
J. Dix/Th. Eiter Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Heterogenous Agent Systems

Aug. 2002, Trento
ESSLLI ’02 Summerschool

• Second and third week in August.

• Time: From 10–11.30 am, unless otherwise indicated.

•
Lecture Course is in the first week on theoretical issues, emphasis on

mathematical-logical foundations. Second week presents a particular

agent system and gives various demonstrations.

Overview 1

J. Dix/Th. Eiter Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

First week

The first part of this lecture course is mainly based on

Multi-Agent Systems(Gerhard Weiss), MIT Press, June 1999.

We describegeneral methodsandtechniques.

Overview 2

J. Dix/Th. Eiter Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Second week

The second part of this lecture course is mainly based on

Heterogenous Agent Systems(Subrahmanian et al.), MIT Press, August

2000.

We describe theIMPACT approach and itsunderlying foundations.

Overview 3

J. Dix/Th. Eiter Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Overview (first week)

1. Introduction, Terminology, Basic Architectures
2. Distributed Decision Making
3. Contract Nets, Coalition Formation
4. Agent Communication Languages

Overview 4

J. Dix/Th. Eiter Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Overview (second week)

5. IMPACT Architecture
6. The Code Call Mechanism
7. Actions and Agent Programs
8. Implementing Agents

Overview 5

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Chapter 1. Introduction, Terminology

1.1 General

1.2 Intelligent Agents

1.3 Mathematical Description

Overview 6

1 Introduction, Terminology

6-1

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Three Important Questions

(Q1) What is anAgent?

(Q2) If some programP is not an agent, how can it betransformed into an agent?

(Q3) If (Q1) is clear, what kind ofSoftware Infrastructure is needed for the

interaction of agents? What services are necessary?

1.1 General 7

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 1.1 (Distributed Artificial Intelligence (DAI))

The area investigating systems, in which several autonomous acting entities
work together to reach a given goal.

The entities are called Agents, the area Multiagent Systems.

Example: Robocup (simulation league, middle league)

Why do we need them?

Information systems aredistributed , open, heterogenous.
We therefore needintelligent, interactive agents, thatact autonomously.

1.1 General 8

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Agent: Programs that are implemented on a platform and have sensors to react to the

environment.

Intelligent : Performance measures, to reach goals.Rational vs. omniscient,
decision making

Interactive: with other agents (or humans) by observing the environment.

Coordination: Cooperation vs. Competition

1.1 General 9

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

MAS versus Classical DAI

(MAS)

Several Agents coordinate their knowledge and actions (seman-
tics describes this).

(DAI)

Particular problem is divided into smaller problems (nodes).
These nodes have common knowledge. The solution method is
given.

Today DAI is often used synonymous with MAS: (1) as well as (2).

1.1 General 10

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

AI DAI

Agent Multiple Agents

Intelligence: Intelligence:

Property of asingleAgent Property ofseveralAgents

Cognitive Processes SocialProcesses

of asingleAgent of severalAgents

1.1 General 11

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

10 Desiderata

1. Agents are for everyone!We need a method to agentize given programs.

2. Take into account thatData is stored in a wide variety of data structures, and
data is manipulated by an existing corpus of algorithms.

3. A theory of agents mustnot depend upon the set of actions that the agent

performs. Rather,the set of actions that the agent performs must be a
parameterthat is taken into account in the semantics.

1.1 General 12

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

4. Every agent should execute actions based on someclearly articulated
decision policy. A declarative framework for articulating decision policies of

agents is imperative.

5. Any agent construction framework must allow agents to perform the following

types of reasoning:

• Reasoning about its beliefsabout other agents.

• Reasoning about uncertaintyin its beliefs about the world and about its beliefs

about other agents.

• Reasoning about time.

These capabilities should be viewed asextensionsto a core agent action
language.

1.1 General 13

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

6. Any infrastructure to support multiagent interactions mustprovide security.

7. While the efficiency of the code underlying a software agent cannot be

guaranteed (as it will vary from one application to another),guarantees are
needed that provide information on the performance of an agent relative to
an oracle that supports calls to underlying software code.

1.1 General 14

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

8. We must identify efficiently computablefragmentsof the general hierarchy
of languages alluded to above, and our implementations must take advantage of

the specific structure of such language fragments.

9. A critical point is reliability—there is no point in a highly efficient

implementation, if all agents deployed in the implementation come to a grinding

halt when the agent “infrastructure” crashes.

10. The only way of testing the applicability of any theory is tobuild a software
system based on the theory, to deploy a set of applications based on the theory,

and to report on experiments based on those applications.

1.1 General 15

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

1.1 Intelligent Agents

Definition 1.2 (Agent)
An agent is a computer system that acts in its environment and executes au-
tonomous actions to reach certain goals.

Learning, Intelligence. Environment is non-deterministic.

?

agent

percepts

sensors

actions

effectors

environment

1.2 Intelligent Agents 16

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 1.3 (Rational, Omniscient Agent)
Rational Agents are those, that always do the right thing .

(A performance measure is needed).)

Omniscient agents are agents, that know the results of their actions in advance.

Rational agents are in general not omniscient!

1.2 Intelligent Agents 17

Aphorism of Karl Kraus: In case of doubt, just choose the right thing.

17-1

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

How is theright thing defined and from what does it depend?

1. Performance measure(as objective as possible),

2. Percept sequence: what has been observed,

3. Knowledge of the agentabout the environment,

4. how the agentcan act.

Definition 1.4 (Ideal Rational Agent)An ideal rational agent chooses for each percept sequence exactly the action,
that maximizes its performance measure(given knowledge about the envi-
ronment).

1.2 Intelligent Agents 18

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Agents can be described mathematically by a function

Set of percept sequences7→ Set of Actions.

The internal structure of an agent is

Agent = Architecture + Program

1.2 Intelligent Agents 19

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Agents and their PAGE description:

Agent Type Percepts Actions Goals Environment

Medical diagnosis
system

Symptoms,
findings, patient’s
answers

Questions, tests,
treatments

Healthy patient,
minimize costs

Patient, hospital

Satellite image
analysis system

Pixels of varying
intensity, color

Print a
categorization of
scene

Correct
categorization

Images from
orbiting satellite

Part-picking robot Pixels of varying
intensity

Pick up parts and
sort into bins

Place parts in
correct bins

Conveyor belt
with parts

Refinery controller Temperature,
pressure readings

Open, close
valves; adjust
temperature

Maximize purity,
yield, safety

Refinery

Interactive English
tutor

Typed words Print exercises,
suggestions,
corrections

Maximize
student’s score on
test

Set of students

1.2 Intelligent Agents 20

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Question:
How do properties of the environment influence the design of an agent?

Definition 1.5 (Properties of the Environment)
Accessible/Inaccessible: If not completely accessible, one needs internal states.

Determinist./Indeterm.: If inaccessible the environment might seem
indeterministic, even if it is not.

Episodic/Nonepisodic: Percept-Action-Sequences are independent from each other.
Closed episodes.

Static/Dynamic: Dynamic: while the agent is thinking, the world is changing.
Semi-dynamic: The world does not change, but the performance measure.

Discrete/Continous: concerning the set of observations and actions.

1.2 Intelligent Agents 21

Example for semi-dynamic: playing chess with a clock.

21-1

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Environment Accessible Deterministic Episodic Static Discrete

Chess with a clock Yes Yes No Semi Yes
Chess without a clock Yes Yes No Yes Yes
Poker No No No Yes Yes
Backgammon Yes No No Yes Yes
Taxi driving No No No No No
Medical diagnosis system No No No No No
Image-analysis system Yes Yes Yes Semi No
Part-picking robot No No Yes No No
Refinery controller No No No No No
Interactive English tutor No No No No Yes

1.2 Intelligent Agents 22

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

xbiff andsoftware demons are agents. But certainly not intelligent.

Definition 1.6 (Intelligent Agents)
An intelligent agent is an agent with the following properties:

1. Reactive: Reaction to changes in the environment at certain times to reach its
goals.

2. Pro-active: Taking the initiative, goal-directed behaviour.

3. Social: Interaction with others to reach the goals.

Pro-active alone is not sufficient (C-Programs): the environment can change during

execution.

Difficulty: Right balance between pro-active and reactive!

1.2 Intelligent Agents 23

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Agents vs. Object Orientation

Objects have a

1. state(encapsulated): control over internal state,

2. message passing capabilities.

Java: private and public methods.

• Objects have control over their state, butnot over their behaviour.

• An object cannot prevent others to useits public methods.

1.2 Intelligent Agents 24

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Agents: They call other agents and request them to execute actions.

• Objects do it for free, agents do it for money.

• No analoga toreactive, pro-active, social in OO.

• MAS are multi-threaded: each agent has a control thread.

In OO only the sytem as a whole posesses one.

1.2 Intelligent Agents 25

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

1.2 Mathematical Description

Definition 1.7 (ActionsA, PerceptsP, StatesS)
Let A := {a1,a2, . . . ,an, . . .}, the set of actions, and P := {p1,p2, . . . ,pn, . . .} the set
of observations, or perceptsof an agent. Let S := {s1,s2, . . . ,sn, . . .} the set of states,
with which the environment is described.

What does an agent observe, in a certain states? We describe this with a function

see: S−→ P.

How does the environment develop (the states) when an actiona is executed? We

describe this via a function

env : S×A −→ 2S,

this includesindeterministic environments.

1.3 Mathematical Description 26

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

How do we describe agents. We could take a function

actionactionaction : P−→ A.

Agent

E
n

viro
n

m
en

t

Sensors

Effectors

What the world
is like now

What action I
should do now

1.3 Mathematical Description 27

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

This is too weak! Better take the whole history into account

h : s0→a0 s1→a1 . . .sn→an . . .

(or the sequence of observations).

1.3 Mathematical Description 28

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 1.8 (Characteristic Behaviour)
The characteristic behaviour of an agent actionactionaction in an environment env is the set Hist
of all histories h : s0→a0 s1→a1 . . .sn→an . . . with:

1. for all n: an = actionactionaction(〈s1, . . . ,sn〉),

2. for all n: sn = env(sn−1,an−1).

1.3 Mathematical Description 29

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 1.9 (Standard Agentactionactionaction)
A standard agent actionactionaction is given by a function

actionactionaction : P∗ −→ A

together with see: S−→ P and env : S×A −→ 2S.

Instead of using the whole history, resp.P∗, one can also useinternal states
I := {i1, i2, . . . in, . . .}.

1.3 Mathematical Description 30

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Agent

E
n

viro
n

m
en

t

Sensors

Effectors

What the world
is like now

What action I
should do now

State

How the world evolves

What my actions do

1.3 Mathematical Description 31

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 1.10 (State-based Agentactionactionaction)
A state-based agent actionactionaction is given by a function

actionactionaction : I −→ A

together with see: S−→ P und next : I ×P−→ I . Here next(i,p) is the succesor
state of i if p is observed.

1.3 Mathematical Description 32

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 1.11 (Characteristic Behaviour)
The characteristic behaviour of a state-based agent actionactionaction in an environment env is
the set of all sequences

(i0,p0)→a0 (i1,p1)→a1 . . .→an (in,pn), . . .

with

1. for all n: an = actionactionaction(in),

2. for alle n: next(in,pn) = in+1,

1.3 Mathematical Description 33

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Lemma 1.1 (Equivalence)
Standard and state-based agents are equivalent wrt. their characteristic be-
haviour.

1.3 Mathematical Description 34

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

1.3 Reactive Agents

Intelligent behaviour isInteraction of the agents with their environment. It emerges

through splitting in simpler interactions.

Subsumption-Architectures:

• Decision making is realized throughgoal-directed behaviours: each behaviour

is an individual action.

nonsymbolic implementation.

• Many behaviours can be appliedconcurrently. How to select between them?

Implementation through Subsumption-Hierarchies, Layers.
Upper layers represent abstract behaviour.

1.4 Reactive Agents 35

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Formal Model

• see: as up to now, but close relation between observation and action:

no transformation of the input.

• actionactionaction: Set of behaviours and inhibition relation.

Beh:= {〈c,a〉 : c⊆ P, a∈ A}.

〈c,a〉 “fires” if see(s) ∈ c (c stands for “condition”).

≺ ⊆ Agrules×Agrules

is called inhibition-relation,Agrules⊆ Beh. We require≺ to be a total ordering.

b1 ≺ b2 means:b1 inhibitsb2, b1 has priority over b2.

1.4 Reactive Agents 36

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

1.4 Reactive Agents 37

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 1.1 (Exploring a Planet)
A distant planet (asteroid) is assumed to contain gold. Samples should be brought to a
spaceship landed on the planet. It is not known where the gold is. Several
autonomous vehicles are available. Due to the topography of the planet there is no
connection between the vehicles.

The spaceship sends off radio signals:gradient field.

1.4 Reactive Agents 38

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Low Level Behaviour:
(1) If detect an obstaclethen change direction.

2. Layer:
(2) If Samples on boardand at basethen drop off.

(3) If Samples on boardand not at basethen follow gradient field.

3. Layer:
(4) If Samples foundthen pick them up.

4. Layer:
(5) If truethen take a random walk.

With the following ordering

(1) ≺ (2) ≺ (3) ≺ (4) ≺ (5).

Under which asumptions (on the distribution of the gold) does this work per-

fectly? What if the distribution is more realistic?

1.4 Reactive Agents 39

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

• Vehicles cancommunicate indirectly with each other:

– they put off, and

– pick up

radiactive samplesthat can be sensed.

1.4 Reactive Agents 40

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Low Level Behaviour:
(1) If detect an obstaclethen change direction.

2. Layer:
(2) If Samples on boardand at basethen drop off.

(3) If Samples on boardand not at basethen drop off two radioactive crumbs

and follow gradient field.

3. Layer:
(4) If Samples foundthen pick them up.

(5) If radiactive crumbs foundthen take one and follow the gradient field (away

from the spaceship).

4. Layer:
(6) If truethen take a random walk.

With the following ordering(1) ≺ (2) ≺ (3) ≺ (4) ≺ (5) ≺ (6).

1.4 Reactive Agents 41

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Pro: Simple, economic, efficient, robust, elegant.

Contra:

• Without knowledge about the environment agents need to know about the

own local environment.

• Decisions only based on local information.

• How about bringing inlearning?

• Relation between agents, environment and behaviours is not clear.

• Agents with≤ 10 behaviours are doable. But the more layers the more

complicated to understand what is going on.

1.4 Reactive Agents 42

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

1.4 BDI-Architecture

Belief,Desire,Intention.

From time to time intentions need to be re-examined. But they also should persist,

normally. (Pro-active vs. reactive).

Extreme: stubborn agents, unsure agents.

What is better? Depends on the environment.

Let γ therate of world change.

1. γ small: stubbornness pays off.

2. γ big: unsureness pays off.

1.5 BDI-Agents 43

Belief 1: Going to lectures is worth doing to learn something.
Belief 2: Dix is a decent lecturer.
Desire 1: Visit Dix-Lecture, in addition read books.
Intention: Getting knowledge about Distributed Systems.

New Belief: Alejandro makes it much better. Therefore revise your Desire.
Desire 2: Visit Garcia-Lecture, in addition read books.

Of course, Alejandro may turn out to be the worst lecturer from all . . .

43-1

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

1.5 BDI-Agents 44

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

1.5 BDI-Agents 45

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

(B,D, I) whereB⊆ Bel,D⊆ Des, I ⊆ Int

I can be represented as a stack (priorities are available)

• BDI dates back to (Bratman, Israel, and Pollack 1988).

• PRS (procedural reasoning system, (Georgeff and Lansky 1987)) uses BDI.

Applications: Space Shuttle (Diagnosis), Sydney Airport (air traffic control).

• BDI-Logics: (Rao and Georgeff 1991; Rao and Georgeff 1995; Rao 1995).

1.5 BDI-Agents 46

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

1.5 Layered Architectures

At least 2 layers: reactive (event-driven), pro-active (goal directed).

1.6 Layered Architectures 47

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Horizontal:

• simpel (n behaviours,n layers),

• overall behaviour might be inconsistent,

• Interaction between layers:mn (m= # actions per layer)

• Control-system is needed.

Vertical:

• Only m2(n−1) interactions between layers.

• Not fault tolerant: If one layer fails, everything brakes down.

1.6 Layered Architectures 48

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Touring Machine

Autonomous Vehicle.

1.6 Layered Architectures 49

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Rule 1: Avoid curb

if is in f ront(curb,observer) and

speed(observer) > 0 and

seperation(curb,observer) < curb threshold

then changeorientation(curb avoidanceangle)

Planning-Layer: Pro-active behaviour

Modeling Layer: updating of the world, beliefs, predicts conflicts between agents,

changes planning-goals

Control-subsystem: Decides about who is active. Certain observations should never

reach certain layers.

1.6 Layered Architectures 50

Chapter 1: Introduction, Terminology, Architectures Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Layered architectures do not have a clear semantics and the horizontal
interaction is diffcult.

1.6 Layered Architectures 51

Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Chapter 2. Distributed Decision Making

2.1 Evaluation Criteria

2.2 Voting

2.3 Auctions

2.4 Bargaining

2.5 General Market Criteria

Overview 52

2 Distributed Decision Making
Two and a half lectures: first lecture up to 2.3, second lecture 2.3 – 2.5, half lecture
from 2.5 to the end.

52-1

Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Classical DAI: System Designer fixes an Interaction-Protocol which is uniform for

all agents. The designer also fixes a strategy for each agent.

What is a the outcome, assuming that the protocol is followed and the

agents follow the strategies?

MAI: Interaction-Protocol is given. Each agent determines its own strategy

(maximizing its own good, via a utility function, without looking at the global

task).

What is the outcome, given a protocol that guarantees that each agent’s de-

sired local strategy is the best one (and is therefore chosen by the agent)?

Overview 53

Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

2.1 General Evaluation Criteria

We need tocompare negotiation protocols. Each such protocol leads to a solution.

So we determine how good these solutions are.

Social Welfare: Sum of all utilities

Pareto Efficiency: A solutionxxx is Pareto-optimal (also called efficient), if

there is no solutionx′x′x′ with: (1)∃∃∃agentagagag : utagagag(x′x′x′) > utagagag(xxx)
(2)∀∀∀agentsag′ag′ag′ : utag′ag′ag′(x

′x′x′)≥ utag′ag′ag′(xxx).

Individual rational: if the payoff is higher than not participatingat all.

2.1 General Criteria 54

Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Stability:

Case 1: Strategy of an agent depends on the others.

The profileS∗AAA = 〈S∗111,S∗222, . . . ,S∗|AAA|〉 is called a Nash-equilibrium, iff

∀∀∀iii : S∗iii is the best strategy for agentiii if all the others choose

〈S∗111,S∗222, . . . ,S∗i−1i−1i−1,S∗i+1i+1i+1, . . . ,S∗|AAA|〉.

Case 2: Strategy of an agent does not depend on the others.

Such strategies are called dominant.

2.1 General Criteria 55

Prisoner’s Dilemma

Prisoner 2
cooperate defect

Prisoner 1
cooperate
defect

(3,3)
(5,0)

(0,5)
(1,1)

• Social Welfare: Both cooperate,

• Pareto-Efficiency: All are Pareto optimal, except when both defect.

• Dominant Strategy: Both defect.

• Nash Equilibrium: Both defect.

55-1

Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

2.2 Voting

Agents give input to a mechanism and the outcome of it is taken as a solution

for the agents.

Motivation: 3 candidates, 3 voters

1 2 3

w1 A B C

w2 B C A

w3 C A B

Figure 2.1: Nonexistence of desired preference ordering.

Comparing A and B: majority for A. Comparing A and C: majority for C. Comparing

B and C: majority for B.Desired Preference ordering: A > B > C > A ????

2.2 Voting 56

Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

• LetAAA the set of agents,O the set of possible outcomes.

(O could be equal toAAA, or a set of laws).

• Thevoting of agentiii is described by a binary relation

≺≺≺iii ⊆O×O,

which we assume to be asymmetric, strict and transitive. We denote byOrdOrdOrd the

set of all such binary relations.

• Often, not all subsets ofO arevotable, only a subsetV ⊆ 2O\{ /0}.
Eachv∈ V represents a possible “set of candidates”. The voting model

then has to select some of the elements ofv.

• Each agent votes independently of the others. But we also allow that only a

subset is considered. Let therefore be

U ⊆
|AAA|

∏
iii=1

OrdOrdOrd.

2.2 Voting 57

Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

• A social choice rule wrt.U is a function

f∗∗∗ : U → OrdOrdOrd;(≺≺≺1, . . . ,≺≺≺|AAA|) 7→ ≺∗≺∗≺∗

For eachV ⊆ 2O\{ /0} the functionf∗∗∗ w.r.t.U induces a choice functionC〈≺≺≺1,...,≺≺≺|AAA|〉
as follows:

C〈≺≺≺1,...,≺≺≺|AAA|〉 =def

 V −→ V

v 7→ C〈≺≺≺1,...,≺≺≺|AAA|〉(v) = max≺∗≺∗≺∗|V v

max≺∗≺∗≺∗|V v is the set of all maximal elements inv according to≺∗≺∗≺∗|V .

Each tupelu = (≺≺≺1, . . . ,≺≺≺|AAA|) determines the election for all possiblev∈V.

2.2 Voting 58

Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

What are desirable properties forf∗∗∗?

Pareto-Efficiency: for all o,o′ ∈O: (∀iii ∈AAA : o≺≺≺iiio′) implieso≺∗≺∗≺∗o′.

Independance of Irrelevant Alternatives: for all o,o′ ∈O:

(∀iii ∈AAA : o≺≺≺iii o′ iff o≺′≺′≺′iii o′) ⇒ (o≺∗≺∗≺∗o′ iff o≺′∗≺′∗≺′∗o′) .

Note that this implies in particular

(∀iii∈AAA : ≺≺≺iii|v =≺′≺′≺′iii|v) ⇒ ∀o,o′ ∈ v, ∀v′ ∈V s.t.v⊆ v′ : (o≺∗≺∗≺∗|v′ o′ iff o≺′∗≺′∗≺′∗|v′ o′)

The simplemajority vote protocol does not satisfy the Independance of irrel-

evant alternatives.

2.2 Voting 59

We consider 7 voters (AAA= {w1,w2, . . . ,w7}) andO= {a,b,c,d},V = {{a,b,c,d},{a,b,c}}.
The columns in the following table represent two different preference orderings of the
voters: one is given in black, the second in red.

≺≺≺1 (≺≺≺1) ≺≺≺2 (≺≺≺2) ≺≺≺3 (≺≺≺3) ≺≺≺4 (≺≺≺4) ≺≺≺5 (≺≺≺5) ≺≺≺6 (≺≺≺6) ≺≺≺7 (≺≺≺7)
a 1 (2) 1 (2) 1 (1) 1 (1) 2 (2) 2 (2) 2 (2)
b 2 (3) 2 (3) 2 (2) 2 (2) 1 (1) 1 (1) 1 (1)
c 3 (4) 3 (4) 3 (3) 3 (3) 3 (3) 3 (3) 3 (3)
d 4 (1) 4 (1) 4 (4) 4 (4) 4 (4) 4 (4) 4 (4)

Let≺∗≺∗≺∗ be the solution generated by the≺≺≺i and≺∗≺∗≺∗ the solution generated by the≺≺≺i .
Then we have fori = 1, . . . ,7: b≺≺≺i a iff a≺≺≺i b , but b≺∗≺∗≺∗a anda≺∗≺∗≺∗b . The latter
holds because on the whole setO, for≺∗≺∗≺∗ a gets selected 4 times andb only 3 times,
while for≺∗≺∗≺∗ a gets selected only 2 times butb gets still selected 3 times. The former
holds because we even have≺≺≺i |{a,b,c} =≺≺≺i |{a,b,c}.

The introduction of the irrelevant (concerning the relative ordering ofa andb)
alternatived changes everything: the original majority ofa is split and drops below
one of the less preferred alternatives (b).

59-1

Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Theorem 2.1 (Arrows Theorem)
If the choice function f∗∗∗ is (1) pareto efficient and (2) independent from irrelevant

alternatives, then there always exists a dictator: for all U ⊆∏|AAA|iii=1OrdOrdOrd

∃iii ∈AAA : ∀o,o′ ∈O : o≺≺≺iiio
′ iff o≺∗≺∗≺∗o′.

To be more precise: for all U ⊆∏|AAA|iii=1OrdOrdOrd

∃iii ∈AAA : ∀〈≺≺≺1, . . . ,≺≺≺|AAA|〉 ∈U : ∀o,o′ ∈O, o≺≺≺iiio
′ iff of∗∗∗(〈≺≺≺1, . . . ,≺≺≺|AAA|〉)o′.

Ways out:

1. Choice function is not always satisfied.

2. Independence of alternatives is dropped.

2.2 Voting 60

Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

The Theorem of Arrow can be even more generalized by weakening the assumption

that≺∗≺∗≺∗ needs to be transitive. In fact, it also holds when using the following

definition.

• A social choice rule wrt.U is a function

f∗∗∗ : U → C (V)C (V)C (V);(≺≺≺1, . . . ,≺≺≺|AAA|) 7→ C〈≺≺≺1,...,≺≺≺|AAA|〉 ,

whereC〈≺≺≺1,...,≺≺≺|AAA|〉 is any function from V into 2O satisfying (1)

C〈≺≺≺1,...,≺≺≺|AAA|〉(v) 6= /0 and (2)C〈≺≺≺1,...,≺≺≺|AAA|〉(v)⊆ v.

