
J. Dix Combining Agents, ASP and Planning, Jul-Aug 2003, Sydney, NICTA

Combining Agents, ASP and Planning
NICTA, Jul-Aug 2003

• July and August with the exception of third week in
July.

• Time: Thursday, Friday, 14-16, starting on 3rd July 2003.

• Lecture Course is in the first 3 weeks on theoreti-
cal issues in general agent systems and answer set
programming, emphasis on mathematical-logical foun-
dations. Remaining two weeks devoted to a partic-
ular agent system and some demonstrations.

• www.cs.man.ac.uk/~jdix/LECTURING/NICTA03.html .

Overview 1

J. Dix Combining Agents, ASP and Planning, Jul-Aug 2003, Sydney, NICTA

First and second week (Chapters 1–3)

The first part of this lecture course is mainly based on

Multi-Agent Systems
(Gerhard Weiss)
MIT Press, June 1999.

We describe general methods and techniques.

Overview 2

J. Dix Combining Agents, ASP and Planning, Jul-Aug 2003, Sydney, NICTA

Third week (Chapter 4)

The second part of this lecture course is mainly based on

1. Knowledge representation, reasoning and
declarative problem solving with Answer sets
(Chitta Baral), MIT Press, February 2003.

2. Planning in Answer Set Programming using
Ordered Task Decomposition
(Jürgen Dix, Ugur Kuter and Dana Nau)
Theory and Practice of Logic Programming, to appear 2004.
<www.cs.umd.edu/users/ukuter/ASP_Planning/>

We give an introduction to the newly emerged paradigm of Answer
Set Programming and illustrate it with recent research on how to
realise HTN-planning in this paradigm.

Overview 3

J. Dix Combining Agents, ASP and Planning, Jul-Aug 2003, Sydney, NICTA

Fourth and fifth week (Chapters 5–9)

The third part of this lecture course is mainly based on

Heterogenous Agent Systems
(Subrahmanian/Bonatti/Dix/Eiter/Kraus/Özcan/Ross)
MIT Press, August 2000.

We describe the IMPACT approach and its underlying
foundations. We also give two demos and present an approach of
monitoring agents through planning (using an ASP engine).

Overview 4

J. Dix Combining Agents, ASP and Planning, Jul-Aug 2003, Sydney, NICTA

Overview (Agent Systems in general)

1. Introduction
2. Distributed Decision Making (2 Lectures)
3. Contract Nets, Coalition Formation

Overview 5

J. Dix Combining Agents, ASP and Planning, Jul-Aug 2003, Sydney, NICTA

Overview (Answer Set Programming)

4. ASP: Foundations and an Application to
Planning (2 Lectures)

Overview 6

J. Dix Combining Agents, ASP and Planning, Jul-Aug 2003, Sydney, NICTA

Overview (IMPACT)

5. IMPACT Architecture
6. Actions and Agent Programs
7. Implementing Agents: An Application
8. Agent Systems and Planning
9. Extensions of IMPACT

Overview 7

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

4 Answer Set Programming
4.1 Definite Logic Programs
4.2 Positive Disjunctive Logic Programs
4.3 AnsProlog vs. PROLOG
4.4 Answer Sets and their Semantics
4.5 Declarative Problem Solving Modules
4.6 DLV: Special features

Overview 128

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

4.7 HTN Planning
4.8 Realising HTN Planning in ASP
4.9 Benchmarks and Comparisons
4.10 Summary and References

Overview 129

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

Why not just Prolog? What went wrong with Prolog?
ASP as a new programming paradigm.

ASP is a nonmonotonic logic. It captures truth in minimal
models. Thus it is well suited for describing transitive closure,
exceptions etc.

I.e.: adding new information makes previously drawn con-
clusions useless (they have to be given up).
It is therefore stronger than classical logic.

Overview 130

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

Assessment 1 (Lab: Colouring)
How many possibilities are there to colour the map of
(continental) Europe with at most 4 colours (such that adjacent
countries get different colours)? Is it possible with just 3?

The same questions for colouring the United States of America
(adjacent states get different colours).

Write a positive disjunctive program such that it computes all
colourings no matter what the underlying facts are. Solve the
problem by using DLV for computing the models.

Make yourself familiar with DLV by going through the online
manual: http://www.dbai.tuwien.ac.at/proj/dlv/ .

Overview 131

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

4.1 Definite Logic Programs

Programs without negation have nice properties: one unique
model, which is minimal and can be computed with database
technology. Prolog is based on it.

Definition 4.1 (Definite Logic Program)
A definite logic program consists of a finite number of rules of
the form

A← B1, . . . , Bm,

where A,B1, . . . , Bm are positive atoms (containing possibly free
variables, like p(X,Y, c)). We call A the head of the rule and
B1, . . . , Bm its body. The comma represents conjunction ∧. A
might also be absent (resp. identical to ⊥): we call such a rule a
constraint.

4.1 Definite Logic Programs 132

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

We can think of a program as formalising our knowledge
about the world and how the world behaves. Of course, we
also want to derive new information, i.e. we want to ask
queries:

Definition 4.2 (Query)
Given a definite program we usually have a definite query in mind
that we want to be solved. A definite query Q is a conjunction of
positive atoms C1 ∧ . . . ∧ Cl which we denote by

?- C1, . . . , Cl.

These Ci may also contain variables. Asking a query Q to a
program P means asking for all possible substitutions Θ of the
variables in Q such that QΘ follows from P . Θ is also called an
answer to Q (QΘ may still contain free variables).

4.1 Definite Logic Programs 133

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

Example 4.1 (Connectedness)
edge(a, b) ←
edge(b, c) ←
edge(c, d) ←
edge(b, e) ←
connected(X,Y) ← edge(X,Y)

connected(X,Y) ← edge(X,Z), connected(Z, Y)

The facts edge(·, ·) are also called EDB relations (extensional data
base), while the predicate connect is called IDB relation
(intensional data base).

A query is ?- connected(b,X) , asking for all nodes that can be
reached from b.

4.1 Definite Logic Programs 134

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

How are our programs related to classical predicate logic?

We can map a program-rule into classical logic by interpreting “←”
as material implication “→” and universally quantifying.

Thus we view it as the universally quantified formula
B1 ∧ . . . ∧Bm → A.

4.1 Definite Logic Programs 135

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

Let us apply this to Example 4.1 (What do we get?). Viewed as a
predicate logic theory, we can not conclude that there are no other
edges other than those stated explicitly.
In fact, we cannot conclude any negative information.

So the query ?- ¬connected(b,X) (enumerate all nodes that are not
connected with b) would not return any result.

However, we would like to conclude, from the absence of pos-
itive information, that the negation holds.

4.1 Definite Logic Programs 136

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

A logic program-rule takes some orientation with it.

Principle 1 (Orientation) If a ground atom A does not unify with
some head of a program rule of P , then this atom is considered to
be false. In this case we say that “notA” is derivable from P to
distinguish it from classical ¬A.

The orientation principle is nothing but a weak form of
negation-by-failure. Given an intermediate goal notA, we first try
to prove A. But if A does not unify with any head, A fails and this
is the reason to derive notA.

Can we come up with a simple procedural mechanism?

4.1 Definite Logic Programs 137

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

Example 4.2 (SLD-Resolution)
Let the program PSLD consist of the following three clauses

(1) p(X,Z) ← q(X,Y), p(Y, Z)

(2) p(X,X)

(3) q(a, b)

The query Q we are interested in is given by p(X, b). I.e. we are
looking for all substitutions Θ for X such that p(X, b)Θ follows
from P .

4.1 Definite Logic Programs 138

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA
← p(X, b)

← q(X,Y), p(Y, b)

← q(X,Y), q(Y, U),
p(U, b)

← q(X, b)

← q(X,Y), q(Y, U),
q(U, V), p(V, b)

← q(X,Y), q(Y, b)

← q(X, a)

⊥
[X/b]
Success

Failure

⊥

Success
[X/a]

...
...

1

1

1

1

2

2

2

2
3

3

4.1 Definite Logic Programs 139

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

The figure on page 138 illustrates the behaviour of SLD-resolution.
We start with our query in the form ← Q. In any round the
selected atom is underlined and emphasised in red: numbers 1, 2
or 3 indicate the number of the clause which the selected atom is
resolved against. There are three different sorts of branches:

1. infinite branches,

2. branches that end up with the empty clause, and

3. branches that end in a deadlock (“Failure”): no applicable rule
is left.

In this example we always resolve with the last atom in the goal
under consideration. If we choose always the first atom in the goal,
we will obtain, at least in this example, a finite tree.

4.1 Definite Logic Programs 140

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

Bottom-up approach

• We start first with rules with empty bodies (in our example
these are all instantiations of rules (2) and (3)). We get as facts
all atoms that are in the heads of rules with empty bodies
(namely p(a, a), p(b, b), q(a, b) in Example 4.2 on page 136).

• In the next round we use the facts that we computed before
and try to let the rules “fire”, i.e. when their bodies are true,
we add their heads to the atoms we already have (this gives us
p(a, b)).

4.1 Definite Logic Programs 141

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

We introduce the immediate consequence operator TP which
associates to any Herbrand model another Herbrand model.

Example 4.3 (TP)
Given a definite program P let TP : 2BP 7−→ 2BP ; I 7−→ TP (I)

TP (I) := {A ∈ BP : there is an instantiation of a rule in P
s.t. A is the head of this rule and all
body-atoms are contained in I }

TP computes the immediate consequences of program P .
Those that can be obtained in one step.

4.1 Definite Logic Programs 142

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

It turns out that TP is monotone and continuous so that (by a
general theorem of Knaster-Tarski) the least fixpoint is obtained
after ω steps. Moreover we have

Theorem 4.1 (TP and MP)
MP = TP↑ω = lfp(TP).

4.1 Definite Logic Programs 143

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

In database applications, where the underlying language does not
contain function symbols (DATALOG), the Herbrand universe is
always finite. Under this condition the iteration stops after finitely
many steps. In addition, rules of the form

p← p

do not make any problems. They simply can not be applied or do
not produce anything new. Note that in the top-down approach,
such rules give rise to infinite branches!

