
J. Dix/Th. Eiter Heterogenous Agent Systems, August 2002, Trento, ESSLLI 02

Heterogenous Agent Systems
ESSLLI ’02 Summerschool

• Second and third week in August.

• Time: 11–12.30 am, Monday through Friday.

• Lecture Course is in the first week on theoretical
issues, emphasis on mathematical-logical foundations.
Second week devoted to a particular agent system
and various demonstrations.

• http://www.cs.man.ac.uk/~jdix/LECTURING/

ESSLLI02.html .

Overview 1

J. Dix/Th. Eiter Heterogenous Agent Systems, August 2002, Trento, ESSLLI 02

First week

The first part of this lecture course is mainly based on

Multi-Agent Systems
(Gerhard Weiss)
MIT Press, June 1999.

We describe general methods and techniques.

Overview 2

J. Dix/Th. Eiter Heterogenous Agent Systems, August 2002, Trento, ESSLLI 02

Second week

The second part of this lecture course is mainly based on

Heterogenous Agent Systems
(Subrahmanian/Bonatti/Dix/Eiter/Kraus/Özcan/Ross)
MIT Press, August 2000.

We describe the IMPACT approach and its underlying
foundations.

Overview 3

J. Dix/Th. Eiter Heterogenous Agent Systems, August 2002, Trento, ESSLLI 02

Overview (first week)

1. Introduction
2. Distributed Decision Making (2 Lectures)
3. Contract Nets, Coalition Formation
4. Agent Programming Languages

Overview 4

J. Dix/Th. Eiter Heterogenous Agent Systems, August 2002, Trento, ESSLLI 02

Overview (second week)

5. IMPACT Architecture
6. Actions and Agent Programs
7. Implementing Agents: An Application
8. Planning in Agent Systems

Extensions of the Basic Framework
9. Adding Beliefs

10. Adding Uncertainty
11. Adding Time

Overview 5

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

Chapter 1. Introduction

1.1 Motivation
1.2 Intelligent Agents
1.3 Formal Description
1.4 Reactive Agents
1.5 BDI-Architectures
1.6 Layered Architectures

Overview 6

1 Introduction

6-1

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

1.1 Motivation

Three Important Questions

(Q1) What is a (software) agent?
⇒ (Franklin and Graesser 1997; Wooldridge and Jennings
1995) and references therein)

(Q2) If some program P is not an agent, how can it be transformed
into an agent?

(Q3) If (Q1) is clear, what kind of Software Infrastructure is
needed for the interaction of agents? What services are
necessary?

1.1 General 7

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

Definition 1.1 (Distributed Artificial Intelligence (DAI))

The area investigating systems, where several autonomous
acting entities work together to reach a given goal.

The entities are called Agents, the area Multiagent Systems.

Example: Robocup (simulation league, middle league)

Why do we need them?

Information systems are distributed, open, heterogenous.
We therefore need intelligent, interactive agents, that act
autonomously.

1.1 General 8

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

(Software) Agent: Programs that are implemented on a platform
and have “sensors” and “effectors” to read from and make
changes to the environment, respectively.

Intelligent: Performance measures, to reach goals. Rational vs.
omniscient, decision making

Interactive: with other agents (or humans) by observing the
environment.
Coordination: Cooperation vs. Competition

1.1 General 9

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

MAS versus Classical DAI

MAS: Several Agents coordinate their knowledge and
actions (semantics describes this).

DAI: Particular problem is divided into smaller prob-
lems (nodes). These nodes have common knowl-
edge. The solution method is given.

Today DAI is often used synonymous with MAS.

1.1 General 10

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

AI DAI

Agent Multiple Agents

Intelligence: Intelligence:

Property of a single Agent Property of several Agents

Cognitive Processes Social Processes

of a single Agent of several Agents

1.1 General 11

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

10 Desiderata

1. Agents are for everyone! We need a method to agentise
given programs.

2. Take into account that data is stored in a wide variety of
data structures, and data is manipulated by an existing
corpus of algorithms.

3. A theory of agents must not depend upon the set of actions
that the agent performs. Rather, the set of actions that
the agent performs must be a parameter that is taken into
account in the semantics.

1.1 General 12

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

4. Every agent should execute actions based on some clearly
articulated decision policy. A declarative framework for
articulating decision policies of agents is imperative.

5. Any agent construction framework must allow agents to
perform the following types of reasoning:

• Reasoning about its beliefs about other agents.

• Reasoning about uncertainty in its beliefs about the world and
about its beliefs about other agents.

• Reasoning about time.

These capabilities should be viewed as extensions to a core
agent action language.

1.1 General 13

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

6. Any infrastructure to support multiagent interactions must
provide security.

7. While the efficiency of the code underlying a software agent
cannot be guaranteed (as it will vary from one application to
another), guarantees are needed that provide information
on the performance of an agent relative to an oracle that
supports calls to underlying software code.

1.1 General 14

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

8. We must identify efficiently computable fragments of the
general hierarchy of languages alluded to above, and our
implementations must take advantage of the specific
structure of such language fragments.

9. A critical point is reliability—there is no point in a highly
efficient implementation, if all agents deployed in the
implementation come to a grinding halt when the agent
“infrastructure” crashes.

10. The only way of testing the applicability of any theory is to
build a software system based on the theory, to deploy a
set of applications based on the theory, and to report on
experiments based on those applications.

1.1 General 15

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

1.2 Intelligent Agents

Definition 1.2 (Agent)
An agent is a computer system that acts in its environment
and executes autonomous actions to reach certain goals.

Learning, Intelligence. Environment is non-deterministic.

?

agent

percepts

sensors

actions

effectors

environment

1.2 Intelligent Agents 16

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

Definition 1.3 (Rational, Omniscient Agent)
Rational agents are those, that always do the right thing.
(A performance measure is needed).)

Omniscient agents are those, that know the results of their
actions in advance.

Rational agents are in general not omniscient!

1.2 Intelligent Agents 17

Aphorism of Karl Kraus: In case of doubt, just choose
the right thing.

17-1

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

How is the right thing defined and from what does it depend?

1. Performance measure (as objective as possible),

2. Percept sequence: what has been observed,

3. Knowledge of the agent about the environment,

4. How the agent can act.

Definition 1.4 (Ideal Rational Agent)
An ideal rational agent chooses for each percept sequence
exactly the action which maximises its performance mea-
sure (given knowledge about the environment).

1.2 Intelligent Agents 18

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

Agents can be described mathematically by a function

set of percept sequences 7→ set of actions.

The internal structure of an agent can be described as

Agent = Architecture + Program

1.2 Intelligent Agents 19

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

Agents and their PAGE description:

Agent Type Percepts Actions Goals Environment

Medical diagnosis
system

Symptoms,
findings, patient’s
answers

Questions, tests,
treatments

Healthy patient,
minimize costs

Patient, hospital

Satellite image
analysis system

Pixels of varying
intensity, color

Print a
categorization of
scene

Correct
categorization

Images from
orbiting satellite

Part-picking robot Pixels of varying
intensity

Pick up parts and
sort into bins

Place parts in
correct bins

Conveyor belt
with parts

Refinery controller Temperature,
pressure readings

Open, close
valves; adjust
temperature

Maximize purity,
yield, safety

Refinery

Interactive English
tutor

Typed words Print exercises,
suggestions,
corrections

Maximize
student’s score on
test

Set of students

1.2 Intelligent Agents 20

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

How do environment properties influence agent design?

Definition 1.5 (Properties of the Environment)
Accessible/Inaccessible: If not completely accessible, one

needs internal states.

Deterministic/Indeterministc: An inaccessible environment
might seem indeterministic, even if it is not.

Episodic/Nonepisodic: Percept-Action-Sequences are
independent from each other. Closed episodes.

Static/Dynamic: While the agent is thinking, the world is the
same/changing. Semi-dynamic: The world does not change, but
the performance measure.

Discrete/Continous: Density of observations and actions.
Relevant: Level of granularity.
1.2 Intelligent Agents 21

Example for semi-dynamic: playing chess with a
clock.

21-1

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

Environment Accessible Deterministic Episodic Static Discrete

Chess with a clock Yes Yes No Semi Yes
Chess without a clock Yes Yes No Yes Yes
Poker No No No Yes Yes
Backgammon Yes No No Yes Yes
Taxi driving No No No No No
Medical diagnosis system No No No No No
Image-analysis system Yes Yes Yes Semi No
Part-picking robot No No Yes No No
Refinery controller No No No No No
Interactive English tutor No No No No Yes

1.2 Intelligent Agents 22

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

xbiff,software demons are agents (not intelligent).

Definition 1.6 (Intelligent Agent)
An intelligent agent is an agent with the following properties:

1. Autonomous: Operates without direct intervention of
others, has some kind of control over its actions and internal
state.

2. Reactive: Reaction to changes in the environment at certain
times to reach its goals.

3. Pro-active: Taking the initiative, being goal-directed.

4. Social: Interaction with others to reach the goals.

1.2 Intelligent Agents 23

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

Pro-active alone is not sufficient (C-Programs): the environment
can change during execution.

Socialisation: Needs coordination, communication, and negotiation
skills

Difficulty: Right balance between pro-active and reactive!

1.2 Intelligent Agents 24

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

Agents vs. Object Orientation

Objects have a

1. state (encapsulated): control over internal state,

2. message passing capabilities.

Java: private and public methods.

• Objects have control over their state, but not over their
behaviour.

• An object can not prevent others to use its public methods.

1.2 Intelligent Agents 25

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

Agents: They call other agents and request them to execute
actions.

• Objects do it for free, agents do it for money.

• No analoga to reactive, pro-active, social in OO.

• MAS are multi-threaded: each agent has a control thread.
In OO only the system as a whole possesses one.

1.2 Intelligent Agents 26

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

1.3 Formal Description

Definition 1.7 (Actions A, Percepts P, States S)
A := {a1,a2, . . . ,an, . . .} is the set of actions.
P := {p1,p2, . . . ,pn, . . .} is the set of observations, or percepts.
S := {s1, s2, . . . , sn, . . .} is the set of states of the environment.

