably end inj pg or. | peg.

1.12 Computer basics: data: files: text files (page 5)

A text file is a type offile that containglata stored directly asharacters in a human readable
form. This means if you were to send the raw contents dirdatlthe printer, you would
(for most printers) be immediately able to read it. Examplietext files includeREADME. t xt

that sometimes comes wigoftware you are installing, or source text for a document to be
processed by théTeX[6] document processing system, such as the ones useddagathis
book (prior to publication). As you will see shortly, a morgdaresting example for you, is
computer programsource coddfiles.

1.13 Computer basics: data: files: binary files (page 5)

A binary file is another kind ofile in which data is stored adinary (base 2) numbers, and
so is not human readable. For example, the image from a bagitaera is probably stored as
a jpeg file, and if you were to look directly at its contentshex than use somapplication
program to display it, you would see what appears to be nonsense! &reisting example of
a binary file is themachine codeinstructions of a program.

2 Javatools

2.1 Javatools: text editor (page 5)

A text editor is a program that allows the user to type and ¢eit files. You may well
have usecdot epad under Microsoft Windows; that is a text editor. More likelply have
usedM crosoft Wrd. If you have, you should note that it is not a text editor, iaigord
processor Although you can save your documents as text files, it is nsoremon to save
them as doc files, which is actually &inary file format.M crosoft Wrd is not a good tool
to use for creating prograsource codefiles.

If you are using arntegrated development environmento support your programming, then

the text editor will be built in to it. If not, there are a pletia of text editors available which
are suited to Java programming.

2004

2.2 Javatools: javac compiler (page 9)

2.2 Javatools: javac compiler (page|9)

The Javacompiler is calledj avac. Java program source is saved by the programmeterta
file that has the suffixj ava. For example, the text filgel | oWor | d. j ava might contain the
source text of a program that printel | 0 worl d! on thestandard output. This text file
can then beompiled by the Java compiler, by giving its name ascanmand line argument
Thus the command

javac HelloWrld.java

will produce thebyte codeversion of it in thefile Hel | oWor | d. cl ass. Like machine code
files, byte code is stored ininary files as numbers, and so is not human readable.

2.3 Javatools: java interpreter (page 9)

When the end user wants to run a Java program, he or she in@ew a interpreter with the
name of the program as it®mmand line argument The program must, of course, have been
compiled first! For example, to run thieel | oWor | d program we would issue the following
command.

java Hel Il ovrld

This makes theentral processing unitrun the interpreter ovirtual machine j ava, which
itself thenexecutes the program named as its first argument. Notice that thexsyféiva is
needed when compiling the program, but no suffix is used whbening it. In our example
here, the virtual machine finds tlgte codefor the program in thdile Hel | oWr | d. cl ass
which must have been previously produced byabmpiler.

3 Operating environment

3.1 Operating environment: programs are commands (page 7)

When a program iexecutel, the name of it is passed to thperating systemwhich finds and
loads thdfile of that name, and then starts the program. This might be hittden you if you
are used to starting programs from a menu or browser ingerfad it happens nevertheless.

2005

3.2 Operating environment: standard output (page 7)

3.2 Operating environment: standard output (page 7)

When programexecute they have something called teeandard output in which they can
produce text results. If they aren from some kind otommand line interface such as a Unix
shell or a Microsoft WindowsCommand Prompt, then this output appears in that interface
while the program is running. (If they are invoked througimsdntegrated development
environment, browser, or menu, then this output might get displayed mespop-up box, or
special console window.)

3.3 Operating environment: command line arguments (page 8)

Programs can be, and often are, gigcemmand line argumens to vary their behaviour.

4 Class

4.1 Class: programs are divided into classes (page 16)

In Java, the source text for a program is separated into pieakkedclases. The source
text for each class is (usually) stored in a sepafége Classes have a name, and if the
name isHel | oWor | d then the text for the class is saved by the programmer irtekiefile

Hel | oWor | d. j ava.

One reason for dividing programs into pieces is to make thasieeto manage — programs to
perform complex tasks typically contain thousands of lioext. Another reason is to make
it easier to share the pieces between more than one prograchscftware reuseis beneficial
to programmer productivity.

Every program has at least one class. The name of this clafigettect the intention of the
program. By convention, class names start with an upperletise

4.2 Class: public class (page 16)

A classcan be declared as beipgblic, which means it can be accessed from anywhere in the
running Java environment; in particular thietual machine itself can access it. The source
text for a public class definition starts with thresserved wordpubl i c¢. A reserved word is one
which is part of the Java language, rather than a word chogehebprogrammer for use as,
say, the name of a program.