Principle 2 (Elimination of Tautologies)
Suppose a program P has a rule which contains the same atom in
its body as well as in its head. Then we can eliminate this rule
without changing the semantics.

4.1 Definite Logic Programs 144

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

Note that our original aim was to find substitutions Θ such that
QΘ is derivable from the program P . This task as well as MP is
closely related to SLD:

Theorem 4.2 (Least model)
The following properties are equivalent:

• P |= ∀ QΘ, i.e. ∀ QΘ is true in all models of P ,

• MP |= ∀ QΘ,

4.1 Definite Logic Programs 145

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

Example 4.4 (Transitive Closure (again))
Assume we are given a graph consisting of nodes and edges
between some of them. We want to know which nodes are
reachable from a given one. A natural formalisation of the
property “reachable” would be

reachable(X)← edge(X,Y), reachable(Y).

What happens if we are given the following facts

edge(a, b), edge(b, a), edge(c, d)

and reachable(c)? Of course, we expect that neither a nor b are
reachable because there is no path from c to either a or b.

But SLDNF-Resolution does not derive “not reachable(a)”!

4.1 Definite Logic Programs 146

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

Note that its straightforward transformation into predicate logic
does not work either:

reachable(X) ↔ (X .= c ∨ ∃Y (reachable(Y) ∧ edge(Y,X)))

from which, together with our facts about the edge-relation,
¬reachable(a) is indeed not derivable.

Note also that our Principle 2 on page 143 does not help, because it
simply does not apply.

Let us motivate the principle of partial evaluation or GPPEa. The
query “not reachable(a)” leads to
“reachable(a)← edge(a, b), reachable(b)” and “reachable(b)” leads to
“reachable(b)← edge(b, a), reachable(a)”. Both rules can be seen as
definitions for reachable(a) and reachable(b) respectively.

aGeneralised Principle of Partial Evaluation
4.1 Definite Logic Programs 147

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

So it should be possible to replace in these rules the body atoms of
reachable by their definitions. Thus we obtain the two rules

reachable(a)← edge(a, b), edge(b, a), reachable(a)

reachable(b)← edge(b, a), edge(a, b), reachable(b)

that can both be eliminated by applying Principle 2 on page 143.
So we end up with a program that does neither contain
reachable(a) nor reachable(b) in one of the heads. Therefore,
according to Principle 1 on page 136 both atoms should be
considered false.

4.1 Definite Logic Programs 148

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

Principle 3 (GPPE,(Brass and Dix 1994; Sakama and Seki 1994))
We say that a semantics satisfies GPPE, if the following

transformation does not change the semantics. Replace a rule
A← B+ where B+ contains a distinguished atom B by the rules

A ←
(
B+ \ {B}

)
∪ B+

i (i = 1, . . . , n)

where B ← B+
i (i = 1, . . . , n) are all rules with head B.

4.1 Definite Logic Programs 149

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

4.2 Positive disjunctive Programs

So far so good. But a single model is often not what we want.
Many problems have several solutions and that should be
reflected by several models.

Idea: Allow disjunctions in the head of rules

Example 4.5 (Colourings)
node(X) :- edge(X,Y).

node(Y) :- edge(X,Y).

coloured(X,r) v coloured(X,g) v coloured(X,b) :- node(X).

:- edge(X,Y), coloured(X,C), coloured(Y,C).

4.2 Pos. Disjunctive Programs 150

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

Example 4.6 (Hamiltonian Cycle)
in_hm(X,Y) v out_hm(X,Y) :- start(X), arc(X,Y).

in_hm(X,Y) v out_hm(X,Y) :- reached(X), arc(X,Y).

:- in_hm(X,Y), in_hm(X,Y1), Y != Y1.

:- in_hm(X,Y), in_hm(X1,Y), X != X1.

:- arc(X, _), not reached(X).

4.2 Pos. Disjunctive Programs 151

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

How do we ensure in the above formalisations that a node is
not coloured with two different colours (resp. a node is both
in and out of the hamiltonian cycle)?

Definition 4.3 (Minimal Model)
A model A is minimal wrt. predicates p1, . . . , pn and a theory T if
there is no other model B (with the same universe) such that for
all i: pBi ⊆ pAi and for at least one i0: pBi $ pAi .

4.2 Pos. Disjunctive Programs 152

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

What are the minimal models of the following programs?

1. p(a) ∨ p(b) ∨ p(c)

2. p(a) ∨ p(b) ∨ p(c) ← p(a)

3. p(a) ∨ p(b) ← p(c)
p(c) ∨ p(d) ←

4. p(a) ∨ p(b)
p(a) ∨ p(c)

5. p(a) ∨ p(b)
p(b)← p(a)
p(a)← p(b)

4.2 Pos. Disjunctive Programs 153

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

Is the formula p(a) ∨ p(b) equivalent to p(a)← ¬p(b)?

4.2 Pos. Disjunctive Programs 154

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

Example 4.7 (How to formulate the N-Queens problem?)
1. Use predicates queen(·), row(·), col(·). And at(I,X, Y) meaning

queen I is at row X and column Y .

2. Enumerate:

(a) at(I,X, Y) ∨ not_at(I,X, Y) ← queen(I), row(X), col(Y).

(b) Each queen is at most at one location.

(c) Each queen is at some location.

at(I, c1, Y) ∨ . . . ∨ at(I, cN , Y) ← queen(I), col(Y)

at(I,X, c1) ∨ . . . ∨ at(I,X, cN) ← queen(I), row(Y)

(d) No two queens are at the same location.

4.2 Pos. Disjunctive Programs 155

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

3. Eliminate:

(a) No two distinct queens in same row.

(b) No two distinct queens in same column.

(c) No two queens attack each other.

4.2 Pos. Disjunctive Programs 156

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

4.3 AnsProlog and its variants

Where do ASP and PROLOG differ? What are ASP programs?

• PROLOG is a programming language based on predicate logic
with function symbols.

• PROLOG does not handle negation-as-failure in a convincing
way (recursion through negation).

• PROLOG has problems with infinite loops, non-declarative
features (ordering of literals, cut operator).

4.3 AnsProlog vs. Prolog 157

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

• AnsProlog is purely declarative, based on answer sets and
function-free predicate logic (DATALOG).

• There are efficient systems implementing it (DLV, smodels).
They also scale up.

• Nondeterminism is nicely captured by multiple stable models.

• Specification and programming are merely the same in
AnsProlog.

• But: answering a query does no more depend on the
call-graph below it ((Dix and Müller 1994b; Dix and Müller
1994a)).

4.3 AnsProlog vs. Prolog 158

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

In KR we do not only want to formulate negative queries, we also
want to express default-statements of the form

Normally, unless something abnormal holds, then ψ implies φ.

How can we formulate such a statement as a logic program?
The most natural way is to use negation “not ”

φ ← ψ, not ab

where ab stands for abnormality. Obviously, this forces us to
extend definite programs by negative atoms, we call them default
atoms.

4.3 AnsProlog vs. Prolog 159

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

Example 4.8 (Inheritance Hierarchies)
Suppose we know that birds typically fly and penguins are
non-flying birds. We also know that Tweety is a bird. Now an
agent is hired to build a cage for Tweety. Should the agent put a
roof on the cage? After all it could be still the case that Tweety
is a penguin and therefore can not fly, in which case we would not
like to pay for the unnecessary roof. But under normal conditions,
it should be obvious that one should conclude that Tweety is
flying.

4.3 AnsProlog vs. Prolog 160

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

A natural axiomatisation is given as follows:

PInheritance : flies(X) ← bird(X), not ab(r1, X)

bird(X) ← penguin(X)

ab(r1, X) ← penguin(X)

make_top(X) ← flies(X)

together with some particular facts, like e.g. bird(Tweety) and
penguin(Sam). The first rule formalises our default knowledge,
while the third formalises that the default rule should not be
applied in abnormal or exceptional cases. In our example, it
expresses the famous specificity principle which says that more
specific knowledge should override more general one.

For the query “make_top(Tweety)” we expect the answer “yes”
while for “make_top(Sam)” we expect the answer “no”.

4.3 AnsProlog vs. Prolog 161

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

We are looking for minimal models: models that only make
things true that need to be made true. Everything else which
does not have a reason to be true should stay false.

4.3 AnsProlog vs. Prolog 162

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

Definition 4.4 (AnsProlognot , AnsProlog or , AnsProlog or ,not)
The language AnsProlognot consists of rules of the form

A← B1, . . . , Bm,

where A is a positive atom, and B1, . . . , Bm are positive atoms
which may be preceded by not (all atoms can contain free
variables, like p(X,Y, c)). We call A the head of the rule and
B1, . . . , Bm its body.

We often also allow that A is absent (resp. identical to ⊥): then
we call the language AnsProlognot ,⊥.

The language AnsProlog or consist of rules of the form

A1 or A2 or . . . An ← B1, . . . , Bm,

where Ai and Bi are positive atoms (which may contain free
variables, like p(X,Y, c)). Similar to the above, we define

4.3 AnsProlog vs. Prolog 163

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

AnsProlog or ,⊥.

Finally the language AnsProlog or ,not (resp. AnsProlog or ,not ,⊥)
consist of rules where we allow both disjunctions in the head as
well as negations in the body.

A set of rules in AnsProlog· is also called an AnsProlog· program
or an AnsProlog· theory.

We also use the notation AnsProlog∅ to denote definite logic
programs without constraints.

4.3 AnsProlog vs. Prolog 164

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

Example 4.9 (Van Gelder’s Example)
Assume we are describing a two-players game like checkers. The
two players alternately move a stone on a board. The moving
player wins when his opponent has no more move to make. We can
formalise that by an AnsProlognot rule

• wins(X) ← move_from_to(X,Y), not wins(Y)

meaning that

• the situation X is won (for the moving player A), if he can lead
overa to a situation Y that can never be won for B.

aWith the help of a regular move, given by the relation move_from_to/2.

4.3 AnsProlog vs. Prolog 165

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

Assume we also have the facts

move_from_to(a, b),move_from_to(b, a) and move_from_to(b, c).

Our query to this program Pgame is ?- wins(b).
Using SLDNF we get an infinite sequence of oscillating SLD-
trees (none of which finitely fails).

