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ABSTRACT

We give the theoretical foundations and empirical evalua-
tion of a planning agent, shop, performing HTN planning
in a multi-agent environment. shop is based on A-SHOP,
an agentized version of the original SHOP HTN planning
algorithm, and is integrated in the IMPACT multi-agent
environment. We run several experiments involving access-
ing various distributed, heterogeneous information sources,
based on simplified versions of noncombatant evacuation op-
erations, NEO’s. As a result, we noticed that in such real-
istic settings the time spent on communication (including
network time) is orders of magnitude higher than the ac-
tual inference process. This has important consequences for
optimizations of such planners. Our main results are: (1)
using NEQO’s as new, more realistic benchmarks for plan-
ners acting in an agent environment, and (2) a memoization
mechanism implemented on top of shop, which improves the
overall performance in a significant way.
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1. INTRODUCTION

Planning a course of action is difficult, especially for large
military organizations (e.g., the U.S. Navy) that have their
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available assets distributed world-wide. Formulating a plan
in this context requires accessing remote, heterogeneous in-
formation sources. For example, when planning for a Non-
combatant evacuation operation, denoted by NEO, military
commanders must access several information sources includ-
ing: assets available in the zone of operations, Intelligence
assessment about potential hostiles, weather conditions and
so forth.

A-SHOP is an HTN planning algorithm for planning in a
multi-agent environment. A-SHOP can interact with exter-
nal information sources, frequently heterogeneous and not
necessarily centralized, via the IMPACT multi-agent en-
vironment. The IMPACT project (see [7, 22] and http:
//www.cs.umd.edu/projects/impact/) aims at developing
a powerful and flexible, yet easy to handle framework for
the interoperability of distributed heterogeneous sources of
information.

In previous work we described the definition of the A-
SHOP planning algorithm, an agentized version of SHOP
that runs in the IMPACT environment and formulated the
conditions needed for A-SHOP to be sound and complete
[6].

In this paper we will focus on the actual implementation
of A-SHOP following the principles stated in our previous
work and experiments we did on a transportation domain
for NEO operations. Our analysis of the initial runs of A-
SHOP revealed that most of the running time was spent on
communication between the IMPACT agents and accessing
the information sources. Compared to that, the actual in-
ferencing time in A-SHOP was very small. Furthermore,
we observed that frequently the same IMPACT query was
performed several times. To solve this problem we imple-
mented a memoization mechanism to avoid repeating the
same IMPACT queries. As we will show, the key for this
mechanism to work is that the A-SHOP algorithm performs
a planning technique called ordered task decomposition. As
a result, A-SHOP maintains partial information about the
state of the world. Experiments performed show that the

overall network time spent to access the information sources:
the higher this network time, the higher is the gain obtained
by our memoization technique.
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Figure 1: SHOP as a planning agent in IMPACT.

This paper is organized as follows. The next section de-
scribes the Noncombatant evacuation operations (NEO’s)
planning domain, which partly motivated our approach. In
Section 3.2 we introduce IMPACT, defineA-SHOP and the
results establishing the soundness and completeness of A-
SHOP. Section 4 describes the actual implementation of A-
SHOP. Section 5 describes the memoization mechanism and
its dependence on the Ordered Task Decomposition plan-
ning technique. In Section 6 we describe several experiments
with A-SHOP for logistics NEO problems. Finally, we dis-
cuss related work in Section 7 and conclude with Section 8.

2. PLANNING NONCOMBATANT EVACU-
ATION OPERATIONS (NEO'S)

Noncombatant evacuation operations are conducted to as-
sist the U.S.A. Department of State (DOS) with evacuat-
ing noncombatants, nonessential military personnel, selected
host-nation citizens, and third country nationals whose lives
are in danger from locations in a host foreign nation to an
appropriate safe haven. They usually involve the swift inser-
tion of a force, temporary occupation of an objective (e.g.,
an embassy), and a planned withdrawal after mission com-
pletion. NEQO’s are often planned and executed by a Joint
Task Force (JTF), a hierarchical multi-service military orga-
nization, and conducted under an American Ambassador’s
authority. Force sizes can range into the hundreds and in-
volve all branches of the armed services, while the evacuees
can number into the thousands. More than ten NEO’s were
conducted within the past decade. Publications describe
NEO doctrine [17], case studies [21], and more general anal-
ysis (e.g., [20]).!

