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Heterogenous Agent Systems

Aug. 2002, Trento
ESSLLI'02 Summerschool

e Second and third week in August

e Time: From 10-11.30 am, unless otherwise indicated.

Lecture Course is in the first week on theoretical issues, emphasis on
¢ | mathematical-logical foundations. Second week presents a particular
agent system and gives various demonstrations.
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First week

The first part of this lecture course is mainly based on

Multi-Agent Systems (Gerhard Weiss), MIT Press, June 1999.

We describegeneral methodsandtechniques
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Second week

The second part of this lecture course is mainly based on

Heterogenous Agent SystemgSubrahmanian et al.), MIT Press, August
2000.

We describe th&VIPACT approach and itsunderlying foundations.

Overview 3
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Overview (first week)

1. Introduction, Terminology, Basic Architectures
2. Distributed Decision Making

3. Contract Nets, Coalition Formation

4. Agent Communication Languages

Overview
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Overview (second week)

5. IMPACT Architecture

6. The Code Call Mechanism
7. Actions and Agent Programs
8. Implementing Agents

Overview
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Chapter 1. Introduction, Terminology

1.1 General
1.2 Intelligent Agents

1.3 Mathematical Description

Overview 6
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Three Important Questions

(Q1) What is anAgent?
(Q2) If some progran® is not an agent, how can it heansformed into an agent?

(Q3) If (Q1) is clear, what kind oSoftware Infrastructure is needed for the
Interaction of agents? What services are necessary?

1.1 General 7
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Definition 1.1 (Distributed Artificial Intelligence (DALl))

The area investigating systems, in which several autonomous acting entities

work together to reach a given goal.

The entities are called Agents, the area Multiagent Systems.

Example: Robocup (simulation league, middle league)

Why do we need them?

Information systems amistributed, open, heterogenous
We therefore neerhtelligent, interactive agents thatact autonomously

1.1 General 8



Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Agent: Programs that are implemented on a platform and have sensors to react to the
environment.

Intelligent: Performance measures, to reach goRdktional vs. omniscient
decision making

Interactive: with other agents (or humans) by observing the environment.
Coordination: Cooperation vs. Competition

1.1 General 9



Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), Aug

ust 2002, Trento, ESSLLI 02

MAS versus Classical DAI

(MAS)

(DAI)

Several Agents coordinate their knowledge and actions (sema
tics describes this).

n_

Particular problem is divided into smaller problems (nodes).
These nodes have common knowledge. The solution method

IS

given.

Today DAl is often used synonymous with MAS: (1) as well as (2).

1.1 General

10



Chapter 1: Introduction, Terminology, Architectures

Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Al DAI

Agent Multiple Agents
Intelligence: Intelligence:

Property of asingle Agent | Property ofseveralAgents

Cognitive Processes

of asingle Agent

SoclalProcesses

of severalAgents

1.1 General
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10 Desiderata

1. Agents are for everyone!We need a method to agentize given programs.

2. Take into account thdbata is stored in a wide variety of data structures, and
data is manipulated by an existing corpus of algorithms.

3. Atheory of agents mustot depend upon the set of actions that the agent
performs. Rathethe set of actions that the agent performs must be a
parameterthat is taken into account in the semantics.

1.1 General 12
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4. Every agent should execute actions based on sorokearly articulated
decision policy. A declarative framework for articulating decision policies of
agents is imperative.

5. Any agent construction framework must allow agents to perform the following
types of reasoning:
e Reasoning about its beliefabout other agents.

e Reasoning about uncertaintyin its beliefs about the world and about its beliefs
about other agents.

e Reasoning about time

These capabilities should be viewed asxtensiondo a core agent action
language.

1.1 General 13
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6. Any infrastructure to support multiagent interactions mustprovide security.

7. While the efficiency of the code underlying a software agent cannot be
guaranteed (as it will vary from one application to anothgngrantees are
needed that provide information on the performance of an agent relative to
an oracle that supports calls to underlying software code.

1.1 General 14
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8. We must identify efficiently computablefragmentsof the general hierarchy
of languages alluded to aboveand our implementations must take advantage of
the specific structure of such language fragments.

9. A critical point is reliability—there is no point in a highly efficient
Implementation, if all agents deployed in the implementation come to a grinding
halt when the agent “infrastructure” crashes.

10. The only way of testing the applicability of any theory istwild a software
system based on the theoryto deploy a set of applications based on the theory,
and to report on experiments based on those applications.

1.1 General 15
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1.1 Intelligent Agents

Definition 1.2 (Agent)
An agent i1s a computer system that acts in its environment and executes au-
tonomous actions to reach certain goals.

Learning, Intelligence. Environment is non-deterministic.

Sensors

percepts

actions

effectors

1.2 Intelligent Agents 16
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Definition 1.3 (Rational, Omniscient Agent)
Rational Agents are those, that always do the right thing .
(A performance measure is needed).)

Omniscient agents are agents, that know the results of their actions in advance.

Rational agents are in general not omnisciént!

1.2 Intelligent Agents 17



Aphorism of Karl Kraus: In case of doubt, just choose the right thing.
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How is theright thing defined and from what does it depend?
1. Performance measurgas objective as possible),
2. Percept sequencewhat has been observed,
3. Knowledge of the agenfabout the environment,

4. how the agentan act

An ideal rational agent chooses for each percept sequence exactly the action,
that maximizes its performance measure(given knowledge about the envi-

ronment).

1.2 Intelligent Agents 18



Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Agents can be described mathematically by a function

Set of percept sequences Set of Actions|

The internal structure of an agent is

Agent = Architecture + Program

1.2 Intelligent Agents 19
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Agents and their PAGE description:

Agent Type Percepts Actions Goals Environment
Medical diagnosis Symptoms, Questions, tests, Healthy patient, Patient, hospital
system findings, patient’s treatments minimize costs
answers
Satellite image Pixels of varying Print a Correct Images from
analysis system intensity, color categorization of categorization orbiting satellite
scene
Part-picking robot Pixels of varying Pick up partsand Place partsin Conveyor belt
intensity sort into bins correct bins with parts
Refinery controller Temperature, Open, close Maximize purity, Refinery
pressure readings valves, adjust yield, safety
temperature
Interactive English Typed words Print exercises, Maximize Set of students

tutor

suggestions,
corrections

student’s score on
test

1.2 Intelligent Agents

Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02
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Question:
How do properties of the environment influence the design of an agent?

Definition 1.5 (Properties of the Environment)
Accessible/InaccessibleIf not completely accessible, one needs internal states.

Determinist./Indeterm.: If inaccessible the environment might seem

indeterministic, even if it is not.

Episodic/Nonepisodic Percept-Action-Sequences are independent from each other.
Closed episodes.

Static/Dynamic. Dynamic: while the agent is thinking, the world is changing.
Semi-dynamic: The world does not change, but the performance measure.

Discrete/Continous concerning the set of observations and actions.

1.2 Intelligent Agents 21



Example for semi-dynamic: playing chess with a clock.
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Environment Accessible Deterministic  Episodic  Static  Discrete
Chess with a clock Yes Yes No Semi Yes
Chess without a clock Yes Yes No Yes Yes
Poker No No No Yes Yes
Backgammon Yes No No Yes Yes
Taxi driving No No No No No
Medical diagnosis system No No No No No
Image-analysis system Yes Yes Yes Semi No
Part-picking robot No No Yes No No
Refinery controller No No No No No
| nteractive English tutor No NoO No No Yes

1.2 Intelligent Agents 22
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xbiff andsoftware demons are agents. But certainly not intelligent.

Definition 1.6 (Intelligent Agents)
An intelligent agent is an agent with the following properties:

1. Reactive Reaction to changes in the environment at certain times to reach its

goals.
2. Pro-active: Taking the initiative, goal-directed behaviour.

3. Social Interaction with others to reach the goals.

Pro-active alone is not sufficient (C-Programs): the environment can change during
execution.

Difficulty: Right balance between pro-active and reactjive!

1.2 Intelligent Agents 23
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Agents vs. Object Orientation

Objects have a
1. state(encapsulated): control over internal state,
2. message passing capabilities.
Java: private and public methods.
e Objects have control over their state, buat over their behaviour.

e An object camot prevent others to usdts public methods.

1.2 Intelligent Agents 24
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Agents They call other agents and request them to execute actions.

e Objects do It for free, agents do it for money.

e No analoga toeactive, pro-active, socialin OO.

e MAS are multi-threaded: each agent has a control thread.
In OO only the sytem as a whole posesses one.

1.2 Intelligent Agents 25
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1.2 Mathematical Description

Definition 1.7 (Actions A, PerceptsP, StatesS)

Let A :={aj,a,...,a8n,...}, the set of actions and P := {p1,P2,...,Pn, ...} the set
of observationsor perceptsf an agent. Let S:={$1,S,...,S,. ..} the set of states
with which the environment is described.

What does an agent observe, in a certain sfatd/e describe this with a function

see.S— P.

How does the environment develop (the s@tehen an actiom is executed? We
describe this via a function

env:Sx A —s 25

this includeandeterministic environments.

1.3 Mathematical Description 26
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How do we describe agents. We could take a function

action : P — A.

What the world
is like now
" - What action |
Condition—action rules should do now

1.3 Mathematical Description 27
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This is too weak! Better take the whole history into account

h&)—>a051—>alsq —an -

(or the sequence of observations).

1.3 Mathematical Description 28
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Definition 1.8 (Characteristic Behaviour)
The characteristic behaviour of an agent action in an environment env is the set Hist
of all histories h : Sp —a,S1 —a; --- S —a, --- With:

1. foralln: a, = action({(S1,...,S)),

2. foralln: s, =env(s,_ 1,8, 1).

1.3 Mathematical Description 29
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Definition 1.9 (Standard Agentaction)
A standard agent action is given by a function

action : P — A

together with see: S— P and env: Sx A — 25,

Instead of using the whole history, re${y, one can also usaternal states
| :={iq,i2,...In,...}.

1.3 Mathematical Description 30
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What the world

What my actions do

" : What action |
Condition-action rules should do now

1.3 Mathematical Description 31
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Definition 1.10 (State-based Ageniiction)
A state-based agent action is given by a function

action: | — A

together with see: S— P und next: | x P — |. Here next(i,p) is the succesor

state of | if p is observed.

1.3 Mathematical Description 32
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Definition 1.11 (Characteristic Behaviour)
The characteristic behaviour of a state-based agent action in an environment €NV is
the set of all sequences

(io,Po) —ag (i1,P1) —a; --- —ay (in,Pn),- .-
with
1. for all n: a; = action(ip),

2. for alle n: next(in,Pn) = Inr1,

1.3 Mathematical Description 33
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Lemma 1.1 (Equivalence)
Standard and state-based agents are equivalent wrt. their characteristic be-

haviour.

1.3 Mathematical Description 34



Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

1.3 Reactive Agents

Intelligent behaviour i: Interaction of the agents with their environmerit emerges
through splitting in simpler interactions.

Subsumption-Architectures:

e Decision making is realized througjval-directed behaviours each behaviour
IS an individual action.
nonsymbolic implementation

e Many behaviours can be appliedncurrently. How to select between them?
Implementation through Subsumption-Hierarchies, Layers
Upper layers represent abstract behaviour.

1.4 Reactive Agents 35
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Formal Model

e see as up to now, but close relation between observation and action:
no transformation of the input

e action: Set of behaviours and inhibition relation.
Beh:={(c,a): cCP,ac A}.

(c,a) “fires” if seds) € c (c stands for “condition”).

< C AGules X AGrules

Is called inhibition-relationAgyyes € Beh We require < to be a total ordering.
b1 < b, meansb; inhibits by, b1 has priority over bo.

1.4 Reactive Agents 36
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function action(p: P) : A
var fired : p(R)
var selected : A
begin
fired := {(c,a) | (c,a) € R and p € ¢}
for each (c,a) € fired do
if =(3(¢/,a’) € fired such that (¢,a’) < (c,a)) then
return a
end-if
end-for
return null
end function action

i - o i R

=
N = O

1.4 Reactive Agents 37
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Example 1.1 (Exploring a Planet)

A distant planet (asteroid) is assumed to contain gold. Samples should be brought to a
spaceship landed on the planet. It is not known where the gold is. Several
autonomous vehicles are available. Due to the topography of the planet there is no

connection between the vehicles.

The spaceship sends off radio signajsadient field.

1.4 Reactive Agents 38
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Low Level Behaviour:
(1) If detect an obstacken change direction.

2. Layer:
(2) If Samples on boarand at basdéhen drop off.
(3) If Samples on boardnd not at base¢hen follow gradient field.

3. Layer:
(4) If Samples foundhen pick them up.

4. Layer:
(5) If truethentake a random walk.

With the following ordering

(1) <2 <@ <4 <5

Under which asumptions (on the distribution of the gold) does this work per-
fectly? What if the distribution is more realistic?

1.4 Reactive Agents 39
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e \ehicles carcommunicate indirectly with each other:
— they put off, and
— pick up

radiactive samplesthat can be sensed.

1.4 Reactive Agents 40
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Low Level Behaviour:
(1) If detect an obstackhen change direction.

2. Layer:
(2) If Samples on boarand at basdehen drop off.
(3) If Samples on boarand not at base¢hen drop off two radioactive crumbs
and follow gradient field.

3. Layer:
(4) If Samples foundhen pick them up.
(5) If radiactive crumbs founthen take one and follow the gradient field (away
from the spaceship).

4. Layer:
(6) If truethen take a random walk.

With the following ordering1) < (2) < (3) < (4) < (5) < (6).

1.4 Reactive Agents 41
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Pro: Simple, economic, efficient, robust, elegant.

Contra;

e Without knowledge about the environment agents need to know about the
own local environment.

e Decisions only based on local information.
e How about bringing inearning?
e Relation between agents, environment and behaviours is not clear.

e Agents with< 10 behaviours are doable. But the more layers the more
complicated to understand what is going on.

1.4 Reactive Agents 42
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1.4 BDI-Architecture

Belief, Desire,| ntention.

From time to time intentions need to be re-examined. But they also should persist,
normally. ( Pro-active vs. reactive).

Extreme: stubborn agentaunsure agents

What is better? Depends on the environment.
Let ytherate of world change

1. ysmall: stubbornness pays off.

2. y big: unsureness pays off.

1.5 BDI-Agents 43



Belief 1. Going to lectures is worth doing to learn something.

Belief 2: Dix is a decent lecturer.
Desire 1: Visit Dix-Lecture, in addition read books.
Intention: Getting knowledge about Distributed Systems.

New Belief: Alejandro makes it much better. Therefore revise your Desire.
Desire 2: Visit Garcia-Lecture, in addition read books.
Of course, Alejandro may turn out to be the worst lecturer from all . ..

43-1
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SCenNnsor
input v

_ [Cemen ] .

Fencerate
preee=li— options

| desires \

[ — filter —
Iinmtentions
action
action
output
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function action(p: P): A
begin
B :=brf(B,p)
D := options(D, I)
I := filter(B,D,I)
return ezecute(l)
end function action

O O Al b =

1.5 BDI-Agents 45
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(B,D,l) whereB C Bel,D C Desl C Int
| can be represented as a stack (priorities are available)
e BDI dates back to (Bratman, Israel, and Pollack 1988).

e PRS procedural reasoning systerfGeorgeff and Lansky 1987)) uses BDI.
Applications: Space Shuttle (Diagnosis), Sydney Airport (air traffic control).

e BDI-Logics: (Rao and Georgeff 1991; Rao and Georgeff 1995; Rao 1995).

1.5 BDI-Agents 46
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1.5 Layered Architectures

At least 2 layers: reactive (event-driven), pro-active (goal directed).

action
output
| A
Layern
Layer n A Layer n A 4 T
pesceptual Aactinn 4 K —
input Layer 2 7nutput A Layer 2 A A v
La Layer | Layer 1
yer | ,} {‘
A
perceptual perceptual action
input input output
(a) Horizontal layering (b) Vertical layering (c) Vertical layering
(One pass control) (Two pass control)

1.6 Layered Architectures 47
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Horizontal:

e simpel f behavioursn layers),
e overall behaviour might be inconsistent,
e Interaction between layersl® (m= # actions per layer)

e Control-system is needed.

Vertical:

e Only m?(n— 1) interactions between layers.

e Not fault tolerant: If one layer fails, everything brakes down.

1.6 Layered Architectures 48
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Touring Machine

Autonomous Vehicle

Sensor Modelling layer

input

Perception subsystem Action subsystem

Planning Layer

+

L

action
output |
P Y

Reactive layer

Control subsystem
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Rule 1: Avoid curb

if Is_in_front(curb,observel and

speedobservej > 0 and
seperationcurb, observey < curb_threshold

then changeorientationcurb_avoidanceangle

Planning-Layer: Pro-active behaviour

Modeling Layer: updating of the world, beliefs, predicts conflicts between agents,
changes planning-goals

Control-subsystem: Decides about who is active. Certain observations should never
reach certain layers.

1.6 Layered Architectures 50
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Layered architectures do not have a clear semantics and the horizontal
Interaction is diffcult.

1.6 Layered Architectures 51
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Chapter 2. Distributed Decision Making

2.1 Evaluation Criteria
2.2 Voting

2.3 Auctions

2.4 Bargaining

2.5 General Market Criteria

Overview 52



2 Distributed Decision Making

Two and a half lectures: first lecture up to 2.3, second lecture 2.3 — 2.5, half lecture
from 2.5 to the end.

52-1
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Classical DAI: System Designer fixes an Interaction-Protocol which is uniform for

all agents. The designer also fixes a strategy for each agent.

What is a the outcome, assuming that the protocol is followed an
agents follow the strategies?

d the

MAI: Interaction-Protocol is given. Each agent determines its own strategy

(maximizing its own good, via a utility function, without looking at the
task).

global

What is the outcome, given a protocol that guarantees that each agef
sired local strategy is the best one (and is therefore chosen by the g

t's de-
gent)?

Overview

53
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2.1 General Evaluation Criteria

We need tc compare negotiation protoccld€ach such protocol leads to a solution.
So we determine how good these solutions are.

Social Welfare: Sum of all utilities

Pareto Efficiency: A solutionx is Pareto-optimal ( also called efficient), if

there is no solutios’ with: (1) Jagentag : uty4(X') > utqq(X)
(2)Vagentsag’ : ut, (X) > ut, (X).

Individual rational: if the payoff is higher than not participatingt all.

2.1 General Criteria 54
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Stability:

Case 1: Strategy of an agent depends on the others.
The profileS, = (S},S,,..., S} ) is called & Nash-equilibrium, iff

Vi: S is the best strategy for agenif all the others choose

(88 eon B8 ooecs &y

Case 2: Strategy of an agent does not depend on the others.
Such strategies are called dominant.

2.1 General Criteria 55



Prisoner’s Dilemma

Prisoner 2
cooperate| defect
: cooperate (3,3 (0,5
1
Prisoner - etect (50) (11)

e Social Welfare: Both cooperate,
e Pareto-Efficiency: All are Pareto optimal, except when both defect.
e Dominant Strategy: Both defect.

e Nash Equilibrium: Both defect.

55-1
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2.2 \oting

Agents give input to a mechanism and the outcome of it is taken as a salution
for the agents.

Motivation: 3 candidates, 3 voters

1|12 |3
wi | A|B|C
w, | B|C|A
w3 | C| A |B

Figure 2.1: Nonexistence of desired preference ordering.

Comparing A and B: majority for A. Comparing A and C: majority for C. Comparing
B and C: majority for BDesired Preference ordering: A>B>C > A ?7?77??

2.2 Voting 56
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o Let A the set of agents) the set of possible outcomes.
(O could be equal t@\, or a set of laws).

e Thevoting of agenti is described by a binary relation
<;i COxO0,

which we assume to be asymmetric, strict and transitive. We dend®ethe
set of all such binary relations.

e Often, not all subsets @ arevotable only a subsev C 2°\ {0}.
Eachv € V represents a possible “set of candidates”. The voting model
then has to select some of the elements. of

e Each agent votes independently of the others. But we also allow that only a
subset is considered. Let therefore be

A| 5
U C | |0Ord.
I

2.2 Voting 57
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e A social choice rule wrtU is a function
f*:U — 0rd; (<1,...,<a]) — <*
For eachv C 2°\ {0} the functionf* w.r.t. U induces a choice functio@<<1’___,<|A|>

as follows:

V. — V

Ci<ir=ia)) =def
- \ = C<-<1,...,-<|A|>(V) — maX<*|V v

max_ -, Vvis the set of all maximal elements¥according to<*|y.

Each tupeli = (<1,...,<a|) determines the election for all possible V.

2.2 Voting 58
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What are desirable properties fiof?
Pareto-Efficiency: for all 0,0’ € O: (Vi € A : 0<;0) implieso<*0'.
Independance of Irrelevant Alternatives: for all 0,0 € O:
(VieA: o0=;0 iff 0</;0) = (0<*0d iff 0<""0).
Note that this implies in particular

(VicA: <i[y=<ilv) = Vo,0 ev,W eV s.t.vCV: (o<*|,0 iff 0<""|y0)

The simplemajority vote protocol does not satisfy the Independance of ifrel-
evant alternatives.
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We consider 7 voters\(= {wq,W>, ..., w7 })andO={a,b,c,d},V ={{a,b,c,d},{a,b,c}}.
The columns in the following table represent two different preference orderings of the
voters: one is given in black, the second in red.

