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Combining Agents, ASP and Planning
NICTA, Jul-Aug 2003

• July and August with the exception of third week in
July.

• Time: Thursday, Friday, 14-16, starting on 3rd July 2003.

• Lecture Course is in the first 3 weeks on theoreti-
cal issues in general agent systems and answer set
programming, emphasis on mathematical-logical foun-
dations. Remaining two weeks devoted to a partic-
ular agent system and some demonstrations.

• www.cs.man.ac.uk/~jdix/LECTURING/NICTA03.html .
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First and second week (Chapters 1–3)

The first part of this lecture course is mainly based on

Multi-Agent Systems
(Gerhard Weiss)
MIT Press, June 1999.

We describe general methods and techniques.
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Third week (Chapter 4)

The second part of this lecture course is mainly based on

1. Knowledge representation, reasoning and
declarative problem solving with Answer sets
(Chitta Baral), MIT Press, February 2003.

2. Planning in Answer Set Programming using
Ordered Task Decomposition
(Jürgen Dix, Ugur Kuter and Dana Nau)
Theory and Practice of Logic Programming, to appear 2004.
<www.cs.umd.edu/users/ukuter/ASP_Planning/>

We give an introduction to the newly emerged paradigm of Answer
Set Programming and illustrate it with recent research on how to
realise HTN-planning in this paradigm.
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Fourth and fifth week (Chapters 5–9)

The third part of this lecture course is mainly based on

Heterogenous Agent Systems
(Subrahmanian/Bonatti/Dix/Eiter/Kraus/Özcan/Ross)
MIT Press, August 2000.

We describe the IMPACT approach and its underlying
foundations. We also give two demos and present an approach of
monitoring agents through planning (using an ASP engine).

Overview 4



J. Dix Combining Agents, ASP and Planning, Jul-Aug 2003, Sydney, NICTA

Overview (Agent Systems in general)

1. Introduction
2. Distributed Decision Making (2 Lectures)
3. Contract Nets, Coalition Formation
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Overview (Answer Set Programming)

4. ASP: Foundations and an Application to
Planning (2 Lectures)
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Overview (IMPACT)

5. IMPACT Architecture
6. Actions and Agent Programs
7. Implementing Agents: An Application
8. Agent Systems and Planning
9. Extensions of IMPACT

Overview 7
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Chapter 5. IMPACT Architecture
and Code Calls

5.1 Scenarios
5.2 Agent/Server Architecture
5.3 The Code Call Mechanism
5.4 Summary and References
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5.1 Scenarios
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Controlled Flight into Terrain (CFIT) scenario
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5.2 Agent/Server Architecture

Four main categories (Genesereth and Ketchpel 1994):

1. transducer: Each agent has an associated “transducer” which
converts incoming messages and requests into a format
intelligible to the agent.

Problem: n-agent system may need O(n2) transducers
(not desirable).
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2. wrapper: “inject code into a program to allow it to
communicate”.

Principle: each agent has an associated body of code that is
expressed in a common language (or one of few) languages
used by other agents.

3. code rewriting: complete rewriting to implement an agent.

Problem: Very expensive alternative.

5.2 Agent/Server Architecture, SDL 275
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4. mediation approach (Wiederhold 1993): all agents
communicate with a “mediator,” which in turn may send
messages to other agents.

The mediation approach has been extensively studied (Arens,
Chee, Hsu, and Knoblock 1993; Brink, Marcus, and
Subrahmanian 1995; Chawathe, S., et al. 1994; Bayardo, R., et
al. 1997).

Problem: Suppose all communications in the CFIT example
had to go through such a mediator. Then if the mediator
malfunctions or “goes down,” the system as a whole is liable
to collapse, leaving the plane in a precarious position.
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Overall IMPACT Architecture
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Server Architecture

An IMPACT Server is a collection of the following servers:

• Registration (REG): creator enters agent to the system,
which services it provides, and who may use them.

• Yellow Pages (YP): Process requests from agents to find
other agents providing some service (matchmaking).

• Thesaurus (THS): requested when agent services are
entered, or YP server performs matchmaking.

• Types (TYP): Server maintains a set of class hierarchies used
by different agents and the inclusion relationship(s).

• Interfaces (INF): GUI for human user
5.2 Agent/Server Architecture, SDL 278
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Basic IMPACT Agent Architecture
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Agent/Service Registration

5.2 Agent/Server Architecture, SDL 280
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Agent Service Description Language (SDL)

Describe agent services in a simple HTML-style language.

Each service has

• a name:
<name> ::= <verb>’:’<nounterm>

<nounterm> ::= <noun> | <noun>’(’<noun>’)’

• inputs: (typed) values. Distinguish mandatory and optional
inputs.

• outputs: (typed) values

• attributes: e.g. cost, response time (optional)
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Example (STORE application):

〈S〉 classify: user

〈MI〉ssn: String〈\MI〉
〈I〉name: String〈\I〉
〈O〉class: UserProfile〈\O〉

〈\S〉
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Agent Service Descriptions

Definition 5.1 (Verbs, Nouns, nt(Nouns))
Let Verbs be a set of verbs in English and Nouns a set of nouns in
English.

• A noun term is either a noun or an expression of the form
n1(n2) where n1, n2 are both nouns.

• nt(Nouns) denotes the set of all syntactically valid noun terms
generated by the set Nouns.

Definition 5.2 (Service Name)
If v ∈ Verbs and nt ∈ nt, then v: nt is called a service name.
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Service List for the STORE example

AGENT SERVICES

creditcreditcredit provide: information(credit)

provide: address

profilingprofilingprofiling provide: user-profile

classify: user

productDBproductDBproductDB provide: description(product)

contentDetermincontentDetermincontentDetermin prepare: presentation(product)

identify: items

saleNotificationsaleNotificationsaleNotification identify: user-profile

determine: items
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Service List for the CFIT Scenario

AGENT SERVICE

autoPilotautoPilotautoPilot maintain: course

adjust : course

create: plan(flight)

satellitesatellitesatellite broadcast : data(GPS)

gpsgpsgps collect : data(GPS)

merge: data(GPS)

create: information(GPS)

terrainterrainterrain generate: map(terrain)

determine: area(no-go)
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Synonyms and Thesaurus

What if agent aaa seeks another one offering a service qs?

We need to match qs with other services in the yellow pages.

Example: An agent looks for an agent offering the service
generate: map(ground).
Answer:
CFIT terrainterrainterrain agent: ground and terrain are synonymous.
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Let

• Σ be set of English words, such that Σ contains only verbs or
only noun-terms.

• ∼ be an equivalence relation on Σ.

Definition 5.3 (Σ-node)
A Σ-node is any subset N ⊆ Σ that is closed under ∼, i.e.

1. x ∈ N & y ∈ Σ & y ∼ x⇒ y ∈ N .

2. x, y ∈ N ⇒ x ∼ y.

Σ-nodes are equivalence classes of Σ.

Example: An agent looks for an agent offering the service
generate: map(area).
Answer: CFIT terrainterrainterrain agent: area can be specialised to terrain.
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Definition 5.4 (Σ-Hierarchy)
A Σ-Hierarchy is a weighted, directed acyclic graph
SHSHSH =def (T,E, ℘) such that:

1. T is set of nonempty Σ-nodes;

2. If t1 and t2 are different Σ-nodes in T , then t1 and t2 are
disjoint;

3. ℘ is a mapping ℘ : E → Z+ indicating a positive distance
between two neighbouring vertices.

Note: no requirement that ℘ satisfies any metric axioms at this
point.
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advertisement data description document message performance presentation schedule userProfile
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Definition 5.5 (Distance between two terms)

Given a Σ-Hierarchy SHSHSH =def (T,E, ℘), the distance between two
terms, w1, w2 ∈ T , is defined as follows:

dddSHSHSH(w1, w2) =def



0, if some t ∈ T exists with
w1, w2 ∈ t;

cost(pmin), if some undirected path be-
tween w1, w2 exists in SHSHSH and
pmin is the least cost such
path;

∞, otherwise.

dddSHSHSH is well defined and satisfies the triangle inequality.
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Hierarchy Browsing Screen Dump
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Thesaurus Screen Dump
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5.3 The Code Call Mechanism

A definition of agents should not limit the choice of data
structures and algorithms that an application designer
must use.

CFIT: terrainterrainterrain agent on top of existing US military terrain
reasoning software.

Accessing DB’s: For instance, the Product Database agent
productDBproductDBproductDB in the STORE example may access some file
structures, as well as some databases.
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Software Code Abstractions

Definition 5.6 (SSS = (TTTTTTTTT SSS ,FFFFFFFFFSSS ,CCCCCCCCCSSS))
Characterize the code on top of which an agent is built as
SSS =def (TTTTTTTTT SSS ,FFFFFFFFFSSS ,CCCCCCCCCSSS), where:

1. TTTTTTTTT SSS is the set of all data types managed by SSS,

2. FFFFFFFFFSSS is a set of predefined functions which makes access to the
data objects managed by the agent available to external
processes, and

3. CCCCCCCCCSSS is a set of type composition operations.

A type composition operator is a partial n-ary function c which
takes as input types τ1, . . . , τn and yields as a result a type
c(τ1, . . . , τn).
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Intuitively:

• TTTTTTTTT SSS is the set of all data types that are managed by the agent.

• FFFFFFFFFSSS intuitively represents the set of all function calls supported
by the package SSS ’s application programmer interface (API ).

• CCCCCCCCCSSS the set of ways of creating new data types from existing
data types.
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Notation: TTTTTTTTT ?
SSS is the closure of TTTTTTTTT SSS under the operations in CCCCCCCCCSSS .

More formally:

Definition 5.7 (CCCCCCCCCSSS(TTTTTTTTT ) and TTTTTTTTT ?
SSS)

a) Given a set TTTTTTTTT of types, let

CCCCCCCCCSSS(TTTTTTTTT ) =def TTTTTTTTT ∪ {τ : τ = c(τ1, . . . , τn) for some n-ary

c ∈ CCCCCCCCCSSS and types τ1, . . . , τn ∈ TTTTTTTTT }.

b) TTTTTTTTT ?
SSS =def

⋃
i∈NTTTTTTTTT i

SSS , where

TTTTTTTTT 0
SSS =def TTTTTTTTT SSS ,
TTTTTTTTT i+1
SSS =def CCCCCCCCCSSS(TTTTTTTTT i

SSS).
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CFIT Revisited

TTTTTTTTT SSS =def {Map, Path, Plan, SatelliteReport}.
Special class of maps called DTED Digital Terrain Elevation Data
that specify the elevations of different regions of the world.

The autoPilotautoPilotautoPilot agent’s set of functionsFFFFFFFFFSSS might contain:

• createFlightPlancreateFlightPlancreateFlightPlan(Location/Map,Flight_route/Path ,Nogo/Map) of
type Plan.

The gpsgpsgps agent’s set of functionsFFFFFFFFFSSS might contain:

• mergeGPSDatamergeGPSDatamergeGPSData(Data1/SatelliteReport ,Data2/SatelliteReport ) of
type SatelliteReport.
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Agent State

Definition 5.8
At any given point t in time, the state of an agent will refer
to a setOOOSSS(t) of objects from the types TTTTTTTTT SSS , managed by its
internal software code.

An agent may change its state by taking an action—
either triggered internally, or by processing a mes-
sage received from another agent.

Assumption: Except for appending messages to an agent aaa’s
mailbox, another agent bbb cannot directly change aaa’s state.
(However, it might do so indirectly by shipping the other agent a
message issuing a change request.)
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The Code Call Mechanism

Code Calls take data from heterogenous DB’s so that
such data can be considered as logical atoms (as terms
in predicate logic).

An agent built on top of a piece, SSS, of software, may
support several API functions, and it may or may
not make all these functions available to other agents
(through SDL).
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Definition 5.9 (Code Call SSSSSSSSS : fff (((d1, . . . , dn))))
Let SSS =def (TTTTTTTTT SSS ,FFFFFFFFFSSS ,CCCCCCCCCSSS) be a software code. Let fff ∈FFFFFFFFFSSS be an
n-ary function and d1, . . . , dn objects or variables such that each
di matches the type requirements of the i’th argument of fff . Then,

SSSSSSSSS : fff (((d1, . . . , dn)))

is a code call. A code call is ground, if all di’s are objects.

SSSSSSSSS : fff (((d1, . . . , dn))) may be read as: execute function fff as defined
in package SSS on the arguments d1, . . . , dn.

Notation: We also write aaaaaaaaa : fff (((d1, . . . , dn))) instead of SSSSSSSSS : fff (((d1, . . . , dn)))
where SSS is provided by agent aaa.
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Comment 1 (Assumption on the Output Signature) Without
loss of generality, we assume that the output signature of any
code call is a set.

(If a function does not return a set, but rather returns an atomic
value, then that value can be coerced into a set anyway—by treating
the value as shorthand for the singleton set containing just the
value.)
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Examples:

1. suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((3, part_008))).
The result of this call is either { amount_available }, or the set
{ amount_not_available }.

2. suppliersuppliersupplier :shipFreightshipFreightshipFreight(((3, part_008, truck, X, paris))).
Create a pickup schedule for shipping 3 pieces of part_008
from location X to paris by truck. Until a value is specified for
X, this code call cannot be executed.

3. GPSGPSGPS :mergeGPSDatamergeGPSDatamergeGPSData(((S1, S2))) merges two pieces, S1 and S2, of
satellite data, but the values of the two pieces are not stated.
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Variables

root variables: For any type τ ∈ TTTTTTTTT SSS there is a set root(τ) of “root”
variables ranging over τ .

Let τ be a complex record type having fields f1, . . . , fn.

• For every variable of type τ , X.fi is a variable of type τi where
τi is the type of field fi.

• If fi itself has a sub-field g of type γ, then X.fi.g is a variable of
type γ, and so on: path variables .

• For any path variable Y of the form X.path, where X is a root
variable, X is the root of Y, denoted by root(Y).
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Example 5.1 (CFIT Revisited)
Let X be a (root) variable of type SatelliteReport denoting the
current location of an airplane.

Then X.2dloc, X.2dloc.x, X.2dloc.y, X.height, and X.dist are
path variables .

For each of the path variables Y, root(Y) = X.

Here, X.2dloc.x, X.2dloc.y, and X.height are of type Integer,
X.2dloc’s type is a record of two Integer s, and X.dist is of type
NonNegative.
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Variable Assignment

Definition 5.10
An assignment of objects to variables is a set of equations of the
form V1 := o1,. . . ,Vk := ok where the Vi’s are (root or path)
variables and the oi’s are objects.

An assignment is legal, if the types of objects and corresponding
variables match.

Example 5.2 (CFIT Revisited)
A legal assignment may be

X.height := 50, X.sat_id := iridium_17,
X.dist := 25, X.2dloc.x := 3, X.2dloc.y := −4.

We write this as (50, iridium_17, 25, 〈3,−4〉).
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Code Call Atoms

Code call atoms are logical atomslogical atomslogical atoms that are layered on top of
code-calls.

If cc is a code call, and X is either a variable symbol, or an
object of the output type of cc, then
Definition 5.11
• in(((((((((X, cc))))))))),

• not_in(((((((((X, cc))))))))),
are called code call atoms. A code call atom is ground if no
variable symbols occur anywhere in it.
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• A code call atom of the form in(((((((((X, cc))))))))) succeeds just in case
when X can be set to a pointer to one of the objects in the set of
objects returned by executing the code call.

• A code call atom of the form not_in(((((((((X, cc))))))))) succeeds just in case
X is not in the result set returned by cc (when X is an object), or
when X cannot be made to point to one of the objects returned
by executing the code call.

What effects does this have on the state of an agent?

It is an infinite set of ground code call atoms!
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Examples:

• in(((((((((spender(high), profilingprofilingprofiling :classifyUserclassifyUserclassifyUser(((Johnny_Rich)))))))))))). This
code call succeeds just in case the Profiling agent classifies
Johny Rich as a big spender.

• not_in(((((((((spender(low), profilingprofilingprofiling :classifyUserclassifyUserclassifyUser(((U)))))))))))). This code call
succeeds just in case user U, whose identity must be
instantiated prior to evaluation, is not classified as a low
spender by the profilingprofilingprofiling agent.
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Definition 5.12 (Code Call Condition)
A code call condition is defined as follows:

1. Every code call atom is a code call condition.

2. If s and t are either variables or objects, then s = t is a code
call condition.

3. If s and t are either integers/real valued objects, or are
variables over the integers/reals, then s < t, s > t, s ≤ t,

and s ≥ t are code call conditions.

4. If χ1 and χ2 are code call conditions, then χ1 &χ2 is a code
call condition.

Any code call condition 1.-3. is atomic.
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Examples:

1. in(((((((((X, profilingprofilingprofiling :classifyUserclassifyUserclassifyUser(((Johnny_Rich)))))))))))) &

in(((((((((Y, profilingprofilingprofiling :classifyUserclassifyUserclassifyUser(((Joe_Foe)))))))))))) &

X = Y.

2. in(((((((((spender(medium), profilingprofilingprofiling :classifyUserclassifyUserclassifyUser(((U)))))))))))) &

not_in(((((((((spender(high), profilingprofilingprofiling :classifyUserclassifyUserclassifyUser(((U)))))))))))).

5.3 The Code Call Mechanism 311



Chapter 5: IMPACT Architecture Combining Agents, ASP and Planning, NICTA 2003

Safety

A code call SSSSSSSSS : fff (((d1, . . . , dn))) is safe iff each di is ground.

For evaluation, code call atoms must be ground.

Problem: Given a code call condition χ1 & . . . , &χn with
variables, how to assure that evaluation of the code calls and
comparisons χi is possible?
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Example (ctd):

χ(1) is “safe” (evaluate from left to write).

χ(2) is not safe (X, Y uninstantiated).

The code call
in(((((((((X,aaa : fff (((Y)))))))))))) & in(((((((((Y,aaa : fff (((2))))))))))))

can be evaluated reordering atomic cc conditions.
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Definition 5.13 (Safe Code Call (Condition))
A code call condition χ1 & . . .&χn, n ≥ 1, is safe iff there is a
permutation π of 1, . . . , n such that, for i = 1, . . . , n:

1. If χπ(i) is a comparison s1 op s2, then
1.1 at least one of s1, s2 is a constant or a variable X such that

root(X) belongs to
RVπ(i) =def {root(Y) | ∃j < i s.t. Y occurs in χπ(j)};

1.2 if si is neither a constant nor a variable X such that
root(X) ∈ RVπ(i), then si is a root variable.

2. If χπ(i) = in(((((((((Xπ(i), ccπ(i)))))))))) or χπ(i) = not_in(((((((((Xπ(i), ccπ(i)))))))))), then
either Xπ(i) is a root variable, or root(Xπ(i)) is from RVπ(i), and
the root of each variable Y occurring in ccπ(i) belongs to
RVπ(i).
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If χ = χ1& · · · ,&χn is found safe, we can reorder it by a
permutation π such that χπ(1)& · · ·&χπ(n) without problems.

Checking safety of code call conditions can be efficiently done
(in linear time) at compile time of a program.
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Straightforward generalisation:

Definition 5.14 (Safety Modulo Variables)
Let χ be a code call condition, and let X be any set of root
variables. Then, χ is safe modulo X , if χθ is safe, for any legal
assignment θ of objects to the variables in X.

Note: Checking safety of a code call χ modulo X easily reduces to a
check for safety.
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Definition 5.15 (Code Call Solution)
Let χ be a code call condition involving the variables
X =def {X1, . . . , Xn} and let SSS =def (TTTTTTTTT SSS ,FFFFFFFFFSSS ,CCCCCCCCCSSS).

A solution of χ w.r.t. TTTTTTTTT SSS in a state OOOSSS is a legal assignment of
objects o = o1, . . . , on to the variables X1, . . . , Xn, written X := o,
such that the application of the assignment makes χ true in state
OOOSSS .

• Sol(χ)TTTTTTTTT SSS ,OOOSSS is the set of all solutions of the code call
condition χ in state OOOSSS , and by

• OOO_Sol(χ)TTTTTTTTT SSS ,OOOSSS is the set of all objects appearing in
Sol(χ)TTTTTTTTT SSS ,OOOSSS

(subscripts are occasionally omitted)
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Comment 2 (Existence of ins, del and upd) We assume that
FFFFFFFFFSSS of code package SSS includes three functions as follows:

• insSSS , which takes as input a set of objects O for SSS and a state
OOOSSS , and returns a new stateOOO′SSS = insSSS(O,OOOSSS) accomplishing
the insertion of the objects in O intoOOOSSS .