Such a function simply selects a subset ofv: the elected members of the listv.

No other assumptions about this function are made.

2.2 Voting 61

Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Binary protocol

Pairwise comparison.Not only introduction of irrelevant alternatives but also the

ordering may drastically change the outcome.

Figure 2.2: Four different orderings and four alternatives in a binary protocol.

Last ordering: d wins, but all agents preferc overd.

2.2 Voting 62

Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Borda protocol

First gets|O| points, second|O|−1, . . . Then it is summed up, across voters.The

alternative with thehighest count wins.

2.2 Voting 63

Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Figure 2.3: Winner turns loser and loser turns winner

2.2 Voting 64

Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

2.3 Auctions

While voting binds all agents, Auctions are always deals between 2.

Types of auctions:

first-price open cry: (English auction), as usual.

first-price sealed bid: one bids without knowing the other bids.

dutch auction: (descending auction) the seller lowers the price until it is taken.

second-price sealed bid: (Vickrey auction) Highest bidder wins, but the price is the

second highest bid!

2.3 Auctions 65

Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Three different auction settings:

private value: Value depends only on the bidder (cake).

common value: Value depends only on other bidders (treasury bills).

correlated value: Partly on own’s values, partly on others.

2.3 Auctions 66

Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

What is the best strategy in Vickrey auctions?

Theorem 2.2 (Private-value Vickrey auctions)
The dominant strategy of a bidder in a Private-value Vickrey auction is to bid the
true valuation.

Therefore it is equivalent to english auctions.

Vickrey auctions are used to

• allocate computation resources in operating systems,

• allocate bandwith in computer networks,

• control building heating.

2.3 Auctions 67

Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Are first-price auctions better for the auctioneer than second-prize auc-
tions?

Theorem 2.3 (Expected Revenue)
All 4 types of protocols produce the same expected revenue to the auctioneer
(assuming (1) private value auctions, (2) values are independently distributed and (3)
bidders are risk-neutral).

Why are second price auctions not so popular among humans?

1. Lying auctioneer.

2.
When the results are published, subcontractors know the true valuations

and what they saved. So they might want to share the profit.

2.3 Auctions 68

Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Inefficient Allocation and Lying at Vickrey

Auctioning heterogenous,interdependent items.

Example 2.1 (Task Allocation)
Two delivery tasks t1, t2. Two agents. ; blackboard.

2.3 Auctions 69

Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

The global optimal solution is not reached by auctioning independently and

truthful bidding.

t1 goes to agent222 (for a price of222) andt2 goes to agent111 (for a price of 1.5).

Even if agent222 considers (when bidding fort2) that he already gott1 (so he bids

cost({t1, t2})−cost({t1}) = 2.5−1.5 = 1) he will get it only with a probability of

0.5.

2.3 Auctions 70

Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

What about full lookahead? ; blackboard.

Therefore:

• It pays off for agent111 to bid more fort1 (up to 1.5 more than truthful bidding).

• It does not pay off for agent222, because agent222 does not make a profit att2
anyway.

•
Agent111 bids 0.5 for t1 (instead of 2), agent222 bids 1.5. Therefore agent111

gets it for 1.5. Agent111 also getst2 for 1.5.

2.3 Auctions 71

Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Does it make sense to countersperculate at private value Vickrey auctions?

Vickrey auctions were invented to avoid counterspeculation. But what if the private

value for a bidder is uncertain? The bidder might be able to determine it, but he needs

to investc.

Example 2.2 (Incentive to counterspeculate)
Suppose bidder 111 does not know the (private-) value v1 of the item to be auctioned.
To determine it, he needs to invest cost. We also assume that v1 is uniformly
distributed: satisfies v1 ∈ [0,1].

For bidder 222, the private value v2 of the item is fixed: 0≤ v2 < 1
2 . So his dominant

strategy is to bid v2.

Should bidder 111 try to invest cost to determine his private value? How does
this depend on knowing v2?

2.3 Auctions 72

Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

; blackboard.

Answer: Bidder111 should investcost if and only if

v2≥ (2cost)
1
2v2≥ (2cost)
1
2v2≥ (2cost)
1
2 .

2.3 Auctions 73

Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

2.4 Bargaining

Axiomatic Bargaining

We assume two agents111,222 , each with a utility functionµiiiµiiiµiii : E→ R. If the agents do

not agree on a resulte the fallbackefallback is taken.

Example 2.3 (Sharing 1 Peso)
How to share 1 Peso?

Agent 111 offers ρ (0 < ρ < 1). Agent 222 agrees!

Such deals are individually rational and each one is in Nash-equilibrium!

Therefore we need axioms!

2.4 Bargaining 74

Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Axioms on the global solutionµ∗µ∗µ∗ = 〈µ111µ111µ111(e∗),µ222µ222µ222(e∗)〉.

Invariance: Absolute values of the utility functions do not matter, only relative

values.

Symmetry: Changing the agents does not influence the solutione∗.

Irrelevant Alternatives : If E is made smaller bute∗ still remains, thene∗ remains

the solution.

Pareto: The players can not get a higher utility thanµ∗µ∗µ∗ = 〈µ111µ111µ111(e∗),µ222µ222µ222(e∗)〉.

2.4 Bargaining 75

Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Theorem 2.4 (Unique Solution)
The four axioms above uniquely determine a solution. This solution is given
by

e∗ = arg maxe{(µ111µ111µ111(e)−µ111µ111µ111(efallback))× (µ222µ222µ222(e)−µ222µ222µ222(efallback))}.

2.4 Bargaining 76

Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Strategic Bargaining

No axioms: view it as a game!

Example revisited: Sharing 1 Peso.

Protocol with finitely many steps:The last offerer just offersε. This should be

accepted, so the last offerer gets 1− ε.

This is unsatisfiable. Ways out:

1. Add a discountfactorδδδ: in roundn, only theδn−1δn−1δn−1th part of the original

value is available.

2. Bargaining costs: bargaining is not for free—fees have to be paid.

2.4 Bargaining 77

Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Finite Games: Supposeδδδ = 0.9. Then the outcome depends on # rounds.

Round 1’s share 222’s share Total value Offerer

...
...

...
...

...

n−3 0.819 0.181 0.9n−4 222

n−2 0.91 0.09 0.9n−3 111

n−1 0.9 0.1 0.9n−2 222

n 1 0 0.9n−1 111

2.4 Bargaining 78

Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Infinite Games: δδδ111 factor for agent111, δδδ222 factor for agent222.

Theorem 2.5 (Unique solution for infinite games)
In a discounted infinite round setting, theres exists a unique Nash equilibrium :

Agent 111 gets 1−δδδ222
1−δδδ111δδδ222

. Agent 222 gets the rest. Agreement is reached in the first

round.

Proof:

2.4 Bargaining 79

Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Bargaining Costs

Agent111 paysc111, agent222 paysc222.

c111 = c222: Any split is in Nash-equilibrium.

c111 < c222: Agent111 gets all.

c111 > c222: Agent111 getsc222, agent222 gets 1−c222.

2.4 Bargaining 80

Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

2.5 General Equilibrium Mechanisms

A theory for efficiently allocating goods and resources amond agents, based

on market prices.

Goods: Givenn > 0 goodsg (coffee, mirror sites, parameters of an airplane design).

We assumeg 6= g′ but withing everything is indistinguishable.

Prices: The market has pricesp = [p1, p2, ..., pn] ∈ Rn: pi is the price of the goodi.

2.5 General Market Equilibrium 81

Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Consumers: Consumeri hasµiµiµi(x) encoding its preferences over consumption

bundlesxi = [xi1, ...,xin]t , wherexig ∈ R+ is consumeri’s allocation of goodg.

Each consumer also has an initial endowmentei = [ei1, ...,ein]t ∈ R.

Producers: Use some commodities to produce others:yj = [y j1, ...,y jn]t , where

y jg ∈ R is the amount of goodg that producerj produces.

YjYjYj is a set of such vectorsy.

Profit of producer j : p×yj , whereyj ∈YjYjYj .

Profits: The profits are divided among the consumers (given predetermined

proportions∆i j): ∆i j is the fraction of producerj that consumeri owns (stocks).

Profits are divided according to∆i j .

2.5 General Market Equilibrium 82

Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 2.1 (General Equilibrium)
(p∗,x∗,y∗) is in general equilibrium, if the following holds:

I. The markets are in equilibrium:

∑
i

x∗i = ∑
i

ei +∑
j

y∗j

II. Consumer i maximizes preferences according the prices

x∗i = arg max{xi∈Rn
+Rn
+Rn
+ | condi } µiµiµi(xi)

where condi stands for p∗×xi ≤ p∗×ei +∑ j ∆i j p∗×yi .

III. Producer j maximizes profit wrt. the market

y∗i = arg max{yj∈YjYjYj}p
∗×yj

2.5 General Market Equilibrium 83

Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Theorem 2.6 (Pareto Efficiency)
Each general equilibrium is pareto efficient.

Theorem 2.7 (Coalition Stability)
Each general equilibrium with no producers is coalition-stable: no subgroup can
incease their utilities by deviating from the equilibrium and building their own
market.

2.5 General Market Equilibrium 84

Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Theorem 2.8 (Existence of an Equilibrium)
Let the sets YjYjYj be closed, convex and bounded above. Let µiµiµi be continous,
strictly convex and strongly monotone. Assume further that at least one bun-
dle xi is producible with only positive entries xil .

Under these assumptions a general equilibrium exists.

2.5 General Market Equilibrium 85

Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

2.6 Meaning of the assumptions

Formal definitions:; blackboard.

Convexity ofYjYjYj : Economies of scale in production do not satisfy it.

Continuity of the µiµiµi : Not satisfied in bandwith allocation for video conferences.

Strictly convex: Not satisfied if preference increases when he gets more of this good

(drugs, alcohol, dulce de leche).

2.5 General Market Equilibrium 86

Chapter 2: Distributed Decision Making Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

In general, there exist more than one equilibrium.

Theorem 2.9 (Uniqueness)
If the society-wide demand for each good is non-decreasing in the prices of the other
goods, then a unique equilibrium exists.

Positive example: increasing price of meat forces people to eat potatoes

(pasta).

Negative example: increasing price of bread implies that the butter consump-

tion decreases.

2.5 General Market Equilibrium 87

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Chapter 3. Contract Nets, Coalition
Formation

3.1 General Contract Nets

3.2 OCSM-Nets

3.3 Abstract Coalition Formation

3.4 Payoff Division

Overview 88

3 Contract Nets, Coalition Formation

88-1

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

3.1 General Contract Nets

How to distribute tasks?

• Global Market Mechanisms. Implementations use a

single centralized mediator.

• Announce, bid, award-cycle. Distributed Negotiation.

We need the following:

1. Define a task allocation problem in precise terms.

2. Define a formal model for making bidding and awarding decisions.

3.1 General Contract Nets 89

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 3.1 (Task-Allocation Problem)
A task allocation problem is given by

1. a set of tasks T,

2. a set of agents AAA,

3. a cost function costiii : 2T −→ R∪{∞} (stating the costs that agent iii incurs by
handling some tasks), and

4. the initial allocation of tasks

〈T init
111 , . . . ,T init

|AAA| 〉,

where T =
⋃

iii∈AAA T init
iii , T init

iii ∩T init
jjj = /0 for iii 6= jjj.

3.1 General Contract Nets 90

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 3.2 (Accepting Contracts and Allocating Tasks)
A contractee qqq accepts a contract if it gets paid more than the marginal cost of
handling the tasks of the contract

MCadd(Tcontract|Tqqq) =def costqqq(Tcontract∪Tqqq)− costqqq(Tqqq).

A contractor rrr is willing to allocate the tasks Tcontract from its current task set Trrr to a
contractee, if it has to pay less than it saves by handling them itself:

MCremove(Tcontract|Trrr) =def costrrr(Trrr)− costrrr(Trrr−Tcontract).

3.1 General Contract Nets 91

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 3.3 (The Protocol)
Agents suggest contracts to others and make their decisions according to the above
MCadd and MCremovesets.

Agents can be both contractors and contractees. Tasks can be recontracted.

• The protocol is domain independent.

• Can only improve at each step:Hill-climbing in the space of all task
allocations. Maximum is social welfare:−∑iii∈AAA costiii(Tiii).

• Anytime algorithm!

3.1 General Contract Nets 92

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

3.2 4 Types of Nets

Definition 3.4 (O-, C-, S-, M- Nets)
A contract is called of type

O (Original) : if only one task is moved,

C (Cluster): if a set of tasks is moved,

S (Swap): if a pair of agents swaps a pair of tasks,

M (Multi) : if more than two agents are involved in an atomic exchange of tasks.

Problem: local maxima.

A contract may be individually rational but the task allocation is not globally

optimal.

3.2 OCSM-Nets 93

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Theorem 3.1 (Each Type Avoids Local Optima of the Others)
For each of the 4 types there exist task allocations where no IR contract with the
remaining 3 types is possible, but an IR contract with the fourth type is.

Theorem 3.2 (O-, C-, S-, M- Nets do not reach Global Optima)
There are instances of the task allocation problem where no IR sequence from the
initial task allocation to the optimal one exists using O-, C-, S-, and M- contracts.

3.2 OCSM-Nets 94

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 3.5 (OCSM Nets)
A OCSM-contract is a pair 〈TTT,ρρρ〉 of |AAA|× |AAA| matrices. An element Tiii,jjj stands for
the set of tasks that agent iii gives to agent jjj. ρiii,jjj is the amount that iii pays to jjj.

3.2 OCSM-Nets 95

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Theorem 3.3 (OCSM-Nets Suffice)
Let |AAA| and |T| be finite. If a protocol allows OCSM-contracts, any hill-climbing
algorithm finds the globally optimal task allocation in a finite number of steps without
backtracking.

Theorem 3.4 (OCSM-Nets are Neccessary)
If a protocol does not allow a certain OCSM contract, then there are instances of the
task allocation problem where no IR-sequence exists from the initial allocation to the
optimal one.

3.2 OCSM-Nets 96

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

3.3 Coalition Formation

Idea:
Consider a protocol (to build coalitions) as a game and consider Nash-

equilibrium.

Problem: Nash-Eq is too weak!

Definition 3.6 (Strong Nash Equilibrium)
A profile is in strong Nash-Eq if there is no subgroup that can deviate by changing
strategies jointly in a manner that increases the payoff of all its members, given that
nonmembers stick to their original choice.

This is often too strong and does not exist.

3.3 Abstract Coalition Formation 97

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 3.7 (Characteristic Function Game (CFG))
In a CFG the value of a coalition SSS is given by a characteristic function vvvSSS.

Thus it is independent of the nonmembers.But:

1. Positive Externalities: Caused by overlapping goals. Nonmembers perform

actions and move the world closer to the coalition’s goal state.

2. Negative Externalities:Caused by shared resources. Nonmembers may use the

resources so that not enough is left.

3.3 Abstract Coalition Formation 98

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 3.8 (Coalition Formation in CFG’s)
Coalition Formation in CFG’s consists of the following three steps

Forming CSCSCS : formation of coalitions such that within each coalition agents
coordinate their activities. This partitioning is called coalition structure CSC SCS .

Solving Optimazation Problem: For each coalition the tasks and resources of the
agents have to be pooled. Maximize monetary value.

Payoff Division: Divide the value of the generated solution among agents.

3.3 Abstract Coalition Formation 99

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

An interesting property.

Definition 3.9 (Super-additive Games)
A game is called super-additive, if

vvvSSS∪TTT ≥ vvvSSS+vvvTTT ,

where SSS,TTT ⊆AAA and SSS∩TTT = /0.

Lemma 3.1
Coalition formation for super-additive games is trivial.

Conjecture 3.1
All games are super-additive.

3.3 Abstract Coalition Formation 100

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

The conjecture is wrong, because the coalition process is not for free:

communication costs, penalties, time limits.

Maximize the social welfare of the agentsAAA by finding a coalition structure

CSCSCS∗ = arg maxC SCSCS∈part(AAA)Val(CSC SCS),

where

Val(CSCSCS) := ∑
SSS∈CSCSCS

vvvSSS.

How many coalition structures are there?

Too many:Ω(|AAA|
|AAA|
2). Enumerating is only feasible if|AAA|< 15.

3.3 Abstract Coalition Formation 101

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

How can we approximateVal(CSCSCS)?

Choose setNNN (a subset of all partitions ofAAA) and pick the best coalition seen so far:

CSCSCS∗NNN = arg maxCSCSCS∈NNN Val(CSC SCS).

3.3 Abstract Coalition Formation 102

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Figure 3.1: Coalition Structure Graph.

3.3 Abstract Coalition Formation 103

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

We want our approximation as good as possible. That means:

Val(CSCSCS∗)
Val(CSCSCS∗NNN)

≤ k,

wherek is as small as possible.

3.3 Abstract Coalition Formation 104

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Theorem 3.5 (Minimal Search to get a bound)
To bound k, it suffices to search the lowest two levels of the CSC SCS -graph. Using this
search, the bound k = |AAA| can be taken. This bound is tight and the number of nodes
searched is 2|AAA|−1.

No other search algorithm can establish the bound k while searching through less than
2|AAA|−1 nodes.

3.3 Abstract Coalition Formation 105

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

What exactly means the last theorem? Letnmin be the smallest size ofNNN such that a

boundk can be established.

Positive result: nmin
partitions ofAAA approaches 0 for|AAA| −→ ∞.

Negative result: To determine a boundk, one needs to search through exponentially

many coalition structures.

3.3 Abstract Coalition Formation 106

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Algorithm 3.1 (CSCSCS -Search-1)
The algorithm comes in 3 steps:

1. Search the bottom two levels of the CSCSCS -graph.

2. Do a breadth-first search from the top of the graph.

3. Return the CSCSCSwith the highest value.

This is ananytime algorithm.

3.3 Abstract Coalition Formation 107

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Theorem 3.6 (CSCSCS -Search-1 up to Layer l)
With the algorithm CSCSCS -Search-1 we get the following bound for k after searching
through layer l : d |AAA|h e if |AAA| ≡ h−1 modh and |AAA| ≡ l mod 2,

b |AAA|h c otherwise.

where h =def b |AAA|−l
2 c+2.

Thus, forl = |AAA| (check the top node),k switches from|AAA| to |AAA|2 .

3.3 Abstract Coalition Formation 108

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Figure 3.2: ComparingCSCSCS -Search-1 with another algorithm.

3.3 Abstract Coalition Formation 109

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

1. Is CSCSCS -Search-1the best anytime algorithm?

2. The search for bestk for n′ > n is perhaps not the same search to get bestk for n.

3. CSCSCS -Search-1does not use any information while searching. Perhapsk can be

made smaller by not only consideringVal(CSCSCS) but alsovvvSSS in the searchedCSC SCS ′.

3.3 Abstract Coalition Formation 110

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

3.4 Payoff Division

The payoff division should be fair between the agents, otherwise they leave the

coalition.

Definition 3.10 (Dummies, Interchangeable)
Agent iii is called a dummy, if

for all coalitions SSSwith iii 6∈SSS: vvvSSS∪{iii}−vvvSSS = vvv{iii}.

Agents iii and jjj are called interchangeable, if

for all coalitions SSSwith iii ∈SSSand jjj 6∈SSS: vvvSSS\{iii}∪{jjj} = vvvSSS

3.3 Abstract Coalition Formation 111

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Three axioms:

Symmetry: If iii andjjj are interchangeable, thenxiii = xjjj.

Dummies: For all dummiesiii: xiii = vvv{iii}.

Additivity: For any two gamesvvv,www:

xv⊕wv⊕wv⊕w
iii = xvvv

iii +xwww
iii ,

wherev⊕wv⊕wv⊕w denotes the game defined by(v⊕wv⊕wv⊕w)SSS = vvvSSS+wwwSSS.

3.3 Abstract Coalition Formation 112

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Theorem 3.7 (Shapley-Value)
There is only one payoff division satisfying the above 3 axioms. It is called the
Shapley value of agent iii and is defined by

xiii = ∑
SSS⊆AAA

(|AAA|− |SSS|)!(|SSS|−1)!
|AAA|!

(vvvSSS−vvvSSS\{iii}).

Note:

• (|AAA|−SSS)! is the number of all possible joining orders of the agents (to form a

coalition).

• The Shapley value sums up the marginal contributions of agentiii averaged over

all joining orders.

• An expected gaincan be computed by taking a random joining order and

computing the Shapley value.

3.3 Abstract Coalition Formation 113

Chapter 5: IMPACT Architecture Multi Agent Systems, Ushuaia (Oct. 2000)

Chapter 5. IMPACT Architecture
Overview

5.1 Three Szenarios

5.2 Agent Architecture

5.3 Server Architecture

5.4 Service Description Language

Overview 114

4 IMPACT Architecture

114-1

Chapter 5: IMPACT Architecture Multi Agent Systems, Ushuaia (Oct. 2000)

4.1 Three Szenarios

Content Deter-
mination Agent

Product DB
Agent

Credit
Agent

Profiling
Agent

Interface Agent

identify
products

identified
products

user-id to be
 profiled

request
for credit
info

requested
credit info

user’s
request

profile
based items
for presentation

user’s profile

user’s
request

multimedia
presentation

USER

product DBs credit DBs
Figure 4.1: Personalized Department Store (STORE)

5.1 Three Szenarios 115

Chapter 5: IMPACT Architecture Multi Agent Systems, Ushuaia (Oct. 2000)

Terrain

Auto-Pilot
Agent

Agent

terrain (DTED) data

modified flight plan

GPS
data

merged
location

no-go
areas

GPS Agent

Satellite
Agents

Figure 4.2: Interactions between Agents inCFIT Example

5.1 Three Szenarios 116

Chapter 5: IMPACT Architecture Multi Agent Systems, Ushuaia (Oct. 2000)

Figure 4.3: Agents inCHAIN Example

5.1 Three Szenarios 117

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

4.2 Agent Architecture

Four main categories:

1. In the first category, each agent has an associated“transducer” that converts all

incoming messages and requests into a form that is intelligible to the agent. In

general, in ann-agent system, we may needO(n2) transducers, which is clearly

not desirable.

2. The second approach is based onwrappers which “inject code into a program
to allow it to communicate” (?, p. 51). This idea is based on the principle that

each agent has an associated body of code that is expressed in a common

language used by other agents (or is expressed in one of a very small number of

such languages).

5.2 Agent Architecture 118

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

3. The third approach described in (?) is tocompletely rewrite the code
implementing an agent, which is obviously a very expensive alternative.

4. Last but not least, there is themediation approachproposed by?), which

assumes that all agents will communicate with a mediator which in turn may

send messages to other agents. The mediation approach has been extensively

studied (?; ?; ?; ?).

Here is the problem: Suppose all communications in theCFIT example had

to go through such a mediator. Then if the mediator malfunctions or “goes

down,” the system as a whole is liable to collapse, leaving the plane in a

precarious position.

5.2 Agent Architecture 119

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

K
R
O
W
T
E
N

agent

agent

agent

agent

agent

IMPACT Server
IMPACT Server

IMPACT Server

Figure 4.4: OverallIMPACT Architecture

5.2 Agent Architecture 120

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Legacy Data

Function Calls

Meta-Kn

Action Policy

Security

Action
Base

Constr.
Integrity

Action
Constr.

Messages
 In

Messages
 Out

AGENT

W

N
E
T

O
R
K

Figure 4.5: Basic Architecture ofIMPACT Agents

5.2 Agent Architecture 121

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

4.3 Server Architecture

An IMPACT Server is actually a collection of the following servers:

Registration Server: This server is mainly used by the creator of an agent to specify

the services provided by it and who may use those services.

Yellow Pages Server: This server processes requests from agents to identify other

agents that provide a desired service.

Thesaurus Server: This server receives requests when new agent services are being

registered as well as when the yellow pages server is searching for agents

providing a service.

Type Server: This server maintains a set of class hierarchies containing information

about different data types used by different agents, and the inclusion

relationship(s) between them.

5.3 Server Architecture 122

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Figure 4.6: Agent/Service Registration Screen Dump

5.3 Server Architecture 123

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

The user needs to specify the services of his agent. This is done inSDL

(Service Description Language).

Definition 4.1 (Verbs, Nouns, nt(Nouns))
Suppose Verbs is a set of verbs in English, and Nouns is a set of nouns in English.

• A noun termis either a noun or an expression of the form n1(n2) where n1,n2 are
both nouns.

• nt(Nouns) denotes the set of all syntactically valid noun terms generated by the
set Nouns.

Definition 4.2 (Service Name)
If v ∈ Verbs and nt∈ nt, then v: nt is called a service name.

5.3 Server Architecture 124

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

AGENT SERVICES

creditcreditcredit provide: information(credit)

provide: address

profilingprofilingprofiling provide: user-profile

classify: user

productDBproductDBproductDB provide: description(product)

identify: product

contentDetermincontentDetermincontentDetermin prepare: presentation(product)

determine: advertisement

identify: items

saleNotificationsaleNotificationsaleNotification identify: user-profile

determine: items

Table 4.1: Service List for theSTORE example
5.3 Server Architecture 125

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

AGENT SERVICE

autoPilotautoPilotautoPilot maintain: course

adjust : course

return: control

create: plan(flight)

satellitesatellitesatellite broadcast : data(GPS)

gpsgpsgps collect : data(GPS)

merge: data(GPS)

create: information(GPS)

terrainterrainterrain generate: map(terrain)

determine: area(no-go)

Table 4.2: Service List for theCFIT example

5.3 Server Architecture 126

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

AGENT SERVICE

plantplantplant monitor: inventory

determine: amount(part)

order: part

notify: supplier

suppliersuppliersupplier monitor: available-stock

update: stock

find: airplane

prepare: schedule(shipping)

trucktrucktruck provide: schedule(truck)

manage: freight

ship: freight

Table 4.3: Service List for theCHAIN example
5.3 Server Architecture 127

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

What if one agentaaa seeks another one offering a serviceqs?