4.3 AnsProlog vs. Prolog 166

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

N-Queens revisited

Why should we distinguish the queens (by using names for
them)? It only leads to many more solutions. And the search
space is larger.

1. Declarations: Predicates row(·), col(·) together with constants
for them.

4.3 AnsProlog vs. Prolog 167

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

2. Enumerations:
Each square has a queen or not.

in(X,Y) ← row(X), col(Y), notnot_in(X,Y)

not_in(X,Y) ← row(X), col(Y), not in(X,Y)

Each queen must be placed.

has_queen(X) ← row(X), col(Y), in(X,Y)

← row(X), nothas_queen(X)

3. Elimination: Elimination rules (constraints) as above
(Example 4.7 on page 154).

4.3 AnsProlog vs. Prolog 168

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA

Assessment 2 (Lab: Colouring in AnsProlognot ,⊥)
Formulate your first labwork as a problem in AnsProlognot ,⊥,
i.e. without using or but using not instead.

Compare the runtimes.

Do the same with the two formalisations of N-Queens and
compute the number of solutions for N=1, 2, . . . , 8.

4.3 AnsProlog vs. Prolog 169

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

4.4 Answer Sets and their Semantics

What is the semantics of ASP? What exactly are answer sets?
Guess and check: We reduce a program with negation to one
without. Then we check that the original guess is compatible
with the program we constructed out of it.

We already know the semantics of AnsProlog or ,⊥ (positive
disjunctive) and AnsProlog⊥ (definite) programs.

The idea of defining semantics for arbitrary
AnsProlog or ,not ,⊥ and AnsProlognot ,⊥ programs is to
reduce them by getting rid of the negation not . We also
assume that the program is given as a ground program
(fully instantiated).

4.4 Answer Sets and their semantics 170

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Definition 4.5 (ASP Semantics for AnsProlog or ,not ,⊥ programs)
Let a ground AnsProlog or ,not ,⊥ program P be given. Let also a
Herbrand modelM wrt. the underlying language be given.

We reduce P wrt.M as follows:

1. If a rule in P contains an atom of the form not a andM |= a

then remove the whole rule.

2. If a rule in P contains an atom of the form not a andM |= ¬a
then remove this occurrence of not a.

3. Applying the above two rules leads eventually to a pro-
gram PM without any not atoms.

4.4 Answer Sets and their semantics 171

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

PM is in AnsProlog or ,⊥ (if P belongs to AnsProlog or ,not ,⊥)
or it is in AnsProlog⊥ (if P belongs to AnsProlognot ,⊥).

M is an answer set of P ifM is a minimal model of PM.
This includes the case when PM is a definite program (in
which case the least model is the only minimal model).

4.4 Answer Sets and their semantics 172

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Homework 1
Go carefully through the examples considered sofar and compute
their answer sets.

4.4 Answer Sets and their semantics 173

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Lemma 4.1 (Properties of Answer Sets)
1. Answer sets are minimal Herbrand models of P .

2. For each atom a that is contained in an answer set of P , there
is a rule which contains a in its head and the body of this rule
evaluates to true wrt. the given answer set.

3. There might be one, several or no answer set for a given
program P .

4. For a definite logic program (AnsProlog∅), there is exactly one
answer set which coincides with the least Herbrand model.

4.4 Answer Sets and their semantics 174

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Definition 4.6 (Dependency-Graph GP)
For a AnsProlognot , or ,⊥ program P , the dependency graph GP is
a finite directed graph whose vertices are the predicate symbols
from P . There is a positive (respectively negative) edge from r to
r′ if and only if (1) there is a rule in P with r in its head and r′

occurring positively (respectively negative) in its body, or (2) both
r and r′ occur in the same head.

We also say

• r depends on r′ if there is a path in GP from r to r′ (by
definition, r depends on itself),

• r depends positively (resp. negatively) on r′ if there is a path
in GP from r to r′ containing only positive edges (resp. at least
one negative edge). (by definition r depends positively on
itself),

4.4 Answer Sets and their semantics 175

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

• r depends evenly (resp. oddly) on r′ if there is a path in GP

from r to r′ containing an even (resp. odd) number of negative
edges (by definition r depends evenly on itself).

The following properties of a program P turn out to be very
important:

stratified: no predicate depends negatively on itselfa,
call-consistent: no predicate depends oddly on itselfb,
allowedness: every variable occurring in a clause must
occur in at least one positive atom of the body of that
clause.

aor: there are no cycles containing at least one negative edge.
bor: there are no odd cycles.

4.4 Answer Sets and their semantics 176

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Lemma 4.2 (Properties of classes of programs)
We consider programs without constraints.

1. Stratified AnsProlognot programs always possess exactly one
answer set.

2. Call consistent AnsProlognot , or programs which do not have
cycles with only positive edges always possess answer sets.

3. Answer sets of allowed AnsProlognot , or programs with
function symbols can be computed (because the Herbrand
universe is finite).

4.4 Answer Sets and their semantics 177

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Lets look at the formalisation in Example 4.7 on page 154. How
can we simulate the two disjunctions that ensure that each queen
is placed at some location by a AnsProlognot program (without
having to use the constants for rows and columns explicitly)?

One rule is

placed(I)← queen(I), row(X), col(Y), at(I,X, Y)

and the other?

4.4 Answer Sets and their semantics 178

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Examples: Graph Colouring, Hamiltonian Paths

col_of(V,C) ← vertex(V), col(C), not another_col(V,C)

another_col(V,C) ← vertex(V), col(C), col(D),

D 6= C, col_of(V,D)

← vertex(U), vertex(V), edge(U, V), col(C),

col_of(V,C), col_of(U,C)

The answer sets of this program correspond to colourings
of the underlying graph.

Difference to other programming languages. Algorithm is
built in!

4.4 Answer Sets and their semantics 179

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Hamiltonian Path

1. As usual edge(·, ·), vertex(·).

2. chosen(·, ·): For each node, pick exactly one outgoing edge (for
the hamiltonian path).

3. Ensure that there is only one incoming edge (for the
hamiltonian path).

4. reachable(·): Define reachable and make sure all nodes are
reachable.

4.4 Answer Sets and their semantics 180

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

other(U, V) ← vertex(U), vertex(V), vertex(W), V 6= W, chosen(U,W)

chosen(U, V) ← vertex(U), vertex(V), edge(U, V), not other(U, V)

← chosen(U,W), chosen(V,W), U 6= V

reachable(V) ← reachable(U), chosen(U, V)

← vertex(U), not reachable(U)

reachable(c1) ←

4.4 Answer Sets and their semantics 181

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

4.5 Declarative Problem Solving Modules

Given a problem, how to encode it in ASP? How to ensure
that solutions of the problem correspond to answer sets of
the encoding?

Given a (mathematical) problem. How to encode it in the ASP
paradigm?

4.5 Declarative Problem Solving Modules 182

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Representing Constraints in AnsProlognot

A constraint acts as a filter on answer sets. How can we
simulate it with not ?

We replace each constraint

⊥ ← body

by the rule

inconsistent← not inconsistent, body,

where inconsistent is a new atom not occurring in the program.

4.5 Declarative Problem Solving Modules 183

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Lemma 4.3 (Reducing AnsProlog or ,not ,⊥ to AnsProlog or ,not)
Let P be a program not containing the atom inconsistent. Let P ′

be the program obtained by replacing all constraints using the
transformation above. Then:

A is an answer set of P if and only ifA is an answer set of P ′

4.5 Declarative Problem Solving Modules 184

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Enumerations

Given propositions p1, . . . , pn, how can we construct a pro-
gram whose answer sets correspond to all possibilities of
making some of the pi true?

We can add predicates not_pi and add the rules

pi ← notnot_pi

not_pi ← not pi

We can also use
pi or not_pi ←

4.5 Declarative Problem Solving Modules 185

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

How can we enumerate terms satisfying a certain criterion?
I.e.: Suppose we are given a predicate possible that is true
for certain terms. We want to construct a program s.t. in
each answer set of it there is at least one term satisfying the
predicate.

We add the predicates chosen and the new atom inconsistent and
add the rules

chosen(X) ← possible(X), notnot_chosen(X)

not_chosen(X) ← possible(X), not chosen(X)

some ← chosen(X)

inconsistent ← not inconsistent, not some

4.5 Declarative Problem Solving Modules 186

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

How can we ensure that exactly one term is chosen?

diff _chosen_than(X) ← chosen(Y), X 6= Y

chosen(X) ← possible(X), not diff _chosen_than(X)

4.5 Declarative Problem Solving Modules 187

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Linear Orderings

We are given objects and a linear ordering between them.
How can we define the smallest, largest or next object using
ASP?

not_smallest(X) ← object(X), object(Y), less_than(X,Y)

smallest(X) ← object(X), notnot_smallest(X)

not_largest(X) ← object(X), object(Y), less_than(Y,X)

largest(X) ← object(X), notnot_largest(X)

4.5 Declarative Problem Solving Modules 188

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

not_next(X,Y) ← X = Y

not_next(X,Y) ← less_than(Y,X)

not_next(X,Y) ← object(X), object(Y), object(Z),

less_than(X,Z), less_than(Z, Y)

next(X,Y) ← object(X), object(Y), notnot_next(X,Y))

4.5 Declarative Problem Solving Modules 189

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Suppose we are given a set of objects and want to establish a
linear ordering between them. How do we do that?

1. We introduce an IDB relation prec(·, ·). To ensure that the
ordering is linear and transitive, we use

prec(X,Y) ← not prec(Y,X), X 6= Y

prec(X,Z) ← prec(X,Y), prec(Y, Z)

2. We define the successor:

not_succ(X,Y) ← prec(Y,X)

not_succ(X,Y) ← prec(Y, Z), prec(Z, Y)

not_succ(X,X) ←
succ(X,Y) ← notnot_succ(X,Y))

4.5 Declarative Problem Solving Modules 190

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

3. We have to define the first and last object:

not_first(X) ← prec(Y,X)

first(X) ← notnot_first(X)

not_last(X) ← prec(X,Y)

last(X) ← notnot_last(X)

4.5 Declarative Problem Solving Modules 191

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

4. We define reachability:

reachable(X) ← first(X)

reachable(X) ← reachable(Y), succ(X,Y)

5. Add a proposition linear which is true when there is indeed a
linear ordering, i.e. the last element is reachable. If there is no
possibility to establish a linear ordering, ensure that there are
no answer sets.

linear ← reachable(X), last(X)

inconsistent ← not inconsistent, not linear

4.5 Declarative Problem Solving Modules 192

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

4.6 DLV and smodels

Are there efficient ASP solvers out there? Yes: DLV, smodels.
DLV even handles disjunction.