What does an agent observe, in a certain state s? We describe this
with a function see : S −→ P. How does the environment develop
(the state s) when an action a is executed? We describe this via a
function

env : S×A −→ 2S,

this includes non-deterministic environments.

1.3 Formal Description 27

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

How do we describe agents?

We could take a function actionactionaction : P −→ A.

Agent

E
n

viro
n

m
en

t

Sensors

Effectors

What the world
is like now

What action I
should do now

1.3 Formal Description 28

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

This is too weak! Better take the whole history into account

h : s0 →a0 s1 →a1 . . . sn →an . . .

(or the sequence of observations).

1.3 Formal Description 29

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

Definition 1.8 (Characteristic Behaviour)
The characteristic behaviour of an (omniscient) agent actionactionaction in an
environment env is the set

Hist

of all histories h : s0 →a0 s1 →a1 . . . sn →an
. . . with:

1. for all n: an = actionactionaction(〈s0, . . . , sn〉),

2. for all n > 0: sn ∈ env(sn−1,an−1).

For deterministic env, the relation “∈” can be replaced by “=”.

1.3 Formal Description 30

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

Replace states by percepts:

Definition 1.9 (Standard Agent actionactionaction)
A standard agent actionactionaction is given by a function

actionactionaction : P∗ −→ A

together with

see : S −→ P
and env : S×A −→ 2S.

1.3 Formal Description 31

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

Definition 1.10 (Characteristic Behaviour)
The characteristic behaviour of a standard agent actionactionaction in an
environment env is the set of all sequences

p0 →a0 p1 →a1 . . .pn →an
. . .

where

p0 = see(s0),
ai = actionactionaction(〈p0, . . . ,pi〉),
pi = see(si), where si ∈ env(si−1,ai−1).

Such a sequence (a run), even if deterministic from the agent’s
view, may cover different histories (environmental behaviours)
s0 →a0 s1 →a1 . . . sn →an . . .

1.3 Formal Description 32

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

Instead of using the whole history, resp. P∗, one can also use
internal states I := {i1, i2, . . . in, . . .}.

Agent

E
n

viro
n

m
en

t

Sensors

Effectors

What the world
is like now

What action I
should do now

State

How the world evolves

What my actions do

1.3 Formal Description 33

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

Definition 1.11 (State-based Agent actionactionaction)
A state-based agent actionactionaction is given by a function

actionactionaction : I −→ A

together with

see : S −→ P,
and next : I×P −→ I.

Here next(i,p) is the successor state of i if p is observed.

1.3 Formal Description 34

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

Definition 1.12 (Characteristic Behaviour)
The characteristic behaviour of a state-based agent actionactionaction in an
environment env is the set of all sequences

(i0,p0) →a0 (i1,p1) →a1 . . .→an
(in,pn), . . .

with

1. for all n: an = actionactionaction(in+1),

2. for all n: next(in,pn) = in+1,

Sequence covers the histories h : s0 →a0 s1 →a1 . . . where

aj = actionactionaction(ij),
sj ∈ env(sj−1, aj−1),
pj = see(sj)

1.3 Formal Description 35

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

Are state-based agents more expressive than standard agents?
How to measure?

Environmental behaviour of an agent: set of possible histories
covered by characteristic behaviour of the agent.

Theorem 1.1 (Equivalence)
Standard agents and state-based agents are equivalent with
respect to their environmental behaviour.
More precisely: For each state-based agent action actactact and
next storage function there exists a standard agent action
act′act′act′ which has the same environmental behaviour, and vice
versa.

1.3 Formal Description 36

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

“⇒:” construct act′act′act′ from actactact and internal state

“⇐:” internal state simply stores percepts

1.3 Formal Description 37

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

1.4 Reactive Agents

Intelligent behaviour is Interaction of the agents with their
environment. It emerges through splitting in simpler interactions.

Subsumption-Architectures:

• Decision making is realised through goal-directed
behaviours: each behaviour is an individual action.
nonsymbolic implementation .

• Many behaviours can be applied concurrently. How to select
between them?
Implementation through Subsumption-Hierarchies, Layers .

Upper layers represent abstract behaviour.

1.4 Reactive Agents 38

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

Formal Model

• see: as up to now, but close relation between observation and
action: no transformation of the input .

• actionactionaction: Set of behaviours and inhibition relation.

Beh := {〈c,a〉 : c ⊆ P, a ∈ A}.

〈c,a〉 “fires” if see(s) ∈ c (c stands for “condition”).

≺ ⊆ Agrules ×Agrules

is called inhibition-relation, Agrules ⊆ Beh. We require ≺ to
be a total ordering. b1 ≺ b2 means: b1 inhibits b2, b1 has
priority over b2.

1.4 Reactive Agents 39

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

1.4 Reactive Agents 40

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

Example 1.1 (Exploring a Planet)
A distant planet (asteroid) is assumed to contain gold. Samples
should be brought to a spaceship landed on the planet. It is not
known where the gold is. Several autonomous vehicles are
available. Due to the topography of the planet there is no
connection between the vehicles.

The spaceship sends off radio signals: gradient field.

1.4 Reactive Agents 41

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

Low Level Behaviour:
(1) If detect an obstacle then change direction.

2. Layer:
(2) If Samples on board and at base then drop off.
(3) If Samples on board and not at base then follow gradient
field.

3. Layer:
(4) If Samples found then pick them up.

4. Layer:
(5) If true then take a random walk.

With the following ordering

(1) ≺ (2) ≺ (3) ≺ (4) ≺ (5).

1.4 Reactive Agents 42

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

Under which assumptions (on the distribution of the gold)
does this work perfectly?
What if the distribution is more realistic?

1.4 Reactive Agents 43

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

• Vehicles can communicate indirectly with each other:

– they put off, and

– pick up

radioactive samples that can be sensed.

1.4 Reactive Agents 44

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

Low Level Behaviour:
(1) If detect an obstacle then change direction.

2. Layer:
(2) If Samples on board and at base then drop off.
(3) If Samples on board and not at base then drop off two
radioactive crumbs and follow gradient field.

3. Layer:
(4) If Samples found then pick them up.
(5) If radioactive crumbs found then take one and follow the
gradient field (away from the spaceship).

4. Layer:
(6) If true then take a random walk.

With the following ordering (1) ≺ (2) ≺ (3) ≺ (4) ≺ (5) ≺ (6).

1.4 Reactive Agents 45

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

Pro: Simple, economic, efficient, robust, elegant.

Contra:

• Without knowledge about the environment agents need to
know about the own local environment.

• Decisions only based on local information.

• How about bringing in learning?

• Relation between agents, environment and behaviours is
not clear.

• Agents with ≤ 10 behaviours are doable. But the more
layers the more complicated to understand what is going on.

1.4 Reactive Agents 46

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

1.5 BDI-Architecture

Belief, Desire, Intention.

From time to time intentions need to be re-examined. But they
also should persist: Pro-active vs. reactive .

Extreme: stubborn agents, unsure agents.

What is better? Depends on the environment.
Let γ the rate of world change.

1. γ small: stubbornness pays off.

2. γ big: unsureness pays off.

1.5 BDI-Agents 47

Belief 1: Going to lectures is worth doing to learn something.
Belief 2: Dix is a decent lecturer.
Desire 1: Visit Dix-Lecture, in addition read books.
Intention: Getting knowledge about Distributed Systems.

New Belief: Thomas makes it much better. Therefore revise your Desire.
Desire 2: Visit Eiter-Lecture, in addition read books.

Of course, Thomas may turn out to be the worst lec-
turer from all . . .

47-1

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

1.5 BDI-Agents 48

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

1.5 BDI-Agents 49

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

(B,D, I) where B ⊆ Bel, D ⊆ Des, I ⊆ Int

I can be represented as a stack (priorities are available)

• BDI dates back to (Bratman, Israel, and Pollack 1988).

• PRS (procedural reasoning system, (Georgeff and Lansky
1987)) uses BDI. Applications: Space Shuttle (Diagnosis),
Sydney Airport (air traffic control).

• BDI-Logics: (Rao and Georgeff 1991; Rao and Georgeff 1995;
Rao 1995).

1.5 BDI-Agents 50

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

1.6 Layered Architectures

At least 2 layers: reactive (event-driven), pro-active (goal directed).

1.6 Layered Architectures 51

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

Horizontal:

• simple (n behaviours, n layers),

• overall behaviour might be inconsistent,

• Interaction between layers: mn (m = # actions per layer)

• Control-system is needed.

Vertical:

• Only m2(n− 1) interactions between layers.

• Not fault tolerant: If one layer fails, everything brakes
down.

1.6 Layered Architectures 52

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

Touring Machine

Autonomous Vehicle.

1.6 Layered Architectures 53

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

Rule 1: Avoid curb

if is_in_front(curb, observer) and

speed(observer) > 0 and

seperation(curb, observer) < curb_threshold

then change_orientation(curb_avoidance_angle)

Planning-Layer: Pro-active behaviour

Modelling Layer: updating of the world, beliefs, predicts
conflicts between agents, changes planning-goals

Control-subsystem: Decides about who is active. Certain
observations should never reach certain layers.

1.6 Layered Architectures 54

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

Layered architectures do not have a clear semantics
and the horizontal interaction is difficult.

1.6 Layered Architectures 55

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

References
Bratman, M., D. Israel, and M. Pollack (1988). Plans and

Resource-Bounded Practical Reasoning. Computational
Intelligence 4(4), 349–355.

Franklin, S. and A. Graesser (1997). Is it an Agent, or Just a
Program? In J. P. Müller, M. Wooldridge, and N. R. Jennings
(Eds.), Intelligent Agents III, Berlin, Germany.
Springer-Verlag. LNAI Volume 1193.

Georgeff, M. and A. Lansky (1987). Reactive Reasoning and
Planning. In Proceedings of the Conference of the American
Association of Artificial Intelligence, Seattle, WA, pp.
677–682.