The decision making process for a NEO is conducted at
three increasingly-specific levels: strategic, operational and
tactical. The strategic level involves global and political con-
siderations such as whether to perform the NEO. The op-
erational level involves considerations such as determining
the size and composition of its execution force. The tactical
level is the concrete level, which assigns specific resources to

!See www.aic.nrl.navy.mil/~aha/neos for more informa-
tion on NEQO’s.
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Figure 2: NEO transportation example.

specific tasks. Thus, this domain is particularly suitable for
a hierarchical (HTN) planning approach.

JTF commanders plan NEO’s by gathering information
from multiple sources. For example, in preparation for Op-
eration Eastern Ezxit (Mogadishu, Somalia, 1991), comman-
ders accessed Intelligence Satellite Photographs from NIMA
(National Imagery and Mapping Agency), intelligence as-
sessment information from the CIA, the Emergency Action
Plan (EAP) from the US Embassy in Mogadishu, among
others [21]. Any automated system planning in this domain
must be able to access these multiple distributed informa-
tion sources.

3. PLANNING WITH REMOTE, HETERO-
GENEOUS INFORMATION SOURCES

In this section we review results obtained in [6]. After giving
a brief overview on SHOP and IMPACT in Subsection 3.1,
we state the main results of [6] in Subsection 3.4.

3.1 SHOP

Rather than giving a detailed description of the kind of
HTN planning used by SHOP ([16]), we consider the follow-
ing example.

In order to do planning in a given planning domain, SHOP
needs to be given knowledge about that domain. SHOP’s
knowledge base contains operators and methods. Each oper-
ator is a description of what needs to be done to accomplish
some primitive task, and each method is a prescription for
how to decompose some complex task into a totally ordered
sequence of subtasks, along with various restrictions that
must be satisfied in order for the method to be applicable.

Given the next task to accomplish, SHOP chooses an ap-
plicable method, instantiates it to decompose the task into
subtasks, and then chooses and instantiates other methods
to decompose the subtasks even further. If the constraints
on the subtasks prevent the plan from being feasible, SHOP
will backtrack and try other methods.

As an example, Figure 2 shows two methods for the task
of selecting a helicopter launching base: establishing the base
within flying distance, and launch from carrier battle group
(i.e., use the carrier as the helicopter launching base). Note
that each method’s preconditions are not used to create sub-
goals (as would be done in action-based planning). Rather,
they are used to determine whether or not the method is
applicable. Establishing the base within flying distance re-
quires to have transport helicopters and a security force
available. Launching from carrier battle group also requires
to have helicopters available and those helicopters have to
have air refuelling capability (which wasn’t necessary in the
first method because the helicopters are within flying dis-



tance).

If the method establishing base within flying distance method
is selected, the select helicopter launching base is decom-
posed into three subtasks: transport security force (F) us-
ing the helicopters (H) to the selected launching base (A),
position the security force in the base, and transport the
fuel to the base. Some of these tasks, such as transport-
ing the security force, can be further decomposed. Others
such as position security force cannot. The former are called
compound tasks, the latter primitive tasks.

Here are some of the complications that can arise during
the planning process:

e The planner may need to recognize and resolve inter-
actions among the subtasks. For example, in planning
how to travel to the airport, one needs to make sure
that the fuel arrive after the security force has been
deployed. To make the example in Figure 2 more re-
alistic, such information would need to be specified as
part of SHOP’s methods and operators.

e In the example in Figure 2, it was always obvious which
method to use. But in general, more than one method
may be applicable to a task. If it is not possible to
solve the subtasks produced by one method, SHOP
will backtrack and try another method instead.

3.2 IMPACT

To get a bird’s eye view of IMPACT, here are the most
important features:

Actions: Each IMPACT agent has certain actions avail-
able. Agents act in their environment according to
their agent program and a well defined semantics de-
termining which of the actions the agent should exe-
cute.