You are given problems and have to represent them in the
ASP framework. And then solve them using DLV or smodels.

4.6 DLV and smodels 193

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Distinguishing features of DLV and smodels

Disjunction: DLV is designed for full AnsProlog or ,not ,⊥, while
smodels is designed for AnsProlognot ,⊥. smodels has only
primitive functionality for or .

Grounding: Both systems compute intelligent groundings, trying
to avoid unnecessary instances.

Relational DB: DLV can be seen as an extension to SQL3 and
thus has functionality for answering SQL3 queries.

Queries: DLV allows brave and cautious reasoning: queries can
be specified and tested for truth in in at least one or in all
answer sets.

4.6 DLV and smodels 194

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Allowedness: In smodels each variable in a rule must occur in a
positive domain predicate on the right hand side of this rule.
A domain predicate is one with the following property: each
path in the dependency graph of the program starting with
this predicate does not go through a negative cycle. This
property is also called strongly range restricted. The idea is
that domain predicates can be efficiently computed (no
recursion through negation).

In DLV this is more relaxed: each variable must occur in a
positive predicate on the right hand side.

Special Constraints: smodels allows weight and cardinality
constraints, while DLV allows weak constraints (see next
subsections).

4.6 DLV and smodels 195

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Arithmetic: smodels allows rules of the form p(T + 1) ← p(T).
In DLV this must be written as p(T ′) ← p(T), T ′ = T + 1.

Classical Negation: In our definition of an answer set
(Definition 4.5) and also in the definition of
AnsProlog or ,not ,⊥, we did not allow atoms that are classically
negated. In fact, in several formalisations we used predicates
of the form not_predicate which, intuitively represented the
negation of the predicate predicate. We did this mainly to avoid
any confusion with classical negation.

4.6 DLV and smodels 196

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

But our definition can easily be extended to allow arbitrary
literals instead of just positive atoms: we allow atoms p(· · ·) as
well as their classical negations ¬p(· · ·) on both sides of a
rule.

An answer set then consists of arbitrary literals: atoms p(· · ·)
or their classical negations ¬p(· · ·). If an answer set contains
both an atom and its negation, then it coincides with the set of
all atoms and their negations: it is the inconsistent set Lit of
all literals.

smodels allows Lit as an answer set, while DLV does not.

Thus DLV can not distinguish between programs without any
answer sets and programs which only have Lit as their sole
answer set.

4.6 DLV and smodels 197

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Representing classical and exclusive or

The disjunction or is not classical disjunction, as we are looking at
minimal models. But it is also not exclusive disjunction ⊕. In a
sense, or is as exclusive as is consistently possible.

Homework 2 (Different disjunctions)
Give an example of a AnsProlognot , or program where the answer
sets do not treat or as classical disjunction.

Give an example of a AnsProlognot , or program where the answer
sets do not treat or as exclusive disjunction.

4.6 DLV and smodels 198

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Can we simulate classical disjunction within AnsProlognot ?

Yes, namely by representing the rule

a1 ∨ . . . ∨ an ← b1, . . . , bm, not c1, . . . , not cl

as follows.

1. We add the rule f ′ ← f, not f ′.

2. We add the rule f ← a′1, . . . , a
′
n, b1, . . . , bm, not c1, . . . , not cl.

4.6 DLV and smodels 199

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

3. For i = 1, . . . , n we add the rules

ai ← not a′i, b1, . . . , bm, not c1, . . . , not cl

a′i ← not ai, b1, . . . , bm, not c1, . . . , not cl

4.6 DLV and smodels 200

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Can we simulate exclusive disjunction within AnsProlognot ?

Yes, namely by representing the rule

a1 ⊕ . . .⊕ an ← b1, . . . , bm, not c1, . . . , not cl

as follows.

1. We add the rule f ′ ← f, not f ′.

2. We add the rule f ← a′1, . . . , a
′
n, b1, . . . , bm, not c1, . . . , not cl.

4.6 DLV and smodels 201

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

3. For i = 1, . . . , n we add the rules

ai ← not a′i, b1, . . . , bm, not c1, . . . , not cl

a′i ← not ai, b1, . . . , bm, not c1, . . . , not cl

4. For each 1 5 i � j 5 n we add

f ← b1, . . . , bm, not c1, . . . , not cl, ai, aj

4.6 DLV and smodels 202

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Special Constraints in smodels

smodels allows cardinality constraints to ensure that an answer
set contains at least and at most a certain number of prespecified
atoms.

1 {a,b, not c} 2

This means that we are looking for answer sets which contain at
least one but at most two of the atoms a, b, not c.

4.6 DLV and smodels 203

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

smodels also allows optimisation constraints to assign to each
answer set a number according to which atoms and not atoms are
true (given their weights). We can then pick answer sets which
minimise (maximise) the sum of all weights.

3 [a=2, b= 3, not c=1, not d=4] 7

The above constraint formalises that we are looking for answer
sets having at least weight 3 but not more than 7.

4.6 DLV and smodels 204

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Special Constraints in DLV

DLV allows weak constraints.

Definition 4.7 (Weak Constraint)
A weak constraint has the form

⊥ :∼ (p1, . . . , pn, not q1, . . . , not qm) [weight, level],

where pi and qj are literals and weight and level are integers or
integer variables that can appear in the pi or qj .

Answer sets for a program with weak constraints are the answer
sets for the program without the weak constraints, but ordered
according to the weight and priority level they violate.

4.6 DLV and smodels 205

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

To be more specific, first the weights on the first level are
minimised. The best answer sets are the ones where the weights
on the first level are minimal. Then the answer sets with the
second minimal weight etc. To further distinguish, the second
level is taken into account, etc.

If no weight or level information is specified, they are set to 1 by
default.

4.6 DLV and smodels 206

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Example 4.10 (Weak Constraints)
Consider the following program:

aor b ←
¬aor c ←
⊥ :∼ a

⊥ :∼ b, c

What are its answer sets and which is the best one?

4.6 DLV and smodels 207

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

A nice application of weak constraints is the Travelling Sales
Person. Find a route among a given number of towns, visit-
ing each only once and minimising the overall distance.

Assessment 3 (TSP)
Find the shortest route to travel to all European capital cities.
You can take the mileage by direct line between the capitals.

4.6 DLV and smodels 208

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

4.7 HTN Planning

• HTN planner produces a sequence of actions that perform a
task.

• Description of a planning domain includes a set of operators,
and also a set of methods, to decompose a task into subtasks.

• Planning proceeds by decomposing tasks recursively into
smaller and smaller subtasks, until they can be satisfied.

• SHOP’s knowledge base contains operators and methods.

4.7 HTN Planning 209

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Figure 4.1: Travel planning example.

4.7 HTN Planning 210

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

• The planner must resolve interactions among the subtasks.

• In Figure 4.1, it was always obvious which method to use.
Often, more than one method may be applicable to a task. If a
dead end is reached, SHOP will backtrack and try another
method instead.

4.7 HTN Planning 211

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

• A term is either a constant or a variable symbol.

• A task is of the form (name t1t2 . . . tn), where name (the task’s
name) is a task symbol, and t1, t2, . . . , tn (the task’s arguments)
are terms.

• A task can be either primitive (if it is to be accomplished using
an operator) or compound (if it is to be decomposed into other
tasks).

• A task list is a list of tasks, like the following:

((!get-taxi ?x) (!ride-taxi ?x ?y)

(!pay-driver ?x ?y)))

4.7 HTN Planning 212

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

An operator specifies how to accomplish a primitive task by
modifying the current state of the world by removing every
atom in its delete list and by adding every atom in its add
list.

Definition 4.8 (Operator: (Op h χdel χadd))
An operator is an expression of the form (Op h χdel χadd), where
h (the head) is a primitive task and χadd and χdel are lists of
atoms (called the add- and delete-lists). The set of variables in
the atoms in χadd and χdel must be a subset of the set of variables
in h.a

aUnlike the operators used in action-based planning, ours have no preconditions
(these will occur in the methods that invoke the operators).

4.7 HTN Planning 213

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Methods can be seen as recursive task definitions.

Definition 4.9 (Method: (Meth h χ t))
A method is an expression of the form (Meth h χ t) where h (the
method’s head) is a task, χ (the method’s preconditions) is a
conjunction of literals and t is a totally ordered list of subtasks,
called the task list.

4.7 HTN Planning 214

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

get-taxi operator from Figure 4.1:

(:Op (!get-taxi ?x)

((service-available-to ?x))

((taxi-coming-to ?x)))

travel-by-taxi method from Figure 4.1:

(:Meth (travel ?x ?y)

((smaller-distance ?x ?y))

((!get-taxi ?x) (!ride-taxi ?x ?y) (!pay-driver ?x ?y)))

4.7 HTN Planning 215

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Definition 4.10 (Axioms (AX), State (S))
An axiom is an expression of the form

a← l1, . . . , ln,

where a is an atom and the li are literals. Axioms need not be
ground. We assume that the set of axioms does not contain cycles
through negation. A state S is a set of ground atoms.

Definition 4.11 (Literal caused by (S,AX))
A literal l is caused by (S,AX) if l is true in all answer sets of
S ∪ AX.

Due to the assumption on AX, there is exactly one answer
set. Thus any state described by the stable model of S∪AX
is complete.

4.7 HTN Planning 216

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Definition 4.12 (Simple Reduction of Primitive Tasks)
Let t be a ground primitive task and let Op = (Op h χdel χadd) be
an operator. Suppose that u is a unifier for h and t. Then the
ground operator instance Opu is applicable to t, in which case we
define the simple reduction of t by Op to be Opu.