1.6 References 56

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

Rao, A. S. (1995). Decision Procedures for Propositional
Linear-Time Belief-Desire-Intention Logics. In
M. Wooldridge, J. Müller, and M. Tambe (Eds.), Intelligent
Agents II – Proceedings of the 1995 Workshop on Agent
Theories, Architectures and Languages (ATAL-95), Volume
890 of LNAI, pp. 1–39. Berlin, Germany: Springer-Verlag.

Rao, A. S. and M. Georgeff (1991). Modeling Rational Agents
within a BDI-Architecture. In J. F. Allen, R. Fikes, and
E. Sandewall (Eds.), Proceedings of the International
Conference on Knowledge Representation and Reasoning,
Cambridge, MA, pp. 473–484. Morgan Kaufmann.

1.6 References 57

Chapter 1: Introduction Heterogenous Agent Systems, ESSLLI 02

Rao, A. S. and M. Georgeff (1995, June). Formal models and
decision procedures for multi-agent systems. Technical
Report 61, Australian Artificial Intelligence Institute,
Melbourne.

Subrahmanian, V., P. Bonatti, J. Dix, T. Eiter, S. Kraus,
F. Özcan, and R. Ross (2000). Heterogenous Active Agents.
MIT-Press.

Weiss, G. (Ed.) (1999). Multi-Agent Systems. MIT-Press.

Wooldridge, M. J. and N. R. Jennings (1995). Agent Theories,
Architectures and Languages: A survey. In M. J. Wooldridge
and N. R. Jennings (Eds.), Intelligent Agents, Volume 890 of
Lecture Notes in Artificial Intelligence, pp. 1–39.
Springer-Verlag.

1.6 References 58

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

Chapter 2. Distributed Decision
Making

2.1 Evaluation Criteria
2.2 Voting
2.3 Auctions
2.4 Bargaining
2.5 General Market Criteria

Overview 59

2 Distributed Decision Making
Two and a half lectures: first lecture up to 2.3, second
lecture 2.3 – 2.5, half lecture from 2.5 to the end.

59-1

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

Classical DAI: System Designer fixes an Interaction-Protocol
which is uniform for all agents. The designer also fixes a
strategy for each agent.

What is a the outcome, assuming that the protocol is fol-
lowed and the agents follow the strategies?

MAI: Interaction-Protocol is given. Each agent determines its own
strategy (maximising its own good, via a utility function,
without looking at the global task).

What is the outcome, given a protocol that guarantees
that each agent’s desired local strategy is the best one
(and is therefore chosen by the agent)?

Overview 60

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

2.1 General Evaluation Criteria

We need to compare negotiation protocols . Each such protocol
leads to a solution. So we determine how good these solutions are.

Social Welfare: Sum of all utilities

Pareto Efficiency: A solution xxx is Pareto-optimal (also called
efficient), if

there is no solution x′x′x′ with: (1) ∃∃∃agent agagag : utagagag(x′x′x′) > utagagag(xxx)
(2) ∀∀∀agents ag′ag′ag′ : utag′ag′ag′(x′x′x′) ≥ utag′ag′ag′(xxx).

Individual rational: if the
payoff is higher than not participating at all.

2.1 General Criteria 61

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

Stability:

Case 1: Strategy of an agent depends on the others.
The profile S∗AAA = 〈S∗111, S∗222, . . . , S∗|AAA|〉 is called a

Nash-equilibrium , iff

∀∀∀iii : S∗iii is the best strategy for agent iii if all the others
choose

〈S∗111, S∗222, . . . , S∗i−1i−1i−1, S
∗
i+1i+1i+1, . . . , S

∗
|AAA|〉.

Case 2:
Strategy of an agent does not depend on the others.

Such strategies are called dominant.

2.1 General Criteria 62

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

Prisoner’s Dilemma

Prisoner 2

cooperate defect

Prisoner 1
cooperate

defect

(3,3)

(5,0)

(0,5)

(1,1)

• Social Welfare: Both cooperate,

• Pareto-Efficiency: All are Pareto optimal, except when both
defect.

• Dominant Strategy: Both defect.

• Nash Equilibrium: Both defect.

2.1 General Criteria 63

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

2.2 Voting

Agents give input to a mechanism and the outcome of it is
taken as a solution for the agents.

1 2 3

w1 A B C

w2 B C A

w3 C A B

Figure 2.1: Nonexistence of desired preference ordering.

Comparing A and B: majority for A. Comparing A and C: majority for
C. Comparing B and C: majority for B.
Desired Preference ordering: A > B > C > A

2.2 Voting 64

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

• Let AAA the set of agents, O the set of possible outcomes.
(O could be equal to AAA, or a set of laws).

• The voting of agent iii is described by a binary relation

≺≺≺iii ⊆ O ×O,

which we assume to be asymmetric, strict and transitive. We
denote by OrdOrdOrd the set of all such binary relations.

2.2 Voting 65

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

• Often, not all subsets of O are votable, only a subset
V ⊆ 2O \ {∅}.
Each v ∈ V represents a possible “set of candidates”. The
voting model then has to select some of the elements of v.

• Each agent votes independently of the others. But we also
allow that only a subset is considered. Let therefore be

U ⊆
|AAA|∏
iii=1

OrdOrdOrd.

2.2 Voting 66

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

• A social choice rule wrt. U is a function

f∗∗∗ : U → OrdOrdOrd; (≺≺≺1, . . . ,≺≺≺|AAA|) 7→ ≺∗≺∗≺∗

For each V ⊆ 2O \ {∅} the function f∗∗∗ w.r.t. U induces a choice
function C〈≺≺≺1,...,≺≺≺|AAA|〉 as follows:

C〈≺≺≺1,...,≺≺≺|AAA|〉 =def

 V −→ V

v 7→ C〈≺≺≺1,...,≺≺≺|AAA|〉(v) = max≺∗≺∗≺∗|V v

max≺∗≺∗≺∗|V v is the set of all maximal elements in v according to≺∗≺∗≺∗|V .

Each tuple u = (≺≺≺1, . . . ,≺≺≺|AAA|) determines the election for all
possible v ∈ V .

2.2 Voting 67

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

What are desirable properties for f∗∗∗?

Pareto-Efficiency: for all o, o′ ∈ O: (∀iii ∈ AAA : o≺≺≺iiio
′) implies o≺∗≺∗≺∗o′.

Independence of Irrelevant Alternatives: for all o, o′ ∈ O:

(∀iii ∈ AAA : o≺≺≺iii o
′ iff o≺′≺′≺′

iii o
′) ⇒ (o≺∗≺∗≺∗ o′ iff o≺′∗≺′∗≺′∗ o′) .

Note that this implies in particular

(∀iii ∈ AAA : ≺≺≺iii|v =≺′≺′≺′
iii|v)

⇒ ∀o, o′ ∈ v, ∀v′ ∈ V s.t. v ⊆ v′ : (o≺∗≺∗≺∗|v′ o′ iff o≺′∗≺′∗≺′∗|v′ o′)

The simple majority vote protocol does not satisfy the In-
dependence of irrelevant alternatives.

2.2 Voting 68

We consider 7 voters (AAA = {w1, w2, . . . , w7}) and O =
{a, b, c, d}, V = {{a, b, c, d}, {a, b, c}}. The columns in the
following table represent two different preference order-
ings of the voters: one is given in black, the second in
red.

≺≺≺1 (≺≺≺1) ≺≺≺2 (≺≺≺2) ≺≺≺3 (≺≺≺3) ≺≺≺4 (≺≺≺4) ≺≺≺5 (≺≺≺5) ≺≺≺6 (≺≺≺6) ≺≺≺7 (≺≺≺7)
a 1 (2) 1 (2) 1 (1) 1 (1) 2 (2) 2 (2) 2 (2)
b 2 (3) 2 (3) 2 (2) 2 (2) 1 (1) 1 (1) 1 (1)
c 3 (4) 3 (4) 3 (3) 3 (3) 3 (3) 3 (3) 3 (3)
d 4 (1) 4 (1) 4 (4) 4 (4) 4 (4) 4 (4) 4 (4)

Let≺∗≺∗≺∗ be the solution generated by the≺≺≺i and≺∗≺∗≺∗ the so-
lution generated by the≺≺≺i. Then we have for i = 1, . . . , 7:
b≺≺≺i a iff a≺≺≺i b , but b≺∗≺∗≺∗ a and a≺∗≺∗≺∗ b . The latter holds

because on the whole set O, for≺∗≺∗≺∗ a gets selected 4 times

68-1

and b only 3 times, while for ≺∗≺∗≺∗ a gets selected only 2
times but b gets still selected 3 times. The former holds
because we even have≺≺≺i|{a,b,c} =≺≺≺i|{a,b,c}.

The introduction of the irrelevant (concerning the rel-
ative ordering of a and b) alternative d changes every-
thing: the original majority of a is split and drops below
one of the less preferred alternatives (b).

68-2

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

Theorem 2.1 (Arrows Theorem)
If the choice function f∗∗∗ is (1) pareto efficient and (2)
independent from irrelevant alternatives, then there always
exists a dictator: for all U ⊆

∏|AAA|
iii=1OrdOrdOrd

∃iii ∈ AAA : ∀o, o′ ∈ O : o≺≺≺iiio
′ iff o≺∗≺∗≺∗o′.

To be more precise: for all U ⊆
∏|AAA|

iii=1OrdOrdOrd

∃iii ∈ AAA : ∀〈≺≺≺1, . . . ,≺≺≺|AAA|〉 ∈ U :

∀o, o′ ∈ O, o≺≺≺iiio
′ iff o f∗∗∗(〈≺≺≺1, . . . ,≺≺≺|AAA|〉) o′.

Ways out:

1. Choice function is not always satisfied.

2. Independence of alternatives is dropped.
2.2 Voting 69

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

The Theorem of Arrow can be even more generalised by weakening
the assumption that≺∗≺∗≺∗ needs to be transitive. In fact, it also holds
when using the following definition.

