
CHAPTER 3. TYPES, VARIABLES AND EXPRESSIONS

Note: System.out.println() always ends the line with the platform dependent line separator, which on Linux
is a new line character but on Microsoft Windows is a carriage return character followed by a new line character.
In practice you may not notice the difference, but the above code is not strictly the same as using three separate
System.out.println() calls and is not 100% portable.

009: System.out.println("Your salary:\t" + salary
010: + "\nYour mortgage:\t" + mortgage
011: + "\nYour bills:\t" + bills
012: + "\nDisposable:\t" + disposableIncome);
013:

�
014:

�

3.7.1 The full DisposableIncome code

001: public class DisposableIncome
002: �
003: public static void main(String[] args)
004: �
005: int salary = Integer.parseInt(args[0]);
006: int mortgage = Integer.parseInt(args[1]);
007: int bills = Integer.parseInt(args[2]);
008: int disposableIncome = salary - (mortgage + bills);
009: System.out.println("Your salary:\t" + salary
010: + "\nYour mortgage:\t" + mortgage
011: + "\nYour bills:\t" + bills
012: + "\nDisposable:\t" + disposableIncome);
013:

�
014:

�

3.7.2 Trying it

After we have compiled the program, we can run it.

Console Input / Output
$ java DisposableIncome 38356 24317 4665
Your salary: 38356
Your mortgage: 24317
Your bills: 4665
Disposable: 9374
$ _

You’ll survive. ;-) But the guy below needs a better job
– perhaps Java programming?

Console Input / Output
$ java DisposableIncome 19178 12875 3665
Your salary: 19178
Your mortgage: 12875
Your bills: 3665
Disposable: 2638
$ _

In later examples we shall see two ways of addressing the line
separator portability issue in places where we don’t want to, or
cannot, use System.out.println() to get it right.

3.7.3 Coursework: ThreeWeights

In the days before accurate mechanical spring weighing scales (let alone digital ones), gold merchants were quite clever
in their use of a small number of brass or lead weights, and a balance scale. (Indeed, many still use these in preference to
inferior modern technology!) They would place the gold to be weighed in the left pan of the balance scale, and then place
known weights in the right pan, and maybe also in the left pan, until the scales balanced. For example, suppose an unknown

50

CHAPTER 6. CONTROL STATEMENTS NESTED IN LOOPS

6.5 Example: Printing a triangle

AIM:
To reinforce the idea of nesting a for loop within a for loop.

This next program is very similar to the previous, except this time to make it trickier,
we want an isosceles right angled triangle of a height given as the command line
argument. The first line of text has one cell, the second has two, and so on, until the
last line has as many cells as the height. For example, a triangle of height four would
be printed as follows.

Console Input / Output
$ java PrintTriangle 4

[_]
[_][_]
[_][_][_]
[_][_][_][_]
$ _Here is the code, which you should compare with that for printing a rectangle.

001: // Program to print out an isosceles right angled triangle.
002: // The height is given as an argument.
003: // We assume the argument represents a positive integer.
004: public class PrintTriangle
005: �
006: public static void main(String[] args)
007: �
008: // The height of the triangle.
009: int height = Integer.parseInt(args[0]);
010:
011: // Print out height number of rows.
012: for (int row = 1; row <= height; row++)
013: �
014: // Print out row number of cells, on the same line.
015: for (int column = 1; column <= row; column++)
016: System.out.print("[_]");
017: // End the line.
018: System.out.println();
019: � // for
020: � // main
021:

022: � // class PrintTriangle

6.5.1 Trying it

Console Input / Output
$ java PrintTriangle 10
[_]
[_][_]
[_][_][_]
[_][_][_][_]
[_][_][_][_][_]
[_][_][_][_][_][_]
[_][_][_][_][_][_][_]
[_][_][_][_][_][_][_][_]
[_][_][_][_][_][_][_][_][_]
[_][_][_][_][_][_][_][_][_][_]
$ _