Definition 4.13 (Plans, result(S,P))
A plan is a list of heads of ground operator instances.a A plan P is
called a simple plan if it consists of the head of just one ground
operator instance.

aIn Definition 4.15, every planning operator must have a unique name. This guar-
antees that every plan specifies an unambiguous sequence of operator instances.

4.7 HTN Planning 217

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

For a simple plan P = (h) we define result(S, P) to be the set

S \ χdel ∪ χadd

obtained by deleting from S all atoms in χdel and by adding all
ground instances of atoms in χadd.

If P = (h1, h2, . . . , hn) is a plan and S is a state, then the result of
applying P to S is the state result(S, P) = result(result(. . . (result
(S, h1), h2), . . .), hn).

4.7 HTN Planning 218

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Definition 4.14 (Simple Reduction of Compound Tasks)
Let t be a compound task, S be the current state,
Meth = (Meth h χ t) be a method, and AX be an axiom set.
Suppose that u is a unifier for h and t, and that v is a unifier such
that all literals in (χu)v are caused wrt. S and AX (see
Definition 4.11).
Then the method instance (Methu)v is applicable to t in S,
and the result of applying it to t is the task list r = (tu)v .
The task list r is the simple reduction of t by Meth in S.

4.7 HTN Planning 219

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Definition 4.15 (Domains and problems)
A domain representation D is a triple consisting of (1) a set of
axioms, (2) a set of operators such that no two operators have
the same name, and (3) a set of methods.
A planning problem is a triple (S, t,D), where S is a state, t=
(t1, t2, . . . , tk) is a task list, and D is a domain representation.

4.7 HTN Planning 220

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Let (S, t,D) be a planning problem, P = (p1, p2, . . . , pn) a plan. Then
we say that P solves (S, t,D) if any of the following is true:

1. Case 1: t and P are both empty, (i.e., k = 0 and n = 0);

2. Case 2: t1 is a primitive task, (p1) is the simple reduction of t1,
and (p2 . . . pn) solves (result(S, p1), (t2, . . . , tk),D);

3. Case 3: t1 is a composite task, and there is a simple reduction
(r1 . . . rj) of t1 in S s.t. P solves (S, (r1, . . . , rj , t2, . . . , tk),D).

(S, t,D) is solvable if there is a plan that solves it.

4.7 HTN Planning 221

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

 <S, {}, {t1, t2, t3, …, tk} >

 m(t1)1 m(t1)3

<S, {}, {t111, t112, …, t11n, t2, t3, …,}> m(t1)2 <S, {}, {t131, t132, …,}>

 m(t111)1 m(t11)2 <S, {}, {t121, t122, …,}>

 <S, {}, {t1111, t1112, t112, …}> … …
 o(t1111) o(t121)
 <S, {}, {t1111, t1112, t112, …}>
 … <result(S, o(t121)), {t121}, {t122, t12, …}>
 <result(S, o(t1111)), {t1111}, {t1112, t112, …}>
 m(t122)

 … …

 … … FAILURE!

 … …
<result(result(…(result(result(S, o(t1111)), …), …), {t1111, ….}, {ti}>

 o(ti)

 <result(result(…(result(result(S, o(t1111)), …), …), {t111, …., ti}, {}> …

SUCCESS!

Figure 4.2: Search Tree for (S, t,D). Edge labelings m(t)i (o(t))
represent a method (an operator) application to a task t.

4.7 HTN Planning 222

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Definition 4.16 (Solution set of a planning problem: Sol(S, t,D))
The set of all plans, which we denote by Sol(S, t,D) is a multi set :
it contains exactly the ordered lists tcaused in the leaf nodes that
are reached by the successful paths of the search tree. Thus,
Sol(S, t,D) may contain more than one copy of the same plan.

Theorem 4.3
Let a planning problem (S, t,D) be given, where S is the initial
state, t is the list of tasks to be achieved and D is the domain
description.

There is a solution to (S, t,D) if and only if the list t is
causable w.r.t. (S,D).

4.8 Realising HTN Planning in ASP 223

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

4.8 Realising HTN Planning in ASP

In this section, we present our translation method for encoding
planning problems as logic programs with ASP semantics.

1. Planning starts at time point 0 (Def. 4.19 and 4.22).

2. Planning proceeds by selecting a task as the current task (the
one to be decomposed next (see Def. 4.22 and the rules about
currentTask and causable in items 3. and 4. of Def. 4.29). The
current task to be decomposed may be either primitive or
compound.

4.8 Realising HTN Planning in ASP 224

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

3. The time variable T is incremented only when the current
task is a primitive task and there is an operator for it (a simple
reduction) in the domain description provided as a part of the
planning problem (see Def. 4.21). Thus there may be several
tasks that are selected and decomposed at a particular time
point T. Among them, there is only one primitive task at any
particular point in time. Consider Figure 4.2. Task t1 is a
compound task and so are t111 and t1111 (obtained by respective
methods). So currentTask(t1,0), currentTask(t111,0),
currentTask(t1111,0) are all true (resp. hold in a stable model).
Only after the primitive task t1111 has been established by an
operator is the time incremented by 1.

4. As a result of this formulation, the task-depth in the search
tree corresponds to the value of the time variable T.

4.8 Realising HTN Planning in ASP 225

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Definition 4.17 (TransTransTrans((S, t,D)): Translating the Planning Problem)
The logic program TransTransTrans((S, t,D)) that solves the planning
problem (S, t,D) is defined as

TransTransTrans((S, t,D)) = TransTransTrans(I) ∪ TransTransTrans(S) ∪ TransTransTrans(t) ∪ TransTransTrans(AX)

∪ TransTransTrans(OP) ∪ TransTransTrans(F) ∪ TransTransTrans(METH),

where

• TransTransTrans(I) is the logic program segment that encodes the
planning-independent rules,

• TransTransTrans(S) is the logic program segment that encodes the initial
state, S,

• TransTransTrans(t) is the logic program segment that encodes the goal
task list, t,

4.8 Realising HTN Planning in ASP 226

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

• TransTransTrans(AX) is the logic program segment that encodes the
axioms given in the domain description, D,

• TransTransTrans(OP) is the logic program segment that encodes the
operator descriptions given in D, and

• TransTransTrans(F) is the logic program segment that encodes the
state-transtion characteristics of SHOP, and

• TransTransTrans(METH) is the logic program segment that encodes the
method descriptions given in D.

4.8 Realising HTN Planning in ASP 227

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Definition 4.18 (TransTransTrans(I): Planning-Independent Rules)
Given a planning problem (S, t,D), we define TransTransTrans(I) as the logic
program that consists of the following set of rules:

• For each object o that may be used at some point in the
solution of (S, t,D):

[type](o) : −

• For each atom A that may appear to be true at some state
generated during the planning process:

atom(A) : −

4.8 Realising HTN Planning in ASP 228

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

SHOP’s initial state is a set of ground atoms. In this respect, given
a planning problem (S, t,D), the logic program encoding for the
initial state S is defined as follows:

Definition 4.19 (TransTransTrans(S): Translation for Initial State)
Given a planning problem (S, t,D), for each ground atom a ∈ S, the
logic program TransTransTrans(S) contains the rule

in_state(a,0) : −

where 0 indicates the initial time.

4.8 Realising HTN Planning in ASP 229

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Definition 4.20 (Task to be Decomposed)
Given a planning problem (S, t,D), we define a special predicate
currentTask_n for each possible task (e.g. primitive or compound)
such that if the current task to be decomposed is
h ≡ (nameharg1arg2 . . . argN) then
currentTask_n(nameh, arg1, arg2, . . . , argN ,T) denotes this fact
and n is a natural number which equals N + 2 (n is the number of
arguments of this predicate).

As an example, if the current task to be accomplished is travelling
from UMD to MIT denoted as (travel umd mit), then we use the
predicate currentTask_4(travel, umd,mit,T) to denote this fact.
For the sake of clarity, we will use the shorthand notations
currentTask(h,T).

4.8 Realising HTN Planning in ASP 230

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Definition 4.21 (CAUSABLE)
Given a task t, we define CAUSABLE(t, Tselected, Taccomplished):

false if t is a primitive task and
there is no operator for it in D,

false if t is a compound task and
there is no method for it in D,

currentTask(t, Tselected)a

if tk is a primitive task and
there is an operator for it in D,

causable(t, Tselected, Taccomplished) if tk is a compound task and
there is a method for it in D.

awhere Taccomplished = Tselected + 1
4.8 Realising HTN Planning in ASP 231

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Definition 4.22 (TransTransTrans(t): Translation for Goal Tasks)
Given a planning problem (S, t,D), let t = h1, h2, . . . , hn be the
ordered sequence of goal tasks. Then, TransTransTrans(t) is the logic
program that contains one rule for each goal task hi, where
i = 1, 2, . . . , n, as follows:

1. Case 1: i = 1: currentTask(h1,0) : −.

2. Case 2: Otherwise,

currentTask(hi,Ti) : − CAUSABLE(hi−1,Ti−1,Ti),

Ti ≥ Ti−1.

Definition 4.22 enforces the fact that a goal task hi is desig-
nated as the current task to be accomplished if the previous
goal task hi−1 in t is causable (Theorem 4.3).

4.8 Realising HTN Planning in ASP 232

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Definition 4.23 (TransTransTrans(·): Successful Termination)
Given a planning problem (S, t,D), the logic program segment
TransTransTrans(·) that encodes the successful termination of the planning
process (i.e., the fact that a solution to the given planning problem
is found) is defined as follows:

plan_found : − CAUSABLE(hn,Tn,Tn+1).

plan_found : − not plan_found.

where Tn denotes the time when the particular method for the
last goal task hn is decomposed, Tn+1 is the time at which hn is
causable (accomplished), and k is the number of ways that the
goal task hn can be accomplished.

4.8 Realising HTN Planning in ASP 233

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Definition 4.24 (Translation for Literals)
Given a literal, l, we define C(l,T), the translation of l at time T,
as

C(l,T) :=

 in_state(a,T) if l = a,

not in_state(a,T) if l = ¬a.

where a is an atom.