Cycle: Each agent undergoes the following cycle:

(1) Get messages by other agents. This changes the
state of the agent.

(2) Determine (based on its program, its semantics
and its state) for each action its status (permit-
ted, obliged, forbidden, ...). The agent ends up
with a set of status atoms.

(3) Based on a notion of concurrency, determine the
actions that can be executed and update the state
accordingly.

Legacy Code: IMPACT Agents are built on top of arbi-
trary software code (Legacy Data).

Agentization: A methodology for transforming legacy code
into an agent has been developed.

A complete description of all these notions is out of scope of
this paper and we refer to [22] for a detailed presentation.
Before explaining an agent in more detail, we need to
make some comments about the general architecture. In
IMPACT agents communicate with other agents through
the network. Not only can they send out (and receive) mes-
sages from other agents, they can also ask the server to find
out about services that other agents offer. For example a
planning agent (we call it A-SHOP), confronted with a par-
ticular planning problem, can find out if there are agents

out there with the data needed to solve the planning prob-
lem; or agents can provide A-SHOP with information about
relevant legacy data see Figure 1.

One of the main features of IMPACT is to provide a
method (see [22]) for agentizing arbitrary legacy code, i.e. to
turn such legacy code into an agent. In order to do this,
we need to abstract from the given code and describe its
main features. Such an abstraction is given by the set of all
datatypes and functions the software is managing. We call
this a body of software code and denote it by S = (7s, Fs).
Fs is a set of predefined functions which makes access to
the data objects managed by the agent available to external
processes.

For example, in many applications a math agent is needed.
This agent is able to do mathematical calculations shipped
to it by other agents. For example it can determine the
time it takes for a particular vehicle to get from one loca-
tion to another. Another example is a monitoring agent,
that keeps track of distances between two given points and
the authorized range or capacity of certain vehicles. These
information can be stored in several databases.

Definition 3.1 (State of an Agent, Os(t)) At any given
point t in time, the state of an agent, denoted Os(t), is the
set of all data objects that are currently stored in the rela-
tions the agent handles—the types of these objects must be
in the base set of types in Ts.

In the example just mentioned, the state of the monitoring
agent consists of all tuples stored in the databases it handles.

3.2.1 The Code Call Machinery

To perform logical reasoning on top of third party data
structures (which are part of the agent’s state) and code,
the agent must have a language within which it can reason
about the agent state. We therefore introduce the concept
of a code call atom, which is the basic syntactic object used
to access multiple heterogeneous data sources.

Definition 3.2 (Code Calls (cc)) Suppose S =qef (s, Fs)
is some software code, f € Fs is a predefined function with n
arguments, and di,...,dy are objects or variables such that
each d; respects the type requirements of the i’th argument
of f. Then, S:f(di,...,dn) is a code call. A code call is
ground if all the di’s are objects.

We often identify software code S with the agent that is
built on top of it. This is because an agent really is uniquely
determined by it.

A code call executes an API function and returns as out-
put a set of objects of the appropriate output type. Going
back to our agent introduced above, monitoring may be
able to execute the cc monitoring: distance(locFrom, locTo).
The math agent may want to execute the following code
call: math: computeTime(cargoPlane, locFrom, locTo).

What we really need to know is if the result of evalu-
ating such code calls is contained in a certain set or not.
To do this, we introduce code call atoms. These are logical
atoms that are layered on top of code calls. They are defined
through the following inductive definition.

Definition 3.3 (Code Call Atoms (in(X, cc))) Ifccisa
code call, and X is either a variable symbol, or an object of



the output type of cc, then in(X, cc) and not_in(X, cc) are
code call atoms. not_in(X, cc) succeeds if X is not in the
set of objects returned by the code call cc.

Code call atoms, when evaluated, return boolean values, and
thus may be thought of as special types of logical atoms.
Intuitively, a code call atom of the form in(X, cc) succeeds
if X can be set to a pointer to one of the objects in the set
of objects returned by executing the code call.