• A social choice rule wrt. U is a function

f∗∗∗ : U → C(V)C(V)C(V); (≺≺≺1, . . . ,≺≺≺|AAA|) 7→ C〈≺≺≺1,...,≺≺≺|AAA|〉 ,

where C〈≺≺≺1,...,≺≺≺|AAA|〉 is any function from V into 2O satisfying
(1) C〈≺≺≺1,...,≺≺≺|AAA|〉(v) 6= ∅ and (2) C〈≺≺≺1,...,≺≺≺|AAA|〉(v) ⊆ v.

Such a function simply selects a subset of v: the elected
members of the list v.
No other assumptions about this function are made.

2.2 Voting 70

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

Binary protocol

Pairwise comparison. Not only introduction of irrelevant
alternatives, also ordering may change the outcome.

Figure 2.2: Four different orderings and four alternatives.

Last ordering: d wins, but all agents prefer c over d.
2.2 Voting 71

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

Borda protocol

First gets |O| points, second |O| − 1, etc. Then
sum up, across voters. The highest count wins.

2.2 Voting 72

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

Winner turns loser and loser turns winner

2.2 Voting 73

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

2.3 Auctions

While voting binds all agents, Auctions are always deals between 2.
Types of auctions:

first-price open cry: (English auction), as usual.

first-price sealed bid: one bids without knowing the other bids.

dutch auction: (descending auction) the seller lowers the price
until it is taken.

second-price sealed bid: (Vickrey auction) Highest bidder wins,
but the price is the second highest bid!

2.3 Auctions 74

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

Three different auction settings:

private value: Value depends only on the bidder (cake).

common value: Value depends only on other bidders (treasury
bills).

correlated value: Partly on own’s values, partly on others.

2.3 Auctions 75

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

What is the best strategy in Vickrey auctions?

Theorem 2.2 (Private-value Vickrey auctions)
The dominant strategy of a bidder in a Private-value Vickrey
auction is to bid the true valuation.

Therefore it is equivalent to english auctions.

Vickrey auctions are used to

• allocate computation resources in operating systems,

• allocate bandwidth in computer networks,

• control building heating.

2.3 Auctions 76

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

Are first-price auctions better for the auctioneer than
second-prize auctions?

Theorem 2.3 (Expected Revenue)
All 4 types of protocols produce the same expected revenue to
the auctioneer (assuming (1) private value auctions, (2) values are
independently distributed and (3) bidders are risk-neutral).

2.3 Auctions 77

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

Why are second price auctions not so popular among humans?

1. Lying auctioneer.

2. When the results are published, subcontractors know the
true valuations and what they saved. So they might want
to share the profit.

2.3 Auctions 78

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

Inefficient Allocation and Lying at Vickrey

Auctioning heterogenous, interdependent items.

Example 2.1 (Task Allocation)
Two delivery tasks t1, t2. Two agents. ; blackboard.

2.3 Auctions 79

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

The global optimal solution is not reached by auctioning in-
dependently and truthful bidding.

t1 goes to agent 222 (for a price of 222) and t2 goes to agent 111 (for a price
of 1.5).

Even if agent 222 considers (when bidding for t2) that he already got
t1 (so he bids cost({t1, t2})− cost({t1}) = 2.5− 1.5 = 1) he will get
it only with a probability of 0.5.

2.3 Auctions 80

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

What about full lookahead ? ; blackboard.

Therefore:

• It pays off for agent 111 to bid more for t1 (up to 1.5 more than
truthful bidding).

• It does not pay off for agent 222, because agent 222 does not make a
profit at t2 anyway.

• Agent 111 bids 0.5 for t1 (instead of 2), agent 222 bids 1.5.
Therefore agent 111 gets it for 1.5. Agent 111 also gets t2 for
1.5.

2.3 Auctions 81

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

Does it make sense to countersperculate at private value
Vickrey auctions?

Vickrey auctions were invented to avoid counterspeculation. But
what if the private value for a bidder is uncertain? The bidder
might be able to determine it, but he needs to invest c.

Example 2.2 (Incentive to counterspeculate)
Suppose bidder 111 does not know the (private-) value v1 of the item
to be auctioned. To determine it, he needs to invest cost. We also
assume that v1 is uniformly distributed: satisfies v1 ∈ [0, 1].

For bidder 222, the private value v2 of the item is fixed: 0 ≤ v2 <
1
2 .

So his dominant strategy is to bid v2.

Should bidder 111 try to invest cost to determine his private
value? How does this depend on knowing v2?

2.3 Auctions 82

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

; blackboard.

Answer: Bidder 111 should invest cost if and only if

v2 ≥ (2cost) 1
2v2 ≥ (2cost) 1
2v2 ≥ (2cost) 1
2 .

2.3 Auctions 83

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

2.4 Bargaining

Axiomatic Bargaining

We assume two agents 111,222 , each with a utility function µiiiµiiiµiii : E → R.
If the agents do not agree on a result e the fallback efallback is taken.

2.4 Bargaining 84

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

Example 2.3 (Sharing 1 Pound)
How to share 1 Pound?

Agent 111 offers ρ (0 < ρ < 1). Agent 222 agrees!

Such deals are individually rational and each one is in Nash-
equilibrium!

Therefore we need axioms!

2.4 Bargaining 85

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

Axioms on the global solution µ∗µ∗µ∗ = 〈µ111µ111µ111(e∗),µ222µ222µ222(e∗)〉.

Invariance: Absolute values of the utility functions do not
matter, only relative values.

Symmetry: Changing the agents does not influence the solution.

Irrelevant Alternatives: If E is made smaller but e∗ still
remains, then e∗ remains the solution.

Pareto: The players can not get a higher utility than
µ∗µ∗µ∗ = 〈µ111µ111µ111(e∗),µ222µ222µ222(e∗)〉.

2.4 Bargaining 86

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

Theorem 2.4 (Unique Solution)
The four axioms above uniquely determine a solution. This
solution is given by

e∗ = arg maxe{(µ111µ111µ111(e)−µ111µ111µ111(efallback))× (µ222µ222µ222(e)−µ222µ222µ222(efallback))}.

2.4 Bargaining 87

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

Strategic Bargaining

No axioms: view it as a game!

Example revisited: Sharing 1 Pound Sterling.

Protocol with finitely many steps: The last offerer just offers ε.
This should be accepted, so the last offerer gets 1− ε.

This is unsatisfiable. Ways out:

1. Add a discountfactor δδδ: in round n, only the δn−1δn−1δn−1th part
of the original value is available.

2. Bargaining costs: bargaining is not for free—fees have to
be paid.

2.4 Bargaining 88

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

Finite Games: Suppose δδδ = 0.9. Then the outcome depends on #
rounds.

Round 1’s share 222’s share Total value Offerer
...

...
...

...
...

n− 3 0.819 0.181 0.9n−4 222

n− 2 0.91 0.09 0.9n−3 111

n− 1 0.9 0.1 0.9n−2 222

n 1 0 0.9n−1 111

2.4 Bargaining 89

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

Infinite Games: δδδ111 factor for agent 111, δδδ222 factor for agent 222.

Theorem 2.5 (Unique solution for infinite games)
In a discounted infinite round setting, there exists

a unique Nash equilibrium : Agent 111 gets 1−δδδ222

1−δδδ111δδδ222
. Agent 222

gets the rest. Agreement is reached in the first round.

Proof:

2.4 Bargaining 90

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

Bargaining Costs

Agent 111 pays c111, agent 222 pays c222.

c111 = c222: Any split is in Nash-equilibrium.

c111 < c222: Agent 111 gets all.

c111 > c222: Agent 111 gets c222, agent 222 gets 1− c222.

2.4 Bargaining 91

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

2.5 General Equilibrium Mechanisms

A theory for efficiently allocating goods and resources among
agents, based on market prices.

Goods: Given n > 0 goods g (coffee, mirror sites, parameters of an
airplane design). We assume g 6= g′ but within g everything is
indistinguishable.

Prices: The market has prices p = [p1, p2, ..., pn] ∈ Rn: pi is the
price of the good i.

2.5 General Market Equilibrium 92

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

Consumers: Consumer i has µiµiµi(x) encoding its preferences over
consumption bundles xi = [xi1, ..., xin]t, where xig ∈ R+ is
consumer i’s allocation of good g. Each consumer also has an
initial endowment ei = [ei1, ..., ein]t ∈ R.

Producers: Use some commodities to produce others:
yj = [yj1, ..., yjn]t, where yjg ∈ R is the amount of good g that
producer j produces. YjYjYj is a set of such vectors y.
Profit of producer j: p× yj, where yj ∈ YjYjYj .

Profits: The profits are divided among the consumers (given
predetermined proportions ∆ij): ∆ij is the fraction of producer
j that consumer i owns (stocks). Profits are divided according
to ∆ij .

2.5 General Market Equilibrium 93

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

Definition 2.1 (General Equilibrium)
(p∗,x∗,y∗) is in general equilibrium, if the following holds:

I. The markets are in equilibrium:

∑
i

x∗i =
∑

i

ei +
∑

j

y∗j

II. Consumer i maximises preferences according the prices

x∗i = arg max{xi∈Rn
+Rn
+Rn
+ | condi }

µiµiµi(xi)

where condi stands for p∗ × xi ≤ p∗ × ei +
∑

j ∆ijp∗ × yi.

2.5 General Market Equilibrium 94

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

III. Producer j maximises profit wrt. the market

y∗i = arg max{yj∈YjYjYj}p
∗ × yj

2.5 General Market Equilibrium 95

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

Theorem 2.6 (Pareto Efficiency)
Each general equilibrium is pareto efficient.

Theorem 2.7 (Coalition Stability)
Each general equilibrium with no producers is coalition-stable: no
subgroup can increase their utilities by deviating from the
equilibrium and building their own market.

2.5 General Market Equilibrium 96

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

Theorem 2.8 (Existence of an Equilibrium)
Let the sets YjYjYj be closed, convex and bounded above. Let µiµiµi

be continuous, strictly convex and strongly monotone. As-
sume further that at least one bundle xi is producible with
only positive entries xil.

Under these assumptions a general equilibrium exists.

2.5 General Market Equilibrium 97

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

2.6 Meaning of the assumptions

Formal definitions: ; blackboard.