• delSSS , which takes as input a set of objects O for SSS and a state
OOOSSS , and returns a new stateOOO′SSS =def delSSS(O,OOOSSS) which
describes the deletion of the objects in O fromOOOSSS .

• updSSS , which takes as input a data object o manipulated by SSS, a
field f of o, and a value v from the domain of the type of
o.f—this function changes the value of the o.f to v.

(Can be described in terms of the preceding two functions.)
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Executing the function, insFinanceRecord(χ(X)) where χ(X) is a code
call condition involving the (sole) free variable X means:

“Insert, using a FinanceRecord insertion routine, all objects
o such that χ(X) is true w.r.t. the current agent state when
X := o.”

In such a case, the code call condition χ is used to identify the
objects to be inserted, and the insFinanceRecord function specifies the
insertion routine to be used.
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Agent aaa may manage multiple data types τi with peculiar insertion
routines insτi

, i ∈ {1, . . . , n}.

Associate with aaa an insertion routine insaaa as follows:

• given either a setOOO of objects (or a code call condition χ(X) of
the above type), insaaa(χ(X),OOOSSS) is a generic method that selects
which of the insertion routines insτi

, associated with the
different data structures, should be invoked to accomplish the
desired insertion.

Assume that an insertion function insaaa and a deletion func-
tion delaaa may be associated with any agent aaa in this way.
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5.4 Agent Message Box

1. Each agent’s associated software code includes a special type
called Msgbox (short for message box).

2. The message box is a buffer that may be filled (when it sends a
message) or flushed (when it reads the message) by the agent.

3. In addition, we assume the existence of an operating-systems
level messaging protocol (e.g., SOCKETS or TCP/IP (Wilder
1993)) that can fill in (with incoming messages) or flush (when
a message is physically sent off) this buffer.
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The msgbox operates on objects of the form

(i/o,"src","dest","message","time") .

1. i/o signifies an incoming or outgoing message respectively.

2. "src" specifies the originator

3. "dest" specifies the destination.

4. "message" is a table containing triples
("command", "LFlag", "Data"),

where "command" is the name of a command, "LFlag" a flag,
and "Data" the message content (of data type Any).

5. "time" is the time at which the message was sent.

5.4 Agent Message Box 322



Chapter 5: IMPACT Architecture Combining Agents, ASP and Planning, NICTA 2003

Message box management – some functions

• sendMessagesendMessagesendMessage(<dest_agent>,<message>):

Places tuple (o, "src", "dest", "message", "time") into Msgbox.
Parameter o signifies an outgoing message, and "src" is the
agent at hand.

When a call of sendMessagesendMessagesendMessage("dest", "message") is executed, the
state of srcsrcsrc’s Msgbox changes by the insertion of the above
tuple, denoting the sending of a message from srcsrcsrc to a given
destination agent destdestdest with the message body "message".
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• getMessagesgetMessagesgetMessages():

Read all tuples (i, "src", "a", "msg", "time") from Msgbox of agent
aaa (i flags an incoming message and "time" the time at which
the message was received.

Note: returns all messages from all agents to agent aaa.

• timedGetMessagestimedGetMessagestimedGetMessages(<op>,<valid>):

Read all tuples t =def (i, <src>,<agent>,<message>, time)
from Msgbox for which t.time op valid is true, where op is any
of the standard comparison operators <, >, ≤, ≥, or =.
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Example 5.3 (STORE Revisited)
profilingprofilingprofiling agent should classify a user U with ssn S, and needs
credit information for U from the creditcreditcredit agent:

1. profilingprofilingprofiling sends to creditcreditcredit a message M1 of a special format,
e.g., a string "ask_provideCreditInfo_S_low," encoding the
request for S’s credit information:
sendMessagesendMessagesendMessage(profilingprofilingprofiling,creditcreditcredit, M1).

2. creditcreditcredit reads M1, using getMessagegetMessagegetMessage(profilingprofilingprofiling) (periodically, or
triggered by M1’s arrival), assembles a message M2 and
replies: sendMessagesendMessagesendMessage(creditcreditcredit,profilingprofilingprofiling, M2).

3. profilingprofilingprofiling reads M2, using getMessagegetMessagegetMessage(profilingprofilingprofiling) (e.g., triggered
by M2’s arrival), and uses M2 to construct the desired
UserProfile.
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Integrity Constraints

Recall: Each agent has an associated agent state,OOO, which is a set
of objects (of proper types).

• Not every set of such objects may be legal forOOO.

• OOO must satisfy axioms in general.

Definition 5.16 (Integrity Constraints ICICIC)
An integrity constraint IC is an expression of the form

ψ ⇒ χ

where ψ is a safe code call condition, and χ is an atomic code call
condition such that every root variable in χ occurs in ψ.

5.4 Agent Message Box 326



Chapter 5: IMPACT Architecture Combining Agents, ASP and Planning, NICTA 2003

Examples:

• S = 123_45_6789
⇒

not_in(((((((((spender(low), profilingprofilingprofiling :classifyUserclassifyUserclassifyUser(((S)))))))))))).

• in(((((((((spender(medium), profilingprofilingprofiling :classifyUserclassifyUserclassifyUser(((S)))))))))))))
⇒

not_in(((((((((spender(high), profilingprofilingprofiling :classifyUserclassifyUserclassifyUser(((S))))))))))))

• R.sat_id = sat_1 ⇒ R.2dloc.x ≥ 0.

• R1.2dloc.x = R2.2dloc.x &
R1.2dloc.y = R2.2dloc.y
⇒

R1.height = R2.height
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Integrity Constraint Satisfaction

Definition 5.17
Let OOOSSS be an agent state and IC = ψ ⇒ χ an integrity constraint.
Then OOOSSS satisfies IC, denoted OOOSSS |= IC, if for every legal
assignment of objects from OOOSSS to the variables in IC, either ψ is
false or χ is true.

Let ICICIC be a (finite) collection of integrity constraints IC, and let
OOOSSS be an agent state. Then OOOSSS satisfies ICICIC, denoted OOOSSS |= ICICIC, if
OOOSSS |= IC for every IC ∈ ICICIC.

Note: Integrity constraints are universally quantified.

Can express easily, e.g., functional dependencies in databases.
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5.5 Summary and References

In order to agentize legacy code, we must make the most
important datatypes and functions of it available.

1. The IMPACT code call mechanism abstract from given legacy
code, SSS, and declaratively describes its effects.

2. It provides functions fff named code calls: SSSSSSSSS : fff (((d1, . . . , dn))).

3. To encapsulate these functions in a logical language, we use
code call atomscode call atomscode call atoms: in(((((((((X,SSSSSSSSS : fff (((d1, . . . , dn)))))))))))).

4. Code call atoms can be conjoined, also with comparisons, and
enable code call conditions.

5. Safety ensures evaluability of code call conditions.
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Chapter 6. Actions and Agent
Programs

6.1 Action Base
6.2 Execution and Concurrency
6.3 Action Constraints
6.4 Agent Programs: Syntax
6.5 Status Sets
6.6 Feasible Status Sets
6.7 Rational Status Sets
6.8 Reasonable Status Sets
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Already considered:

Underlying Software Code:
Basic set of data structures and legacy code, SSS, on top of which
the agent is built.

The set of all such objects, across all the data types managed
by the software code, is called the state of the agent at time
ttt.

Integrity Constraints:
The agent has an associated finite set, ICICIC.
These integrity constraints reflect the expectations, on the
part of the designer of the agent, that the state of the agent
must satisfy.
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New
Actions:

Each agent has an associated set of actions.

An action is implemented by a body of code implemented in
any suitable imperative (or declarative) programming
language.

Action Constraints:
Prevent the agent from concurrently executing certain actions.
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Agent Programs:
An agent program is a set of rules, in a language defined below,
that an agent’s creator might use to specify the principles
according to which the agent behaves, and the policies
governing what actions the agent takes, from among a possible
plethora of possible actions.

In short, the agent program associated with an agent en-
codes the “do’s and don’t’s” of the agent.
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Agent Decision Cycle

1. At time t, the agent may receive a set of new messages. They
constitute a change to agent state.

2. The change may trigger some rules in the agent’s associated
Agent Program.

Based on the selected semantics for agent programs, the agent
makes a decision on what actions to actually perform, in
keeping with the rules governing its behavior encoded in its
associated Agent Program.

This computation is made by executing a program called
ComputeSemComputeSemComputeSem which computes the semantics of the agent.
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3. The actions that are supposed to be performed according to the
selected semantics are then concurrently executed, using the
notion of concurrency, conc, selected by the agent’s designer.

The agent’s state may (possibly) change as a consequence of
the performance of such actions. In addition, the message box
of other agents may also change.

4. The cycle continues perpetually.
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Algorithm 6.1 (Agent-Decision-Cycle)
Agent-Decision-Cycle(Curr: agent_state;

ICICIC: integrity constraint set;
ACACAC: action constraint set;
ABABAB : action base;
conc: notion of concurrency;
Newmsg: set of messages )

1. while true do
2. { DoSet := ComputeSemComputeSemComputeSem(Curr,ICICIC,ACACAC,ABABAB, conc,Newmsg);

(? find a set of actions to execute based on messages received ?)

3. Curr := result of executing the single action conc(DoSet); }
end.
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Example 6.1 (CFIT Example: Multiagent Interaction)
Every ∆ units of time, the autoPilotautoPilotautoPilot agent receives a message
from a clockclockclock agent. This message includes a “Wake” request
telling the autoPilotautoPilotautoPilot agent to wake up.

The agent program of autoPilotautoPilotautoPilot causes the wakewakewake action to be
executed, which in turn triggers other actions. These include:

• Executing an action sendMessagesendMessagesendMessage(gps, <service_request>) where
<service_request> of the gpsgpsgps agent requests the current plane
location.

• The gpsgpsgps agent executes getAllMsgsgetAllMsgsgetAllMsgs and retrieves the message
sent by autoPilotautoPilotautoPilot.
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• The decision program of gpsgpsgps executes this request and also
sendMessagesendMessagesendMessage(autoPilot, <answer>) where <answer> is the
answer to the request of autoPilotautoPilotautoPilot.

• autoPilotautoPilotautoPilot executes getAllMsgsgetAllMsgsgetAllMsgs and retrieves the message sent
by gpsgpsgps.

• The decision program of autoPilotautoPilotautoPilot checks if the plane
location sent by gpsgpsgps with the one of the flight plan.

– If yes, autoPilotautoPilotautoPilot executes the action sleepsleepsleep and goes to sleep
for another ∆ units of time.

– If not, autoPilotautoPilotautoPilot executes sendMessagesendMessagesendMessage(terrain, <request>)
where <request> requests the terrainterrainterrain agent to send the plane
elevation at its current location (gpsgpsgps) as well as the No_go
areas.
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• terrainterrainterrain executes getAllMsgsgetAllMsgsgetAllMsgs and retrieves the message sent
by autoPilotautoPilotautoPilot.

• The decision program of terrainterrainterrain executes this request and
also sendMessagesendMessagesendMessage(autoPilotautoPilotautoPilot, Ans) where Ans is the answer to
the request of autoPilotautoPilotautoPilot.

• autoPilotautoPilotautoPilot executes the getAllMsgsgetAllMsgsgetAllMsgs action and retrieves the
message sent by terrainterrainterrain.

• autoPilotautoPilotautoPilot then executes replanreplanreplan with the new (correct) plane
location and the terrain “no go” areas.
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6.1 Action Base

Definition 6.1 (Action; Action Atom)
An action ααα consists of six components:

Name: A name, usually written ααα(X1, . . . ,Xn), where the Xi’s are
root variables.

Schema: A schema, usually written as (τ1, . . . , τn), of types.
Intuitively, this says that the variable Xi must be of type τi,
for all 1 ≤ i ≤ n.

Action Code: This is a body of code that executes the action.
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Pre: A code-call condition χ, called the precondition of the
action, denoted by Pre(ααα) (Pre(ααα) must be safe modulo the
variables X1,. . . ,Xn);

Add: a set Add(ααα) of code-call conditions;

Del: a set Del(ααα) of code-call conditions.

An action atom is a formula ααα(t1, . . . , tn), where ti is a term, i.e., an
object or a variable, of type τi, for all i = 1, . . . , n.

Definition 6.2 (Action Base)
An action base, ABABAB, is any finite collection of actions.

6.1 Action Base 345



Chapter 6: Actions and Agent Programs Combining Agents, ASP and Planning, NICTA 2003

Item Classical AI IMPACT framework

Agent State Set of logical atoms Arbitrary data structures

Precondition Logical formula Code call condition

Add/delete list set of ground atoms Code call condition

Action Implementation Via add/delete lists Via arbitrary code

Action Reasoning Via add/delete lists Via add list and delete list

Comment 3 We assume that the precondition, add and delete lists
associated with an action, correctly describe the behavior of the action code
associated with the action.
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Example 6.2 (STORE Example Revisited)
The profilingprofilingprofiling agent might have the following action:

Name: update_highProfileupdate_highProfileupdate_highProfile(Ssn, Name, Profile)

Schema: (String, String, UserProfile)

Pre: in(((((((((spender(high), profilingprofilingprofiling :classifyUserclassifyUserclassifyUser(((Ssn))))))))))))

Del: in(((((((((〈Ssn, Name, OldProfile〉, profilingprofilingprofiling :allallall(((′highProfile ′))))))))))))

Add: in(((((((((〈Ssn, Name, Profile〉, profilingprofilingprofiling :allallall(((′highProfile ′))))))))))))
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This action updates the user profiles of those users who are high
spenders.

In order to determine the high spenders, it first invokes the
classifyUserclassifyUserclassifyUser code call.

After obtaining the target list of users, it updates entries of
those users in the profile database.

The profilingprofilingprofiling agent may also have similar actions for low and
medium spenders.
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Example 6.3 (CFIT Revisited)
Suppose the autoPilotautoPilotautoPilot agent in the CFIT example has the following
action for computing the current plane location:

Name: compute_currentLocationcompute_currentLocationcompute_currentLocation(Report)

Schema: (SatelliteReport)
Pre: in(((((((((Report,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, "Report"))))))))))))
Del: in(((((((((OldLoc,autoPilotautoPilotautoPilot : locationlocationlocation((()))))))))))).
Add: in(((((((((NewLoc,autoPilotautoPilotautoPilot : locationlocationlocation((())))))))))))&

in(((((((((FlightRoute,autoPilotautoPilotautoPilot :getFlightRoutegetFlightRoutegetFlightRoute((())))))))))))&
in(((((((((Velocity,autoPilotautoPilotautoPilot :velocityvelocityvelocity((())))))))))))&

in(((((((((NewLoc,autoPilotautoPilotautoPilot :calculateLocationcalculateLocationcalculateLocation(((OldLoc, FlightRoute, Velocity))))))))))))
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This action requires a satellite report, which is produced by the
gpsgpsgps agent by merging the GPS Data.

Then, it computes the current location of the plane based on this
report as well as the allocated flight route of the plane.
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6.2 Execution and Concurrency of Actions

What is the result of executing an action?

Definition 6.3 ((θ, γ)-Executability)
Let ααα( ~X) be an action and SSS = (TTTTTTTTT SSS ,FFFFFFFFFSSS ,CCCCCCCCCSSS) a software code.
A ground instance ααα( ~X)θ of ααα( ~X) is executable in state OOOSSS , if, by
definition, there exists a solution γ of Pre(ααα( ~X))θ w.r.t. OOOSSS .
In this case, ααα( ~X) is (θ, γ)-executable in state OOOSSS , and (ααα( ~X), θ, γ)
is a feasible execution triple (FET for OOOSSS .

By ΘΓ(ααα( ~X),OOOSSS) we denote the set of all pairs (θ, γ) such
that (ααα( ~X), θ, γ) is a FET in state OOOSSS .
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Comment 4 Intuitively, in ααα( ~X), the substitution θ

causes all variables in ~X to be grounded.
However, it is entirely possible that the precondition of

ααα has occurrences of other free variables not occurring in
~X.

Appropriate ground values for these variables are
given by solutions of Pre(ααα( ~X)θ) with respect to the cur-
rent stateOOOSSS .

These variables can be viewed as “hidden parameters”
in the action specification, whose value is of less interest
for an action to be executed.
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Action Execution

Definition 6.4
Let (ααα( ~X), θ, γ) be a FET in state OOOSSS . Then the result of
executing ααα( ~X) w.r.t. (θ, γ) is the state

apply((ααα( ~X), θ, γ),OOOSSS) = ins(OaddOaddOadd,del(OdelOdelOdel,OOOSSS)),

where OaddOaddOadd = OOO_Sol(Add(ααα( ~X)θ)γ) and
OdelOdelOdel = OOO_Sol(Del(ααα( ~X)θ)γ);

i.e., the state resulting if first all objects in solutions of call
conditions from Del(ααα( ~X)θ)γ on OOOSSS are removed, and then all
objects in solutions of call conditions from Add(ααα( ~X)θ))γ on OOOSSS
are inserted.
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Concurrent Actions

Example 6.4 (Concurrency)
Consider the set of actions ACS = {ααα1,ααα2} on an agent state OOOSSS ,
where

ααα1: Pre: in(((((((((val,aaa : fff ((())))))))))))
Del: in(((((((((val,aaa : fff ((())))))))))))

Add: {}

ααα2: Pre: in(((((((((val,aaa : fff ((())))))))))))
Del: {}

Add: {}

where in(((((((((val,aaa : fff ((()))))))))))) is true in OOOSSS .

Problem: Executing ααα1 effects that ααα2 is no longer exe-
cutable.

There are many ways to resolve this. This leads to a notion
of concurrency
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Definition 6.5
A notion of concurrency is a function, conc, that takes, as input,
a state OOOSSS and a set of execution triples AS, and returns, as
output, a single execution triple such that:

1. if AS = {ααα} is a singleton action, then conc(OOOSSS , ASi) = ααα.

2. if AS1 ⊆ AS2 and conc(OOOSSS , ASi) = (αααi( ~Xi), θi, γi) for i = 1, 2,
and ααα2 is (θ2, γ2)-executable in state OOOSSS , then ααα1 is (θ2, γ2)
executable in state OOOSSS .
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Some Notions of Concurrency

Suppose AS = {α1, . . . , αn} is a set of actions.

• Weakly Concurrent Execution (Naive):
Takes add/del list of all actions αi and executes them in
parallel. (linear complexity in propositional case)

• Sequential-Concurrent Execution:
Take some executable sequence απ(1),. . .απ(n).
(nondeterministic; NP-complete)

• Full-Concurrent Execution: Checks that every sequence
απ(1),. . .απ(n) is executable. (coNP-complete)

Other notions of concurrency might be used in IMPACT by the
agent developer.
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• Recall: ins and del are the generic insertion and deletion
function

• apply(ACS,OOOSSS):

For any set ACS of actions, the execution of AS onOOOSSS is the
execution of the set

{(ααα( ~X), θ, γ) | ααα(~t) ∈ AS, ααα( ~X)θ = ααα(~t)θ ground, (θ, γ) ∈ ΘΓ(ααα( ~X))}

of all FETs stemming from some grounded action in AS.

Then, apply(AS,OOOSSS) denotes the resulting state.
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Definition 6.6 (Weakly Concurrent Execution)
Suppose AS is a set of FETs in the agent state OOOSSS . The weakly
concurrent execution of AS in OOOSSS , is defined to be the agent
state

apply(AS,OOOSSS) =def ins(OaddOaddOadd,del(OdelOdelOdel,OOOSSS)),

where

OaddOaddOadd =def

⋃
(ααα( ~X),θ,γ)∈AS

OOO_Sol(Add(ααα( ~X)θ)γ),

OdelOdelOdel =def

⋃
(ααα( ~X),θ,γ)∈AS

OOO_Sol(Del(ααα( ~X)θ)γ).
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Definition 6.7 (Sequential-Concurrent Execution)
Let AS =def {(αααi( ~Xi, θi, γi)) | 1 ≤ i ≤ n} be a set of FETs on state
OOOSSS . Then, AS is S-concurrently executable in OOOSSS , if a
permutation π of AS and a sequence of states OOO0

SSS , . . . ,OOOn
SSS exist

where:

• OOO0
SSS =OOOSSS and

• αααπ(i)( ~Xπ(i)) is (θπ(i), γπ(i))-executable in the state OOOi−1
SSS , for all

1 ≤ i ≤ n, and

• OOOi
SSS = apply(( ~Xπ(i), θπ(i), γπ(i)),OOOi−1

SSS ), or all 1 ≤ i ≤ n.