As an example, the following code call atom tells us that
the particular plane “f22” is available as a cargo plane at
ISB1: in(f22, transportAuthority : cargoPlane(ISB1))

Often, the results of evaluating code calls give us back
certain values that we can compare. Based on such com-
parisons, certain actions might be fired or not. To this end,
we need to define code call conditions. Intuitively, a code
call condition is a conjunction of code call atoms, equalities,
and inequalities. Equalities, and inequalities can be seen as
additional syntax that “links” together variables occurring
in the atomic code calls.

Definition 3.4 (Code Call Conditions (ccc))
1. Every code call atom is a code call condition.

2. If s,t are either variables or objects, then s =t is a
code call condition.

3. If s, t are either integer/real valued objects, or are vari-
ables over the integers/reals, thens < t,s > t,s > t,s
are code call conditions.

4. If x1,x2 are code call conditions, then x1& x2 is a
code call condition.

A code call condition satisfying any of the first three criteria
above is an atomic code call condition.

3.3 Agent Programs and Semantics

We are now coming to the very heart of the definition of
an agent: its agent program. Such a program consists of
rules of the form:

Opa(tlaat’m) — Oplﬁl()730pnﬁn()v
CCCly . . ., CCCr,
where «, f1,...0n are actions, Opq,...,0Op, describe the

status of the action (obliged, forbidden, waived, doable) and
cce; are code call conditions to be evaluated in the actual
state.

Thus, Op, are operators that take actions as arguments.
They describe the status of the arguments they take. Here
are some examples of actions: (1) to load some cargo from
a certain location, (2) to fly a plane from a certain location
to another location, (3) to unload some cargo from a cer-
tain location. The action status atom Fload (resp. Do fly)
means that the action load is forbidden (resp. fly should be
done). Actions themselves are terms, only with an operator
in front of them they become atoms.

In IMPACT, actions are very much like STRIPS opera-
tors: they have preconditions and add and delete-lists (see
appendix). The difference to STRIPS is that these precon-
ditions and lists consist of arbitrary code call conditions, not
just of logical atoms.

Figure 3 illustrates that the agent program together with
the chosen semantics SEM and the state of the agent de-
termines the set of all status atoms. However, the doable

A Single agent

Actions Agent Program
a P Sem conq

Code Calls
ag: funct(ag, ...

> an
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Figure 3: An Agent in IMPACT.

actions among them might be conflicting and therefore we
have to use the chosen concurrency notion to finally deter-
mine which actions can be concurrently executed. The agent
then executes these actions and changes its state.

3.4 IMPACTING SHOP

A comparison between IMPACT’s actions and SHOP’s
methods shows that IMPACT actions correspond to fully
instantiated methods, i.e. no subtasks. While SHOP’s meth-
ods and operators are based on STRIPS, the first step is to
modify the atoms in SHOP’s preconditions and effects, so
that SHOP’s preconditions will be evaluated by IMPACT’s
code call mechanism and the effects will change the state of
the IMPACT agents. This is a fundamental change in the
representation of SHOP. In particular, it requires replacing
SHOP’s methods and operators with agentized methods and
operators. These are defined as follows.

Definition 3.5 (Agentized Meth.: (AgentMeth hxt) )
An agentized method is an expression (AgentMeth hxt)
where h (the method’s head) is a compound task, x (the
method’s preconditions) is a code call condition and t is a
totally ordered list of subtasks, called the task list.

The primary difference between definition of an agen-
tized method and the definition of a method in SHOP is
as follows. In SHOP, preconditions were logical atoms, and
SHOP would infer these preconditions from its current state
of the world using Horn-clause inference. In contrast, the
preconditions in an agentized method are IMPACT’s code
call conditions rather than logical atoms, and A-SHOP (the
agentized version of SHOP defined in the next section) does
not use Horn-clause inference to establish these precondi-
tions but instead simply invokes those code calls, which are
calls to other agents (which may be Horn-clause theorem
provers or may instead be something entirely different).

Definition 3.6 (Agentized Op.: (AgentOp h Xadd Xdel) )

An agentized operator is an expression (AgentOp h Xadd Xdel ),

where h (the head) is a primitive task and Xqdd and Xder are
lists of code calls (called the add- and delete-lists). The set



of variables in the tasks in Xada and Xder 1S a subset of the
set of variables in h.