4.8 Realising HTN Planning in ASP 234

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Definition 4.25 (TransTransTrans(AX): Translation for Axioms)
Given a planning problem (S, t,D), for all a← l1, . . . , n ∈ AX,

TransTransTrans(AX) is the logic program segment that contains the single
rule

in_state(a,T) : − C(l1,T), C(l2,T), . . . , C(ln,T),

where C(li,T) is the translation of a literal as defined in
Definition 4.24 above.

4.8 Realising HTN Planning in ASP 235

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Definition 4.26 (TransTransTrans(OP): Translation for Operators)
Given a planning problem (S, t,D), for all Op ∈ OP, TransTransTrans(Op) is
the logic program that contains the following rules:

for all a ∈ Del(Op):

out_state(a,T+1) : − currentTask(h,T).

and for all a ∈ Add(Op):

in_state(a,T+1) : − currentTask(h,T).

where h is a primitive task – i.e., the ground head of the operator
that is used in the simple reduction of h.

4.8 Realising HTN Planning in ASP 236

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Definition 4.27 (TransTransTrans(F): Keeping Track of the State S)
The logic program segment TransTransTrans(F) that encodes the frame
axiom is defined as follows:

in_state(A,T+1) : − atom(A), in_state(A,T),

not out_state(A,T+1).

where T is a variable of the sort time. Note that the state of the
world in SHOP consists of only positive ground atoms.

4.8 Realising HTN Planning in ASP 237

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Definition 4.28 (Methods for a Task)
Given a planning problem (S, t,D) and a composite task
h ≡ (nameh arg1 arg2 . . . argN), we define a special predicate
method_n(nameh, arg1, arg2, . . . , argN ,Pre(h), T) for each method
m ∈ D) whose head unifies with h, where Pre(h) is the label a for
the precondition list of the method m. The symbol n in the
predicate name denotes the number arguments of the predicate,
i.e. n = N + 3.

aThe label Pre(h) is an implementation issue and is required for uniquely identify
different methods that may be applicable to the same compound task.

4.8 Realising HTN Planning in ASP 238

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Definition 4.29 (TransTransTrans(METH): Translation for Methods)
Given a planning problem (S, t,D), let h be a compound task that

needs to be accomplished in the solution of the given planning
problem. Suppose the domain description D contains N
methods whose heads unify with h; namely, m1, m2, . . . , mN .
Let Pre(h)i be the label for the precondition list of the
method mi. Then, the logic program segment that encodes
these methods is defined as follows:

4.8 Realising HTN Planning in ASP 239

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

1. The nondeterministic choice of which method to apply to the
task h:

method1(h,Pre(h)1,T) ← currentTask(h,T),

notmethod2(h,Pre(h)2,T), ...,

notmethodN (h,Pre(h)N ,T)
...

...
...

methodN (h,Pre(h)N ,T) ← currentTask(h,T),

notmethod1(h,Pre(h)1,T), ...,

notmethodN−1(h,Pre(h)N−1,T)

4.8 Realising HTN Planning in ASP 240

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

2. The precondition list χi of each method mi:
For each precondition p ∈ χi, we have one of the following two
cases:

(a) p is a positive literal and it contains free variables:
The free variables in a precondition literal are the variable
symbols that do not appear in the head of the method mi. We
denote p as p = p(Y1, Y2, . . . , Yf), Y1, Y2, . . . , Yf are the free
variables in p.
Let Rj denote the range of the free variable Yj – i.e. the set
of all possible values for the variable Yj –, and for each such
variable Yj , let Yj,k be a new variable symbol such that
k = 1, . . . , Rj . Then, TransTransTrans(METH) contains the following rule to
encode the precondition p ∈ χi:

4.8 Realising HTN Planning in ASP 241

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

checked_state(p(Y1,1, Y2,1, . . . , Yf,1),T) : −
methodi(h,Pre(h)i,T), in_state(p(Y1,1, Y2,1, . . . , Yf,1),T),

not checked_state(p(Y1,1, Y2,1, . . . , Yf,1),T),

not checked_state(p(Y1,1, Y2,1, . . . , Yf,2),T),
...
not checked_state(p(Y1,1, Y2,1, . . . , Yf,Rf

),T),
...
not checked_state(p(Y1,1, Y2,R2 , . . . , Yf,Rf

),T),

not checked_state(p(Y1,2, Y2,1, . . . , Yf,1),T),
...
not checked_state(p(Y1,R1 , Y2,R2 , . . . , Yf,Rf

),T).∧f
j=1 Yj,1! = Yj,2! = . . .! = Yj,Rj

.
4.8 Realising HTN Planning in ASP 242

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

(b) Otherwise:
The logic program segment TransTransTrans(METH) contains the
following rule to encode the precondition p ∈ χi:

checked_state(pl,T) : − C(pl,T),methodi(h,Pre(h)i,T).

where C(pl,T) is as defined in Definition 4.24.

3. The decomposition list {t1, t2, . . . , tn} for mi:
Let p1, p2, . . . , |χi| be the list of preconditions of the method
mi. Then, the logic program segment TransTransTrans(METH) contains
the following rules to encode the decomposition list of mi

(note that the time variable T1 in the following rule definitions
in this item denote the same value as the time variable T in the

4.8 Realising HTN Planning in ASP 243

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

rule definitions presented in other items does):

currentTask(t1,T1) : − methodi(h,Pre(h)i,T1),∧|χi|
k=1 checked_state(pk,T1).

currentTask(t2,T2) : − methodi(h,Pre(h)i,T1),∧|χi|
k=1 checked_state(pk,T1),

CAUSABLE(t1,T1,T2),

T2 > T1.
...

...
...

currentTask(tn,Tn) : − methodi(h,Pre(h)i,T1)∧|χi|
k=1 checked_state(pk,T1),

CAUSABLE(tn−1,Tn−1,Tn),

Tn > Tn−1.

4.8 Realising HTN Planning in ASP 244

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

4. The accomplishment (i.e., causation) of h by the method mi:

causable(h,T1,Tn+1) : − methodi(h,T1),∧|χi|
k=1 checked_state(pk,T1),

CAUSABLE(tn,Tn,Tn+1),

Tn+1 > Tn.

4.8 Realising HTN Planning in ASP 245

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

1. Rules given in the first item of Def. 4.29 could also be encoded
into one disjunctive rule.

2. Translation in the third item of Def. 4.29 encodes the fact that
the decomposition of each subtask tk can only be done if the
previous subtask tk−1 has been already accomplished – i.e.
tk−1 has been already CAUSABLE (only exception is the first
task).
This property is encoded by using the
CAUSABLE(tk, Tk, Tk+1) construct for each subtask
tk (see Definition 4.21): Tk denotes the time when
the previous subtask is decomposed and Tk+1 denotes
the time when the current task is accomplished – i.e.
causable.

Detailed formalisations can be obtained from
<http://www.cs.umd.edu/users/ukuter/ASP_Planning> .

4.8 Realising HTN Planning in ASP 246

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Theorem 4.4 (TransTransTrans(·) and HTN planning using OTD)
Given a planning problem (S, t,D), where S is the initial state, t is
the list of tasks to be achieved and D is the domain description,
let TransTransTrans((S, t,D)) be the corresponding logic program with
negation. We assume that the set of axioms in D does not contain
any cycles through negation. Furthermore, let Sol(S, t,D) be the
set of solutions as defined in Definition 4.15. Then,

1. Sol(S, t,D) = ∅ if and only if TransTransTrans((S, t,D)) has no answer
sets.

4.8 Realising HTN Planning in ASP 247

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

2. If Sol(S, t,D) 6= ∅, then the following holds:

(a) For every plan P ∈ Sol(S, t,D) 6= ∅, there is an answer set of
TransTransTrans((S, t,D)) and a sequence of primitive tasks t0, t1, . . . , tn,
such that the predicates currentTask(ti, i) that are true in this
answer set and the ti correspond exactly to the steps pi in P .

(b) For every answer set of TransTransTrans((S, t,D)) there is a sequence of
primitive tasks t0, . . . , tn, such that the predicates
currentTask(ti, i) are true in this answer set and this sequence
constitutes a plan [t0, . . . , tn] ∈ Sol(S, t,D).

4.8 Realising HTN Planning in ASP 248

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Corollary 1 (Soundness and Completeness of TransTransTrans(·))
The answer sets of TransTransTrans((S, t,D)) correspond exactly to the
plans in Sol (S,t,D). There is a bijection between these two sets
and each plan in Sol (S,t,D) can be reconstructed from its
corresponding answer set in TransTransTrans((S, t,D)) and vice versa.

Corollary 2 (Soundness and Completeness of TransTransTrans(·) wrt SHOP)
If the axioms AX in D do not contain any (positive or negative)
cycles, then the answer sets of TransTransTrans((S, t,D)) correspond
exactly to the plans computed by SHOP.

4.8 Realising HTN Planning in ASP 249

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

4.9 Benchmarks and Comparisons

We used three different planning domains (finding all solutions).

The Travelling Domain: The scenario for the domain as
described in (Nau, Cao, Lotem, and Muñoz-Avila 1999) is that
we want to travel from one location to another in a city.

The Miconic-10-simtest Domain: It is contained in a series of
benchmarks <http://www.informatik.uni-freiburg.

de/~koehler/elev/elev.html> and it was recently used
not only to measure the performance of various planners but
also for other translation methods from planning problems
into ASP (see
http://www.fcs.nmsu.edu/~tson/asp_planner/> .

4.9 Benchmarks and Comparisons 250

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

The Zeno-Travel Domain: The Zeno-Travel problem was one of
the domains that were introduced as recent benchmarks in
International Planning Competition (IPC-2002) (IPC-2002 was
organised within AIPS-2002: see <http:

//www.dur.ac.uk/d.p.long/competition.html>). This
version is essentially the domain used to illustrate the Zeno
planning system developed by Penberthy and Weld
[<http://www.cs.washington.edu/ai/zeno.html>]. In
our experiments we used the STRIPS version of the domain.

• Smodels system v2.27 and lparse v1.0.11

• DLV (<http://www.dbai.tuwien.ac.at/proj/dlv/>)

4.9 Benchmarks and Comparisons 251

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

• HP Notebook PC with an AMD 900Mhz Processor and 256MB
RAM running Linux RedHat v7.2

• We also redid the experiments of (Son, Baral, and McIlraith.
2001) on our machine so that fair comparisons could be done.