2006

4.3 Class: definition (page 16)

4.3 Class: definition (page 16)

After stating whether it hagublic access, alassnext has theeserved wordcl ass, then its
name, then a left brac€) its body of text and finally a closing right bracp (

public class MyFabul ousProgram

{
Lots of stuff here.

}...

5 Method

5.1 Method: main method: programs contain a main method (pag/17)

All Java programs contain a section of code caltedn, and this is where the computer will
start toexecutethe program. Such sections of code are caftexthods because they contain
instructions on how to do something. Theain method always starts with the following
heading.

public static void main(String[] args)

5.2 Method: main method: is public (page 17)

Themain method starts with theeserved wordpubl i ¢, which means it can be accessed from
anywhere in the running Java environment. This is necess#rg program could not bein
by thevirtual machine if the starting point was not accessible to it.

public

5.3 Method: main method: is static (page 17)

Themain method of the program has theeserved wordst at i ¢ which means it is allowed
to be used in thestatic context A context relates to the use obmputer memory during
therunning of the program. When thertual machine loads a program, it creates the static
context for it, allocating computer memory to store the pangand it-data, etc.. Adynamic
contextis a certain kind of allocation of memory which is made latier;ing the running of the
program. The program would not be able to start if the mairhieetivas not allowed to run in
the static context.

2007

5.4 Method: main method: is void (page 17)

public static

5.4 Method: main method: is void (page 17)

In general, anethod (section of code) might calculate some kindafction or formula, and
return the answer as a result. For example, the result might be aewtila method returns
a result then this must be stated in its heading. If it doestheh we write theeserved word
voi d, which literally means (among other definitions) ‘withowaintents’. Themain method
does not return a value.

public static void

5.5 Method: main method: is the program starting point (pagel7)

The starting part, omain method, of the program is always calledi n, because it is the main
part of the program.

public static void main

5.6 Method: main method: always has the same heading (page)18
Themain method of a Java program must always have a heading like this.
public static void main(String[] args)

This is true even if we do not intend to use amgmmand line argumens. So a typical single
classprogram might look like the following.

public class M/Fabul ousProgram

{
public static void main(String[] args)
{
... Stuff here to performthe task.
}
}

2008

6 Command line arguments

6.1 Command line arguments: program arguments are passed tmain
(page 17)

Programs can be givasommand line argumens which typically affect their behaviour. Ar-
guments given to a Java program are strings ofdesd, and there can be any number of them
in alist. In Java,String[] means ‘list of strings’. We have to give a name for this listga
usually we call itar gs. The chosen name allows us to refer to the given data frommwiitie
program, should we wish to.

public static void main(String[] args)

6.2 Command line arguments: program arguments are accessdyy in-
dex (page 26)

The command line argumens given to themain method are alist of strings. These are
the text data string arguments supplied on tteommand line The strings aréndexed by
integers (whole numbers) starting from zero. We can access theithdivstrings by placing
the index value in square brackets after the name of theSstassuming that we call the list
ar gs, thenar gs[0] is the first command line argument given to the program, ifdli®one.

7 Type

7.1 Type: String: literal (page[18)

In Java, we can havesdring literal , that is a fixed piece of text to be useddata, by enclosing
it in double quotes. It is called a string literal, because atype of data which is a string of
characters, exactly as listed. Such a piece of data might be used assages® the user.

"This is a fixed piece of text data -- a string literal"

7.2 Type: String: literal: must be ended on the same line (pag21)

In Javastring literal s must be ended on the same line they are started on.

2009

7.3 Type: String: concatenation (page 26)

7.3 Type: String: concatenation (page 26)

The + operator, when used with two stringperands, produces a string which is tloen-
catenation of the two strings. For exampleédel | 0 " + "worl d" produces a string which is
Hel | o (including the space) concatenated with the stwoig d, and so has the same value as
"Hell o world".

There would not be much point concatenating togetherdtrag literal s like this, compared
with having one string literal which is already the text wenivaWe would be more likely to
use concatenation when at least one of the operands is netiavidue, i.e. is &ariable value.
For example;Hel o " + args[0] produces a string which i€l | 0 (including the space)
concatenated with the firsommand line argumentgiven when the program isin.