We need to matchqs with other services in the yellow pages.

An agent looks for an agent offering the servicegenerate: map(ground).

Answer: CFIT terrainterrainterrain agent:groundandterrain are synonymous.

SupposeΣ is any set of English words, such that either all words inΣ are verbs, or all

words inΣ are noun-terms. Furthermore, suppose∼ is an arbitrary equivalence

relation onΣ.

5.3 Server Architecture 128

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 4.3 (Σ-node)
A Σ-nodeis any subset N⊆ Σ that is closed under ∼, i.e.

1. x∈ N& y∈ Σ& y∼ x⇒ y∈ N.

2. x,y∈ N⇒ x∼ y.

In other words, Σ-nodesare equivalence classes of Σ.

5.3 Server Architecture 129

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

An agent looks for an agent offering the servicegenerate: map(area).

Answer: CFIT terrainterrainterrain agent:areacan be specialized toterrain.

Definition 4.4 (Σ-Hierarchy)
A Σ-Hierarchy is a weighted, directed acyclic graph SHSHSH =def (T,E,℘) such that:

1. T is set of nonempty Σ-nodes;

2. If t1 and t2 are different Σ-nodes in T, then t1 and t2 are disjoint;

3. ℘ is a mapping from E to Z+ indicating a positive distance between two
neighboring vertices.a

aWe do not require℘ to satisfy any metric axioms at this point in time.

5.3 Server Architecture 130

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

perform

climb order yaw

2 3 3

choose classify determine identify locate

find

2 33 2

notify sell send

provide

broadcast mail ship

3

monitor present respond return

view

22 3

cancel change maintain manage merge

compute

adjust update

collect convert generate

create

2 2 2 2 232

Verb Hierarchy

prepare

Figure 4.7: Verb Hierarchy (Missing Labels = 1)

5.3 Server Architecture 131

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

advertisement data description document message performance presentation schedule userProfile

brochure data(GPS) description(product)mailList contract schedule(shipping)

information(credit)

information(product)information(GPS)

information

memo email fax

performance(supplier) presentation(product)

schedule(truck)

appliances clothing inventory items stock wine

product

jewelry shoes freight stock(available)

shoes(leather)

2 2

2 2 2

amount(part)

amount

quantity

spender(medium)

spender(low)spender(high)

spender supplier user

title

spender(veryHigh)

map(area)

map(terrain)map(ground)

plan(flight)

course map path plan route

navigation

2

aileron control sparkPlugs tires

vehicle

part truckairplane

2

area(noGo) ground region terrain

area

Noun Hierarchy

stock(committed)

Figure 4.8: Noun-term Hierarchy

5.3 Server Architecture 132

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

4.3.1 Distances

Definition 4.5 (Distance between two terms)

Given a Σ-Hierarchy SHSHSH =def (T,E,℘), the distance between two terms, w1,w2 ∈ T,
is defined as follows:

dddSHSHSH (w1,w2) =def

0, if some t ∈ T exists such that w1,w2 ∈ t;

cost(pmin), if there is an undirected path in SHSHSH between

w1,w2 and pmin is the least cost such path;

∞, otherwise.

It is easy to see that given anyΣ-hierarchy,SHSHSH =def (T,E,℘), the distance function,

dddSHSHSH induced by it is well defined and satisfies the triangle inequality.

5.3 Server Architecture 133

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Figure 4.9: Hierarchy Browsing Screen Dump

5.3 Server Architecture 134

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Figure 4.10: Thesaurus Screen Dump

5.3 Server Architecture 135

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

4.4 Service Description Language

4.4.1 Definition ofSDL

Service Name: This is averb : noun(noun)expression describing the service.

Inputs: The user of a service will provide zero or more inputs. We also need a

specification of what inputs are expected and which of these inputs are

mandatory: “English” name for each input, and a semantic type for that input.

For example: Amount: Integer specifies that we have an input calledAmount

of typeInteger and Part: PartName specifies that we have an input called

Part of typePartName (which could be an enumerated type).

5.4 Service Description Language 136

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Outputs: Each service must specify the outputs that it provides and each output is

specified in the same way as an input.

Attributes : In addition, services may haveattributes associated with them.

Examples of such attributes includecost (for using the service),

average response timefor requests to that service, etc.

5.4 Service Description Language 137

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 4.6 (Type/Type Hierarchy (TTTTTTTTT ,≤))
A typeτ is a set whose elements are called “values” of τ. The pair (TTTTTTTTT ,≤) is called a
type hierarchyif TTTTTTTTT is a set of types and ≤ is a partial ordering on TTTTTTTTT .

Figure 4.11 provides a hierarchy associated with the three motivating examples.

5.4 Service Description Language 138

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02
Type Hierarchy

AsciiFile BinaryFile

File

Path Plan

List

3 3

TerrainMap

Map

DTEDMap

Boolean

Number

2

Float Integer

Elevation Percentage Price Probability NonNegative

CarSpecRecord FinanceRecord SatelliteReport UserProfile

Record

ItemName NetAddress PartName Supplier

String

2

Date DayOfWeek TimeOfDay

Time

flight_path

Figure 4.11: Example Type Hierarchy

5.4 Service Description Language 139

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 4.7 (Set of Type VariablesVTTTTTTTTT)
Associated with any type hierarchy (TTTTTTTTT ,≤), is a set VTTTTTTTTT of symbols called type

variables.

Intuitively, a type variable ranges over the values of a given type. For instance,

PartName may be a type variable ranging over strings. When specifying the inputs

required to invoke a service, we need to specify variables and their associated types.

This is done in the usual way, as defined below.

Definition 4.8 (Itemss: τ)
If s is a variable ranging over objects of type τ, then s: τ is called an item.

s: τ may be read as saying

“the variable s may assume values drawn from the typeτ” .

5.4 Service Description Language 140

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 4.9 (Item Atom)
If s: τ is an item, then 〈I〉s: τ〈\I〉 (resp. 〈MI〉s: τ〈\MI〉) is called an input (resp.

mandatory input) item atom, and 〈O〉s: τ〈\O〉 is called an outputitem atom.

Each input item is eithermandatorymandatorymandatoryor not. For example,〈MI〉Location: String〈\MI〉
is a mandatory input item atom, while〈I〉Nogo: TerrainMap〈\I〉 is a non-mandatory

input item atom. The following are all valid output item atoms:〈O〉Path1: Path〈\O〉,
〈O〉Specs: CarSpecRecord〈\O〉 and〈O〉Financingplan: FinanceRecord〈\O〉.

5.4 Service Description Language 141

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 4.10 (Service Description)
Let snbe a service name, i1, . . . , in be input item atoms, mi1, . . . ,mik be mandatory
input item atoms, and o1, . . . ,or be output item atoms. Then,

〈S〉 sn

mi1 . . .mik

i1 . . . in

o1 . . .or

〈\S〉

is called a service description.

5.4 Service Description Language 142

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 4.11 (Item List)
If s1: τ1,. . . ,sn: τn are n≥ 1 items, then 〈I〉s1: τ1, . . . ,sn: τn〈\I〉 is an input item list,
which is a shorthand for 〈I〉s1: τ1〈\I〉 · · · 〈I〉s1: τn〈\I〉; also,
〈MI〉s1: τ1, . . . ,sn: τn〈\MI〉 and 〈O〉s1: τ1, . . . ,sn: τn〈\O〉 are mandatory input item lists

and output item lists, respectively, which are shorthands for the items
〈MI〉s1: τ1〈\MI〉 · · · 〈MI〉s1: τn〈\MI〉 and 〈O〉s1: τ1〈\O〉 · · · 〈O〉s1: τn〈\O〉, respectively.

5.4 Service Description Language 143

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

〈S〉 classify: user

〈MI〉ssn: String〈\MI〉
〈I〉name: String〈\I〉
〈O〉class: UserProfile〈\O〉

〈\S〉

This service may take asinput, thenameand thesocial security numberof a user, and

provide asoutput, aclassification of the useras a “low,” “medium,” “high,” or “very

high” spender. The social security number is a mandatory input, whereas thename is

optional as it can be uniquely determined from a person’s social security number.

5.4 Service Description Language 144

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

〈S〉 create: plan(flight)

〈MI〉Location: SatelliteReport,Flightroute: Path,Nogo: Map〈\MI〉
〈O〉Plan: Plan〈\O〉

〈\S〉

This service takes three mandatory inputs (the location of the plane, the allocated

flight route of the plane, and a set of Nogo areas), and generates a modified flight path

for the plane.

5.4 Service Description Language 145

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

〈S〉 monitor: availablestock

〈MI〉Amount: Integer,Partid: String〈\MI〉
〈I〉Name: String〈\I〉
〈O〉Status: String〈\O〉

〈\S〉

This service takes theAmountandPart id of the requested part as mandatory inputs,

and thenameof the requested part as an optional input. TheNameof apart maybe

determined from itsPart id. This service returns as output the string

amount available or amount not available.

5.4 Service Description Language 146

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

4.4.2 Metric and Matchmaking

Up to now, we defined distances between verbs and between noun-terms. But we

need to have adistance between service-names!

Definition 4.12 (Composite Distance Functioncd)
Suppose we have two different sets of words Σ1 and Σ2 with Σ1-hierarchy
SHSHSH 1 =def (T1,E1,℘1) and Σ2-hierarchy SHSHSH 2 =def (T2,E2,℘2). Let d1,d2 be the
distance functions induced by SHSHSH 1,SHSHSH 2, respectively. Consider two pairs of words,
〈w1,w′1〉,〈w2,w′2〉 ∈ Σ1×Σ2. A composite distancefunction cd is any mapping from
(Σ1×Σ2)× (Σ1×Σ2) to Z+ such that:

5.4 Service Description Language 147

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

1. cd(〈w1,w′1〉,〈w2,w′2〉) = cd(〈w2,w′2〉,〈w1,w′1〉) (Symmetry)

2. cd(〈w1,w′1〉,〈w1,w′1〉) = 0 (Ipso-distance)

3. If d1(w1,w2)≤ d1(w1,w3), then

cd(〈w1,w′1〉,〈w2,w′2〉)≤ cd(〈w1,w′1〉,〈w3,w′2〉) (Expansion of d1)

4. If d2(w′1,w
′
2)≤ d2(w′1,w

′
3), then

cd(〈w1,w′1〉,〈w2,w′2〉)≤ cd(〈w1,w′1〉,〈w2,w′3〉) (Expansion of d2)

5. cd(〈w1,w′1〉,〈w3,w′3〉)≤ cd(〈w1,w′1〉,〈w2,w′2〉)+
cd(〈w2,w′2〉,〈w3,w′3〉) (Triangle Inequality).

5.4 Service Description Language 148

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 4.1 (Composite Distances)
Let d1 and d2 be distances defined as in Section 4.2 on the verb and noun-term
hierarchies given in Figure 130 on page 130 and Figure 131 on page 131,
respectively. Moreover, let the composite distance function be defined as

cd(〈w1,w
′
1〉,〈w2,w

′
2〉) =def d1(w1,w2)+d2(w′1,w

′
2).

Now consider the following two pairs: 〈provide, information〉 and
〈broadcast,data(GPS)〉. As can be seen from Figure 130 on page 130, the distance
between provide and broadcast is

d1(provide,broadcast) = 2,

as is the distance between informationand data(GPS)(see Figure 131 on page 131).

5.4 Service Description Language 149

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Thus, the composite distance between these two pairs is given by

cd(〈provide, information〉,
〈broadcast,data(GPS)〉) = d1(provide,broadcast)+d2(information,data(GPS))

= 4.

As another example, consider the pairs〈identify, items〉 and〈determine,product〉. In

this case, as given by Figure 130 on page 130, the distanced1(identify,determine)
betweenidentify anddetermine is 5. And from Figure 131 on page 131, the distance

betweenitemsandproductis d2(items,product) = 1. Then, the composite distance

between〈identify, items〉 and〈determine,product〉 will be the sum of their verb and

nounterm distances, i.e., 6.

5.4 Service Description Language 150

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

What if we are looking for the distance betweenn1(n′1) andn2(n′2), but

these terms do not occur (onlyn1,n′1,n2,n′2 are innt)?

Then we usecd whereΣ1 := Σ2 := nt.

What if we are looking for the distance betweenn1(n2) andn1 but the term

n1(n2) does not ocurr? (There might be a synonymn3 for n2 s.t.n1(n3)
ocurrs.)

Then we roughly estimate: see Definition ofdG.

Definition 4.13 (The FunctiondG)
We interpret, n1 as n1(general), e.g., informationas information(general), and
assume that a function denoted by dG for computing the distance between any noun n

and generalis given to the system. E.g.: (w1, ...,wk are the weights of all edges
between the Noun-Term-node and any of its neighboring vertices)

dG(n,general) =def max(w1, ...,wk).

5.4 Service Description Language 151

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 4.2 (Distances)
When n is the noun-term mapor navigation, dG(n,general) = 2 but when n is plan or
route, dG(n,general) = 1.

Consider a query which asks for map(region). Which noun-term should we
consider first?

Although there is no noun-term in our hierarchy named map(region), there are
noun-terms for both mapand region. Recall that dG(map,general) = 2. If we can
find a noun-term n with a distance of 2 or less from map(region), we should start at n.
Otherwise, we should start at map.

In our current example, we should start at map(area)as regionhas a distance of 1

from areaand so map(area)has a distance of 1 < 2. However, if we were looking for
map(city), there is no noun-term with a distance of 2 or less so we should start at map.

5.4 Service Description Language 152

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Matchmaking

It is easy to definefind nn: An algorithm to solve thek-nearest neighbor problem.

Given a pair〈v,nt〉 specifying a desired service, this algorithm will return a

set ofk agents that provide the most closely matching services.

Closeness between〈v,nt〉 and another pair〈v ′,nt′〉 is determined by using

1. the distance functions associated with the verb and noun-term hierarchies,

2. a composite distance functioncd specified by the agent invoking thefind nn
algorithm.

5.4 Service Description Language 153

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Range Computations

TherangeAlgorithm answers queries of the form

“Find all agents that provide a service vnt= 〈V ′,NT′〉 which is within a

distance D of a requested service vnt= 〈V,NT〉” .

5.4 Service Description Language 154

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

4.4.3 Simulation Results

We are interested in

• the efficiency of findingsimilar services and

• the quality of the matchingservices provided as the output.

Performance Results

Based on aNASAhierarchy consisting of 17,445 words(for experimental purposes,

the same hierarchy was used as both a verb and a noun hierarchy, although the

IMPACT prototype uses different hierarchies). Weights on all edges in the hierarchies

were assumed to be 1 and the composite distance function was taken to besum.

The algorithms were implemented in C++ and the experiments were conducted on a

Sun Sparc.

5.4 Service Description Language 155

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Figure 4.12: Performance ofk-nearest neighbor algorithm, Average Time

5.4 Service Description Language 156

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Figure 4.13: Performance ofk-nearest neighbor, Average time per answer

5.4 Service Description Language 157

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Figure 4.14: Performance of range query algorithm, Average Time

5.4 Service Description Language 158

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Figure 4.15: Performance of range query algorithm, Average time per answer

5.4 Service Description Language 159

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Quality of Returned Matches

We conducted an experiment involving 35 participants:

1. We used a simple verb hierarchy (10 nodes), noun-term hierarchy (90 nodes),

and ServiceTable (100 services).

2. After an initial training phase, participants entered aprecision phasewhere

they were asked to perform 10 nearest neighbor and 10 range queries of their

choice.

3. After each query result, participants typed in a ranking between 0 (least satisfied)

and 100 (most satisfied).

4.
Average satisfaction for nearest neighbor and range queries are shown

below.

5.4 Service Description Language 160

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Precision for thek-nearest neighbor algorithm Precision for the range algorithm

Figure 4.16: Experimental Results of Precision of our Algorithms

5.4 Service Description Language 161

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

After completing the precision phase, participants started therecall phase.

1. They were allowed to view the ServiceTable (which up to this point was not

available to them).

2. Meanwhile, they were presented with text boxes containing the query answers

they gave in the previous phase.

3. After each answer, they were instructed to type in the name of all services in

ServiceTable which did not appear as a query result but which should have been

returned as an answer.

4. Theaverage number of these “suggested replacements”for nearest neighbor

and range query answers areshown below.

5.4 Service Description Language 162

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Recall for thek-nearest neighbor algorithm Recall for the range algorithm (radiusD)

Figure 4.17: Experimental Results of Recall of our Algorithms

5.4 Service Description Language 163

Chapter 5: IMPACT Architecture Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

4.5 Summary

1. We introducedthree szenarioswhere multi-agency is important.

2. We presented the mainIMPACT -architecture.

3. Agents need to useservices of other agents.

(a) We do not assume that agents precisly know about services of other agents.

(b) We defined a language where such requests can be formulated

(; service description languageSDL).

(c) We presented algorithms to find the best matches for a request

(; find nn, range) .

5.5 Summary 164

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Chapter6. The Code Call Mechanism

Overview

6.1 Software Code Abstractions

6.2 Code Calls

6.3 Message Box

6.4 Integrity Constraints

6.5SDL and Code Calls

Overview 165

Timetable:

• Chapter 6 needs 1 lecture.

5 Legacy Data

165-1

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

A definition of agents should not limit the choice of data structures and
algorithms that an application designer must use.

CHAIN: suppliersuppliersupplier agents on top of an existing commercial relational DBMS system.

CFIT: terrainterrainterrain agent on top of existing US military terrain reasoning software.

Accessing DB’s: For instance, the Product Database agentproductDBproductDBproductDB in the

CHAIN example may access some file structures, as well as some databases.

Overview 166

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

5.1 Software Code Abstractions

Definition 5.1 (Software CodeSSS = (TTTTTTTTT SSS ,FFFFFFFFF SSS ,CCCCCCCCCSSS))
We may characterize the code on top of which an agent is built as a triple
SSS =def (TTTTTTTTT SSS ,FFFFFFFFF SSS ,CCCCCCCCCSSS) where:

1. TTTTTTTTT SSS is the set of all data types managed by SSS ,

2. FFFFFFFFF SSS is a set of predefined functions which makes access to the data objects
managed by the agent available to external processes, and

3. CCCCCCCCCSSS is a set of type composition operations. A type composition operator is a
partial n-ary function c which takes as input types τ1, . . . ,τn and yields as a result
a type c(τ1, . . . ,τn). As c is a partial function, c may only be defined for certain
arguments τ1, . . . ,τn, i.e., c is not necessarily applicable on arbitrary types.

6.1 Software Code Abstractions 167

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Intuitively:

• TTTTTTTTT SSS is the set of all data types that are managed by the agent.

• FFFFFFFFF SSS intuitively represents the set of all function calls supported by the package

SSS ’s application programmer interface (API).

• CCCCCCCCCSSS the set of ways of creating new data types from existing data types.

6.1 Software Code Abstractions 168

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Given a software packageSSS , we use the notationTTTTTTTTT ?
SSS to denote theclosureof TTTTTTTTT SSS

under the operations inCCCCCCCCCSSS . In order to formally define this notion, we introduce the

following definition.

Definition 5.2 (CCCCCCCCCSSS (TTTTTTTTT) andTTTTTTTTT ?
SSS)

a) Given a set TTTTTTTTT of types, we define

CCCCCCCCCSSS (TTTTTTTTT) =def TTTTTTTTT ∪ {τ : there exists an n-ary composition operator c∈CCCCCCCCCSSS

and types τ1, . . . ,τn ∈TTTTTTTTT such that c(τ1, . . . ,τn) = τ}.

b) We define TTTTTTTTT ?
SSS as follows:

TTTTTTTTT 0
SSS =def TTTTTTTTT SSS ,

TTTTTTTTT i+1
SSS =def CCCCCCCCCSSS (TTTTTTTTT i

SSS),

TTTTTTTTT ?
SSS =def

⋃
i∈NTTTTTTTTT i

SSS .

6.1 Software Code Abstractions 169

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

CHAIN Revisited

TTTTTTTTT SSS =def {Integer,Location,String,Date,OrderLog,Stock}
OrderLog is a relation having the schema

(client/string , amount/Integer , part id/String , method/String ,

src/Location , dest/Location , pickupst/date , pickupet/date),

while Stock is a relation having the schema (amount/Integer , part id/String).

Location is an enumerated type containing city names.

6.1 Software Code Abstractions 170

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

In addition,FFFFFFFFF SSS might consist of the functions:

• monitorStockmonitorStockmonitorStock(Amount/Integer ,Part id/String) of typeString.

This function returns eitheramount available or amount not available.

• shipFreightshipFreightshipFreight(Amount/Integer ,Part id/String ,method/String ,

Src/Location ,Dest/Location).
This function, when executed, updates the order log and logs information about

the order, together with information on (i) the earliest time the order will be

ready for shipping, and (ii) the latest time by which the order must be picked up

by the shipping vendor.

Notice that this doesnot mean that the shipment will in fact be picked up by the

airplaneairplaneairplane agent at that time.

• updateStockupdateStockupdateStock(Amount/Integer ,Part id/String).
This function, when executed, updates the inventory of the Supplier.

6.1 Software Code Abstractions 171

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

CFIT Revisited

TTTTTTTTT SSS =def {Map,Path,Plan,SatelliteReport}.
Special class of maps calledDTED Digital Terrain Elevation Datathat specify the

elevations of different regions of the world.

Suppose theautoPilotautoPilotautoPilot agent’s associated set of functionsFFFFFFFFF SSS contains:

• createFlightPlancreateFlightPlancreateFlightPlan(Location/Map,Flight route/Path ,Nogo/Map) of typePlan.

Moreover, theFFFFFFFFF SSS of thegpsgpsgps might contain the following function:

• mergeGPSDatamergeGPSDatamergeGPSData(Data1/SatelliteReport ,Data2/SatelliteReport) of type

SatelliteReport.

6.1 Software Code Abstractions 172

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

State of an Agent

Definition 5.3 (State of an Agent)

At any given point t in time, the state of an agentwill refer to a set OOOSSS (t) of objects
from the types TTTTTTTTT SSS , managed by its internal software code.

An agent may change its state by taking an action—either triggered in-
ternally, or by processing a message received from another agent.

We will assume that except for appending messages to an agentaaa’s mailbox, another

agentbbb cannot directly changeaaa’s state. However, it might do so indirectly by

shipping the other agent a message issuing a change request.

6.1 Software Code Abstractions 173

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

5.2 Code Calls

Code Calls take data from heterogenous DB’s so that such data can
be considered as logical atoms (as terms in predicate logic).

An agent built on top of a piece,SSS , of software, may support several
API functions, and it may or may not make all these functions avail-
able to other agents (throughSDL).

6.2 Code Calls 174

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 5.4 (Code CallSSSSSSSSS :fff (((d1, . . . ,dn))))
Suppose SSS =def (TTTTTTTTT SSS ,FFFFFFFFF SSS ,CCCCCCCCCSSS) is some software code and fff ∈FFFFFFFFF SSS is a predefined
function with n arguments, and d1, . . . ,dn are objects or variables such that each di
respects the type requirements of the i’th argument of fff . Then,

SSSSSSSSS :fff (((d1, . . . ,dn)))

is a code call. A code call is groundif all the di’s are objects. We often switch
between the software package SSS and the agent providing it. Therefore instead of
writing SSSSSSSSS :fff (((d1, . . . ,dn))) where SSS is provided by agent aaa, we also write aaaaaaaaa :fff (((d1, . . . ,dn))).

SSSSSSSSS :fff (((d1, . . . ,dn))) may be read as:execute functionfff as defined in packageSSS on

the argumentsd1, . . . ,dn.

6.2 Code Calls 175

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Comment 1 (Assumption on the Output Signature)We will assume that the

output signatureof any code call is aset. There is no loss of generality in making

this assumption—if a function does not return a set, but rather returns an atomic

value, then that value can be coerced into a set anyway—by treating the value as

shorthand for the singleton set containing just the value.

6.2 Code Calls 176

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

1. suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((3,part 008))).
Observe that the result of this call is either the singleton set

{ amount available }, or the set{ amount not available }.

2. suppliersuppliersupplier :shipFreightshipFreightshipFreight(((3,part 008,truck,X,paris))).
This says we should create a pickup schedule for shipping 3 pieces of part008

from locationX to paris by truck. Notice that until a value is specified forX, this

code call cannot be executed.

3. GPSGPSGPS :mergeGPSDatamergeGPSDatamergeGPSData(((S1,S2))) is a code call which merges two pieces,S1 andS2,

of satellite data, but the values of the two pieces are not stated.

6.2 Code Calls 177

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Variables

SSS =def (TTTTTTTTT SSS ,FFFFFFFFF SSS ,CCCCCCCCCSSS) of software code. Given any typeτ ∈TTTTTTTTT SSS (wrt. software code

SSS =def (TTTTTTTTT SSS ,FFFFFFFFF SSS ,CCCCCCCCCSSS)) we will assume that there is a setroot(τ) of “root” variable

symbols ranging overτ. Such “root” variables will be used in the construction of

code calls.

Supposeτ is a complex record type having fieldsf1, . . . ,fn.