• In our experiments on the Travelling Domain using our
method together with DLV , we got a speed-up of two orders
of magnitude compared to Smodels.

4.9 Benchmarks and Comparisons 252

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Comparing our method with (Son, Baral, and McIlraith.
2001)

Problem TransTransTrans(·) (Son, Baral, and McIlraith. 2001)

S1-0 0.050 0.520

S2-0 0.330 12.410

S3-0 1.390 121.810

S4-0 4.540 883.700

S5-0s1 19.530 no solution

S5-0s2 20.630 no solution

S6-0 23.150 no solution

Table 4.1: Comparison between our Smodels encoding of Miconic-
10-simtest and the encoding described in (Son, Baral, and McIl-
raith. 2001).

4.9 Benchmarks and Comparisons 253

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

How to write HTN formulations of a planning domain?

• Formulations may be based on different ways of
conceptualising the problem. They would produce very
different search spaces.

• The two different formulations may use basically the same
tasks, and use them to mean basically the same thing.
However, one formulation may take less time because it has
lower overhead, or because it does a better job of deciding
which tasks should actually be generated and explored.

4.9 Benchmarks and Comparisons 254

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Thus, we were careful to write our HTN formulation of
Miconic-10-simtest so that we used basically the same conceptual
representation that they did.

The problems that we used in these experiments are from
http://www.cs.nmsu.edu/~tson/asp_planner> . Table 4.1
shows both our results and the results from (Son, Baral, and
McIlraith. 2001), which were also obtained on the Smodels system.

4.9 Benchmarks and Comparisons 255

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Comparing Smodels and DLV using planning benchmarks

Problem Smodels DLV DLV grounding+Smodels

P1 0.850 0.050 0.040+0.020

P2 0.820 0.050 0.050+0.020

P9 0.680 0.040 0.040+0.010

P10 0.800 0.070 0.050+0.000

P11 0.840 0.050 0.040+0.000

P16 0.940 0.060 0.050+0.010

P17 0.880 0.050 0.050+0.010

P18 0.810 0.030 0.030+0.000

Table 4.2: Comparing Smodels and DLV on the Simple-Travel Do-
main

4.9 Benchmarks and Comparisons 256

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

ProblemSmodels DLV DLV grounding+Smodels

S1-0 0.050 0.040 0.030+0.010

S2-0 0.330 0.060 0.050+0.010

S3-0 1.390 0.080 0.010+0.090

S4-0 4.540 0.260 0.100+0.530

S5-0s1 19.530 0.640 0.080+1.540

S5-0s2 20.630 0.680 0.090+1.840

S6-0 23.150 0.980 0.170+3.560

Table 4.3: Comparison of Smodels and DLV using TransTransTrans(·) on the
Miconic-10-simtest Domain

4.9 Benchmarks and Comparisons 257

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Tables 4.2 and 4.3 show our results on the Simple-Travel and
Miconic-10-simtest problems. We compared our encodings using
Smodels with lparse for grounding, DLV , and Smodels with DLV
for grounding.

4.9 Benchmarks and Comparisons 258

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Problem DLV DLV grounding+Smodels

P1 0.590 0.510+0.330

P7 16.440 14.340+35.210

P8 26.180 22.630+85.390

P10 27.220 24.840+52.730

P15 17.020 14.960+38.190

P20 168.630 163.660+329.940

P22 2025.16 1578.69+no solution

P23 4275.25 4236.60+no solution

P25 4619.24 4585.35+no solution

Table 4.4: Comparison of Smodels and DLV on the Zeno-Travel
Domain

4.9 Benchmarks and Comparisons 259

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Note that the last column contains the sum of (1) the time for
producing the grounded version by DLV , and (2) the time it takes
for Smodels to produce the solution based on this grounding. This
sum is larger than the overall time in the DLV column.

4.9 Benchmarks and Comparisons 260

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Problem Smodels DLV DLV grounding+Smodels

P1 0.770 0.050 0.050+0.010

P7 0.820 0.050 0.050+0.020

P8 0.810 0.040 0.030+0.010

P9 0.790 0.030 0.030+0.000

P14 0.820 0.050 0.050+0.020

P15 0.680 0.030 0.030+0.000

P16 0.980 0.050 0.050+0.010

P17 0.710 0.040 0.040+0.010

P18 0.750 0.030 0.030+0.000

Table 4.5: Comparison of Smodels and DLV on the Simple-Travel
Domain using disjunctions

4.9 Benchmarks and Comparisons 261

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Comparison with SHOP

Problem Smodels DLV DLV ground+Smodels SHOP

P1 0.850 0.050 0.040+0.020 0.000

P2 0.820 0.050 0.050+0.020 0.000

P8 0.760 0.040 0.040+0.010 0.000

P9 0.680 0.040 0.040+0.010 0.000

P10 0.800 0.070 0.050+0.000 0.000

P16 0.940 0.060 0.050+0.010 0.000

P17 0.880 0.050 0.050+0.010 0.000

P18 0.810 0.030 0.030+0.000 0.000

Table 4.6: Comparison of Smodels and DLV with SHOP on the
Simple-Travel Domain

4.9 Benchmarks and Comparisons 262

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Problem Smodels DLV DLV grnd+Smodels SHOP Ratio

(DLV / SHOP)

S1-0 0.050 0.040 0.030+0.010 0.000 -

S2-0 0.330 0.060 0.050+0.010 0.010 6

S3-0 1.390 0.080 0.010+0.090 0.000 -

S4-0 4.540 0.260 0.100+0.530 0.020 13

S5-0s1 19.530 0.640 0.080+1.540 0.060 10.67

S5-0s2 20.630 0.680 0.090+1.840 0.060 11.33

S6-0 23.150 0.980 0.170+3.560 0.090 10.89

Table 4.7: Comparison of Smodels and DLV using TransTransTrans(·) with
SHOP on the Miconic-10-simtest Domain

4.9 Benchmarks and Comparisons 263

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Problem DLV SHOP Performance Ratio

(DLV / SHOP)

P7 16.440 0.020 822.00

P8 26.180 0.030 872.67

P9 38.390 0.070 548.43

P13 16.560 0.060 276.00

P15 17.020 0.020 851.00

P16 78.060 0.090 867.34

P17 66.300 0.060 1105.00

P22 2025.16 3.050 663.99

P25 4619.24 12.860 359.19

Table 4.8: Comparison of DLV , SHOP on Zeno-Travel Domain
4.9 Benchmarks and Comparisons 264

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

The results of our experiments on the Zeno-Travel Domain can be
seen at Table 4.8. In most cases, the time needed by our program
using DLV was 1.5 to 2.5 orders of magnitude more than SHOP.

Although there is not enough data to say so conclusively, this
suggests that the average-case time complexity of our pro-
grams may be roughly the same as that of SHOP.

This gives reason to hope that future improvements in our
programs and in ASP solvers may make it possible to get
performance competitive with planning systems such as SHOP.

4.9 Benchmarks and Comparisons 265

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

4.10 Summary and References

Answer Set Programming evolved out of PROLOG and
deductive databases. It is purely declarative programming and can
be seen as propositional PROLOG with loop detection.

1. ASP allows for disjunctions and negations.

All problems located on the second level of the
polynomial hierarchy are expressible in disjunctivs ASP.

2. It does not allow function symbols, but allows variables.
However, a given program will first be completely grounded
before computing answer sets.

4.10 Summary and References 266

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

3. To avoid problems with bottom-up computation, rules are
required to be safe.

4. There are efficient implementations of the ASP paradigm:
Smodels, DLV .

5. HTN planning can be nicely captured within ASP: the
resulting system is often within 1-2 orders of magnitude
compared to a dedicated planner (SHOP).

It also seems to scale up.

4.10 Summary and References 267

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

References
Brass, S. and J. Dix (1994). A disjunctive semantics based on

unfolding and bottom-up evaluation. In B. Wolfinger (Ed.),
Innovationen bei Rechen- und Kommunikationssystemen,
(IFIP ’94-Congress, Workshop FG2: Disjunctive Logic
Programming and Disjunctive Databases), Berlin, pp. 83–91.
Springer.

Dix, J. and M. Müller (1994a). Partial Evaluation and Relevance
for Approximations of the Stable Semantics. In Z. Ras and
M. Zemankova (Eds.), Proceedings of the 8th Int. Symp. on
Methodologies for Intelligent Systems, Charlotte, NC, 1994,
LNAI 869, Berlin, pp. 511–520. Springer.

4.10 Summary and References 268

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Dix, J. and M. Müller (1994b). The Stable Semantics and its
Variants: A Comparison of Recent Approaches. In
L. Dreschler-Fischer and B. Nebel (Eds.), Proceedings of the
18th German Annual Conference on Artificial Intelligence (KI
’94), Saarbrücken, Germany, LNAI 861, Berlin, pp. 82–93.
Springer.

Nau, D., Y. Cao, A. Lotem, and H. Muñoz-Avila (1999). Shop:
Simple hierarchical ordered planner. In Proceedings of
IJCAI-99.

Sakama, C. and H. Seki (1994). Partial Deduction of Disjunctive
Logic Programs: A Declarative Approach. In Logic Program
Synthesis and Transformation – Meta Programming in
Logic, LNCS 883, Berlin, pp. 170–182. Springer.

4.10 Summary and References 269

Chapter 4: Answer Set Programming Combining Agents, ASP and Planning, NICTA 2003

Son, T., C. Baral, and S. McIlraith. (2001, September). Planning
with domain-dependent knowledge of different kinds – an
answer set programming approach. In T. Eiter,
M. Truszczyński, and W. Faber (Eds.), Logic Programming
and Non-Monotonic Reasoning, Proceedings of the Sixth
International Conference, LNCS 2173, Berlin, pp. 226–239.
Springer.

Subrahmanian, V., P. Bonatti, J. Dix, T. Eiter, S. Kraus,
F. Özcan, and R. Ross (2000). Heterogenous Active Agents.
MIT-Press.