<1 (<1) | <2(<2) | <3(=<3) | <2 (<4) | <5 (=<5) | <6 (<6) | <7 (=7)
all 2 (1 @ (1 1|1 1|2 2 |2 (2 |2 (2
b2 3) |2 3 |2 (22 (2 (1 (1 |1 1O |1 (O
c|3 (4 |3 4 (3 3 |3 3 3 3 |3 (3 |3 (3
d{4 (1) |4 (1) (4 (4 |4 D |4 4 |4 D |4 4

Let <* be the solution generated by thg and<* the solution generated by thg.
Then we have for=1,...,7: b=<ja iff a<jb, but b<*aanda<*b . The latter
holds because on the whole §&tfor <* a gets selected 4 times abddnly 3 times,
while for <* a gets selected only 2 times bugets still selected 3 times. The former
holds because we even has s b.cy = <il{ab,c}-

The introduction of the irrelevant (concerning the relative ordering ahdb)
alternatived changes everything: the original majority afs split and drops below
one of the less preferred alternatives. (
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Theorem 2.1 (Arrows Theorem)

If the choice function f* is (1) pareto efficient and (2) independent from irrelevant

alternatives, then there always exists a dictator: for allU C ] @1 Ord
HeA: Vo,0 € 0: 0<;0 iff 0<*0.
To be more precise: for allU C ] @1 Ord
FieA:V(<1,...,<a)) €U : V0,0 € 0,0<;0" iff of*((<1,...,=<|a)))0.
Ways out:

1. Choice function is not always satisfied.

2. Independence of alternatives is dropped.
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The Theorem of Arrow can be even more generalized by weakening the assumption
that<* needs to be transitive. In fact, it also holds when using the following
definition.

e A social choice rule wrtU iIs a function
iU = V)i (K1, <)) = Crzqzia)) -

WhereCRl,_”,ﬂAD is any function fromV into 2° satisfying (1)

C<<1,...,<|A|> (V) 7é @ and (2)C<<1,...,<’A|> (V) g V.
Such a function simply selects a subset.ofhe elected members of the list
No other assumptions about this function are made.
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Binary protocol

Pairwise comparisonNot only introduction of irrelevant alternatives but also the
ordering may drastically change the outcome.

35% of agents have preferences c>d>~b>a
33% of agents have preferences a>c>d>b
32% of agents have preferences b>a>c>d

Figure 2.2: Four different orderings and four alternatives in a binary protocol.

Last ordering: d wins, but all agents preferoverd.
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Borda protocol

First gets O| points, secondO| — 1, ... Then it is summed up, across voter$he

alternative with the highest count wins.
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Agent Preferences

1 a>brcrd

2 b-c-d>=a

3 c-d>=ax>b

4 a>b=c>d

5 b-cr-d=a

6 c-d>a>b

7 a>b>=c>d

Borda count ¢ wins with 20, b has 19, a has 18, d loses with 13
Borda count

with d removed a wins with 15, b has 14, ¢ loses with 13

Figure 2.3: Winner turns loser and loser turns winner
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2.3 Auctions

While voting binds all agents, Auctions are always deals between 2.

Types of auctions:

first-price open cry: (English auction), as usual.

first-price sealed bid one bids without knowing the other bids.

dutch auction: (descending auction) the seller lowers the price until it is taken.

second-price sealed bid (Vickrey auction) Highest bidder wins, but the price is the
second highest bid!
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Three different auction settings:
private value: Value depends only on the bidder (cake).
common value Value depends only on other bidders (treasury bills).

correlated value Partly on own’s values, partly on others.
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What is the best strategy in Vickrey auctions?

Theorem 2.2 (Private-value Vickrey auctions)

The dominant strategy of a bidder in a Private-value Vickrey auction is to bid the
true valuation.

Therefore it is equivalent to english auctions.
Vickrey auctions are used to
e allocate computation resources in operating systems,
e allocate bandwith in computer networks,

e control building heating.
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Are first-price auctions better for the auctioneer than second-prize aucrt
tions?

Theorem 2.3 (Expected Revenue)

All 4 types of protocols produce the same expected revenue to the auctioneer

(assuming (1) private value auctions, (2) values are independently distributed and (3)
bidders are risk-neutral).

Why are second price auctions not so popular among humans?

1. Lying auctioneer.

5 When the results are published, subcontractors know the true valuations
" | and what they saved. So they might want to share the profit.
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Inefficient Allocation and Lying at Vickrey

Auctioning heterogenous)terdependentitems.

Example 2.1 (Task Allocation)
Two delivery tasks 1y, t;. Two agents. ~» blackboard.
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The global optimal solution is not reached by auctioning independently and
truthful bidding.

t, goes to agent (for a price of2) andt, goes to agent (for a price of 15).

Even if agen considers (when bidding fds) that he already gdi (so he bids

cost({ty,t2}) —cost({t1}) = 2.5— 1.5 = 1) he will get it only with a probability of
0.5.
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What abou full lookahead? ~ blackboard.
Therefore:
e It pays off for ageni to bid more fort; (up to 15 more than truthful bidding).

e |t does not pay off for agemnt, because ageidtdoes not make a profit gt
anyway.

Agent1 bids Q5 fort; (instead of 2), agemnt bids 15. Therefore agerit
gets it for 15. Agentl also getg, for 1.5.
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Does it make sense to countersperculate at private value Vickrey auctigns?

Vickrey auctions were invented to avoid counterspeculation. But what if the private

value for a bidder is uncertain? The bidder might be able to determine it, but he needs
to investc.

Example 2.2 (Incentive to counterspeculate)

Suppose bidder 1 does not know the (private-) value V1 of the item to be auctioned.
To determine it, he needs to invest cost. We also assume that v1 is uniformly
distributed: satisfies vy € [0,1].

For bidder 2, the private value Vo of the item is fixed: 0 < Vo < :—2L So his dominant
strategy is to bid V».

Should bidder 1 try to invest cost to determine his private value? How does

this depend on knowing V2?
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~» blackboard.

Answer: Bidder1 should investostif and only if

Vo > (Zcost)% .
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2.4 Bargaining

Axiomatic Bargaining

We assume two agents2 , each with a utility functiony : E — R. If the agents do
not agree on a resudtthe fallbackerpack Is taken.

Example 2.3 (Sharing 1 Peso)
How to share 1 Peso?

Agent 1 offers p (O < p < 1). Agent 2 agrees!

Such deals are individually rational and each one is in Nash-equilibrium!

Therefore we need axioms!
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Axioms on the global solutiop* = (jy (€"),H2 (€%)).

Invariance: Absolute values of the utility functions do not matter, only relative
values.

Symmetry. Changing the agents does not influence the soldion

Irrelevant Alternatives : If E is made smaller bug* still remains, ther®* remains
the solution.

Pareto: The players can not get a higher utility thah= (4 ("), 2 (€%)).
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Theorem 2.4 (Unique Solution)

The four axioms above uniquely determine a solution. This solution is given

by

€" = arg maxe{ (I (€) — M1 (€rattback)) X (M2 (€) — K2 (Efaiback)) }-

2.4 Bargaining 76



Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Strategic Bargaining

No axioms: view it as a game!
Example revisited: Sharing 1 Peso.

Protocol with finitely many stepsThe last offerer just offers. This should be
accepted, so the last offerer gets 4.

This is unsatisfiable. Ways out:

1. Add a discountfactod: in roundn, only thed"1th part of the original
value is available.

2. Bargaining costs: bargaining is not for free—fees have to be paid.
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Finite Games Suppos® = 0.9. Then the outcome depends on # rounds.

Round | 1's share | 2's share | Total value | Offerer

0.819 0.181 0.9"4

n—3 2
n—2 0.91 0.09 0.9"3 1
n—1 0.9 0.1 0.9"2 2

n 1 0 0.9"1 1
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Infinite Games. &, factor for agent, &, factor for agen?.

Theorem 2.5 (Unique solution for infinite games)

In a discounted infinite round setting, theres exists a unique Nash equilibrium :

Agent 1 gets 1{815%2 . Agent 2 gets the rest. Agreement is reached in the first
round.
Proof:
Round 1’s share 2’s share Offerer
. 1 —82(1 — ;1) 1
t —1 1 —61m 2
{ m 1
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Bargaining Costs

Agentl paysc;, agent2 paysc,.
C; = C2:. Any splitis in Nash-equilibrium.
C1 < C2: Agentl gets all.

C1 > Cy: Agentl getsc,, agent2 gets 1— ;.
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2.5 General Equilibrium Mechanisms

A theory for efficiently allocating goods and resources amond agents, based
on market prices.

Goods: Givenn > 0 goodgg (coffee, mirror sites, parameters of an airplane design).
We assumeg # g’ but within g everything is indistinguishable.

Prices: The market has pricgs= [p1, p2, ..., Ppn] € R™: p; is the price of the good
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Consumers: Consumer hasy; (x) encoding its preferences over consumption
bundlesx; = [Xi1, ..., Xin]", wherexg € R is consumer’s allocation of good.
Each consumer also has an initial endownent [g1,...,en]' € R.

Producers: Use some commodities to produce othets= [yi1, ..., Yjn]', where
Yig € R Is the amount of good that producey produces.
Yj Is a set of such vectoss
Profit of producer | : p x yj, wherey; €.

Profits: The profits are divided among the consumers (given predetermined
proportionsAij): Ajj Is the fraction of producey that consumer owns (stocks).
Profits are divided according ;.
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Definition 2.1 (General Equilibrium)
(p*,x*,y") is in general equilibrium, if the following holds:

|. The markets are in equilibrium:

IZX? = IZ(HZy,-*

ll. Consumer | maximizes preferences according the prices

X = arg MaX 0 RN | g 1 M (Xi)

where eng Stands for p* X X < p° x e+ Ajjp” X Vi.

lll.  Producer | maximizes profit wrt. the market

yi = arg maxy, cy;}P" XY,
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Theorem 2.6 (Pareto Efficiency)
Each general equilibrium is pareto efficient.

Theorem 2.7 (Coalition Stability)
Each general equilibrium with no producers is coalition-stable: no subgroup can
incease their utilities by deviating from the equilibrium and building their own

market.
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Theorem 2.8 (Existence of an Equilibrium)
Let the sets Yj be closed, convex and bounded above. Let | be continous,

strictly convex and strongly monotone. Assume further that at least one bun-
dle X; 1s producible with only positive entries Xj .

Under these assumptions a general equilibrium exists.
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2.6 Meaning of the assumptions

Formal definitions>— blackboard.
Convexity of Yj: Economies of scale in production do not satisfy it.
Continuity of the p4: Not satisfied in bandwith allocation for video conferences.

Strictly convex: Not satisfied if preference increases when he gets more of this good
(drugs, alcohol, dulce de leche).
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In general, there exist more than one equilibrium.

Theorem 2.9 (Uniqueness)
If the society-wide demand for each good is non-decreasing in the prices of the other

goods, then a unique equilibrium exists.

Positive example increasing price of meat forces people to eat potatoes
(pasta).

Negative exampleincreasing price of bread implies that the butter consump-
tion decreases.
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Chapter 3. Contract Nets, Coalition
Formation

3.1 General Contract Nets
3.2 OCSM-Nets
3.3 Abstract Coalition Formation

3.4 Payoff Division

Overview 88
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3.1 General Contract Nets

How to distribute tasks?

e Global Market Mechanisms. Implementations use a
single centralized mediator

e Announce, bid, award-cycle. Distributed Negotiation
We need the following:
1. Define a task allocation problem in precise terms.

2. Define a formal model for making bidding and awarding decisions.
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Definition 3.1 (Task-Allocation Problem)
A task allocation problem is given by

1. asetoftasks T,

2. a set of agents A,

3. a cost function cost; : 2T — RU {oo} (stating the costs that agent i incurs by
handling some tasks), and

4. the initial allocation of tasks
<T]init R 7T|i,lr{i‘t >7

where T = [J;ca T;™, TN N Tji”it = Q fori #).
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Definition 3.2 (Accepting Contracts and Allocating Tasks)
A contractee q accepts a contract if it gets paid more than the marginal cost of

handling the tasks of the contract

MCadd(Tcontract‘Tq) — def COStq (TcontractU Tq) — cost, (Tq )

A contractor v is willing to allocate the tasks T "8 from its current task set T, to a

contractee, 1if it has to pay less than it saves by handling them itself:

MCremov%Tcontract‘Tr) —get costy (T,) — cost, (T, — Tcontract).
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Definition 3.3 (The Protocol)
Agents suggest contracts to others and make their decisions according to the above

MC2add and MCremove e,

Agents can be both contractors and contractees. Tasks can be recontracted.

e The protocol is domain independent

e Can only improve at each stegill-climbing in the space of all task
allocations Maximum is social welfare: ;- cost (T;).

e Anytime algorithm!
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3.2 4 Types of Nets

Definition 3.4 (O-, C-, S-, M- Nets)
A contract is called of type

O (Original) : if only one task is moved,
C (Cluster): if a set of tasks is moved,
S (Swap) if a pair of agents swaps a pair of tasks,

M (Multi) : if more than two agents are involved in an atomic exchange of tasks.

Problem: local maxima.

A contract may be individually rational but the task allocation is not globally
optimal.

3.2 OCSM-Nets 93



Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Theorem 3.1 Each Type Avoids Local Optima of the Others)
For each of the 4 types there exist task allocations where no IR contract with the
remaining 3 types is possible, but an IR contract with the fourth type is.

Theorem 3.2 O-, C-, S-, M- Nets do not reach Global Optima)
There are instances of the task allocation problem where no IR sequence from the
initial task allocation to the optimal one exists using O-, C-, S-, and M- contracts.
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Definition 3.5 (OCSM Nets)
A OCSM-contract is a pair (T,p) of |A| x |A| matrices. An element T; j stands for
the set of tasks that agent i gives to agentj. Py ; is the amount thati pays to .
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Theorem 3.3 (OCSM-Nets Suffice)
Let |A| and |T| be finite. If a protocol allows OCSM-contracts, any hill-climbing

algorithm finds the globally optimal task allocation in a finite number of steps without
backtracking.

Theorem 3.4 (OCSM-Nets are Neccessary)
If a protocol does not allow a certain OCSM contract, then there are instances of the

task allocation problem where no IR-sequence exists from the initial allocation to the
optimal one.
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3.3 Coalition Formation

ldea;

Consider a protocol (to build coalitions) as a game and consider Nash-
equilibrium.

Problem: Nash-Eq is too weak!

Definition 3.6 (Strong Nash Equilibrium)
A profile is in strong Nash-Eq if there is no subgroup that can deviate by changing
strategies jointly in a manner that increases the payoft of all its members, given that

nonmembers stick to their original choice.

This is often too strong and does not exist.
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Definition 3.7 (Characteristic Function Game (CFG))
In a CFG the value of a coalition S is given by a characteristic function Vs,

Thus it is independent of the nonmembeBuut:

1. Positive Externalities: Caused by overlapping goals. Nonmembers perform
actions and move the world closer to the coalition’s goal state.

2. Negative Externalities: Caused by shared resources. Nonmembers may use the
resources so that not enough is left.
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Definition 3.8 (Coalition Formation in CFG’s)
Coalition Formation in CFG’s consists of the following three steps

Forming CS: formation of coalitions such that within each coalition agents
coordinate their activities. This partitioning is called coalition structure CS.

Solving Optimazation Problem: For each coalition the tasks and resources of the
agents have to be pooled. Maximize monetary value.

Payoff Division: Divide the value of the generated solution among agents.
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An interesting property.

Definition 3.9 (Super-additive Games)
A game is called super-additive, if

VaT = Vs—+Vr,
where S,T CA andSNT = 0.

Lemma 3.1

Coalition formation for super-additive games is trivial.

Conjecture 3.1
All games are super-additive.
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The conjecture is wrong, because the coalition process is not for free:
communication costs, penalties, time limits

Maximize the social welfare of the agemtsby finding a coalition structure
CS™ = arg Maxseparra)Val(CS),

where

Val(CS) := Vs.
2

How many coalition structures are there?
A . G
Too many:Q(|A|’—2’). Enumerating is only feasible jA | < 15.
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How can we approximateal (CS)?

Choose sed( (a subset of all partitions @%) and pick the best coalition seen so far:

CS g = arg maxg.q-Val(CS).
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Figure 3.1: Coalition Structure Graph.
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We want our approximation as good as possible. That means:

Val(CS™*)
<k
val(CSy,) —

wherek is as small as possible.
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Theorem 3.5 (Minimal Search to get a bound)
To bound K, it suffices to search the lowest two levels of the CS-graph. Using this

search, the bound K = |A| can be taken. This bound is tight and the number of nodes
searched is 22171,

No other search algorithm can establish the bound K while searching through less than

2IA1=1 hodes.
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What exactly means the last theorem? hgf, be the smallest size & such that a
boundk can be established.

Positive result: oot approaches 0 foi | — .

Negative result: To determine a bounkl one needs to search through exponentially
many coalition structures.

3.3 Abstract Coalition Formation 106



Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Algorithm 3.1 (CS-Search-1)
The algorithm comes in 3 steps:

1. Search the bottom two levels of the CS-graph.
2. Do a breadth-first search from the top of the graph.

3. Return the CSwith the highest value.

This is ananytime algorithm.
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Theorem 3.6 (CS-Search-1 up to Layer |)

With the algorithm CS-Search-1 we get the following bound for K after searching
through layer | :

A1 if|]A|=h—1 modhand|A|=1 mod2
L%'J otherwise.
where N =(eg L%J +2.

: A
Thus, forl = |A| (check the top nodek switches fromA| to %
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COALITION-STRUCTURE-SEARCH-1
Spiitting algorithm

0 SOO00 10000
Mumbear of nodas seanched

Figure 3.2: Comparing'$S-Search-1 with another algorithm.
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1. Is CS-Search-1the best anytime algorithm?
2. The search for begtfor ' > nis perhaps not the same search to get kést n.

3. CS-Search-1does not use any information while searching. Perlkag@ be
made smaller by not only considerivgl(C.S) but alsovs in the searched’s’.
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3.4 Payoff Division

The payoff division should be fair between the agents, otherwise they leave the
coalition.

Definition 3.10 (Dummies, Interchangeable)
Agent1 is called a dummy, if

for all coalitions S with i € S: Vg (1) —Vs = V(3.

Agentsi and)j are called interchangeable, if

for all coalitions Swithi € Sandj ¢ S: Vs (i1u(5) = Vs
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Three axioms:

Symmetry: If 1 andj are interchangeable, then= x;.
Dummies: For all dummies: x; =Vy;,.

Additivity: For any two games,w:

VW —

X =+

wherevé@w denotes the game defined MM W)s = Vs + Ws.
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Theorem 3.7 (Shapley-Value)
There is only one payoff division satisfying the above 3 axioms. It is called the
Shapley value of agenti and is defined by

(A= I1S)I(S =)

Xi = Vs —Vag\ ri1).
SgZA Al (Vs —Vs\(i})

Note:

o (|A|—9)!is the number of all possible joining orders of the agents (to form a
coalition).

e The Shapley value sums up the marginal contributions of agardraged over
all joining orders.

e An expected gaincan be computed by taking a random joining order and
computing the Shapley value.
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4.2 Agent Architecture

Four main categories:

1. In the first category, each agent has an associataasducer” that converts all
Incoming messages and requests into a form that is intelligible to the agent. In
general, in am-agent system, we may ne@dn?) transducers, which is clearly
not desirable.

2. The second approach is basedvoiappers which “inject code into a program
to allow it to communicate” (?, p. 51). This idea is based on the principle that
each agent has an associated body of code that is expressed in a common
language used by other agents (or is expressed in one of a very small number of
such languages).
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3. The third approach described i®) (is to completely rewrite the code
Implementing an agent, which is obviously a very expensive alternative.

4. Last but not least, there is timeediation approachproposed by?), which
assumes that all agents will communicate with a mediator which in turn may
send messages to other agents. The mediation approach has been extensively
studied @; ?; ?; ?).

Here is the problem: Suppose all communications in tB&IT example had

to go through such a mediator. Then if the mediator malfunctions or “igoes

down,” the system as a whole is liable to collapse, leaving the plane in a

precarious position.
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IMPACT Server

agent
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Figure 4.4: OverallMPACT Architecture
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4.3 Server Architecture

An IMPACT Server is actually a collection of the following servers:

Registration Server. This server is mainly used by the creator of an agent to specify
the services provided by it and who may use those services.

Yellow Pages Server This server processes requests from agents to identify other
agents that provide a desired service.

Thesaurus Server This server receives requests when new agent services are being
registered as well as when the yellow pages server is searching for agents
providing a service.

Type Server. This server maintains a set of class hierarchies containing information
about different data types used by different agents, and the inclusion
relationship(s) between them.
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The user needs to specify the services of his agent. This is das@Li
(Service Description Language).

—

Definition 4.1 (Verbs, Nouns, nt(Nouns))

Suppose Verbs is a set of verbs in English, and Nouns is a set of nouns in English.

e A noun termis either a noun or an expression of the form ni(ny) where N1, Ny are
both nouns.

e nt(Nouns) denotes the set of all syntactically valid noun terms generated by the
set Nouns.

Definition 4.2 (Service Name)
If v € Verbs and nt € nt, then v:nt is called a Service name
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AGENT SERVICES

credit provide : information(credit)

provide : address

profiling provide : user-profile

classify:user

productDB provide : description(product)
identify: product

contentDetermin | prepare: presentation(product)
determine: advertisement

identify:items

saleNotification | identify:user-profile

determine: items

Table 4.1: Service List for thBTORE example
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AGENT SERVICE

autoPilot | maintain:course

adjust: course

return: control

create : plan(flight)
satellite broadcast: data(GPS)
gps collect: data(GPS)
merge: data(GPS)

create : information(GPS)

terrain generate: map(terrain)

determine: area(no-go)

Table 4.2: Service List for theFIT example
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AGENT | SERVICE

plant monitor: iInventory

determine : amount(part)
order: part

notify: supplier

supplier | monitor: available-stock

update : Stock

find: airplane

prepare : schedule(shipping)

truck provide : schedule(truck)

manage: freight

ship: freight

Table 4.3: Service List for thEHAIN example
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What if one agenir seeks another one offering a servige

We need to matchs with other services in the yellow pages.