Convexity of YjYjYj : Economies of scale in production do not satisfy
it.

Continuity of the µiµiµi: Not satisfied in bandwidth allocation for
video conferences.

Strictly convex: Not satisfied if preference increases when he
gets more of this good (drugs, alcohol, dulce de leche).

2.5 General Market Equilibrium 98

Chapter 2: Distributed Decision Making Heterogenous Agent Systems, ESSLLI 02

In general, there exist more than one equilibrium.

Theorem 2.9 (Uniqueness)
If the society-wide demand for each good is non-decreasing in
the prices of the other goods, then a unique equilibrium exists.

Positive example: increasing price of meat forces people to
eat potatoes (pasta).

Negative example: increasing price of bread implies that
the butter consumption decreases.

2.5 General Market Equilibrium 99

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems, ESSLLI 02

Chapter 3. Contract Nets,
Coalition Formation

3.1 General Contract Nets

3.2 4 Types of Nets

3.3 Abstract Coalition Formation

3.4 Payoff Division

Overview 100

3 Contract Nets, Coalition Forma-
tion

100-1

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems, ESSLLI 02

3.1 General Contract Nets

How to distribute tasks?

• Global Market Mechanisms. Implementations use a
single centralised mediator .

• Announce, bid, award -cycle. Distributed Negotiation .

We need the following:

1. Define a task allocation problem in precise terms.

2. Define a formal model for making bidding and
awarding decisions.

3.1 General Contract Nets 101

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems, ESSLLI 02

Definition 3.1 (Task-Allocation Problem)
A task allocation problem is given by

1. a set of tasks T ,

2. a set of agents AAA,

3. a cost function costiii : 2T −→ R ∪ {∞} (stating the costs that
agent iii incurs by handling some tasks), and

4. the initial allocation of tasks

〈T init
111 , . . . , T init

|AAA| 〉,

where T =
⋃

iii∈AAA T
init
iii , T init

iii ∩ T init
jjj = ∅ for iii 6= jjj.

3.1 General Contract Nets 102

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems, ESSLLI 02

Definition 3.2 (Accepting Contracts and Allocating Tasks)
A contractee qqq accepts a contract if it gets paid more than the
marginal cost of handling the tasks of the contract

MCadd(T contract|Tqqq) =def costqqq(T contract ∪ Tqqq)

−costqqq(Tqqq).

A contractor rrr is willing to allocate the tasks T contract from its
current task set Trrr to a contractee, if it has to pay less than it
saves by handling them itself:

MCremove(T contract|Trrr) =def costrrr(Trrr)

−costrrr(Trrr − T contract).

3.1 General Contract Nets 103

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems, ESSLLI 02

Definition 3.3 (The Protocol)
Agents suggest contracts to others and make their decisions
according to the above MCadd and MCremove sets.

Agents can be both contractors and contractees. Tasks can be
recontracted.

• The protocol is domain independent .

• Can only improve at each step: Hill-climbing in the space
of all task allocations. Maximum is social welfare:
−

∑
iii∈AAA costiii(Tiii).

• Anytime algorithm!

3.1 General Contract Nets 104

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems, ESSLLI 02

3.2 4 Types of Nets

Definition 3.4 (O-, C-, S-, M- Nets)
A contract is called of type

O (Original): if only one task is moved,

C (Cluster): if a set of tasks is moved,

S (Swap): if a pair of agents swaps a pair of tasks,

M (Multi): if more than two agents are involved in an atomic
exchange of tasks.

Problem: local maxima.

A contract may be individually rational but the task alloca-
tion is not globally optimal.

3.2 4 Types of Nets 105

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems, ESSLLI 02

Theorem 3.1 (Each Type Avoids Local Optima of the Others)
For each of the 4 types there exist task allocations where no IR
contract with the remaining 3 types is possible, but an IR
contract with the fourth type is.

Theorem 3.2 (O-, C-, S-, M- Nets do not reach Global Optima)
There are instances of the task allocation problem where no IR
sequence from the initial task allocation to the optimal one exists
using O-, C-, S-, and M- contracts.

3.2 4 Types of Nets 106

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems, ESSLLI 02

Definition 3.5 (OCSM Nets)
A OCSM-contract is a pair 〈TTT ,ρρρ〉 of |AAA| × |AAA| matrices. An element
Tiii,jjj stands for the set of tasks that agent iii gives to agent jjj. ρiii,jjj is
the amount that iii pays to jjj.

3.2 4 Types of Nets 107

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems, ESSLLI 02

Theorem 3.3 (OCSM-Nets Suffice)
Let |AAA| and |T | be finite. If a protocol allows OCSM-contracts,
any hill-climbing algorithm finds the globally optimal task
allocation in a finite number of steps without backtracking.

Theorem 3.4 (OCSM-Nets are Necessary)
If a protocol does not allow a certain OCSM contract, then there
are instances of the task allocation problem where no
IR-sequence exists from the initial allocation to the optimal one.

3.2 4 Types of Nets 108

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems, ESSLLI 02

3.3 Coalition Formation

Idea:
Consider a protocol (to build coalitions) as a game and
consider Nash-equilibrium.

Problem: Nash-Eq is too weak!

Definition 3.6 (Strong Nash Equilibrium)
A profile is in strong Nash-Eq if there is no subgroup that can
deviate by changing strategies jointly in a manner that increases
the payoff of all its members, given that nonmembers stick to
their original choice.

This is often too strong and does not exist.

3.3 Abstract Coalition Formation 109

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems, ESSLLI 02

Definition 3.7 (Characteristic Function Game (CFG))
In a CFG the value of a coalition SSS is given by a characteristic
function vvvSSS .

Thus it is independent of the nonmembers. But:

1. Positive Externalities: Caused by overlapping goals.
Nonmembers perform actions and move the world closer to the
coalition’s goal state.

2. Negative Externalities: Caused by shared resources.
Nonmembers may use the resources so that not enough is left.

3.3 Abstract Coalition Formation 110

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems, ESSLLI 02

Definition 3.8 (Coalition Formation in CFG’s)
Coalition Formation in CFG’s consists of the following three steps

Forming CSCSCS: formation of coalitions such that within each
coalition agents coordinate their activities. This partitioning
is called coalition structure CSCSCS.

Solving Optimisation Problem: For each coalition the tasks
and resources of the agents have to be pooled. Maximise
monetary value.

Payoff Division: Divide the value of the generated solution
among agents.

3.3 Abstract Coalition Formation 111

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems, ESSLLI 02

An interesting property.

Definition 3.9 (Super-additive Games)
A game is called super-additive, if

vvvSSS∪TTT ≥ vvvSSS + vvvTTT ,

where SSS,TTT ⊆ AAA and SSS ∩ TTT = ∅.

Lemma 3.1
Coalition formation for super-additive games is trivial.

Conjecture 3.1
All games are super-additive.

3.3 Abstract Coalition Formation 112

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems, ESSLLI 02

The conjecture is wrong, because the coalition process is not
for free:
communication costs, penalties, time limits.

Maximise the social welfare of the agents AAA by finding a coalition
structure

CSCSCS∗ = arg maxCSCSCS∈part(AAA)Val(CSCSCS),

where
Val(CSCSCS) :=

∑
SSS∈CSCSCS

vvvSSS .

How many coalition structures are there?
Too many: Ω(|AAA|

|AAA|
2). Enumerating is only feasible if |AAA| < 15.

3.3 Abstract Coalition Formation 113

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems, ESSLLI 02

How can we approximate Val(CSCSCS)?

Choose setNNN (a subset of all partitions of AAA) and pick the best
coalition seen so far:

CSCSCS∗NNN = arg maxCSCSCS∈NNNVal(CSCSCS).

3.3 Abstract Coalition Formation 114

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems, ESSLLI 02

Figure 3.1: Coalition Structure Graph.

3.3 Abstract Coalition Formation 115

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems, ESSLLI 02

We want our approximation as good as possible. That means:

Val(CSCSCS∗)
Val(CSCSCS∗NNN)

≤ k,

where k is as small as possible.

3.3 Abstract Coalition Formation 116

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems, ESSLLI 02

Theorem 3.5 (Minimal Search to get a bound)
To bound k, it suffices to search the lowest two levels of the
CSCSCS-graph. Using this search, the bound k = |AAA| can be taken. This
bound is tight and the number of nodes searched is 2|AAA|−1.

No other search algorithm can establish the bound k while
searching through less than 2|AAA|−1 nodes.

3.3 Abstract Coalition Formation 117

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems, ESSLLI 02

What exactly means the last theorem? Let nmin be the smallest
size ofNNN such that a bound k can be established.

Positive result: nmin

partitions of AAA approaches 0 for |AAA| −→ ∞.

Negative result: To determine a bound k, one needs to search
through exponentially many coalition structures.

3.3 Abstract Coalition Formation 118

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems, ESSLLI 02

Algorithm 3.1 (CSCSCS-Search-1)
The algorithm comes in 3 steps:

1. Search the bottom two levels of the CSCSCS-graph.

2. Do a breadth-first search from the top of the graph.

3. Return the CSCSCSwith the highest value.

This is an anytime algorithm.

3.3 Abstract Coalition Formation 119

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems, ESSLLI 02

Theorem 3.6 (CSCSCS-Search-1 up to Layer l)
With the algorithm CSCSCS-Search-1 we get the following bound for
k after searching through layer l: d |AAA|

h e if |AAA| ≡ h− 1 mod h and |AAA| ≡ l mod 2,

b |AAA|
h c otherwise.

where h =def b |AAA|−l
2 c+ 2.

Thus, for l = |AAA| (check the top node), k switches from |AAA| to |AAA|
2 .

3.3 Abstract Coalition Formation 120

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems, ESSLLI 02

Figure 3.2: Comparing CSCSCS-Search-1 with another algorithm.