• For every variable of typeτ, we require thatX.fi be a variable of typeτi whereτi

is the type of fieldfi.

• If fi itself has a sub-fieldg of typeγ, thenX.fi.g is a variable of typeγ, and so

on.

These are calledpath variables.

• For any path variableY of the formX.path, whereX is a root variable, we refer to

X as the root ofY, denoted byroot(Y).

6.2 Code Calls 178

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 5.1 (CFIT Revisited)
Let X be a (root) variable of type SatelliteReport denoting the current location of
an airplane. Then X.2dloc, X.2dloc.x, X.2dloc.y, X.height, and X.dist are
path variables . For each of the path variables Y, root(Y) = X. Here, X.2dloc.x,
X.2dloc.y, and X.height are of type Integer, X.2dloc’s type is a record of two
Integer s, and X.dist is of type NonNegative.

6.2 Code Calls 179

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 5.5 (Variable Assignment)
An assignment of objects to variablesis a set of equations of the form

V1 := o1, . . . ,Vk := ok where the Vi’s are variables (root or path) and the oi’s are
objects—such an assignment is legal, if the types of objects and corresponding
variables match.

Example 5.2 (CFIT Revisited)
A legal assignment may be

(X.height := 50,X.sat id := iridium 17,X.dist := 25,X.2dloc.x := 3,X.2dloc.y :=−4).

If the record is ordered as shown here, then we may abbreviate this assignment as (50,
iridium 17, 25, 〈3,−4〉). Note however that

(X.height := 50,X.sat id := iridium 17,X.dist :=−25,X.2dloc.x := 3,X.2dloc.y :=−4)

would be illegal, because -25 is not a valid object for X.dist’s type NonNegative.

6.2 Code Calls 180

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Code-call atoms arelogical atomslogical atomslogical atomsthat are layered on top of code-calls.

Definition 5.6 (Code Call Atom)
If cc is a code call, and X is either a variable symbol, or an object of the output type of
cc, then

• in(((((((((X,cc))))))))),

• not in(((((((((X,cc))))))))),

are called code call atoms. A code call atom is groundif no variable symbols occur
anywhere in it.

6.2 Code Calls 181

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

• A code call atom of the formin(((((((((X,cc))))))))) succeeds just in case whenX can be set to

a pointer to one of the objects in the set of objects returned by executing the code

call.

• A code call atom of the formnot in(((((((((X,cc))))))))) succeeds just in caseX is not in the

result set returned bycc (whenX is an object), or whenX cannot be made to

point to one of the objects returned by executing the code call.

What effects does this have on thestateof an agent?

It is an infinite set of ground code call atoms!

6.2 Code Calls 182

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

1. in(((((((((amount available,suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((3,part 008)))))))))))).
This code call succeeds just in case the Supplier has 3 units ofpart 008 on

stock.

2. not in(((((((((spender(low),profilingprofilingprofiling :classifyUserclassifyUserclassifyUser(((U)))))))))))). This code call succeeds just

in case userU, whose identity must be instantiated prior to evaluation, isnot

classified as a low spender by theprofilingprofilingprofiling agent.

6.2 Code Calls 183

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 5.7 (Code Call Condition)
A code call conditionis defined as follows:

1. Every code call atom is a code call condition.

2. If s and t are either variables or objects, then s = t is a code call condition.

3. If s and t are either integers/real valued objects, or are variables over the
integers/reals, then s < t, s > t, s≤ t, and s≥ t are code call conditions.

4. If χ1 and χ2 are code call conditions, then χ1& χ2 is a code call condition.

We refer to any code call condition of form 1.-3. as an atomiccode call condition.

6.2 Code Calls 184

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

1. χ(1) : in(((((((((amount available,suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((3,part 008)))))))))))).

2. χ(2) : in(((((((((X,suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((3,part 008))))))))))))& X = amountavailable.

3.
χ(3) : in(((((((((amount available,suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((U,part 008)))))))))))) &

not in(((((((((amount available,suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((U+1,part 008)))))))))))) &

in(((((((((amount available,suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((V,part 009)))))))))))) &

not in(((((((((amount available,suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((V+1,part 009)))))))))))) & U < V.

6.2 Code Calls 185

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

4. in(((((((((spender(medium),profilingprofilingprofiling :classifyUserclassifyUserclassifyUser(((U)))))))))))) &

in(((((((((spender(high),profilingprofilingprofiling :classifyUserclassifyUserclassifyUser(((V)))))))))))) & U = V.

5. in(((((((((spender(medium),profilingprofilingprofiling :classifyUserclassifyUserclassifyUser(((U)))))))))))) &

not in(((((((((spender(high),profilingprofilingprofiling :classifyUserclassifyUserclassifyUser(((U)))))))))))).

6.2 Code Calls 186

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Safety

Definition 5.8 (Safe Code Call (Condition))
A code call SSSSSSSSS :fff (((d1, . . . ,dn))) is safeif and only if each di is ground. A code call

condition χ1& . . .& χn, n≥ 1, is safe if and only if there exists a permutation π of
χ1, . . . ,χn such that for every i = 1, . . . ,n the following holds:

1. If χπ(i) is a comparison s1ops2, then

1.1 at least one of s1,s2 is a constant or a variable X such that root(X) belongs to
RVπ(i) =def {root(Y) | ∃ j < i s.t. Y occurs in χπ(j)};

1.2 if si is neither a constant nor a variable X such that root(X) ∈ RVπ(i), then si
is a root variable.

2. If χπ(i) is a code call atom of the form in(((((((((Xπ(i),ccπ(i)))))))))) or not in(((((((((Xπ(i),ccπ(i)))))))))),
then the root of each variable Y occurring in ccπ(i) belongs to RVπ(i), and either
Xπ(i) is a root variable, or root(Xπ(i)) is from RVπ(i).

6.2 Code Calls 187

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Reconsider the three sample code call conditionsχ(1), χ(2), andχ(3).

• χ(1) andχ(2) are safe.

• χ(3) is unsafe, since there is no permutation of the atomic code call conditions

which allows safety requirement 2 to be met for eitherU or V.

6.2 Code Calls 188

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Checking safety of code call conditions can be done at compile time of a

program.

If χ is found to be safe, then we can reorder the constituentsχ1, . . . ,χn by a

permutationπ such thatχπ(1),. . . ,χπ(n) can be evaluated without problems.

We need an additional definition:

Definition 5.9 (Safety Modulo Variables)
Suppose χ is a code call condition, and let X be any set of root variables. Then, χ is
said to be safe moduloX if and only if for an (arbitrary) assignment θ of objects to
the variables in X, it is the case that χθ is safe.

6.2 Code Calls 189

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Checking safety of a code callχ modulo variablesX can be reduced to a call to a

routine that checks for safety. This may be done as follows:

1. Find a constant (denoted byc) that does not occur inχ.

Let θ =def {X = c}, i.e., every variable inX is set toc.

2. Check ifχθ is safe.

Safety modulo variablesX means: When these variablesX are instantiated,

the ccc can be evaluated.

6.2 Code Calls 190

Chapter 6: The Code Call MechanismHeterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Algorithm 5.1 (safe ccc)
safe ccc(χ: code call condition;

X: set of root variables)

(? input is a code call condition χ = χ1& · · ·&χn; ?)
(? output is a proper reordering ?)
(? χ′ = χπ(1)& · · ·&χπ(n) if χ is safe modulo X; ?)
(? otherwise, the output is unsafe ; ?)

1. L := χ1, . . . ,χn;

2. χ := true;

3. while L is not empty do
4. { select all χi1, . . . ,χim from L st. χi j is safe modulo X;
5. if m= 0 then return unsafe (exit);
6. else
7. { χ := χ&χi1& · · ·&χim;

8. remove χi1, . . . ,χim from L;

9. X = X∪{root(Y) | Y occurs in some χi1, . . .χim};
10. }
11. }
12. return χ′;

end.

6.2 Code Calls 191

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Theorem 5.1 (Safety Computation)
Suppose χ =def χ1& . . .& χn is a code call condition. Then, χ is safe modulo a set of
root variables X, if and only if safe ccc(χ,X) returns a reordering χ′ of χ. Moreover,
for any assignment θ to the variables in X, χ′θ is a safe code call condition which can
be evaluated left-to-right.

6.2 Code Calls 192

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

• A straightforward implementation ofsafecccruns in quadratic time, as the

number of iterations is bounded by the numbern of constituentsχi of χ, and the

body of the while loop can be executed in linear time.

• By using appropriate data structures, the algorithm can be implemented

to run in overall linear time.
Briefly, the method is to use cross reference lists of variable occurrences.

• safety of a code call conditionχ can be checked by callingsafeccc(χ, /0). Thus,

checking the safety ofχ, combined with a reordering of its constituents for

left-to-right execution can be done very efficiently.

6.2 Code Calls 193

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 5.10 (Code Call Solution)
Suppose χ is a code call condition involving the variables X =def {X1, . . . ,Xn}, and
suppose SSS =def (TTTTTTTTT SSS ,FFFFFFFFF SSS ,CCCCCCCCCSSS) is some software code. A solutionof χ w.r.t. TTTTTTTTT SSS in a
state OOOSSS is a legal assignment of objects o1, . . . ,on to the variables X1, . . . ,Xn, written
as a compound equation X := o, such that the application of the assignment makes χ
true in state OOOSSS .

We denote by

• Sol(χ)TTTTTTTTT SSS ,OOOSSS
(omitting subscripts OOOSSS and TTTTTTTTT SSS when clear from the context), the

set of all solutions of the code call condition χ in state OOOSSS , and by

• OOO Sol(χ)TTTTTTTTT SSS ,OOOSSS
(where subscripts are occasionally omitted) the set of all objects

appearing in Sol(χ)TTTTTTTTT SSS ,OOOSSS

6.2 Code Calls 194

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Comment 2 (Existence of ins, del and upd)We assume that the setFFFFFFFFF SSS associated

with a software code packageSSS contains three functions described below:

• A functioninsSSS , which takes as input a set of objectsO manipulated bySSS , and a

stateOOOSSS , and returns a new stateOOO ′SSS = insSSS (O,OOOSSS) which accomplishes the

insertion of the objects inO into OOOSSS , i.e., insSSS is an insertion routine.

• A functiondelSSS , which takes as input a set of objectsO manipulated bySSS and a

stateOOOSSS , and returns a new stateOOO ′SSS =def delSSS (O,OOOSSS) which describes the

deletion of the objects inO fromOOOSSS , i.e.,delSSS is a deletion routine.

• A functionupdSSS which takes as input a data object o manipulated bySSS , a field f

of object o, and a value v drawn from the domain of the type of field f of object

o—this function changes the value of the f field of object o to v. (This function

can usually be described in terms of the preceding two functions.)

6.2 Code Calls 195

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Executing the function,insFinanceRecord(χ[X]) whereχ[X] is a code call condition

involving the (sole) free variableX means:

“Insert, using aFinanceRecord insertion routine, all objectso such that

χ[X] is true w.r.t. the current agent state whenX := o.”

In such a case, the code call conditionχ is used to identify the objects to be inserted,

and theinsFinanceRecord function specifies the insertion routine to be used.

6.2 Code Calls 196

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

As a single agent program may manage multiple data typesτ1, . . . ,τn, each with its

own insertion routineinsτ1, . . . , insτn, respectively, it is often more convenient to

associate with any agentaaa an insertion routine,insaaa , that exhibits the following

behavior:

• given either a setOOO of objects (or a code call conditionχ[X] of the above type),

insaaa(χ[X],OOOSSS) is a genericmethodthat selects which of the insertion routines

insτi , associated with the different data structures, should be invoked in order to

accomplish the desired insertion.

We assume from now on that an insertion functioninsaaa and a deletion func-

tion delaaa may be associated with any agentaaa in this way.

6.2 Code Calls 197

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

5.3 Message Box

1. Each agent’s associated software code includes a special type calledMsgbox

(short for message box).

2. The message box is a buffer that may be filled (when it sends a message) or

flushed (when it reads the message) by the agent.

3. In addition, we assume the existence of an operating-systems level messaging

protocol (e.g.,SOCKETS or TCP/IP (?)) that can fill in (with incoming

messages) or flush (when a message is physically sent off) this buffer.

6.3 Message Box 198

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

The msgbox operates on objects of the form

(i/o,”src”,”dest”,”message”,”time”) .

1. i/o signifies an incoming or outgoing message respectively.

2. ”src” specifies the originator

3. ”dest” specifies the destination.

4. ”message” is a table consisting of triples of the form

(”varName”, ”varType”, ”value”) where”varName” is the name of the variable,

”varType” is the type of the variable and the”value” is the value of the variable in

string format.

5. ”time” denotes the time at which the message was sent.

6.3 Message Box 199

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

We will assume that the agent has the following functions that are integral in

managing this message box.

• sendMessagesendMessagesendMessage(<sourceagent>,<destgent>,<message>): This causes

(o, ”src”, ”dest”, ”message”, ”time”) to be placed inMsgbox. The parametero

signifies an outgoing message. When a call of

sendMessagesendMessagesendMessage(”src”, ”dest”, ”message”) is executed, the state ofMsgbox changes by

the insertion of the above quintuple denoting the sending of a message from the

source agentsrcsrcsrc to a given Destination agentdestdestdest involving the message body

”message”.

• getMessagegetMessagegetMessage(<src>): This causes a collection of

(i, ”src”, ”agent”, ”msg”, ”time”)

to be read fromMsgbox. Thei signifies an incoming message. Note that all

messages from the given source to the agentagentagentagent whose message box is being

examined, are returned by this operation.”time” denotes the time at which the

message was received.

6.3 Message Box 200

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

• timedGetMessagetimedGetMessagetimedGetMessage(<op>,<valid>): This causes the collection of all

quintuplestupof the formtup=def (i,<src>,<agent>,<message>,time) to

be read fromMsgbox, such that the comparisontup.time op valid is true, where

op is required to be any of the standard comparison operators<, >,≤,≥, or =.

• getVargetVargetVar(<mssgId>,<varName>): This functions searches through all the

triples in the”message” to find the requested variable. First, it converts the

variable from the string format given by the”value” into its corresponding data

type which is given by”varType”. If the requested variable is not in the message

determined by the”MssgId”, then an error string is returned.

6.3 Message Box 201

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 5.3 (STORE Revisited)
Suppose the profilingprofilingprofiling agent is asked to classify a user U with ssn S. To do this, the
profilingprofilingprofiling agent may need to obtain credit information for U from the creditcreditcredit agent.
The following actions may ensue:

1. The profilingprofilingprofiling agent sends the creditcreditcredit agent a message requesting S’s credit
information.

2. The creditcreditcredit agent reads this message and sends the profilingprofilingprofiling agent a reply.

3. The profilingprofilingprofiling agent reads this reply and uses it to generate an answer.

6.3 Message Box 202

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

1. Theprofilingprofilingprofiling agent is asked toclassifyUserclassifyUserclassifyUser(S). It generates a messageM1 of a

particular format, e.g., a string”askprovideCreditInfoS low,” which encodes the

request forS’s credit information, and calls

sendMessagesendMessagesendMessage(profilingprofilingprofiling,creditcreditcredit,M1).

2. Thecreditcreditcredit agent either periodically callsgetMessagegetMessagegetMessage(profilingprofilingprofiling) until M1
arrives, or calls it triggered by the event thatM1 has arrived. By parsingM1, it

determines that it needs to executeprovideCreditInfoprovideCreditInfoprovideCreditInfo(S,low) and send the result

back toprofilingprofilingprofiling. Depending on the result of the call,creditcreditcredit assembles a

messageM2 encoding theFinanceRecord which was returned, or an error

message. Here, we are assuming that the underlying OS level message protocol

does not drop or reorder messages (if it did, we would have to includeM1 and

M1’s Timein M2’s message). Next, thecreditcreditcredit agent calls

sendMessagesendMessagesendMessage(creditcreditcredit,profilingprofilingprofiling,M2).

6.3 Message Box 203

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

3. Theprofilingprofilingprofiling agent either periodically callsgetMessagegetMessagegetMessage(creditcreditcredit) until M2
arrives, or it is triggered by the arrival ofM2 and reads the message. By parsing

M2, it can determine what errors (if any) occurred or what the resulting

finance record was. Finally, theprofilingprofilingprofiling agent can use the contents ofM2

to construct the UserProfile to be returned.

6.3 Message Box 204

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

5.4 Integrity Constraints

Each agent has an associatedagent stateOOO, which is a set of objects (of the types

that the software code underlying the agent manages).

• Not all sets of such objects arelegal.

Definition 5.11 (Integrity Constraints ICICIC)
An integrity constraintIC is an expression of the form

ψ ⇒ χ

where ψ is a safe code call condition, and χ is an atomic code call condition such that
every root variable in χ occurs in ψ.

6.4 Integrity Constraints 205

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

1. I CI CI C 1 : in(((((((((amount available,suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((U,part 001)))))))))))) &

in(((((((((amount available,suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((V,part 002))))))))))))

⇒
in(((((((((amount available,suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((U+V,part 008)))))))))))).

2.

I CI CI C 3 : S = 123 45 6789⇒ not in(((((((((spender(low),profilingprofilingprofiling :classifyUserclassifyUserclassifyUser(((S)))))))))))).

3. I CI CI C 5 : R.sat id = sat 1 ⇒ R.2dloc.x≥ 0.

6.4 Integrity Constraints 206

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 5.12 (Integrity Constraint Satisfaction)
A state OOOSSS satisfies an integrity constraint IC of the form ψ⇒ χ, denoted OOOSSS |= IC, if
for every legal assignment of objects from OOOSSS to the variables in IC, either ψ is false
or χ is true.

Let ICICIC be a (finite) collection of integrity constraints IC, and let OOOSSS be an agent state.
We say that OOOSSS satisfies ICICIC , denoted OOOSSS |= ICICIC , if and only if OOOSSS satisfies every
constraint IC ∈ ICICIC .

6.4 Integrity Constraints 207

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

5.5 Service Descriptions and Code Calls

Definition 5.13 (Service Rule)
Suppose snis the name of a service offered by an agent. Let i1, . . . , ik, mi1, . . . ,mim,

and o1, . . . ,on be the inputs, mandatory inputs, and outputs of the service sn,
respectively. A service rule definingsnis an expression of the form:

sn(i1, . . . , ik,mi1, . . . ,mim,o1, . . . ,on) ← χ

where χ is a code call condition that is safe modulo mi1, . . . ,mim. In this case, χ is
said to be the bodyof the above rule.

Definition 5.14 (Service Definition Programsdp)
Using the same notation as above, a service definition program(sdp for short)
associated with service snis a finite set of service rules defining sn.

6.5 Service Descriptions and Code Calls 208

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

• Consider a servicesndefined through a service definition program containingr

rules.

• Let the body of thei’th rule beχ(i).

• Suppose an agent specifies the mandatory inputs, i.e., an agent requesting this

service specifies a substitutionθ that assigns objects to each of the variables

mi1, . . . ,mim. In addition, the agent may specify a substitutionδ for the

discretionary inputs.

• Then the service definition program treats the agent’s request for servicesnas

described in algorithmimplement service.

6.5 Service Descriptions and Code Calls 209

Chapter 6: The Code Call MechanismHeterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Algorithm 5.2 (implement service)
implement service(P:sdp; µ:subs; δ:subst)

(? P is a service definition program ?)
(? µ a subst. specif. values of all mandatory inputs ?)
(? δ a subst. specif. values of selected discret. inp. var’s ?)
(? Ansis the result of evaluating P w.r.t. inputs µ and δ ?)

1. Ans:= /0; Q := P;

2. while Q 6= /0 do
3. { select rule r i ∈ Q;
4. Q := Q\{r i};
5. SOL:= Sol((χ)µδ);
6. (? returns many substit.’s, one for each var. of sn ?)
7. (? that is not assigned an object by either of µ,δ ?)
8. restrict SOLto output variables;
9. Ans:= Ans∪ SOL;

10. }
11. return Ans;

end.

6.5 Service Descriptions and Code Calls 210

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 5.4 (STORE Revisited)
In HERMES, each sdp for the STORE example can be thought of as a predicate
within the mediator for one of STORE’s agents. A sample sdp is:

goodSpender(〈MI〉Category: UserCat〈\MI〉
〈O〉SSN: ListOfStrings,Class: UserProfile〈\O〉)
←

in(((((((((SSN,profilingprofilingprofiling : listUserslistUserslistUsers(((Category)))))))))))) &

in(((((((((Class,profilingprofilingprofiling :classifyUserclassifyUserclassifyUser(((SSN)))))))))))) &

not in(((((((((spender(low),generalgeneralgeneral :makeSetmakeSetmakeSet(((Class)))))))))))).
A HERMES invocation of this sdp is shown in Figure 5.1. The query

goodSpender(corporateUsers, Ssn, Class)

asks for the ssn and class of all corporate users who are not low spenders. (Note
that as the second parameter of the not in must be a set, we use the function
generalgeneralgeneral :makeSetmakeSetmakeSet(((Class))) to turn Class into a singleton set.

6.5 Service Descriptions and Code Calls 211

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Figure 5.1: Sample query on theprofilingprofilingprofiling agent’s mediator (first result)

6.5 Service Descriptions and Code Calls 212

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Figure 5.2: Queries on goodSpender andprofilingprofilingprofiling Agent’s Mediator

6.5 Service Descriptions and Code Calls 213

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 5.5 (CHAIN Revisited)
A sample query on the mediator for the suppliersuppliersupplier agent of the CHAIN example is
shown in Figure 5.3 on the next page. A sample sdp is:

sendViaTruck(〈MI〉Amount: Integer,Part id: String〈\MI〉
〈MI〉Src: String,Dest: String〈\MI〉
〈O〉Success: Boolean〈\O〉)
←

in(((((((((amount available,suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((Amount,Part id)))))))))))) &

in(((((((((Success,suppliersuppliersupplier :shipFreightshipFreightshipFreight(((Amount,Part id,truck,Src,Dest)))))))))))).

If 5 units of part 008 are available, then sendViaTruck(3, part 008, rome, paris,
Success) will be satisfied and Success will be true, if the shipping was possible.
But the query sendViaTruck(7, part 008, rome, paris, Success) will not be satisfied,
as the first in(((((((((,))))))))) above was not satisfied and hence the second in(((((((((,))))))))) above was never
called.

6.5 Service Descriptions and Code Calls 214

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Figure 5.3: Sample query on thesuppliersuppliersupplier agent’s Mediator

6.5 Service Descriptions and Code Calls 215

Chapter 6: The Code Call Mechanism Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

5.6 Summary

This chapter was about a mechanism (; code call atoms) to abstract from given

legacy code and to declaratively describe its effects.

1. In order toagentizelegacy code, we must make the most important datatypes

and functions of it available toIMPACT .

2. We call these functionsfff code calls: SSSSSSSSS :fff (((d1, . . . ,dn))).

3. We assume thatfff always returns a set.

4. To encapsulate these functions in a logical language, we usecode call atomscode call atomscode call atoms:

in(((((((((X,SSSSSSSSS :fff (((d1, . . . ,dn)))))))))))).

5. Code call atoms can be conjunctively merged together (with comparison

statements) and lead toCode Call Conditions.

6. To ensure that Code Call Conditions can be evaluated, we introduced the notion

of Safety.

6.6 Summary 216

Chapter 7: Actions and Agent ProgramsHeterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Chapter 7. Actions and Agent
Programs

Overview

7.1 Action Base

7.2 Execution and Concurrency

7.3 Action Constraints

7.4 Agent Programs: Syntax

7.5 Status Sets

7.6 Feasible Status Sets

7.7 Rational Status Sets

7.8 Reasonable Status Sets

Overview 217

Timetable:

• Chapter 7 needs 1 lecture, but without detailed discussion of the semantics.

6 Actions and Agent Programs

217-1

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

to execute

Actions

Code Calls

OUT

IN
Messages

Messages Legacy Data

Actions

Set of
Status
Atoms

Update

A Single agentagentagent

Agent Program PPP SemSemSem conc

State OOO

Figure 6.1: Agent Decision Architecture

Overview 218

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Underlying Software Code: Basic set of data structures and legacy code on top of

which the agent is built. The set of all such objects, across all the data types

managed by the software code, is called thestate of the agent at timettt. Clearly,

the state of the agent varies with time.

Integrity Constraints: The agent has an associated finite set,ICICIC , These integrity

constraints reflect theexpectations, on the part of the designer of the agent, that

thestate of the agentmust satisfy.

Overview 219

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Actions: Each agent has an associated set ofactions. An action is

implemented by a body of codeimplemented in any suitable imperative (or

declarative) programming language.

Action Constraints: In certain cases, the creator of the agent may wish to prevent

the agent from concurrently executing certain actions even though it may be

feasible for the agent to take them.

Overview 220

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Agent Programs: Finally, an agent program is a set of rules, in a language to be

defined, that an agent’s creator might use to specify the principles according to

which the agent behaves, and the policies governing what actions the agent takes,

from among a possible plethora of possible actions.

In short, theagent programassociated with an agentencodes the “do’s and
dont’s” of the agent.

Overview 221

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

6.1 Action Base

Definition 6.1 (Action; Action Atom)
An actionααα consists of six components:

Name: A name, usually written ααα(X1, . . . ,Xn), where the Xi’s are root variables.

Schema: A schema, usually written as (τ1, . . . ,τn), of types. Intuitively, this says that
the variable Xi must be of type τi , for all 1≤ i ≤ n.

Action Code: This is a body of code that executes the action.