An agent looks for an agent offering the servigaerate: map(ground)

Answer: CFIT terrain agent.groundandterrain are synonymous.

Suppose is any set of English words, such that either all word& exe verbs, or all
words inZ are noun-terms. Furthermore, suppese an arbitrary equivalence
relation onZ.
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Definition 4.3 (Z-node)
A 2-nodeis any subset N C  that is closed under ~, i.e.

I. xeN&ye2&y~x=YyeN.
2. X,ye N=xn~Yy.

In other words, 2-nodesare equivalence classes of 2.
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An agent looks for an agent offering the servigmerate: map(area)

Answer: CFIT terrain agent:areacan be specialized terrain.

Definition 4.4 (Z-Hierarchy)
A Z-Hierarchy is a weighted, directed acyclic graph SH =qet (T,E,[0) such that:

1. T is set of nonempty 2-nodes;
2. Ifty andty are different 2-nodes in T, then t1 and to are disjoint;

3. O is a mapping from E to Z™ indicating a positive distance between two
neighboring vertices.?

We do not requirél to satisfy any metric axioms at this point in time.
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Verb Hierarchy
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Figure 4.7: Verb Hierarchy (Missing Labels = 1)
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Noun Hierarchy
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4.3.1 Distances

Definition 4.5 (Distance between two terms)

Given a Z-Hierarchy SH =qe (T,E,0), the distance between two terms, Wi, Wp € T,
1s defined as follows:

0, if somet € T exists such that Wy, W> € t;

cost(Pmin), if there is an undirected path in S between
dgar (W1, Wo) =def 4

W1, W> and Pmin 1S the least cost such path;

00, otherwise.

It is easy to see that given al@yhierarchy,S# =gt (T,E,), the distance function,
dg, induced by it is well defined and satisfies the triangle inequality.
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Figure 4.9: Hierarchy Browsing Screen Dump
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Figure 4.10: Thesaurus Screen Dump
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4.4 Service Description Language
4.4.1 Definition of SDL

Service Name This is averb : noun(nounkexpression describing the service.

Inputs: The user of a service will provide zero or more inputs. We also need a
specification of what inputs are expected and which of these inputs are
mandatory: “English” name for each input, and a semantic type for that input.
For example AmountInteger specifies that we have an input call&chount

of typeInteger and Part:PartName specifies that we have an input called
Part of typePartName (Which could be an enumerated type).
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Outputs: Each service must specify the outputs that it provides and each output is
specified in the same way as an input.

Attributes: In addition, services may ha attributes associated with them.
Examples of such attributes inclu cost (for using the service),

average response timfr requests to that service, etc.
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Definition 4.6 (Type/Type Hierarchy (7', <))
A typerT is a set whose elements are called “values” of T. The pair (T ,<) is called a

type hierarchyifI is a set of types and < is a partial ordering on

Figure 4.11 provides a hierarchy associated with the three motivating examples.
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7N

NetAddress  PartName  Supplier

Figure 4.11: Example Type Hierarchy
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Definition 4.7 (Set of Type VariablesV.;)
Associated with any type hierarchy (T, <), is a set Vi of symbols called type
variables

Intuitively, a type variable ranges over the values of a given typer instance,
PartName may be a type variable ranging over strings. When specifying the inputs
required to invoke a service, we need to specify variables and their associated types.
This is done in the usual way, as defined below.

Definition 4.8 (Itemss: 1)
If s is a variable ranging over objects of type T, then S: T is called an item.

S:T may be read as saying
“the variable s may assume values drawn from the type
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Definition 4.9 (Item Atom)
Ifs:Tis an item, then (I)S:T(\I) (resp. (MI)S:T(\MI) ) is called an input (resp.

mandatory inputitem atom, and (0)S:T(\0) is called an outputitem atom.

Each input item is eithanandatoryor not. For exampleMI)Location String(\MI)
IS a mandatory input item atom, whi{@) Noga TerrainMap(\I) iS a non-mandatory
input item atom. The following are all valid output item atoni@;Pathl Path(\0),
(0)SpecsCarSpecRecord(\0) and(0)Financing plan: FinanceRecord(\0).
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Definition 4.10 (Service Description)

Let Snbe a service name, 11, ...,In be input item atoms, Miy, ..., Mk be mandatory
input item atoms, and 01, ...,0; be output item atoms. Then,

(8) sn
Mmiy ... Mik
11...1n
01...0r

(\S)

is called a service descriptian
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Definition 4.11 (Item List)

If$:T4,...,5: Ty aren > litems, then (I)S1:Tq,...,Sn:Tu(\I) is an inputitem list
which is a shorthand for (I)S1:T;(\I)---(I)S1:To(\I); also,

(MI)S1:Ty,..-, S0 Tu(\MI) and (0)S1:T4,...,S: Tu(\0) are mandatory input item lists
and output item listsrespectively, which are shorthands for the items

(MI)S1: T4 (\MI)--- (MI)S1:T,(\MI) and (0)S1:T1(\0)---(0)S1: T, (\0O), respectively.
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(8)  classify:user
(MI)ssnString(\MI)
(I)name String(\I)
(0)classUserProfile(\0)
(\S)
This service may take asput, thenameand thesocial security numbeof a user, and
provide asoutput aclassification of the usexs a “low,” “medium,” “high,” or “very

high” spender. The social security number is a mandatory input, whereaartigs
optional as it can be uniquely determined from a person’s social security number.
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(8)  create: plan(flight)
MI)Location SatelliteReport, Flightroute:Path, Noga Map(\MI
p
(0)Plan:Plan(\0)

(\8)

This service takes three mandatory inputs (the location of the plane, the allocated
flight route of the plane, and a set of Nogo areas), and generates a modified flight path
for the plane.
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(8)  monitor: availablestock

(MI)Amount Integer, Partid: String(\MI)
(I)Name String(\I)
(0)StatusString(\0)
(\S)
This service takes themountandPart_id of the requested part as mandatory inputs,

and thenameof the requested part as an optional input. Naaneof a part maybe
determined from it®art_id. This service returns as output the string
amount_availlable Or amount_not_available.
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4.4.2 Metric and Matchmaking

Up to now, we defined distances between verbs and between noun-terms. But we
need to have distance between service-namés

Definition 4.12 (Composite Distance Functiortd)

Suppose we have two different sets of words 21 and 2.5 with 21-hierarchy

SH1 =qef (T1,E1,01) and Zo-hierarchy SH 2 =get (T2, E2,002). Let d1,d> be the
distance functions induced by S 1,SH 5, respectively. Consider two pairs of words,

(W1, W), (W2, W) € 21 X Zp. A composite distancinction cd is any mapping from
(21 x Z2) X (Z1 X Z2) to Z™ such that:
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1 cd((wg,W,), (Wa,W5)) = cd( {(Wo, W5), (wq,W,))
2. cd({wg,wp),(wi,wy)) =0

3. Ifdl(Wl,Wz) < dl(Wl,Wg,), then
Cd(<W17VV,1>7 <W27V\/2>) < Cd(<W17V\/1>7 <W37\N,2>)

4. Ifdz(V\/l,V\/z) < dz(\l\/l,V\/S), then
Cd(<W17V\/1>7 <W27V\/2>) < Cd(<W17V\/1>7 <W27VV\:3>)

5. cd((wy, W), (wa,wh)) < cd((w, W), (W, wWh))+
cd((wz, W), (W3, W3))

(Symmetry)

(Ipso-distance)

(Expansion of d1)

(Expansion of d2)

(Triangle Inequality).

5.4 Service Description Language

148



Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 4.1 (Composite Distances)

Let d1 and d» be distances defined as in Section 4.2 on the verb and noun-term
hierarchies given in Figure 130 on page 130 and Figure 131 on page 131,
respectively. Moreover, let the composite distance function be defined as

cd({w, Wy), (Wo,W5)) =def d1 (W1, W2) + d2(Wp, W5).

Now consider the following two pairs: (provide,information and
(broadcast,data(GPS). As can be seen from Figure 130 on page 130, the distance
between provide and broadcast is

d1(provide, broadcast) = 2,

as is the distance between informationand data(GPS)see Figure 131 on page 131).
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Thus, the composite distance between these two pairs is given by

cd({provide,information,

(broadcast,data(GPS)) = di(provide, broadcast) 4 d,(information data(GPS)
= 4.

As another example, consider the pdikfentify,items and(determine, produch. In

this case, as given by Figure 130 on page 130, the disthiédentify, determine)
betweenidentify anddetermine is 5. And from Figure 131 on page 131, the distance
betweentemsandproductis d,(itemsproduc) = 1. Then, the composite distance
between(identity,items and(determine, produch will be the sum of their verb and
nounterm distances, i.e., 6.
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What if we are looking for the distance betweey{n}) andny(n), but
these terms do not occur (ony, ny, np, n, are innt)?

Then we used wherez; := 25 := nt.

What if we are looking for the distance betwewiin,) andn; but the term
ni1(n2) does not ocurr? (There might be a synonggrfor ny s.t. ni(n3)
ocurrs.)

Then we roughly estimate: see Definitiondf.

Definition 4.13 (The Functiondg)

We interpret, N1 as np(general, e.g., informationas information(general)and
assume that a function denoted by dg for computing the distance between any noun n
and generalis given to the system. E.g.: (Wy, ..., W are the weights of all edges
between the Noun-Term-node and any of its neighboring vertices)

dc(n,genera) =qgef maxwy, ..., W).
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Example 4.2 (Distances)
When n is the noun-term mapor navigation dg (n,genera) = 2 but when n is plan or
route, dg(n,genera) = 1.

Consider a query which asks for map(region) Which noun-term should we

consider first?

Although there is no noun-term in our hierarchy named map(region), there are
noun-terms for both mapand region Recall that dg(map genera) = 2. If we can
find a noun-term n with a distance of 2 or less from map(region) we should start at n.
Otherwise, we should start at map

In our current example, we should start at map(area)as region has a distance of 1
from areaand so map(areahas a distance of 1 < 2. However, if we were looking for
map(city) there is no noun-term with a distance of 2 or less so we should start at map
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Matchmaking

It is easy to defindéind_nn: An algorithm to solve th&-nearest neighbor problem.

Given a pair{v,nt) specifying a desired service, this algorithm will retur
set ofk agents that provide the most closely matching services.

na

Closeness betweemw, nt) and another paitv’,nt’) is determined by using

1. the distance functions associated with the verb and noun-term hierarchies,

2. a composite distance functianl specified by the agent invoking tfied_nn

algorithm.
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Range Computations

Therange Algorithm answers queries of the form
“Find all agents that provide a service vat (V' NT’) which is within
distance D of a requested service wa{ V,NT)" .
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4.4.3 Simulation Results

We are interested in

e the efficiency ol finding similar services and

e the quality of the matchingservices provided as the output.

Performance Results

Based on ¢ NASAhierarchy consisting of 17,445 word$or experimental purposes,

the same hierarchy was used as both a verb and a noun hierarchy, although the
IMPACT prototype uses different hierarchies). Weights on all edges in the hierarchies
were assumed to be 1 and the composite distance function was takesua. be

The algorithms were implemented in C++ and the experiments were conducted on a
Sun Sparc.
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Figure 4.12: Performance &fnearest neighbor algorithm, Average Time
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Average Nearest Neighbor Computation

0.3

0.25

Ao AWEVAVA
\/ \/ \/ \

)

Q

c

Q

8 015 /

30

@

E
0.1 4
0.05

1 2 3 4 565 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Neighbors

— — Av. Time/Query/Answer

Figure 4.13: Performance &fnearest neighbor, Average time per answer

5.4 Service Description Language 157



Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Average Range Query Computation
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Figure 4.14: Performance of range query algorithm, Average Time
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Average Range Query Computation
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Figure 4.15: Performance of range query algorithm, Average time per answer
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Quality of Returned Matches

We conducted an experiment involving 35 participants:

1. We used a simple verb hierarchy (10 nodes), noun-term hierarchy (90 nodes),
and ServiceTable (100 services).

2. After an initial training phase participants entered precision phasewvhere
they were asked to perform 10 nearest neighbor and 10 range queries of their
choice.

3. After each query result, participants typed in a ranking between O (least satisfied)
and 100 (most satisfied).

Average satisfaction for nearest neighbor and range queries are shown
below.
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Precision - NN query Precision - Range query
Paitici pant satisfaction Pattici pant satisfaction
10000 100.00 T
95.00 95.00
90.00 90.00
85.00 85.00
80.00 80.00
5.00 5.00
0.00 0.00
65.00 65.00
60.00 60.00
55.00 55.00
50,00 50.00
45.00 45.00
40.00 40.00
35.00 35.00
30.00 30.00
25.00 25.00
20.00 20.00
15.00 15.00
10.00 10.00
5.00 5.00
Q.00 0.00
Meighbot number Composite distance
0.00 2.00 +.00 6.00 8.00 10.00 0.00 2.00 +.00 6.00 8.00
Precision for th&-nearest neighbor algorithm Precision for the range algorithm

Figure 4.16: Experimental Results of Precision of our Algorithms
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After completing the precision phase, participants startedaib@| phase

1. They were allowed to view the ServiceTable (which up to this point was not
available to them).

2. Meanwhile, they were presented with text boxes containing the query answers
they gave in the previous phase.

3. After each answer, they were instructed to type in the name of all services in
ServiceTable which did not appear as a query result but which should have been
returned as an answer.

4. Theaverage number of these “suggested replacementfdr nearest neighbor
and range query answers atewn below
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Recall - NN query Recall - Range query
Mumber of snggesied r=placements Mumbet of suggesied teplacements
1.50 T T T T T 1.50 T
140 140
1.30 1.30
1.20 1.20
110 1.10
1.00 1.00
0.90 090
0.80 0.80
0.70 070
0.60 0.60
0.50 0.50
040 040
0.30 0.30
0.20 0.20
0.10 T T T T i 0.10
0.00 0.00
K D
Q.00 2.00 +.00 6.00 8.00 10,00 0.00 2.00 +.00 6.00 8.00 10.00
Recall for thek-nearest neighbor algorithm Recall for the range algorithm (rddjus

Figure 4.17: Experimental Results of Recall of our Algorithms
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4.5 Summary

1. We introducedhree szenarioswhere multi-agency is important.
2. We presented the maliMPACT-architecture.

3. Agents need to useervices of other agents
(a) We do not assume that agents precisly know about services of other agents.

(b) We defined a language where such requests can be formulated
(~» service description languagesDL).

(c) We presented algorithms to find the best matches for a request
(~ find_nn, range) .
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Chapter6. The Code Call Mechanism

Overview

6.1 Software Code Abstractions
6.2 Code Calls

6.3 Message Box

6.4 Integrity Constraints
6.5SDL and Code Calls
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A definition of agents should not limit the choice of data structures and
algorithms that an application designer must use.

CHAIN: supplier agents on top of an existing commercial relational DBMS system.
CFIT: terrain agent on top of existing US military terrain reasoning software.

Accessing DB’s: For instance, the Product Database agentductDB in the
CHAIN example may access some file structures, as well as some databases.
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5.1 Software Code Abstractions

Definition 5.1 (Software CodeS = (T5,% 5,Cs))
We may characterize the code on top of which an agent is built as a triple

S =det (T 5,F 5,Cs) where:

1. I ¢ 1s the set of all data types managed by S,

2. ¥ ¢ 1s a set of predefined functions which makes access to the data objects
managed by the agent available to external processes, and

3. Cg is a set of type composition operations. A type composition operator is a

partial n-ary function C which takes as input types 11,...,Tn and yields as a result
a type C(11,...,Tn). As Cis a partial function, C may only be defined for certain
arguments T1,...,Tp, 1.€., C 1s not necessarily applicable on arbitrary types.
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Intuitively:
e 7 ¢ isthe set of all data types that are managed by the agent.

e 7 ¢ intuitively represents the set of all function calls supported by the package
S’s application programmer interfaca PI).

e (¢ the set of ways of creating new data types from existing data types.
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Given a software packagg we use the notatiofi ¢ to denote thelosureof 7 ¢
under the operations ifig. In order to formally define this notion, we introduce the

following definition.

Definition 5.2 (C (7)) and T%)
a) Given a set‘l’ of types, we define

s(T) =qet U {1: there exists an N-ary composition operator C €

and types 11,...,Tn € T such that c(11,...,Tn) =T1}.

b) We define T as follows:

2 —def S5
TR i
s =det Cs(T),
s =def Uien7k.
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CHAIN Revisited

¢ =def {Integer,Location,String,Date,0rderLog, Stock}
OrderLog IS a relation having the schema

(client/string , amounfinteger , part.id/string , method'string

SIC/Location , deS¥Location , PICKUP.St/date , pickup.et/date ),

while Stock is a relation having the schemanjouny/integer , part_id/string ).
Location iS an enumerated type containing city names.
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In addition, ¥ ¢ might consist of the functions:

e monitorStockAmoun{integer ,Part_id/string ) Of typeString.
This function returns eithetmount_available Or amount_not_available.

e shipFreighf Amoun{finteger ,Part.id/string ,method string |,
SI’C/ Location DeSt/Location )
This function, when executed, updates the order log and logs information about
the order, together with information on (i) the earliest time the order will be
ready for shipping, and (ii) the latest time by which the order must be picked up
by the shipping vendor.

Notice that this doesot mean that the shipment will in fact be picked up by the
airplane agent at that time.

e updateStocfAmouny/integer ,Part_id/string ).
This function, when executed, updates the inventory of the Supplier.
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CFIT Revisited

s =def {Map,Path,Plan,SatelliteReport}.
Special class of maps call&lr'ED Digital Terrain Elevation Datahat specify the
elevations of different regions of the world.

Suppose thautoPilot agent’s associated set of functiofig contains:

e createFlightPlariLocation/map, Flight_route/path , Nogo/map) of typePlan.

Moreover, thef ¢ of thegps might contain the following function:

e mergeGPSDatdatal/sateliteReport , Data2/satelliteReport ) of type
SatelliteReport.

6.1 Software Code Abstractions 172



Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

State of an Agent

Definition 5.3 (State of an Agent)

At any given pointt in time, the state of an agenill refer to a set O4(t) of objects

from the types ‘I ¢, managed by its internal software code.

An agent may change its state by taking an action—either triggered in
ternally, or by processing a message received from another agent.

We will assume that except for appending messages to an agantilbox, another
agentb cannot directly change’s state. However, it might do so indirectly by
shipping the other agent a message issuing a change request.
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5.2 Code Calls

Code Calls take data from heterogenous DB’s so that such data can
be considered as logical atoms (as terms in predicate logic).

An agent built on top of a piece,S, of software, may support severa
API functions, and it may or may not make all these functions avail;

able to other agents (throughsDL).
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Definition 5.4 (Code Call§ :f(d4,...,d,))
Suppose S =gef (T 5, F 5,Cs) is some software code andf € F s is a predefined
function with n arguments, and d4, ... ,d, are objects or variables such that each d;

respects the type requirements of the i ’th argument of f. Then,
S:f@,,...,dy)

is a code call A code call is groundif all the d; ’s are objects. We often switch
between the software package S and the agent providing it. Therefore instead of
writing $ :f(d4,...,d,) where S is provided by agent a, we also write a:f(d4,...,dy).

S:f(dy,...,d,) may be read asexecute functioh as defined in packagg¢on
the argumentd,,...,d,.
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Comment 1 (Assumption on the Output Signature) We will assume that the
output signatureof any code call is @&et There is no loss of generality in making
this assumption—if a function does not return a set, but rather returns an atomic
value, then that value can be coerced into a set anyway—~by treating the value as
shorthand for the singleton set containing just the value.
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1. supplier:monitorStock3, part_008).
Observe that the result of this call is either the singleton set
{ amount _available }, or the sef amount not_available }.

2. supplier:shipFreigh{3,part_008, truck,X,paris).
This says we should create a pickup schedule for shipping 3 pieces diG&art
from locationX to paris by truck. Notice that until a value is specifiedfothis
code call cannot be executed.

3. GPS:mergeGPSDafg1,32) is a code call which merges two piec8s,ands2,
of satellite data, but the values of the two pieces are not stated.
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Variables

S =def (T 5,F 5,Cs) Of software code. Given any typges 7T ¢ (wrt. software code
S =def (T 5,F 5,Cs)) we will assume that there is a sebt(1) of “root” variable
symbols ranging over. Such “root” variables will be used in the construction of
code calls.

Supposd is a complex record type having fields, ..., f,.

e For every variable of type, we require thak.f; be a variable of type; wherer;
IS the type of fieldt; .

o If £, itself has a sub-field of typey, thenX.f;.g is a variable of typg, and so
on.
These are calle path variables.

e For any path variabl# of the formX.path, whereX is a root variable, we refer to
X as the root oft, denoted byoot(Y).
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Example 5.1 CFIT Revisited)

Let X be a (root) variable of type SatelliteReport denoting the current location of
an airplane. Then X.2d1oc, X.2d1loc.x, X.2d1loc.y, X.height, and X.dist are

path variables . For each of the path variables Y, root(Y) = X. Here, X.2d1loc.x,
X.2dloc.y, and X.height are of type Integer, X.2d1loc’s type is a record of two
Integer s, and X.dist is of type NonNegative.
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Definition 5.5 (Variable Assignment)
An assignment of objects to variablgsa set of equations of the form

Vi :=o04,...,Vx := 0 Where the V;’s are variables (root or path) and the o; ’s are
objects—such an assignment is legal if the types of objects and corresponding
variables match.

Example 5.2 CFIT Revisited)
A legal assignment may be

(X.height :=50,X.sat_id:=iridium_17,X.dist:=25X.2dloc.x:=3,X.2d1loc.y = —4).