Such AS is π-executable , and OOOn
SSS is the result of executing AS[π].
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An action set ACS is S-concurrently executable on OOOSSS , if
{(ααα( ~X), θ, γ) | ααα(~t) ∈ ACS , ααα( ~X)θ = ααα(~t)θ ground, (θ, γ) ∈ ΘΓ(ααα( ~X))}
is S-concurrently executable on OOOSSS .
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Definition 6.8 (Full-Concurrent Execution)
Let AS =def {(αααi( ~Xi, θi, γi)) | 1 ≤ i ≤ n} be a set of FETs and OOOSSS
an agent state. Then, AS is is F -concurrently executable in state
OOOSSS , if and only if:

1. For every permutation π, AS is π-executable.

2. For any two permutations π1, π2 of AS, the final states AS[π1]
and AS[π2], respectively, which result from the executions are
identical.

A set ACS of actions is F -concurrently executable on the agent
state OOOSSS , if the set
{(ααα( ~X), θ, γ) | ααα(~t) ∈ ACS ,ααα( ~X)θ = ααα(~t)θground, (θ, γ) ∈ ΘΓ(ααα( ~X))},
is F -concurrently executable on OOOSSS .
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Example 6.5 (Concurrency revisited)
Consider the set of actions ACS = {ααα1,ααα2} on an agent state OOOSSS ,
where

ααα1: Pre: in(((((((((val,aaa : fff ((())))))))))))
Del: in(((((((((val,aaa : fff ((())))))))))))

Add: {}

ααα2: Pre: in(((((((((val,aaa : fff ((())))))))))))
Del: {}

Add: {}

where in(((((((((val,aaa : fff ((()))))))))))) is true in OOOSSS .

• weakly concurrent execution of ACS makes in(((((((((val,aaa : fff ((())))))))))))
false in the agent state.

• ACS is S-concurrently executable: π = ααα2,ααα1

• ACS is not F -concurrently executable: for π = identity, ACS
is not S-concurrently executable.
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Comment 5 Throughout the rest of this course, we will assume
that the developer of an agent has chosen some notion, conc , of
concurrent action execution for his agent.

This may vary from one agent to another, but each agent uses a
single notion of concurrency. Thus, when talking of an agent aaa, the
phrase

“AS is concurrently executable”

is to be considered to be synonymous with the phrase

“AS is concurrently executable w.r.t. the notion conc used by
agent aaa.”
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6.3 Action Constraints

In some cases, the concurrent execution of certin actions might not
be desired.

Example 6.6 (STORE Example)
Reconsider the profilingprofilingprofiling agent.

1. If a user is classified as a high spender, then the profilingprofilingprofiling

agent cannot execute update_highProfileupdate_highProfileupdate_highProfile and update_lowProfileupdate_lowProfileupdate_lowProfile
concurrently.

2. The profilingprofilingprofiling agent cannot classify a user profile, if it is
simultaneously updating the profile of that user.

6.3 Action Constraints 363



Chapter 6: Actions and Agent Programs Combining Agents, ASP and Planning, NICTA 2003

Definition 6.9 (Action Constraint)
An action constraint AC is an expression of the form:

{ααα1( ~X1), . . . ,αααk( ~Xk)} ←↩ χ (6.1)

where ααα1( ~X1), . . . ,αααk( ~Xk) are action names, and χ is a code call
condition.
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Example 6.7 (STORE Example Revisited)
The following are action constraints for the above restrictions on
the profilingprofilingprofiling agent:

1.
{update_highProfileupdate_highProfileupdate_highProfile(Ssn1, Name1, profile),

update_lowProfileupdate_lowProfileupdate_lowProfile(Ssn2, Name2, profile) }←↩

in(((((((((spender(high), profilingprofilingprofiling :classifyUserclassifyUserclassifyUser(((Ssn1))))))))))))&
Ssn1 = Ssn2 & Name1 = Name2

2.
{update_userProfileupdate_userProfileupdate_userProfile(Ssn1, Name1, Profile),

classify_userclassify_userclassify_user(Ssn2, Name2) }←↩

Ssn1 = Ssn2 & Name1 = Name2
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Definition 6.10 (Action Constraint Satisfaction)
A set S of ground actions satisfies an action constraint
AC : {ααα1( ~X1), . . . ,αααk( ~Xk)} ←↩ χ on a state OOOSSS , denoted
S,OOOSSS |= AC, if there is no legal assignment θ of objects in OOOSSS to
the variables in ACACAC such that χθ is true and {ααα1( ~X)θ, . . . , αααk( ~X)θ}
⊆ S holds.

S satisfies a set ACACAC of actions constraints on OOOSSS , denoted
S,OOOSSS |=ACACAC, if S,OOOSSS |= AC for every AC ∈ ACACAC.

Note: Action constraint satisfaction is hereditary w.r.t. the
set of actions involved, i.e., S,OOOSSS |=ACACAC implies that S′,OOOSSS |=
ACACAC, for every S′ ⊆ S.
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6.4 Agent Programs: Syntax
Thus far, we have introduced the following important concepts:

Software Code Calls (SSSSSSSSS : fff (((a1, . . . , an)))): this provides a single
framework within which the interoperation of diverse pieces of
software may be accomplished;

Software/Agent states (OOOSSS): this describes exactly what data
objects are being managed by a software package at a given
point in time;

Integrity Constraints (ICICIC): this specifies exactly which software
states are “valid” or “legal”;
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Action Base (ABABAB): this is a set of actions that an agent can
physically execute (if the preconditions of the action are
satisfied by the software state);

Concurrency Notion (conc): this is a function that merges
together a set of actions an agent is attempting to execute into
a single, coherent action;

Action Constraints (ACACAC): this specifies whether a certain set of
actions is incompatible.
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Definition 6.11 (Action Status Atom)
Suppose ααα(~t) is an action atom, where ~t is a vector of terms
(variables or objects) matching the type schema of ααα. Then, the
formulas P(ααα(~t)), F(ααα(~t)), O(ααα(~t)), W(ααα(~t)), and Do (ααα(~t)) are
action status atoms.

• Pααα means that the agent is permitted to take action ααα;

• Fααα means that the agent is forbidden from taking ααα;

• Oααα means that the agent is obliged to take action ααα;

• Wααα means that obligation to take action ααα is waived; and,

• Doααα means that the agent does take action ααα.

The set AS = {P,F,O, W,Do } is called the action status
set .
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Definition 6.12 (Action Rule)
An action rule (rule, for short) is a clause r of the form

Opααα(~t)← L1, . . . , Ln (6.2)

where Opααα(~t) is an action status atom, and each of L1, . . . , Ln is
either an action status atom, or a code call atom, each of which
may be preceded by a negation sign (¬).

We require that each rule r be safe in the sense that:

1. Bcc(r) is safe modulo the root variables occurring explic-
itly in B+

as(r), and

2. the root of each variable in r occurs in Bcc(r) ∪B+
as(r).
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• All variables in a rule r are implicitly universally quantified at
the front of the rule.

• A rule is positive, if no negation sign occurs in front of an
action status atom.

• For any rule r of the form (6.2), we denote by

– H(r), the atom in the head of r,

– B(r), the collection of literals in the body;

– B−(r) the negative literals in B(r),

– B+(r) the positive literals in B(r),

– ¬.B−(r) the atoms of the negative literals in B−(r).

• Finally, the index as (resp., cc) for any of these sets denotes
restriction to the literals involving action status atoms (resp.,
code call atoms).
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Definition 6.13 (Agent Program)
An agent program PPP is a finite collection of rules.

An agent program PPP is positive, if all its rules are positive.
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Example 6.8 (Simple Driving Example)
Consider an agent drivingdrivingdriving in an autonomous car.

Capability: Select the correct driving lane out of {l_lane, r_lane}
to go in, depending on the agent state.

• Software code: lane status database
Code call statusstatusstatus : free_lanesfree_lanesfree_lanes((())) returns the free lanes.

• Actions:
go_rightmostgo_rightmostgo_rightmost : Pre: void

Add = Del = ∅

drivedrivedrive(X): Pre: in(((((((((X , statusstatusstatus : free_lanesfree_lanesfree_lanes((())))))))))))
Add: go_in(X)

Del: go_in(Y )
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Agent Program:

r1 : O(go_rightmostgo_rightmostgo_rightmost)←

r2 : O(drivedrivedrive(r_lane))← Do (go_rightmostgo_rightmostgo_rightmost)

r3 : F(drivedrivedrive(X ))← not_in(((((((((X , statusstatusstatus : free_lanesfree_lanesfree_lanes((())))))))))))
r4 : Do (drivedrivedrive(l_lane))← in(((((((((l_lane, statusstatusstatus : free_lanesfree_lanesfree_lanes((())))))))))))&

F(drivedrivedrive(r_lane))

Note: r1 encodes the “Go Rightmost” norm

Agent program selects, by its semantics (introduced below), for
each lane status the proper lane to go in.

6.4 Agent Programs: Syntax 374



Chapter 6: Actions and Agent Programs Combining Agents, ASP and Planning, NICTA 2003

6.5 Status Sets

If an agent uses an agent program PPP, the question that the agent
must answer, over and over again is:

What is the set of all action status atoms of the form Doααα
that are true with respect to PPP, the current state, OOOSSS , the
underlying set ACACAC of action constraints, and the set ICICIC of
underlying integrity constraints on agent states?

This defines the set of actions that the agent must execute
concurrently.
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Definition 6.14 (Status Set)
A status set is any set S of ground action status atoms over SSS.
For any operator Op ∈ {P,Do ,F,O,W }, we denote by Op(S)
the set Op(S) = {ααα | Op(ααα) ∈ S}.

Informally, a status set S represents information about the
status of ground actions. If some atom Op(ααα) occurs in S,
then this means that the status Op is true for ααα.

Note: status sets are not a semantics for agent programs, but our
semantics for Agent Programs build on them.

Intuitively, a “feasible” status set consists of assertions about the
status of actions compatible with (but are not necessarily enforced)
the rules of the agent program and the underlying action and
integrity constraints.
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Deontic and Action Consistency

Definition 6.15
A status set S is called deontically consistent, if it satisfies the
following rules for every ground action ααα:

• If Oααα ∈ S, then Wααα /∈ S

• If Pααα ∈ S, then Fααα /∈ S

• If Pααα ∈ S, then OOOSSS |= ∃∗Pre(ααα)
∃∗Pre(ααα) . . . existential closure of Pre(ααα),
This ensures that ααα is executable in OOOSSS .

A status set S is called action consistent, if S,OOOSSS |=ACACAC holds.
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Deontic and Action Closure

Besides consistency, we also wish that the presence of certain
atoms in S entails the presence of other atoms in S.

For example, if Odrivedrivedrive(r_lane) is in S, then we expect that
Pdrivedrivedrive(r_lane) is in S.

Definition 6.16 (Deontic Closure)
deontic closure of a status set S, denoted D-Cl(S), is the closure
of S under the rule

If Oααα ∈ S, then Pααα ∈ S,

where ααα is any ground action.

S is deontically closed , if S = D-Cl(S).
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Definition 6.17 (Action Closure)
The action closure of a status set S, denoted A-Cl(S), is the
closure of S under the rules

If Oααα ∈ S, then Doααα ∈ S,

If Doααα ∈ S, then Pααα ∈ S,

where ααα is any ground action.

Status S is action-closed, if S = A-Cl(S).
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Proposition 6.1
Let S be a status set. Then,

1. A-Cl(S) = S implies D-Cl(S) = S

2. D-Cl(S) ⊆ A-Cl(S), for all S.

A status set S which is consistent and closed is certainly a
meaningful assignment of a status to each ground action.

Note that we may have ground actions ααα that do not occur
anywhere within a status set—this means that no commitment
about the status of ααα has been made.

The following definition specifies how we may “close” up a status
set under the rules expressed by an agent program PPP.
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Definition 6.18 (Operator AppPPP,OOOSSS
(S))

Suppose PPP is an agent program, and OOOSSS is an agent state. Then,
AppPPP,OOOSSS

(S) is defined to be the set of all ground action status
atoms A such that there exists a rule in P having a ground
instance of the form r : A← L1, . . . , Ln such that

1. B+
as(r) ⊆ S and ¬.B−as(r) ∩ S = ∅, and

2. every code call χ ∈ B+
cc(r) succeeds in OOOSSS , and

3. every code call χ ∈ ¬.B−cc(r) does not succeed in OOOSSS , and

4. for every atom Op(ααα) ∈ B+(r) ∪ {A} such that
Op ∈ {P,O,Do }, the action ααα is executable in state OOOSSS .
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6.6 Feasible Status Sets

The above notions, combined together, give a formal notion
of “feasible” status set.

Definition 6.19 (Feasible Status Set)
Let PPP be an agent program and OOOSSS an agent state. A status set S
is a feasible status set for PPP on OOOSSS , if the following holds:

(S1) AppPPP,OOOSSS
(S) ⊆ S;

(S2) S is deontically and action consistent;

(S3) S is action closed and deontically closed;

(S4) OOO′SSS |= ICICIC, where OOO′SSS = apply(Do (S),OOOSSS) is the state which
results after taking the actions in Do (S) on OOOSSS (state
consistency).
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In general, action programs may have one, zero, or several feasible
status sets.

Example 6.9 (Simple Driving Example Revisited)
Let OOOSSS be such that statusstatusstatus : free_lanesfree_lanesfree_lanes((())) = {l_lane, r_lane}.

Consider S = { Ogo_rightmostgo_rightmostgo_rightmost , Dogo_rightmostgo_rightmostgo_rightmost , Pgo_rightmostgo_rightmostgo_rightmost ,
Odrivedrivedrive(r_lane), Dodrivedrivedrive(r_lane), Pdrivedrivedrive(r_lane) }.

• (S1):

AppPPP,OOOSSS
(S) = { Ogo_rightmostgo_rightmostgo_rightmost︸ ︷︷ ︸

rule r1

, Odrivedrivedrive(r_lane)︸ ︷︷ ︸
rule r2

} ⊆ S
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• (S2): Obviously, S is deontically and action consistent.

• (S3): A-Cl(S) = S, thus S is action and deontically closed.

• (S4): state consistency holds (no integrity constraints).
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Example 6.10
The following (artificial) example shows that some agent
programs may have no feasible status sets at all.

Pααα ←

Fααα ←

Clearly, if the current object state allows ααα to be executable,
then no status set can satisfy both the closure under program
rules requirement, and the deontic consistency requirement.
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Some Properties of Feasible Status Sets

Proposition 6.2
Let S be a feasible status set. Then,

1. If Do (ααα) ∈ S, then OOOSSS |= Pre(ααα);

2. If Pααα /∈ S, then Do (ααα) /∈ S;

3. If Oααα ∈ S, then OOOSSS |= Pre(ααα);

4. If Oααα ∈ S, then Fααα /∈ S.
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6.7 Rational Status Sets

Feasible status sets may include status assignments that are not
strictly enforced.

Example 6.11 (Simple Driving Example)
Let again OOOSSS be such that statusstatusstatus : free_lanesfree_lanesfree_lanes((())) = {l_lane, r_lane}.

Consider S′ = { Ogo_rightmostgo_rightmostgo_rightmost , Dogo_rightmostgo_rightmostgo_rightmost , Pgo_rightmostgo_rightmostgo_rightmost ,
Odrivedrivedrive(r_lane), Dodrivedrivedrive(r_lane), Pdrivedrivedrive(r_lane),
Pdrivedrivedrive(l_lane) }.

• S′ is a feasible status set.

• Pdrivedrivedrive(l_lane) may be omitted (no “reason” to include it)
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Principle: Each atom Opα in S must be “founded” through
(i) a rule in the agent program, or (ii) through action/deontic
closure rules.

In particular, if execution of actions must be founded.

The notion of a rational status set is postulated to accommodate
this kind of reasoning.

Definition 6.20 (Groundedness; Rational Status Set)
A status set S is grounded, if there exists no status set S′ 6= S

such that S′ ⊆ S and S′ satisfies conditions (S1)–(S3) of a
feasible status set.

A status set S is a rational status set, if S is a feasible
status set and S is grounded.
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Example 6.12 (Driving Example Continued)
Let again OOOSSS be such that statusstatusstatus : free_lanesfree_lanesfree_lanes((())) = {l_lane, r_lane}.

The set S = { Ogo_rightmostgo_rightmostgo_rightmost , Dogo_rightmostgo_rightmostgo_rightmost , Pgo_rightmostgo_rightmostgo_rightmost ,
Odrivedrivedrive(r_lane), Dodrivedrivedrive(r_lane), Pdrivedrivedrive(r_lane) }.

is a rational status set:

• S is a feasible status set

• Rules r1 and r must fire in any feasible status set

• Thus, by (S1) and (S3) no smaller status set satisfying
(S1)-(S3) exists.
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Note: Groundedness does not include condition (S4) of a feasible
status set.

A moment of reflection will show that omitting this condition is
indeed appropriate.

Recall that the integrity constraints must be maintained when the
current agent state is changed into a new one.

If we were to include the condition (S4) in groundedness, it
may happen that the agent is forced to execute some actions
which the program does not mention, just in order to main-
tain the integrity constraints.
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We define, for every positive program PPP and agent stateOOOSSS , an
operator TPPP,OOOSSS that maps a status set S to another status set.

Definition 6.21 (TPPP,OOOSSS Operator)
Suppose PPP is an agent program and OOOSSS an agent state. Then, for
any status set S,

TPPP,OOOSSS (S) = AppPPP,OOOSSS
(S) ∪D-Cl(S) ∪A-Cl(S).
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Lemma 6.1
Let PPP be an agent program, let OOOSSS be any agent state, and let S
be any status set. If S satisfies (S1) and (S3) of feasibility, then
S is pre-fixpoint of TPPP,OOOSSS , i.e., TPPP,OOOSSS (S) ⊆ S.

Theorem 6.1
Let PPP be a positive agent program, and let OOOSSS be an agent state.
Then, S is a rational status set of PPP on OOOSSS , if and only if
S = lfp(TPPP,OOOSSS ) and S is a feasible status set.

Corollary 3
Let PPP be a positive agent program. For every agent state OOOSSS , the
rational status set of PPP (if one exists) is unique, i.e., if S, S′ are
rational status sets for PPP on OOOSSS , then S = S′.
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Example 6.13 (Simple Driving Example revisited)
Clearly, the program PPP of the drivingdrivingdriving agent is positive.

Let again OOOSSS be such that statusstatusstatus : free_lanesfree_lanesfree_lanes((())) = {l_lane, r_lane}.

TPPP,OOOSSS (∅) = AppPPP,OOOSSS
(∅) ∪D-Cl(∅) ∪A-Cl(∅)

= {Ogo_rightmostgo_rightmostgo_rightmost , Odrivedrivedrive(r_lane)} (=: S1);

TPPP,OOOSSS (S1) = AppPPP,OOOSSS
(S1) ∪D-Cl(S1) ∪A-Cl(S1)

= {Ogo_rightmostgo_rightmostgo_rightmost , Dogo_rightmostgo_rightmostgo_rightmost , Pgo_rightmostgo_rightmostgo_rightmost ,

Odrivedrivedrive(r_lane), Dodrivedrivedrive(r_lane), Pdrivedrivedrive(r_lane)} (=: S2);

TPPP,OOOSSS (S2) = AppPPP,OOOSSS
(S2) ∪D-Cl(S2) ∪A-Cl(S2)

= S2
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S2 coincides with the feasible status set S above. Thus, by
Theorem 6.1, S is a rational status set on OOOSSS . Moreover, S is the
unique rational status set.

6.7 Rational Status Sets 394



Chapter 6: Actions and Agent Programs Combining Agents, ASP and Planning, NICTA 2003

Note: Corollary 3 is no longer true in the presence of negated
action status atoms.

We observe the following property on the existence of a (not
necessarily unique) rational status set.

Proposition 6.3
Let PPP be an agent program. If ICICIC = ∅, then PPP has a rational status
set if and only if PPP has a feasible status set.

Example 6.14 (Simple Driving Example revisited)
Since ICICIC = ∅ and S is a feasible status set on the agent state, we
can immediately infer that the agent program has a rational
status set.
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6.8 Reasonable Status Sets

Observation: For agent programs with negation,
rational status sets allow logical contraposition of the program

rules.

Example 6.15
Consider the following program:

Do (ααα) ← ¬Do (βββ).