Console Input / Output
$ java PrintTriangle 15

[_]
[_][_]
[_][_][_]
[_][_][_][_]
[_][_][_][_][_]
[_][_][_][_][_][_]
[_][_][_][_][_][_][_]
[_][_][_][_][_][_][_][_]
[_][_][_][_][_][_][_][_][_]
[_][_][_][_][_][_][_][_][_][_]
[_][_][_][_][_][_][_][_][_][_][_]
[_][_][_][_][_][_][_][_][_][_][_][_]
[_][_][_][_][_][_][_][_][_][_][_][_][_]
[_][_][_][_][_][_][_][_][_][_][_][_][_][_]
[_][_][_][_][_][_][_][_][_][_][_][_][_][_][_]
$ _

Coffee time: 6.5.1

What would happen if we changed the outer for
loop to the following?
. for (int row = 0; row < height; row++)

Coffee
time: 6.5.2

What would happen if we changed the inner for loop to the following?
. for (int column = 1; column <= height - row + 1; column++)

100

CHAPTER 9. CONSOLIDATION OF CONCEPTS SO FAR

program causes an exception during its execution (p.24), and logical error when everything seems to work fine, but the
program produces the wrong result (p.29). Syntactic and semantic errors are collectively known as compile time errors
(p.22).

9.2.6 Standard classes

Java comes with lots of classes ready to use in its application program interface (API). We have met some of the features
of a few so far.

The class System contains methods for printing results on standard output (p.7).

Name Return Parameter Description Page
System.out.println String Print the given string and a new line on the output. (p.18)
System.out.println (none) Produce a new line on the output. (p.98)
System.out.println int Print the decimal representation of the given int and a

new line on the output.
(p.38)

System.out.print String Print the given string with no new line on the output. (p.98)
System.out.printf String,

value
Prints a formatted representation of the given value,
according to the given format specifier string (e.g.
"%010.2f%n").

(p.126)
(p.140)

In fact there is a version of System.out.print() and System.out.println() for all the types we have met so far.
System.out.println() produces a new line using the platform dependent line separator, which is a new line character
on Linux and a carriage return character followed by a new line character on Microsoft Windows.

The classes Integer and Double contain methods to convert a given String into the number it represents.

Name Return Parameter Description Page
Integer.parseInt int String Convert the given string into the int it represents, or cause

an exception if it cannot.
(p.41)

Double.parseDouble double String Convert the given string into the double it represents, or
cause an exception if it cannot.

(p.54)

The class Math contains methods for various mathematical functions including the following.

Name Return Parameter Description Page
Math.pow double double, double Returns the first parameter raised to the second. (p.73)
Math.abs double double Returns the absolute value of the parameter. (p.87)
Math.sin double double Returns the sin of the given value, which is expressed in

radians.
Math.toRadians double double Returns the radians equivalent of the given degrees value.

There is also the constant Math.PI (p.87).

9.3 Program design concepts

AIM:
To look more formally at the process of designing an algorithm and writing a pro-
gram. In particular, we look closely at designing variables.

We have seen lots of example programs in the previous chapters, and by a process of osmosis, especially if you have done
the coursework too, you will have started to pick up the skill of programming. Now is a good time to try and formalize this

150

CHAPTER 11. OBJECT ORIENTED DESIGN

All you have to do is write the other classes.

The following are example runs of the program
to help clarify the requirements.

Console Input / Output
$ java ShapeShift
Choose circle (1), triangle (2), rectangle (3): 1

Enter the centre as X Y: 0 0
Enter the radius: 1

Enter the offset as X Y: 2 2

Circle((0.0,0.0),1.0)
has area 3.141592653589793, perimeter 6.283185307179586
and when shifted by X offset 2.0 and Y offset 2.0, gives
Circle((2.0,2.0),1.0)
$ _

Console Input / Output
$ java ShapeShift
Choose circle (1), triangle (2), rectangle (3): 2