7.1 Action Base 222

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Pre: A code-call condition χ, called the preconditionof the action, denoted by
Pre(ααα) (Pre(ααα) must be safe modulo the variablesX1,. . . ,Xn);

Add: a set Add(ααα) of code-call conditions;

Del: a set Del(ααα) of code-call conditions.

An action atomis a formula ααα(t1, . . . , tn), where ti is a term, i.e., an object or a
variable, of type τi , for all i = 1, . . . ,n.

7.1 Action Base 223

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Item Classical AI Our framework

Agent State Set of logical atoms Arbitrary data structures

Precondition Logical formula Code call condition

Add/delete list set of ground atoms Code call condition

Action Implementation Via add list and delete list Via arbitrary program code

Action Reasoning Via add list and delete list Via add list and delete list

Comment 3 We assume that the precondition, add and delete lists associated with an

action, correctly describe the behavior of the action code associated with the action.

7.1 Action Base 224

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 6.1 (CHAIN Revisited)
Suppose the suppliersuppliersupplier agent of the CHAIN example has

Name: updatestockDBupdatestockDBupdatestockDB(Part id,Amount,Company)

Schema: (String, Integer, String)

Pre: in(((((((((X,suppliersuppliersupplier :selectselectselect(((′uncommitted′,id,=,Part id))))))))))))& X.amount > Amount.

Del: in(((((((((X,suppliersuppliersupplier :selectselectselect(((′uncommitted′,id,=,Part id))))))))))))&

in(((((((((Y,suppliersuppliersupplier :selectselectselect(((′committed′,id,=,Part id))))))))))))

Add:
in(((((((((〈part id,X.amount−Amount〉,suppliersuppliersupplier :selectselectselect(((′uncommitted′,id,=,Part id))))))))))))&

in(((((((((〈part id,Y.amount+Amount〉,suppliersuppliersupplier :selectselectselect(((′committed′,id,=,Part id))))))))))))

7.1 Action Base 225

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

This action updates the two ACCESS databases for uncommittedand committed

stock. The suppliersuppliersupplier agent should first make sure that the amount requested is
available by consulting the uncommittedstock database. Then, the suppliersuppliersupplier agent
updates the uncommittedstock database to reduce the amount requested and then
adds a new entry to the committedstock database for the requesting company.

7.1 Action Base 226

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 6.2 (CFIT Revisited)
Suppose the autoPilotautoPilotautoPilot agent in the CFIT example has the following action for
computing the current location of the plane:

Name: computecurrentLocationcomputecurrentLocationcomputecurrentLocation(Report)

Schema: (SatelliteReport)

Pre: in(((((((((Report,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Report ”))))))))))))

Del: in(((((((((OldLoc,autoPilotautoPilotautoPilot : locationlocationlocation((()))))))))))).

Add:
in(((((((((NewLoc,autoPilotautoPilotautoPilot : locationlocationlocation((())))))))))))&

in(((((((((FlightRoute,autoPilotautoPilotautoPilot :getFlightRoutegetFlightRoutegetFlightRoute((())))))))))))&

in(((((((((Velocity,autoPilotautoPilotautoPilot :velocityvelocityvelocity((())))))))))))&

in(((((((((NewLoc,autoPilotautoPilotautoPilot :calculateLocationcalculateLocationcalculateLocation(((OldLoc,FlightRoute,Velocity))))))))))))

7.1 Action Base 227

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

This action requires a satellite report which is produced by the gpsgpsgps agent by merging
the GPS Data. Then, it computes the current location of the plane based on this report
as well as the allocated flight route of the plane.

7.1 Action Base 228

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 6.3 (STORE Example Revisited)
The profilingprofilingprofiling agent might have the following action:

Name: updatehighProfileupdatehighProfileupdatehighProfile(Ssn,Name,Profile)

Schema: (String, String, UserProfile)

Pre: in(((((((((spender(high),profilingprofilingprofiling :classifyUserclassifyUserclassifyUser(((Ssn))))))))))))

Del: in(((((((((〈Ssn,Name,OldProfile〉,profilingprofilingprofiling :allallall(((′highProfile′))))))))))))

Add: in(((((((((〈Ssn,Name,Profile〉,profilingprofilingprofiling :allallall(((′highProfile′))))))))))))

This action updates the user profiles of those users who are high spenders. In order to
determine the high spenders, it first invokes the classifyUserclassifyUserclassifyUsercode call. After
obtaining the target list of users, it updates entries of those users in the profile
database. The profilingprofilingprofiling agent may also have similar actions for low and medium
spenders.

7.1 Action Base 229

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 6.2 (Action Base)
An action base, ABABAB , is any finite collection of actions.

7.1 Action Base 230

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

6.2 Execution and Concurrency of Actions

What is the result of executing an action?

Definition 6.3 ((θ,γ)-Executability)
Let ααα(~X) be an action, and let SSS =def (TTTTTTTTT SSS ,FFFFFFFFF SSS ,CCCCCCCCCSSS) be an underlying software code

accessible to the agent. A ground instance ααα(~X)θ of ααα(~X) is said to be executablein
state OOOSSS , if, by definition,there exists a solution γ of Pre(ααα(~X))θ w.r.t. OOOSSS . In this

case, ααα(~X) is said to be (θ,γ)-executablein state OOOSSS , and (ααα(~X),θ,γ) is a feasible
execution triplefor OOOSSS .

By ΘΓ(ααα(~X),OOOSSS) we denote the set of all pairs (θ,γ) such that (ααα(~X),θ,γ) is
a feasible execution triple in state OOOSSS .

7.2 Execution and Concurrency 231

Intuitively, in ααα(~X), the substitutionθ causes all variables in~X to be grounded.
However, it is entirely possible that the precondition ofααα has occurrences of other
free variables not occurring in~X. Appropriate ground values for these variables are
given by solutions ofPre(ααα(~X)θ) with respect to the current stateOOOSSS . These variables
can be viewed as “hidden parameters” in the action specification, whose value is of
less interest for an action to be executed.

231-1

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 6.4 (Action Execution)
Suppose (ααα(~X),θ,γ) is a feasible execution triple in state OOOSSS . Then the resultof

executing ααα(~X) w.r.t. (θ,γ) is given by the state

apply((ααα(~X),θ,γ),OOOSSS) = ins(OaddOaddOadd,del(OdelOdelOdel,OOOSSS)),

where OaddOaddOadd = OOO Sol(Add(ααα(~X)θ)γ) and OdelOdelOdel = OOO Sol(Del(ααα(~X)θ)γ); i.e., the state
that results if first all objects in solutions of call conditions from Del(ααα(~X)θ)γ on OOOSSS
are removed, and then all objects in solutions of call conditions from Add(ααα(~X)θ))γ
on OOOSSS are inserted.

7.2 Execution and Concurrency 232

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Suppose then we wish to simultaneously execute a set of (not necessarily all)

feasible execution triplesAS. There are many ways to define this.

Definition 6.5 (Concurrency Notion)
A notion of concurrencyis a function, conc, that takes as input, an object state, OOOSSS ,
and a set of execution triples AS, and returns as output, a single new execution triple
such that:

1. if AS= {ααα} is a singleton action, then conc(OOOSSS ,ASi) = ααα.

2. if AS1⊆ AS2 and conc(OOOSSS ,ASi) = (αααi(~Xi),θi ,γi) for i = 1,2, and ααα2 is
(θ2,γ2)-executable in state OOOSSS , then ααα1 is (θ2,γ2) executable in state OOOSSS .

7.2 Execution and Concurrency 233

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 6.6 (Weakly Concurrent Execution)
Suppose ASis a set of feasible execution triples in the agent state OOOSSS . The weakly

concurrent execution ofASin OOOSSS , is defined to be the agent state

apply(AS,OOOSSS) =def ins(OaddOaddOadd,del(OdelOdelOdel,OOOSSS)),

where

OaddOaddOadd =def

⋃
(ααα(~X),θ,γ)∈AS

OOO Sol(Add(ααα(~X)θ)γ),

OdelOdelOdel =def

⋃
(ααα(~X),θ,γ)∈AS

OOO Sol(Del(ααα(~X)θ)γ).

7.2 Execution and Concurrency 234

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

For any set A of actions, the execution of A on OOOSSS is the execution of the set

{(ααα(~X),θ,γ) |ααα(~t) ∈ AS, ααα(~X)θ = ααα(~t)θ ground, (θ,γ) ∈ΘΓ(ααα(~X))}

of all feasible execution triples stemming from some grounded action in AS, and
apply(A,OOOSSS) denotes the resulting state.

7.2 Execution and Concurrency 235

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 6.7 (Sequential-Concurrent Execution)
Suppose we have a set AS=def {(αααi(~Xi ,θi ,γi)) | 1≤ i ≤ n} of feasible execution
triples on an agent state OOOSSS . Then, ASis said to be S-concurrently executablein state
OOOSSS , if, by definition,there exists a permutation π of ASand a sequence of states
OOO0

SSS , . . . ,OOOn
SSS such that:

• OOO0
SSS = OOOSSS and

• for all 1≤ i ≤ n, the action αααπ(i)(~Xπ(i)) is (θπ(i),γπ(i))-executable in the state
OOO i−1

SSS , and OOO i
SSS = apply((~Xπ(i),θπ(i),γπ(i)),OOO i−1

SSS).

In this case, ASis said to be π-executable, and OOOn
SSS is the final state resulting from the

executionAS[π].

A set ACSof actions is S-concurrently executable on the agent state OOOSSS , if the set
{(ααα(~X),θ,γ) |ααα(~t) ∈ ACS, ααα(~X)θ = ααα(~t)θ ground, (θ,γ) ∈ΘΓ(ααα(~X))} is
S-concurrently executable on OOOSSS .

7.2 Execution and Concurrency 236

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 6.8 (Full-Concurrent Execution)
Suppose we have a set AS=def {(αααi(~Xi ,θi ,γi)) | 1≤ i ≤ n} of feasible execution
triples and an agent state OOOSSS . Then, ASis said to be F-concurrently executablein
state OOOSSS , if and only if the following holds:

1. For every permutation π, ASis π-executable.

2. For any two permutations π1,π2 of AS, the final states AS[π1] and AS[π2],
respectively, which result from the executions are identical.

A set ACSof actions is F-concurrently executable on the agent state OOOSSS , if the set

{(ααα(~X),θ,γ) |ααα(~t) ∈ ACS,ααα(~X)θ = ααα(~t)θground,(θ,γ) ∈ΘΓ(ααα(~X))},

is F-concurrently executable on OOOSSS .

7.2 Execution and Concurrency 237

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 6.4 (CHAIN Revisited)
Consider the following set of action executions:

updatestockDBupdatestockDBupdatestockDB(widget5,250,companyA),

updatestockDBupdatestockDBupdatestockDB(widget10,100,companyB),

updatestockDBupdatestockDBupdatestockDB(widget5,500,companyB).

The uncommitted stock database contains 〈widget5,1000〉, 〈widget10,500〉 and
〈widget15,1500〉, and the committed stock database contains 〈widget5,2000〉,
〈widget10,900〉 and 〈widget15,1500〉. Weak concurrent execution of these actions
will attempt to execute an action, having delete list

in(((((((((X,suppliersuppliersupplier :selectselectselect(((′uncommitted′,id,=,widget5)))))))))))),

in(((((((((Y,suppliersuppliersupplier :selectselectselect(((′committed′,id,=,widget5)))))))))))),

in(((((((((X,suppliersuppliersupplier :selectselectselect(((′uncommitted′,id,=,widget10)))))))))))),

in(((((((((Y,suppliersuppliersupplier :selectselectselect(((′committed′,id,=,widget10)))))))))))).

7.2 Execution and Concurrency 238

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

It is important to note that even though we should have two “copies” each of the first
two code calls above, one copy suffices, because weak concurrent executions
considers the union of the delete lists and the union of the add list. Likewise, this
action has the add list

in(((((((((〈widget5,750〉,suppliersuppliersupplier :selectselectselect(((′uncommitted′,id,=,widget5)))))))))))),

in(((((((((〈widget5,500〉,suppliersuppliersupplier :selectselectselect(((′uncommitted′,id,=,widget5)))))))))))),

in(((((((((〈widget5,2250〉,suppliersuppliersupplier :selectselectselect(((′committed′,id,=,widget5)))))))))))),

in(((((((((〈widget5,2500〉,suppliersuppliersupplier :selectselectselect(((′committed′,id,=,widget5)))))))))))).

in(((((((((〈widget10,400〉,suppliersuppliersupplier :selectselectselect(((′uncommitted′,id,=,widget10)))))))))))),

in(((((((((〈widget10,1000〉,suppliersuppliersupplier :selectselectselect(((′committed′,id,=,widget10)))))))))))).

We see that the above executions lead to an intuitively inconsistent state in which the
committed stock database claims that the number of committed items of widget 5 is
both 2250 and 2500 !

7.2 Execution and Concurrency 239

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 6.5 (CHAIN example revisited)
Let us return to the situation raised in Example 6.4 on page 237. The following set of
action executions are F-concurrently executable:

updatestockDBupdatestockDBupdatestockDB(widget5,250,companyA),

updatestockDBupdatestockDBupdatestockDB(widget10,100,companyB),

updatestockDBupdatestockDBupdatestockDB(widget15,500,companyB).

Further assume that the uncommitted stock database contains the same tuples as in
Example 6.4 on page 237. This set of action executions is F-concurrently executable
on this state of the suppliersuppliersupplier agent, because any permutation of these three actions
will result in the same final agent state. That is, whatever the execution sequence is,
the resulting uncommitted stock database will contain the following tuples:
〈widget5,750〉, 〈widget10,400〉 and 〈widget15,1000〉.

7.2 Execution and Concurrency 240

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Comment 4 Throughout the rest of this course, we will assume that the developer of

an agent has chosen some notion,conc, of concurrent action execution for his agent.

This may vary from one agent to another, but each agent uses a single notion of

concurrency. Thus, when talking of an agentaaa, the phrase

“AS is concurrently executable”

is to be considered to be synonymous with the phrase

“AS is concurrently executable w.r.t. the notionconcused by agentaaa.”

7.2 Execution and Concurrency 241

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

6.3 Action Constraints

Definition 6.9 (Action Constraint)
An action constraint AC has the syntactic form:

{ααα1(~X1), . . . ,αααk(~Xk)}←↩ χ (6.1)

where ααα1(~X1), . . . ,αααk(~Xk) are action names, and χ is a code call condition.

7.3 Action Constraints 242

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 6.6 (CHAIN Example Revisited)
The following are some action constraints for the suppliersuppliersupplier agent of CHAIN example:

{ updatestockDBupdatestockDBupdatestockDB(Part id1,Amount1,Company1),

updatestockDBupdatestockDBupdatestockDB(Part id2,Amount2,Company2) } ←↩

Part id1 = Part id2 &

in(((((((((X,suppliersuppliersupplier :selectselectselect(((′uncommitted′,id,=,Part id1)))))))))))) &

X.amount < Amount1+Amount2 &

Company1 6= Company2.

7.3 Action Constraints 243

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

{respondrequestrespondrequestrespondrequest(Part id1,Amount1,Company1),

respondrequestrespondrequestrespondrequest(Part id2,Amount2,Company2) } ←↩ Part id1 = Part id2 &

Company1 6= Company2.

The first constraint states that if the two update stockDB actions update the same
Part id and the total amount available is less than the sum of the requested amounts,
then these actions cannot be concurrently executable. The second constraint states
that if two companies request the same Part id, then the suppliersuppliersupplier agent does not
respond to them concurrently. That is, the suppliersuppliersupplier agent processes requests one at a
time.

7.3 Action Constraints 244

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 6.7 (CFIT Example Revisited)
The following is an action constraint for the autoPilotautoPilotautoPilot agent:

{computecurrentLocationcomputecurrentLocationcomputecurrentLocation(Report),

adjust courseadjust courseadjust course(No go,FlightRoute,CurrentLocation)}←↩

This action constraint states that the actions compute currentLocation and
adjust course may never be executed concurrently. This is because the adjust course
action requires the current location of the plane as input, and the
compute currentLocation action computes the required input.

7.3 Action Constraints 245

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

The following example shows an action constraint for the gpsgpsgps agent:

{collect datacollect datacollect data(Satellite),mergedatamergedatamergedata(Satellite1,Satellite2)} ←↩

Satellite =Satellite1.

{collect datacollect datacollect data(Satellite),mergedatamergedatamergedata(Satellite1,Satellite2)} ←↩

Satellite =Satellite2.

These two action constraints state that the gpsgpsgps agent cannot concurrently execute the
action merge data and collect data, if the satellite it is collecting data from is one of
the satellites whose data it is merging.

7.3 Action Constraints 246

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 6.8 (STORE Example Revisited)
The following are some action constraints for the profilingprofilingprofiling agent in the STORE

example:

{updatehighProfileupdatehighProfileupdatehighProfile(Ssn1,Name1,profile),updatelowProfileupdatelowProfileupdatelowProfile(Ssn2,Name2,profile)} ←↩

in(((((((((spender(high),profilingprofilingprofiling :classifyUserclassifyUserclassifyUser(((Ssn1))))))))))))

Ssn1 = Ssn2 Name1 = Name2

{updateuserProfileupdateuserProfileupdateuserProfile(Ssn1,Name1,Profile),classifyuserclassifyuserclassifyuser(Ssn2,Name2)} ←↩

Ssn1 = Ssn2 & Name1 = Name2

7.3 Action Constraints 247

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

The first action states that if the user is classified as a high spender, then the
profilingprofilingprofiling agent cannot execute updatehighProfileupdatehighProfileupdatehighProfileand updatelowProfileupdatelowProfileupdatelowProfile

concurrently. In contrast, the second action constraint states that the profilingprofilingprofiling agent
cannot classify a user profile if it is currently updating the profile of that user.

7.3 Action Constraints 248

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 6.10 (Action Constraint Satisfaction)
A set Sof ground actions satisfies an action constraint AC as in (6.1) on a state OOOSSS ,
denoted S,OOOSSS |= AC, if there is no legal assignment θ of objects in OOOSSS to the variables
in ACACAC such that χθ is true and {ααα1(~X)θ, . . . , αααk(~X)θ} ⊆ Sholds (i.e., no concurrent
execution of actions excluded by AC is included in S). We say that Ssatisfiesa set ACACAC
of actions constraints on OOOSSS , denoted S,OOOSSS |= ACACAC , if S,OOOSSS |= AC for every AC∈ACACAC .

Clearly, action constraint satisfaction ishereditaryw.r.t. the set of actions in-

volved, i.e.,S,OOOSSS |= ACACAC implies thatS′,OOOSSS |= ACACAC , for everyS′ ⊆ S.

7.3 Action Constraints 249

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 6.9 (STORE Example Revisited)
Suppose our state consists of the three uncommitted stock database tuples given in
Example 6.4 on page 237 and let ACACAC be the first action constraint given in
Example 6.6 on page 242. Then if S1 consists of

updatestockDBupdatestockDBupdatestockDB(widget5,250,companyA),

updatestockDBupdatestockDBupdatestockDB(widget10,100,companyB),

updatestockDBupdatestockDBupdatestockDB(widget5,500,companyB)

and S2 consists of

updatestockDBupdatestockDBupdatestockDB(widget5,750,companyA),

updatestockDBupdatestockDBupdatestockDB(widget10,100,companyB),

updatestockDBupdatestockDBupdatestockDB(widget5,500,companyB)

S1 satisfies ACACAC but S2 does not because (Part id1 = Part id2 = widget5), only
X.amount = 1000 units of this part are available, and
(Amount1+Amount2) = (750+500)≥ 1000.

7.3 Action Constraints 250

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

6.4 Agent Programs: Syntax

Thus far, we have introduced the following important concepts:

Software Code Calls (SSSSSSSSS :fff (((a1, . . . ,an)))): this provides a single framework within

which the interoperation of diverse pieces of software may be accomplished;

Software/Agent states (OOOSSS): this describes exactly what data objects are being

managed by a software package at a given point in time;

Integrity Constraints (ICICIC): this specifies exactly which software states are “valid”

or “legal”;

Action Base (ABABAB): this is a set of actions that an agent can physically execute (if the

preconditions of the action are satisfied by the software state);

Concurrency Notion (conc): this is a function that merges together a set of actions

an agent is attempting to execute into a single, coherent action;

Action Constraints (ACACAC): this specifies whether a certain set of actions is

incompatible.

7.4 Status Atoms and Action Rules 251

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 6.11 (Action Status Atom)
Suppose ααα(~t) is an action atom, where~t is a vector of terms (variables or objects)
matching the type schema of ααα. Then, the formulas P(ααα(~t)), F(ααα(~t)), O(ααα(~t)),
W(ααα(~t)), and Do(ααα(~t)) are action status atoms.

The set AS= {P,F,O, W,Do} is called the action status set .

• Pααα means that the agent is permitted to take actionααα;

• Fααα means that the agent is forbidden from takingααα;

• Oααα means that the agent is obliged to take actionααα;

• Wααα means that obligation to take actionααα is waived; and,

• Doααα means that the agent does take actionααα.

7.4 Status Atoms and Action Rules 252

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 6.12 (Action Rule)
An action rule(rule, for short) is a clause r of the form

Opααα(~t)← L1, . . . ,Ln (6.2)

where Opααα(~t) is an action status atom, and each of L1, . . . , Ln is either an action status
atom, or a code call atom, each of which may be preceded by a negation sign (¬).

7.4 Status Atoms and Action Rules 253

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 6.13 (Safety)
We require that each rule r be safein the sense that:

1. Bcc(r) is safe modulo the root variables occurring explicitly in B+
as(r), and

2. the root of each variable in r occurs in Bcc(r)∪B+
as(r).

7.4 Status Atoms and Action Rules 254

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

• All variables in a ruler are implicitly universally quantified at the front of the

rule. A rule ispositive, if no negation sign occurs in front of an action status

atom in its body.

• For any ruler of the form (6.2), we denote by

– H(r), the atom in the head ofr,

– B(r), the collection of literals in the body;

– B−(r) the negative literals inB(r),

– B+(r) the positive literals inB(r),

– ¬.B−(r) the atoms of the negative literals inB−(r).

• Finally, the indexas(resp.,cc) for any of these sets denotes restriction to the

literals involving action status atoms (resp., code call atoms).

7.4 Status Atoms and Action Rules 255

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 6.14 (Agent Program)
An agent programPPP is a finite collection of rules. An agent program PPP is positiveif
all its rules are positive.

7.4 Status Atoms and Action Rules 256

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 6.10 (CHAIN Example Revisited)
The suppliersuppliersupplier agent may use the agent program shown below. In the following rules,
the suppliersuppliersupplier agent makes use of the message box to get various variables it needs. In
order to extract variables, the suppliersuppliersupplier agent invokes the code call getVar of the
message box domain.

r1: F updatestockDBupdatestockDBupdatestockDB(Part id,Amount requested,Company)←
O processrequestprocessrequestprocessrequest(Msg.Id,Agent),
in(((((((((Amount requested,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Amount requested ”)))))))))))),
in(((((((((Part id,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Part id ”)))))))))))),
in(((((((((Company,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Company”)))))))))))),
in(((((((((amount not available,suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((Amount requested,Part id))))))))))))

This rule ensures that we cannot invoke update stockDB when
Amount requested exceeds the amount available.

7.4 Status Atoms and Action Rules 257

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

r2: F updatestockDBupdatestockDBupdatestockDB(Part id1,Amount requested1,Company1)←
O processrequestprocessrequestprocessrequest(Msg.Id1,Agent1),
O processrequestprocessrequestprocessrequest(Msg.Id2,Agent2),
in(((((((((Amount requested1,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id1, ”Amount requested1 ”)))))))))))),
in(((((((((Amount requested2,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id2, ”Amount requested2 ”)))))))))))),
in(((((((((Part id1,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id1, ”Part id1 ”)))))))))))),
in(((((((((Part id2,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id2, ”Part id2 ”)))))))))))),
in(((((((((Company1,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id1, ”Company1 ”)))))))))))),
in(((((((((Company2,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id2, ”Company2 ”)))))))))))),
=(Part id1, Part id2),
Do updatestockDBupdatestockDBupdatestockDB(Part id2,Amount requested2,Company2),
=(Amount requested, Amount requested1 + Amount requested2),
in(((((((((amount not available,suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((Amount requested,Part id))))))))))))
Company1 6= Company2

7.4 Status Atoms and Action Rules 258

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

This rule ensures that we do not invoke update stockDB for
Amount requested1 units of Part id1 when the Amount requested1

exceeds the amount that will be available after our agent finishes the
update stockDB action for Amount requested2 units of Part id2.

7.4 Status Atoms and Action Rules 259

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

r3: O order partorder partorder part(Part id,amount to order)←
O processrequestprocessrequestprocessrequest(Msg.Id,Agent),
in(((((((((Amount requested,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Amount requested ”)))))))))))),
in(((((((((Part id,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Part id ”)))))))))))),
in(((((((((supplies too low,suppliersuppliersupplier :too low thresholdtoo low thresholdtoo low threshold(((Part id)))))))))))),
in(((((((((amount not available,suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((supplies too low,Part id)))))))))))),

If our supply for Part id falls below the supplies too low threshold, then we
are obliged to order amount to order more units for this part. Note that
amount to order and supplies too low represent integer constants.