It has two rational status sets: S1 = {Do (ααα),P(ααα)}, and
S2 = {Do (βββ),P(βββ)}.
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S2 is obtained by applying the contrapositive of the rule:

Do (βββ) ← ¬Do (ααα)

However, S2 seems less intuitive than S1 as there is no explicit
rule in the above program for deriving Do (βββ).
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We now introduce the concept of a reasonable status set.
Note: If contraposition is desired, then the rational status
set approach rather than the reasonable status set approach
should be used.
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Definition 6.22 (Reasonable Status Set)
Let PPP be an agent program, OOOSSS an agent state, and S a status set.

1. If PPP is positive, then S is a reasonable status set for PPP on
OOOSSS , iff S is a rational status set for PPP on OOOSSS .

2. The reduct of PPP w.r.t. S and OOOSSS , denoted by redS(PPP,OOOSSS), is
the program resulting from the ground instances of the rules
in PPP over OOOSSS as follows.

(a) First, remove every rule r such that B−as(r) ∩ S 6= ∅;

(b) Remove all atoms in B−as(r) from the remaining rules.

Then S is a reasonable status set for PPP w.r.t. OOOSSS , if it is a
reasonable status set of the program redS(PPP,OOOSSS) w.r.t. OOOSSS .
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Example 6.16
Consider the program PPP:

{ Doβββ ← ¬Doααα }.

The reduct of PPP w.r.t. S = {Doβββ,Pβββ} on agent state OOOSSS is the
program

redS(PPP,OOOSSS) = { Doβββ ← }.

Clearly, S is the unique rational status set of redS(PPP,OOOSSS), and
thus a reasonable status set of redS(PPP,OOOSSS).

Hence, S is a reasonable status set of PPP .
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Proposition 6.4
Let PPP be an agent program and OOOSSS an agent state. Then, every
reasonable status set of PPP on OOOSSS is a rational status set of PPP on
OOOSSS .
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Knowledge representation

Reasonable status sets have some benefits with respect to
knowledge representation. For example, the rule

Doααα← ¬Fααα (6.3)

says that action ααα is executed by default (assuming its pre-
condition succeeds), unless it is explicitly forbidden.

Moreover, reasonable (and rational) status sets are closely related
to logic programming semantics:

• Reasonable status sets correspond to answer sets in LP.

• Rational status sets correspond to minimal models in LP.

6.8 Reasonable Status Sets 402



Chapter 6: Actions and Agent Programs Combining Agents, ASP and Planning, NICTA

6.9 Summary
This chapter was about the decision making component of an
agent:
How to decide what actions to take given the current state
of the world?

1. We introduced actions ααα.

(a) Much like the classical STRIPS-approach: instead of logical
atoms, we consider code call atoms. Actions are
implemented by code.

(b) How to concurrently execute actions? We assume given
conc.

(c) Actions do have a status: {P,F,O, W,Do }.
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2. The semantics is given by certain status sets of an agent
program:

(a) An agent program consists of rules
Opααα← Opβ1β1β1, . . . ,Opβnβnβn, ccc1, . . . , cccn.

(b) A feasible status set is a set of status atoms
{Op1α1α1α1, . . . ,Opnαnαnαn} satisfying certain properties.

(c) Rational status sets = Feasible + Groundedness
(d) Reasonable status sets = Rational + Contraposition not

allowed
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Chapter 7. Implementing
Agents

7.1 Weakly Regular Agents
7.2 Regular Agents
7.3 IADE
7.4 The Gofish Post Office
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7.1 Weakly Regular Agents

Issues:

1. An agent program may have no reasonable status set (RSS)
because of

• Deontic conflicts: e.g. Pα← , Fα←.

• Unstable negation: e.g. Do ← ¬Doα.

2. RSS Semantics is intractable:

We want a class of agent programs with guaranteed
polynomially computable RSS.

⇒ Regular Agents
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First step: Weakly Regular Agent
Programs (WRAPs)

Three basic properties:

1. Strong Safety: Rules are safe, and furthermore code call
conditions must some additional conditions which ensure that
they always return finite answers.

2. Conflict-Freedom: no deontic conflicts

3. Deontic Stratifiability: graceful layering in the spirit of
stratification in logic programs, to prevents problems with
negation.

However, deontic stratification is more complex than ordinary
stratification (due to deontic modalities).
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7.1.1 Strong Safety

Safety is a syntactic compile-time check.

Safe code call conditions may lead to infinite results at run time.

Examples:

in(((((((((X,mathmathmath :geqgeqgeq(((25))))))))))))

in(((((((((X,mathmathmath :geqgeqgeq(((25)))))))))))) & in(((((((((Y,mathmathmath :squaresquaresquare(((X)))))))))))) & Y ≤ 2000.

Note: Determining whether a function call has finite result
is undecidable

⇒ requires additional input
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Agent developer must specify a finiteness table FINTAB of entries

(SSSSSSSSS : fff (((a1, . . . , an))),<b-pattern>)

where SSSSSSSSS : fff (((a1, . . . , an))) is a code call of the underlying software code
and <b-pattern> is binding pattern.

Definition 7.1 (Binding Pattern)
A binding pattern for a code call SSSSSSSSS : fff (((a1, . . . , an))) is a tuple
(bt1, . . . , btn) where each bti (called a binding term) is either:

1. A value of type the τi of ai, or

2. [, denoting that this argument is bound to an unknown value.
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Example 7.1 (Finiteness Table for AutoPilot Agent)

Code Call Pattern

autoPilotautoPilotautoPilot :readGPSDatareadGPSDatareadGPSData(((SensorId))) ([)

autoPilotautoPilotautoPilot :calculateLocationcalculateLocationcalculateLocation(((Location, FlightRoute, Speed))) ([, [, [)

autoPilotautoPilotautoPilot :calculateNFlightRoutescalculateNFlightRoutescalculateNFlightRoutes(((CurrentLocation, No_go, N))) ([, [, 1)

autoPilotautoPilotautoPilot :calculateNFlightRoutescalculateNFlightRoutescalculateNFlightRoutes(((CurrentLocation, No_go, N))) ([, [, 2)

autoPilotautoPilotautoPilot :calculateNFlightRoutescalculateNFlightRoutescalculateNFlightRoutes(((CurrentLocation, No_go, N))) ([, [, 3)

Note: autoPilotautoPilotautoPilot :readGPSDatareadGPSDatareadGPSData(((·))) and
autoPilotautoPilotautoPilot :calculateLocationcalculateLocationcalculateLocation(((· · ·))) always return a finite number of
answers.
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Subsumption between binding patterns

Definition 7.2 (Ordering on Binding Patterns)
Binding pattern B = (bt1, . . . , btn) is equally or less informative
than binding pattern B′ = (bt′1, . . . , bt

′
n), denoted B � B′, if, by

definition, for all 1 ≤ i ≤ n, bti ≤ bt′i.

B = (bt1, . . . , btn) is more informative than B′ = (bt′1, . . . , bt
′
n), if

B′ � B but not B � B.

Trivial:

• ([, [, . . . , [) is unique least informative binding

• Each tuple (v1, . . . , vn) of objects is a maximal informative
binding pattern.
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Definition 7.3 (Finiteness)
Let FINTAB be a finite finiteness table and B = (bt1, . . . , btn) a
binding pattern associated with the code call SSSSSSSSS : fff (((· · ·))). Then
FINTAB is said to entail the finiteness of SSSSSSSSS : fff (((bt1, . . . , btn))) if, by
definition, there exists an entry of the form
〈SSSSSSSSS : fff (((. . .))), (bt′1, . . . , bt′n)〉 in FINTAB such that (bt1, . . . , btn) is more
informative than (bt′1, . . . , bt

′
n).

Example 7.2 (CFIT Example)
FINTAB entails the finiteness of autoPilotautoPilotautoPilot :readGPSDatareadGPSDatareadGPSData(((5))), but it
does not entail the finiteness of
autoPilotautoPilotautoPilot :calculateNFlightRoutescalculateNFlightRoutescalculateNFlightRoutes(((〈221, 379, 433〉, ∅, 0))) (since this
may have an infinite number of answers),
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Achieved: finiteness of a code call
of the form SSSSSSSSS : fff (((. . .))).

More complex: strong safety of a code call condition.

Infinite answers due to (1) infinity of the complementary code call
or (2) infinitely decreasing value chains in comparisons.

Assumptions:

1. Function Complement. Every function f has a complement fff
(to be considerd in the finiteness table).

2. Downward Finiteness of types. Type τ has the downward
finiteness property, if it has an associated partial ordering ≤
such that for all objects x of type τ , the set {o′ | o′ is an object
of type τ and o′ ≤ o} is finite.

7.1 Weakly Regular Agents 413



Chapter 7: Implementing Agents: An application Combining Agents, ASP and Planning, NICTA 2003

Strongly Safe Actions and Programs

Definition 7.4 (Strongly Safe Action)
An action ααα( ~X) is strongly safe w.r.t. FINTAB, if Preααα( ~X) is
strongly safe modulo ~X, and each code call from Add(ααα( ~X) and
Del(ααα( ~X) is strongly safe modulo ~Y , where ~Y includes all root
variables in ~X and Preααα( ~X).

Intuition: We should be able to check whether a (ground)
action is safe by evaluating its precondition. If so, we should
be able to evaluate the effects of executing the action.
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Definition 7.5 (Strongly Safe Agent Program)
A rule r is strongly safe, if it is safe, and Bcc(r) is a strongly safe
code call condition.

An agent program is strongly safe, if all rules in it are strongly
safe.

Important basic notion:

Definition 7.6 (Strong Safety of Code Call Conditions)
A safe code call condition χ = χ1 & . . .&χn is strongly safe w.r.t.
root variables ~X, if there is a permutation π witnessing the
safety of χ modulo ~X such that χπ(i) is strongly safe modulo ~X,
for each 1 ≤ i ≤ n.
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Strong Safety of χπ(i) modulo ~X.

1. χπ(i) is a code call atom.
Here, let the code call of χπ(i) be SSSSSSSSS : fff (((t1, . . . , tn))) and let the
binding pattern
〈bt1, . . . , btn〉 be defined as follows:

(a) If ti is a value, then bti =def ti.

(b) Otherwise ti must be a variable whose root occurs either in
~X or in χπ(j) for some j < i. In this case, bti =def [.

Then, χπ(i) is strongly safe if, by definition, FINTAB en-
tails the finiteness of SSSSSSSSS : fff (((bt1, . . . , btn))).
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2. χπ(i) is s 6= t.
In this case, χπ(i) is strongly safe if, by definition, each of
s and t is either a constant or a variable whose root occurs
either in ~X or in χπ(j) for some j < i.

3. χπ(i) is s < t or s ≤ t.
In this case, χπ(i) is strongly safe if, by definition, t is ei-
ther a constant or a variable whose root occurs either in ~X

or somewhere in χπ(j) for some j < i.

4. χπ(i) is s > t or s ≥ t.
In this case, χπ(i) is strongly safe if, by definition, t < s or
t ≤ s, respectively, are strongly safe.
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7.1.2 Conflict-Freedom

Conflict of literals Op(α(~t)) and (¬)Op′(α(~t′))

Examples:

• Fααα(a, b,X) and Pααα(Z, b, c) conflict.

• ¬Pααα(Z, b, c) and Doααα(Z, b, c) conflict,

• No conflict: Fααα(a, b,X) and ¬Pααα(Z, b, c), as well as Pααα(Z, b, c)
and ¬Doααα(Z, b, c).

Deontic conflicts might “kill” any feasible status set.
⇒ Enforce deontic consistency syntactically
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Two types of deontic conflicts:

1. rule-head conflicts:
Rules r, r′ conflict, if their heads conflict and their bodies are
satisfiable without conflict.

Problem: undecidable over all agent states
⇒ Use sound (but incomplete)

conflict-freedom test cftcftcft
(IMPACT supports several cftcftcft’s)

2. Intra-rule conflict:
Rule r : Opi(α(~t))← . . . , (¬)Opj(α(~t′)), . . . has a conflict, if
Opi(α(~t)) and (¬)Opj(α(~t′)) conflict.

Such conflicts are easily checked.
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Definition 7.7 (Conflicts)
Literal Li = Op (ααα(~t)) conflicts with Lj = (¬)Op ′(ααα(~t′)), if

1. ααα(~t) and ααα(~t′) are unifiable,

2. the modalities Op and (¬)Op ′ conflict, i.e., there is an entry
“×” in the following table:

Op \ (¬)Op′ P ¬P F ¬F O ¬O W ¬W Do ¬Do

P × ×
F × × × ×
O × × × × ×
W × ×
Do × × ×

Note: • conflicts-with is symmetric on Op and Op′.
• conflicts are not preserved under negation.
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Conflicting Rules:

Informally, two rules ri and rj conflict in a given state, if

• they have a unifiable head

• conflicting head-modalities,

• deontically consistent bodies (under the unifying substitution),
and

• their bodies’ code call components must have a solution.
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Definition 7.8 (Conflicting Rules w.r.t. a State)
Rules

ri : Opi(ααα(~t)) ← B(ri)

rj : Opj(βββ(~t′)) ← B(rj)

(standardised apart) conflict w.r.t. an agent state OOOSSS , if Opi

conflicts with Opj , and there is a substitution θ such that:

• ααα(~tθ) = βββ(~t′θ),

• (Bcc(ri) ∧ Bcc(rj))θγ is true in OOOSSS for some substitution γ
that causes (Bcc(ri) ∧ Bcc(rj))θ to become ground,

• If Opi ∈ {P,Do ,O} (resp., Opj ∈ {P, Do , O}) then ααα(~tθ)
(resp., βββ(~t′θ)) is executable in OOOSSS , and

• (Bas(ri) ∪Bas(rj))θ contains no pair of conflicting literals.
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Definition 7.9 (Conflict Free Agent Program)
An agent program, PPP, is conflict free, if

1. There are no conflicting rules ri, rj in PPP, for every possible
agent state OOOSSS (no rule-head conflicts);

2. For any rule Opi(ααα(~t))← . . . , (¬)Opj(~t′), . . . in PPP, Opi(ααα(~t))
and (¬)Opj(ααα(~t′)) do not conflict (no intra-rule conflicts).

Problem: rule-head conflicts are undecidable.
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Remedy: use incomplete rule-head conflicts checks.

Definition 7.10 (Conflict-Freedom Test)
A conflict-freedom test is a function

cftcftcft : Rules×Rules→ {true, false}

such that if cftcftcft(r1, r2) = true, then r1, r2 does not conflict w.r.t.
any agent state OOOSSS .

Definition 7.11 (Conflict-Free Agent Program w.r.t. cftcftcft)
An agent program PPP is conflict free w.r.t. cftcftcft, if

• cftcftcft(ri, rj) = true, for every distinct ri, rj ∈ PPP, and

• PPP has no intra-rule conflicts.
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Note: Different functions cftcftcft possible.

Tradeoff between accuracy and complexity:

The more accurate cftcftcft, i.e., less often returns “false” on ar-
guments (ri, rj) when in fact ri, rj do not conflict, the higher
is the complexity of cftcftcft.

In IADE , the agent developer can choose one of several
conflict-freedom tests to be used for his application (and he
can add new ones to his list).
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Some Conflict-Freedomness Tests

Example 7.3 (Head-CFT, cftcftcfth)
Let ri,rj be two rules of the form

ri : Opi(ααα(~t)) ← B(i)

rj : Opj(βββ(~t′)) ← B(j).

Now let the head conflict-freedom test cftcftcfth be as follows,

cftcftcfth(ri, rj) =


true, if either Opi,Opj do not conflict, or

ααα(~t) and βββ(~t′) are not unifiable;

false, otherwise.
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Example 7.4 (Body Code Call CFT, cftcftcftbcc)
Let the body-code conflict-freedom test cftcftcftbcc be as follows:

cftcftcftbcc(ri, rj) =



true, if either (1) Opi,Opj do not conflict, or

(2) ααα(~t) and βββ(~t′) are not unifiable, or

(3) Opi,Opj conflict and (3.1) ααα(~t),βββ(~t′) are

unifiable via mgu θ and (3.2) Bcc(r1θ)

Bcc(r2θ) has a pair of contradictory cc atoms;

false otherwise.

Condition (3.2) means that code call atoms in(((((((((X, cc))))))))) and
not_in(((((((((X, cc))))))))) occur in Bcc(r1θ) ∪Bcc(r2θ), or comparison atoms
s1 = s2 and s1 6= s2; s1 < s2 and s1 ≥ s2 etc.

7.1 Weakly Regular Agents 427



Chapter 7: Implementing Agents: An application Combining Agents, ASP and Planning, NICTA 2003

Example 7.5 (Body-Modality-CFT, cftcftcftbm)
Similar to the previous one, except that action status atoms are
considered instead. cftcftcftbm be as follows,

cftcftcftbm(ri, rj) =



true if Opi,Opj do not conflict or

ααα(~t),βββ(~t′) are not unifiable or

Opi,Opj conflict, and ααα(~t),βββ(~t′) are unifiable

via mgu θ and literals (¬)Opiααα(~t′′) in Bas(riθ)

for i = 1, 2 exist such that (¬)Op1 and (¬)Op2

conflict;

false otherwise.
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Example 7.6 (Precondition-CFT, cftcftcftpr)
Often, we might have action status atoms of the form
Pααα,Doααα,Oααα in a rule.

Simple Driving Scenario:

r1 : O(go_rightmostgo_rightmostgo_rightmost)←

r2 : O(drivedrivedrive(r_lane))← Do (go_rightmostgo_rightmostgo_rightmost)

r3 : F(drivedrivedrive(X ))← not_in(((((((((X , statusstatusstatus : free_lanesfree_lanesfree_lanes((())))))))))))
r4 : Do (drivedrivedrive(l_lane))← in(((((((((l_lane, statusstatusstatus : free_lanesfree_lanesfree_lanes((()))))))))))) &

F(drivedrivedrive(r_lane))

Note: no intra-rule conflicts.

cftcftcftbcc(r3, r4) = cftcftcftbm(r3, r4) = true but cftcftcftbm(r2, r3) = false.
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Let r?
i be ri augmented with Pre(ααα) of any atom Pααα,Doααα,Oααα

(standardised apart) in ri.

r1 : O(go_rightmostgo_rightmostgo_rightmost)←

r2 : O(drivedrivedrive(r_lane))← Do (go_rightmostgo_rightmostgo_rightmost)&

in(((((((((r_lane, statusstatusstatus : free_lanesfree_lanesfree_lanes((())))))))))))

r3 : F(drivedrivedrive(X ))← not_in(((((((((X , statusstatusstatus : free_lanesfree_lanesfree_lanes((())))))))))))
r4 : Do (drivedrivedrive(l_lane))← in(((((((((l_lane, statusstatusstatus : free_lanesfree_lanesfree_lanes((()))))))))))) &

F(drivedrivedrive(r_lane))

Define cftcftcftpr(ri, rj) =

 true if cftcftcftbcc(r?
i , r

?
j ) = true

false otherwise.

Then, cftcftcftpr(r2, r3) = true, and PPP is found head-conflict free.
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7.1.3 Deontic Stratification

Extend the notion of stratified logic program (Apt et al.)

Definition 7.12 (Layering Function)
Let PPP be an agent program. A layering function `̀̀ is a mapping

`̀̀ : PPP → N (= {0, 1, 2, . . .})..

The i-th layer of PPP w.r.t. `̀̀, denoted PPP `̀̀
i , is

PPP `̀̀
i = {r ∈ PPP | `̀̀(r) = i}.

Intuition: Evaluate layer i before layer j, if i < j.

Note: Drop superscript `̀̀ if clear from context.
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Example 7.7 (Simple Flight Program)

r1: Do execute_flight_planexecute_flight_planexecute_flight_plan(F_route)←
in(((((((((automated, autoPilotautoPilotautoPilot :pilotStatuspilotStatuspilotStatus(((pilot_message)))))))))))),
Do create_flight_plancreate_flight_plancreate_flight_plan(No_go,F_route, C_loc)

r2: O create_flight_plancreate_flight_plancreate_flight_plan(No_go, F_route, C_loc)←
O adjust_courseadjust_courseadjust_course(No_go, F_route, C_loc)

r3: O maintain_coursemaintain_coursemaintain_course(no_go, flight_route, current_location)←
in(((((((((automated, autoPilotautoPilotautoPilot :pilotStatuspilotStatuspilotStatus(((pilot_message)))))))))))),
¬ O adjust_courseadjust_courseadjust_course(no_go, flight_route, current_location)

r4: O adjust_courseadjust_courseadjust_course(no_go, flight_route, current_location)←
O adjustAltitudeadjustAltitudeadjustAltitude(Altitude)

Simplification: Rules use constant valued parameters for
maintain_coursemaintain_coursemaintain_course and adjust_courseadjust_courseadjust_course .
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Layering functions:

• `̀̀1: `̀̀1(r4) = 0, `̀̀1(r2) = 1, `̀̀1(r3) = 1, `̀̀1(r1) = 2.