3.3 Abstract Coalition Formation 121

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems, ESSLLI 02

1. Is CSCSCS-Search-1 the best anytime algorithm?

2. The search for best k for n′ > n is perhaps not the same search
to get best k for n.

3. CSCSCS-Search-1 does not use any information while searching.
Perhaps k can be made smaller by not only considering
Val(CSCSCS) but also vvvSSS in the searched CSCSCS ′.

3.3 Abstract Coalition Formation 122

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems, ESSLLI 02

3.4 Payoff Division

The payoff division should be fair between the agents, otherwise
they leave the coalition.

Definition 3.10 (Dummies, Interchangeable)
Agent iii is called a dummy, if

for all coalitions SSS with iii 6∈ SSS: vvvSSS∪{iii} − vvvSSS = vvv{iii}.

Agents iii and jjj are called interchangeable, if

for all coalitions SSS with iii ∈ SSS and jjj 6∈ SSS: vvvSSS\{iii}∪{jjj} = vvvSSS

3.4 Payoff Division 123

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems, ESSLLI 02

Three axioms:

Symmetry: If iii and jjj are interchangeable, then xiii = xjjj.

Dummies: For all dummies iii: xiii = vvv{iii}.

Additivity: For any two games vvv,www:

xv⊕wv⊕wv⊕w
iii = xvvv

iii + xwww
iii ,

where v ⊕ wv ⊕ wv ⊕ w denotes the game defined by (v ⊕ wv ⊕ wv ⊕ w)SSS = vvvSSS +wwwSSS .

3.4 Payoff Division 124

Chapter 3: Contract Nets, Coalition Formation Heterogenous Agent Systems, ESSLLI 02

Theorem 3.7 (Shapley-Value)
There is only one payoff division satisfying the above 3 axioms. It
is called the Shapley value of agent iii and is defined by

xiii =
∑
SSS⊆AAA

(|AAA| − |SSS|)!(|SSS| − 1)!
|AAA|!

(vvvSSS − vvvSSS\{iii}).

• (|AAA| −SSS)! is the number of all possible joining orders of the
agents (to form a coalition).

• The Shapley value sums up the marginal contributions of
agent iii averaged over all joining orders.

• An expected gain can be computed by taking a random
joining order and computing the Shapley value.

3.4 Payoff Division 125

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Chapter 4. Agent Programming
Languages

4.1 Agent Oriented Programming (AOP)
4.2 AGENT-0
4.3 PLACA
4.4 AGENT-K
4.5 Concurrent MetateM
4.6 AgentSpeak
4.7 3-APL
4.8 ConGolog
4.9 Summary and References

Overview 126

4 Agent Programming Languages
One lecture.

126-1

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Agent Architectures

deliberative/logic-based architecture: Symbolic AI
Agent has an explicit, symbolic model of the world; decision
making via symbolic reasoning (logic)

E.g. Rao and Georgeff ’s BDI architecture

reactive architecture: No symbolic world model
Agent is “physically grounded” via sensors.
Intelligent behavior emerges by interaction with environment.

E.g. Brooks’s subsumption architecture

hybrid architecture: A combination of the above
E.g. Müller’s INTERRAP

Overview 127

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Purpose:

• Support the development of agent systems

Aspects:

• Mobility, Migration

• Communication

• “Intelligence”

Overview 128

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Require/Desired Technical Features

• object orientation: Agent = Object; information hiding

• platform independent: portability, migration

• communication: multi-agent system; environment

• security: encryption, security in mobile environments

• manipulate code: send, receive, check code

Not the focus here

Overview 129

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

4.1 Agent Oriented Programming (AOP)

Seminal paper by Y. Shoham: (Shoham 1993):

• AOP is a new computational framework , based on

societal computation and interaction

• key idea: program agents directly in terms of intentional
notions like beliefs, intentions, and goals

• Use intentional stance to program machines

• AOP refines and enriches Object Oriented Programming (OOP)

4.1 Agent Oriented Programming 130

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

AOP versus OOP

OOP AOP

Basic Unit object agent

Parameters defining unconstrained beliefs, capabilities,
state of basic unit commitments, choices

Process of computation message passing and message passing and
response methods response methods

Types of message unconstrained inform, request, offer,
promise, decline,...

Constraints on methods none honesty, consistency, ...

4.1 Agent Oriented Programming 131

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

AOP Framework

A complete AOP system will have three components:

1. A formal language (or logic) to specify agents and to describe
their mental state

2. an interpreted programming language for agents with
primitives inform, request, ...

3. an “agentification” process, for converting legacy software
modules (e.g., a database) into agents

Shoham presented AGENT-0, the first agent programming
language. Item 3 was left open

4.1 Agent Oriented Programming 132

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Generic Agent Interpreter:

1. Read current messages and update mental state

2. Execute relevant commitments (=communication acts, things the agent has to do), change beliefs

4.1 Agent Oriented Programming 133

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

4.2 AGENT-0

AGENT-0: A simple programming language + interpreter (LISP)
implements the generic interpreter

Each agent is described by four components:

• A set of capabilities: things the agent can do (actions);

• A set of initial beliefs (facts);

• A set of initial commitments (things the agent will do);

• A set of commitment rules (conditions → actions)

Key component: commitment rule set (agent program) .

4.2 AGENT-0 134

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

AGENT-0 Syntax

Facts: Describe contents of actions or conditions at a point in
time t.

Examples: (t (employee smith shell)),
(t (boring lecture))

Actions: May be

• private – corresponding to internally executes subroutines.
These are execution primitives

Example: (DO t p-action)

• communicative: interact with other agents, by sending
messages
4.2 AGENT-0 135

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Message types:

• (INFORM t a fact) send the fact to agent a at time t

Example: (INFORM 20 b (t (sold_out tickets)))

• (REQUEST t a action) notifies agent a the desire that
action is realized at time t.

Example: (REQUEST 1 a (DO 10 update_db))

4.2 AGENT-0 136

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

• (UNREQUEST t a action) inverse of REQUEST

Example: (UNREQUEST *now* a (DO 10 update_db))

• (REFRAIN action) asks that action may not be com-
mitted to by the receiving agent.

Example: (REFRAIN (DO 10 update_db))

4.2 AGENT-0 137

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Mental Conditions: Queries a belief or whether an action is
committed to.

• (B fact) (true if the agent believes fact)
• ((CMT a) action) (true if the agent is committed to

agent a to perform action)

Mental conditions may be connected using the AND and OR
operators.

Example: (AND (B x) (B y) (NOT ((CMT a) z)))

True if the agent believes x and y but is not committed to agent a
to perform z.

4.2 AGENT-0 138

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Conditional Actions:

Connect actions to keys of the mental state

• (IF mntl-cond action)

action is executed only if the mental condition mntl-cond is true.

Example:

(IF (B (rises A_Funds))
(REQUEST *now* broker (DO *now*+1 (buy A_Funds)))

4.2 AGENT-0 139

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Variables: ?x (existential binding)

?!x (∀-quantifier, scope is entire formula)

Example: (?x REQUEST ?y)

Matches every request from every agent.

Capabilities: pairs (private-action mntl-cond)

private-action is executed only if mntl-cond is true.

Example: (calc_stats ((CMT ?client) send_stats))

4.2 AGENT-0 140

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Commitment Rule: Commits the agent to perform an action for
some agent in the future.

(COMMIT msg-cond mntl-cond (agent action))

where

• msg-cond is a message condition of form
(From Type Content)

From is an agent name, Type a message type, Content
matches the actual message.

• mntl-cond is a mental condition

• agent the agent to be committed to

• action an action

4.2 AGENT-0 141

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Example: Airline reservation

Interaction between passenger and airline agent:

agent action

smith (query_which 1mar/1:00 smith airline
(18apr/?!time (flight sf ny ?!num)))

airline (INFORM 1mar/2:00 smith (18apr/8:30 (flight sf ny #354)))
airline (INFORM 1mar/2:00 smith (18apr/10:00 (flight sf ny #293)))
smith (REQUEST 1mar/3:00 airline (issue_np smith #354 18apr/8:30))
smith (query_whether 1mar/4:00 smith airline

((CMT smith) (issue_bp smith #354 18apr/8:30)))
airline (INFORM 1mar/5:00 smith

(NOT ((CMT smith) (issue_bp smith #354 18apr/8:30))))
...

4.2 AGENT-0 142

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Example: Airline agent

Capabilities: issue boarding pass, update remaining seats

((issue_bp ?a ?flight ?time) true)

((DO ?time (update_remaining_seats ?time1
?flight_number ?additional-seats))

(B (?time (remaining_seats ?time1
?flight_number ?current_seats))))

4.2 AGENT-0 143

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Belief: flight information

(B (time (flight from to number)))

Commitment rule:

(COMMIT (?pass
REQUEST (IF (B ?p) (INFORM (?t ?pass ?p))))

true
(?pass (IF (B ?p) (INFORM ?t ?pass ?p))))

If agent pass requests to be informed about a fact p that is
believed, and no commitment to refrain from the exist, then
serve the request.

4.2 AGENT-0 144

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

4.3 PLACA

AGENT-0: prototype to demonstrate principles, not a production
language.

Limitations: no mechanism for developing goals

Consequences: Requesting agent must

• know the primitive actions of the intended recipient;

• develop the plan to achieve its goal, making the plan
quite rigid.

4.3 PLACA 145

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Refinement:

Planning Communicating Agents (PLACA) by S. Thomas (Thomas
1995)

Agent has

• a (consistent) list of intentions , and

• a list of (consistent) plans .

4.3 PLACA 146

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

New syntactic structures:

• (INTEND x)
Intend to make sentence x true (add to the list of intentions).

• (ADOPT x)
Adopt the intention / plan x to the intention / plan list.

• (DROP x)
Drop the intention / plan x.

4.3 PLACA 147

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

• (CAN-DO x),

(CAN-ACHIEVE x),

(PLAN-DO x),

(PLAN-ACHIEVE x),

(PLAN-NOT-DO x)

Truth statements used in mental conditions.
The semantic meaning is as expected.