7.4 Status Atoms and Action Rules 260

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

r4: P order partorder partorder part(Part id,amount to order)←
O processrequestprocessrequestprocessrequest(Msg.Id,Agent),
in(((((((((Amount requested,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Amount requested ”)))))))))))),
in(((((((((Part id,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Part id ”)))))))))))),
in(((((((((supplies low,suppliersuppliersupplier : low thresholdlow thresholdlow threshold(((Part id)))))))))))),
in(((((((((amount not available,suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((supplies low,Part id)))))))))))),

If our supply for Part id falls below the supplies low threshold, then we may
order amount to order more units for this part. When supplies low >

supplies too low, we may use rule r4 to reduce the number of times we need
to invoke rule R3. Note that amount to order and supplies too low

represent integer constants.

7.4 Status Atoms and Action Rules 261

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

r5: W order partorder partorder part(Part id,amount to order)←
O processrequestprocessrequestprocessrequest(Msg.Id,Agent),
in(((((((((Amount requested,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Amount requested ”)))))))))))),
in(((((((((Part id,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Part id ”)))))))))))),
in(((((((((supplies low,suppliersuppliersupplier : low thresholdlow thresholdlow threshold(((Part id)))))))))))),

in(((((((((amount not available,suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((supplies low,Part id)))))))))))),
in(((((((((part discontinued,suppliersuppliersupplier :productStatusproductStatusproductStatus(((Part id))))))))))))

If the part Part id has been discontinued, we are not obliged to order
amount to order more units of the part when supplies fall below our
supplies too low threshold (i.e., when rule R3 is fired).

7.4 Status Atoms and Action Rules 262

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

r6: O requestrequestrequest(”plant ”, ”find:supplier”)←
O processrequestprocessrequestprocessrequest(Msg.Id,Agent),
in(((((((((Amount requested,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Amount requested ”)))))))))))),
in(((((((((Part id,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Part id ”)))))))))))),
Do order partorder partorder part(Part id,Amount requested)

If we decide to order Amount requested units of part Part id, request the
plantplantplant agent’s find: supplierservice to determine if there is a supplier which can
provide Amount requested units of Part id. Note that the suppliersuppliersupplier agent
does not know how the plantplantplant agent decides upon which manufacturing plant to
use.

7.4 Status Atoms and Action Rules 263

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

r7: O requestrequestrequest(”shipping”, ”prepare:schedule(shipping”)←
O processrequestprocessrequestprocessrequest(Msg.Id,Agent),
O processrequestprocessrequestprocessrequest((Msg.Id1,Agent1),
=(Agent1, plantplantplant),
in(((((((((Amount requested,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Amount requested ”)))))))))))),
in(((((((((Part id,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Part id ”)))))))))))),
in(((((((((Part supplier,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id1, ”Part supplier”)))))))))))),
Do order partorder partorder part(Part id,Amount requested),

If we decide to order Amount requested units of part Part id, we must also
use the shippingshippingshipping agent’s prepare: schedule(shipping)service to determine how
and when the requested Amount requested units can be shipped to us from the
Part supplier, which is determined by the plantplantplant agent. Part supplier is
extracted from a message sent from the plantplantplant agent in response to the suppliersuppliersupplier

agent’s request to the find: supplierservice.

7.4 Status Atoms and Action Rules 264

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

r8: O processrequestprocessrequestprocessrequest(Msg.Id,Agent)←
in(((((((((Msg,msgboxmsgboxmsgbox :getAllMsgsgetAllMsgsgetAllMsgs((()))))))))))),
=(Agent,Msg.Source),

This rule says that the agent is obliged to process all requests in its message box
from other agents. This does not mean that it will respond positively to a request.

r9: O deletemsgdeletemsgdeletemsg(Msg.Id)←
Do processrequestprocessrequestprocessrequest(Msg.Id,Agent)

This rule says that the agent deletes all messages that it has processed from its
message box.

7.4 Status Atoms and Action Rules 265

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Before proceeding to discuss the formal semantics of agent programs, we quickly

revisit the architecture of an agent’s decisionmaking component shown in

Figure 6.1 on page 217.

1. Every agent manages aset of data typesthrough a set of well-definedmethods.

2. These data types and methods include a message box data structure, with

associated manipulation algorithms described in Chapter 3.

3. At a given pointt in time, thestate of an agent, OOO, reflects the set of data items

the agent currently has access to—these data items must all be of one of the data

types alluded to above.

4. At time t, the agent may receive a set ofnew messages—these new messages

constitute achange to the state of the agent.

7.4 Status Atoms and Action Rules 266

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

5. The aforementioned changes maytrigger one or more rulesin the agent’s

associated agent program to become true. Based on the selected semantics for

agent programs (to be described in Subsection 6.5), the agent makes a decision

on what actions to actually perform, in keeping with the rules governing its

behavior encoded in its associated Agent Program. This computation is made by

executing a program calledComputeSemComputeSemComputeSemwhich computes the semantics of the

agent.

6. The actions that are supposed to be performed according to the above

mentioned semanticsare then concurrently executed, using the notion of

concurrency,conc, selected by the agent’s designer. The agent’s state may

(possibly) change as a consequence of the performance of such actions. In

addition, the message box of other agents may also change.

7. The cycle continues perpetually.

7.4 Status Atoms and Action Rules 267

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Algorithm 6.1 (Agent-Decision-Cycle)
Agent-Decision-Cycle(Curr: agent state;

ICICIC : integrity constraint set;

ACACAC : action constraint set;

ABABAB : action base;

conc: notion of concurrency;

Newmsg: set of messages)

1. while true do
2. { DoSet:= ComputeSemComputeSemComputeSem(Curr,ICICIC ,ACACAC ,ABABAB,conc,Newmsg);

(? find a set of actions to execute based on messages received ?)
3. Curr := result of executing the single action conc(DoSet); }

end.

7.4 Status Atoms and Action Rules 268

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 6.11 (CHAIN Example Revisited)
Consider the agent program for the suppliersuppliersupplier agent given in Example 6.10 on
page 256.

1. Each time we sell supplies, our agent consults rules r1 and r2 to ensure that the
amount requested never exceeds the amount available, even if the requests are
coming from multiple companies. If two concurrent requests for the same part
are considered by the suppliersuppliersupplier of Example 6.10 on page 256, and if both these
requests can be individually (but not jointly) satisfied, then our current example
non-deterministically satisfies one. The agent program in question does not adopt
any preference strategies.

2. If we do not replenish our supplies, rule r4 will fire when our supply of part
Part id falls below the supplies low threshold. Our agent is now allowed to
order more supplies. If more supplies are not ordered, rule r3 will eventually fire
when our supply of part Part id falls below the supplies too low threshold. The
agent is now obliged to order more parts. This obligation can be waived,
however, if part Part id has been discontinued (see rule r5).

7.4 Status Atoms and Action Rules 269

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

3. When we order parts, rule r6 will fire. Here, the suppliersuppliersupplier agent consults the
plantplantplant agent to determine which supplier to use. Once an appropriate supplier
has been found, the suppliersuppliersupplier agent asks the shippingshippingshipping agent to provide a
shipping schedule (rule r7) so the ordered parts can be delivered.

It is easy to see, from rules (r8) and (r9) that the same message requesting parts will
not be considered twice. Rule (r9) ensures that once a message is processed, it is
deleted from the message box.

7.4 Status Atoms and Action Rules 270

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 6.12 (CFIT Example: Multiagent Interaction)
The reader may be wondering exactly how the agents in a multiagent application
interact with one another. In this example, we provide a discussion of how this
happens in a microcosm of the CFIT example. Appendix A of this book contains the
full working code for agents in the CFIT example.

Consider the autoPilotautoPilotautoPilot agent in the CFIT example. Every ∆ units of time, the
autoPilotautoPilotautoPilot agent receives a message from a clockclockclock agent. This message includes a
“Wake” request telling the autoPilotautoPilotautoPilot agent to wake up.

The agent program associated with autoPilotautoPilotautoPilot causes the Dowakeaction to be
executed, which in turn triggers other actions. These include:

• Executing an action sendMessagesendMessagesendMessage(autoPilot,gps,<servicerequest>) where
the service request <servicerequest> of the gpsgpsgps agent is requesting the current
location of the plane.

7.4 Status Atoms and Action Rules 271

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

• The gpsgpsgps agent executes its getAllMsgsgetAllMsgsgetAllMsgsand retrieves the message sent by the
autoPilotautoPilotautoPilot agent.

• The decision program of the gpsgpsgps agent executes this request and also executes
the action sendMessagesendMessagesendMessagegps,autoPilot,<answer>) where <answer> is the
answer to the request made by the autoPilotautoPilotautoPilot agent.

• The autoPilotautoPilotautoPilot agent executes the getAllMsgsgetAllMsgsgetAllMsgsaction and retrieves the message
sent by the gpsgpsgps agent.

• The decision program of the autoPilotautoPilotautoPilot agent checks to see if the location of the
plane sent by the GPS is where the flight plan says the plane should be. If yes, it
executes the action sleepsleepsleepand goes to sleep for another ∆ units of time. If not, it
executes the action

sendMessagesendMessagesendMessage(autoPilot,terrain,<request>)

where <request> requests the terrainterrainterrain agent to send the elevation of the plane
at its current location (as determined by the GPS agents) as well as send the
No go areas.

7.4 Status Atoms and Action Rules 272

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

• The terrainterrainterrain agent executes its getAllMsgsgetAllMsgsgetAllMsgsaction and retrieves the message sent
by the autoPilotautoPilotautoPilot agent.

• The decision program of the terrainterrainterrain agent executes this request and also
executes the action sendMessagesendMessagesendMessage(terrainterrainterrain,autoPilotautoPilotautoPilot,Ans) where Ans is the
answer to the request made by the autoPilotautoPilotautoPilot Agent.

• The autoPilotautoPilotautoPilot agent executes the getAllMsgsgetAllMsgsgetAllMsgsaction and retrieves the message
sent by the terrainterrainterrain agent.

• It then executes its replanreplanreplanaction with the new terrain (correct) location of the
plan and the terrain “no go” areas.

7.4 Status Atoms and Action Rules 273

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

6.5 Status Sets

If an agent uses an agent programPPP , the question that the agent must answer, over

and over again is:

What is the set of all action status atoms of the formDoααα that are true with re-

spect toPPP , the current state,OOOSSS , the underlying setACACAC of action constraints,

and the setICICIC of underlying integrity constraints on agent states?

This defines the set of actions that the agent must execute concurrently.

7.5 Status Sets 274

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

While feasible status sets do not constitute a semantics for agent programs, every

semantics we define for Agent Programs will build upon this basic definition.

Intuitively, a feasible status set consists of assertions about the status of ac-

tions, such that these assertions are compatible with (but are not necessarily

forced to be true by) the rules of the agent program and the underlying action

and integrity constraints.

7.5 Status Sets 275

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 6.15 (Status Set)
A status setis any set Sof ground action status atoms over SSS . For any operator
Op ∈ {P,Do,F,O,W }, we denote by Op(S) the set Op(S) = {ααα | Op(ααα) ∈ S}.

Informally, a status setS represents information about the status of ground

actions. If some atomOp(ααα) occurs inS, then this means that the statusOp is

true forααα.

7.5 Status Sets 276

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 6.16 (Deontic and Action Consistency)
A status set S is called deontically consistent , if, by definition,it satisfies the
following rules for any ground action ααα:

• If Oααα ∈ S, then Wααα /∈ S

• If Pααα ∈ S, then Fααα /∈ S

• If Pααα ∈ S, then OOOSSS |= ∃∗Pre(ααα), where ∃∗Pre(ααα) denotes the existential closure
of Pre(ααα), i.e., all free variables in Pre(ααα) are governed by an existential
quantifier.

This condition means that the action ααα is in fact executable in the state OOOSSS .

A status set S is called action consistent , if S,OOOSSS |= ACACAC holds.

7.5 Status Sets 277

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Besides consistency, we also wish that the presence of certain atoms inSentails the

presence of other atoms inS. For example,

• if Oααα is in S, then we expect thatPααα is also inS, and

• if Oααα is in S, then we would like to haveDoααα in S.

7.5 Status Sets 278

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 6.17 (Deontic and Action Closure)
The deontic closure of a status S, denoted D-Cl(S), is the closure of Sunder the rule

If Oααα ∈ S, then Pααα ∈ S,

where ααα is any ground action. We say that S is deontically closed, if S= D-Cl(S)
holds.

The action closure of a status set S, denoted A-Cl(S), is the closure of Sunder the
rules

If Oααα ∈ S, then Doααα ∈ S,

If Doααα ∈ S, then Pααα ∈ S,

where ααα is any ground action. We say that a status S is action-closed, if S= A-Cl(S)
holds.

7.5 Status Sets 279

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Proposition 6.1
Suppose S is a status set. Then,

1. A-Cl(S) = S implies D-Cl(S) = S

2. D-Cl(S)⊆ A-Cl(S), for all S.

A status setSwhich is consistent and closed is certainly a meaningful assignment of a

status to each ground action.

Note that we may have ground actionsααα that do not occur anywhere within a status

set—this means that no commitment about the status ofααα has been made.

The following definition specifies how we may “close” up a status set under the rules

expressed by an agent programPPP .

7.5 Status Sets 280

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 6.18 (Operator AppPPP ,OOOSSS
(S))

Suppose PPP is an agent program, and OOOSSS is an agent state. Then, AppPPP ,OOOSSS
(S) is

defined to be the set of all ground action status atoms A such that there exists a rule in
P having a ground instance of the form r : A← L1, . . . ,Ln such that

1. B+
as(r)⊆ Sand ¬.B−as(r)∩S= /0, and

2. every code call χ ∈ B+
cc(r) succeeds in OOOSSS , and

3. every code call χ ∈ ¬.B−cc(r) does not succeed in OOOSSS , and

4. for every atom Op(ααα) ∈ B+(r)∪{A} such that Op ∈ {P,O,Do}, the action ααα is
executable in state OOOSSS .

7.5 Status Sets 281

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

6.6 Feasible Status Sets

Our approach is to base the semantics of agent programs on consistent and

closed status sets. However, we have to take into account the rules of the pro-

gram as well as integrity constraints. This leads us to the notion of a feasible

status set.

Definition 6.19 (Feasible Status Set)
Let PPP be an agent program and let OOOSSS be an agent state. Then, a status set S is a
feasible status setfor PPP on OOOSSS , if the following conditions hold:

(S1) (closure under the program rules) AppPPP ,OOOSSS
(S)⊆ S;

(S2) (deontic and action consistency) S is deontically and action consistent;

(S3) (deontic and action closure) S is action closed and deontically closed;

(S4) (state consistency) OOO ′SSS |= ICICIC , where OOO ′SSS = apply(Do(S),OOOSSS) is the state
which results after taking all actions in Do(S) on the state OOOSSS .

7.6 Feasible Status Sets 282

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

In general, there are action programs that have zero, one or several feasible status

sets. This is illustrated through the following examples.

Example 6.13 (CHAIN example revisited)
Let us consider a simple agent program containing just the rule (r4) of Example 6.10,
together with rule (r8) and (r9) that manage the message box.

r4: P order partorder partorder part(Part id,amount to order)←
O processrequestprocessrequestprocessrequest(Msg.Id,Agent),
in(((((((((Amount requested,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Amount requested ”)))))))))))),
in(((((((((Part id,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Part id ”)))))))))))),
in(((((((((supplies low,suppliersuppliersupplier : low thresholdlow thresholdlow threshold(((Part id)))))))))))),
in(((((((((amount not available,suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((supplies low,Part id)))))))))))).

7.6 Feasible Status Sets 283

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Suppose the current state of the agent suppliersuppliersupplier is such that the number of items of a
certain part say (p50) falls below the supplies low threshold for that part. Suppose
the company making the request is zzz corp, and the Amount requested is 50, and
the amount to order is 2000. In this case, this agent program will have multiple
feasible status sets. Some feasible status sets will contain P order partorder partorder part(p50,2000)
but will not contain Do order partorder partorder part(p50,2000). However, other feasible status sets
will contain both P order partorder partorder part(p50,2000) and Do order partorder partorder part(p50,2000).

7.6 Feasible Status Sets 284

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 6.14 (CHAIN example revisited)
On the other hand, suppose our agent program contains rules (r3), (r8) and (r9) of
Example 6.10 on page 256, and suppose that for all parts, the amount of the part in
stock is above the too low threshold amount. Further, suppose our agent program
contains the rule

F order partorder partorder part(Part id,Amount requested)←
O processrequestprocessrequestprocessrequest(Msg.Id,Agent),
in(((((((((Amount requested,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Amount requested ”)))))))))))),
in(((((((((Part id,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Part id ”)))))))))))),
¬O order partorder partorder part(Part id,Amount requested).

In this case, for all parts, we are forbidden from placing an order. Hence, this agent
program has only one feasible status set, viz. that which contains status atoms of the
form

F order partorder partorder part(Part id,Amount requested)

together with relevant message processing action status atoms .

7.6 Feasible Status Sets 285

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 6.15
The following (artificial) example shows that some agent programs may have no
feasible status sets at all.

Pααα ←
Fααα ←

Clearly, if the current object state allows ααα to be executable, then no status set can
satisfy both the closure under program rules requirement, and the deontic consistency
requirement.

Proposition 6.2 (Properties of Feasible Status Sets)
Let Sbe a feasible status set. Then,

1. If Do(ααα) ∈ S, then OOOSSS |= Pre(ααα);

2. If Pααα /∈ S, then Do(ααα) /∈ S;

3. If Oααα ∈ S, then OOOSSS |= Pre(ααα);

4. If Oααα ∈ S, then Fααα /∈ S.

7.6 Feasible Status Sets 286

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

We note that feasible status sets may includeDoing actions that are not strictly

necessary.

Example 6.16 (ExpandedCHAIN Example)
Let us return to the example feasible status sets we saw in Example 6.13 on page 282.
In this case, this agent program had multiple feasible status sets. Some feasible status
sets will contain P order partorder partorder part(p50,2000) but will not contain
Do order partorder partorder part(p50,2000). However, other feasible status sets will contain both
P order partorder partorder part(p50,2000) and Do order partorder partorder part(p50,2000). It is immediately apparent
that we do not want bothaction status atoms P order partorder partorder part(p50,2000) and
Do order partorder partorder part(p50,2000) to be present in feasible status sets: there is no good
reason to in fact perform the action order partorder partorder part(p50,2000) (the agent program in
question does not mandate that Do order partorder partorder part(p50,2000) be true).

7.6 Feasible Status Sets 287

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

6.7 Rational Status Sets

• The notion of a rational status set is postulated to accommodate this kind of

reasoning. It is based on the principle that each action that is executed should be

sufficiently “grounded” or “justified” by the agent program.

• That is, there should be evidence from the rules of the agent program that

a certain action must be executed.

• For example, it seems unacceptable that an actionααα is executed, ifααα does not

occur in any rule of the agent program at all.

7.7 Rational Status Sets 288

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 6.20 (Groundedness; Rational Status Set)
A status set S is grounded, if there exists no status set S′ 6= Ssuch that S′ ⊆ Sand S′

satisfies conditions (S1)–(S3) of a feasible status set.

A status set S is a rational status set, if S is a feasible status set and S is
grounded.

7.7 Rational Status Sets 289

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 6.17 (ExpandedCHAIN Example Continued)
Returning to Example 6.16 on page 286, it is immediately apparent that all feasible
status sets that contain both P order partorder partorder part(P,N) and Do order partorder partorder part(P,N) are not
rational, while those that only contain P order partorder partorder part(P,N) satisfy rationality.

7.7 Rational Status Sets 290

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Observe that the definition of groundedness does not include condition(S4) of a

feasible status set. A moment of reflection will show that omitting this condition is

indeed appropriate.

Recall that the integrity constraints must be maintained when the current agent state

is changed into a new one.

If we were to include the condition(S4) in groundedness, it may happen that

the agent is forced to execute some actions which the program does not men-

tion, just in order to maintain the integrity constraints.

7.7 Rational Status Sets 291

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

We define for every positive programPPP and agent stateOOOSSS an operatorTPPP ,OOOSSS that

maps a status setS to another status set.

Definition 6.21 (TPPP ,OOOSSS Operator)

Suppose PPP is an agent program and OOOSSS an agent state. Then, for any status set S,

TPPP ,OOOSSS (S) = AppPPP ,OOOSSS
(S)∪D-Cl(S)∪A-Cl(S).

7.7 Rational Status Sets 292

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Lemma 6.1
Let PPP be an agent program, let OOOSSS be any agent state, and let Sbe any status set. If S

satisfies (S1) and (S3) of feasibility, then S is pre-fixpoint of TPPP ,OOOSSS , i.e.,
TPPP ,OOOSSS (S)⊆ S.

Theorem 6.1
Let PPP be a positive agent program, and let OOOSSS be an agent state. Then, S is a rational
status set of PPP on OOOSSS , if and only if S= lfp(TPPP ,OOOSSS) and S is a feasible status set.

Corollary 1
Let PPP be a positive agent program. Then, on every agent state OOOSSS , the rational status
set of PPP (if one exists) is unique, i.e., if S,S′ are rational status sets for PPP on OOOSSS , then
S= S′.

7.7 Rational Status Sets 293

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 6.18 (CHAIN example revisited)
Let us return to the agent program described in Example 6.16 on page 286. Let us
augment this example with a new action, fax order. Suppose we augment our agent
program of Example 6.16 on page 286 with the two rules

Do fax orderfax orderfax order(company1,Part id,Amount requested)←
O processrequestprocessrequestprocessrequest(Msg.Id,Agent),
in(((((((((Amount requested,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Amount requested ”)))))))))))),
in(((((((((Part id,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Part id ”)))))))))))),
Do order partorder partorder part(Part id,Amount requested),
¬ Do fax orderfax orderfax order(company2,Part id,Amount requested).

P fax orderfax orderfax order(company2,Part id,Amount requested)←
O processrequestprocessrequestprocessrequest(Msg.Id,Agent),
in(((((((((Amount requested,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Amount requested ”)))))))))))),
in(((((((((Part id,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Part id ”)))))))))))),
Do order partorder partorder part(Part id,Amount requested),
=(Part id,p50).

7.7 Rational Status Sets 294

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

It is now easy to see that there are two rational status sets—one of which contains the
status atom Do fax orderfax orderfax order(company1,Part id,2000) and the other
Do fax orderfax orderfax order(company2,Part id,2000). Thus, the introduction of negated status
atoms in rule bodies leads to this potential problem.

7.7 Rational Status Sets 295

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

As shown by Example 6.18 on page 293 Corollary 1 on page 292 is no longer true in

the presence of negated action status atoms .

We note the following property on the existence of a (not necessarily unique) rational

status set.

Proposition 6.3
Let PPP be an agent program. If ICICIC = /0, then PPP has a rational status set if and only ifPPP
has a feasible status set.

7.7 Rational Status Sets 296

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

6.8 Reasonable Status Sets

A more serious attack against rational status sets, is that for agent programs with

negation, the semantics ofrational status sets allows logical contrapositionof the

program rules. For example, consider the following program:

Do(ααα) ← ¬Do(βββ).

This program has two rational status sets:S1 = {Do(ααα),P(ααα)}, and

S2 = {Do(βββ),P(βββ)}. The second rational status set is obtained by applying the

contrapositive of the rule:

Do(βββ) ← ¬Do(ααα)

However, the second rational set seems less intuitive than the first as there is no

explicit rule in the above program that justifies the derivation of thisDo(βββ).

7.8 Reasonable Status Sets 297

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

We introduce the concept of areasonable status set. The reader should note that if he

really does want to use contraposition, then he should choose the rational status set

approach, rather than the reasonable status set approach.

Definition 6.22 (Reasonable Status Set)
Let PPP be an agent program, let OOOSSS be an agent state, and let Sbe a status set.

1. If PPP is a positive agent program, then S is a reasonable status setfor PPP on OOOSSS , if
and only if S is a rational status set for PPP on OOOSSS .

2. The reduct of PPP w.r.t. Sand OOOSSS , denoted by redS(PPP ,OOOSSS), is the program which is
obtained from the ground instances of the rules in PPP over OOOSSS as follows.

(a) First, remove every rule r such that B−as(r)∩S 6= /0;

(b) Remove all atoms in B−as(r) from the remaining rules.

Then S is a reasonable status setfor PPP w.r.t. OOOSSS , if it is a reasonable status set of
the program redS(PPP ,OOOSSS) with respect to OOOSSS .

7.8 Reasonable Status Sets 298

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 6.19 (CHAIN example revisited)
Let us return to the case of the agent program presented in Example 6.18 on
page 293. Here we have two rational status sets, one containaing
Do fax orderfax orderfax order(company1,p50,500), while the other contains
Do fax orderfax orderfax order(company2,p50,500).

According to the above definition, only the rational status set that contains the status
atom Do fax orderfax orderfax order(company1,p50,500) is reasonable. The reason is that the first
rule listed explicitly in Example 6.18 on page 293 says that if we do not infer
Do fax orderfax orderfax order(company2,p50,500), then we should infer
Do fax orderfax orderfax order(company1,p50,500), thus implicitly providing higher priority to the
rational status set containing Do fax orderfax orderfax order(company1,p50,500),.

7.8 Reasonable Status Sets 299

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

A more simplistic example is presented below.

Example 6.20
For the program PPP :

Doβββ ← ¬Doααα,

the reduct of PPP w.r.t. S= {Doβββ,Pβββ} on agent state OOOSSS is the program

Doβββ ← .

Clearly, S is the unique reasonable status set of redS(PPP ,OOOSSS), and hence S is a
reasonable status set of PPP .