The Algorithm

procedure A-SHOP(t, D)
. if t = nil then return nil
t := the first task in t; R := the remaining tasks
if t is primitive and a simple plan for ¢ exists then
q := simplePlan(t)
return concatenate(q, A-SHOP(R, D))
else if ¢ is non-prim. A there is a reduction of ¢t then
nondeterministically choose a reduction:
Nondeterministically choose an agentized method,
(AgentMeth h xt), with © the most general
unifier of h and t and substitution 0 s.t.
xu0 is ground and holds in IMPACT"’s state O.
8. return A-SHOP(concatenate(tub, R), D)
9. else return FAIL
10. end if
end A-SHOP

N Ot W=

procedure simplePlan(t)

11. nondeterministically choose agent. operator
Op = (AgentOp h Xqdd Xdel) With v the most
general unifier of h and ¢ s.t. h is ground

12. monitoring : apply(Opv)

13. return Opv

end A-SHOP

Figure 4: A-SHOP, the agentized version of SHOP.
The A-SHOP algorithm is now an easy adaptation of the
original SHOP algorithm. Unlike SHOP (which would apply
an operator by directly inserting and deleting atoms from an
internally-maintained state of the world), A-SHOP needs to
reason about how the code calls in an operator will affect the
states of other agents. One might think the simplest way to
do this would be simply to tell these agents to execute the
code calls and then observe the results, but this would not
work correctly. Once the planning process has ended suc-
cessfully, A-SHOP will return a plan whose operators can be
applied to modify the states of the other IMPACT agents—
but A-SHOP should not change the states of those agents
during its planning process because this would prevent A-
SHOP from backtracking and trying other operators.

Thus in Step 12, SHOP does not issue code calls to the
other agents directly, but instead communicates them to a
monitoring agent. The monitoring agent keeps track of
all operators that are supposed to be applied, without ac-
tually modifying the states of the other IMPACT agents.
When A-SHOP queries for a code call cc = S: f(dy,...,dn)
in x to evaluate a method’s precondition (Step 7), the moni-
toring agent examines if cc has been affected by the intended
modifications of the operators and, if so, it evaluates cc. If cc
is not affected by application of operations, IMPACT eval-
uates cc (i.e., by accessing S). The list of operators main-
tained by the monitoring agent is reset whenever a planning
process begins. The apply function applies the operators
and creates copies of the state of the world. Depending on
the underlying software code, these changes might be easily
revertible or not. In the latter case, the monitoring agent
has to keep track of the old state of the world.

3.5 Finite Evaluability of ccc’s and Complete-
ness of ASHOP

An important question for any planning algorithm is whether
all solution plans produced by the algorithm are correct (i.e.,
soundness of the algorithm) and whether the algorithm will

find solutions for solvable problems (i.e., completeness of the
algorithm). Soundness and completeness proofs of classical
planners assume that the preconditions can be evaluated rel-
ative to the current state. In SHOP, for example, the state
is accessed to test whether a method is applicable, by exam-
ining whether the method’s preconditions are valid in the
current state. Normally it is easy to guarantee the ability
to evaluate preconditions, because the states typically are
lists of predicates that are locally accessible to the planner.
However, if these lists of predicates are replaced by code call
conditions, this is no longer the case.

Code call conditions provide a simple, but powerful lan-
guage syntax to access heterogeneous data structures and
legacy software code. However, in general their use in agent
programs is not limited. In particular, it is possible that
a ccc can not be evaluated (and thus the status of actions
can not be determined) simply because there are uninstan-
tiated variables and thus the underlying functions can not
be executed.

We have introduced syntactic conditions, similar to safety
(and consequently called strong safety) in classical databases,
to ensure evaluability and termination of ccc’s (see [8, 22]).

Lemma 3.7 (Evaluating Agentized Operators)

Let (AgentMeth hxt) an agentized method, O a state,
and (AgentOp h' Xadd Xdet) an agentized operator. If the
precondition x is strongly safe wrt. the variables in h, the
problem of deciding whether x holds in O can be algorith-
mically solved. If the add and delete-lists Xada and Xadei are
strongly safe wrt. the variables in h', the problem of applying
the agentized operator to O can be algorithmically solved.