Enter point A as X Y: 0 0
Enter point B as X Y: 10 0

Enter point C as X Y: 0 20
Enter the offset as X Y: 5 10

Triangle((0.0,0.0),(10.0,0.0),(0.0,20.0))
has area 100.0, perimeter 52.3606797749979
and when shifted by X offset 5.0 and Y offset 10.0, gives
Triangle((5.0,10.0),(15.0,10.0),(5.0,30.0))
$ _

Console Input / Output
$ java ShapeShift

Choose circle (1), triangle (2), rectangle (3): 3
Enter one corner as X Y: 0 0

Enter opposite corner as X Y: 10 20
Enter the offset as X Y: 0 0

Rectangle((0.0,0.0),(10.0,0.0),(10.0,20.0),(0.0,20.0))
has area 200.0, perimeter 60.0
and when shifted by X offset 0.0 and Y offset 0.0, gives
Rectangle((0.0,0.0),(10.0,0.0),(10.0,20.0),(0.0,20.0))
$ _

Start by designing your test data in your
logbook.

Your program will consist of five classes,
Point, Circle, Triangle, Rectangle and the
already given ShapeShift. Next identify and
record the public instance methods and class
methods for each of the four classes you will
write. Endeavour to associate behaviour (i.e.
methods) with the most appropriate classes.
Here are some hints.

� Which classes should have a toString() instance method?
� Should shape classes have methods to find the area and perimeter of a shape?
� Should they additionally have a method to create a shifted shape from an existing one?
� Shifting shapes requires creating new points which are shifts of old ones. Where is that shifting best done?
� Perimeters of certain shapes are based on distances between points – does that suggest an instance method in the
Point class?

� Are the points mutable objects or immutable objects? What about the shapes?
� All instance variables should be private, so you may need some instance methods in some classes, to give read

access to the instance variables. For example, Point might have getX() and getY().

Next you should write stubs for the three shape classes, so that you can compile and try out the main class.

200

CHAPTER 13. GRAPHICAL USER INTERFACES

To use a layout manager, we make an instance of whichever type we desire to have, and then tell the Container that we
wish it to use that layout manager, via its setLayout() instance method.

Concept GUI API: Container: setLayout(). The class java.awt.Container has an instance method called
setLayout which takes an instance of one of the layout manager classes, and uses that to lay out its graphical user
interface (GUI) components each time a lay out is needed, for example, when the window it is part of is packed.

015: // We want the planet names to appear in one line.
016: contents.setLayout(new FlowLayout());

Now we add nine JLabel objects, and we know that these will appear in the final window, in a single row, in the order we
add them.

018: contents.add(new JLabel("Hello Mercury!"));
019: contents.add(new JLabel("Hello Venus!"));
020: contents.add(new JLabel("Hello Earth!"));
021: contents.add(new JLabel("Hello Mars!"));
022: contents.add(new JLabel("Hello Jupiter!"));
023: contents.add(new JLabel("Hello Saturn!"));
024: contents.add(new JLabel("Hello Uranus!"));
025: contents.add(new JLabel("Hello Neptune!"));
026: contents.add(new JLabel("Goodbye Pluto!"));
027:
028: setDefaultCloseOperation(EXIT_ON_CLOSE);
029: pack();
030: � // HelloSolarSystem

Finally we have the main method, which simply creates an instance and makes it visible.

033: // Create a HelloSolarSystem and make it appear on screen.
034: public static void main(String[] args)
035: �
036: HelloSolarSystem theHelloSolarSystem = new HelloSolarSystem();
037: theHelloSolarSystem.setVisible(true);
038: � // main
039:
040: � // class HelloSolarSystem

13.3.1 Trying it

13.3.2 Coursework: HelloFamily GUI

The coursework in Section 2.5.2 on page 24, asked you to produce a program called HelloFamily which greeted a number
of your relatives. In this task you will write a version of that program which produces a window and greets the same
relatives using labels. Each greeting should use a separate label. Use a FlowLayout object to manage the layout of the
components in the window.