7.8 Reasonable Status Sets 300

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

The use of reasonable status sets also has some benefits with respect to knowledge

representation. For example, the rule

Doααα←¬Fααα (6.3)

says that actionααα is executed by default, unless it is explicitly forbidden (provided, of

course, that its precondition succeeds). This default representation is possible because

under the reasonable status set approach, the rule itself can not be used to deriveFααα,

which is inappropriate for a default rule.

Proposition 6.4
Let PPP be an agent program and OOOSSS an agent state. Then, every reasonable status set of
PPP on OOOSSS is a rational status set of PPP on OOOSSS .

7.8 Reasonable Status Sets 301

Chapter 7: Actions and Agent Programs Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

6.9 Summary

This chapter was about thedecision making componentof an agent:

How to decide what actions to take given the current state of the world?

1. We introducedactionsααα.

(a) Much like the classical STRIPS-approach: instead of logical atoms, we

consider code call atoms. Actions are implemented by code.

(b) How to concurrently execute actions? We assume givenconc.

(c) Actions do have a status:{P,F,O, W,Do}.

2. The semantics is given by certainstatus setsof an agent program:

(a) An agent program consists of rulesOpααα←Opβ1β1β1, . . . ,Opβnβnβn,ccc1, . . . ,cccn.

(b) A feasible status setis a set of status atoms{Op1α1α1α1, . . . ,Opnαnαnαn} satisfying

certain properties.

(c) Rational status sets = Feasible +Groundedness

(d) Reasonablestatus sets =Rational + Contraposition not allowed

7.9 Summary 302

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Chapter 8. Implementing Agents

Overview

8.1 Weakly Regular Agents

8.2 Properties of Weakly Regular
Agents

8.3 Regular Agents

8.4 Compile-Time Algorithms

8.5IADE
8.6 Experimental Results

Overview 303

Timetable:

• Chapter 8 needs 1 lecture.

7 Implementing Agents

303-1

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

• We define (in Section 7.1), a class of agents calledweak regular agentsthat

serve as a stepping stone to later defining regular agents.

• We derive (in Section 7.2) various theoretical properties of weak regular agents

that make the design of acomputation procedureto compute regular agents

polynomial .

• We extend (in Section 7.3) the definition of weak regular agents to define

regular agents—the central contribution of this Section.

8.1 Weakly Regular Agents 304

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

7.1 Weakly Regular Agents

WRAPs are characterized by three basic properties:

Strong Safety: In addition to the safety requirement on rules introduced in Section 5

(Definition 5.8), code call conditions are required to satisfy some additional

conditions which ensure that theyalways return finite answers.

Conflict-Freedom: The set of rules in a WRAP should not lead to conflicts—for

example, the rules must not force an agent to do something it is forbidden to do.

Deontic Stratifiability: This is a property in the spirit of stratification in logic

programs (?), which prevents problems with negationin rule bodies. However,

deontic stratification is more complex than ordinary stratification (due to deontic

modalities).

8.1 Weakly Regular Agents 305

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

7.1.1 Strong Safety

Safety is acompile-timecheck that ensures that all code calls generated atrun-time

have instantiated parameters. However, executability of a code call condition does not

depend solely on safety. For example, consider the simple code call condition

in(((((((((X,mathmathmath :geqgeqgeq(((25)))))))))))).

Though this code call condition is safe, it leads to an infinite set of possi-

ble answers, leading to non-termination.

8.1 Weakly Regular Agents 306

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Consider, for instance, the code call condition

in(((((((((X,mathmathmath :geqgeqgeq(((25))))))))))))& in(((((((((Y,mathmathmath :squaresquaresquare(((X))))))))))))& Y≤ 2000.

Clearly, over the integers there are only finitely many ground substitutions that cause

this code call condition to be true. Furthermore, this code call condition is safe.

However, its evaluation may never terminate. The reason for this is that safety

requires that we first compute the set of all integers that are greater than 25, leading to

an infinite computation.

This means that in general, we must impose some restrictions on code call

conditions to ensure that they are finitely evaluable.

8.1 Weakly Regular Agents 307

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

As is well known, determining whether a function is finite or not is undecid-

able (?), and hence, input from the agent developer is imperative.

Definition 7.1 (Binding Pattern)
Suppose we consider a code call SSSSSSSSS :fff (((a1, . . . ,an))) where each ai is of type τi . A
binding patternfor SSSSSSSSS :fff (((a1, . . . ,an))) is an n-tuple (bt1, . . . ,btn) where each bti (called a
binding term) is either:

1. A value of type τi , or

2. The expression [denoting that this argument is bound to an unknown value.

8.1 Weakly Regular Agents 308

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

We require that the agent developer must specify afinitenesspredicate that

may be defined via afiniteness tablehaving two columns—the first column

is the name of the code call, while the second column is a binding pattern for

the function in question.

Intuitively, suppose we have a row of the form

〈SSSSSSSSS :fff (((a1,a2,a3))),([,5, [)〉

in the finiteness table. Then this row says that the answer returned by any code call of

the formSSSSSSSSS :fff (((−,5,−))) is finite.

8.1 Weakly Regular Agents 309

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 7.1 (Finiteness Table for AutoPilot Agent inCFIT Example)
An example of a finiteness table is given below.

Code Call Binding Pattern

autoPilotautoPilotautoPilot :readGPSDatareadGPSDatareadGPSData(((SensorId))) ([)

autoPilotautoPilotautoPilot :calculateLocationcalculateLocationcalculateLocation(((Location,FlightRoute,Speed))) ([, [, [)

autoPilotautoPilotautoPilot :calculateNFlightRoutescalculateNFlightRoutescalculateNFlightRoutes(((CurrentLocation,No go,N))) ([, [,1)

autoPilotautoPilotautoPilot :calculateNFlightRoutescalculateNFlightRoutescalculateNFlightRoutes(((CurrentLocation,No go,N))) ([, [,2)

autoPilotautoPilotautoPilot :calculateNFlightRoutescalculateNFlightRoutescalculateNFlightRoutes(((CurrentLocation,No go,N))) ([, [,3)

This indicates that autoPilotautoPilotautoPilot :readGPSDatareadGPSDatareadGPSData((())) and autoPilotautoPilotautoPilot :calculateLocationcalculateLocationcalculateLocation((()))
always return a finite number of answers.

8.1 Weakly Regular Agents 310

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

The code call autoPilotautoPilotautoPilot :calculateNFlightRoutescalculateNFlightRoutescalculateNFlightRoutes(((CurrentLocation,No go,N)))
returns up to N flight routes when N 6= 0. If N = 0, then an infinite number of flight
routes (which start at CurrentLocation and avoid the given No go areas) may be
returned. Our finiteness table above indicates that when 1≤ N≤ 3,
autoPilotautoPilotautoPilot :calculateNFlightRoutescalculateNFlightRoutescalculateNFlightRoutes((())) will only return a finite number of answers.
Notice that this table is incomplete since it does not indicate that a finite number of
answers will be returned when N > 3.

8.1 Weakly Regular Agents 311

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

From the fact that any code call of the formSSSSSSSSS :fff (((−,5,−))) has a finite answer, we

should certainly be able to infer that the code callSSSSSSSSS :fff (((20,5,17))) has a finite answer.

In order to make this kind of inference, we need to associate anordering on binding

patterns. We say that[≤ val for all values, and take the reflexive closure. We may

now extend this≤ ordering to binding patterns.

8.1 Weakly Regular Agents 312

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 7.2 (Ordering on Binding Patterns)
We say a binding pattern (bt1, . . . ,btn) is equally or less informativethan another
binding pattern (bt′1, . . . ,bt′n) if, by definition,for all 1≤ i ≤ n, bti ≤ bt′i .

We will say(bt1, . . . ,btn) is less informativethan(bt′1, . . . ,bt′n) if and only if it is

equally or less informative than(bt′1, . . . ,bt′n) and(bt′1, . . . ,bt′n) is not equally or less

informative than(bt1, . . . ,btn). If (bt′1, . . . ,bt′n) is less informative than(bt1, . . . ,btn),
then we will say that(bt1, . . . ,btn) is more informativethan(bt′1, . . . ,bt′n).

8.1 Weakly Regular Agents 313

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Suppose now that the developer of an agent specifies a finiteness tableFINTAB. The

following definition specifies what it means for a specific code call atom to be

considered finite w.r.t.FINTAB.

Definition 7.3 (Finiteness)
Suppose FINTAB is a finite finiteness table , and (bt1, . . . ,btn) is a binding pattern
associated with the code call SSSSSSSSS :fff (((· · ·))). Then FINTAB is said to entail the finiteness of

SSSSSSSSS :fff (((bt1, . . . ,btn))) if, by definition,there exists an entry of the form
〈SSSSSSSSS :fff (((. . .))),(bt′1, . . . ,bt′n)〉 in FINTAB such that (bt1, . . . ,btn) is more informative than
(bt′1, . . . ,bt′n).

8.1 Weakly Regular Agents 314

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 7.2 (Finiteness Table)
Let FINTAB be the finiteness table given in Example 7.1 on page 309. Then FINTAB

entails the finiteness of autoPilotautoPilotautoPilot :readGPSDatareadGPSDatareadGPSData(((5))) and
autoPilotautoPilotautoPilot :calculateNFlightRoutescalculateNFlightRoutescalculateNFlightRoutes(((〈221,379,433〉, /0,2))) but it does not entail the
finiteness of autoPilotautoPilotautoPilot :calculateNFlightRoutescalculateNFlightRoutescalculateNFlightRoutes(((〈221,379,433〉, /0,0))) (since this
may have an infinite number of answers) or
autoPilotautoPilotautoPilot :calculateNFlightRoutescalculateNFlightRoutescalculateNFlightRoutes(((〈221,379,433〉, /0,5))) (since FINTAB is not
complete).

8.1 Weakly Regular Agents 315

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

• We have now defined a condition to ensure finiteness of a code call of the form

SSSSSSSSS :fff (((. . .))).

• Defining strong safety of a code callcondition is more complex. For instance,

even if we know thatSSSSSSSSS :fff (((t1, . . . ,tn))) is finite, the code call atom

not in(((((((((X,SSSSSSSSS :fff (((t1, . . . ,tn)))))))))))) may have an infinite answer. Likewise for comparison

conditions.

8.1 Weakly Regular Agents 316

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

We make two simplifying assumptions, though both of them can be easily modified to

handle other cases:

1. First, we will assume that every functionf has a complementfff . An objecto is

returned by the code callSSSSSSSSS : fffffffff (((t1, . . . ,tn))) if, by definition, ois not returned by

SSSSSSSSS :fff (((t1, . . . ,tn))). Once this occurs, all code call atomsnot in(((((((((X,SSSSSSSSS :fff (((t1, . . . ,tn))))))))))))
may be rewritten asin(((((((((X,SSSSSSSSS : fffffffff (((t1, . . . ,tn)))))))))))) thus eliminating the negation

membership predicate.

When the agent developer createsFINTAB, he must also specify the finite-

ness conditions (if any) associated with function callsfffffffff .

8.1 Weakly Regular Agents 317

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

2. Second, in the definition of strong safety below, we assume that all comparison

operators involve variables over types having the following property.

Downward Finiteness Property. A type τ is said to have thedownward finiteness

property if, by definition,it has an associated partial ordering≤ such that for all

objectsx of typeτ, the set{o′ | o′ is an object of typeτ ando′ ≤ o} is finite.

It is easy to see that the positive integers have this property, as do the set of all

strings ordered by the standard lexicographic ordering. (Later, we will show how

this property may be relaxed to accommodate the reals, the negative integers, and

so on.)

8.1 Weakly Regular Agents 318

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 7.4 (Strong Safety)
A safe code call condition χ = χ1& . . .& χn is strongly safew.r.t. a list ~X of root
variables if, by definition,there is a permutation π witnessing the safety of χ modulo
~X such that for each 1≤ i ≤ n, χπ(i) is strongly safe modulo ~X, where strong safety of
χπ(i) is defined as follows:

1. χπ(i) is a code call atom.
Here, let the code call of χπ(i) be SSSSSSSSS :fff (((t1, . . . ,tn))) and let the binding pattern
〈bt1, . . . ,btn〉 be defined as follows:

(a) If ti is a value, then bti =def ti .

(b) Otherwise ti must be a variable whose root occurs either in ~X or in χπ(j) for
some j < i. In this case, bti =def [.

Then, χπ(i) is strongly safe if, by definition,FINTAB entails the finiteness
of SSSSSSSSS :fff (((bt1, . . . ,btn))).

8.1 Weakly Regular Agents 319

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

2. χπ(i) is s 6= t.
In this case, χπ(i) is strongly safe if, by definition,each of s and t is either a
constant or a variable whose root occurs either in ~X or in χπ(j) for some j < i.

3. χπ(i) is s < t or s≤ t.
In this case, χπ(i) is strongly safe if, by definition,t is either a constant or a
variable whose root occurs either in ~X or somewhere in χπ(j) for some j < i.

4. χπ(i) is s > t or s≥ t.
In this case, χπ(i) is strongly safe if, by definition,t < s or t≤ s, respectively,
are strongly safe.

8.1 Weakly Regular Agents 320

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Algorithm safecccdefined in Section 5 may easily be modified to handle a strong

safety check, by replacing the test “select allχi1, . . . ,χim from L such thatχi j is safe

modulo~X” in step (4) of that algorithm by the test “select allχi1, . . . ,χim from L such

thatχi j is stronglysafe modulo~X.”

Definition 7.5 (Strongly Safe Agent Program)
A rule r is strongly safeif, by definition,it is safe, and Bcc(r) is a strongly safe code
call condition. An agent program is strongly safeif, by definition,all rules in it are
strongly safe.

8.1 Weakly Regular Agents 321

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

7.1.2 Conflict-Freedom

The deontic consistency requirement associated with a feasible status set mandates

that all feasible status sets (and hence all rational and reasonable status sets) be

deontically consistent.Therefore, we need some way of

ensuring that agent programs are conflict-free.

8.1 Weakly Regular Agents 322

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 7.6 (Conflicting Modalities)
Given two action modalities Op ,Op ′ ∈ {P,F,O,Do,W} we say that Op conflicts

with Op ′ if, by definition,there is an entry “×” in the following table at row Op and
column Op ′:

Op \ Op ′ P F O W Do

P ×
F × × ×
O × ×
W ×
Do ×

Observe that the conflicts-with relation is symmetric, i.e. if Op conflicts-with
Op ′, then Op ′ conflicts-with Op .

8.1 Weakly Regular Agents 323

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 7.7 (Conflicting Action Status Literals)
Suppose Li ,L j are two action status literals. Li is said to conflict withL j if, by

definition,

• Li ,L j are unifiable and their modalities conflict, or

• Li ,L j are of the form Li = Op(ααα(~t)) and L j = ¬Op ′(ααα(~t ′)), and
Op(ααα(~t)),Op ′(ααα(~t ′)) are unifiable, and the entry “×” is in the following table at
row Op and column ¬Op ′:

Op \ ¬Op ′ ¬P ¬F ¬O ¬W ¬Do

P ×
F ×
O × × ×
W ×
Do × ×

8.1 Weakly Regular Agents 324

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

• the action status atomsFααα(a,b,X) andPααα(Z,b,c) conflict. However,Fααα(a,b,X)
and¬Pααα(Z,b,c) do not conflict.

• ¬Pααα(Z,b,c) andDoααα(Z,b,c) conflict, while the literalsPααα(Z,b,c) and

¬Doααα(Z,b,c) do not conflict.

The conflicts-with relation isnot symmetric when applied to action status literals.

8.1 Weakly Regular Agents 325

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

A definition expressing that an agent program does not conflict, not must ap-

ply just to the current state, but rather to all possible states the agent can be

in.

Definition 7.8 (Conflicting Rules w.r.t. a State)
Consider two rules r i , r j (whose variables are standardized apart) having the form

r i : Opi(ααα(~t)) ← B(r i)

r j : Op j(βββ(~t ′)) ← B(r j)

We say that r i and r j conflict w.r.t. an agent state OOOSSS if, by definition,Opi conflicts
with Op j , and there is a substitution θ such that:

• ααα(~tθ) = βββ(~t ′θ) and

• (Bcc(r i) ∧ Bcc(r j))θγ is true in OOOSSS for some substitution γ that causes
(Bcc(r i) ∧ Bcc(r j))θ to become ground and

8.1 Weakly Regular Agents 326

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

• If Opi ∈ {P,Do,O} (resp., Op j ∈ {P, Do, O}) then ααα(~tθ) (resp., βββ(~t ′θ)) is
executable in OOOSSS , and

• (Bas(r i)∪Bas(r j))θ contains no pair of conflicting action status literals.

Intuitively, the above definition says that for two rules to conflict in a given

state, they must have a unifiable head and conflicting head-modalities, and

furthermore, their bodies must be deontically consistent (under the unifying

substitution) and their bodies’ code call components must have a solution.

8.1 Weakly Regular Agents 327

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 7.9 (Conflict Free)
An agent program, PPP , is said to be conflict freeif and only ifit satisfies two
conditions:

1. For every possible agent state OOOSSS , there is no pair r i , r j of conflicting rules in PPP .

2. For any rule Opi(ααα(~t))← . . . ,(¬)Op j(~t ′), . . . in PPP , Opi(ααα(~t)) and (¬)Op j(ααα(~t ′))
do not conflict.

8.1 Weakly Regular Agents 328

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Unfortunately, as the following theorem shows, the problem of determining whether

an agent program is conflict-free in the above definition is undecidable, because

checking the first condition is undecidable.

Theorem 7.1 (Undecidability of Conflict Freedom Checking)
The problem of deciding whether an input agent program PPP satisfies the first
condition of conflict-freedom is undecidable. Hence, the problem of deciding
whether an input agent program PPP is conflict free is undecidable.

8.1 Weakly Regular Agents 329

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

However, there are many possible ways to definesufficientconditions on agent

programs that guarantee conflict freedom.

If an agent developer encodes his agent program in a way that satisfies these sufficient

conditions, then he is guaranteed that his agent is going to be conflict free.

Definition 7.10 (Conflict-Freedom Test)
A conflict-freedom testis a function cftcftcft that takes as input any two rules r1, r2, and
provides a boolean output such that: if cftcftcft(r1, r2) = true, then the pair r1, r2 satisfies
the first condition of conflict freedom.

8.1 Weakly Regular Agents 330

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 7.11 (Conflict-Free Agent Program w.r.t.cftcftcft)
An agent program PPP is conflict free w.r.t.cftcftcft if and only if for all pairs of distinct
rules r i , r j ∈PPP , cftcftcft(r i , r j) = true, and all rules in PPP satisfy the second condition in the
definition of conflict free programs.

Intuitively, different choices of the functioncftcftcft may be made, depending upon the

complexity of such choices, and the accuracy of such choices (i.e. how often does a

specific functioncftcftcft return “false” on arguments(r i , r j) when in factr i , r j do not

conflict?).

In IADE , the agent developer can choose one of several conflict-freedom tests

to be used for his application (and he can add new ones to his list).

Some instances of this test are given below.

8.1 Weakly Regular Agents 331

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 7.3 (Head-CFT,cftcftcft h)
Let r i ,r j be two rules of the form

r i : Opi(ααα(~t)) ← B(i)

r j : Op j(βββ(~t ′)) ← B(j).

Now let the head conflict-freedom test cftcftcfth be as follows,

cftcftcfth(r i , r j) =

true, if either Opi ,Op j do not conflict, or

ααα(~t) and βββ(~t ′) are not unifiable;

false, otherwise.

8.1 Weakly Regular Agents 332

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 7.4 (Body Code Call CFT,cftcftcft bcc)
Let the body-code conflict-freedom test cftcftcftbcc be as follows:

cftcftcftbcc(r i , r j)=

true, if either Opi ,Op j do not conflict, or

ααα(~t) and βββ(~t ′) are not unifiable, or

Opi ,Op j conflict and ααα(~t),βββ(~t ′) are unifiable via mgu θ and

there is a pair of contradictory code call atoms in Bcc(r1θ), Bcc(r2θ);

false otherwise.

The expression “∃ a pair of contradictory code call atoms in Bcc(r1θ),Bcc(r2θ)”

means that there exist code call atoms of form in(((((((((X,cc))))))))) and not in(((((((((X,cc))))))))) which
occur in Bcc(r1θ) ∪Bcc(r2θ), or comparison atoms of the form s1 = s2 and s1 6= s2;
s1 < s2 and s1 ≥ s2 etc.

8.1 Weakly Regular Agents 333

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 7.5 (Body-Modality-CFT,cftcftcft bm)
The body-modality conflict-freedom test is similar to the previous one, except that
action status atoms are considered instead. Now let cftcftcftbm be as follows,

cftcftcftbcc(r i , r j)=

true if Opi ,Op j do not conflict or

ααα(~t),βββ(~t ′) are not unifiable or

Opi ,Op j conflict, and ααα(~t),βββ(~t ′) are unifiable via mgu θ and

literals (¬)Opiααα(~t ′′) in Bas(r iθ) for i = 1,2 exist

such that (¬)Op1 and (¬)Op2 conflict;

false otherwise.

8.1 Weakly Regular Agents 334

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 7.6 (Precondition-CFT,cftcftcft pr)

Often, we might have action status atoms of the form Pααα,Doααα,Oααα in a rule. For a
rule r i as shown in Example 7.3 on page 331, denote by r?

i the new rule obtained by
appending to B(i) the precondition of any action status atom of the form Pααα,Doααα,Oααα
(appropriately standardized apart) from the head or body of r i . Thus, suppose r is

Doααα(X,Y) ← in(((((((((X,ddd :fff (((Y))))))))))))& Pβββ& Fγγγ(Y).

Suppose pre(ααα(X,Y)) = in(((((((((Y,d1d1d1 :f1f1f1(((X)))))))))))) and pre(βββ) = in(((((((((3,d2d2d2 :f2f2f2((()))))))))))). Then r? is the
rule

Doααα(X,Y) ← in(((((((((X,ddd :fff (((Y))))))))))))& in(((((((((Y,d1d1d1 :f1f1f1(((X))))))))))))& in(((((((((3,d2d2d2 :f2f2f2((())))))))))))&

Pβββ& F γγγ(Y).

We now define cftcftcftpr(r i , r j) =

 true if cftcftcftbcc(r?
i , r

?
j) = true

false otherwise.

8.1 Weakly Regular Agents 335

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Theorem 7.2
Suppose r is a rule, and ααα(~X) is an action such that some atom Opααα(~t) appears in r’s
body where Op ∈ {P,O,Do}. Then:

1. If r is safe and ααα(~X) has a safe precondition modulo the variables in ~X, then r? is
safe.

2. If r is strongly safe and ααα(~X) has a strongly safe precondition modulo ~X, then r?

is strongly safe.

8.1 Weakly Regular Agents 336

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

7.1.3 Deontic Stratification

Definition 7.12 (Layering Function)
Let PPP be an agent program. A layering functioǹ̀̀ is a function `̀̀ : PPP →N .

A layering function assigns a nonnegative integer to each rule in the program, and in

doing so, it groups rules into layers as defined below.

Definition 7.13 (Layers of an Agent Program)
If PPP is an agent program, and `̀̀ is a layering function over PPP , then the i-th layer of PPP
w.r.t. `̀̀, denoted PPP `̀̀

i , is defined as:

PPP `̀̀
i = {r ∈PPP | `̀̀(r) = i}.

When `̀̀ is clear from context, we will drop the superscript and write PPP i instead of PPP `̀̀
i .

8.1 Weakly Regular Agents 337

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 7.7 (Layering Functions)
Consider the agent program PPP given below.

r1: Do executeflight planexecuteflight planexecuteflight plan(Flight route)←
in(((((((((automated,autoPilotautoPilotautoPilot :pilotStatuspilotStatuspilotStatus(((pilot message)))))))))))),
Do createflight plancreateflight plancreateflight plan(No go, Flight route, Current location)

If the plane is on autopilot and a flight plan has been created, then execute it.

r2: O createflight plancreateflight plancreateflight plan(No go, Flight route, Current location)←
O adjust courseadjust courseadjust course(No go, Flight route, Current location)

If our agent is required to adjust the plane’s course, then it is also required to
create a flight plan.

r3: O maintaincoursemaintaincoursemaintaincourse(no go, flight route, current location)←
in(((((((((automated,autoPilotautoPilotautoPilot :pilotStatuspilotStatuspilotStatus(((pilot message)))))))))))),
¬ O adjust courseadjust courseadjust course(no go, flight route, current location)

If the plane is on autopilot and our agent is not obliged to adjust the plane’s
course, then our agent must ensure that the plane maintains its current course.

8.1 Weakly Regular Agents 338

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

r4: O adjust courseadjust courseadjust course(no go, flight route, current location)←
O adjustAltitudeadjustAltitudeadjustAltitude(Altitude)

If our agent must adjust the plane’s altitude, this it is obliged to also adjust the
plane’s flight route as well.

Note that for simplicity, these rules use constant valued parameters for
maintaincoursemaintaincoursemaintaincourseand adjust courseadjust courseadjust course.

Let function `̀̀1 assign 0 to rule r4, 1 to rules r2, r3, and 2 to rule r1. Then `̀̀1 is a
layering function which induces the program layers PPP `̀̀1

0 = {r4}, PPP `̀̀1
1 = {r2, r3}, and

PPP `̀̀1
2 = {r1}. Likewise, the function `̀̀2 which assigns 0 to rule r4 and 1 to the

remaining rules is also a layering function. In fact, the function `̀̀3 which assigns 0 to
all rules in PPP is also a layering function.