If the record is ordered as shown here, then we may abbreviate this assignment as (50,
iridium 17, 25, (3,—4)). Note however that

(X.height :=50,X.sat_id:=iridium 17,X.dist :=—25X.2dloc.x:=3,X.2dloc.y := —4)

would be illegal, because -25 is not a valid object for X.dist’s type NonNegative.
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Code-call atoms aregical atomsthat are layered on top of code-calls.

Definition 5.6 (Code Call Atom)
If ccis a code call, and X 1s either a variable symbol, or an object of the output type of
CC, then

e in(X,cc),
e not.in(X, cc),

are called code call atoms A code call atom is groundif no variable symbols occur

anywhere 1n it.
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e A code call atom of the fornm(X, cc) succeeds just in case whircan be set to

a pointer to one of the objects in the set of objects returned by executing the code
call.

e A code call atom of the formot_in(X, cc) succeeds just in cages not in the
result set returned byc (whenX is an object), or whel cannot be made to
point to one of the objects returned by executing the code call.

What effects does this have on tétate of an agent?
It is an infinite set of ground code call atoms!

6.2 Code Calls 182



Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

1. in(amount_available, supplier:monitorStock3, part_008)).
This code call succeeds just in case the Supplier has 3 unsteraf 008 on
stock.

2. not_in(spender(low),profiling:classifyUsefU)). This code call succeeds just
In case usev, whose identity must be instantiated prior to evaluatiomois
classified as a low spender by theofiling agent.
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Definition 5.7 (Code Call Condition)
A code call conditions defined as follows:

1. Every code call atom is a code call condition.
2. If s and t are either variables or objects, then s = t is a code call condition.

3. If s and t are either integers/real valued objects, or are variables over the
integers/reals, thens < t, s > t, s < t, and s > t are code call conditions.

4. If X1 and X are code call conditions, then X1 & X2 is a code call condition.

We refer to any code call condition of form 1.-3. as an atomiccode call condition.
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1. X :  in(amount_available, supplier:monitorStock3, part_008)).

2. x? 1 in(X,supplier:monitorStock3, part_008)) & X = amountavailable

X3 : in(amount_available, supplier:monitorStocky, part_008)) &
not_in(amount_available, supplier:monitorStockU + 1,part_008)) &
iNn(amount_available, supplier:monitorStockv, part_009)) &
not_in(amount_available, supplier:monitorStockv + 1,part_009)) & U< V.
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4. in(spender(medium),profiling:classifyUsefU)) &
in(spender(high), profiling:classifyUse(Vv)) & U=V.

5. in(spender(medium),profiling:classifyUsefU)) &
not_in(spender(high), profiling:classifyUsefU)).
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Safety

Definition 5.8 (Safe Code Call (Condition))
A code call § .f(d4,...,dy) is safeif and only if each d; is ground. A code call

condition X1& ...& Xn, N > 1, is safe if and only if there exists a permutation Tt of
X1,...,Xn such that for every | = 1,....n the following holds:

1. If Xqyiy 1s @ comparison s; OPs,, then
1.1 at least one of s1, s, is a constant or a variable X such that root(X) belongs to
RVii(i) =def {root(Y) | 3] <i s.t. Y occurs in X)) };

1.2 if s; is neither a constant nor a variable X such that root(X) € RVj(i), then s;
1s a root variable.

2. If Xryi is a code call atom of the form in(Xpys), cCrysy) or NOLIN(Xpy sy, cCrys)).
then the root of each variable Y occurring in ccyyjy belongs to RVi(i), and either
Xry1) 18 a root variable, or r0Ot(Xyys)) is from RV(i).

6.2 Code Calls 187



Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Reconsider the three sample code call conditighs X2, andx ().
o xY andx@ are safe.

e X is unsafe, since there is no permutation of the atomic code call conditions
which allows safety requirement 2 to be met for either v.
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Checking safety of code call conditions can be done at compile time of a
program.

If x Is found to be safe, then we can reorder the constitugnts ., xn by a
permutatiorrtsuch thal ), - -, Xrgn) €an be evaluated without problems.

We need an additional definition:

Definition 5.9 (Safety Modulo Variables)
Suppose X is a code call condition, and let X be any set of root variables. Then, X is
said to be safe moduloX if and only if for an (arbitrary) assignment 0 of objects to

the variables in X, it is the case that X0 is safe.
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Checking safety of a code cajllmodulo variablex can be reduced to a call to a
routine that checks for safety. This may be done as follows:

1. Find a constant (denoted ly that does not occur IR.
Let O =4ef {X = c}, I.e., every variable iX is set toc.

2. Check ifx0 is safe.

Safety modulo variableX means: When these variabl¥sare instantiated,
the ccc can be evaluated.
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Algorithm 5.1 (safe_ccc)
safe_ccc(X: code call condition;
X: set of root variables)

(x input is a code call condition X = X1& -+ - &Xn; *)

(* output is a proper reordering *)
(x X' = Xm1)& - - &Xryn) if X is safe modulo X;  x)
(x otherwise, the output is unsafe ; *)
I.L:=X1,...,Xn;
2. X :=true;

3. while L is not empty do

4. { select all Xi,, ..., Xi,, fromL st. Xi; 1s safe modulo X;
5. if m= 0 then return unsafe (exit);

6. else

7. A X =X&Xi & -+ &Xipny

8 remove Xj,, . - ., Xim from L,

9 X = XU{root(Y) | Y occurs in some Xiy, - - - Xim }

10. }

11.}

12. return X';
end.
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Theorem 5.1 (Safety Computation)

Suppose X =def X1 & ... & Xn 1s a code call condition. Then, X is safe modulo a set of
root variables X, if and only if safe_ccc(X, X) returns a reordering X' of X. Moreover,

for any assignment 0 to the variables in X, X'0 is a safe code call condition which can
be evaluated left-to-right.
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e A straightforward implementation ¢lafe. cccruns in quadratic time, as the
number of iterations is bounded by the numbe@f constituenty; of x, and the
body of the while loop can be executed in linear time.

By using appropriate data structures, the algorithm can be implemented

to run in overall linear time.
Briefly, the method is to use cross reference lists of variable occurrences.

e safety of a code call conditioncan be checked by callirgafe ccqx, 0). Thus,
checking the safety of, combined with a reordering of its constituents for
left-to-right execution can be done very efficiently.
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Definition 5.10 (Code Call Solution)

Suppose X is a code call condition involving the variables X =gef {X41,...,%n}, and
suppose S =def (T 5,F 5,C) is some software code. A solutionof X w.r.t. T s in a
state O 1s a legal assignment of objects Oy, . .. ,0p to the variables Xy, ..., Xn, written

as a compound equation X := 0, such that the application of the assignment makes X
true in state Og.

We denote by

e Sol(X) ¢,0, (omitting subscripts Og and I ¢ when clear from the context), the
set of all solutions of the code call condition X in state Og, and by

e O_Sol(X) 6,06 ( where subscripts are occasionally omitted) the set of all objects

appearing in Sol(X)z ; o,
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Comment 2 (Existence of ins, del and upd)We assume that the s®t; associated
with a software code packagecontains three functions described below:

e A functioninsg, which takes as input a set of obje@snanipulated by, and a
stateOg, and returns a new staté’; = insg (0, Os) which accomplishes the
iInsertion of the objects i into Og, i.e.,inSg IS an insertion routine.

e A functiondelg, which takes as input a set of obje@snanipulated bys and a
stateOg, and returns a new statﬁ’S =def dels (O, O¢) which describes the
deletion of the objects i from O, i.e.,dels is a deletion routine.

e A functionupds which takes as input a data object o manipulatedbw field f
of object 0, and a value v drawn from the domain of the type of field f of object
o—this function changes the value of the f field of object o to v. (This function
can usually be described in terms of the preceding two functions.)
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Executing the functionNSr;pancerecora (X[X]) Wherex|X] is a code call condition
Involving the (sole) free variable means:

“Insert, using aFinanceRecord insertion routine, all object® such that
X[X] is true w.r.t. the current agent state when=o.

In such a case, the code call conditiprs used to identify the objects to be inserted,
and theinsg;ancerecora fUNCtiON specifies the insertion routine to be used.
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As a single agent program may manage multiple data types., 1,, each with its
own insertion routinéns;,, ..., NS, respectively, it is often more convenient to

associate with any ageatan insertion routine ins, , that exhibits the following
behavior:

e given either a seD of objects (or a code call conditigX] of the above type),
Ins, (X[X], Os) is a generianethodthat selects which of the insertion routines

Ins,, associated with the different data structures, should be invoked in order to
accomplish the desired insertion.

We assume from now on that an insertion functies, and a deletion fung-
tion del, may be associated with any agenin this way.
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5.3 Message Box

1. Each agent’s associated software code includes a special type Msgbox
(short for message box).

2. The message box is a buffer that may be filled (when it sends a message) or
flushed (when it reads the message) by the agent.

3. In addition, we assume the existence of an operating-systems level messaging
protocol (e.g.SOCKETS or TCP/IP (?)) that can fill in (with incoming
messages) or flush (when a message is physically sent off) this buffer.

6.3 Message Box 198



Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

The msgbox operates on objects of the form
(i/0,"src’,"dest,”"messagg'time’) .

i/o signifies an incoming or outgoing message respectively.

"src’ specifies the originator

"dest specifies the destination.

N

"messagels a table consisting of triples of the form

("varName, "varTypé, "value') where"varNamé is the name of the variable,
"varTypé is the type of the variable and thealu€ is the value of the variable in
string format.

5. "time’ denotes the time at which the message was sent.
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We will assume that the agent has the tollowing functions that are integral In
managing this message box.

e sendMessade:sourceagent>, <destgent-,<message): This causes
(0,”src’,"dest,"message’time’) to be placed iMsgbox. The parametes
signifies an outgoing message. When a call of
sendMessadesrc, "dest,"messagh is executed, the state BEgbox changes by
the insertion of the above quintuple denoting the sending of a message from the
source agendrc to a given Destination agedest involving the message body
"message

e getMessage<src>): This causes a collection of
(1,”src’,"agent,"'msgd, "time”)

to be read fron¥sgbox. Thei signifies an incoming message. Note that all
messages from the given source to the agemrint whose message box is being
examined, are returned by this operatitime” denotes the time at which the
message was received.
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e timedGetMessage op>, <valid>): This causes the collection of all
quintuplegup of the formtup =ges (1, <Src>, <agent-, <message, time) to
be read fronMsgbox, such that the comparisamp.time op validis true, where
opis required to be any of the standard comparison operatprs, <, >, or =.

e getVar<mssgld>, <varName>): This functions searches through all the
triples in the’messagketo find the requested variable. First, it converts the
variable from the string format given by thalue’ into its corresponding data
type which is given byvarTypé. If the requested variable is not in the message
determined by th&Mssgld, then an error string is returned.
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Example 5.3 STORE Revisited)
Suppose the profiling agent is asked to classity a user U with ssn S. To do this, the
profiling agent may need to obtain credit information for U from the credit agent.
The following actions may ensue:

1. Theprofiling agent sends the credit agent a message requesting S’s credit
information.

2. The credit agent reads this message and sends the profiling agent a reply.

3. The profiling agent reads this reply and uses it to generate an answer.

6.3 Message Box 202



Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

1. Theprofiling agent is asked tolassifyUse(s). It generates a messageof a
particular format, e.g., a strifgsk provideCreditinfaS_low,” which encodes the
request fois’s credit information, and calls
sendMessaderofiling,credit,M;).

2. Thecredit agent either periodically caltgetMessag@rofiling) until M,
arrives, or calls it triggered by the event tihdt has arrived. By parsing,, it
determines that it needs to execptevideCreditinf¢sS, 1ow) and send the result
back toprofiling. Depending on the result of the calledit assembles a
messagdl, encoding the&FinanceRecord which was returned, or an error
message. Here, we are assuming that the underlying OS level message protocol
does not drop or reorder messages (if it did, we would have to in¢luded
M;’s Timein M,’'s message). Next, theredit agent calls
sendMessagderedit,profiling,M,).
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3. Theprofiling agent either periodically caligetMessageredit) until M,
arrives, or it is triggered by the arrival &, and reads the message. By parsing
M,, It can determine what errors (if any) occurred or what the resulting
finance_record was. Finally, theprofiling agent can use the contentshds
to construct the UserProfile to be returned.
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5.4 Integrity Constraints

Each agent has an associateaigent stateD, which is a set of objects (of the types
that the software code underlying the agent manages).

e Not all sets of such objects alegal.

Definition 5.11 (Integrity Constraints IC)
An integrity constraintC is an expression of the form

Y = X

where U is a safe code call condition, and X 1s an atomic code call condition such that
every root variable in X occurs in .
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1. IC1: in(amount_available,supplier:monitorStockU,part_001)) &
iNn(amount_available, supplier:monitorStockV, part_002))
=
in(amount_available, supplier:monitorStockU + V,part_008)).

IC3: S=123456789 = not.in(spender(low),profiling:classifyUsefs)).

3. ICs: R.sat_id=sat_1 = R.2dloc.x>0.
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Definition 5.12 (Integrity Constraint Satisfaction)
A state Oy satisfies an integrity constraint |C of the form Y = X, denoted O = IC, if
for every legal assignment of objects from Og to the variables in |C, either Y is false

or X 1s true.

Let IC be a (finite) collection of integrity constraints |C, and let Og be an agent state.
We say that Oy satisfies IC, denoted Og |= IC, if and only if O satisfies every
constraint IC € IC.
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5.5 Service Descriptions and Code Calls

Definition 5.13 (Service Rule)

Suppose Snis the name of a service offered by an agent. Letiq,..., Ik, Miy,..., Miny,
and 01, ...,0n be the inputs, mandatory inputs, and outputs of the service Sn,
respectively. A service rule definingnis an expression of the form:

sn(iq,...,Ilk,Mi1,...,Mip,01,...,0n) «— X

where X is a code call condition that is safe modulo Miy, ..., Miy. In this case, X is
said to be the body of the above rule.

Definition 5.14 (Service Definition Programsdp)
Using the same notation as above, a service definition progransdp for short)
associated with service SNis a finite set of service rules defining Sn
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e Consider a servicendefined through a service definition program contaiming
rules.

e Let the body of the'th rule bex (.

e Suppose an agent specifies the mandatory inputs, i.e., an agent requesting this
service specifies a substituti@rthat assigns objects to each of the variables
miy, ..., Miy. In addition, the agent may specify a substitutéoior the
discretionary inputs.

e Then the service definition program treats the agent’s request for senase
described in algorithmmplement_service
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Algorithm 5.2 (implement_service)
implement_service(P:sdp; |\:subs; 0:subst)

(x> P is a service definition program *)
(> W a subst. specif. values of all mandatory inputs *)
(= O a subst. specif. values of selected discret. inp. var’s x)
(x Ansis the result of evaluating P w.r.t. inputs land 0 x)

1. Ans:=0; Q:=P;
2. while Q +~ 0 do
3. { select ruler; € Q;
4. Q:=Q\{ri};
5. SOL:=Sol((x)H0);
6. (% returns many substit.’s, one for each var. of SN x)
7. (x that is not assigned an object by either of 1,0 *)
8.  restrict SOLto output variables;
9. Ans:=AnsU SOL
10. }
11. return Ans
end.
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Example 5.4 STORE Revisited)

In HERMES, each sdp for the STORE example can be thought of as a predicate
within the mediator for one of STORE’s agents. A sample sdp is:

goodSpendéfMI)CategoryUserCat (\MI)
(0)SSNList0fStrings,ClassUserProfile(\0))

$—

Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

in(SSN, profiling:listUsergCategory)) &
in(Class, profiling:classifyUsessN)) &

not_in(spender(low),general:makeSatlass)).
A HERMES invocation of this sdp is shown in Figure 5.1. The query

goodSpendefcorporateUsers, Ssn, Class)

asks for the ssn and class of all corporate users who are not low spenders. (Note
that as the second parameter of the not_in must be a set, we use the function
general:makeSdClass) to turn Class into a singleton set.
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[®] Netscape: Hermes Java Client page (experimenta

File Edit Wiew Go Communicator

7| &7 what's Related

™ Bookmarks A Lacation: http://quark.ce.umd.edu:8080/HermesJC2 . html

University of Maryland’s JHermes interface ( quark.cs.umd.edu

Logifa .. I Launch Mediator. .. I

Mediator for Profiling agents of Store
example.

Mediator Description:

Buery Text:

Mediator for Profiling agents of Store example.

goodSpender ("Corporatelsers", SSH, Classi:l.@.

Auailable P

lassifyllzer Determines a spending Class for each

oub lyClassified uzer in the given Category which is
— not 3 low spender

i s;Use;s Syrta:

ouSpEnder goodSpender (Category, SSH, Classr:l.@

goodSpender ("Corporatelsers”, SSM, Classi:l.@.]

double-Click the "goodSpender" predicate entry to append query text

Unsigned Java Applet Window

: =i Unsigned Java Applet Window:
% % @@ 2|

o |

Figure 5.1: Sample query on tipeofiling agent’s mediator (first result)
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[®] Netscape: Hermes Java Client page (experimental)
File Edit %iew Go Communicator
42 AN bmIE

i w§ " Bookmarks A Location: [http://quark.ce.umd.edu: 8080,/HermesJC2 . html

7| @E17 what's Related

University of Maryland's JHermes interface ¢ quark.ecs.umd.edu ?

Login...I Launch Hediator...l

Available Mer

Buery Text: Mediator Description

Mediator for Profiling agents of Store example.

goodSpender 'Corporatelszers", SSM, Classr:l.a@.

Auailable Pr

Determines a spending Class for each
uzer in the given Category which is
rot a low spender

Suntax:

goodSpender (Category, SSM, Classy:l.@

"Corporatelsers”, "321-54-9876"
"spender (mediumd "

goodSpender ("Corporatelsers”, SSHM, Classi:l.@.]

uble-Click the "goodSpender" predicate entry to append query tewx

Unsigned Java Applet Window

g1 Unsigned Java Applet Window:

B Y o 2

o |

Figure 5.2: Queries on goodSpender amdfiling Agent’s Mediator
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Example 5.5 CHAIN Revisited)
A sample query on the mediator for the supplier agent of the CHAIN example is
shown in Figure 5.3 on the next page. A sample sdp is:

sendViaTruck(MI)Amount Integer, Part.id: String(\MI)
MI)Src String,Dest String(\MI)

<
(0)SuccessBoolean(\0))

H

in(amount_available, supplier:monitorStockAmount,Part_id)) &
in(Success, supplier:shipFreigh{Amount,Part_id, truck, Src,Dest)).

If 5 units of part_008 are available, then sendViaTruck3, part_008, rome, paris,
Success) will be satisfied and Success will be true, if the shipping was possible.
But the query sendViaTrucK7, part_008, rome, paris, Success) will not be satisfied,

as the first in(,) above was not satisfied and hence the second in(,) above was never
called.
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http://quark.ce.umd.edu:8080/HermesJC2 . html

Mediator for Supplier agents of Ch.
exanpl e,

=termineAnount Sends Amount units of Part_id from
oni Src to Desc wia truck if Amount units
are available

Suntax:

zendViaTruck (Amount, Part_id, Src,
Dest, Successr:l.@

» "Paris", Successr:l.@.]

Figure 5.3: Sample query on teapplier agent’s Mediator
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5.6 Summary

This chapter was about a mechanism ¢ode call atom$ to abstract from given
legacy code and to declaratively describe its effects.

1.

In order toagentizelegacy code, we must make the most important datatypes
and functions of it available ttMIPACT.

. We call these functionscode calls § :f(d4,...,d,).

. We assume thdtalways returns a set.

To encapsulate these functions in a logical language, weads=call atoms
in(x,8:f(dy,...,dn)).

Code call atoms can be conjunctively merged together (with comparison
statements) and lead €@ode Call Conditions.

To ensure that Code Call Conditions can be evaluated, we introduced the notion
of Safety.
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Chapter 7. Actions and Agent
Programs

Overview

7.1 Action Base

/.2 Execution and Concurrency
7.3 Action Constraints

7.4 Agent Programs: Syntax
/.5 Status Sets

7.6 Feasible Status Sets

/.7 Rational Status Sets

7.8 Reasonable Status Sets
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Timetable:

e Chapter 7 needs 1 lecture, but without detailed discussion of the semantics.
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Figure 6.1: Agent Decision Architecture
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Underlying Software Code: Basic set of data structures and legacy code on top of
which the agent is built. The set of all such objects, across all the data types
managed by the software code, is calledstse of the agent at timet. Clearly,
the state of the agent varies with time.

Integrity Constraints: The agent has an associated finite $€t, These integrity
constraints reflect thexpectations on the part of the designer of the agent, that
the state of the agentmust satisfy.
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Actions: Each agent has an associated setabfons An action iIs
Implemented by a body of codemplemented in any suitable imperative (or
declarative) programming language.

Action Constraints: In certain cases, the creator of the agent may wish to prevent
the agent from concurrently executing certain actions even though it may be
feasible for the agent to take them.
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Agent Programs: Finally, an agent program is a set of rules, in a language to be
defined, that an agent’s creator might use to specify the principles according to
which the agent behaves, and the policies governing what actions the agent takes,
from among a possible plethora of possible actions.

In short, theagent program associated with an ageatcodes the “do’s anc
dont’s” of the agent.
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6.1 Action Base

Definition 6.1 (Action; Action Atom)
An actiona consists of six components:

Name: A name, usually written 0 (X1, ..., X,), where the X;’s are root variables.

Schema: A schema, usually written as (11, ...,Tp), of types. Intuitively, this says that
the variable X; must be of type 1j, for all 1 <1 <n,

Action Code: This is a body of code that executes the action.
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Pre: A code-call condition ¥, called the preconditionof the action, denoted by
Pre(a) (Pre(a) must be safe modulo the variables,. .. X,);

Add: a set Add(a) of code-call conditions;

Del: a set Del(a) of code-call conditions.