250

CHAPTER 14. ARRAYS

008: // Their typical salary.
009: private final int salary;

The constructor method sets the instance variables.

012: // The constructor method.
013: public Job(String requiredEmployer, int requiredSalary)
014: 	
015: employer = requiredEmployer;
016: salary = requiredSalary;
017:
 // Job

We have an accessor method for each instance variable.

020: // Get the employer.
021: public String getEmployer()
022: 	
023: return employer;
024:
 // getEmployer
025:
026:
027: // Get the salary.
028: public int getSalary()
029: 	
030: return salary;
031:
 // getSalary

We have a compareTo() instance method for comparing this job against a given other one with the usual int result which
is negative, zero or positive. This provides an ordering based on ascending salary. However, if the salaries are the same,
then we compare the employers instead, and you will recall from Section 12.4 on page 234 that String has a compareTo()
instance method.

034: // Compare this Job with a given other,
035: // basing the comparison on the salaries, then the employers.
036: // Returns -ve(<), 0(=) or +ve(>) int. -ve means this one is the smallest.
037: public int compareTo(Job other)
038: 	
039: if (salary == other.salary)
040: return employer.compareTo(other.employer);
041: else
042: return salary - other.salary;
043:
 // compareTo

Finally, toString() provides a representation of the job, showing the firm’s name and their salary.

Concept Standard API: System: out.printf(): left justification.
If we wish an item printed by System.out.printf() to be left justified, rather than right justified, then we can place
a hyphen in front of the width in the format specifier. For example,

System.out.println("123456789012345X");
System.out.printf("%-15sX%n", "Hello World");

produces the following.

123456789012345X
Hello World X

300

CHAPTER 16. INHERITANCE

Concept GUI API: Color. The class java.awt.Color implements colours to be used in graphical user interfaces.
Each Color object comprises four values in the range 0 to 255, one for each of the primary colours red, green and
blue, and a fourth component (alpha) for opacity.

For convenience, the class includes a number of class constants containing references to Color objects which
represent some common colours.

public static final Color black = new Color(0, 0, 0, 255);
public static final Color white = new Color(255, 255, 255, 255);
public static final Color red = new Color(255, 0, 0, 255);
public static final Color green = new Color(0, 255, 0, 255);
public static final Color blue = new Color(0, 0, 255, 255);

public static final Color lightGray = new Color(192, 192, 192, 255);
public static final Color gray = new Color(128, 128, 128, 255);
public static final Color darkGray = new Color(64, 64, 64, 255);

public static final Color pink = new Color(255, 175, 175, 255);
public static final Color orange = new Color(255, 200, 0, 255);
public static final Color yellow = new Color(255, 255, 0, 255);
public static final Color magenta = new Color(255, 0, 255, 255);
public static final Color cyan = new Color(0, 255, 255, 255);

Among many other features, there is an instance method getRGB() which returns a unique int for each equivalent
colour, based on the four component values.

Coffee time: 16.9.1

From these
examples, can you
work out the
definition of the
constructor
method for Color?

The Ball class is fairly straightforward.

001: import java.awt.Color;
002:
003: // Representation of a lottery ball, comprising colour and value.
004: public class Ball
005: �
006: // The numeric value of the ball.
007: private final int value;
008:
009: // The colour of the ball.
010: private final Color colour;
011:
012:
013: // A ball is constructed by giving a number and a colour.
014: public Ball(int requiredValue, Color requiredColour)
015: �
016: value = requiredValue;
017: colour = requiredColour;
018: � // Ball
019:
020:
021: // Returns the numeric value of the ball.
022: public int getValue()
023: �
024: return value;
025: � // getValue

028: // Returns the colour of the ball.
029: public Color getColour()
030: �
031: return colour;
032: � // getColour

400

CHAPTER 18. FILES

Section Aims Associated Coursework
18.6 Numbering
lines from and to
anywhere (p.467)

To illustrate that reading from text files and from stan-
dard input is essentially the same thing, as is writing to
text files and to standard output. We also look at test-
ing for the existence of a file using the File class, and
revisit PrintWriter and PrintStream.