Theorem 3.8 (Soundness, Completeness) Let O be a
state and D be a collection of agentized methods and oper-
ators. If all the preconditions in the agentized methods and
add and delete-lists in the agentized operators are strongly
safe wrt. the respective variables in the heads, then A-SHOP
is correct and complete.

4. ASHOP: IMPLEMENTATION

Each cycle in the A-SHOP algorithm consist of three
phases (see lines 3 and 7 of Figure 3.4):

1. Selection Phase: Selecting a candidate agentized method
or operator to reduce a task.

2. Evaluation Phase: Evaluating the applicability of the
chosen agentized method or operator.

3. Reduction Phase: Performing the agentized method or
operator.

To accomplish these phases we have implemented 3 IM-
PACT agents which perform pieces of these phases:

ashop: This is the agent that all IMPACT agents commu-
nicate with for generating a plan. It receives as input
a problem and outputs a solution plan. The A-SHOP
agent also performs the Selection Phase and the eval-
uation phase for the situation in which an operator
is chosen. The operator is then send to the Monitor
Agent, to perform a virtual execution of it. If the selec-
tion of a method is made, the A-SHOP agent sends a
message to the Preconditions Agent with the code-call
condition of the selected method.



preconditions: Receives a code-call condition and evalu-
ates each code-call by sending it to the Monitoring
Agent.

monitoring: The monitor agent has two functions: firstly,
it receives a operator and performs a virtual execution
of it. Secondly, it receives code-calls and evaluates
them. We explain both of these operations in detail
below as they are closely inter-related.

One of the main issues we are confronted with during
the implementation is how to cope with the ezecution of
agentized operators. In classical Al planning, where the
state is centralized, executing an operator is a matter of
simply making the changes to the state indicated by the
operator and keeping track of those changes in an stack;
if backtracking occurs, the stack is used to restore to the
previous state.

This approach is not working in a multi-agent environ-
ment, where the state is distributed among several informa-
tion sources (see Definition 3.1). Firstly, remote information
sources might not be able to backtrack to a previous state.
Secondly, even if backtracking was possible, performing such
an operation may be costly. Thirdly, executing an operation
may make resources unavailable temporarily for other agents
and if backtracking takes place, these resources could have
been used. For example, an operator may reserve a recon
plane but a later operator trying to provide flight escort to
the recon plane might not succeed. In this case the original
recon plane should have not been reserved in the first place.

The Monitoring Agent overcomes these problems by keep-
ing track of each operator execution without accessing the
corresponding information sources to request an execution
of the operation. For this reason we refer to this as a wvir-
tual operator execution. Since monitoring keeps track of
the changes in the states of the remote information sources,
the preconditions sends the code-calls to the monitoring.
monitoring makes the code-call to the corresponding infor-
mation source and then checks if the answer is affected by
the previously virtually executed operators before sending
its answer to the preconditions. For example, in a previous
operator execution a recon plane might have been reserved.
As port of the same planning episode, a code-call may en-
quire if there are any recon planes available. monitoring
receives this code call and passes to the corresponding infor-
mation source. Once the information source returns the an-
swer (there is one recon plane available), monitoring checks
the virtually executed list and discovers that for an operator
has locked the recon plane. Thus, monitoring returns to
the Precondition Agent that this code-call cannot be satis-
fied.

When the plan is completed, the actual execution is done
in two runs: in the first run all resources used by the plan are
locked by informing the corresponding information sources.
This step is necessary to make sure that the resources are
still available. If all resources are available, in the second
step the plan is actually executed. That is, each of the
agentized operators in the plan is applied and the states of
the corresponding remote information sources are changed.
If the first step fails because a resource is no longer available,
A-SHOP will need to generate a new plan. An alternative
approach, could be for the monitoring agent to lock the re-
sources during the planning process. This avoids the need
to make the two runs at the end but will make the resources

unavailable as explained before. In future work, we plan to
study the trade-offs between these alternatives.