Program layers:
PPP `̀̀1

0 = {r4}, PPP `̀̀1
1 = {r2, r3}, PPP `̀̀1

2 = {r1}.

• `̀̀2: `̀̀2(r4) = 0, `̀̀2(ri) = 1, i ∈ {1, 2, 3}.

• `̀̀3: `̀̀3(ri) = 0, i ∈ {1, 2, 3, 4}.
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deontic stratification: consequences in a sound setting

Definition 7.13 (Modality Ordering)
Partial ordering “≤” on M = {P, O, Do , W, F}: O ≤ Do ,
O ≤ P, Do ≤ P, and Op ≤ Op , for each Op ∈M .

Do

O

W

P

F

Ground action status atoms: Opααα ≤ Op ′ααα if Op ′ ≤ Op.
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Definition 7.14 (Deontically Stratifiable Agent Program)
An agent program PPP is deontically stratifiable, if there exists a
layering function `̀̀ such that:

1. For every rule ri : Opi(ααα(~t))← . . . ,Opj(βββ(~t′)), . . . in PPP `̀̀
i , if

r : Op (βββ(~t′′))← . . . is a rule in PPP such that βββ(~t′) and βββ(~t′′) are
unifiable and Op ≤ Opj , then `̀̀(r) ≤≤≤ `̀̀(ri).

2. For every rule ri : Opi(ααα(~t))← . . . ,¬Opj(βββ(~t′)), . . . in PPP `̀̀
i , if

r : Op (βββ(~t′′))← . . . is a rule in PPP such that βββ(~t′) and βββ(~t′′) are
unifiable and Op ≤ Opj , then `̀̀(r) <<< `̀̀(ri).

Such an `̀̀ is called a witness to the stratifiability of PPP . wtn(PPP) . . .
The set of all such witnesses.
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Example 7.8 (Deontic Stratifiability)
Simple Flight Program:

Condition 1) of deontic stratifiability requires

• `̀̀(r2) ≤ `̀̀(r1)

• `̀̀(r4) ≤ `̀̀(r2).

Condition 2) requires

• `̀̀(r4) < `̀̀(r3).

⇒ `̀̀1 and `̀̀2 witness stratifiability of PPP .
`̀̀3 is not a witness of stratifiability
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Example 7.9 (Unstratifiable Program)

Let PPP ′ contain the following rule:

r′1: Do compute_currentLocationcompute_currentLocationcompute_currentLocation(report)←
¬ Do compute_currentLocationcompute_currentLocationcompute_currentLocation (report)

Condition 2) requires

• `̀̀(r′1) < `̀̀(r′1)

This is impossible PPP ′ is not deontically stratifiable.
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7.1.4 Definition of Weak Regularity

Definition 7.15 (Weak Regular Agent Program (WRAP ))
Let PPP be an agent program, FINTAB a finiteness table, and cftcftcft a
conflict-freedom test. Then, PPP is a weak regular agent program
(WRAP ) w.r.t. FINTAB and cftcftcft, if the following holds:

Strong Safety:
All rules in PPP and actions ααα in the agent’s action base are
strongly safe w.r.t. FINTAB.

Conflict-Freedom:
PPP is conflict free under cftcftcft.

Deontic Stratifiability:
PPP is deontically stratifiable.
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Example 7.10 (Sample WRAP )
Simple Flight Program: Suppose that actions are strongly safe
w.r.t. some FINTAB.

• PPP is conflict-free under cftcftcfth;

• PPP is deontically stratified (see above)

⇒ program PPP is a WRAP .

Add the following rule:

r5: W create_flight_plancreate_flight_plancreate_flight_plan(no_go, flight_route, current_location)←
not_in(((((((((automated, autoPilotautoPilotautoPilot :pilotStatuspilotStatuspilotStatus(((pilot_message))))))))))))

cftcftcfth(r2, r5) = false, and so PPP is no longer a WRAP .
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Finally, we arrive at weak regular agents:

Definition 7.16 (Weakly Regular Agent)
An agent aaa is weakly regular, if

• its associated agent program PPP is weakly regular

and

• the action constraints ACACAC,

• the integrity constraints ICICIC, and

• the notion of concurrency conc

in the background are all strongly safe.

7.1 Weakly Regular Agents 440



Chapter 7: Implementing Agents: An application Combining Agents, ASP and Planning, NICTA 2003

Strong safety for constraints and concurrency notion

Definition 7.17 (Strongly Safe Integrity/Action Constraints)
An integrity constraint ψ ⇒ χ is strongly safe, if ψ is strongly
safe and χ is strongly safe modulo the root variables in ψ.
An action constraint {ααα1( ~X1), . . . ,αααk( ~Xk)} ←↩ χ is strongly safe if
and only if χ is strongly safe.

Definition 7.18 (Strongly Safe Notion of Concurrency)
A notion of concurrency conc is strongly safe, if for every set AAA
of actions, if all members of A are strongly safe, then so is
conc(A).

7.1 Weakly Regular Agents 441



Chapter 7: Implementing Agents: An application Combining Agents, ASP and Planning, NICTA 2003

Properties of Weakly Regular Agents

• Every WRAP (in fact, deontically stratifiable agent program)
PPP has a canonical layering, given by

cancancanPPP(r) = min{`̀̀i(r) | `̀̀i ∈ wtn(PPP)}.

• Every WRAP has either one or no reasonable status set.

• Any WRAP , if integrity and action constraints are discarded,
has a reasonable status set.

• Every WRAP has an associated fixpoint computation method,
which computes the unique reasonable status set:
∅ = S0 ⊆ S1 ⊆ · · · .
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7.2 Regular Agents

Problem:

• agent programs (including WRAPs) admit recursion

Doααα← Doβββ, Doβββ ← Doγγγ.

• unbounded recursion

Do (send(N1 )send(N1 )send(N1 ))← Do (send(N )send(N )send(N )) & in(((((((((N1,mathmathmath : int_Addint_Addint_Add(((N, 1)))))))))))).

Leads to infinite status set!

For agent programs, bounded recursion is plausible
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Unfolding:

Doααα←Pβββ&Body1 Pβββ←Body2
Doααα←Body1&Body2

• Operator UnfoldPPP : unfold all positive rules bodies in PPP.

• Eliminate all positive rule bodies by repeated unfolding.
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Technical realisation

• Associate with Opα(X) a prerequisite-free constraint (PFC)
pfc

PFCs: {&,∨}-closure of code call conditions χ and negative
status literals ¬Opα

• Define semantic equivalence of pfc1, pfc2 over all agent states
OOOSSS
Note: Equivalence of pfc1, pfc2 is undecidable in general

• Use a sound (but incomplete) PFC-equivalence test
eqi(pfc1,pfc2)
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Definition 7.19 (Regular Agent Program)
A regular agent program (RAP) is a program which is weakly
regular and bounded.

Boundedness means that by repeatedly unfolding the posi-
tive parts of the rules in the program, we will eventually get
rid of all positive action status atoms, i.e.,

eqi(Unfoldb
PPP ,Unfoldb+1

PPP ) = true

for some b.

b-regular RAP: eqi(Unfoldb
PPP ,Unfoldb+1

PPP ) = true.
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Refinement:

• Unfolding along levels of PPP under deontic stratification `;

• Use PFC-equivalence test eqi(i) at layer i.

Definition 7.20 (Regular Agent)
An agent is regular w.r.t. a layering `̀̀ and a suite of PFC
equivalence tests eqi(i), if it is weakly regular and its associated
agent program is b-regular w.r.t. `̀̀ and the eqi(i), for some b ≥ 0.

Note: Fix eqi(i), b at compile time: accept/reject PPP after ≤ b
unfolding steps.
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Theorem 7.1 (Regular Agent Algorithm)
There is an algorithm, Reasonable_SS(PPP, `̀̀,ICICIC,ACACAC,OOOSSS), which
given a RAP PPP, a layering `̀̀ ∈ wtn(PPP), strongly safe action
constraints ACACAC and integrity constraints ICICIC, and an agent state
OOOSSS , computes in finite time the reasonable status set S of PPP on
OOOSSS , if one exists, and “no” otherwise.

Under further conditions, Reasonable_SS is polynomial:

• Every ground code call SSSSSSSSS : fff (((d1, . . . , dn))), has a set of solutions
computed in polynomial time;

• no occurrence of a variable in aaa’s description is “loose”.

• assembling and executing conc(Do (S),OOOSSS) is possible in
polynomial time.

7.2 Regular Agents 448



Chapter 7: Implementing Agents: An application Combining Agents, ASP and Planning, NICTA 2003

7.3 IADE

Implementation of the regular agent program paradigm:

IMPACT Agent Development Environment (IADE )

Two major parts:

1. Agent Building: Specification part

Easy to use, network accessible GUI for agent program
development:

• software code: data types, functions

• actions

• rules

• ...
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2. Agent Testing: Execution Part

Support for compilation and testing of RAPs

• conflict freedom test

• finiteness table

• program unfolding

• status set computation

Allows to view the reasonable status set of an agent program
on the current agent state.
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IADE Main Screen
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IADE Test Dialog Screen (Prior to Program Testing)
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IADE includes algorithms for checking

• safety

• strong safety

• conflict freedomness

• whether an agent program is a WRAP .

IADE implements unfolding of WRAPs (currently, supported for
positive agent programs only).
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IADE Test Execution Screen
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After successful test execution phase, the reasonable status sets is
generated.

Options to continue:

• “Unfold Info”:
Shows the unfolded program.

• “Layer Info”:
Show the layers of the agent program.

• “Status Set Info”:
Shows the status set (split in deontic modality parts).
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IADE Unfold Information Screen
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IADE Status Set Screen (P-fragment)
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IADE Infiniteness Table Screen

Specify code calls with infinite results.
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IADE Option Selection Screen
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7.4 The Gofish Post Office

Mythical Gofish country

Task:

• Improve Gofish’s Lightning Mail (which guarantees de-
livery within 48 hours of dropoff)

Desideratum:

• Flexibility (respect extensions to other products)

Lightning Mail product allows citizens to send certain kinds of
packages to other citizens in Gofish.

Packages are dropped, shipped, and delivered.
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Package Lifecycle Events

DropOff: Describes the package being dropped off to a Gofish’s
Lightning mail collection point.

DistCenter: Refers to the arrival of the package at the
distribution center closest to the destination.

Truck: Refers to the loading of the package into a truck at the
destination center. The truck will deliver the package to the
destination.

Delivery: Refers to the delivery of the package to the destination.
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Requirements

• Multi-stage Notification
Provide a comprehensive information service about expect
mail delivery.
– Dropoff: Sender may request to inform recipient about mail

drop & expected delivery.

– DistCenter: Email recipient about package arrival at local
distribution center, revise delivery prediction.

– Delivery: When loaded into the truck, phone the recipient
to tell when the package will be delivered.
No phone calls between 10pm and 7am !!
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• Precise Delivery Prediction:
Inform recipients about expected delivery time as precise as
possible.

(Currently, only large unreliable time window (8am–8pm of a
day), but 48h guarantee.)

Predict delivery using a temporal probability distribution PO,D

for delivery from origination zipcode O to destination zipcode
D:

PO,D : [1..48]→ [0, 1]

Maintain statistics for determining PO,D(h).

• Zipcode Monitoring:
Track which zipcodes are not being well served by the current
distribution center allocated them.
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Gofish Databases

Lightning Mail has several databases, stored in relations.

package(Pid,TYpe, Wt,. . . ):

Information about each package.

• Pid: package id (string);

• PType: this is one of envelope, tube, box (string);

• Wt: this is the weight of the package in pounds (real);

• Vol: this is the volume of the package in cubic inches (int);

• LSender: last name of sender (string);

• FSender: first name of sender (string);

• LRecip: last name of recipient (string);
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• FRecip: first name of recipient (string);

• RecipTel: Recipient’s phone number (string);

• RecipEMail: Recipient’s email address (string);

• OrigZip: Zip code of the origin (int);

• DestZip: Zip code of the destination (int);

• DestStreet: destination street name (string);

• DestNum: destination street number (int);

• Priority: 1..5 (higher number is higher priority)

• Cost: the mailing cost (real).

• DropTime: time of package dropoff by the sender (0, 1, 2, . . .)

• DelivTime: time of package delivery (-1, if unknown)
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events(Package,Event,Time):

Events occurring for each package.

• Package: Package ID

• Event: Type of event (DropOff,DistCenter,Truck,Delivery)

• Time: Time (integer)

Example: (123,Dropoff,2) means that package ’123’ was dropped at time
2.
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ziptozip(Zip1,Zip2,Time,Number,Tot):

Statistics on past delivery, capturing PO,D.

• Zip1: origination zipcode

• Zip2: destination zipcode

• Time: hour of delivery (1..48)

• Number: number of packages delivered within given hours

• Tot: total number of delivered packages

Example: (20742,20715,23,30,200) means 15% probability (30/200) that
a package mailed from zip code 20742 to 20715 will arrive in 23 hours
exactly.
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centertohouse(Zip,Time,Number,Tot):

Statistics on past delivery from distribution center.

• Zip: destination zipcode

• Time: hour of delivery (1..48)

• Number: number of packages delivered within given hours

• Tot: total number of delivered packages

Example: (20715,8,11,50) means that 22% (11 of 50) packages intended
for zip code 20715 are delivered in exactly 8 hours from their arrival at
the Distribution center.
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trucktohouse(Street,Time,Number,Tot,Avg):

Statistics on truck delivery.

• Street: destination address

• Time: hour of delivery (1..48)

• Number: number of packages delivered within given hours

• Tot: total number of delivered packages

Example: (campus-drive, 2,5,20) means that there is a 25% (5/20)
probability of package delivery in exactly 2 hours.
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managers(Zip,Manager,Email): manager email address

• Zip: zip code

• Manager: manager of zip code area

• Email: email address of the manager
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Gofish Multi-Agent System

Develop a multi-agent system for simulation (TU students).

Gofish agents:

• Package Agent (PAPAPA): Manages the package database.

• Notification Agent (NANANA): Inform customers about estimated
arrival time on Dropoff (optional), DistCenter (email), and
Truck events (phone call, simulated).

NA must obtain the phone number by interaction with PA, and
has direct query access to statistic databases.
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• Zip Monitor Agent (ZMAZMAZMA): Send email messages to all
managers responsible for a certain zip code if it is not served
well.

ZMAZMAZMA accesses directly centertohouse and manager
databases.
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• Event Manager Agent (EMAEMAEMA): An event management agent
maintains, updates, and uses the events database. It also
maintains the statistics databases.

EMAEMAEMA receives messages with events from the Dispatcher
Agent and sends them to the other GoFish Agents.
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Auxiliary agents:

• Dispatcher Agent (DADADA): Processes incoming package drop
off messages. Maintains small status DB through which it
generates update events for the Event Manager Agent.

• Package Dropper Agent (PDAPDAPDA): Creates packages for drop
off, using an address table, and sends “DropOff” message to
the Dispatcher Agent for processing.
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Interaction and Message Protocol

• Asynchronous interaction via message exchange

• Encode service commands in message content:

– command name

– Parameters: marshalling using tokenstring (ts) format

Example: command to get recipient information from Package
Agent, after a DistCenter event.

– get_recipient_info

– ts(10,‘DistCenter’) = “10,DistCenter”
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Gofish Message description:

# Command From To Data (Parameter)

1 DropOff any EM ts(Pid,Ptype,Wt,Vol,FSender,LSender,OrigZip,FRecip,LRecip,RecipTel,
RecipEMail,DestNum,DestStreet,DestZip,Priority)

2 add_package EM PA ts(Pid,PType,Wt,Vol,FSender,LSender,OrigZip,FRecip,LRecip,RecipTel,
RecipEMail,DestNum,DestStreet,DestZip,Priority,DropTime)

3 send_ziptozip PA NA ts(RecipEMail,OrigZip,DestZip,DropTime)

4 DistCenter any EM string(Pid)

5 send_centertohouse EM NA string(Pid)

6 get_recipient_info NA PA ts(Pid,‘DistCenter’)

7 recipient_info PA NA ts(Pid,‘DistCenter’,RecipTel,RecipEMail,DestZip,DestStreet,DropTime)

8 Truck any EM string (Pid)

9 send_trucktohouse EN NA string(Pid)

10 get_recipient_info NA PA ts(Pid,‘Truck’)

11 recipient_info PA NA ts(Pid,‘Truck’,RecipTel,RecipEMail, DestZip,DestStreet,DropTime)

12 Delivery any EM string(Pid)

13 set_delivery _time EM PA ts(Pid,DelivTime)

14 statistic_info PA EM ts(Pid,OrigZip,DestZip,DestStreet)
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Gofish message protocol
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GoFish Agent Implementation

• Software codeOOOSSS :

– MS Access databases, using JDBC, ODBC

– internal (library) packages for message box, text, string
manipulation etc

• Agent actions:

– send messages

– read files

– send emails

– open popup windows

– data projections
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Example:

#IMPACT Action Def#

sendStatisticInfo

(

TgtAgent / string, Data / string

);;;;

-->executes

sendMessage(

TgtAgent,

"statistic_info",

0,

Data)

;
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• Agent Programs:

Small agents have few rules, largest has ∼ 30 rules.

Example: Rule from PA program

Do(sendStatisticInfo("GFEventManager", Data)) :-

Do(setDeliveryTime(PId)) &

in(Query, Local-->

text:concat("select * from Package where Pid=’", PId, "’")) &

in(Package, GoFishDB-->JDBC:Sql(Query)) &

=(OrigZip, Package.OrigZip) &

=(DestZip, Package.DestZip) &

=(DestStreet, Package.DestStreet) &

in(Data, Local-->

text:concat(PId, "^", OrigZip, "^", DestZip, "^", DestStreet)).
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7.5 Summary and References

Regular Agents: An efficiently implementable class of agents.

What are suitable syntactic conditions on agent programs,
to ensure polynomial implementability?
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1. Weakly regular agents:
(a) Strong Safety: To ensure that code calls return finitely

many answers
(; Finiteness Table).

(b) Conflict-Freedom: The program should be conflict-free (;
cftcftcft-tests).

(c) Deontic Stratifiability: Problems with negation are ruled
out.

2. Regular Agents: weakly regular + Unfolding.

7.5 Summary 482



Chapter 8: Planning in Agent Systems Combining Agents, ASP and Planning, NICTA

Chapter 8. Planning in Agent
Systems

8.1 Planners vs. Agent Systems
8.2 HTN Planning
8.3 Agentising SHOP
8.4 NEO Domain
8.5 Monitoring Agents
8.6 Summary and References
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8.1 Planning vs. Agent Systems

Traditional planning systems assume:

Homogeneity: all information is available in a common format;

Locality: information is stored locally;

Reasoning: Either symbolic or numerical reasoning are
available, but not both.
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IMPACT offers handling of heterogenous, distributed data,
but lacks any planning component.

Idea: Let’s realise a planner as an agent in IMPACT.
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8.2 HTN Planning

HTN planning (Sacerdoti 1977; Tate 1977; Wilkins 1988; Currie
and Tate 1991) is an AI planning methodology that creates plans
by task decomposition.

An example is SHOP (Nau, Cao, Lotem, and Muñoz-Avila 1999;
Munoz-Avila, Aha, Nau, Weber, Breslow, and Yaman 2001): A
planning system, which decomposes tasks into smaller and
smaller subtasks, until primitive tasks are found that can be
performed directly.
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SHOP needs to be given knowledge about the domain:

Methods: Describes how to decompose some complex task into a
totally ordered sequence of subtasks, along with various
restrictions that must be satisfied in order for the method to be
applicable.

Operators: Describes what needs to be done to accomplish some
primitive task.

Given the next task to accomplish, SHOP chooses an appli-
cable method, instantiates it to decompose the task into
subtasks, and then chooses and instantiates other methods
to decompose the subtasks even further.
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Figure 8.1: NEO transportation example.
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8.3 ASHOP: Agentising SHOP

SHOP is a STRIPS planner. In order to agentise it, we need to
adjust its methods and operators to something IMPACT like.
See (Dix, Munoz-Avila, Nau, and Zhang 2003; Dix, Munoz-
Avila, and an Lingling Zhang 2002).