An action atomis a formula a((t1, .. .,t,), wheret; is a term, i.e., an object or a
variable, of type T;, foralli =1,...,n.
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Item Classical Al Our framework

Agent State Set of logical atoms Arbitrary data structures
Precondition Logical formula Code call condition
Add/delete list set of ground atoms Code call condition

Action Implementation| Via add list and delete list Via arbitrary program code

Action Reasoning Via add list and delete list Via add list and delete list

Comment 3 We assume that the precondition, add and delete lists associated with an
action, correctly describe the behavior of the action code associated with the action.
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Example 6.1 CHAIN Revisited)
Suppose the supplier agent of the CHAIN example has

Name: updatestockDEPart_id, Amount,Company)

Schema: (String, Integer, String)

Pre: in(X,supplier:selectuncommittel id,=,Part_id)) & X.amount > Amount.

Del: in(X,supplier:selectuncommitte id,=,Part_id)) &
in(Y,supplier:select committed id, =,Part_id))

Add:
in({part_id,X.amount — Amount), supplier:select'uncommittel id,=,Part_id)) &

in({part_id,Y.amount + Amount), supplier:select committed id, =,Part_id))
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This action updates the two ACCESS databases for uncommittecand committed
stock. The supplier agent should first make sure that the amount requested is
available by consulting the uncommittecstock database. Then, the supplier agent
updates the uncommittecdstock database to reduce the amount requested and then
adds a new entry to the committedstock database for the requesting company.
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Example 6.2 CFIT Revisited)
Suppose the autoPilot agent in the CFIT example has the following action for
computing the current location of the plane:

Name: computecurrentLocatiorfReport)
Schema: (SatelliteReport)

Pre: in(Report, msgbox:getVaMsg.1d,”Report”))

Del: in(01dLoc, autoPilot :location()).
Add:
in(NewLoc, autoPilot :location()) &
in(FlightRoute, autoPilot :getFlightRout€)) &
in(Velocity, autoPilot:velocity))&
in(NewLoc, autoPilot : calculateLocatiof01dLoc,FlightRoute,Velocity))
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This action requires a satellite report which 1s produced by the gps agent by merging
the GPS Data. Then, it computes the current location of the plane based on this report
as well as the allocated flight route of the plane.
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Example 6.3 ETORE Example Revisited)
The profiling agent might have the following action:

Name: updatehighProfilgSsn,Name,Profile)

Schema: (String, String, UserProfile)

Pre: in(spender(high),profiling:classifyUseSsn))

Del: in((Ssn,Name,01dProfile),profiling:all(highProfil€))
Add: in((Ssn,Name,Profile),profiling:all(highProfil€))

This action updates the user profiles of those users who are high spenders. In order to
determine the high spenders, it first invokes the classifyUsercode call. After
obtaining the target list of users, it updates entries of those users in the profile
database. The profiling agent may also have similar actions for low and medium
spenders.
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Definition 6.2 (Action Base)
An action basgA4B, is any finite collection of actions.
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6.2 Execution and Concurrency of Actions

What is the result of executing an action?

Definition 6.3 ((6,y)-Executability)

Let a(X) be an action, and let S =gef (T 5, F 5,C) be an underlying software code
accessible to the agent. A ground instance a(X)8 of a(X) is said to be executablén
state O, if, by definition,there exists a solution y of Pre(a(X))8 w.r.t. O. In this

case, 0(X) is said to be (8,y)-executablén state O , and (0(X),8,Y) is a feasible
execution triplefor Og.

By O (a(X), Os) we denote the set of all pairs (0,Y) such that (a(X),8,Y) is
a feasible execution triple in state Og.
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Intuitively, in a(X), the substitutior® causes all variables X to be grounded.
However, it is entirely possible that the preconditionoohas occurrences of other
free variables not occurring iX. Appropriate ground values for these variables are
given by solutions oPre(a (X)8) with respect to the current stafly. These variables
can be viewed as “hidden parameters” in the action specification, whose value is of
less interest for an action to be executed.
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Definition 6.4 (Action Execution)
Suppose (0(X),8,y) is a feasible execution triple in state O. Then the resultof

executing o (X) w.r.t. (8,y) is given by the state

apply((a(X),0,Y), Os) = ins(Oadd, del(Ogel, Os)),

where Oagg = O_Sol(Add(a(X)0)y) and Oge; = O_Sol(Del(a(X)8)y); i.e., the state
that results if first all objects in solutions of call conditions from Del(a(X)8)y on O
are removed, and then all objects in solutions of call conditions from Add(ci(X)8))y

on Og are inserted.
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Suppose then we wish to simultaneously execute a set of (not necessayily all)
feasible execution triple&S There are many ways to define this.

Definition 6.5 (Concurrency Notion)
A notion of concurrencys a function, CONG that takes as input, an object state, O,
and a set of execution triples AS and returns as output, a single new execution triple

such that:
1. if AS={a} is a singleton action, then conqO¢,AS) = 0.

2. if AS C AS and cond O, AS) = (a;(X),8;,y;) fori = 1,2, and 0l is
(02,Y2)-executable in state Og, then 01 is (02,Y2) executable in state Og.
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Definition 6.6 (Weakly Concurrent Execution)
Suppose ASis a set of feasible execution triples in the agent state Os. The weakly

concurrent execution dASin Oy, is defined to be the agent state

apply(AS Os) =gef ins(Oadd, del(Ogel, Os) ),

where

Oadd  =def |J  O-Sol(Add(a(X)8)y),
(a(X),8,y)€AS

Odel  =def U 0_Sol(Del(a(X)0)y).
(a(X),8,y)€AS
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For any set A of actions, the execution of A on Og is the execution of the set
{(a(X).8,y) | a(f) € AS a(X)8 =a(f)8 ground, (8,y) € O (a (X))}

of all feasible execution triples stemming from some grounded action in AS and
apply(A, Og) denotes the resulting state.
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Definition 6.7 (Sequential-Concurrent Execution)

Suppose we have a set AS=gef {(01;(X;,84,Vi)) | 1 <i < n} of feasible execution
triples on an agent state Og. Then, ASis said to be S-concurrently executabla state
Og, if, by definition,there exists a permutation Tt of ASand a sequence of states

Og, ..., 0% such that:
o Og = Oy and
e forall1<i<n, the action an(i)(in(i)) is (Ori), Yryi) ) -€xecutable in the state
O, and O = apply((Xui), Oy Vi) O -

In this case, ASis said to be Trexecutableand Of is the final state resulting from the
executionASTT.

A set ACSof actions is S-concurrently executable on the agent state O, if the set
{(@(X),8,y) | a(f) € ACS a(R)8 = a(®)8 ground, (8,y) € OF (a(X))} is
S-concurrently executable on Og.
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Definition 6.8 (Full-Concurrent Execution)

Suppose we have a set AS=gef {(01;(X;,84,Vi)) | 1 <i < n} of feasible execution
triples and an agent state Og. Then, ASis said to be F-concurrently executabla
state Og , if and only if the following holds:

1. For every permutation T, ASis T-executable.

2. For any two permutations Ty, T of AS the final states ASTy| and ASTD,
respectively, which result from the executions are identical.

A set ACSof actions is F -concurrently executable on the agent state Og, if the set
{(a(X),8,y) | a(f) € ACSa(X)8 = a(f)ground (8,y) € Or (a (X))},

is F -concurrently executable on Og.
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Example 6.4 CHAIN Revisited)

Consider the following set of action executions:

updatestockDEwidget5,250, companyA),
updatestockDRwidget10, 100, companyB),
updatestockDRwidget5,500, companyB).

The uncommitted stock database contains (widget5,1000), (widget10,500) and
(widget15,1500), and the committed stock database contains (widget5,2000),
(widget10,900) and (widget15,1500). Weak concurrent execution of these actions
will attempt to execute an action, having delete list

in(X, supplier:selecfuncommitted id, =, widget5)),
in(Y,supplier:select'committed id, =, widget5)),
in(X, supplier:selecfuncommitte id, =, widget10)),

in(Y,supplier:select’committed id,=,widget10)).
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It 1s important to note that even though we should have two “copies” each of the first
two code calls above, one copy suffices, because weak concurrent executions
considers the union of the delete lists and the union of the add list. Likewise, this
action has the add list

in((widget5,750), supplier:select’uncommitted id, =, widget5)),
in((widget5,500), supplier:select'uncommitted id, =, widget5)),

INn

~

<
(widget5,2250), supplier:select'committed id, =, widget5)),
in({(widget5,2500), supplier:selectcommitted id,=,widget5)).
in((widget10,400), supplier:selecf'uncommittet id, =,widget10)),
in({(widget10,1000), supplier:select'committed id, =, widget10)).

We see that the above executions lead to an intuitively inconsistent state in which the

committed stock database claims that the number of committed items of widget 5 is
both 2250 and 2500 !
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Example 6.5 CHAIN example revisited)

Let us return to the situation raised in Example 6.4 on page 237. The following set of
action executions are F-concurrently executable:

updatestockDEwidget5,250, companyA),
updatestockDEwidget 10,100, companyB),
updatestockDEwidget15,500, companyB).

Further assume that the uncommitted stock database contains the same tuples as in
Example 6.4 on page 237. This set of action executions i1s F-concurrently executable
on this state of the supplier agent, because any permutation of these three actions
will result in the same final agent state. That is, whatever the execution sequence is,
the resulting uncommitted stock database will contain the following tuples:
(widget5,750), (widget10,400) and (widget15,1000).
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Comment 4 Throughout the rest of this course, we will assume that the developer of
an agent has chosen some notionic, of concurrent action execution for his agent.

This may vary from one agent to another, but each agent uses a single notion of
concurrency. Thus, when talking of an aganthe phrase

“AS Is concurrently executable”

IS to be considered to be synonymous with the phrase

“AS is concurrently executable w.r.t. the notionncused by agent.”
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6.3 Action Constraints

Definition 6.9 (Action Constraint)
An action constraint AC has the syntactic form:

{a1(X),...,0x(X)} < X (6.1)

where a1(Xy),...,0x(Xy) are action names, and X is a code call condition.
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Example 6.6 CHAIN Example Revisited)
The following are some action constraints for the supplier agent of CHAIN example:

{ updatestockDEPart_id1,Amount1,Company1l),
updatestockDEPart_id2, Amount2, Company?2) } «
Part_idl =Part_id2 &
in(X, supplier:selecfuncommitted id, =,Part_id1)) &
X.amount < Amount1 4 Amount?2 &

Companyl # Company?2.
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{respondreques{Part_id1, Amount1,Companyl),

respondrequesfPart_id2, Amount?2,Company?2) } «— Part_idl =Part id2 &
Companyl # Company?2.

The first constraint states that if the two update_stockDB actions update the same
Part_id and the total amount available is less than the sum of the requested amounts,
then these actions cannot be concurrently executable. The second constraint states
that if two companies request the same Part_id, then the supplier agent does not
respond to them concurrently. That is, the supplier agent processes requests one at a

time.
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Example 6.7 CFIT Example Revisited)
The following is an action constraint for the autoPilot agent:

{ computecurrentLocatiojReport),
adjustcours€No_go,FlightRoute,CurrentLocation)} <

This action constraint states that the actions compute_currentLocation and
adjust_course may never be executed concurrently. This is because the adjust_course
action requires the current location of the plane as input, and the
compute_currentLocation action computes the required input.
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The following example shows an action constraint for the gps agent:

{collectdata(Satellite),mergedata(Satellitel,Satellite2)} «

Satellite =Satellitel.
{collectdata(Satellite), mergedata(Satellitel,Satellite2)} «

Satellite =Satellite?2.

These two action constraints state that the gps agent cannot concurrently execute the
action merge_data and collect_data, if the satellite it is collecting data from is one of
the satellites whose data it 1s merging.

7.3 Action Constraints 246



Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 6.8 STORE Example Revisited)

The following are some action constraints for the profiling agent in the STORE
example:

{updatehighProfile(Ssn1,Namel,profile),updatelowProfile(Ssn2,Name2, profile) } «
in(spender(high),profiling:classifyUseSsn1))

Ssnl = Ssn2 Namel = Name?2

{updateuserProfiléSsn1,Name1,Profile),classifyuserSsn2,Name2) } «

Ssnl = Ssn2 & Namel = Name?2
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The first action states that if the user is classified as a high spender, then the
profiling agent cannot execute updatehighProfile and updatelowProfile
concurrently. In contrast, the second action constraint states that the profiling agent
cannot classify a user profile if it is currently updating the profile of that user.
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Definition 6.10 (Action Constraint Satisfaction)

A set Sof ground actions satisfies an action constraint AC as in (6.1) on a state Og,
denoted S, O |= AC, if there is no legal assignment 8 of objects in O to the variables
in AC such that X0 is true and {a1(X)8, ..., 0 (X)0} C Sholds (i.e., no concurrent
execution of actions excluded by AC is included in S). We say that Ssatisfiesa set AC
of actions constraints on Og, denoted S,0¢ = AC, it S O¢ = AC for every AC € 4C.

Clearly, action constraint satisfactionhisreditaryw.r.t. the set of actions in-
volved, i.e..S Og = AC implies thatS, O = AC, for everyS C S.
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Example 6.9 STORE Example Revisited)
Suppose our state consists of the three uncommitted stock database tuples given in

Example 6.4 on page 237 and let AC be the first action constraint given in
Example 6.6 on page 242. Then if S; consists of

updatestockDEwidget5,250, companyA),
updatestockDRwidget10, 100, companyB),
updatestockDEwidget5,500, companyB)

and S consists of
updatestockDEwidget5, 750, companyA),

updatestockDRwidget10,100, companyB),
updatestockDEwidget5,500, companyB)
S satisties AC but S does not because (Part_idl = Part_id2 = widget5), only

X.amount = 1000 units of this part are available, and
(Amount1 + Amount2) = (750 + 500) > 1000.
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6.4 Agent Programs: Syntax

Thus far, we have introduced the following important concepts:

Software Code Calls § :f(ay,...,ay)): this provides a single framework within
which the interoperation of diverse pieces of software may be accomplished;

Software/Agent states Q¢): this describes exactly what data objects are being
managed by a software package at a given point in time;

Integrity Constraints ( IC): this specifies exactly which software states are “valid”
or “legal™;

Action Base (A‘B): this is a set of actions that an agent can physically execute (if the
preconditions of the action are satisfied by the software state);

Concurrency Notion (cong: this is a function that merges together a set of actions
an agent is attempting to execute into a single, coherent action;

Action Constraints (AC): this specifies whether a certain set of actions is
incompatible.
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Definition 6.11 (Action Status Atom)
Suppose 0 (1) is an action atom, where T is a vector of terms (variables or objects)

matching the type schema of 0. Then, the formulas P(a(t)), F(a(t)), O(a(t)),
W (a(t)), and Do(a(t)) are action status atoms

The set AS= {P,F,O, W,Do} is called the action status set .

e Pa means that the agent is permitted to take aatipn

e Fa means that the agent is forbidden from taking

e Oa means that the agent is obliged to take action

e Wa means that obligation to take actians waived; and,

e Doa means that the agent does take action

7.4 Status Atoms and Action Rules 252



Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 6.12 (Action Rule)
An action rule(rule, for short) is a clause r of the form

where Opa (Y) is an action status atom, and each of L1, ..., Ly, is either an action status
atom, or a code call atom, each of which may be preceded by a negation sign (—).
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Definition 6.13 (Safety)
We require that each rule r be safein the sense that:

1. Bgc(r) is safe modulo the root variables occurring explicitly in BI((r), and

2. the root of each variable in r occurs in Bee(r) UBZ(r).
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e All variables in a rule are implicitly universally quantified at the front of the
rule. A rule ispositive if no negation sign occurs in front of an action status
atom in its body.

e For any ruler of the form (6.2), we denote by

— H(r), the atom in the head of

— B(r), the collection of literals in the body;

— B~ (r) the negative literals iB(r),

— B™(r) the positive literals irB(r),

— —.B7(r) the atoms of the negative literalsB7 (r).

e Finally, the indexas(resp.,cc) for any of these sets denotes restriction to the
literals involving action status atoms (resp., code call atoms).
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Definition 6.14 (Agent Program)
An agent progran® is a finite collection of rules. An agent program ‘P is positiveif
all its rules are positive.
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Example 6.10 CHAIN Example Revisited)

The supplier agent may use the agent program shown below. In the following rules,
the supplier agent makes use of the message box to get various variables it needs. In
order to extract variables, the supplier agent invokes the code call getVar of the

message box domain.

rl: FupdatestockDEPart_id,Amount requested,Company) «
O processrequestMsg.Id,Agent),
iNn(Amount_requested, msgbox :getVaqMsg.1d,” Amount_requested”)),
in(Part_id, msgbox :getVanMsg.1d,”Part_id")),
in(Company, msgbox :getVaMsg.1d,”Company”)),
in(amount _not_available, supplier:monitorStockAmount_requested,Part_id))

This rule ensures that we cannot invoke update_stockDB when

Amount_requested exceeds the amount available.
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r2: FupdatestockDEPart_id1,Amount _requestedl,Companyl) «
O processreques{Msg.Id1,Agent1),
O processrequesfMsg.Id2,Agent?2),
in(Amount_requested1, msgbox:getVaMsg.1d1,” Amount_requestedl”)),
iNn(Amount_requested2, msgbox :getVaMsg.1d2,” Amount_requested2”)),
in(Part_id1, msgbox:getVanMsg.Id1, Part_id1")),
in(Part_id2, msgbox:getVanMsg.1d2, Part_id2")),
iNn(Company1, msgbox:getVanlsg.1d1,”Companyl”)),
iNn(Company2, msgbox :getVanlsg.1d2,”Company2”)),
=(Part_id1, Part_id2),
Do updatestockDEPart_id2, Amount _requested2,Company?2),
=(Amount_requested, Amount_requestedl + Amount_requested?2),
in(amount _not_available, supplier:monitorStockAmount_requested,Part_id))
Companyl # Company?2
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This rule ensures that we do not invoke update_stockDB for

Amount _requestedl units of Part_id1 when the Amount requestedl
exceeds the amount that will be available after our agent finishes the
update_stockDB action for Amount _requested?2 units of Part_id2.
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r3: O order_part(Part_id,amount_to_order) «—
O processrequestMsg.Id,Agent),
in(Amount_requested, msgbox :getVanMsg.I1d,” Amount_requested”)),
in(Part_id, msgbox:getVaMsg.1d, Part_id")),
in(supplies_too_low, supplier:toolow_thresholdPart_id)),
in(amount _not_available, supplier:monitorStocksupplies_too_low,Part_id)),

If our supply for Part_id falls below the supplies_too_low threshold, then we
are obliged to order amount_to_order more units for this part. Note that
amount_to_order and supplies_too_low represent integer constants.
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r4: Porder_part(Part_id,amount_to_order) «
O processrequesfMsg.Id, Agent),
iNn(Amount_requested, msgbox :getVagMsg.1d,” Amount_requested”)),
in(Part_id, msgbox:getVanMsg.1d,”Part_id")),
in(supplies_low, supplier:low_thresholdPart_id)),
in(amount _not_available, supplier:monitorStocksupplies_low,Part_id)),

If our supply for Part_id falls below the supplies_low threshold, then we may
order amount_to_order more units for this part. When supplies_low >
supplies_too_low, we may use rule r4 to reduce the number of times we need
to invoke rule R3. Note that amount_to_order and supplies_too_low
represent integer constants.
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r5: W order_part(Part_id,amount_to_order) «
O processrequestMsg.Id,Agent),
iN(Amount_requested, msgbox:getVanMsg.1d,” Amount_requested”)),
in(Part_id, msgbox :getVaMsg.1d, Part_id")),
in(supplies_low, supplier:low_thresholdPart_id)),

in(amount _not_available, supplier:monitorStocksupplies_low,Part_id)),
in(part_discontinued, supplier:productStatu@art_id))

If the part Part_id has been discontinued, we are not obliged to order
amount_to_order more units of the part when supplies fall below our
supplies_too_low threshold (i.e., when rule R3 is fired).
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r6: O reques(’plant”,”find:supplier”) «—
O processrequestMsg.Id,Agent),
iN(Amount_requested, msgbox :getVagMsg.1d,” Amount_requested”)),
in(Part_id, msgbox :getVaMsg.1d, Part_id")),
Do order_part(Part_id, Amount requested)

If we decide to order Amount _requested units of part Part_id, request the
plant agent’s find: supplierservice to determine if there is a supplier which can
provide Amount _requested units of Part_id. Note that the supplier agent
does not know how the plant agent decides upon which manufacturing plant to
use.
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r7: O reques(’shipping”,"prepare:schedule(shipping”) <«
O processreques{Msg.Id, Agent),
O processrequest(Msg.Id1,Agent1),
=(Agent1, plant),
iNn(Amount_requested, msgbox :getVagMsg.1d,” Amount_requested”)),
in(Part_id, msgbox:getVanMsg.1d,”Part_id")),
in(Part_supplier, msgbox:getVaMsg.1d1, Part_supplier”)),
Do order_part(Part_id, Amount requested),

If we decide to order Amount_requested units of part Part_id, we must also
use the shipping agent’s prepare: schedule(shippingervice to determine how
and when the requested Amount_requested units can be shipped to us from the
Part_supplier, which is determined by the plant agent. Part_supplier is
extracted from a message sent from the plant agent in response to the supplier
agent’s request to the find: supplierservice.
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r8: O processreques(VMsg.Id,Agent) «—
in(Msg, msgbox :getAllMsgg)),
=(Agent,Msg.Source),

This rule says that the agent is obliged to process all requests in its message box
from other agents. This does not mean that it will respond positively to a request.

r9: O deletemsgVMsg.Id) «
Do processreques{Msg.1d,Agent)

This rule says that the agent deletes all messages that it has processed from its
message box.
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Before proceeding to discuss the formal semantics of agent programs, we quickly
revisit the architecture of an agent’s decisionmaking component shown in
Figure 6.1 on page 217.