8.1 Weakly Regular Agents 339

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Using the concept of a layering function, we would like to define what adeontically

stratifiableagent program is. Before doing so, we introduce a simple ordering on

modalities.

Definition 7.14 (Modality Ordering)
The partial ordering “≤” on the set of deontic modalities M = {P, O, Do, W, F} is
defined as follows (see Figure 7.1): O≤ Do, O≤ P, Do ≤ P, and Op ≤ Op , for each
Op ∈M. Furthermore, for ground action status atoms A and B, we define that A≤ B

if, by definition, A= Opααα, B = Op ′ααα, and Op ′ ≤ Op all hold.

Do

O

W

P

F

Figure 7.1: Modality ordering

8.1 Weakly Regular Agents 340

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 7.15 (Deontically Stratifiable Agent Program)
An agent program PPP is deontically stratifiableif, by definition,there exists a layering
function `̀̀ such that:

1. For every rule r i : Opi(ααα(~t))← . . . ,Op j(βββ(~t ′)), . . . in PPP `̀̀
i , if r : Op(βββ(~t ′′))← . . .

is a rule in PPP such that βββ(~t ′) and βββ(~t ′′) are unifiable and Op ≤ Op j , then

`̀̀(r) ≤≤≤ `̀̀(r i).

2. For every rule r i : Opi(ααα(~t))← . . . ,¬Op j(βββ(~t ′)), . . . in PPP `̀̀
i , if r : Op(βββ(~t ′′))← . . .

is a rule in PPP such that βββ(~t ′) and βββ(~t ′′) are unifiable and Op ≤ Op j , then
`̀̀(r) <<< `̀̀(r i).

Any such layering function `̀̀ is called a witnessto the stratifiability of PPP .

8.1 Weakly Regular Agents 341

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 7.8 (Deontic Stratifiability)
Consider the agent program and layer functions given in Example 7.7 on page 337.
Then the first condition of deontic stratifiability requires `̀̀(r2)≤ `̀̀(r1) and
`̀̀(r4)≤ `̀̀(r2). Also, the second condition of deontic stratifiability requires
`̀̀(r4) < `̀̀(r3). Thus, `̀̀1 and `̀̀2 (but not `̀̀3) are witnesses to the stratifiability of PPP .

Note that some agent programs are not deontically stratifiable. For instance, let PPP ′

contain the following rule:

r ′1: Do computecurrentLocationcomputecurrentLocationcomputecurrentLocation(report)←
¬ Do computecurrentLocationcomputecurrentLocationcomputecurrentLocation(report)

Here, the author is trying to ensure that a plane’s current location is always computed.
The problem is that the second condition of deontic stratifiability requires
`̀̀(r ′1) < `̀̀(r ′1) which is not possible so PPP ′ is not deontically stratifiable. Note that if we
replace r ′1 with “Do computecurrentLocationcomputecurrentLocationcomputecurrentLocation(report)← ”, then PPP ′ would be
deontically stratifiable.

8.1 Weakly Regular Agents 342

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

7.1.4 Definition of Weakly Regularity

Definition 7.16 (Strongly Safe Action)
An action ααα(~X) is said to be strongly safew.r.t. FINTAB if its precondition is strongly

safe modulo ~X, and each code call from the add list and delete list is strongly safe
modulo~Y where~Y includes all root variables in ~X as well as in the precondition of ααα.

The intuition underlying strong safety is that we should be able to check

whether a (ground) action is safe by evaluating its precondition. If so, we

should be able to evaluate the effects of executing the action.

8.1 Weakly Regular Agents 343

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 7.17 (Weak Regular Agent Program)
Let PPP be an agent program, FINTAB a finiteness table, and cftcftcft a conflict-freedom test.
Then, PPP is called a weak regular agent program(WRAP for short) w.r.t. FINTAB and
cftcftcft, if, by definition,the following three conditions all hold:

Strong Safety: All rules in PPP and actions ααα in the agent’s action base are strongly
safe w.r.t. FINTAB.

Conflict-Freedom: PPP is conflict free under cftcftcft.

Deontic Stratifiability: PPP is deontically stratifiable.

8.1 Weakly Regular Agents 344

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Example 7.9 (SampleWRAP)
Let PPP be the agent program given in Example 7.7 on page 337 and suppose that all
actions in PPP are strongly safe w.r.t. a finiteness table FINTAB. Consider the conflict
freedom test cftcftcfth. Then PPP is a WRAP as it is conflict free under cftcftcfth and as it is
deontically stratified according to Example 7.8 on page 341. Now, suppose we add
the following rule to PPP :

r5: W createflight plancreateflight plancreateflight plan(no go, flight route, current location)←
not in(((((((((automated,autoPilotautoPilotautoPilot :pilotStatuspilotStatuspilotStatus(((pilot message))))))))))))

This rule indicates that our agent is not obligated to adjust the plane’s course if the
plane is not on autopilot. Note that as cftcftcfth(r2, r5) = false, our new version of PPP is not
conflict free and so PPP would no longer be a WRAP.

8.1 Weakly Regular Agents 345

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 7.18 (Weakly Regular Agent)
An agent aaa is weakly regularif, by definition,its associated agent program is weakly
regular and the action constraints, integrity constraints, and the notion of concurrency
in the background are all strongly safe.

8.1 Weakly Regular Agents 346

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

It remains to define strongly safeness for constraints and the concurrency notion.

Definition 7.19 (Strongly Safe Integrity and Action Constraints)
An integrity constraint of the form ψ⇒ χ is strongly safeif, by definition,ψ is
strongly safe and χ is strongly safe modulo the root variables in ψ. An action
constraint {ααα1(~X1), . . . ,αααk(~Xk)}←↩ χ is strongly safeif and only if χ is strongly safe.

Definition 7.20 (Strongly Safe Notion of Concurrency)
A notion of concurrency, conc, is said to be strongly safeif, by definition,for every
set AAA of actions, if all members of A are strongly safe, then so is conc(A).

8.1 Weakly Regular Agents 347

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

7.2 Properties of Weakly Regular Agents

• Every deontically stratifiable agent program (and hence everyWRAP) has a

so-called “canonical layering”.

• EveryWRAP has an associated fixpoint computation method—the fixpoint

computed by this method is the only possible reasonable status set theWRAP
may have.

• Given an agent programPPP , we denote bywtn(PPP) the set of all witnesses to the

deontic stratifiability ofPPP . Thecanonical layeringof PPP , denotedcancancanPPP is defined

as follows.

cancancanPPP (r) = min{`̀̀i(r) | `̀̀i ∈ wtn(PPP)}.

8.2 Properties of Weakly Regular Agents 348

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

7.3 Regular Agent Programs

• A regular agent program then is a program which is weakly regular andbounded
(to be defined below).

•
Boundedness means that by repeatedly unfolding the positive parts of the

rules in the program, we will eventually get rid of all positive action status

atoms.

• Thus, in this section, we will associate with any agent programPPP an operator

UnfoldPPP which is used for this purpose.

8.3 Regular Agents 349

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Definition 7.21 (Regular Agent)
An agent is said to be regularw.r.t. a layering `̀̀ and a selection of pf-constraint

equivalence tests eqi(i), if it is weakly regular and its associated agent program is
b-regular w.r.t. `̀̀ and the eqi(i), for some b≥ 0.

8.3 Regular Agents 350

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

7.4 Compile-Time Algorithms

Algorithm 7.1
Check WRAP(PPP)

(? input is an agent program PPP , a conflict-freedom test cftcftcft, and a finiteness table FINTAB ?)
(? output is a layering `̀̀ ∈ wtn(PPP), if PPP is regular and “no” otherwise ?)

1. If some action ααα or rule r in PPP is not strongly safe then return “no” and halt.

2. If some rules r : Op(ααα(~X)) and r ′ : Op ′(ααα(~Y)) in PPP exist such that
cftcftcft(r, r ′) = false, then return “no” and halt.

3. If a rule r : Opi(ααα(~X))← . . . ,(¬)Op j(ααα(~Y)), . . . is in PPP such that Opi(ααα(~X)) and
Op j((~Y)) conflict, then return “no” and halt.

8.4 Compile-Time Algorithms 351

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

4. Build the graph G = (V,E), where V = PPP and an edge r i → r is in E for each pair
of rules r i and r as in the two Stratifiability conditions.

5. Compute, using Tarjan’s algorithm, the supergraph S(G) = (V∗,E∗) of G.

6. If some rules r i , r as in the second stratifiability condition exists such that
r i , r ∈C for some C∈V∗, then return “no” and halt else set i := 0.

7. For each C∈V∗ having out-degree 0 (i.e. no outgoing edge) in S(G), and each
rule r ∈C, define `̀̀(r) := i.

8. Remove each of the above C’s from S(G), and remove all incoming edges
associated with such nodes in S(G) and set i := i +1;

9. If S(G) is empty, i.e., V∗ = /0, then return `̀̀ and halt else continue at 7.

8.4 Compile-Time Algorithms 352

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Theorem 7.3
For any agent program PPP , Check WRAP(PPP) returns w.r.t. a conflict-freedom test cftcftcft

and a finiteness table FINTAB, a layering `̀̀ ∈ wtn(PPP) if PPP is a WRAP, and returns “no”
if PPP is not regular.

8.4 Compile-Time Algorithms 353

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Check WRAP can be modified to compute the canonical layeringcancancanPPP as follows.

For each nodeC∈V∗, use two countersout(C) andblock(C), and initialize them in

step 5 to the number of outgoing edges fromC in E∗. Steps 7 and 8 ofCheck WRAP
are replaced by the following steps:

7′. SetU := /0;

while someC∈V∗ exists such thatblock(C) = 0 do
U := U ∪{C};
Setout(C′) := out(C′)−1 for eachC′ ∈V∗ such thatC′→C;

Setblock(C′) := block(C′)−1 for eachC′ ∈V∗ such thatC′→C due to the

first stratification condition but not the second stratification condition.

for each ruler in
⋃

U do `̀̀(r) := i;

8′. Seti := i +1;

Remove each nodeC∈U from S(G), and setblock(C) := out(C) for each

retained nodeC.

8.4 Compile-Time Algorithms 354

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

When properly implemented, steps 7′ and 8′ can be executed in linear time in

the size ofS(G), and thus ofG.

Thus, the upper bounds on the time complexity ofCheck Regular discussed above

also apply to the variant which computes the canonical layering.

8.4 Compile-Time Algorithms 355

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Algorithm 7.2
Reasonable-SS(PPP , `̀̀,ICICIC ,ACACAC ,OOOSSS)

(? input is a regular agent consisting of a RAP PPP , a layering `̀̀ ∈ wtn(PPP), ?)
(? a strongly safe set ICICIC of integrity constraints, ?)
(? a strongly safe set ACACAC of action constraints, and an agent state OOOSSS ?)
(? output is a reasonable status set Sof PPP on OOOSSS , if one exists, and “no” otherwise. ?)

1. S:=Γl
PPP ,OOOSSS
↑ω;

2. Do(S):={ααα | Do(ααα) ∈ S};

3. while ACACAC 6= /0 do
select and remove some ac∈ACACAC ;
if ac is not satisfied w.r.t. Do(S) then return “no” and halt;

4. OOO ′SSS := apply conc(Do(S),OOOSSS); (? resulting successor state ?)

8.4 Compile-Time Algorithms 356

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

5. while ICICIC 6= /0 do
select and remove some ic ∈ ICICIC ;
if OOO ′SSS 6|= ic then return “no” and halt.

6. return Sand halt.

8.4 Compile-Time Algorithms 357

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Even though AlgorithmReasonableSScan be executed on weakly regular

agent programs, rather thanRAPs, there is no guarantee of termination in that

case.

The following theorem states the result that for a regular agent, its reasonable status

set on an agent state is effectively computable.

Theorem 7.4 (Termination of ReasonableSS for Regular Agents)
If aaa is a regular agent, then algorithm Reasonable SS terminates. The result is either
“No” or a reasonable status set is computed.

8.4 Compile-Time Algorithms 358

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Theorem 7.5
Suppose aaa is a fixed regular agent. Assume that the following holds:

(1) Every ground code call SSSSSSSSS :fff (((d1, . . . ,dn))), has a polynomial set of solutions, which
is computed in polynomial time; and

(2) no occurrence of a variable in aaa’s description loose.

Furthermore, assume that assembling and executing conc(Do(S),OOOSSS) is possible in
polynomial time in the size of Do(S) and OOOSSS . Then the following holds:

The algorithm Reasonable SS computes a reasonable status set (if one exists)
on a given agent state OOOSSS in polynomial time (in the size of OOOSSS).

8.4 Compile-Time Algorithms 359

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

7.5 IADE

Our implementation of the regular agent program paradigm consists of two major

parts. The first part is theIMPACT Agent Development Environment (IADE for

short), which is used by the developer to build and compile agents. The second part is

the run-time part that allows the agent to autonomously update its reasonable status

set and execute actions as its state changes. Below, we describe each of these two

parts.IADE supports their tasks as follows.

8.5 TheIMPACT Agent Development Environment (IADE) 360

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

• First, it provides an easy to use,network accessible graphical user interface

through which an agent developer can specify the data types, functions, actions,

integrity constraints, action constraints, notion of concurrency and agent program

associated with his/her agent.

• Second, it provides support for compilation and testing. In particular,IADE
allows the agent developer tospecify various parameters(e.g., conflict freedom

test, finiteness table) he wants to use for compilation. It allows the agent

developer to view the reasonable status set associated with his agent program

w.r.t the current state of the agent.

8.5 TheIMPACT Agent Development Environment (IADE) 361

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Figure 7.2: MainIADE Screen

8.5 TheIMPACT Agent Development Environment (IADE) 362

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Figure 7.3:IADE Test Dialog Screen Prior to Program Testing

8.5 TheIMPACT Agent Development Environment (IADE) 363

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

TheIADE includes the safety, strong safety, conflict freedom algorithms, and the

Check WRAP algorithms (the last is slightly modified). The unfold algorithm

currently works on positive agent programs—this is being extended to the full fledged

case.

Figure 7.2 on page 361 shows a screendump ofIADE ’s top-level screen.

Figure 7.3 on the page before specifies what happens when the agent developer

presses the “Test Program” button in the Figure 7.2 on page 361 screen.

8.5 TheIMPACT Agent Development Environment (IADE) 364

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Figure 7.4:IADE Test Execution Screen
8.5 TheIMPACT Agent Development Environment (IADE) 365

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Once the status sets have been generated after the test execution phase is completed,

the user can press the “Unfold Info” tab (to see the unfolded program) or the “Layer

Info” tab (to see the layers of the agent program) or the “Status Set Info” tab (to see

status information). Figure 7.5 on the next page shows the results of viewing the

unfold information.

8.5 TheIMPACT Agent Development Environment (IADE) 366

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Figure 7.5:IADE Unfold Information Screen
8.5 TheIMPACT Agent Development Environment (IADE) 367

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

When the user selects the “Status set Info” tab, he sees the screen shown in

Figure 7.6 on the following page. Note that this screen has tabs on the right,

corresponding to the various deontic modalities. By selecting a modality, the agent

developer can see what action status atoms associated with that modality are true in

the status set. Figure 7.6 on the next page shows what happens when the user wishes

to see all action status atoms of the formDo(. . .) in the status set.

8.5 TheIMPACT Agent Development Environment (IADE) 368

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Figure 7.6:IADE Status Set Screen
8.5 TheIMPACT Agent Development Environment (IADE) 369

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Figure 7.7 on page 371 shows the interface used to specify the “finiteness” table. As

mentioned earlier on in this chapter, in theIMPACT implementation, we actually

represent code calls that are infinite in this table, using some extra syntax.

Specifically, the first row of the table shown in Figure 7.7 on page 371 says that when

Q > 3 andR> 4, all code calls of the formdomain1domain1domain1 :function1function1function1(((Q,R))) are infinite.

8.5 TheIMPACT Agent Development Environment (IADE) 370

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Figure 7.8 on page 372 shows the interface used by the agent developer to specify

what notion of concurrency he wishes to use, what conflict freedom implementation

he wishes to use and what semantics he wishes to use. Each of the items in the figure

have associated drop-down menus (not visible in the picture). The last item titled

“Calculation Method” enables us (as developers ofIMPACT) to test different

computation algorithms. It will be removed from the finalIMPACT release.

8.5 TheIMPACT Agent Development Environment (IADE) 371

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Figure 7.7:IADE (In-)Finiteness Table Screen

8.5 TheIMPACT Agent Development Environment (IADE) 372

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Figure 7.8:IADE Option Selection Screen

8.5 TheIMPACT Agent Development Environment (IADE) 373

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

7.6 Experimental Results

7.6.1 Performance of Safety

Figure 7.9 on page 375 shows the performance of our implemented safety check

algorithm. In this experiment, we varied the number of conjuncts in a code call

condition from 1 to 20 in steps of 1. This is shown on thex-axis of Figure 7.9 on

page 375.

For each 1≤ x≤ 20, we executed thesafecccalgorithm 1000 times, varying the

number of arguments of each code call from 1 to 10 in steps of 1, and the number of

root variables occurring in the code call conditions from 1 to twice the number of

conjuncts (i.e., 1 to 2x).

8.6 Experimental Results 374

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

The actual conjuncts were generated randomly once the number of conjuncts, number

of arguments, and number of root variables was fixed. For each fixed number

1≤ i ≤ 20 of conjuncts, the execution time shown on they-axis represents the

average over 1000 runs with varying values for number of arguments and number of

variables. Times are given in milliseconds.

8.6 Experimental Results 375

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Figure 7.9: Safety Experiment Graphs

8.6 Experimental Results 376

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

The reader can easily see that algorithmsafeccc is extremely fast, taking be-

tween 0.02 milliseconds and 0.04 milliseconds. Thus, checking safety for an

agent program with a 1000 rules can probably be done in 20-40 milliseconds.

8.6 Experimental Results 377

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

7.6.2 Performance of Conflict Freedom

In IADE , we have implemented the Head-CFT and Body-Modality-CFT—

several other CFTs are being implemented to form a library of CFTs that may

be used by agent developers. Figures 7.10 on the next page, 7.11 on page 379

shows the time taken to execute the Head-CFT and Body-Modality-CFTs.

Note that Head-CFT is clearly much faster than Body-Modality-CFT when returning

“false”—however, this is so because Head-CFT returns “false” on many cases when

Body-Modality-CFT does not do so. However, on returns of “true,” both mechanisms

are very fast, usually taking time on the order of1
100 to 1

10 of a millisecond, with some

exceptions.

8.6 Experimental Results 378

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

(a) HeadCFT returning “true” (b) HeadCFT returning “false”

Figure 7.10: Performance of Conflict Freedom Tests
8.6 Experimental Results 379

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

(c) BodyModalityCFT returning “true” (d) BodyModalityCFT returning “false”

Figure 7.11: Performance of Conflict Freedom Tests

8.6 Experimental Results 380

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

These very small times also explain the “zigzag” nature of the graphs—even small

discrepancies (on the order of1100 of a second) appear as large fluctuations in the

graph.

Even if an agent program contains a 1000 rules (which we expect to be an

exceptional case), one would expect the Body-Modality-CFT to only take a

matter of seconds to conduct the one-time, compile-time test—a factor that is

well worth paying for in our opinion.

8.6 Experimental Results 381

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

7.6.3 Performance of Deontic stratification

Our experiments generated graphs randomly (as described below) and the programs

associated with those graphs can be reconstructed from the graphs.

In our experiments, we randomly varied the number of rules from 0 to 200

in steps of 20, and ensured the there were betweenV and 2V edges in the

resulting graph, whereV is the number of rules (vertices).

The precise number was randomly generated. For each such selection, we performed

twenty runs of the algorithm. The time taken to generate the graphs was included in

these experimental timings. Figures 383 on page 383 (a) and (b) show the results of

our experiments.

8.6 Experimental Results 382

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Figure 383 on the following page(a) shows the time taken to execute all but the safety

and conflict freedom tests of theCheck WRAP algorithm.

The reader will note that the algorithm is very fast, taking only about 260

milliseconds on an agent program with 200 rules.

Figure 383 on the next page(b) shows the relationship between the number of SCCs

in a graph, and the time taken to compute whether the agent program in question is

deontically stratified.

In this case, we note that as the number of SCCs increases to 200, the time

taken goes to about 320 milliseconds. Again, the deontic stratifiability re-

quirement seems to be very efficiently computable.

8.6 Experimental Results 383

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

(a) Varying Rules (b) Varying SCC’s

Figure 7.12: Performance of Deontic Stratification

8.6 Experimental Results 384

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Figure 383 on the preceding page(a) shows the time taken to execute all but the safety

and conflict freedom tests of theCheck WRAP algorithm.

The reader will note that the algorithm is very fast, taking only about 260

milliseconds on an agent program with 200 rules.

Figure 383 on the page before(b) shows the relationship between the number of SCCs

in a graph, and the time taken to compute whether the agent program in question is

deontically stratified.

In this case, we note that as the number of SCCs increases to 200, the time

taken goes to about 320 milliseconds. Again, the deontic stratifiability re-

quirement seems to be very efficiently computable.

8.6 Experimental Results 385

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

7.6.4 Performance of Unfolding Algorithm

We were unable to conduct detailed experiments on the time taken for unfolding and

the time taken to compute status sets as there are no good benchmark agent programs

to test against, and no easy way to vary the very large number of parameters

associated with an agent.

In a sample application shown in Figures 7.5 on page 366 and 7.6 on page 368,

we noticed that it took about 1 second to unfold a program containing 11 rules,

and to evaluate the status set took about 30 seconds.

However, in this application, massive amounts of Army War reserves data resident in

Oracle as well as in a multi-record, nested, unindexed flat file were accessed, and the

time reported (30 seconds) includes times taken for Oracle and the flat file to do their

work, plus network times. Network cost alone is about 25 seconds. We did not yet

implement any optimizations, like caching etc.

8.6 Experimental Results 386

Chapter 8: Implementing Agents Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

7.7 Summary

This chapter was about anefficiently implementableclass of agents:

Regular Agents.
What are suitable syntactic conditions on agent programs, to ensure polyno-

mial implementability?

1. Weakly regular agents:

(a) Strong Safety: To ensure that code calls returnfinitely many answers

(; Finiteness Table).

(b) Conflict-Freedom: The program should be conflict-free (; cftcftcft-tests).

(c) Deontic Stratifiability : Problems with negation are ruled out.

2. Regular Agents: weakly regular +Unfolding.

8.7 Summary 387

References Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

References
Arisha, K., F. Ozcan, R. Ross, V. S. Subrahmanian, T. Eiter, and S. Kraus (1999,

March/April). IMPACT: A Platform for Collaborating Agents.IEEE Intelligent

Systems 14, 64–72.

Bratman, M., D. Israel, and M. Pollack (1988). Plans and Resource-Bounded

Practical Reasoning.Computational Intelligence 4(4), 349–355.

Dix, J., S. Kraus, and V. Subrahmanian (2001). Temporal agent reasoning.

Artificial Intelligence to appear.

Dix, J., M. Nanni, and V. S. Subrahmanian (2000). Probabilistic agent reasoning.

Transactions of Computational Logic 1(2).

Dix, J., V. S. Subrahmanian, and G. Pick (2000). Meta Agent Programs.Journal of

Logic Programming 46(1-2), 1–60.

388

References Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Eiter, T., V. Subrahmanian, and G. Pick (1999). Heterogeneous Active Agents, I:

Semantics.Artificial Intelligence 108(1-2), 179–255.

Eiter, T., V. Subrahmanian, and T. J. Rogers (2000). Heterogeneous Active Agents,

III: Polynomially Implementable Agents.Artificial Intelligence 117(1),

107–167.

Eiter, T. and V. S. Subrahmanian (1999). Heterogeneous Active Agents, II:

Algorithms and Complexity.Artificial Intelligence 108(1-2), 257–307.

Georgeff, M. and A. Lansky (1987). Reactive Reasoning and Planning. In

Proceedings of the Conference of the American Association of Artificial

Intelligence, Seattle, WA, pp. 677–682.

Rao, A. S. (1995). Decision Procedures for Propositional Linear-Time

Belief-Desire-Intention Logics. In M. Wooldridge, J. M̈uller, and M. Tambe

(Eds.),Intelligent Agents II – Proceedings of the 1995 Workshop on Agent

Theories, Architectures and Languages (ATAL-95), Volume 890 ofLNAI, pp.

1–39. Berlin, Germany: Springer-Verlag.

389

References Heterogenous Agent Systems (10 Lectures), August 2002, Trento, ESSLLI 02

Rao, A. S. and M. Georgeff (1991). Modeling Rational Agents within a

BDI-Architecture. In J. F. Allen, R. Fikes, and E. Sandewall (Eds.),

Proceedings of the International Conference on Knowledge Representation

and Reasoning, Cambridge, MA, pp. 473–484. Morgan Kaufmann.

Rao, A. S. and M. Georgeff (1995, June). Formal models and decision procedures

for multi-agent systems. Technical Report 61, Australian Artificial Intelligence

Institute, Melbourne.

Subrahmanian, V., P. Bonatti, J. Dix, T. Eiter, S. Kraus, F.Özcan, and R. Ross

(2000).Heterogenous Active Agents. MIT-Press.

Weiss, G. (Ed.) (1999).Multiagent Systems. MIT-Press.

390