Definition 8.1 (Agentised Method: (AgentMeth hχ t) )
An agentised method is an expression of the form

(AgentMeth hχ t) where h (the method’s head ) is a compound
task, χ (the method’s preconditions) is a code call condition and t
is a totally ordered list of subtasks, called the task list.
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Definition 8.2 (Agentised Operator: (AgentOp hχadd χdel) )
An agentised operator is an expression of the form

(AgentOp hχadd χdel) , where h (the head ) is a primitive task
and χadd and χdel are lists of code calls (called the add- and
delete-lists). The set of variables in the tasks in χadd and χdel is a
subset of the set of variables in h.
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Head:
AirTransport(LocFrom, LocTo, Cargo, CargoWeight)

Preconditions:
in(((((((((CargoPL, suppliersuppliersupplier :cargoPlanecargoPlanecargoPlane(((locFrom))))))))))))&
in(((((((((Dist, statisticsstatisticsstatistics :distancedistancedistance(((locFrom, locTo))))))))))))&
in(((((((((DCargoPL, statisticsstatisticsstatistics :authorRangeauthorRangeauthorRange(((CargoPL))))))))))))&
Dist ≤ DCargoPL&

in(((((((((CCargoPL, statisticsstatisticsstatistics :authorCapacityauthorCapacityauthorCapacity(((CargoPL))))))))))))&
CargoWeight ≤ CCargoPL&

Subtasks:
load(Cargo, locFrom)

fly(Cargo, locFrom, LocTo)

unload(Cargo, locTo)
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procedure A-SHOP(t,D)

1. if t = nil then return nil

2. t := the first task in t; R := the remaining tasks
3. if t is primitive and a simple plan for t exists then
4. q := simpleP lan(t)

5. return concatenate(q, A-SHOP(R,D))

6. else if t is non-prim. ∧ there is a reduction of t then
7. nondeterministically choose a reduction:

Choose (AgentMeth h χ t), with µ the most general unifier of h

and t and substitution θ s.t. χµθ is ground and holds
in IMPACT ’s stateOOO.

8. return A-SHOP(concatenate(tµθ, R),D)

9. else return FAIL
10. end if

end A-SHOP
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procedure simpleP lan(t)

11. nondeterministically choose agent. operator
op = (AgentOp h χadd χdel) with ν the most
general unifier of h and t s.t. h is ground

12. monitoringmonitoringmonitoring : apply(op ν)

13. return op ν

end A-SHOP
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• In step 12, A-SHOP does not issue code calls to the other
agents directly, but instead communicates them to a
monitoringmonitoringmonitoring agent.

• The monitoringmonitoringmonitoring agent keeps track of all operators that are
supposed to be applied, without actually modifying the states
of the other IMPACT agents.

• When A-SHOP queries for a code call cc = SSSSSSSSS : fff (((d1, . . . , dn))) in χ

to evaluate a method’s precondition (Step 7), the monitoringmonitoringmonitoring

agent examines if cc has been affected by the intended
modifications of the operators and, if so, it evaluates cc.
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• The apply function applies the operators and creates copies of
the state of the world. Depending on the underlying software
code, these changes might be easily revertible or not. In the
latter case, the monitoring agent has to keep track of the old
state of the world.
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Lemma 8.1 (Evaluating Agentised Operators)

Let OOO be a state, (AgentMeth hχ t) an agentised method and
(AgentOp h′ χadd χdel) an agentised operator. If the precondition
χ is strongly safe wrt. the variables in h, the problem of deciding
whether χ holds in OOO can be algorithmically solved. If the add
and delete-lists χadd and χdel are strongly safe wrt. the variables
in h′, the problem of applying the agentised operator to OOO can be
algorithmically solved.
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Theorem 8.1 (Soundness, Completeness)

Let OOO be a state and D be a collection of agentised methods and
operators. If all the preconditions in the agentised methods and
add and delete-lists in the agentised operators are strongly safe
wrt. the respective variables in the heads, then A-SHOP is
correct and complete.
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Each cycle in the A-SHOP algorithm consist of three phases (see
lines 3 and 7 of ASHOP procedure):

1. Selection Phase: Selecting a candidate agentised method or
operator to reduce a task.

2. Evaluation Phase: Evaluating the applicability of the chosen
agentised method or operator.

3. Reduction Phase: Performing the agentised method or
operator.
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To accomplish these phases we have implemented 3 IMPACT
agents which perform pieces of these phases:

ashopashopashop: This is the agent that all IMPACT agents communicate
with for generating a plan. It receives as input a problem and
outputs a solution plan. The A-SHOP agent also performs the
Selection Phase and the evaluation phase for the situation in
which an operator is chosen.
The operator is then send to the Monitor Agent, to per-
form a virtual execution of it.

If the selection of a method is made, the A-SHOP agent sends a
message to the Preconditions Agent with the code-call
condition of the selected method.
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preconditionspreconditionspreconditions: Receives a code-call condition and evaluates each
code-call by sending it to the Monitoring Agent.

monitoringmonitoringmonitoring: The monitor agent has two functions: firstly, it
receives a operator and performs a virtual execution of it.
Secondly, it receives code-calls and evaluates them. We explain
both of these operations in detail below as they are closely
inter-related.

8.3 ASHOP: Agentising SHOP 500



Chapter 8: Planning in Agent Systems Combining Agents, ASP and Planning, NICTA 2003

Figure 8.2: Interactions between the agents implementing the A-
SHOP algorithm.
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8.4 NEO Domain

Our test domain is a simple transportation planning for a
NEO (noncombatant evacuation operation, (Munoz-Avila, Aha,
Nau, Weber, Breslow, and Yaman 2001).
Its plans involve performing a rescue mission where troops
are grouped and transported between an initial location (the
assembly point) and the NEO site (where the evacuees are
located). After the troops arrived at the NEO site, evacuees
are re-located to a safe haven.
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Assembly point (AP) → Intermediate Staging Base (ISB) →
Neo Site (Neo)→ Safe Haven (SH)

Planning involves

• selecting routes: long, short, ...

• means of transportation: Helicopter, Plane,
HMMVV.
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A-SHOP’s knowledge base included six agentised operators and 22
agentised methods. There were four IMPACT information sources
available:

• Transport Authority: Maintains information about the
transportation assets available at different locations.

• Weather Authority: Maintains information about the
weather conditions at the different locations.

• Airport Authority: Maintains information about availability
and conditions of airports at different locations.

• Math Agent: mathmathmath evaluates arithmetic expressions. typical
evaluations include the subtract a certain number of assets
use for an operation and update time delays.
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8.5 Monitoring Agents

How can agent systems be monitored, i.e. the interplay of
several agents be checked and the system be debugged?
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1. The intended collaborative behavior of the agents is modelled
as a planning problem. More precisely, knowledge about the
agent actions (specifically, messaging) and their effects is
formalized in an action theory, T , which can be reasoned
about to automatically construct plans as sequences of actions
to reach a given goal.

2. From T and the collaborative goal G, a set of intended plans,
I-Plans, for reaching G is generated via a planner.

3. The observed agent behavior, i.e., the message actions from a
message log, is then compared to the plans in I-Plans.

4. In case an incompatibility is detected, an error is flagged to the
developer resp. user, pinpointing to the last action causing the
failure so that further steps might be taken.
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Steps 2-4 can be done by a special monitoring agent, which is
added to the agent system providing support both in testing, and
in the operational phase of the system. Among the benefits of this
approach are the following:

• It allows to deal with collaboration behavior regardless of
the implementation language(s) used for single agents.

• Depending on the planner used in step 2, different kinds of
plans (optimal, conformant, . . . ), might be considered,
reflecting different agent attitudes and collaboration
objectives.
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• Changes to the agent messaging by the system designer may
be transparently incorporated to the action theory T , without
further need to adjust the monitoring process.

• Furthermore, T adds to a formal system specification, which
may be reasoned about and used in other contexts.

• As a by-product, the method may also be used for automatic
protocol generation, i.e., determine the messages needed
and their order, in a (simple) collaboration.
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We consider multi-agent systems consisting of a finite set
AAA = {aaa1, . . . ,aaan} of collaborating agents aaai.

Definition 8.3 (Message,Mlog file)
A message is a quadruple m = 〈sss,rrr,c, d 〉, where sss,rrr ∈ AAA are the
identifiers of the sending and the receiving agents, respectively;
c ∈ C is from a finite set C of message commands ; d is a list of
constants representing the message data. A message-log file is an
ordered sequenceMlog = t1:m1, t2:m2, . . . , tk:mk of messages mi

with timestamps ti, where ti ≤ ti+1, i < k.

We assume a fixed bound on the time within the next action
should happen in the MAS, i.e., a timeout for each action (which
may depend on previous actions), which allows to see fromMlog

whether the MAS is stuck or still idle.
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Example 8.1 (Simple Gofish )
For space reasons and to keep things simple and illustrative, we
restrict the Gofish MAS to the package agent, papapa, the event
management agent, ememem, and the event dispatcher agent, dispdispdisp;
thus, AAA = {papapa,ememem,dispdispdisp}.

The event dispatcher informs the event manager agent about the
drop off of a package (identified by a unique identifier), its arrival
at the distribution center, its loading on a truck, its successful
delivery, or when a recipient shows up at the distribution center to
pick up a package by herself:
Cdispdispdisp = {dropOff,distCenter, truck,delivery,pickup}.
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The event manager agent instructs the package agent to add a
package to the package database after drop off, as well as to
update the delivery time after delivery or customer pickup:
Cememem = {addPackage, setDelivTime}. The package agent here only
receives messages, thus Cpa = {}.

Running scenario: The message-logMlog contains the messages
m1 = 〈dropOff, p1〉, m2 = 〈addPackage, p1〉, m3 = 〈distCenter, p1〉,
m4 = 〈truck, p1〉, and m5 = 〈pickup, p1〉. The entries are 0:〈dispdispdisp,

ememem, dropOff, p1〉, 5:〈ememem,papapa,addPackage, p1〉,
13:〈dispdispdisp,ememem,distCenter, p1〉, 19:〈dispdispdisp,ememem, truck, p1〉, and
20:〈dispdispdisp,ememem,pickup, p1〉.
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A planning problem PK may be formalized as a tuple
〈Act,Fl,T,G〉, where Act defines the actions, Fl the fluents,
T comprises BK and all axioms, and G is the goal, i.e. a set
of ground fluent literals.

The semantics of K is defined through legal transitions
t = 〈s,A, s′〉 from states s to states s′ by simultaneous execution of
actions A, where a state s is any consistent set of ground fluent
literals.

A trajectory Tr is any initial state s0 or sequence t1, . . . , tn of
legal transitions ti = 〈si−1, Ai, si〉, i ∈ {1, . . . , n}, starting in an
initial state s0. An (optimistic) plan for goal G is P = 〈〉, resp. the
projection P = 〈A1, . . . , An〉 of a trajectory Tr, such that G holds in
s0 resp. sn.
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Example 8.2 (Simple Gofish cont’d)
The following K actions and fluents are defined (in DLVK

notation (Eiter, Faber, Leone, Pfeifer, and Polleres 2002)):

actions : dropOff(P) requires pkg(P).

addPkg(P) requires pkg(P).

distCenter(P) requires pkg(P).

truck(P) requires pkg(P).

delivery(P) requires pkg(P).

pickup(P) requires pkg(P).

setDelivTime(P) requires pkg(P).


Act

fluents : pkgAt(P, Loc) requires pkg(P), loc(Loc).

delivered(P) requires pkg(P).

recipAtHome(P) requires pkg(P).

added(P) requires pkg(P).

delivTimeSet(P) requires pkg(P).

 Fl
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• The first three external fluents describe the current location
of a package, whether it has successfully been delivered, and
whether its recipient is at home, respectively.

• The last two fluents are internal fluents about the state of
agent papapa; whether the package has already been added to the
package database resp. whether the delivery time has been
set properly.
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Definition 8.4 (Structure of the monitoring agent)
The agent monitormonitormonitor loops through the following steps:

1. Read and parse the message logMlog. IfMlog =∅, the set of
plans for P may be cached for later reuse.

2. Check whether an action timeout has occurred.

3. If this is not the case, compute the current intended plans
(according to the planning problem description and additional
info from the designer) compatible with the actions as
executed by the MAS .

4. If no compatible plans survive, or the system is no more idle,
then inform the agent designer about this situation.

5. Sleep for some pre-specified time.
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The desired collaborative MAS behavior is formalized as a
planning problem P (e.g., in language K).

In general, not all P-Plans may be admissible, as constraints
may apply (derived from the intended collaborative behav-
ior).

We thus distinguish a set I-Plans(P) ⊆P-Plans as intended
plans (of the MAS designer).
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In general, it is difficult to decide whether the faulty behav-
ior is due to a coding or design error. However, the info
given by monitormonitormonitor will aid the agent designer to detect the
real cause.
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Agent monitormonitormonitor continually checks and compares the actions taken
so far for compatibility with all current plans. Once a situation has
arisen in which no successful plan exists (detected by the planner
employed), monitormonitormonitor writes a message into a separate file
containing

• the first action that caused the MAS to go into a state where
the goal is not reached,

• the sequence of actions taken up to this action, and

• all the possible plans before the action in 1) was executed
(these are all plans compatible with the MAS behavior up to
it).

8.5 Monitoring Agents 518



Chapter 8: Planning in Agent Systems Combining Agents, ASP and Planning, NICTA 2003

Running scenario (coding error): Suppose on a preliminary
run of our scenario,Mlog shows m1=dropOff(p1). This is compatible
with each plan Pi, i ∈ {1, 2, 3}. Next, m2=distCenter(p1). This is
incompatible with each plan; monitormonitormonitor detects this and gives a
warning. Inspection of the actual code may show that the
command for adding the package to the database is wrong. While
this doesn’t result in a livelock (the MAS is still idle), the database
was not updated. Informed by monitormonitormonitor, this is detected at this
stage already.
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After correction of this coding error, the MAS may be started again
and another error shows up:

Running scenario (design error): Instead of waiting at home
(as in the standard plan P2), Sue shows up at the distribution
center and made a pickup attempt.
This external event may have been unforeseen by the de-
signer (they could also arise from MAS actions).

We can expect this in many agent scenarios: we have no complete
knowledge about the world, unexpected events may happen, and
action effects may not fully determine the next state.

Only plan P1 remains to reach the goal. However, there is no
guarantee of success, if Sue is not back home in time for delivery.
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Definition 8.5 (Mlog compatible plans)
Let the planning problem P model the intended behavior of a
MAS , which is given by a set I-Plans(P) ⊆ P-Plans. Then, for any
message logMlog = t1:m1, . . . , tk:mk, we denote by
C-Plans(P,Mlog, n), n ≥ 0 , the set of plans from I-Plans(P) which
comply on the first n steps with the actions m1, . . . ,mn.
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Definition 8.6 (Culprit(Mlog,P))
Let tn:mn be the first entry ofMlog such that either (i)
C-Plans(P,Mlog, n) = ∅ or (ii) a timeout is detected. Then,
Culprit(Mlog,P) is the pair 〈tn:mn, idle〉 if (i) applies and
〈tn:mn, timeout〉 otherwise.

Initially,Mlog is empty and thus C-Plans(P) = I-Plans(P). As more
and more actions are executed by the MAS, they are recorded in
Mlog and the set C-Plans(P) shrinks. monitormonitormonitor can thus compare at
any point in time whether C-Plans(P,Mlog, n) is empty or not.
Whenever this happens, Culprit(Mlog,P) is computed and
pinpoints to the problematic action.
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Theorem 8.2 (Soundness)
Let the planning problem P model the intended collaborative MAS
behavior, given by I-Plans(P) ⊆ P-Plans. LetMlog be a message log.
Then, the MAS is implemented incorrectly if Culprit(Mlog,P)

exists.
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Semantically, the intended collaborative MAS behavior may
manifest in a set of trajectories as described for K planning
problems, where trajectories correspond to possible runs of the
MAS (sequences of states and executed actions).

We say that a set OP of such plans covers the intended col-
laborative MAS behavior, if each run of the MAS corresponds
to some trajectory whose projection is in OP .
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For example, this holds if OP is the set of all optimistic plans for
PK and the intended collaborative MAS behavior is given by a
secure plan, or, more liberally, by a conditional plan. We have:

Theorem 8.3 (Soundness of PK Cover)
Let PK be a K planning problem, such that I-Planso(PK) covers the
intended collaborative MAS behavior. LetMlog be a message log.

Then, MAS is implemented incorrectly if Culprit(Mlog,PK)

exists.
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As for completeness, we need the assertion that plans can not grow
arbitrarily long, i.e., have an upper bound on their length.

Theorem 8.4 (Completeness)
Let the planning problem P model the intended collaborative MAS
behavior, given by I-Plans(P) ⊆ P-Plans where plans are bounded.
If the MAS is implemented incorrectly, then there is some
message logMlog such that either (i) C-Plans(P,Mlog, 0) = ∅,

or (ii) Culprit(Mlog,P) exists .

In (i), we can conclude a design error , while in (ii) a

design or coding error may be present. There is no similar
completeness result for PK covers. However, the culprit vanishes if
the cover contains plan P1, which is compatible withMlog.
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For more detailed information see (Dix, Eiter, Fink,
Polleres, and Zhang 2004) and http://www.cs.man.ac.

uk/~zhangy/project/monitor/ .
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8.6 Summary and References

In order to combine HTN planning in a multi agent system, we
agentised SHOP’s operators and methods

1. We stated Soundness/Completeness theorems for A-SHOP.

2. A-SHOP is a planning agent in IMPACT built on four agents.
It allows to access heterogenous and remote data.

3. A-SHOP has been tested on the NEO domain, which is
described in the literature.

4. It is implemented and freely available from the authors (J.
Dix, D. Nau, H. Munoz-Avila, Lingling Zhang) under the GNU
General Public License as published by the Free Software
Foundation.
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5. Planning is also useful for debugging agent systems. The
intended collaborative behaviour needs to be formalised as a
planning problem.

6. Our approach is based on just checking the messages sent
between the agents.

7. While the agent system is running, the remaining possible
plans are kept track and if a situation is reached where the
overall goal can not be reached anymore, a warning is flagged.

8. The monitoring agent pinpoints to the last action as a
possible culprit.
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Extensions of our Basic Approach
• Beliefs: Agents hold beliefs about other agents.

Dix/Subrahmanian/Pick: Meta Agent Programs,
Journal of Logic Programming, 46(1–2)*1–60, 2000.

• Uncertainty: Available information might be uncertain.
Dix/Nanni/Subrahmanian: Probabilistic Agent
Reasoning, Transactions of Computational Logic,
1(2)*201–245, 2000

• Time: Agents make commitments to the future.
Dix/Kraus/Subrahmanian: Temporal Agent Reasoning,
Artificial Intelligence, 127(1)*87–135, 2001
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A set of enemy vehicle agents: These agents (mostly tanks)
move across free terrain, and their movements are determined
by a program that the other agents listed below do not have
access to (though they may have beliefs about this program).

A terrain route planning agent terrainterrainterrain: Here we extend the
terrainterrainterrain agent so that it also provides a flight path computation
service for helicopters, through which it plans a flight, given
an origin, a destination, and a set of constraints specifying the
height at which the helicopters wish to fly.
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A tracking agent, which takes as input, a DTED (Digital
Terrain Elevation Data) map, an id assigned to an enemy
agent, and a time point. It produces as output, the location of
the enemy agent at the given point in time (if known) as well
as its best guess of what kind of enemy the agent is. All three
of beliefs, time and uncertainty enter here.
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A coordination agent: coordinationcoordinationcoordination may not precisely know
the type of a given enemy vehicle, because of inaccurate
and/or uncertain identification made by the sensing agent.
At any point in time, it holds some beliefs about the identity
of enemy vehicle.
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• Changing beliefs with time. As the enemy agent continues
along its route, the coordinationcoordinationcoordination agent may be forced to revise
its beliefs, as it becomes apparent that the actual route being
taken by the enemy vehicle is inconsistent with the expected
route. Furthermore, as time proceeds, sensing data provided
by the trackingtrackingtracking agent may cause the coordinationcoordinationcoordination agent to
revise its beliefs about the enemy vehicle type.
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• Beliefs about the enemy agent’s reasoning. The
coordinationcoordinationcoordination agent may also hold some beliefs about the
enemy agents’ reasoning capabilities (see the Belief-Semantics
Table). For instance, with a relatively unsophisticated and
disorganized enemy whose command and control facilities
have been destroyed, it may believe that the enemy does not
know what moves friendly forces are making.
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9. Adding Beliefs

9.1 Belief Language and Data
Structures

9.2 Meta Agent Programs and Status
Sets

9.3 Reducing map’s to Ordinary Agent
Programs
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9.1 Belief Language and Data Structures

• When an agent aaa reasons about another agent bbb, it must have
some beliefs about bbb’s underlying action base (what actions can
bbb take?), bbb’s action program (how will bbb reason?) etc.