1. Every agent managessat of data typeshrough a set of well-definethethods

2. These data types and methods include a message box data structure, with
associated manipulation algorithms described in Chapter 3.

3. At a given point in time, thestate of an agen{ O, reflects the set of data items
the agent currently has access to—these data items must all be of one of the data
types alluded to above.

4. At timet, the agent may receive a set new messages—these new messages
constitute ¢ change to the state of the agent
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5. The aforementioned changes n trigger one or more rulesn the agent’s
associated agent program to become true. Based on the selected semantics for
agent programs (to be described in Subsection 6.5), the agent makes a decision
on what actions to actually perform, in keeping with the rules governing its
behavior encoded in its associated Agent Program. This computation is made by
executing a program callédomputeSemwhich computes the semantics of the
agent.

6. The actions that are supposed to be performed according to the above
mentioned semantic are then concurrently executedsing the notion of
concurrencyconc, selected by the agent’s designer. The agent’s state may
(possibly) change as a consequence of the performance of such actions. In
addition, the message box of other agents may also change.

7. The cycle continues perpetually.
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Algorithm 6.1 (Agent-Decision-Cycle)
Agent-Decision-Cycle(Curr: agent_state;
IC: integrity constraint set;
AC: action constraint set;
AB : action base;
conc: notion of concurrency;

Newmsg: set of messages )

1. while true do
2. { DoSet= ComputeSe(Curr, IC,AC,AB,conc, Newmsg;

(% find a set of actions to execute based on messages received *)
3. Curr := result of executing the single action congDoSe}; }

end.

7.4 Status Atoms and Action Rules 268



Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 6.11 CHAIN Example Revisited)
Consider the agent program for the supplier agent given in Example 6.10 on

page 256.

1. Each time we sell supplies, our agent consults rules rl and r2 to ensure that the
amount requested never exceeds the amount available, even if the requests are
coming from multiple companies. If two concurrent requests for the same part
are considered by the supplier of Example 6.10 on page 256, and if both these
requests can be individually (but not jointly) satisfied, then our current example
non-deterministically satisfies one. The agent program in question does not adopt
any preference strategies.

2. If we do not replenish our supplies, rule r4 will fire when our supply of part
Part_id falls below the supplies_low threshold. Our agent is now allowed to
order more supplies. If more supplies are not ordered, rule r3 will eventually fire
when our supply of part Part_id falls below the supplies_too_low threshold. The
agent is now obliged to order more parts. This obligation can be waived,
however, if part Part_id has been discontinued (see rule r5).
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3. When we order parts, rule r6 will fire. Here, the supplier agent consults the
plant agent to determine which supplier to use. Once an appropriate supplier
has been found, the supplier agent asks the shipping agent to provide a
shipping schedule (rule r7) so the ordered parts can be delivered.

It 1s easy to see, from rules (r8) and (r9) that the same message requesting parts will
not be considered twice. Rule (r9) ensures that once a message 1s processed, it 1s
deleted from the message box.
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Example 6.12 CFIT Example: Multiagent Interaction)

The reader may be wondering exactly how the agents in a multiagent application
interact with one another. In this example, we provide a discussion of how this
happens in a microcosm of the CFIT example. Appendix A of this book contains the
full working code for agents in the CFIT example.

Consider the autoPilot agent in the CFIT example. Every A units of time, the
autoPilot agent receives a message from a clock agent. This message includes a
“Wake” request telling the autoPilot agent to wake up.

The agent program associated with autoPilot causes the Dowakeaction to be
executed, which 1n turn triggers other actions. These include:

e Executing an action sendMessagq@utoPilot, gps, <servicerequest-) where
the service request <Servicerequest- of the gps agent is requesting the current
location of the plane.
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e The gps agent executes its getAlIMsgsand retrieves the message sent by the
autoPilot agent.

e The decision program of the gps agent executes this request and also executes
the action sendMessaggps, autoPilot, <answer-) where <answer> is the
answer to the request made by the autoPilot agent.

e The autoPilot agent executes the getAllIMsgsaction and retrieves the message
sent by the gps agent.

e The decision program of the autoPilot agent checks to see if the location of the
plane sent by the GPS is where the flight plan says the plane should be. If yes, it
executes the action sleepand goes to sleep for another A units of time. If not, it

executes the action
sendMessadautoPilot,terrain, <request)

where <request> requests the terrain agent to send the elevation of the plane
at its current location (as determined by the GPS agents) as well as send the

No_go areas.

7.4 Status Atoms and Action Rules 272



Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

e The terrain agent executes its getAllIMsgsaction and retrieves the message sent
by the autoPilot agent.

e The decision program of the terrain agent executes this request and also
executes the action sendMessadeerrain, autoPilot, Ans) where Ans is the
answer to the request made by the autoPilot Agent.

e The autoPilot agent executes the getAlIMsgsaction and retrieves the message
sent by the terrain agent.

e It then executes its replan action with the new terrain (correct) location of the

plan and the terrain “no go” areas.

7.4 Status Atoms and Action Rules 273



Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

6.5 Status Sets

If an agent uses an agent progr@nthe question that the agent must answer, over
and over again is:

What is the set of all action status atoms of the f@row that are true with re+
spect taP, the current stateQ, the underlying selC of action constraints,
and the seflC of underlying integrity constraints on agent states?

This defines the set of actions that the agent must execute concurrently.
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While feasible status sets do not constitute a semantics for agent programs, every
semantics we define for Agent Programs will build upon this basic definition.

Intuitively, a feasible status set consists of assertions about the status| of ac-
tions, such that these assertions are compatible with (but are not necgssarily
forced to be true by) the rules of the agent program and the underlying action

and integrity constraints.
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Definition 6.15 (Status Set)
A status sefs any set S of ground action status atoms over §. For any operator
Op € {P,Do,F,0,W }, we denote by Op(S) the set Op(S) = {a | Op(a) € S}.

Informally, a status seb represents information about the status of grogund
actions. If some atorop(a) occurs inS then this means that the statog is
true fora.
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Definition 6.16 (Deontic and Action Consistency)
A status set Sis called deontically consistent , if, by definition,it satisfies the
following rules for any ground action O :

e IfOa € S then Wa ¢ S
o [fPa €S thenFa ¢ S

e IfPa € S then Og = 3*Pre(a), where 3*Pre(a) denotes the existential closure
of Pre(a), i.e., all free variables in Pre(a) are governed by an existential
quantifier.

This condition means that the action O is in fact executable in the state Og.

A status set Sis called action consistent , if S O = AC holds.
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Besides consistency, we also wish that the presence of certain at@watails the
presence of other atoms & For example,

e If Oa isin S, then we expect th&a is also inS, and

e if O isin S, then we would like to havB®oa in S
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Definition 6.17 (Deontic and Action Closure)
The deontic closure of a status S denoted D-CI(S), is the closure of S under the rule

If Oa € S then Pa € §

where O is any ground action. We say that Sis deontically closegdif S= D-CI(S)
holds.

The action closure of a status set S denoted A-CI(S), is the closure of S under the

rules

If Oa € S then Doa € §
If Doa € S then Pa € §

where O is any ground action. We say that a status Sis action-closed, if S= A-CI(S)
holds.
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Proposition 6.1
Suppose Sis a status set. Then,

1. A-CI(S) = Simplies D-CI(S) =S
2. D-CI(S) CA-CI(S), forall S

A status seBSwhich is consistent and closed is certainly a meaningful assignment of a
status to each ground action.

Note that we may have ground actianshat do not occur anywhere within a status
set—this means that no commitment about the statashas been made.

The following definition specifies how we may “close” up a status set under the rules
expressed by an agent progrgn

7.5 Status Sets 280



Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 6.18 (Operator Apps o, (S))

Suppose P is an agent program, and O is an agent state. Then, Appyp o . (S) is
defined to be the set of all ground action status atoms A such that there exists a rule in

P having a ground instance of the formr : A< L1,...,Ln such that
1. Bi4(r) € Sand —.B(r)NS= 0, and
every code call X € Bl(r) succeeds in Og, and

every code call X € —.B..(r) does not succeed in O, and

> wb

for every atom Op(a) € B*(r) U{A} such that Op € {P,O,Do}, the action O is

executable in state Og.
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6.6 Feasible Status Sets

Our approach is to base the semantics of agent programs on consistént and
closed status sets. However, we have to take into account the rules of the pro-
gram as well as integrity constraints. This leads us to the notion of a feasible

status set.

Definition 6.19 (Feasible Status Set)
Let P be an agent program and let Og be an agent state. Then, a status set Sis a
feasible status sébr P on Oy, if the following conditions hold:

(S1) (closure under the program rules)  Appp o (S) C S
(S2) (deontic and action consistency) Sis deontically and action consistent;
(S3) (deontic and action closure) Sis action closed and deontically closed;

(S4) (state consistency) O’ = IC, where O'; = apply(Do(S), Og) is the state
which results after taking all actions in DO (S) on the state Og.
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In general, there are action programs that have zero, one or several feasible status
sets. This is illustrated through the following examples.

Example 6.13 CHAIN example revisited)
Let us consider a simple agent program containing just the rule (r4) of Example 6. 10,
together with rule (r8) and (r9) that manage the message box.

r4: Porder_part(Part_id,amount to_order) «
O processrequestMsg.Id,Agent),
iN(Amount_requested, msgbox :getVagMsg.1d,” Amount_requested”)),
in(Part_id, msgbox :getVanMsg.Id,"Part_id")),
in(supplies_low, supplier:low_thresholdPart_id)),
in(amount _not_available, supplier:monitorStocksupplies_low,Part_id)).
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Suppose the current state of the agent supplier is such that the number of items of a
certain part say (p50) falls below the supplies_low threshold for that part. Suppose
the company making the request is zzz_corp, and the Amount _requested is 50, and
the amount_to_order is 2000. In this case, this agent program will have multiple
feasible status sets. Some feasible status sets will contain P order_part(p50,2000)
but will not contain Do order_part(p50,2000). However, other feasible status sets
will contain both P order_part(p50,2000) and Do order_part(p50,2000).
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Example 6.14 CHAIN example revisited)

On the other hand, suppose our agent program contains rules (r3), (r8) and (r9) of
Example 6.10 on page 256, and suppose that for all parts, the amount of the part in
stock is above the too_low_threshold amount. Further, suppose our agent program

contains the rule

F order_part(Part_id, Amount _requested) «
O processrequestMsg.Id,Agent),
iNn(Amount_requested, msgbox :getVanMsg.1d,” Amount_requested”)),
in(Part_id, msgbox:getVanMsg.1d,”Part_id")),
—O order_part(Part_id, Amount_requested).

In this case, for all parts, we are forbidden from placing an order. Hence, this agent
program has only one feasible status set, viz. that which contains status atoms of the
form

F order_part(Part_id, Amount requested)

together with relevant message processing action status atoms .
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Example 6.15
The following (artificial) example shows that some agent programs may have no
feasible status sets at all.

Pa <«
Fa

Clearly, if the current object state allows O to be executable, then no status set can
satisfy both the closure under program rules requirement, and the deontic consistency

requirement.

Proposition 6.2 (Properties of Feasible Status Sets)
Let S be a feasible status set. Then,

1. If Do(a) € S then Og = Pre(a);
2. If Pa ¢ S thenDo(a) ¢ S;

3. It Oa € S then Og = Pre(a);

4. If Oa € S thenFa ¢ S
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We note that feasible status sets may inclDdeng actions that are not strictly
necessary.

Example 6.16 (ExpandedCHAIN Example)

Let us return to the example feasible status sets we saw in Example 6.13 on page 282.
In this case, this agent program had multiple feasible status sets. Some feasible status
sets will contain P order_part(p50,2000) but will not contain

Do order_part(p50,2000). However, other feasible status sets will contain both

P order_part(p50,2000) and Do order_part(p50,2000). It is immediately apparent
that we do not want both action status atoms P order_part(p50,2000) and

Do order_part(p50,2000) to be present in feasible status sets: there is no good
reason to in fact perform the action order_part(p50,2000) (the agent program in
question does not mandate that Do order_part(p50,2000) be true).

7.6 Feasible Status Sets 287



Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

6.7 Rational Status Sets

e The notion of a rational status set is postulated to accommodate this kind of

reasoning. It is based on the principle that each action that is executed should be
sufficiently “grounded” or “justified” by the agent program.

That is, there should be evidence from the rules of the agent program that
a certain action must be executed.

e For example, it seems unacceptable that an actigexecuted, ifx does not
occur in any rule of the agent program at all.
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Definition 6.20 (Groundedness; Rational Status Set)
A status set Sis groundedif there exists no status set S # Ssuch that S C Sand S
satisfies conditions (S1)—(S3) of a feasible status set.

A status set S is a rational status setif S is a feasible status set and S is
grounded.
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Example 6.17 (ExpandedCHAIN Example Continued)
Returning to Example 6.16 on page 286, it is immediately apparent that all feasible

status sets that contain both P order_part(P,N) and Do order_part(P,N) are not
rational, while those that only contain P order_part(P,N) satisfy rationality.
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Observe that the definition of groundedness does not include cont#pf a
feasible status set. A moment of reflection will show that omitting this condition is
indeed appropriate.

Recall that the integrity constraints must be maintained when the current agent state
Is changed into a new one.

If we were to include the conditio(4) in groundedness, it may happen that
the agent is forced to execute some actions which the program does nagt men-
tion, just in order to maintain the integrity constraints.
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We define for every positive progra#hand agent stat® an operatofl ¢ o, that
maps a status s&ito another status set.

Definition 6.21 (T o, Operator)

Suppose P is an agent program and O¢ an agent state. Then, for any status set S

Tr,0,(S) = APPs o, (S) UD-CI(S) UACI(S)

7.7 Rational Status Sets 292



Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Lemma 6.1

Let P be an agent program, let Og be any agent state, and let S be any status set. If S
satisfies (Sl) and (S3) of feasibility, then Sis pre-fixpoint of Tp ., i.€.,
Tp0,(SCS

Theorem 6.1
Let P be a positive agent program, and let O be an agent state. Then, Sis a rational
status set of P on Og, if and only if S=Ifp(Te o, ) and Sis a feasible status set.

Corollary 1
Let P be a positive agent program. Then, on every agent state O, the rational status
set of P (if one exists) is unique, i.e., if S S are rational status sets for P on O, then

S=S.
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Example 6.18 CHAIN example revisited)

Let us return to the agent program described in Example 6.16 on page 286. Let us
augment this example with a new action, fax_order. Suppose we augment our agent
program of Example 6.16 on page 286 with the two rules

Do fax.order(company1,Part_id, Amount_requested) «
O processrequestMsg.Id,Agent),
in(Amount_requested, msgbox:getVaMsg.1d,” Amount_requested”)),
in(Part_id, msgbox:getVaMsg.1d, Part_id")),
Do order_part(Part_id, Amount_requested),
— Do fax.order(company2,Part_id, Amount _requested).

P fax order(company2,Part_id, Amount_requested) «
O processrequesfMsg.Id, Agent),
iN(Amount_requested, msgbox:getVaMsg.1d,” Amount_requested”)),
in(Part_id, msgbox :getVanMsg.Id,"Part_id")),
Do order_part(Part_id, Amount requested),
=(Part_id,p50).
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It is now easy to see that there are two rational status sets—one of which contains the
status atom Do fax.order(company1,Part_id,2000) and the other

Do fax.order(company2,Part_id,2000). Thus, the introduction of negated status
atoms in rule bodies leads to this potential problem.
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As shown by Example 6.18 on page 293 Corollary 1 on page 292 is no longer true in
the presence of negated action status atoms .

We note the following property on the existence of a (not necessarily unique) rational
status set.

Proposition 6.3
Let P be an agent program. If IC = 0, then P has a rational status set if and only if P
has a feasible status set.
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6.8 Reasonable Status Sets

A more serious attack against rational status sets, is that for agent programs with
negation, the semantics rational status sets allows logical contrapositiofithe
program rules. For example, consider the following program:

Do(a) « —Do(B).

This program has two rational status s&s= {Do(a),P(a)}, and
S ={Do(B),P(B)}. The second rational status set is obtained by applying the
contrapositive of the rule:

Do(B) « —Do(a)

However, the second rational set seems less intuitive than the first as there is no
explicit rule in the above program that justifies the derivation of Bogp3).
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We introduce the concept ofraasonable status sethe reader should note that if he
really does want to use contraposition, then he should choose the rational status set
approach, rather than the reasonable status set approach.

Definition 6.22 (Reasonable Status Set)
Let P be an agent program, let Og be an agent state, and let S be a status set.

1. If P is a positive agent program, then Sis a reasonable status séi P on Oy, if
and only if Sis a rational status set for P on Og.

2. The reduct of P w.r.t. Sand O, denoted by red>(P, O), is the program which is
obtained from the ground instances of the rules in P over Og as follows.

(a) First, remove every rule r such that B_¢(r) NS+ 0;
(b) Remove all atoms in Bo4(r) from the remaining rules.

Then Sis a reasonable status st P w.r.t. Og, if it is a reasonable status set of
the program red>(P, Os) with respect to Og.
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Example 6.19 CHAIN example revisited)

Let us return to the case of the agent program presented in Example 6.18 on
page 293. Here we have two rational status sets, one containaing

Do fax order(company1,p50,500), while the other contains

Do fax order(company2,p50,500).

According to the above definition, only the rational status set that contains the status
atom Do fax.order(company1,p50,500) is reasonable. The reason is that the first
rule listed explicitly in Example 6.18 on page 293 says that if we do not infer

Do fax order(company?2,p50,500), then we should infer

Do fax order(company1,p50,500), thus implicitly providing higher priority to the
rational status set containing Do fax_order(company1,p50,500),.
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A more simplistic example is presented below.

Example 6.20
For the program P:

Do3 «— -Doaq,
the reduct of P w.r.t. S= {Do[3,PB} on agent state O is the program
Dof3 «

Clearly, Sis the unique reasonable status set of red>(P, Os), and hence Sis a
reasonable status set of P.
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The use of reasonable status sets also has some benefits with respect to knowledge
representation. For example, the rule

Doa «+— —Fa (6.3)

says that action is executed by default, unless it is explicitly forbidden (provided, of
course, that its precondition succeeds). This default representation is possible because
under the reasonable status set approach, the rule itself can not be used tbalerive
which is inappropriate for a default rule.

Proposition 6.4
Let P be an agent program and O¢ an agent state. Then, every reasonable status set of
P on Og is a rational status set of P on Og.
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6.9 Summary

This chapter was about tlikecision making componenof an agent:
How to decide what actions to take given the current state of the world?

1. We introducedactionsa.

(a) Much like the classical STRIPS-approach: instead of logical atoms, we
consider code call atoms. Actions are implemented by code.

(b) How to concurrently execute actions? We assume givem.
(c) Actions do have a statugP,F,O, W,Do}.

2. The semantics is given by certatatus setf an agent program:
(a) An agent program consists of rul&pa < Opf1,...,0pBn,cca,...,CCq.

(b) A feasible status seis a set of status atom{®p,01,...,0p,0,} Satisfying
certain properties.

(c) Rational status sets = FeasibleGroundedness

(d) Reasonablestatus sets Rational + Contraposition not allowed
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e We define (in Section 7.1), a class of agents ce weak regular agentghat
serve as a stepping stone to later defining regular agents.

e \We derive (in Section 7.2) various theoretical properties of weak regular agents
that make the design of computation proceduréo compute regular agents
polynomial.

e We extend (in Section 7.3) the definition of weak regular agents to define
regular agents—the central contribution of this Section.
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7.1 Weakly Regular Agents

WRAPs are characterized by three basic properties:

Strong Safety: In addition to the safety requirement on rules introduced in Section 5
(Definition 5.8), code call conditions are required to satisfy some additional
conditions which ensure that th always return finite answers

Conflict-Freedom: The set of rulesin a WRAP should not lead to conflicts—for
example, the rules must not force an agent to do something it is forbidden to do.

Deontic Stratifiability: This is a property in the spirit of stratification in logic
programs ), which prevents problems with negatiom rule bodies. However,
deontic stratification is more complex than ordinary stratification (due to deontic
modalities).
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7.1.1 Strong Safety

Safety is acompile-timecheck that ensures that all code calls generategmatime
have instantiated parameters. However, executability of a code call condition does not
depend solely on safety. For example, consider the simple code call condition

in(X, math:geq25)).

Though this code call condition is safe, it leads to an infinite set of ppssi-
ble answers, leading to non-termination.
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Consider, for instance, the code call condition
in(X, math:geq25)) & in(Y, math:squaréx)) & Y < 2000
Clearly, over the integers there are only finitely many ground substitutions that cause

this code call condition to be true. Furthermore, this code call condition is safe.

However, its evaluation may never terminate. The reason for this is that safety
requires that we first compute the set of all integers that are greater than 25, leading to
an infinite computation.

This means that in general, we must impose some restrictions on code call
conditions to ensure that they are finitely evaluable.
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As is well known, determining whether a function is finite or not is undecid-
able (), and hence, input from the agent developer is imperative.

Definition 7.1 (Binding Pattern)

Suppose we consider a code call § :f(ay,...,a,) where each a; is of type Tj. A
binding patternfor $ :f (a4, ..., ay) is an n-tuple (bty, ..., bt,) where each bt (called a
binding tern) is either:

1. A value of type T;, or

2. The expression b denoting that this argument is bound to an unknown value.
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We require that the agent developer must specifynigenesspredicate that
may be defined via &niteness tabldaving two columns—the first column

IS the name of the code call, while the second column is a binding pattern for
the function in question.