4.3 PLACA 148

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Program agents using mental change rules

Example: Library Agent

(;; message-condition
((library-helper ?agent REQUEST (?t (xeroxed ?thing)))
;; mental-condition
(AND (CAN-ACHIEVE(?t (xeroxed ?thing)))

(NOT(BELIEVE(*now* shelving-priority)))
(NOT(BELIEVE(*now* (vip ?agent)))))

;; mental-changes
((ADOPT(INTEND(5pm (xeroxed ?thing)))))
;;message-list
((?agent library-helper

INFORM (*now* (INTEND (5pm (xeroxed ?thing))))))))

4.3 PLACA 149

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Informally: “If someone asks you to xerox something, and you
can, and you don’t believe that they’re a VIP or that you’re
supposed to be shelving books, agree to xerox it by 5pm.”

4.3 PLACA 150

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

4.3 PLACA 151

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

4.4 AGENT-K

(Davies and Edwards 1994): Combine the syntax of AGENT-0 with
the format of KQML

For agent communication, need common

• Syntax → KIF (Knowledge Interchange Format)

• Semantics → Ontologies

• Pragmatics → KQML

4.4 AGENT-K 152

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Knowledge Query & Manipulation Language

DARPA Knowledge Sharing Effort (Finin et al.: (Patil, Fikes,
Patel-Schneider, McKay, Finin, Gruber, and Neches 1997; Finin, T.,
et al. 1993))

• KQML: Agent-communication language and protocol, for
exchanging information independent of syntax and ontology.

• View agent as a knowledge base, having an
– information store (beliefs)
– goal store (intents)

• Extensible set of performatives expressing belief or attitude
to some information

4.4 AGENT-K 153

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

KQML Messages

A KQML message represents a single speech act or performative
(more than 20 message types).

ask reply forward

tell deny subscribe

achieve monitor evaluate

Example: (tell :content “geoloc(a,[2,3])”
:language standard_prolog
:ontology std_geo)

Logically, a KQML message is a content expression enclosed in a
speech act inside a communication.

4.4 AGENT-K 154

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Major changes of AGENT-K over AGENT-0:

• Replace outgoing INFORM, REQUEST, UNREQUEST by
one command:

(KQML msg t type)

message msg, time t, KQML type.

Convert incoming messages into the base AGENT-0 types.

• Allow many commitments to match a single message.
(Undefined in AGENT-0: interpreter selects the first matching
rule.)

Aim: More than 20 message types. Practical issues rather
than AI theory behind semantics (shorter message traffic).

4.4 AGENT-K 155

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

4.5 Concurrent MetateM

A multi-agent logical language (Barringer/Fisher: (Barringer,
Fisher, Gabbay, Gough, and Owens 1989; Fisher and Owens 1995))

An experimental language; prototype available

Firm unifying theory

Features:

• Uses temporal logic (classical logic plus time modalities).

• A logic-based specification for each agent.

• The specification is executable.

4.5 Concurrent MetaTem 156

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Principle:

Imperative Future paradigm:
Any temporal logic formula φ can be rewritten into separated
normal form (SNF):

Past ⇒ Future

(“Past implies the future”)

4.5 Concurrent MetaTem 157

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Temporal Logic

Time ontology:

• Linear, discrete model of time.

• Infinite sequence of discrete states

• Identified starting point (‘beginning of time’).

Time points: 1,2,. . .

4.5 Concurrent MetaTem 158

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Modal time operators (φφφ,ψψψ are formulas):

• ♦♦♦φφφ holds now if φφφ holds now or sometime in the future.

• 222φφφ holds now if φφφ holds now and always in the future.

• φφφ U ψψψ holds now if φφφ holds from now until a future moment
when ψψψ holds.

• ©©©φφφ holds now if φφφ holds at the next moment in time.

• φφφ S ψψψ holds now if φφφ held in the past and ψψψ held from that
moment until (but not including) the present moment.

•
⊙⊙⊙
φφφ holds now if there was a last moment in time and, at the

moment, φφφ held.

• ��� and ��� are the past-time analogs of ♦♦♦ and 222.

4.5 Concurrent MetaTem 159

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Examples:

222expensive(Bentley)expensive(Bentley)expensive(Bentley)
“It is now and forever that a Bentley is expensive.”

♦♦♦important(IMPACT)important(IMPACT)important(IMPACT)
“Sometime (now or in the future), IMPACT will be important.”

���powerful(Gorbachev)powerful(Gorbachev)powerful(Gorbachev)
“Sometime in the past, Gorbachev was powerful.”

4.5 Concurrent MetaTem 160

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

¬friends(Marco, Paolo)friends(Marco, Paolo)friends(Marco, Paolo) UUU apologize(Marco, Paolo)apologize(Marco, Paolo)apologize(Marco, Paolo)
“Marco and Paolo will not be friends until Marco apologizes to
Paolo.”

©©©buy(James, Porsche)buy(James, Porsche)buy(James, Porsche)
“In the next state (= tomorrow), James buys a Porsche.”

4.5 Concurrent MetaTem 161

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

A Metatem program is a set of rules

{Pi ⇒ Fi | i = 1, . . . , n}

where Pi (resp. Fi) is a temporal formula describing the past
(resp. future)

Program execution:

• Match continuously rules against “history”, and fire those
rules whose Pi-parts hold.

• The Fi parts of fired rules become commitments which must
be satisfied.

Operational semantics: iteratively generate a model of the
program rules; the Fi-parts are constraints on it.

4.5 Concurrent MetaTem 162

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Example: Resource controller

Provide mutual exclusive access to a resource (e.g., printer)

Specification:

(1) ∀x
⊙⊙⊙

ask(x) ⇒♦♦♦grant(x)

(2) ∀x,y grant(x) ∧ grant(y) ⇒ (x = y)

Formula (1) says that any request for the resource is eventually
granted.

Formula (2) says that only one request may be granted at any one
time.

4.5 Concurrent MetaTem 163

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Multiple Agents: Concurrent MetateM

An operational framework in which societes of agents (MetateM
processes) can operate and communicate.

Based on executing the specification to generate individual agent
behavior.

A Concurrent MetateM System contains a number of
asynchronously executing objects (agents).
Each object has

• a name;

• an interface;

• a MetateM program.

4.5 Concurrent MetaTem 164

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Communication and Interfaces

Agent communication is by broadcasting (send to all agents)
Pass valuations of propositions throughout the system

Predicate categories:

• environment predicates: represent incoming messages.
becomes true if, and only if, the corresponding message has
been just received.

• component predicates: messages the agent may broadcast.
making this predicate true causes broadcasting of the
corresponding message (side effect)

• internal predicate: predicates not related to external
messages.
4.5 Concurrent MetaTem 165

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Agent Interface:

Definition of the messages an agent may accept and send

Example: car(go,stop,turn)[fuel,overheat]

go,stop, turn are environment preds; fuel, overheat are
component preds

4.5 Concurrent MetaTem 166

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Snow White Example (Wooldridge)

Snow White has some sweets (resources) which she will give to
the Dwarves (consumers)

• She will give only to one dwarf at a time

• She will always give eventually to a dwarf that asks

Snow White agent:

snow-white(ask)[give]:⊙⊙⊙
ask(x) ⇒♦♦♦give(x)

give(x) ∧ give(y) ⇒ (x = y)

4.5 Concurrent MetaTem 167

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Dwarf ‘eager’: asks for sweet in the beginning, and immediately
again whenever he received one:

eager(give)[ask]:

start⇒ ask(eager)⊙⊙⊙
give(eager) ⇒ ask(eager)

Dwarf ‘greedy’: asks every time

greedy(give)[ask]:

start⇒ 222ask(greedy)

4.5 Concurrent MetaTem 168

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Dwarf ‘courteous’: only asks when ‘eager’ and ‘greedy’ have eaten

courteous(give)[ask]:

¬ask(courteous) SSS give(eager)∧
¬ask(courteous) SSS give(greedy) ⇒ ask(courteous)

Dwarf ‘shy’: only asks when no-one else just asked:

shy(give)[ask]:

start⇒♦♦♦ask(shy)⊙⊙⊙
ask(x) ⇒ ¬ask(shy)⊙⊙⊙

give(shy) ⇒♦♦♦ask(shy)

4.5 Concurrent MetaTem 169

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

4.6 AgentSpeak(L)

A rule-based agent programming language using the BDI
architecture: (Rao 1995; Rao and Georgeff 1991)

Abstracts from

• PRS (Procedural Reasoning System, Ingrand et al.)

• dMARS (distributed Multi-Agent Reasoning System, Kinny,
Georgeff et al.)

4.6 AgentSpeak 170

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

An agent has

• Beliefs: Typically, facts about properties of the domain.
Essentially first-order descriptions.

Examples: adjacent(X,Y) , location(robot,X)

• Desires: states the agents want to reach (goals);

• Intentions: stacks of plans (intended means). Processing a
plan may add new plans to an intention.

• Plan Library: a repository of plans.

4.6 AgentSpeak 171

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

A plan consists of a

• invocation condition (triggering event)

• context (beliefs which must hold for execution)

• body, which is a sequence of formulas specifying what to do.

A formula is either

• an action,

• a goal to be satisfied (achievement goal, desired state), or

• a query to be answered (test goal).

4.6 AgentSpeak 172

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Each agent responds to events , which are:

• internal events: new goals created, or

• external events: beliefs that are perceived

The agent’s knowhow is given by plan rules:

“Want to achieve goal G

& Context C applies ⇒ use plan P ”

The agent selects a plan for each change and instantiates it as
intention.

4.6 AgentSpeak 173

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

AgentSpeak(L) operation cycle

1. select one of the events (e)

2. retrieve all plans from the library triggered by e (relevant
plans), and select those currently executable (applicable
plans)

3. select an applicable plan, p, and instantiate it (intended
means)

4. add the intended means to the appropriate intention. (This will
be a new intention in case of an external event, and an
existing intention in case of an internal event.)

4.6 AgentSpeak 174

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

5. select an intention i and consider the next step in its top plan
(executing plan). If this is an action, then execute it. If it is a
goal, add a corresponding event to the set of events to be
processed.

6. If the top plan is complete, consider the next plan, and if the
intention is empty, remove it from the set of intentions.