• Most important are the beliefs about
what holds in another agents state

BBBaaaaaaaaa(bbbbbbbbb, χ)

• In that case, agent aaa must also have background
information: beliefs about agent bbb’s software package SSSbbb: the
code call condition χ has to be contained in SSSbbb.
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Example 9.1 (Belief Atoms In CFIT*)
BBBheli1heli1heli1(tank1tank1tank1, in(((((((((pos1, tank1tank1tank1 :getPosgetPosgetPos((()))))))))))))

This belief atom says that the agent, heli1heli1heli1 believes that
agent tank1tank1tank1’s current state indicates that tank1tank1tank1’s current
position is pos1.

BBBheli1heli1heli1(tank1tank1tank1,Fattackattackattack(pos1, pos2))
This belief atom says that the agent, heli1heli1heli1 believes that
agent tank1tank1tank1’s current state indicates that it is forbidden for
tank1tank1tank1 to attack from pos1 to pos2.

BBBheli3heli3heli3(tank1tank1tank1,Odrivedrivedrive(pos1, pos2, 35))
This belief atom says that the agent, heli3heli3heli3 believes that
agent tank1tank1tank1’s current state makes it obligatory for tank1tank1tank1 to
drive from location pos1 to pos2 at 35 mph.
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The precise definition is very complicated!

A nested belief atom of the form

BBBaaaaaaaaa(bbbbbbbbb,BBBccccccccc(ddddddddd, χ))

does not make sense (because bbb 6= ccc).

Thus every agent keeps track of only its own beliefs, not
those of other agents!!

• We can use conjunctions with respect to different agents
BBBaaa(bbb, χ) ∧BBBaaa(ccc, χ′).

• We also use different nested levels of beliefs, like
BBBaaa(bbb, χ) ∧BBBaaa(ccc,BBBccc(ddd, χ′)).
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Example 9.2 (Belief Formulae for CFIT*)
The following are belief formulae from BLBLBLheli1heli1heli1

1 , BLBLBLtank1tank1tank1
2 and

BLBLBLcoordcoordcoord
3 .

BBBheli1heli1heli1(tank1tank1tank1, in(((((((((pos1, tank1tank1tank1 :getPositiongetPositiongetPosition((())))))))))))).
This formula is in BLBLBLheli1heli1heli1

1 . It says that agent heli1heli1heli1 believes
that agent tank1tank1tank1’s current state indicates that tank1tank1tank1’s
current position is pos1.

BBBtank1tank1tank1(heli1heli1heli1,BBBheli1heli1heli1(tank1tank1tank1, in(((((((((pos1, tank1tank1tank1 :getPositiongetPositiongetPosition((()))))))))))))).
This formula is in BLBLBLtank1tank1tank1

2 . It says that agent tank1tank1tank1 believes
that agent heli1heli1heli1 believes that agent tank1tank1tank1’s current position
is pos1.
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BBBcoordcoordcoord(tank1tank1tank1,BBBtank1tank1tank1(heli1heli1heli1,BBBheli1heli1heli1(tank2tank2tank2, in(((((((((pos2, tank2tank2tank2 :getPositiongetPositiongetPosition((())))))))))))))).
This formula is in BLBLBLcoordcoordcoord

3 . It says that agent coordcoordcoord believes
that agent tank1tank1tank1 believes that heli1heli1heli1 believes that agent
tank2tank2tank2’s current position is pos2.
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However, the following formula does not belong to any of the above
belief languages:

BBBtank1tank1tank1(heli1heli1heli1,BBBtank1tank1tank1(tank1tank1tank1, in(((((((((pos1, tanktanktank :getPositiongetPositiongetPosition((()))))))))))))).

The reason for this is because in heli1heli1heli1’s state there can be no
beliefs belonging to tank1tank1tank1.
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Example 9.3 (Basic Belief Table for CFIT* Agents)
We define suitable basic belief tables for agent tank1tank1tank1.

Agent Formula
heli1heli1heli1 in(((((((((pos1,heli1heli1heli1 :getPositiongetPositiongetPosition((())))))))))))
heli2heli2heli2 BBBheli2heli2heli2(tank1tank1tank1, in(((((((((pos1, tank1tank1tank1 :getPositiongetPositiongetPosition((()))))))))))))
tank2tank2tank2 BBBtank2tank2tank2(heli1heli1heli1,BBBheli1heli1heli1(tank1tank1tank1, in(((((((((pos3, tank1tank1tank1 :getPositiongetPositiongetPosition((())))))))))))))

Table 9.1: A Basic Belief Table for agent tank1tank1tank1.
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What kind of operations should we support on belief tables?

We distinguish between two different types:

1. For a given agent hhh, other than aaa, we may want to select all
entries in the table having hhh as first argument.

2. For a given belief formula φφφ, we may be interested in all those
entries, whose second argument “implies” (w.r.t. some
underlying definition of entailment) the given formula φφφ.
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9.1.1 Belief Semantics Table

Agent aaa may associate different background theories with
different agents: it may assume that agent hhh reasons according to
semantics BSemaaaaaaaaa

hhhhhhhhh and assumes that agent hhh′ adopts a stronger
semantics BSemaaaaaaaaa

hhh′hhh′hhh′ . We will store the information in a separate
relational data structure:
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Example 9.4 (Belief Semantics Tables for CFIT* Agents)
We briefly describe what suitable Belief Semantics Table for
heli1heli1heli1 and tank1tank1tank1 may look like. We define entailment relations
BSemtank1tank1tank1

heli2heli2heli2 , and BSemheli1heli1heli1
tank1tank1tank1. For simplicity we restrict these

entailment relations to belief formulae of level at most 1,
i.e., BLBLBLhhhhhhhhh

1 .

1. BSemheli1heli1heli1
tank1tank1tank1: The smallest entailment relation satisfying the

schema
BBBtank1tank1tank1(tank1.1tank1.1tank1.1, χ)→ χ.

This says that heli1heli1heli1 believes that all beliefs of tank1tank1tank1 about
tank1.1tank1.1tank1.1 are actually true: tank1tank1tank1 knows all about tank1.1tank1.1tank1.1.
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2. BSemtank1tank1tank1
heli2heli2heli2 : The smallest entailment relation satisfying the

schema

BBBheli2heli2heli2(tank2tank2tank2, χ) ∧BBBheli2heli2heli2(tank2.1tank2.1tank2.1, χ)→ χ.

This says that tank1tank1tank1 believes that if heli2heli2heli2 believes that χ is
true both for tank2tank2tank2 and tank2.1tank2.1tank2.1 then this is actually true.
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The notion of a semantics used in the belief semantics table
is very general: it can be an arbitrary relation on BLBLBLhhhhhhhhh

i ×BLBLBLhhhhhhhhh
i .

As an example, consider the following two simple axioms that can
be built into a semantics:

(1) BBBhhh2hhh2hhh2
(hhhhhhhhh, χ) ⇒ BBBhhh2hhh2hhh2

(hhh′hhh′hhh′, χ)

(2) BBBhhh2hhh2hhh2
(hhhhhhhhh, χ) ⇒ χ

The first axiom refers to different agents hhh,hhh′ while the second
combines different levels of belief atoms. In many applications,
however, such axioms will not occur: hhh = hhh′ is fixed and the axioms
operate on the same level i of belief formulae.
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Suppose an agent aaa believes that another agent hhh1 reasons
according to the feasible semantics, hhh2 reasons according to the
rational semantics etc. It would be nice if this could be encoded as
follows in BSemTaaaaaaaaa

〈hhh1,SemSemSemfeas〉
〈hhh2,SemSemSemrat〉
〈hhh3,SemSemSemreas〉

This is indeed possible.

The idea is to use the semantics SemSemSem of the action program PPPaaa(bbb)
(that aaa believes bbb to have) for the evaluation of the belief formulae.
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9.2 Meta Agent Programs and Status Sets

Definition 9.1 (Meta Agent Program (map) BP)
A meta agent rule, (mar for short), for agent aaa is an expression r
of the form

Opααα(~t)← L1, . . . , Ln (9.4)

where Opα(~t) is an action status atom, and each of L1, . . . , Ln is
either a code call literal, an action literal or a belief literal from
BBBLit∞(aaaaaaaaa,AAAAAAAAA).

A meta agent program, (map for short), for agent aaa is a finite
set BP of meta agent rules for aaa.
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Example 9.5 (map’s For CFIT*-Agents)
Let heli1heli1heli1’s meta agent program be as follows:

P attackattackattack(P1, P2) ← BBBheli1heli1heli1(tank1tank1tank1, in(((((((((P2, tank1tank1tank1 :getPosgetPosgetPos((( ))) )))))))))) ,

P flyflyfly(P1, P3, A, S),
P attackattackattack(P3, P2).

where attackattackattack(P1, P2) is an action which means attack position P2

from position P1. heli1heli1heli1’s program says heli1heli1heli1 can attack position P2

from P1 if heli1heli1heli1 believes tank1tank1tank1 is in position P2, heli1heli1heli1 can fly from
P1 to another position P3 at altitude A and speed S, and heli1heli1heli1 can
attack position P2 from P3.
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Let tank1tank1tank1’s meta agent program be as follows:

O attackattackattack(P1, P2) ← O driveRoutedriveRoutedriveRoute([P0, P1, P2, P3], S),
BBBtank1tank1tank1(tank2tank2tank2, in(((((((((P2, tank2tank2tank2 :getPosgetPosgetPos((( ))) )))))))))).

If tank1tank1tank1 must drive through a point where it believes tank2tank2tank2 is, it
must attack tank2tank2tank2.
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From now on we assume that the software package
SSSaaa = (TTTTTTTTT SSSaaa ,FFFFFFFFFSSSaaa) of each agent aaa contains as distinguished data
types

1. the belief table BTaaaaaaaaa, and

2. the belief semantics table BSemTaaaaaaaaa,

as well as the corresponding functions

BTaaaaaaaaaaaaaaaaaaaaaaaaaaa : B-proj-select(r,hhh, φ) and BSemTaaaaaaaaaaaaaaaaaaaaaaaaaaa : select(agent,=,hhh).
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What is a status set?

Definition 9.2 (Belief Status Set BS)
A belief status set BS of agent aaa, also written BS(aaa), is a set
consisting of two kinds of elements:

• ground action status atoms over SSSaaa and

• belief atoms from BBBAt∞(aaaaaaaaa,AAAAAAAAA) of level greater or equal to 1.

The reason that we do not allow belief atoms of level 0 is to avoid
having code call conditions in our set. In agent programs without
beliefs (which we want to extend) they are not allowed (see
Definition 6.14 on page 375).
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A status set must be determined in accordance with

1. the map BP of agent aaa,

2. the current stateOOO of aaa,

3. the underlying set of action (ACACAC) and integrity constraints (ICICIC)
of aaa.

• In contrast to agent programs without beliefs we now have
cope with all agents about which aaa holds certain beliefs.

• Even if the map BP does not contain nested beliefs (which are
allowed), we cannot restrict to belief atoms of level 1 ( BTaaaaaaaaa

may contain nested beliefs and, by BSemTaaaaaaaaa, such nested
beliefs may trigger other beliefs).
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9.3 Reducing map’s to Ordinary Agent Programs

Definition 9.3 (Extended Code Calls, SextSextSext)
Given an agent aaa, we will from now on distinguish between basic
and extended code calls (resp. conditions). The basic code calls
refer to the package SSS, while the latter refer to the extended
software package which also contains

1. the following function of the belief table:

(a) aaa :belief _tablebelief _tablebelief _table((())), which returns the full belief table of
agent aaa, as a set of triples 〈hhh, φ, χB〉,
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2. the following functions of the belief semantics table:

(b) aaa :belief _sem_tablebelief _sem_tablebelief _sem_table((())), which returns the full belief semantics
table, as a set of pairs 〈hhh,BSemaaaaaaaaa

hhhhhhhhh〉,

(c) aaa :bel_semanticsbel_semanticsbel_semantics(((hhh, φ, ψ))), which returns true when φ |=BSemaaaaaaaaa
hhhhhhhhh
ψ

and false otherwise.
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3. the following functions, which implement for every sequence σσσ
the beliefs of agent aaa about σσσ as described in Γaaa(σσσ):

(d) aaa :software_packagesoftware_packagesoftware_package(((σσσ))), which returns the set SSSaaa(σσσ),

(e) aaa :action_baseaction_baseaction_base(((σσσ))), which returns the set ABABABaaa(σσσ),

(f) aaa :action_programaction_programaction_program(((σσσ))), which returns the set PPPaaa(σσσ),

(g) aaa : integrity_constraintsintegrity_constraintsintegrity_constraints(((σσσ))), which returns the set ICICIC aaa(σσσ)

(h) aaa :action_constraintsaction_constraintsaction_constraints(((σσσ))), which returns the set ACACAC aaa(σσσ),
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4. the following functions which simulate the state of another
agent bbb or a sequence σσσ,

(i) aaa :bel_ccc_actbel_ccc_actbel_ccc_act(((σσσ))), which returns all the code call conditions and
action status atoms that aaa believes are true in σσσ’s state. We
write these objects in the form "in(((((((((, )))))))))" (resp. "Opα" for action
status atoms) in order to distinguish them from those that
have to be checked in aaa’s state.

(j) aaa :not_bel_ccc_actnot_bel_ccc_actnot_bel_ccc_act(((σσσ))), which returns all the code call conditions
and action status atoms that aaa does not believe to be true in
σσσ’s state.

We also write SextSextSext for this extended software package and
distinguish it from the original SSS from which we started.
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We now

1. transform meta agent programs into agent programs,
(this is a source-to-source transformation: the belief
atoms in a meta agent program are replaced by suitable
code calls to the new datastructures),

2. take advantage of extended code calls SextSextSext.
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• Suppose the belief table does not contain any belief conditions
(i.e., it coincides with its basic belief table).

• Then if χ is any code call condition of agent ccc, the extended
code call atom

in(((((((((〈ccc, χ, true〉,aaa :belief _tablebelief _tablebelief _table((())))))))))))

corresponds to the belief atom

BBBaaaaaaaaa(ccccccccc, χ).

• But beliefs can also be triggered by entries in the belief table
and/or in the belief semantics table!
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• What happens if the formula χ is not a code call, but again a
belief formula, say BBBccccccccc(ddddddddd, χ′)?

Here is where the inductive definition of TransTransTrans comes in. We
map

BBBaaaaaaaaa(ccccccccc,BBBccccccccc(ddddddddd, χ′))

to
in((((((((("χ′",aaa :bel_ccc_actbel_ccc_actbel_ccc_act((([ccc,ddd])))))))))))).
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Our main theorem states that there is indeed a uniform
transformation TransTransTrans from arbitrary meta agent programs (which
can also contain nested beliefs) to agent programs such that the
semantics are preserved:

SemSemSem(BP) = SemSemSem(TransTransTrans(BP)) (9.5)

where SemSemSem is either the feasible, rational or reasonable belief
status set semantics.

BP TransTransTrans−−−−−−−−−→ PPP
Compatible with
Belief Semantics
Belief Table

xSemSemSemnew ICICICext

Closure

xSemSemSemold

BS TransTransTrans−−−−−−−−−→ S

(9.6)
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10.1 Probabilistic Code Calls

Imagine a surveillance example, where survsurvsurv : identifyidentifyidentify(((image1))) tries
to identify all objects in a given image: it is well known that this is
an uncertain task.

Some objects may be identified with 100% certainty, while in other
cases, it may only be possible to say it is either a T-72 tank with
40–50% probability.

Definition 10.1 (Random Variable of Type τ)
A random variable of type τ is a finite set RV of objects of type
τ , together with a probability distribution ℘ that assigns real
numbers in the unit interval [0, 1] to members of RV such that
Σo∈RV℘(o) ≤ 1.
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Uncertainty can be captured as follows.

Definition 10.2 (Probabilistic Code Call aaaaaaaaa :RV f (d1, . . . , dn))

Suppose aaaaaaaaa : fff (((d1, . . . , dn))) is a code call whose output type is τ . The
probabilistic code call associated with aaaaaaaaa : fff (((d1, . . . , dn))), denoted
aaaaaaaaa :RV f (d1, . . . , dn), returns a set of random variables of type τ
when executed.
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Example 10.1
Consider the code call survsurvsurv :RV identify(image1). This code call may
return the following two random variables.

〈{t72, t80}, {〈t72, 0.5〉, 〈t80, 0.4〉}〉

and
〈{t60, t84}, {〈t60, 0.3〉, 〈t84, 0.7〉}〉

This says that the image processing algorithm has identified two
objects in image1:

• The first object is either a T-72 or a T-80 tank with
50% and 40% probability, respectively, while

• the second object is either a T-60 or a T-84 tank with
30% and 70% probability respectively.
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Probabilistic cc’s and ccc’s look exactly like ordinary cc’s and
ccc’s—however, as a probabilistic code call returns a set of
random variables, probabilistic code call atoms are true or
false with some probability.
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Example 10.2
Consider the probabilistic code call condition

in(((((((((X, survsurvsurv :RV identify(image1)))))))))) & in(((((((((a1 , survsurvsurv :RV turret(X)))))))))).

This ccc attempts to find all vehicles in “image1” with a gun turret
of type a1. Let us suppose that the first cc is as on the previous
page, but gives back only the first random variable.

When this result (X) is passed to the second code call, it returns
one random variable with two values—a1 with probability 30% and
a2 with probability 65%.

What is the probability that the code call condition above is
satisfied by a particular assignment to X?
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Let’s suppose X is assigned T72. If all T72’s have a2-type turrets,
then the answer is “0”.

Let’s suppose X is assigned T80. If the vehicule and turret
identification is independent, then the answer is
“0.4 × 0.3 = 0.12”.
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Example 10.3
Suppose we consider a code call cc returning the following two
random variables.

RV1 = 〈{a, b}, ℘1〉

RV2 = 〈{b, c}, ℘2〉

Suppose ℘1(a) = 0.9, ℘1(b) = 0.1, ℘2(b) = 0.8, ℘2(c) = 0.1.

What is the probability that b is in the result of the code
call cc?

Answering this question is problematic.
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Definition 10.3 (Probabilistic State of an Agent)
The probabilistic state of an agent aaa at any given point t in time,
denoted OpOpOp(t), consists of the set of all instantiated data objects
and random variables of types contained in TTTTTTTTT aaa.
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Definition 10.4 (Satisfying a Code Call Atom)
Suppose aaaaaaaaa :RV f (d1, . . . , dn) is a ground probabilistic code call and o
is an object of the output type of this code call w.r.t. probabilistic
agent state OpOpOp. Suppose [`, u] is a closed, nonempty subinterval of
the unit interval [0, 1].

• o |=[`,u]
OpOpOp in(((((((((X,aaaaaaaaa :RV f (d1, . . . , dn))))))))))

if there is a (Y, ℘) in the answer returned by evaluating
aaaaaaaaa :RV f (d1, . . . , dn) w.r.t. OpOpOp such that o ∈ Y and ` ≤ ℘(o) ≤ u.

• o |=[`,u]
OpOpOp not_in(((((((((X,aaaaaaaaa :RV f (d1, . . . , dn))))))))))

if for all random variables (Y, ℘) returned by evaluating
aaaaaaaaa :RV f (d1, . . . , dn) w.r.t. OpOpOp, either o /∈ Y or ℘(o) /∈ [`, u].
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Probabilistic code call conditions are defined in exactly the same
way as code call conditions. However, extending the above
definition of “satisfaction” to probabilistic code call conditions is
highly problematic because (as shown in Examples 10.2, 10.3)

the probability that a conjunction is true depends not only
on the probabilities of the individual conjuncts, but also on
the dependencies between the events denoted by these con-
juncts.

We allow the user to specify certain strategies.
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Definition 10.5 (Probabilistic Conjunction Strategy ⊗)

A probabilistic conjunction strategy is a mapping ⊗ which maps a
pair of probability intervals to a single probability interval
satisfying the following axioms:

1. Bottomline: [L1, U1]⊗ [L2, U2] ≤ [min(L1, L2),min(U1, U2)]
where [x, y] ≤ [x′, y′] if x ≤ x′ and y ≤ y′.

2. Ignorance:
[L1, U1]⊗ [L2, U2] ⊆ [max(0, L1 + L2 − 1),min(U1, U2)].

3. Identity: When (e1 ∧ e2) is consistent and [L2, U2] = [1, 1],
[L1, U1]⊗ [L2, U2] = [L1, U1].
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4. Annihilator: [L1, U1]⊗ [0, 0] = [0, 0].