Intuitively, suppose we have a row of the form

(S :f(a1,22,2a3),(0,5,0))

In the finiteness table. Then this row says that the answer returned by any code call of
the forms$ :f(—,5, —) is finite.
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Example 7.1 (Finiteness Table for AutoPilot Agent InCFIT Example)
An example of a finiteness table is given below.

Code Call Binding Pattern

autoPilot :readGPSDat&gensorId) (b)

autoPilot:calculateLocatiofLocation,FlightRoute, Speed) ,D,b)

27

autoPilot:calculateNFlightRoutgSurrentLocation,No_go,N)

(b,b
autoPilot:calculateNFlightRoutgSurrentLocation,No_go,N) (b,b,1)

(b,b,2)
autoPilot :calculateNFlightRout@€urrentLocation,No_go,N) (b,b,3)

’7

This indicates that autoPilot :readGPSDat@ and autoPilot : calculateLocatiog)

always return a finite number of answers.
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The code call autoPilot:calculateNFlightRoutgSurrentLocation,No_go,N)
returns up to N flight routes when N # 0. If N = 0, then an infinite number of flight
routes (which start at CurrentLocation and avoid the given No_go areas) may be
returned. Our finiteness table above indicates that when 1 < N < 3,

autoPilot : calculateNFlightRoute3 will only return a finite number of answers.
Notice that this table is incomplete since it does not indicate that a finite number of

answers will be returned when N > 3.
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From the fact that any code call of the fo$nf(—, 5, —) has a finite answer, we
should certainly be able to infer that the code gali (20,5, 17) has a finite answer.

In order to make this kind of inference, we need to associate@sring on binding
patterns We say thab < val for all values, and take the reflexive closure. We may
now extend this< ordering to binding patterns.
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Definition 7.2 (Ordering on Binding Patterns)
We say a binding pattern (bty,. .., bt,) is equally or less informativéhan another
binding pattern (bty,...,bt,) if, by definition,for all 1 <i < n, bt < bt

We will say (bty, ..., bty) is less informativehan(bty, ..., bt)) if and only if it is
equally or less informative thaffoty, ..., bt,) and(bty, ..., bt)) is not equally or less
informative than(bty, ..., bt,). If (bty,...,bt,) is less informative thagbt, ..., bty),
then we will say thatbty, ..., bty) is more informativehan(bty, ..., bt)).
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Suppose now that the developer of an agent specifies a finitenesEINIAB. The
following definition specifies what it means for a specific code call atom to be
considered finite w.r.tFINTAB.

Definition 7.3 (Finiteness)

Suppose FINTAB is a finite finiteness table , and (bty, ..., bty) is a binding pattern
associated with the code call § :f(---). Then FINTAB is said to entail the finiteness of
S :f(bty,...,bty) if, by definition,there exists an entry of the form
($:f(..),(bty,...,bt))) in FINTAB such that (bty,...,bt,) is more informative than

(bt,,....bt).

8.1 Weakly Regular Agents 314



Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 7.2 (Finiteness Table)

Let FINTAB be the finiteness table given in Example 7.1 on page 309. Then FINTAB
entails the finiteness of autoPilot :readGPSDaté&) and

autoPilot :calculateNFlightRoute$221,379,433),0, 2) but it does not entail the
finiteness of autoPilot :calculateNFlightRoutg%221,379,433),0,0) (since this
may have an infinite number of answers) or

autoPilot :calculateNFlightRoutg%221,379,433),0,5) (since FINTAB is not

complete).
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e \We have now defined a condition to ensure finiteness of a code call of the form
S:f(..).

e Defining strong safety of a code calbndition is more complex. For instance,
even if we know thas :f(t4,...,ty) is finite, the code call atom
not.in(X,S$ :f(t,...,ts)) may have an infinite answer. Likewise for comparison
conditions.

8.1 Weakly Regular Agents 316



Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

We make two simplifying assumptions, though both of them can be easily modified to
handle other cases:

1. First, we will assume that every functidnhas a complemerft. An objecto is
returned by the code cal: f(t4,...,ty) if, by definition, dis not returned by
S:f(t1,...,tn). Once this occurs, all code call atomst_in(X,S$:f(t1,...,t.))
may be rewritten as(X,$: f(t+,...,t,)) thus eliminating the negation
membership predicate.

When the agent developer creaf@STAB, he must also specify the finite-
ness conditions (if any) associated with function célls
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2. Second, in the definition of strong safety below, we assume that all comparison
operators involve variables over types having the following property.

Downward Finiteness Property. A typet is said to have thdownward finiteness
property if, by definitionit has an associated partial orderkdgsuch that for all
objectsx of typeT, the set{d’ | 0’ is an object of typa andd’ < o} is finite.

It is easy to see that the positive integers have this property, as do the set of all
strings ordered by the standard lexicographic ordering. (Later, we will show how
this property may be relaxed to accommodate the reals, the negative integers, and

SO on.)
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Definition 7.4 (Strong Safety)

A safe code call conditionX = X1 & ...& Xn is strongly safew.r.t. a list X of root
variables if, by definition,there is a permutation Tt witnessing the safety of X modulo
X such that for each 1 <i <n, Xni) s strongly safe modulo X, where strong safety of

Xn(i) 1s defined as follows:

1. Xmiy 1s a code call atom.
Here, let the code call of Xyj) be S :f(ty,...,tn) and let the binding pattern

(bty, ..., bty) be defined as follows:
(a) Ift; is a value, then bty =gef ;.
(b) Otherwise t; must be a variable whose root occurs either in X orin Xn(j) for

some | < I. In this case, bt =gef d.

Then, Xy is strongly safe If, by definition,FINTAB entails the finiteness
of § :f(btl, ‘e ,btn).
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2. Xn(i) iss #t.
In this case, Xryi) is strongly safe If, by definition,each of s and t is either a

constant or a variable whose root occurs either in X or in Xnyj) for some ] <1.

3. Xri(i) iss<tors<t.
In this case, Xryi) is strongly safe If, by definition;t is either a constant or a

variable whose root occurs either in X or somewhere in Xrj) for some ] <.

4. Xn(i) iIss>tors>t.
In this case, Xryi) is strongly safe If, by definition;t < s ort < s, respectively,
are strongly safe.
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Algorithm safe cccdefined in Section 5 may easily be modified to handle a strong
safety check, by replacing the test “select@ll . . ., Xi,, from L such thal;, is safe

moduloX” in step (4) of that algorithm by the test “select al,.... X, fromL such
thaty;, Is stronglysafe moduloX”

Definition 7.5 (Strongly Safe Agent Program)
A ruler is strongly saféf, by definition,it is safe, and Bec(r) is a strongly safe code

call condition. An agent program is Strongly safef, by definition,all rules in it are
strongly safe.
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7.1.2 Conflict-Freedom

The deontic consistency requirement associated with a feasible status set mandates
that all feasible status sets (and hence all rational and reasonable status sets) be
deontically consistenflTherefore, we need some way of

ensuring that agent programs are conflict-free
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Definition 7.6 (Conflicting Modalities)

Given two action modalities Op,0p’ € {P,F,O,Do,W} we say that Op conflicts
with Op’ if, by definition,there is an entry “x” in the following table at row Op and
column Op’:

op\op’ | P F O W Do
P X

F X X X
O X X

W X

Do X

Observe that the conflicts-with relation is symmetric, 1.e. if Op conflicts-with
Op’, then Op’ conflicts-with Op.
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Definition 7.7 (Conflicting Action Status Literals)
Suppose Li,Lj are two action status literals. L; is said to conflict with L; if, by

definition,
e Li,L; are unifiable and their modalities conflict, or
e Li,L; are of the form L; = Op (a(f)) and L; = —0Op’(a(t’)), and
Op (a(T)),0p’(a(t")) are unifiable, and the entry “x ™ is in the following table at

row Op and column —Op’:

Op\—-Op'| P -F -O -W =Do
P X

F X

O X X X
W X

Do X X
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e the action status atonksi(a, b, X) andPa(Z, b, c) conflict. HoweverFa (a, b, X)
and—-Pa(Z,b,c) do not conflict.

e —Pa(Z,b,c) andDoa(Z,b,c) conflict, while the literalfa(Z, b, c) and
—Doa(Z,b,c) do not conflict.

The conflicts-with relation imot symmetric when applied to action status literals.
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A definition expressing that an agent program does not conflict, not must ap-
ply just to the current state, but rather to all possible states the agent can be
In.

Definition 7.8 (Conflicting Rules w.r.t. a State)

Consider two rules rj,rj (whose variables are standardized apart) having the form
ri:opi(a() < B(ri)
rj:op;(B(t)) — B(rj)

We say that ri and rj conflict w.r.t. an agent state O if, by definition,Op; conflicts
with Opj, and there is a substitution O such that:

e 0(TB) = B(1'0) and

o (Bcc(ri) A Bec(rj))0yis true in Og for some substitution Y that causes
(Bee(ri) A Bedrj))0 to become ground and
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e IfOp; € {P,Do,0} (resp., Op; € {P, Do, O}) then a(i8) (resp., B(t'9)) is
executable in Og, and

o (Bas(ri) UBas(rj))0 contains no pair of conflicting action status literals.

Intuitively, the above definition says that for two rules to conflict in a given
state, they must have a unifiable head and conflicting head-modalities, and
furthermore, their bodies must be deontically consistent (under the unifying
substitution) and their bodies’ code call components must have a solution.
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Definition 7.9 (Conflict Free)
An agent program, P, is said to be conflict freeif and only ifit satisfies two
conditions:

1. For every possible agent state Og, there is no pair 1, of conflicting rules in P.

2. For any rule Op;(at(Y)) « ..., (=)0p;(t"),... in P, Op;(a()) and (—)Op;(a(t’))
do not conflict.
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Unfortunately, as the following theorem shows, the problem of determining whether
an agent program is conflict-free in the above definition is undecidable, because
checking the first condition is undecidable.

Theorem 7.1 Undecidability of Conflict Freedom Checking)
The problem of deciding whether an input agent program ‘P satisfies the first
condition of conflict-freedom is undecidable. Hence, the problem of deciding

whether an input agent program P is conflict free is undecidable.

8.1 Weakly Regular Agents 329



Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

However, there are many possible ways to deduficientconditions on agent
programs that guarantee conflict freedom.

If an agent developer encodes his agent program in a way that satisfies these sufficient
conditions, then he is guaranteed that his agent is going to be conflict free.

Definition 7.10 (Conflict-Freedom Test)
A conflict-freedom tesis a function cft that takes as input any two rules r1,r2, and

provides a boolean output such that: if cft(rq,r2) = true, then the pair r1,r satisfies

the first condition of conflict freedom.
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Definition 7.11 (Conflict-Free Agent Program w.r.t. cft)
An agent program P is conflict free w.r.t.cft if and only if for all pairs of distinct
rules ri,rj € P, cft(ri,rj) = true, and all rules in ‘P satisfy the second condition in the

definition of conflict free programs.

Intuitively, different choices of the functioeft may be made, depending upon the
complexity of such choices, and the accuracy of such choices (i.e. how often does a
specific functiorcft return ‘fals€’ on argumentsri,rj) when in factrj,r; do not
conflict?).

In IADE, the agent developer can choose one of several conflict-freedom tests
to be used for his application (and he can add new ones to his list).

Some instances of this test are given below.

8.1 Weakly Regular Agents 331



Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 7.3 (Head-CFTcfty)
Letri,rj be two rules of the form

Now let the head conflict-freedom test cftn be as follows,

( true, if either Op;,Op; do not conflict, or
cftn(ri,rj) = < o (F) and B(t") are not unifiable;

| false otherwise.
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Example 7.4 (Body Code Call CFTgft peo)
Let the body-code conflict-freedom test Cftpcc be as follows:

p

true, if either Op;, Op; do not conflict, or
o (T) and B(t") are not unifiable, or
Cftpec(ri, Mj) = 4 Op;, Opj conflict and o (F),B(t) are unifiable via mgu © and

there is a pair of contradictory code call atoms in B¢¢(r10), Bec(r20);

\ false otherwise.

The expression “J a pair of contradictory code call atoms in Bec(r10),Bec(r20)”
means that there exist code call atoms of form in(X, cc) and not_in(X, cc) which
occur in Bgg(r10) UB¢c(r20), or comparison atoms of the form s, = s, and s; # sy;

sy < 8, and s1 > s, etc.
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Example 7.5 (Body-Modality-CFT, cft pm)
The body-modality conflict-freedom test is similar to the previous one, except that
action status atoms are considered instead. Now let cftyy, be as follows,

p

true  1f Op;,Op; do not conflict or

o (), B(t") are not unifiable or
Cftoec(Fi, 1) = < Op;, Opj conflict, fnda(f),B(’p) are unifiable via mgu 0 and
literals (—)Op;a (t”) in Bag(ri8) fori = 1,2 exist

such that (—)Op1 and (—)Op, conflict;

false otherwise.

\
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Example 7.6 (Precondition-CFT,cft o)

Often, we might have action status atoms of the form Pa,Doa,Oa in a rule. For a
rule ri as shown in Example 7.3 on page 331, denote by r;* the new rule obtained by
appending to B(i) the precondition of any action status atom of the form Pa,Doa, O
(appropriately standardized apart) from the head or body of ri. Thus, suppose I is

Doa(X,Y) « in(X,d:f(Y))&PB&Fy(Y).

Suppose pre(a(X,Y)) =in(Y,d; :f1(X)) and pre(B) =in(3,d; :f2()). Then r* is the
rule
Doa(X,Y) « in(X,d:f(¥))&in(Y,d;:fi(X)) &in(3,d,:f20) &
PB& Fy(Y).

true ifcftpc(r,rs) = true
We now define cftp(ri,rj) = eclIT17)
false otherwise.
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Theorem 7.2
Suppose I is a rule, and o (X) is an action such that some atom Op0 (t) appears in t’s
body where Op € {P,O,Do}. Then:

1. Ifr is safe and o (X) has a safe precondition modulo the variables in X, then r* is
safe.

2. Ifr is strongly safe and O ()2) has a strongly safe precondition modulo X, then r*
is strongly safe.
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7.1.3 Deontic Stratification

Definition 7.12 (Layering Function)
Let P be an agent program. A layering functior¥ is a function £ : P — N\

A layering function assigns a nonnegative integer to each rule in the program, and in
doing so, it groups rules into layers as defined below.

Definition 7.13 (Layers of an Agent Program)
If P is an agent program, and ¢ is a layering function over P, then the i-th layer of P
w.r.t. ¢, denoted T‘f , 1S defined as:

Pt = {re®|ir) =i}

When £ is clear from context, we will drop the superscript and write P; instead of Tf.
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Example /.7 (Layering Functions)
Consider the agent program P given below.

r1: Do executeflight plan(Flight_route) «
in(automated, autoPilot :pilotStatugpilot_message)),
Do createflight_plan(No_go, Flight_route, Current_location)

If the plane is on autopilot and a flight plan has been created, then execute fit.

ro: O createflight_plan(No_go, Flight _route, Current_location) <
O adjustcourseNo_go, Flight_route, Current_location)

If our agent is required to adjust the plane’s course, then it is also required to
create a flight plan.

r3: O maintaincourseno_go, flight_route, current_location) <
in(automated, autoPilot :pilotStatugpilot message)),
— O adjustcourseno_go, flight_route, current_location)

If the plane is on autopilot and our agent is not obliged to adjust the plane’s
course, then our agent must ensure that the plane maintains its current course.
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r4. O adjustcourseno_go, flight_route, current_location) <
O adjustAltitudgAltitude)

If our agent must adjust the plane’s altitude, this it is obliged to also adjust the

plane’s flight route as well.

Note that for simplicity, these rules use constant valued parameters for
maintaincourseand adjustcourse

Let function £, assign O to rule rg, 1 to rules ro,r3, and 2 to rule r1. Then {1 is a
layering function which induces the program layers ?él = {rs}, :Pil = {rp,r3}, and
Tgl = {r1}. Likewise, the function £2 which assigns O to rule r4 and 1 to the
remaining rules is also a layering function. In fact, the function £3 which assigns O to

all rules in P is also a layering function.
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Using the concept of a layering function, we would like to define whidg@ntically
stratifiableagent program is. Before doing so, we introduce a simple ordering on
modalities.

Definition 7.14 (Modality Ordering)
The partial ordering “<” on the set of deontic modalities M = {P, O, Do, W, F} is

defined as follows (see Figure 7.1): O < Do, O <P, Do <P, and Op < Op, for each
Op & M. Furthermore, for ground action status atoms A and B, we define that A < B
if, by definition, A= Opa, B= Op’a, and Op’ < Op all hold.

°p

°\V ®Dp OF

*0

Figure 7.1: Modality ordering
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Definition 7.15 (Deontically Stratifiable Agent Program)
An agent program P is deontically stratifiableif, by definition,there exists a layering
function £ such that:

1. Forevery rulet;: Op;(0(T)) « ...,0p;(B(t)),... in P¢, ifr : Op(B(t")) « ...
is a rule in P such that B(t') and B(t") are unifiable and Op < Op j» then
e(r) < L(rp).

2. Forevery rulet; : Op;(a(f)) « ...,—0p;(B(t)),... in P!, ifr: Op(B(t")) « ...
is a rule in P such that B(t") and B(t") are unifiable and Op < Op j» then
£(r) < £(ry).

Any such layering tunction £ is called a witnessto the stratifiability of P.
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Example 7.8 (Deontic Stratifiability)

Consider the agent program and layer functions given in Example 7.7 on page 337.
Then the first condition of deontic stratifiability requires £(r2) < £(ry) and

£(rq) <L(r2). Also, the second condition of deontic stratifiability requires

£(rq) < £(r3). Thus, £1 and ¢5 (but not £3) are witnesses to the stratifiability of P.

Note that some agent programs are not deontically stratifiable. For instance, let P’
contain the following rule:

r\: Do computecurrentLocatiorreport) <
— Do computecurrentLocatiorn(report)

Here, the author is trying to ensure that a plane’s current location is always computed.
The problem is that the second condition of deontic stratifiability requires

€(ry) < £(r}) which is not possible so P’ is not deontically stratifiable. Note that if we
replace ry with “Do computecurrentLocation(report) < ”, then P’ would be
deontically stratifiable.
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7.1.4 Definition of Weakly Regularity

Definition 7.16 (Strongly Safe Action)
An action a(X) is said to be strongly safew.r.t. FINTAB if its precondition is strongly

safe modulo X, and each code call from the add list and delete list is strongly safe
modulo Y where Y includes all root variables in X as well as in the precondition of .

The intuition underlying strong safety is that we should be able to check
whether a (ground) action is safe by evaluating its precondition. If sa, we
should be able to evaluate the effects of executing the action.
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Definition 7.17 (Weak Regular Agent Program)

Let P be an agent program, FINTAB a finiteness table, and cft a conflict-freedom test.
Then, P is called a weak regular agent prografRAP for short) w.r.t. FINTAB and
cft, if, by definition,the following three conditions all hold:

Strong Safety: All rules in P and actions O in the agent’s action base are strongly
safe w.r.t. FINTAB.

Conflict-Freedom: P is conflict free under cft.

Deontic Stratifiability: P is deontically stratifiable.
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Example 7.9 (SampleWRAP)

Let ‘P be the agent program given in Example 7.7 on page 337 and suppose that all
actions in P are strongly safe w.r.t. a finiteness table FINTAB. Consider the conflict
freedom test cftn. Then P is a WRAP as it is conflict free under cfty, and as it is
deontically stratified according to Example 7.8 on page 341. Now, suppose we add
the following rule to P:

rs: W createflight_plan(no_go, flight_route, current_location) «+—
not_in(automated, autoPilot : pilotStatugpilot _message))

This rule indicates that our agent is not obligated to adjust the plane’s course if the
plane is not on autopilot. Note that as cft,(r2,rs) = false our new version of P is not
conflict free and so ‘P would no longer be a WRAP.
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Definition 7.18 (Weakly Regular Agent)
An agent a is weakly regulaif, by definition,its associated agent program is weakly

regular and the action constraints, integrity constraints, and the notion of concurrency

in the background are all strongly safe.
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It remains to define strongly safeness for constraints and the concurrency notion.

Definition 7.19 (Strongly Safe Integrity and Action Constraints)

An integrity constraint of the form Y = X is strongly safeif, by definition,y is
strongly safe and X is strongly safe modulo the root variables in ). An action
constraint {01(Xy),...,0x(X)} < X is strongly safef and only i’ is strongly safe.

Definition 7.20 (Strongly Safe Notion of Concurrency)
A notion of concurrency, CONG is said to be strongly safeif, by definition,for every
set A of actions, if all members of 4 are strongly sate, then so is con(4).
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7.2 Properties of Weakly Regular Agents

e Every deontically stratifiable agent program (and hence e&@AP) has a
so-called “canonical layering”.

e Every WRAP has an associated fixpoint computation method—the fixpoint
computed by this method is the only possible reasonable status S&RA®
may have.

e Given an agent program, we denote bwtn(P) the set of all withnesses to the
deontic stratifiability ofP. Thecanonical layeringof 2, denotedtan? is defined
as follows.

can®(r) = min{4i(r) |4 € win(P)}.
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7.3 Regular Agent Programs

e A reqgular agent program then is a program which is weakly regulabaodded
(to be defined below).