Write a program to delete a field in tab
separated text either from standard
input or a file, with the results going
to either standard output or another
file. (p.471)

18.7 Text
photographs (p.471)

To see an example of reading binary files, where we did
not choose the file format. This includes the process of
turning bytes into ints, using a shift operator and an
integer bitwise operator.

Write a program to encode a binary
file as an ASCII text file, so that it can
be sent in an email. (p.477)

18.8 Contour points
(p.479)

To show an example of writing and reading bi-
nary files where we choose the data format, using
DataOutputStream and DataInputStream classes.

Add features to some existing model
classes so they can be written and read
back from binary files. (p.483)

18.2 Example: Counting bytes from standard input

AIM:
To introduce the principle of reading bytes from standard input using InputStream,
meet the try finally statement and see that an assignment statement is actually an
expression – and can be used as such when appropriate. We also meet IOException
and briefly talk about initial values of variables.

We begin with a program that reads the standard input until it is finished, and then reports how many bytes it contained,
and how many of each byte value, for those that appeared at least once. This feature could be useful in an operating
environment in which the user can redirect standard input, so that it comes from a file, or from the output of a running
program, and so see the profile of the bytes in that file or output.

We start by observing that file operations are prone to all sorts of exceptional circumstances.

Concept File IO API: IOException. When processing files, there is much potential for things to go wrong. For
example, attempting to read a file that does not exist, or the end user running out of file space while writing a file, or
the operating system experiencing a disk or network filestore problem, and so on. As a result, most of the operations
we can perform on files in Java are capable of throwing an exception, of the type java.io.IOException. As you
might expect, there are many subclasses of IOException, including java.io.FileNotFoundException.

IOException is itself a direct subclass of java.lang.Exception, rather than java.lang.RuntimeException and
thus instances of it are checked exceptions, that is, we must write catch clauses or throws clauses for them. This
is because the errors which cause them are not generally avoidable by writing code.

Our program will read the data from the standard input, byte by byte, and process them. This will require the use of an
InputStream, and the typical way we use it appropriately exploits the fact that an assignment statement is an expression.

Concept Statement: assignment statement: is an expression. In Java, the assignment statement is actually an
expression. The = symbol is an operator, which takes a variable as its left operand, and an expression as its right
operand. It evaluates the expression, assigns it to the variable, and then yields the value of the expression as its result.

450

CHAPTER 19. GENERIC CLASSES

19.5.4 The TestConversationOops class

Let’s see what happens if we put the wrong kind of Person in a Conversation.

001: // Create conversations of people and make them speak.
002: public class TestConversationOops
003:
004: public static void main(String[] args)
005:
006: // A conversation of AudienceMembers.
007: Conversation<AudienceMember> audienceChat
008: = new Conversation<AudienceMember>();
009: audienceChat.addPerson(new AudienceMember("AM 1"));

010: audienceChat.addPerson(new TVHost("TVH 1"));
011: System.out.printf("%s%n%n", audienceChat);
012: for (int count = 1; count <= audienceChat.getSize(); count++)
013:
014: audienceChat.speak();
015: System.out.printf("%s%n%n", audienceChat);
016: � // for
017: � // main
018:
019: � // class TestConversationOops

Console Input / Output
$ javac TestConversationOops.java
TestConversationOops.java:10: addPerson(AudienceMember) in Conversation<Audience
Member> cannot be applied to (TVHost)

audienceChat.addPerson(new TVHost("TVH 1"));
ˆ

1 error
$ _

Coffee time: 19.5.3

Recall the full
Person hierarchy
from Section 16.13
on page 416. How
could we have a
Conversation in
which all the persons
must be
MoodyPersons, but
can be any kind of
moody person?

Coffee
time:

19.5.4

Recall that within the Conversation class, we had an array of type Person[], in which only
PersonType objects were stored. It would have been nicer to declare the array as PersonType[].
So, why didn’t we? Try it to find out!