The resulting string can be used anywhere that a singlegdiitaral could be used. For ex-
ampleSystemout. printIn("Hello " + args[0]) would print the resulting string on the
standard output.

8 Standard API

8.1 Standard API: System: out.printin() (page 18)

The simplest way to print a messagestandard output is to use:
Systemout.printIn("This text will appear on standard output”);

Systemis aclass(that is, a piece of code) that comes with Java as part dpfdication
program interface (API) — a large number of classes designed to support our Javeapneg
Inside Syst emthere is a thing calledut, and this has amethod (section of code) called
println. So overall, this method is call&yst em out. pri ntl n. The method takes a string
of text given to it in its brackets, and displays that textloa standard output of the program.

9 Statement

9.1 Statement (page 18)

A command in a programming language, such as Java, whichsriakecomputer perform
a task is known as atatement Systemout.printin("l wll output whatever | am
told to") is an example of a statement.

2010

9.2 Statement: simple statements are ended with a senm-@Gadge 18)

9.2 Statement: simple statements are ended with a semi-caol@page 18)

All simple statemens in Java must be ended by a semi-colph (This is a rule of the Java
languagesyntax.

10 Error

10.1 Error (page 20)

When we write thesource codefor a Java program, it is very easy for us to get something
wrong. In particular, there are lots of rules of the langutige our program must obey in order
for it to be a valid program.

10.2 Error: syntactic error (page 20)

One kind of error we might make in our programsystactic errors. This is when we break
thesyntaxrules of the language. For example, we might miss out a gjdsiacket, or insert an
extra one, etc.. This is rather like missing out a word in desgse of natural language, making
it grammatically incorrect. The sign below, seen strappeti¢ back of a poodle, contains bad
grammar — it has ans missing.

My other dog an AIsatia:I

Syntactic errors in Java result in teempiler giving us an error message. They can possibly
confuse the compiler, resulting in it thinking many morenfs are wrong too!

10.3 Error: semantic error (page/22)

Another kind of error we might make is semantic error, when we obey the rules of the
syntax but what we have written does not make any sense — it has naniemémeaning).
Another sign on a different poodle might say

My other dog is a Porsch'.

which is senseless because a Porsche is a kind of car, not a dog

2011

10.4 Error: compile time error (page 22)

10.4 Error: compile time error (page/22)

Javasyntactic errors and manygemantic errors can be detected for us by tbempiler when
it processes our program. Errors that the compiler can tatecalledcompile time errors.

10.5 Error: run time error (page 24)

Another kind of error we can get with programsris1 time error s. These are errors which
are detected when the progranrus rather than when it isompiled. In Java this means the
errors are detected and reported bythtial machine, j ava.

Java calls run time erroexceptiors. Unfortunately, the error messages producegdama can
look very cryptic to novice programmers. A typical one migbtas follows.

Exception in thread "main" java.lang. NoSuchMet hodError: main

You can get the best clue to what has caused the error by plghlp at the words either side
of the colon (). In the above example, the message is saying that cannot find thenethod
calledmai n.

10.6 Error: logical error (page 29)

The most tricky kind of error we can make in our programs iegical error. For these
mistakes we do not get an error message fromctimapiler, nor do we get one aun time
from thevirtual machine. These are the kind of errors for which the Java program we hav
written is meaningful as far as Java is concerned, it is just our program does the wrong
thing compared with what we wanted. There is no way the campit virtual machine can
help us with these kinds of error: they are far, far too stapidnderstand thproblemwe were
trying to solve with our program.

For this reason, many logical errors, especially very suinles, manage to slip through unde-

tected by human program testing, and end upwass in the final product — we have all heard
stories of computer generated demands for unpaid bills meghative amounts, etc..

2012

11 Execution

11.1 Execution: sequential execution (page 23)

Programs generally consist of more than stetement in a list. We usually place these on
separate lines to enhance human readability, althouglddegnot care about that. Statements
in such a list arexecuta sequentially, one after the other. More correctly, theadampiler
turns each one into correspondibgte codes, and thevirtual machine executes each collec-
tion of byte codes in turn. This is known asquential execution

12 Code clarity

12.1 Code clarity: layout (page 31)

Java does not care how we lay our code out, as long as we usevgutaeespaceto separate
adjacent symbols that would otherwise be treated as one dyimtiney were joined. For
examplepubl i ¢ voi d with no space between the words would be treated as the siygiieol

publ i cvoi d and no doubt causea@mpile time error. So, if we were crazy, we could write
all our progransource codeon one line with the minimum amount of space between symbols!