Boundedness means that by repeatedly unfolding the positive parts|of the
¢ | rules in the program, we will eventually get rid of all positive action status
atoms.

e Thus, in this section, we will associate with any agent progPaam operator
Unfoldy which is used for this purpose.
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Definition 7.21 (Regular Agent)
An agent is said to be regularw.r.t. a layering £ and a selection of pf-constraint

equivalence tests eqi(i), if it is weakly regular and its associated agent program is

b-regular w.r.t. £ and the eqi(i>, for some b > 0,
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7.4 Compile-Time Algorithms

Algorithm 7.1
Check_WRAP(P)

(x input is an agent program P, a conflict-freedom test cft, and a finiteness table FINTAB x)
(x output is a layering £ € wtn(P), if P is regular and “no” otherwise *)

1. If some action O or rule r in P is not strongly safe then return “no” and hallt.

2. If some rulesr : Op (a(X)) andr’ : Op’(a(Y)) in P exist such that
cft(r,r’) = false then return “no” and halt.

3. Ifaruler : Op;j(0(X)) — ...,(—u)Opj(a(\?)), ... is in P such that Op;(a (X)) and
Op; ( (Y)) conflict, then return “no” and halt.
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4. Build the graph G = (V,E), whereV = P and an edge ri — r is in E for each pair
of rules rj and r as in the two Stratifiability conditions.

5. Compute, using Tarjan’s algorithm, the supergraph S(G) = (V*,E*) of G.

6. If some rules ri,r as in the second stratifiability condition exists such that
ri,r € C for some C € V*, then return “no” and halt else set| := 0.

7. For each C € V* having out-degree O (i.e. no outgoing edge) in S(G), and each
ruler € C, define £(r) :=1.

8. Remove each of the above C’s from §(G), and remove all incoming edges
associated with such nodes in S(G) and seti := i+ 1;

9. If S(G) is empty, i.e., V* = 0, then return ¢ and halt else continue at 7.
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Theorem 7.3

For any agent program P, Check_ WRAP(P) returns w.r.t. a conflict-freedom test cft
and a finiteness table FINTAB, a layering £ € wtn(P) if P is a WRAP, and returns “no”
if P is not regular.
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Check WRAP can be modified to compute the canonical layetag® as follows.
For each nod€ € V*, use two countersut(C) andblock(C), and initialize them in
step 5 to the number of outgoing edges frémm E*. Steps 7 and 8 dCheck WRAP
are replaced by the following steps:

7. SetU :=0;
while someC € V* exists such thatlock(C) =0 do
U :=UU{C};

Setout(C’) := out(C’) — 1 for eachC’ € V* such thaC’ — C;

Setblock(C’) := block(C’) — 1 for eachC’ € V* such thaC’ — C due to the
first stratification condition but not the second stratification condition.
for each ruler in YU do £(r) :=i;

8. Seti:=i+1;
Remove each node € U from §(G), and seblock(C) := out(C) for each
retained node.
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When properly implemented, stepsand 8 can be executed in linear time
the size ofS(G), and thus ofG.

n

Thus, the upper bounds on the time complexitfCbieck Regular discussed above
also apply to the variant which computes the canonical layering.
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Algorithm 7.2

Reasonable-SS(P,¢, IC,AC,0Og)

(x input is a regular agent consisting of a RAP P, a layering £ € win(?P), x)
(% a strongly safe set IC of integrity constraints, *)
(x a strongly safe set AC of action constraints, and an agent state Og *)

(x output is a reasonable status set Sof P on Og, if one exists, and “no” otherwise. x)
. .
1. S._Fl,?OS T w;
2. Do(S):={a | Do(a) € S};

3. while AC # 0 do
select and remove some ac € AC;
if acis not satisfied w.r.t. DO(S) then return “no” and halt;

4. O := apply condDo(S),O0s); (* resulting successor state *)
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5. while IC + 0 do
select and remove some iC € IC;
if O = ic then return “no” and halt.

6. return S and halt.
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Even though AlgorithnReasonableSScan be executed on weakly regu
agent programs, rather th&®sPs, there is no guarantee of termination in t
case.

lar
nat

The following theorem states the result that for a regular agent, its reaso
set on an agent state is effectively computable.

Theorem 7.4 (Termination of ReasonableSS for Regular Agents)

nable status

If a is a regular agent, then algorithm Reasonable_SS terminates. The result is either

“No” or a reasonable status set is computed.
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Theorem 7.5
Suppose a is a fixed regular agent. Assume that the following holds:

(1) Every ground code call § :f(d4,...,d,), has a polynomial set of solutions, which
is computed in polynomial time; and

(2) no occurrence of a variable in a’s description loose.

Furthermore, assume that assembling and executing conc(Do(S), Oy) is possible in
polynomial time in the size of DO(S) and Og. Then the following holds:

The algorithm Reasonable_SS computes a reasonable status set (if one exists)

on a given agent state O in polynomial time (in the size of Og).

8.4 Compile-Time Algorithms 359



Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

7.5 IADE

Our implementation of the regular agent program paradigm consists of two major
parts. The first part is thBMPACT Agent Development EnvironmentADE for

short), which is used by the developer to build and compile agents. The second part is
the run-time part that allows the agent to autonomously update its reasonable status
set and execute actions as its state changes. Below, we describe each of these two
parts.IADE supports their tasks as follows.
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e First, it provides an easy to us network accessible graphical user interface
through which an agent developer can specify the data types, functions, actions,
Integrity constraints, action constraints, notion of concurrency and agent program
associated with his/her agent.

e Second, it provides support for compilation and testing. In particihddE
allows the agent developer specify various parameter&.g., conflict freedom
test, finiteness table) he wants to use for compilation. It allows the agent
developer to view the reasonable status set associated with his agent program
w.r.t the current state of the agent.
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[=3 IMPACT AgentDE Frame2 _ O] x|
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Agent Development Environment (AgentDE) ‘%
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Figure 7.2: MainlADE Screen
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Eﬁ.ﬁgentDE test dialog. E4

Test results for ag...*** UnNamed ***

Agent test summary data:

l) Layering: Pending...

2] Program unfolding: Pending...
3] Aerwver connection: Pending...
4] Data comnection: FPending...

4] Atatus set generation: Pending...

D seantest | S

|_| Echo RHermes. | | Echo Debug | | Skip S5G. [_| Run base ¥l Log timing
Status: Controls initialized -- Continue work...

Figure 7.3:IADE Test Dialog Screen Prior to Program Testing
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The IADE includes the safety, strong safety, conflict freedom algorithms, and the
Check WRAP algorithms (the last is slightly modified). The unfold algorithm

currently works on positive agent programs—this is being extended to the full fledged
case.

Figure 7.2 on page 361 shows a screendumipAGiE’s top-level screen.

Figure 7.3 on the page before specifies what happens when the agent developer
presses the “Test Program” button in the Figure 7.2 on page 361 screen.
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Egjhgent[)E test dialog. Ed

Agent test summary data:
1y Lavering: Passed

21 Program unfolding: Passed -- 1AD_Pragraim unfald succeeded.
{11 source rules unfolded --= 10 rules )
{ Total cost 968 milliseconds == 0.968 seconds)

Jy Data connection{s); Passed --
"Jilad" data connection tagoled openiclosed.
"Local" data connection toggled openfclosed.

41 Status set generation: Passed -- [AD_Program 55G: Succeeded
{ Total cost: 29859 milliseconds == 29.859 seconds)

{ Mletwark cost: 24532 milliseconds == 24 5432 seconds)

( Local cost 9327 milliseconds == 5,327 seconds).

a1 Status Atorm execution: Passed

_ Begin test T-Test Help |_

[ |Echo RHermes. [ |Echo Debug [ ]| Skip SSG. [ | Run base Log timing
Status: Agent tests succeeded -- Deployment possible.

Figure 7.4:IADE Test Execution Screen
8.5 TheIMPACT Agent Development Environment (ADE)
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Once the status sets have been generated after the test execution phase is completed,
the user can press the “Unfold Info” tab (to see the unfolded program) or the “Layer
Info” tab (to see the layers of the agent program) or the “Status Set Info” tab (to see
status information). Figure 7.5 on the next page shows the results of viewing the
unfold information.
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Egjhgent[)E test dialog. Ed

Test results for agentliocERC_Totals

Agent rule unfold data:

~~~~~ Fule aM10:
Do AppendTotalsFile! IART0_F_TaotFile, IAR10_SzLoc, IAR10_SzERC, IAR10_SzLocERCTotals)) -

={ AR10_SzLoc, "COLLEGE PARE™,

=( 1AR10_F_TuotFile, 'CP_LocERCTotals ],

={ IART0_SzAddr, "wsEcs. umd.edu™),

in{ 1AR01_LocRecd, Jilad--=oracle:project 'aps_loc:2d' "lia98apr@besteraracle”, "LOC",

={ AR10_SzLoc, IARDT _LocRecd. LOC),

={ |ARDS_S5zCd, "B,

= AR10_SzZERC, "P",

is( "Otys. hrm', Jilad--=oracle:project_selectM{ 'equipru:2i’, "liad8apr@borgforacle”, "Auth_gty, Met_short', 2 "LOC" "=" |AR10_S
Lo, "Erc”, "=", IARDS_SzCd)),

inf 1AR06_L_AothQty, Jilad--=hermes:sum_doubled 'Gtys b, "Auth_ghn,

in{ IAROD5_D_Shart, Jilad--=hermes:sum_doubled 'Stys hrm', "Het_short,

inf 1ARO6_L OnHand, Local--=math:real _Suhtract! IAR0GE_L_Authty, IARODS D Short)h,

in{ IARDG_Sz0ne, Local--=text cancat! |1AR10_SzLoc, ", "N,

in IAR06_STwn, Local--=text.concat! IAR10_SzERC, ", "],

in{ l1AR06_SzThree, Local--=textconcat] IAR0G6_L_AuthGty, ", "0,

in{ l1AR06_SzAlpha, Local-=textconcat! IAR06_Sz0ne, IARQDE_SzTwa)),

inf l1AR0G_SzBravo, Local-=textconcat! IAR0G_Szalpha, IAR06_SEThreeh,

in{ 1AR10_SzLocERCTotals, Local--=text.concat! [AR06_SzBravo, IARDG_L_COnHand)).

~~~~~ Fule 6M110:
[ |Echo RHermes. [ |Echo Debug [ ]| Skip SSG. [ | Run base Log timing
Status: Agent tests succeeded -- Deployment possible.

Figure 7.5:IADE Unfold Information Screen
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When the user selects the “Status set Info” tab, he sees the screen shown in

Figure 7.6 on the following page. Note that this screen has tabs on the right,
corresponding to the various deontic modalities. By selecting a modality, the agent
developer can see what action status atoms associated with that modality are true in
the status set. Figure 7.6 on the next page shows what happens when the user wishes
to see all action status atoms of the fdba(. . .) in the status set.
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Egjhgent[)E test dialog. Ed

Status set atoms grouped by categony:

“Permitted” atom data:

|
[AD_Program :

HActionCallArray node 2639:

CreateLocERCTatalsFile! \We_LocERCTatals tdh ’7

CreateLocERCTotalsFile! "CP_LocERCTotals tdh

HActionCallArray node 4683;
MailLocERCTotals( 'Ax_LocERCTotals ' "ALEXANDRIA", "rogers@@cs. umd.edu™)
MailLocERCTotals( 'CP_LocERCTotals b’ "COLLEGE PARE", "vsi@cs.umd. edu™)

HActionCallArray node 5205:
AppendTotalsFiled w_LocERCTotals td', "ALEXARNDRIA", "BIC", "ALEXARNDRIA, BiC, 69230, 6343.0M
AppendTotalsFiled ‘A_LocERCTotals td', "ALEXANDRIA", "A", "ALEXARDRIA, A, 2138.0, 1706.0M
AppendTotalsFiled ' LocERCTotals bd', "ALEXAMNDRIA", "P", "ALEXAMDRIA, P, 444.0, 422.0%
AppendTotalsFiled 'CP_LocERCTotals &', "COLLEGE PARK!, "BIC", "COLLEGE PARK, BIC, 5365.0, 4847 0"
AppendTotalsFiled 'CP_LocERCTotals b, "COLLEGE PARK, "A", "COLLEGE PARK, A, 1728.0, 1355.0%
AppendTotalsFiled 'CP_LocERCTotals &', "COLLEGE PARK!, "P", "COLLEGE PARK, P, 834.0, 868.0"

_ Begin test T-Test Help |_

[ |Echo RHermes. [ |Echo Debug [ ]| Skip SSG. [ | Run base Log timing
Status: Agent tests succeeded -- Deployment possible.

Figure 7.6:IADE Status Set Screen
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Figure 7.7 on page 371 shows the interface used to specify the “finiteness” table. As
mentioned earlier on in this chapter, in tdPACT implementation, we actually
represent code calls that are infinite in this table, using some extra syntax.
Specifically, the first row of the table shown in Figure 7.7 on page 371 says that when
Q > 3 andR > 4, all code calls of the fordomain; :function(Q,R) are infinite.
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Figure 7.8 on page 372 shows the interface used by the agent developer to specify
what notion of concurrency he wishes to use, what conflict freedom implementation
he wishes to use and what semantics he wishes to use. Each of the items in the figure
have associated drop-down menus (not visible in the picture). The last item titled
“Calculation Method” enables us (as developersMPACT) to test different

computation algorithms. It will be removed from the fidMPACT release.
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[=3 IMPACT AgentDE Frame2

I I=] E3
File Edit Help Debug
Interactive Maryland Platform for Agents Collaborating Together (IMPACT)
Agent Development Environment (AgentDE)

Defined Types: Defined Functions:
APL_LOC_20: {<string=}

LOC _Fecdl: <string=

Defined Actions:

time. localTimelnt fwoid): ret)inte LocTotals (zLOC fstring, D_Aut
aracle. project (xroTahbleffile, - LocTotalxtring (szlocTotalsf stri
EquipEU_ZE: {<integer, integers> Y oracle. project_select (5rcT able - CerTgtFile (FnTarget/file); --= =
ERU_Eecdl: =integer, integer= oracle.projectd GrcTableffile, O

hermes. surm_daouble (TatFile il ™
T b

Camain_1:Function_1 (0, K

Diarain_T1:Function_2 5. 5. B
Domain_2:Function_1 i, 5B
Damain_2:Function_2 ()

Status:Agent MetaData restored -- continue work...

Figure 7.7:IADE (In-)Finiteness Table Screen
8.5 TheIMPACT Agent Development Environment ([ADE)
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[=3 IMPACT AgentDE Frame2 [_ O] =]
File Edit Help Debug

Interactive Maryland Platform for Agents Collaborating Together {IMPACT)

Agent Development Environment (AgentDE) ‘ﬂ
Defined Types:

Defined Functions: Defined Actions:
APsS_LOC_20: f=string=} time. localTimelnt fwoid): ret)inte LocTotals (zLOC fstring, D_Aut
LOC _Fecdl: <string= aracle. project (xroTahbleffile, - LocTotalxtring (szlocTotalsf stri
aracle.project_select (5T able - CerTgtFile (FnTarget/file); --= =
oracle.projectd GrcTableffile, O

EquipEU_ZE: {<integer, integer:>
ERU_Eecdl: =integer, integer=

Concurrency: | Sequential

Conflict Freedom Implimentation:|Modality and Action Test CFI

Semantics: Feasible

Calculation method: | Ground Fixpoint

Status:Agent MetaData restored -- continue work...

Figure 7.8:IADE Option Selection Screen
8.5 TheIMPACT Agent Development Environment ([ADE)
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7.6 Experimental Results
7.6.1 Performance of Safety

Figure 7.9 on page 375 shows the performance of our implemented safety check
algorithm. In this experiment, we varied the number of conjuncts in a code call
condition from 1 to 20 in steps of 1. This is shown on ¥kaxis of Figure 7.9 on

page 375.

For each K x < 20, we executed theafe.cccalgorithm 1000 times, varying the
number of arguments of each code call from 1 to 10 in steps of 1, and the number of
root variables occurring in the code call conditions from 1 to twice the number of
conjuncts (i.e., 1 to 3.
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The actual conjuncts were generated randomly once the number of conjuncts, number
of arguments, and number of root variables was fixed. For each fixed number

1 <1 < 20 of conjuncts, the execution time shown on yhaxis represents the

average over 1000 runs with varying values for number of arguments and number of
variables. Times are given in milliseconds.
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Figure 7.9: Safety Experiment Graphs
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The reader can easily see that algoritbaie.cccis extremely fast, taking be
tween 0.02 milliseconds and 0.04 milliseconds. Thus, checking safety for an
agent program with a 1000 rules can probably be done in 20-40 millisegonds.

A\ %4
1
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7.6.2 Performance of Conflict Freedom

In IADE, we have implemented the Head-CFT and Body-Modality-CHT—
several other CFTs are being implemented to form a library of CFTs that may
be used by agent developers. Figures 7.10 on the next page, 7.11 on page 379
shows the time taken to execute the Head-CFT and Body-Modality-CFTs.

Note that Head-CFT is clearly much faster than Body-Modality-CFT when returning
“false”—however, this is so because Head-CFT returns “false” on many cases when
Body-Modality-CFT does not do so. However, on returnstaié,” both mechanisms
are very fast, usually taking time on the orderiég to 1—10 of a millisecond, with some
exceptions.

8.6 Experimental Results 378



0012

om

Chapter 8: Implementing Agents

Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Haad GFT
Mo Contradictlons)

Ex=aron Trm=

1 2 3 4+ 6B & 7 8 9 10 11 12 13 4 16 16 17 18 19 20
Mumber of Arquments

(a) HeadCFT returningtfue”

Execution Time ()

18

15

14

12

—_

Haad CFT
[With Gontradictlons)

AN,
Y

Eo=adion Trm=

_/
N/
[~

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1T 2 34 4 6B & 7 B 9 10 1112 13 14 16 16 17 18 19 20
Humberof Argurments

(b) HeadCFT returningfalse”’

. . Peri : Confl I

8.6 Experimental Results

379



0oz

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Body-Modality-CFT Body-Modality-CFT
[H= I!.h:h-:-n-tmdi._-.ti:.n;] (With Contradictions]

|
|

I e | U] I
a ff

(c) BodyModalityCFT returningttue” (d) BodyModalityCFT returning falsé’

Figure 7.11: Performance of Conflict Freedom Tests
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These very small times also explain the “zigzag” nature of the graphs—even small
discrepancies (on the order % of a second) appear as large fluctuations in the
graph.
Even if an agent program contains a 1000 rules (which we expect to pe an
exceptional case), one would expect the Body-Modality-CFT to only take a
matter of seconds to conduct the one-time, compile-time test—a factor that is

well worth paying for in our opinion.
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7.6.3 Performance of Deontic stratification

Our experiments generated graphs randomly (as described below) and the programs
associated with those graphs can be reconstructed from the graphs.

In our experiments, we randomly varied the number of rules from O tg 200
In steps of 20, and ensured the there were betweamd 2/ edges in thg
resulting graph, wher¥ is the number of rules (vertices).

\Y”4

The precise number was randomly generated. For each such selection, we performed
twenty runs of the algorithm. The time taken to generate the graphs was included in
these experimental timings. Figures 383 on page 383 (a) and (b) show the results of
our experiments.
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Figure 383 on the following page(a) shows the time taken to execute all but the safety
and conflict freedom tests of tligheck WRAP algorithm.

The reader will note that the algorithm Is very fast, taking only about|260
milliseconds on an agent program with 200 rules.

Figure 383 on the next page(b) shows the relationship between the number of SCCs
In a graph, and the time taken to compute whether the agent program in question is
deontically stratified.

In this case, we note that as the number of SCCs increases to 200, the time
taken goes to about 320 milliseconds. Again, the deontic stratifiability re-
guirement seems to be very efficiently computable.
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Time to Compute Check_Wrap(P) Time to Compute Check_Wrap(P)
e (rsec) Time (msec)
Avetaged valos 340.00 | | | | Avetaged valos
260,00
320.00
-
2+0.00 300.00
220,00 T T T T 280.00
3
200.00 260.00
240,00
180,00
220.00
160,00 T T T T 200.00
140,00 ! | | ] 180.00
160,00
120,00
140,00
100,00
120,00
80.00 1 ; 1 1 100,00
&0.00 1 : } ] 30,00
&0.00
40,00
0,00
.
20.00 20.00
0.00 0.00
Mumber of tules Mumber of SCCs
0.00 5000 100,00 150,00 200,00 0.00 5000 100,00 150,00 200,00

(a) Varying Rules (b) Varying SCC'’s

Figure 7.12: Performance of Deontic Stratification
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Figure 383 on the preceding page(a) shows the time taken to execute all but the safety
and conflict freedom tests of tligheck WRAP algorithm.

The reader will note that the algorithm Is very fast, taking only about|260
milliseconds on an agent program with 200 rules.

Figure 383 on the page before(b) shows the relationship between the number of SCCs
In a graph, and the time taken to compute whether the agent program in question is
deontically stratified.

In this case, we note that as the number of SCCs increases to 200, the time

taken goes to about 320 milliseconds. Again, the deontic stratifiability re-
guirement seems to be very efficiently computable.
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7.6.4 Performance of Unfolding Algorithm

We were unable to conduct detailed experiments on the time taken for unfolding and
the time taken to compute status sets as there are no good benchmark agent programs
to test against, and no easy way to vary the very large number of parameters
associated with an agent.

In a sample application shown in Figures 7.5 on page 366 and 7.6 on page 368,
we noticed that it took about 1 second to unfold a program containing 11 rules,
and to evaluate the status set took about 30 seconds.

However, in this application, massive amounts of Army War reserves data resident in
Oracle as well as in a multi-record, nested, unindexed flat file were accessed, and the
time reported (30 seconds) includes times taken for Oracle and the flat file to do their
work, plus network times. Network cost alone is about 25 seconds. We did not yet
Implement any optimizations, like caching etc.
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/.7 Summary

This chapter was about afficiently implementableclass of agents:
Regular Agents

What are suitable syntactic conditions on agent programs, to ensure pplyno-
mial implementability?

1. Weakly regular agents:

(a) Strong Safety To ensure that code calls returnitely many answers
(~ Finiteness Table).

(b) Conflict-Freedom: The program should be conflict-frees(cft-tests).

(c) Deontic Stratifiability : Problems with negation are ruled out.

2. Regular Agents weakly regular +Unfolding.

8.7 Summary 387
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