5. Commutativity: [L1, U1]⊗ [L2, U2] = [L2, U2]⊗ [L1, U1].

6. Associativity:
([L1, U1]⊗ [L2, U2])⊗ [L3, U3] = [L1, U1]⊗ ([L2, U2]⊗ [L3, U3]).

7. Monotonicity: [L1, U1]⊗ [L2, U2] ≤ [L1, U1]⊗ [L3, U3] if
[L2, U2] ≤ [L3, U3].
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The concept of a conjunction strategy is very general, and
has as special cases, the following well known ways of com-
bining probabilities.

1. When we do not know the dependencies between e1, e2, we may
use the conjunction strategy ⊗ig defined as
([L1, U1]⊗ig[L2, U2]) ≡ [max(0, L1 + L2 − 1),min(U1, U2)].

2. When e1, e2 have maximal overlap, use the positive correlation
conjunctive strategy ⊗pc defined as
([L1, U1]⊗pc[L2, U2]) ≡ [min(L1, L2),min(U1, U2)].
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3. When e1, e2 have minimal overlap, use the negative correlation
conjunctive strategy ⊗nc defined as
([L1, U1]⊗nc[L2, U2]) ≡ [max(0, L1 +L2 − 1),max(0, U1 +U2 − 1)].

4. When the two events occur independently, use the
independence conjunction strategy
([L1, U1]⊗in[L2, U2]) = [L1 · L2, U1 · U2].
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10.2 Probabilistic Agent Programs

We assume the existence of an annotation language Lann—the
constant symbols of Lann are the reals in the interval [0, 1].

Definition 10.6 (Annotation Item)
We define annotation items inductively:

• Every constant and every variable of Lann is an annotation
item.

• If f is an annotation function of arity n and ai1, . . . , ain are
annotation items, then the term f(ai1, . . . , ain) is an annotation
item.

An annotation item is ground if no variables occur in it.
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Definition 10.7 (Annotation [ai1, ai2])
If ai1, ai2 are annotation items, then the term [ai1, ai2] is an
annotation. If ai1, ai2 are both ground, then [ai1, ai2] is a ground
annotation.

For instance, [0, 0.4], [0.7, 0.9], [0.1, V2 ], [ V4 ,
V
2 ] are all annota-

tions. The annotation [0.1, V2 ] denotes an interval only when
a value in [0, 1] is assigned to the variable V.
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Definition 10.8 (Annotated Code Call Condition χ : 〈[ai1, ai2],⊗〉)
If χ is a probabilistic code call condition, ⊗ is a conjunction
strategy, and [ai1, ai2] is an annotation, then χ : 〈[ai1, ai2],⊗〉 is an
annotated code call condition. χ : 〈[ai1, ai2],⊗〉 is ground if there
are no variables in either χ or in [ai1, ai2].

For example, when X is ground,

in(((((((((X, survsurvsurv :RV identify(image1)))))))))) & in(((((((((a1, survsurvsurv :RV turret(X)))))))))) : 〈[0.3, 0.5],⊗ig〉

is true if and only if
the probability that X is identified by the survsurvsurv agent and that
the turret is identified as being of type a1 lies between 30 and
50% assuming that nothing is known about the dependencies
between turret identifications and identifications of objects
by survsurvsurv.
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Definition 10.9 (Probabilistic Agent Programs PP)
Suppose Γ is an annotated code call condition, and A,L1, . . . , Ln

are status atoms. Then

A← Γ &L1 & . . . &Ln (10.7)

is a probabilistic action rule.

A probabilistic agent program (pap for short) is a finite set of
probabilistic action rules.

It is important to note in the above definition that in a
probabilistic action rule, status atoms are not annotated—
uncertainty is present only in the state, and on the basis of
this uncertainty, the agent must determine what it is obliged
to do, forbidden from doing, etc.
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Do send_warn(X) ← in(((((((((F, survsurvsurv :filefilefile(((imagedb)))))))))))) &

in(((((((((X, survsurvsurv :RV identify(F)))))))))) &

in(((((((((a1, survsurvsurv :RV turret(X))))))))))) : 〈[0.7, 1.0],⊗ig〉

¬Fsend_warn(X).

Fsend_warn(X) ← in(((((((((F, survsurvsurv :filefilefile(((imagedb)))))))))))) &

in(((((((((X, survsurvsurv :RV identify(F)))))))))) &

in(((((((((L, geogeogeo :RV getplnode(X.location)))))))))) &

in(((((((((L, geogeogeo :RV range(100, 100, 20)))))))))).
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Definition 10.10 (Feasible Probabilistic Status Set)
Suppose PP is an agent program and OpOpOp is a probabilistic agent
state. A probabilistic status set PS is feasible for PP on OpOpOp if
the following conditions hold:

(PS1): AppPP,OOOSSS
(PS) ⊆ PS (closure under the program rules) ;

(PS2): PS is deontically and action consistent (deontic/action
consistency) ;

(PS3): PS is action closed and deontically closed (deontic/action
closure) ;

(PS4): PS is state consistent (state consistency).
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Definition 10.11 (Deontic and Action Consistency)
A probabilistic status set PS is deontically consistent with
respect to a probabilistic agent state OpOpOp if, by definition, it
satisfies the following rules for any ground action α:

• If Oα ∈ PS, then Wα /∈ PS.

• If Pα ∈ PS, then Fα /∈ PS.

• If Pα ∈ PS, then OpOpOp |=[1,1] Pre(α).

A probabilistic status set PS is action consistent w.r.t. OpOpOp if, by
definition, for every action constraint of the form

{α1( ~X1), . . . , αk( ~Xk)} ←↩ χ (10.8)

either OpOpOp 6|=[1,1] χ or {α1( ~X1), . . . , αk( ~Xk)} 6⊆ Do (PS).
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Definition 10.12
Let PP be a probabilistic agent program, PS a probabilistic
status set and OpOpOp a probabilistic agent state. Assume further
that each random variable contains exactly one object with
probability 1. Then we can define the following mappings:

Red1(·), which maps every random variable of the form 〈{oRV}, 1〉
to o: Red1(〈{oRV}, 1〉) = o.

Red2(·), which maps annotated code call conditions to code call
conditions by simply removing the annotations and the
conjunction strategy: Red2(χ : 〈[ai1, ai2],⊗〉) = χ. We can
extend Red2(·) to a mapping from arbitrary conjunctions of
annotated code calls to conjunctions of ccs.
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Red3(·), which maps every probabilistic agent program to a
non-probabilistic agent program: it clearly suffices to define
Red3(·) on probabilistic agent rules. This is done as follows

Red3(A← Γ &L1 & . . . &Ln) = A← Red2(Γ)& &L1 & . . .&Ln.
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Theorem 10.1 (Semantics as an Instance of paps)
Suppose all random variables have the form

〈{objectRV}, 1〉.

Then: (χ : 〈[ai1, ai2],⊗〉 is a ground annotated ccc, OpOpOp a
probabilistic agent state)

Satisfaction: the satisfaction relations coincide, i.e.

OpOpOp |=[ai1,ai2] χ : 〈[ai1, ai2],⊗〉 if and only ifOpOpOp |= Red2(χ : 〈[ai1, ai2],⊗〉).

App-Operators: the App-Operators coincide, i.e.

AppRed3(PP),OpOpOp(PS) = AppPP,OpOpOp(PS).
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Feasibility: Feasible probabilistic status sets coincide with
feasible status sets under our reductions, i.e. PS is a
feasible probabilistic status set w.r.t. PP if and only if PS is
a feasible status set w.r.t. Red3(PP).

10.2 Probabilistic Agent Programs 595



Chapter 10: Probabilistic Agent Reasoning Combining Agents, ASP and Planning, NICTA

10.3 Kripke Style Semantics

Up to now, we assumed:

• An action can be executed only if its precondition is be-
lieved by the agent to be true in the agent state with
probability 1.

• Every action that is permitted must also have a precon-
dition that is believed to be true with probability 1.
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Every probabilistic state implicitly determines a set of (ordi-
nary) states that are “compatible” with it.

Definition 10.13 (Compatibility w.r.t. State: COS(OpOpOp))

Let OpOpOp be a probabilistic agent state. An (ordinary) agent state OOO
is said to be compatible with OpOpOp if, by definition, for every
ground code call aaaaaaaaa : fff (((d1, . . . , dn))), it is the case that for every
object o ∈ eval(aaaaaaaaa : fff (((d1, . . . , dn))),OOO), there exists a random variable
(X,℘) ∈ eval(aaaaaaaaa :RV f (d1, . . . , dn),OpOpOp) such that o ∈ X and ℘(o) > 0,
and there is no other object o′ ∈ X such that
o′ ∈ eval(aaaaaaaaa : fff (((d1, . . . , dn))),OOO).

We use the notation COS(OpOpOp).
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Example 10.4
Consider a probabilistic agent state OpOpOp with only two code calls
survsurvsurv : identifyidentifyidentify(((image1))) and survsurvsurv : locationlocationlocation(((image1))), which
respectively return the random variables

〈{t80, t72, t70}, {〈t80, 0.3〉, 〈t72, 0.7〉, 〈t70, 0.0〉}〉

and 〈{loc2}, {〈loc2, 0.8〉}〉. The agent states compatible w.r.t. OpOpOp

are described in the following table:

State Vehicle Location
1 none none
2 t80 none
3 t72 none
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State Vehicle Location
4 none loc2
5 t80 loc2
6 t72 loc2
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in the real state

if Pre(α) is true

if Pre(α) is false

COS(OpOpOp)

α(COS(OpOpOp))

α(COS(OpOpOp))

in the real state
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It would be nice if

• agents were able to reason about the effects of their
actions even when they are not exactly sure what the
world state is.
;;; Probabilistic Kripke Structures

• actions could be applied even when the precondition is
only true wrt. a certain probability p < 1.
;;; p-Feasible Status Sets
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11. Adding Time

11.1 Timed Actions
11.2 Temporal Agent Programs
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11.1 Timed Actions

• Most real-world actions have a duration :
heliheliheli: fly("BA", "US").

• It might be important to specify intermediate timepoints,
checkpoints (Definition 11.1), and to update the current
state incrementally at these prespecified points.

Thus, in order to specify a timed action , we must:

1. Specify the total amount of time it takes for the action
to be “completed”.

2. Specify exactly how the state of the agent changes
while the action is being executed.
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Definition 11.1 (Checkpoint Expressions rel :{X | χ}, abs :{X | χ})

• If i ∈ N is a positive integer, then rel :{i} and abs :{i} are
checkpoint expressions.

• If χ is a code call condition involving a non-negative,
integer-valued variable X, then rel :{X | χ} and abs :{X | χ} are
checkpoint expressions.
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Example 11.1 (Rescue: Checkpoints)
• rel :{100}. This says that a checkpoint occurs at the time of the
start of the action, 100 units later, 200 units later, and so on.

• abs :{T | in(((((((((T, clockclockclock : timetimetime((()))))))))))) & in(((((((((0, mathmathmath :remainderremainderremainder(((T, 100)))))))))))) & T >

5000}. This says that a checkpoint occurs at absolute times
5000, 5100, 5200, and so on.

• abs :{T |
in(((((((((T, clockclockclock : timetimetime((()))))))))))) & in(((((((((X, aaa :getMessagegetMessagegetMessage(((comc))))))))))))& X.Time− T = 5}.
This says that a checkpoint occurs at 5 time units after a
message is received from the comccomccomc agent.
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Definition 11.2 (Timed Effect Triple 〈{chk},Add ,Del〉)
A timed effect triple is a triple of the form 〈{chk},Add ,Del〉
where {chk} is a checkpoint expression, and Add and Del are add
lists and delete lists.
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Example 11.2 (Rescue: Timed Effect Triples)

• The trucktrucktruck agent may use the following timed effect triple to
update its fuel at absolute times 5000, 5100, 5200, and so on.

1st arg :

abs :{T | in(((((((((T, clockclockclock : timetimetime((()))))))))))) & in(((((((((0,mathmathmath :remainderremainderremainder(((T, 100)))))))))))) & T > 5000}
2nd arg:{in(((((((((NewFuelLevel, trucktrucktruck : fuelLevelfuelLevelfuelLevel(((Xnow)))))))))))) }
3rd arg:{in(((((((((OldFuelLevel, trucktrucktruck : fuelLevelfuelLevelfuelLevel(((Xnow − 20)))))))))))) }
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Definition 11.3 (Timed Action)
A timed action ααα consists of:

Name: A name, usually written ααα(X1, . . . ,Xn), where the Xi’s are
root variables.

Schema: A schema, usually written as (τ1, . . . , τn), of types.
Intuitively, this says that the variable Xi must be of type τi,
for all 1 ≤ i ≤ n.

Pre: A code-call condition χ, the precondition of the action,
denoted by Pre(ααα)
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Dur:
An expression of the form {i} or {X | χ}. Depending on the
current object state, this expression determines a duration
duration(ααα) ∈ N of ααα.

Tet:
A set Tet(ααα) of timed effect triples such that if both
〈{chk}, Add,Del〉 and 〈{chk}′, Add′, Del′〉 are in Tet(ααα), then
{chk} and {chk}′ have no common solution w.r.t. any object
state. The set Tet(ααα) together with Dur(ααα) determines the
set of checkpoints checkpoints(ααα) for action ααα (as defined
below).
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Intuitively, if ααα is an action that we start executing at tαstart, then

• Dur(ααα) specifies how to compute the duration duration(ααα) of ααα,
and

• Tet(ααα) specifies the checkpoints associated with action ααα.

It is important to note that Dur(ααα) and Tet(ααα) may not specify the
duration and checkpoint times explicitly (even if the associated
checkpoints are of the form abs :{X | χ}, i.e. absolute times). There
is a method to compute duration(ααα).
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11.2 Temporal Agent Programs

Definition 11.4 (Temporal Annotation Item tai)

1. Every integer is a temporal annotation item.

2. The distinguished integer valued variable Xnow is a temporal
annotation item.

3. Every integer valued variable is a temporal annotation item.

4. If tai1, . . . , tain are temporal annotation items, and b1, . . . , bn
are integers (positive or negative), then
(b1tai1 + . . .+ bntain) is a temporal annotation item.
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• 1 , Xnow , Xnow + 3 , Xnow + 2v + 4 are all temporal
annotation items if v is an integer valued variable.

• Temporal annotation items, when ground, evaluate to time
points. They are used to specify a time interval.

11.2 Temporal Agent Programs and Status Sets 612



Chapter 11: Temporal Agent Reasoning Combining Agents, ASP and Planning, NICTA

Definition 11.5 (Temporal Annotation [tai1, tai2])
If tai1, tai2 are annotation items, then [tai1, tai2] is a temporal
annotation.

• [2, 5] is a temporal annotation item describing the set of time
points between 2 and 5 (inclusive).

• [2, 3X + 4Y] is a temporal annotation.

• When X := 2, Y := 3, this defines the set of time points between
2 and 18. [Xnow, Xnow + 5] is a temporal annotation.
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Definition 11.6 ((Temporal) Action State Condition)
Suppose χ is a (possibly empty) code call condition, L1, . . . , Ln are
action status literals, and ta is a temporal annotation. Then:

1. (χ&L1 & . . .&Ln) is called an action state condition.

2. (χ&L1 & . . .&Ln) : ta is called a temporal action state
conjunct (tasc).

3. If χ is empty, then (L1 & . . .&Ln) : ta is called a
state-independent tasc .
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Intuitively, when % : ta is ground for some action state condition %,
we may read this as “% is true at some point in ta”. The following is
a simple tasc.

• (in(((((((((X,heliheliheli : inventoryinventoryinventory(((fuel)))))))))))) & X.Qty < 50) : [Xnow − 10, Xnow].
Intuitively, this tasc is true if at some point in time ti in the
last 10 time units, the helicopter had less than 50 gallons of
fuel left.
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We are now ready to define the most important syntactic con-
struct of this chapter, a temporal agent rule.

Definition 11.7 (Temporal Agent Rule/Program T P)
A temporal agent rule is an expression of the form

Opααα : [tai1, tai2] ← %1 : ta1 & · · ·& %n : tan,

where Op ∈ {P,Do ,F,O,W}, and %1 : ta1, . . . , %n : tan are tascs.

A temporal agent program is a finite set of temporal agent rules.
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Intuitive Reading of Temporal Agent Rule
“If for all 1 ≤ i ≤ n, there exists a time point ti such that %i

is true at time ti such that either

1. %i is state independent and ti ∈ tai, or

2. %i is not state independent and ti ≤ tnow (i.e. ti is now or
is in the past) and ti ∈ tai,

then Opααα is true at some point t ≥ tnow (i.e. now or in the
future) such that tai1 ≤ t ≤ tai2”.

Opααα : [tai1, tai2] ← %1 : ta1 & · · ·& %n : tan,
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“If a prediction package expects a stock to rise K% after TK

units of time and K ≥ 25 then buy the stock at time (Xnow +
TK − 2).”

We assume a prediction package that given a stock uses (some
stock expertise) to predict the change in the value of the stock at
future time points. This function returns a set of pairs of the form
(T,C). Intuitively, this says that T units from now, the stock price
will change by C percent (positive or negative).

DobuybuybuyS : [Xnow + X.T− 2, Xnow + X.T− 2] ←
(in(((((((((X, predpredpred :destdestdest(((S)))))))))))) & X.C ≥ 25) : [Xnow, Xnow].
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11.3 Semantics

Definition 11.8 (Temporal Status Set T Stnow)
A temporal status set T Stnow at time tnow is a mapping
from natural numbers to ordinary status sets satisfying
T Stnow(i) = ∅ for all i > i0 for some i0 ∈ N.

As usual a feasible status set must satisfy

• Closure under rules.

• Deontic consistency wrt. State History
(; Definition 11.9).

• Deontic closure.

• Checkpoint consistency (; Definition 11.10).
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As an agent that reasons about time may need to reason
about the current, as well as past states it was/is in, a no-
tion of state history is needed.

Definition 11.9 (State History Function histtnow)
A state history function histtnow at time tnow is a partial function
from N to agent states such that histtnow(tnow) is always defined
and for all i > tnow, histtnow(i) is undefined.
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The definition of state history does not require that an agent store
the entire past.

1. He may decide to store no past information at all. In this
case, histtnow(i) is defined if and only if i = tnow.

2. He may decide to store information only about the past
i units of time. This means that he stores the agent’s
state at times tnow, (tnow − 1), . . ., (tnow − i), i. e. histtnow

is defined for the following arguments: histtnow(tnow),
histtnow(tnow − 1), . . ., histtnow(tnow − i) are defined.

11.3 Computation 621



Chapter 11: Temporal Agent Reasoning Combining Agents, ASP and Planning, NICTA

3. He may decide to store, in addition to the current state, the
history every five time units. That is, histtnow(tnow) is defined
and for each 0 ≤ i ≤ tnow, if i mod 5 = 0, then histtnow(i) is
defined. Such an agent may be specified by an agent designer
when he believes that maintaining some (but not all) past
snapshots is adequate for his application’s needs.
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For a temporal status set to be feasible, at each checkpoint
the state needs to be updated.
The expected future states of the agent need to satisfy the
integrity constraints.

Definition 11.10 (Checkpoint Consistency)
T Stnow is said to be checkpoint consistent at time tnow if, by
definition, for all i > tnow, EO(i) (see Definition 11.11) satisfies
the integrity constraints ICICIC.
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Definition 11.11 (Expected States at time t: EO(t))
Suppose the current time is tnow, histtnow is the agent’s state
history function and T Stnow is a temporal status set. The agent’s
expected states are defined as follows:

• EO(tnow) = histtnow(tnow).

• For all time points i > tnow, EO(i) is the result of concurrently
executing

{ααα |Doααα ∈ TSnow(i− 1)}∪
{β′β′β′ |Doβββ ∈ TSnow(j) for j ≤ i− 1 and i− 1 is a checkpoint for βββ,

and β′β′β′ denotes the action (non-timed) which has
an empty precondition, and whose add and del lists are as specified by Tet(βββ)}

in state EO(i− 1).
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We note that that from a certain i0 ∈ N onwards, we have
EO(i) = ∅ for all i > i0 (this is because of the same property for
the action history and the temporal status set).
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