public class HelloSol ar System{public static void main(String[]args){Systemout.println("Hello Mercury!");Systemout.println("He

Oh dear — it ran off the side of the page (and that was with alenfaht too). Let us split it up
into separate lines so that it fits on the page.

public class HelloSol ar System{public static void main(String[]args){
Systemout.printin("Hello Mercury!"); Systemout. println(

"Hello Venus!"); Systemout.printin("Hello Earth!"); Systemout.println
("Hello Mars!™"); Systemout.printin("Hello Jupiter!"); System out.
printIn("Hello Saturn!");Systemout.printin("Hello Uanus!"); System
out.printIn("Hello Neptune!");Systemout.println("Goodbye Pluto!"); }}

Believe it or not, this program would stidlompile andrun okay, but hopefully you will agree
that it is not very easy fous to read. Layout is very important to the human reader, and
programmers must take care and pride in laying out theirqarog as they are written. So we
split our progransensibly, rather than arbitrarily, into separate lines, andingentation (i.e.
spaces at the start of some lines), to maximize the reatjabilour code.

2013

12.2 Code clarity: layout: indentation (page 32)

12.2 Code clarity: layout: indentation (page 32)

A classcontains structurasestedwithin each other. The outer-most structure is the clas#ts
consisting of its heading and then containing it's body wittihe braces. The body contains
items such as thmain method. This in turn consists of a heading and a body contained withi
braces.

The idea ofindentation is that the more nested a part of the code is, the more spaas #th
the start of its lines. So the class itself has no spacesidbbdy, within the braces, has two
or three. Then the body of the main method has two or three .mfane should be consistent:
always use the same number of spaces per nesting level.l$bi@ @ood idea to avoid using
tab characters as they can often look okay on your screen, but not line upgrhp when the
code is printed.

In addition, another rule of thumb is that opening brad@ssbould have the same amount of
indentation as the matching closing bragg (You will find that principle being used through-
out this book. However, some people prefer a style whereingdamaces are placed at the end
of lines, which this author believes is less clear.

public class HelloWrld {

public static void main(String[] args) {
Systemout.printin("Hello world!");

}
}

2014

	Computer basics
	Computer basics: hardware (page 3)
	Computer basics: hardware: processor (page 3)
	Computer basics: hardware: memory (page 3)
	Computer basics: hardware: persistent storage (page 3)
	Computer basics: hardware: input and output devices (page 3)
	Computer basics: software (page 3)
	Computer basics: software: machine code (page 3)
	Computer basics: software: operating system (page 4)
	Computer basics: software: application program (page 4)
	Computer basics: data (page 3)
	Computer basics: data: files (page 5)
	Computer basics: data: files: text files (page 5)
	Computer basics: data: files: binary files (page 5)

	Java tools
	Java tools: text editor (page 5)
	Java tools: javac compiler (page 9)
	Java tools: java interpreter (page 9)

	Operating environment
	Operating environment: programs are commands (page 7)
	Operating environment: standard output (page 7)
	Operating environment: command line arguments (page 8)

	Class
	Class: programs are divided into classes (page 16)
	Class: public class (page 16)
	Class: definition (page 16)

	Method
	Method: main method: programs contain a main method (page 17)
	Method: main method: is public (page 17)
	Method: main method: is static (page 17)
	Method: main method: is void (page 17)
	Method: main method: is the program starting point (page 17)
	Method: main method: always has the same heading (page 18)

	Command line arguments
	Command line arguments: program arguments are passed to main (page 17)
	Command line arguments: program arguments are accessed by index (page 26)

	Type
	Type: String: literal (page 18)
	Type: String: literal: must be ended on the same line (page 21)
	Type: String: concatenation (page 26)

	Standard API
	Standard API: System: out.println() (page 18)

	Statement
	Statement (page 18)
	Statement: simple statements are ended with a semi-colon (page 18)

	Error
	Error (page 20)
	Error: syntactic error (page 20)
	Error: semantic error (page 22)
	Error: compile time error (page 22)
	Error: run time error (page 24)
	Error: logical error (page 29)

	Execution
	Execution: sequential execution (page 23)

	Code clarity
	Code clarity: layout (page 31)
	Code clarity: layout: indentation (page 32)