Formal specification in Z: d’Inverno and Luck (1998)

4.6 AgentSpeak 175

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

4.7 3APL

A combination of imperative and logic programming (Hindriks,
de Boer, van der Hoek, and Meyer 1997)

An agent has

• Belief Base: stock of beliefs

• Basic Actions: formally update operators on belief base

• Goals: things to be done (possibly in parallel)

• Practical Reasoning Rules: goal achievement and revision

4.7 3-APL 176

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Goals are composed of

• achievement goals
• basic actions
• tests

using sequential and alternative (nondet.) composition.

Richer structure than in AgentSpeak(L), similar to intentions.

Example: Read transport means, departure location, and
duration, and put going from there to a meeting in Genova on the
agenda:

transport(Means,From,Genova,DurTrans) ? ;
ins_agenda(Means,11h−DurTrans,DurTrans,From);
ins_agende(meeting,11h,1h,Genova);

4.7 3-APL 177

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Practical Reasoning Rules (PRR) :

Means to

• achieve (sub)goals of the agent.

• modify complex agent goals.

Example:
“Plan P is adopted for goal G and context C applies =⇒
revise P and replace G by new goal G1.”

4.7 3-APL 178

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

PRR are divided into

1. failure rules: revise means to achieve a goal

2. reactive rules: respond with a plan to a situation (or create
goals)

3. plan rules: provide a plan to achieve a goal

4. optimisation rules: more effective way to achieve the same
goal (low-priority failure rules)

Priorities: 1 > 2 > 3 > 4

4.7 3-APL 179

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Example: Inform the user recursively on items in ActList (plan
rule)

inform_list(ActList) & ActList = [[Act, T ime.Dur, Loc], L] ⇒
inform_user(scheduled,Act, T ime,Dur, Loc); inform_list(L)

inform_list(ActList) & ActList = [] ⇒

3APL operation cycle:
Similar to AgentSpeak(L) cycle, but different

Each AgentSpeak(L) agent (i.e., its computational behaviour) can
be simulated by an 3APL agent.

4.7 3-APL 180

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Comparison of Interpreters

Sense-Update-Act-Cycle (simplified):

Generic AGENT-0 AgentSpeak(L) 3APL
1. Sense Data S

2. Update belief base with S

3. Select rules R to fire all rules single rule single rule

4. Update goal base by firing R record changes
in G′

5. Select goals G to execute all goals∗ single goal single goal:
G = G′ if G′ 6= ∅

6. Execute (part of) G all committed single goal G single goal G
actions

7. Goto 1.

∗: Goals might dynamically become infeasible and be removed

• AGENT-0 loops forever,

• AgentSpeak(L) and 3APL pause if no goals are left.
4.7 3-APL 181

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

4.8 ConGolog

Combined imperative and logic language (Giacomo, Lesperance, and
Levesque 1997)

Based on the Situation Calculus: Describe changes of a
situation (=state) through actions in first-order logic.

Example: S0S0S0

↓ pickup(A)

S1 = do(pickup(A), S0)S1 = do(pickup(A), S0)S1 = do(pickup(A), S0)

↓ walk(P)

S2 = do(walk(P), do(pickup(A), S0))S2 = do(walk(P), do(pickup(A), S0))S2 = do(walk(P), do(pickup(A), S0))

Action effect: ∀sss∀x hold(x,do(pickup(x))do(pickup(x))do(pickup(x)), sss).

4.8 ConGolog 182

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

ConGolog agents:

An agent is a kind of high-level imperative program, with
behavioural reasoning.

The ConGolog interpreter extracts a sequence of actions by
running a logic program.

ConGolog can be simulated in 3APL.

4.8 ConGolog 183

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

4.9 Summary and References

• Agent-oriented programming (AOP) as a new programming
paradigm

• AOP has special needs on reasoning capabilities about beliefs,
communication, and actions

• Several AP languages, based on different grounds

4.9 Summary and References 184

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

• Not addressed: agent languages like telescript, Tcl/Tk, and
platform dependent languages (IMPACT, ZEUS, DESIRE, . . .)

• Java agents: JADE, Aglets, Voyager, Concordia, JATLite,
JAFMAS, Java Intelligent Agent Library, Gadget, . . .

• Advanced AP languages are not commercial yet

4.9 Summary and References 185

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

References
Barringer, H., M. Fisher, D. Gabbay, G. Gough, and R. Owens

(1989, June). METATEM: A framework for programming in
temporal logic. In Stepwise Refinement of Distributed
Systems: Models, Formalisms, Correctness, Lecture Notes in
Computer Science 430. Springer-Verlag.

Davies, W. H. E. and P. Edwards (1994, December). Agent-K: An
Integration of AOP and KQML. In T. Finin and Y. Labrou
(Eds.), Proceedings of the CIKM’94 Workshop on Intelligent
Agents, Gaithersburg, MD, USA.

4.9 Summary and References 186

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

d’Inverno, M. and M. Luck (1998, June). Engineering
AgentSpeak(L): A formal computational model. Journal of
Logic and Computation 8(3), 233–260.

Finin, T., et al. (1993). Specification of the KQML
Agent-Communication Language (Draft Version). The
DARPA Knowledge Sharing Initiative External Interfaces
Working Group.

Fisher, M. (1995). Towards a semantics for concurrent metatem.
In M. Fisher and R. Owens (Eds.), Executable Modal and
Temporal Logics. Springer Verlag LNAI Vol. 897.

Fisher, M. and R. Owens (Eds.) (1995). Executable Modal and
Temporal Logics. Springer Verlag LNAI Vol. 897.

4.9 Summary and References 187

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Giacomo, G. D., Y. Lesperance, and H. Levesque (1997).
Reasoning about Concurrent Execution, Prioritized
Interrupts, and Exogenous Actions in the Situation Calculus.
In Proceedings of the International Joint Conference on
Artificial Intelligence, Nagoya, Japan.

Giacomo, G. D., Y. Lésperance, and H. J. Levesque (2000).
ConGolog, A concurrent programming language based on
situation calculus. Artificial Intelligence 121(1–2), 109–169.

4.9 Summary and References 188

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Hindriks, K., F. de Boer, W. van der Hoek, and J.-J. C. Meyer
(1999, July 04–07). Control structures of rule-based agent
languages. In J. Müller, M. P. Singh, and A. S. Rao (Eds.),
Proceedings of the 5th International Workshop on Intelligent
Agents V : Agent Theories, Architectures, and Languages
(ATAL-98), Volume 1555 of LNAI, Berlin, pp. 381–396.
Springer.

Hindriks, K. V., F. S. de Boer, W. van der Hoek, and J. J. C.
Meyer (1997). Formal Semantics of an Abstract Agent
Programming Language. In International Workshop on
Agent Theories, Architectures, and Languages, Providence,
RI, pp. 204–218.

4.9 Summary and References 189

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Hindriks, K. V., F. S. De Boer, W. Van der Hoek, and J.-J. C.
Meyer (1998). A formal embedding of AgentSpeak(L) in
3APL. Lecture Notes in Computer Science 1502, 155–??

Ingrand, F. F., M. P. Georgeff, and A. S. Rao (1992). An
architecture for real-time reasoning and system control.
IEEE Expert 7(6), 34–44.

Labrou, Y. and T. Finin (1994). A Semantics Approach for
KQML – A General Purpose Communications Language for
Software Agents. In Proceedings of the International
Conference on Information and Knowledge Management, pp.
447–455.

4.9 Summary and References 190

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Labrou, Y. and T. Finin (1997). Semantics for an Agent
Communication Language. In International Workshop on
Agent Theories, Architectures, and Languages, Providence,
RI, pp. 199–203.

Lespérance, K. H. Y. and H. Levesque (2000, August 20–25). An
embedding of ConGolog in 3APL. Amsterdam, pp. 558–562.
IOSPress.

Patil, R., R. E. Fikes, P. F. Patel-Schneider, D. McKay, T. Finin,
T. Gruber, and R. Neches (1997). The DARPA Knowledge
Sharing Effort. In M. Huhns and M. Singh (Eds.), Readings
in Agents, pp. 243–254. Morgan Kaufmann.

4.9 Summary and References 191

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Rao, A. S. (1995). Decision Procedures for Propositional
Linear-Time Belief-Desire-Intention Logics. In
M. Wooldridge, J. Müller, and M. Tambe (Eds.), Intelligent
Agents II – Proceedings of the 1995 Workshop on Agent
Theories, Architectures and Languages (ATAL-95), Volume
890 of LNAI, pp. 1–39. Berlin, Germany: Springer-Verlag.

Rao, A. S. (1996). AgentSpeak(L): BDI agents speak out in a
logical computable language. In W. van der Velde and J. W.
Perram (Eds.), Agents Breaking Away (LNAI 1038), pp.
42–55. Springer-Verlag: Heidelberg, Germany.

4.9 Summary and References 192

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Rao, A. S. and M. Georgeff (1991). Modeling Rational Agents
within a BDI-Architecture. In J. F. Allen, R. Fikes, and
E. Sandewall (Eds.), Proceedings of the International
Conference on Knowledge Representation and Reasoning,
Cambridge, MA, pp. 473–484. Morgan Kaufmann.

Shoham, Y. (1993). Agent Oriented Programming. Artificial
Intelligence 60, 51–92.

Subrahmanian, V., P. Bonatti, J. Dix, T. Eiter, S. Kraus,
F. Özcan, and R. Ross (2000). Heterogenous Active Agents.
MIT-Press.

4.9 Summary and References 193

Chapter 4: Agent Programing Languages Heterogenous Agent Systems, ESSLLI 02

Thomas, S. R. (1995, August). The PLACA agent programming
language. In M. J. Wooldridge and N. R. Jennings (Eds.),
Proceedings of the ECAI-94 Workshop on Agent Theories,
architectures and languages: Intelligent Agents I, Volume
890 of LNAI, Berlin, pp. 355–370. Springer-Verlag:
Heidelberg, Germany.

Weiss, G. (Ed.) (1999). Multi-Agent Systems. MIT-Press.

4.9 Summary and References 194