5. MEMOIZATION IN ASHOP

While our implementation secures that the produced plans
are consistent, the resulting running time was large com-
pared to the inferencing time (we will describe the exper-
iments later). Our experiments show that the bulk of the
planning time has been spent in accessing the remote in-
formation sources. Further analysis revealed that the same
code-calls were repeatedly being executed during the plan-
ning process. Our solution was to implement a cache mech-
anism to avoid repeated evaluations of the same code call in
IMPACT.

Again this issue marked a difference from classical Al
planning approaches. In SHOP, for example, we use a hash
table to quickly check the validity of a condition in the cur-
rent state. Other planning systems use more sophisticated
data structures to reduce the time for evaluating a condi-
tion in the current state. For example, TLPIlan, the winner
of the 2000 AI planning competition, uses a bit map that
allows checking conditions in almost constant time [1].

Obviously none of these techniques would be useful here
since the information sources are remote and A-SHOP has
no control over how data is stored there and how it is up-
dated. However, implementing a memoization mechanism
turned out to be adequate for A-SHOP for two reasons:
Firstly, A-SHOP performs Ordered Task Decomposition. Sec-
ondly, all access to the information sources is canalized through
monitoring.

As explained above, A-SHOP maintains a totally ordered
list of tasks and starts planning for the first one, then the
second one and so on. This technique is called Ordered Task
Decomposition. A direct consequence of this technique is
that A-SHOP can maintain partial information about the
state of the world. In particular, code-calls that are made
form the partial information about the state of the world
and the sequence of virtually executed operators indicate
the changes in that partial state.

The fact that access to the information sources is canal-
ized through monitoring makes this agent the natural place
for maintaining the updated partial state of the world. As
a result, we modified monitoring as follows:

e When it receives a code-call from preconditions, the
monitoring will first check if the code-call can be an-
swered based on previous code-calls and the modifi-
cations indicated by the virtually executed operators.
Only if it is not possible to answer this code call, the
remote information source is accessed via the IMPACT
code-call evaluation mechanism.

e After, receiving the answer from IMPACT for the eval-
uation of the code-call, monitoring records this an-
swer.

In the example of the recon plane, after the first operator
reserving the recon plane is virtually executed, monitoring
knows that there are no more recon planes available. Thus,
as it receives the code-call enquiring about the availability
of recon planes it will answer that this code-call cannot be
satisfied without having to access the corresponding remote
information source via IMPACT. As will be shown next,
these changes resulted in a reduction of the running time.



6. EMPIRICAL EVALUATION

The test domain is a simple transportation planning for
a NEO [15]. Its plans involve performing a rescue mission
where troops are grouped and transported between an initial
location (the assembly point) and the NEO site (where the
evacuees are located). After the troops arrived at the NEO
site, evacuees are re-located to a safe haven.

Planning involves selecting possible pre-defined routes,
consisting of four or more segments each. The planner must
also choose a transportation mode for each segment. In ad-
dition, other conditions were determined during planning
such as whether communication exists with State Depart-
ment personnel and the type of evacuee registration process.
A-SHOP’s knowledge base included six agentized operators
and 22 agentized methods. There were four IMPACT infor-
mation sources available:

e Transport Authority: Maintains information about the
transportation assets available at different locations.

o Weather Authority: Maintains information about the
weather conditions at the different locations.

e Airport Authority: Maintains information about avail-
ability and conditions of airports at different locations.

e Math Agent: math evaluates arithmetic expressions.
typical evaluations include the subtract a certain num-
ber of assets use for an operation and update time de-
lays.

The top level task for each problem in this experiment
was the following: to perform a troop insertion and evac-
uees extraction plan. This top level task is decomposed into
several subtasks, one for each segment in the route that the
troops must cover (these segments are pre-determined as
part of the problem description). Within each segment, A-
SHOP must plan for the means of transportation (planes,
helicopters, vehicles etc.) to be used and select a route for
that segment. The selection of the means of transportation
depends on their availability for that segment, the weather
conditions, and, in the case of airplanes, on the availability
and conditions of airports. The selection of the route de-
pends on the transportation vehicle used and may lead to
backtracking. For example, the choice of ground transporta-
tion assets needs to be revised if no roads are available or
they are blocked, or too risky to take.