19.5.5 Coursework: A moody group
This coursework is set in the context of the Notional Lottery game from Section 16.2 on page 372.

Write a generic class called MoodyGroup that contains a collection of some subclass of MoodyPerson objects, rather like
the Conversation class does with Person. However, instead of a speak() instance method, MoodyGroup should have
setHappy(). This will take a boolean and pass it to the instance method of the same name belonging to each of the
MoodyPersons in the group. You will recall that only MoodyPersons have the setHappy() instance method, whereas the
more general Person does not.

Test your class with a program called TestMoodyGroup. This will do the following.
� Create an instance of MoodyGroup<Teenager> and populate it with a small number of Teenagers.
� Invoke setHappy() with false and print out the group.
� Invoke setHappy() with true and print out the group again.
� Create a second moody group which can contain any kind of MoodyPerson, and populate it with a Worker and one

of the same Teenagers which was put into the first group.
� Invoke setHappy() on the second group with true and print out the group.
� Invoke setHappy() on the second group with false and print out the group.
� Print out the first group one more time to show that the teenager which is in both groups stands out from the others.

500

CHAPTER 21. COLLECTIONS

How many prime
numbers are there up to
1 thousand?

Console Input / Output

$ java Primes 1000
(Output shown using multiple columns to save space.)

1 : 2 25 : 97 49 : 227 73 : 367 97 : 509 121 : 661 145 : 829
2 : 3 26 : 101 50 : 229 74 : 373 98 : 521 122 : 673 146 : 839
3 : 5 27 : 103 51 : 233 75 : 379 99 : 523 123 : 677 147 : 853
4 : 7 28 : 107 52 : 239 76 : 383 100 : 541 124 : 683 148 : 857
5 : 11 29 : 109 53 : 241 77 : 389 101 : 547 125 : 691 149 : 859
6 : 13 30 : 113 54 : 251 78 : 397 102 : 557 126 : 701 150 : 863
7 : 17 31 : 127 55 : 257 79 : 401 103 : 563 127 : 709 151 : 877
8 : 19 32 : 131 56 : 263 80 : 409 104 : 569 128 : 719 152 : 881
9 : 23 33 : 137 57 : 269 81 : 419 105 : 571 129 : 727 153 : 883
10 : 29 34 : 139 58 : 271 82 : 421 106 : 577 130 : 733 154 : 887
11 : 31 35 : 149 59 : 277 83 : 431 107 : 587 131 : 739 155 : 907
12 : 37 36 : 151 60 : 281 84 : 433 108 : 593 132 : 743 156 : 911
13 : 41 37 : 157 61 : 283 85 : 439 109 : 599 133 : 751 157 : 919
14 : 43 38 : 163 62 : 293 86 : 443 110 : 601 134 : 757 158 : 929
15 : 47 39 : 167 63 : 307 87 : 449 111 : 607 135 : 761 159 : 937
16 : 53 40 : 173 64 : 311 88 : 457 112 : 613 136 : 769 160 : 941
17 : 59 41 : 179 65 : 313 89 : 461 113 : 617 137 : 773 161 : 947
18 : 61 42 : 181 66 : 317 90 : 463 114 : 619 138 : 787 162 : 953
19 : 67 43 : 191 67 : 331 91 : 467 115 : 631 139 : 797 163 : 967
20 : 71 44 : 193 68 : 337 92 : 479 116 : 641 140 : 809 164 : 971
21 : 73 45 : 197 69 : 347 93 : 487 117 : 643 141 : 811 165 : 977
22 : 79 46 : 199 70 : 349 94 : 491 118 : 647 142 : 821 166 : 983
23 : 83 47 : 211 71 : 353 95 : 499 119 : 653 143 : 823 167 : 991
24 : 89 48 : 223 72 : 359 96 : 503 120 : 659 144 : 827 168 : 997
$ _

How fast is this algorithm? Let’s find the primes up to 1 million.
We can time it using the Unix time command to run the program
and then tell us how long it took to run.a (In case you are interested,
this was run on a 2Gig Hertz Athlon XP 2600+ processor.) We
redirect the output to a file, using >, so that displaying the numbers
does not seriously slow down the program.

aUnfortunately, there is no simple way of doing this using standard commands
in a Microsoft Command Prompt.