Weiss, G. (Ed.) (1999). Multi-Agent Systems. MIT-Press.

4.10 Summary and References 270

References Combining Agents, ASP and Planning, NICTA

References
Arens, Y., C. Y. Chee, C.-N. Hsu, and C. Knoblock (1993). Retrieving

and Integrating Data From Multiple Information Sources.
International Journal of Intelligent Cooperative Information
Systems 2(2), 127–158.

Arisha, K., F. Ozcan, R. Ross, V. Subrahmanian, T. Eiter, and S. Kraus
(1999, March/April). IMPACT: A Platform for Collaborating Agents.
IEEE Intelligent Systems 14, 64–72.

Bayardo, R., et al. (1997). Infosleuth: Agent-based Semantic
Integration of Information in Open and Dynamic Environments. In
J. Peckham (Ed.), Proceedings of ACM SIGMOD Conference on
Management of Data, Tucson, Arizona, pp. 195–206.

Brass, S. and J. Dix (1994). A disjunctive semantics based on unfolding
and bottom-up evaluation. In B. Wolfinger (Ed.), Innovationen bei
Rechen- und Kommunikationssystemen, (IFIP ’94-Congress,
Workshop FG2: Disjunctive Logic Programming and Disjunctive

623

References Combining Agents, ASP and Planning, NICTA

Databases), Berlin, pp. 83–91. Springer.

Bratman, M., D. Israel, and M. Pollack (1988). Plans and
Resource-Bounded Practical Reasoning. Computational
Intelligence 4(4), 349–355.

Brink, A., S. Marcus, and V. Subrahmanian (1995). Heterogeneous
Multimedia Reasoning. IEEE Computer 28(9), 33–39.

Chawathe, S., et al. (1994, October). The TSIMMIS Project: Integration
of Heterogeneous Information Sources. In Proceedings of the 10th
Meeting of the Information Processing Society of Japan, Tokyo,
Japan. Also available via anonymous FTP from host
db.stanford.edu, file /pub/chawathe/1994/tsimmis-overview.ps.

Currie, K. and A. Tate (1991). O-plan: the open planning architecture.
Artificial Intelligence 52(1).

Dix, J., T. Eiter, M. Fink, A. Polleres, and Y. Zhang (2003). Monitoring
Agents using Declarative Planning. In R. Kruse (Ed.), Proceedings
of the 27th German Annual Conference on Artificial Intelligence (KI

624

References Combining Agents, ASP and Planning, NICTA

’03), Hamburg, Germany, LNAI ???, Berlin. Springer.

Dix, J., T. Eiter, M. Fink, A. Polleres, and Y. Zhang (2004). Monitoring
Agents using Declarative Planning. Fundamenta Informaticae, to
appear.

Dix, J., S. Kraus, and V. Subrahmanian (2001). Temporal agent
reasoning. Artificial Intelligence 127(1), 87–135.

Dix, J., S. Kraus, and V. Subrahmanian (2002, July). Agents dealing
with time and uncertainty. In C. Castelfranchi and W. L. Johnson
(Eds.), Proceedings of the First International Joint Conference on
Autonomous Agents and Multi-Agent Systems. New York: ACM
Press.

Dix, J., U. Kuter, and D. Nau (2003). Planning in answer set
programming using ordered task decomposition. In R. Kruse (Ed.),
Proceedings of the 27th German Annual Conference on Artificial
Intelligence (KI ’03), Hamburg, Germany, LNAI ???, Berlin.
Springer.

625

References Combining Agents, ASP and Planning, NICTA

Dix, J. and M. Müller (1994a). Partial Evaluation and Relevance for
Approximations of the Stable Semantics. In Z. Ras and
M. Zemankova (Eds.), Proceedings of the 8th Int. Symp. on
Methodologies for Intelligent Systems, Charlotte, NC, 1994, LNAI
869, Berlin, pp. 511–520. Springer.

Dix, J. and M. Müller (1994b). The Stable Semantics and its Variants:
A Comparison of Recent Approaches. In L. Dreschler-Fischer and
B. Nebel (Eds.), Proceedings of the 18th German Annual Conference
on Artificial Intelligence (KI ’94), Saarbrücken, Germany, LNAI 861,
Berlin, pp. 82–93. Springer.

Dix, J., H. Munoz-Avila, and D. N. an Lingling Zhang (2002).
Theoretical and Empirical Aspects of a Planner in a Multi-Agent
Environment. In G. Ianni and S. Flesca (Eds.), Proceedings of
Journees Europeens de la Logique en Intelligence artificielle (JELIA
’02), LNCS 2424, pp. 173–185. Springer.

Dix, J., H. Munoz-Avila, D. Nau, and L. Zhang (2002, July). Planning in
626

References Combining Agents, ASP and Planning, NICTA

a multi-agent environment: Theory and practice. In
C. Castelfranchi and W. L. Johnson (Eds.), Proceedings of the First
International Joint Conference on Autonomous Agents and
Multi-Agent Systems. New York: ACM Press.

Dix, J., H. Munoz-Avila, D. Nau, and L. Zhang (2003). IMPACTing
SHOP: Putting an AI planner into a Multi-Agent Environment.
Annals of Mathematics and AI 37(4), 381–407.

Dix, J., M. Nanni, and V. S. Subrahmanian (2000). Probabilistic agent
reasoning. ACM Transactions of Computational Logic 1(2), 201–245.

Dix, J., V. Subrahmanian, and G. Pick (2000). Meta Agent Programs.
Journal of Logic Programming 46(1-2), 1–60.

Eiter, T., W. Faber, N. Leone, G. Pfeifer, and A. Polleres (2002). A Logic
Programming Approach to Knowledge-State Planning, II: The
DLVK System. Artificial Intelligence 144(1-2), 157–211.

Eiter, T. and V. Subrahmanian (1999). Heterogeneous Active Agents, II:
Algorithms and Complexity. Artificial Intelligence 108(1-2),

627

References Combining Agents, ASP and Planning, NICTA

257–307.

Eiter, T., V. Subrahmanian, and G. Pick (1999). Heterogeneous Active
Agents, I: Semantics. Artificial Intelligence 108(1-2), 179–255.

Eiter, T., V. Subrahmanian, and T. Rogers (2000). Heterogeneous Active
Agents, III: Polynomially Implementable Agents. Artificial
Intelligence 117(1), 107–167.

Franklin, S. and A. Graesser (1997). Is it an Agent, or Just a Program?
In J. P. Müller, M. Wooldridge, and N. R. Jennings (Eds.), Intelligent
Agents III, Berlin, Germany. Springer-Verlag. LNAI Volume 1193.

Genesereth, M. R. and S. P. Ketchpel (1994). Software Agents.
Communications of the ACM 37(7), 49–53.

Georgeff, M. and A. Lansky (1987). Reactive Reasoning and Planning.
In Proceedings of the Conference of the American Association of
Artificial Intelligence, Seattle, WA, pp. 677–682.

Munoz-Avila, H., D. Aha, D. Nau, R. Weber, L. Breslow, and F. Yaman
(2001). Sin: Integrating case-based reasoning with task

628

References Combining Agents, ASP and Planning, NICTA

decomposition. In Proceedings of IJCAI-01.

Nau, D., Y. Cao, A. Lotem, and H. Muñoz-Avila (1999). Shop: Simple
hierarchical ordered planner. In Proceedings of IJCAI-99.

Rao, A. S. (1995). Decision Procedures for Propositional Linear-Time
Belief-Desire-Intention Logics. In M. Wooldridge, J. Müller, and
M. Tambe (Eds.), Intelligent Agents II – Proceedings of the 1995
Workshop on Agent Theories, Architectures and Languages
(ATAL-95), Volume 890 of LNAI, pp. 1–39. Berlin, Germany:
Springer-Verlag.

Rao, A. S. and M. Georgeff (1991). Modeling Rational Agents within a
BDI-Architecture. In J. F. Allen, R. Fikes, and E. Sandewall (Eds.),
Proceedings of the International Conference on Knowledge
Representation and Reasoning, Cambridge, MA, pp. 473–484.
Morgan Kaufmann.

Rao, A. S. and M. Georgeff (1995, June). Formal models and decision
procedures for multi-agent systems. Technical Report 61,

629

References Combining Agents, ASP and Planning, NICTA

Australian Artificial Intelligence Institute, Melbourne.

Sacerdoti, E. (1977). A Structure for Plans and Behavior. American
Elsevier Publishing.

Sakama, C. and H. Seki (1994). Partial Deduction of Disjunctive Logic
Programs: A Declarative Approach. In Logic Program Synthesis
and Transformation – Meta Programming in Logic, LNCS 883,
Berlin, pp. 170–182. Springer.

Son, T., C. Baral, and S. McIlraith. (2001, September). Planning with
domain-dependent knowledge of different kinds – an answer set
programming approach. In T. Eiter, M. Truszczyński, and W. Faber
(Eds.), Logic Programming and Non-Monotonic Reasoning,
Proceedings of the Sixth International Conference, LNCS 2173,
Berlin, pp. 226–239. Springer.

Subrahmanian, V., P. Bonatti, J. Dix, T. Eiter, S. Kraus, F. Özcan, and
R. Ross (2000). Heterogenous Active Agents. MIT-Press.

Tate, A. (1977). Generating Project Networks. In Proc. IJCAI-77, pp.
630

References Combining Agents, ASP and Planning, NICTA

888–893.

Weiss, G. (Ed.) (1999). Multi-Agent Systems. MIT-Press.

Wiederhold, G. (1993). Intelligent Integration of Information. In
Proceedings of ACM SIGMOD Conference on Management of Data,
Washington, DC, pp. 434–437.

Wilder, F. (1993). A Guide to the TCP/IP Protocol Suite. Artech House.

Wilkins, D. (1988). Practical planning - extending the classical AI
planning paradigm. Morgan Kaufmann.

Wooldridge, M. J. and N. R. Jennings (1995). Agent Theories,
Architectures and Languages: A survey. In M. J. Wooldridge and
N. R. Jennings (Eds.), Intelligent Agents, Volume 890 of Lecture
Notes in Artificial Intelligence, pp. 1–39. Springer-Verlag.

631