We ran our experiments on 30 problems of increasing size.
The first five problems had four segments passing over five
locations (including a particular location known as the In-
termediate Staging Base ISB), the next five problems had
five segments passing over six locations (two ISB’s), and
so forth until the Problems 26-30 which had nine segments
passing over 10 locations (five ISB’s).

We ran shop in two modes: with and without the mem-
oization mechanism and measured for each mode two vari-
ables: inferencing time and total time. The inferencing time
includes the time spent in the three agents implementing the
A-SHOP algorithm. Thus, the difference between the total
time and the running time indicates the sum of the com-
munication time needed by IMPACT to access the remote
information sources and of the time needed by the informa-
tion sources to compute the answers to the queries.
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Figure 5: Results of the experiments.

Figure 5 shows the results of the experiments. Not sur-
prisingly the inferencing times with and without memoiza-
tion are almost identical. More interesting is the fact that
the inferencing time is only a fraction of the overall running
time. In addition, the use of the memoization mechanism
results in a decrease in the running time of more than 30%.

7. RELATED WORK

Most AI planning systems are unable to evaluate numeric
conditions at all. A few can evaluate numeric conditions us-
ing attached procedures (e.g., SIPE [23], O-Plan [3], TLPlan
[2] and SHOP [16]), but the lack of a formal semantics for
these attached procedures makes it more difficult to guaran-
tee soundness and completeness. Integer Programming (IP)
models appear to have excellent potential as a uniform for-
malism for reasoning about complex numeric and symbolic
constraints during planning, and some work is already be-
ing done on the use of IP for reasoning about resources [14,
12, 24]. However, that work is still work in progress, and a
number of fundamental problems still remain to be solved.

Approaches for planning with external information sources
typically have in common that the information extracted
from the external information sources is introduced in the
planning system through built-in predicates [9, 11, 13, 10].
For example, a modified version of UCPOP uses information
gathering goals to extract information from the external in-
formation sources [13]. The information gathering goals are
used as preconditions of the operators. The primary diffi-
culty with this approach is that since it is not clear what the
semantic of the built-in predicates is, this makes it difficult
to guarantee soundness and completeness.

Distributed problem-solving (eg. [4]) has been the focus
of research for many years. With the advances in agent
research [25], attention has been driven towards the coor-
dination of the decision making process between multiple
agents. However, much work is still needed in developing
well-founded reasoning and negotiating techniques, in par-
ticular in environments in which the agent must constantly
be on the lookout for changes (see [5] for a recent survey).
An interesting approach is the RETSINA project [18, 19].
In RETSINA each agent can do its own planning, as each
agent is equipped with a special planning component in its



internal architecture. In contrast to this, we have chosen
that one special planning agent, shop, does the planning
upon request from other agents.

8. CONCLUSION

The original motivation of our work was to make HTN
planning available in a multi-agent environment. This is
beneficial for both, planners (they gain access to distributed
and heterogenous information sources for free and can ship
various tasks to other agents) as well as agent systems (which
usually do not have available planning components that are
highly sophisticated and efficient).

After developing the theory and implementing it, we ran
experiments on a simplified version of the NEO domain,
where data needed for the planning process is distributed
and highly heterogenous. In such a situation, data changes
dynamically, eg. weather conditions or available resources.
Thus the available data can not be stored locally, because of
the sheer amount and the dynamic changes in the database.

Our experiments revealed clearly that most of the time is
spent on communication with the information sources and
therefore network time. Thus improving the actual planning
algorithm (as done by most planners that assume all info is
there locally) does not pay off: the amount gained is or-
ders of magnitude less than the overall time. We really need
caching mechanisms, to avoid computing the same results
over and over again. In the extreme case, when caching is
just storing everything locally, we would end up with our
original local planner. This is not feasible because of the
amount of data involved and the fact that it changes dy-
namically. The other extreme is not to do any caching at
all. Our memoization technique seems to be a good com-
promise between these two extremes. The decrease in time
we are getting depends on the overall network time spent
to access the information sources: the higher this network
time, the higher is the gain obtained by our memoization
technique. Consequently our experiments showed an overall
gain ranging from 20%-40%.
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