Console Input / Output
$ time java Primes 1000000 > primes.txt

real 0m5.608s
user 0m4.690s
sys 0m0.860s
$ cat primes.txt
1 : 2
2 : 3
(... lines removed to save space.)

78496 : 999961
78497 : 999979
78498 : 999983
$ _

Ah, but it does require a lot of
space to store all those non-
prime numbers – let’s try up
to 10 million.

Console Input / Output
$ time java Primes 10000000 > primes.txt
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space

at java.lang.Integer.valueOf(Integer.java:585)
at Primes.main(Primes.java:30)

real 0m8.495s
user 0m7.910s
sys 0m0.560s
$ cat primes.txt

1 : 2
$ _

550

CHAPTER 22. RECURSION

040: // Put the asterisk back to restore the value,
041: // which is needed for later calls past this point.
042: inputChars[scanPosition] = ’*’;
043: � // else
044: � // outputVowelMovements
045:
046: � // class VowelMovements

Coffee
time:

22.9.1

What would happen if we
forgot to replace the asterisk
after the loop that goes
through the five vowels? If we
had two asterisks in the input,
how many output ‘words’
would we get?

Our outputVowelMovements() recursive method does not use tail recursion, so it is not obvious how to implement it
iteratively.

Coffee
time:

22.9.2

Have a go at finding an iterative solution! You can do it, if you approach the problem in a wholly
different way – similar to what you did for the dice combinations. Is the iterative solution (signifi-
cantly) more efficient? Is it shorter or longer code? Is it easier or harder to see that it is correct?

22.9.1 Trying it

Console Input / Output
$ java VowelMovements Elizabeth
Elizabeth
$ _

Console Input / Output
$ java VowelMovements ’El*zabeth’
(Output shown using multiple columns to save space.)

Elazabeth Elezabeth Elizabeth Elozabeth Eluzabeth
$ _

.

Console Input / Output
$ java VowelMovements ’El*z*beth’

(Output shown using multiple columns to save space.)

Elazabeth Elezabeth Elizabeth Elozabeth Eluzabeth
Elazebeth Elezebeth Elizebeth Elozebeth Eluzebeth
Elazibeth Elezibeth Elizibeth Elozibeth Eluzibeth
Elazobeth Elezobeth Elizobeth Elozobeth Eluzobeth
Elazubeth Elezubeth Elizubeth Elozubeth Eluzubeth
$ _

Console Input / Output
$ java VowelMovements ’*****’ | java LineNumber

(Output shown using multiple columns to save space.)

00001 aaaaa 00018 aaaoi 03109 uuueo
00002 aaaae 00019 aaaoo 03110 uuueu
00003 aaaai 00020 aaaou 03111 uuuia
00004 aaaao 00021 aaaua 03112 uuuie
00005 aaaau 00022 aaaue 03113 uuuii
00006 aaaea 00023 aaaui 03114 uuuio
00007 aaaee 00024 aaauo 03115 uuuiu
00008 aaaei 00025 aaauu 03116 uuuoa
00009 aaaeo (...lines removed to save space.) 03117 uuuoe
00010 aaaeu 03101 uuuaa 03118 uuuoi
00011 aaaia 03102 uuuae 03119 uuuoo
00012 aaaie 03103 uuuai 03120 uuuou
00013 aaaii 03104 uuuao 03121 uuuua
00014 aaaio 03105 uuuau 03122 uuuue
00015 aaaiu 03106 uuuea 03123 uuuui
00016 aaaoa 03107 uuuee 03124 uuuuo
00017 aaaoe 03108 uuuei 03125 uuuuu
$ _

600

