
COMPUTATIONAL PROPERTIES OF

SPATIAL LOGICS IN THE REAL

PLANE

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2008

By

Aled Alun Griffiths

School of Computer Science

Contents

Abstract 6

Declaration 7

Copyright 8

Acknowledgements 9

1 Introduction 10

2 Preliminaries 14

2.1 Modal Logic . 14

2.1.1 Universal S4 . 16

2.2 Topology . 17

2.2.1 Geometric Topology . 20

2.3 Graph Theory . 21

2.4 Boolean Algebras . 21

2.5 Computational Complexity . 23

2.5.1 Turing Machines . 23

2.5.2 Complexity . 25

3 String Graphs 29

3.1 String Graph Problem . 29

3.1.1 Word Equations . 34

3.1.2 Main String Graph Result 35

3.2 Conclusion . 38

4 Spatial Logics and Reasoning 39

4.1 Spatial Logic . 39

2

4.1.1 Models . 41

4.1.2 Mereotopologies . 42

4.1.3 First Order Spatial Logic 44

4.1.4 Contact Relations . 45

4.1.5 BCA Undecidability . 47

4.2 Conclusion . 52

5 Satisfiability 54

5.1 Modal Logic and Topology . 54

5.1.1 Simple Topological Constraints 55

5.1.2 Translating Topological Constraints 57

5.2 Topological Component Counting 61

5.3 Boolean Contact Algebras . 68

5.3.1 Region Connection Calculus 69

5.3.2 BRCC8 . 71

5.4 Conclusion . 76

6 Topological Constraint Languages 78

6.1 Relation Algebras . 78

6.2 Constraint Satisfaction Problems 80

6.2.1 Relation Algebras and CSPs 82

6.2.2 Algebraic Closure . 83

6.3 Topological Constraint Languages 84

6.3.1 Egenhofer’s Topological Relations 85

6.3.2 Region Connection Calculus 87

6.4 Complexity of RCC8 . 89

6.4.1 Explicit RCC8 . 89

6.4.2 AT-graph Realizability . 99

6.4.3 Adding Connectedness to E 103

6.5 Conclusion . 105

7 Conclusion 107

7.1 Further Work . 108

Bibliography 110

Word Count: 36,066

3

List of Tables

4.1 Definitions of simple constants and functions in a mereotopology,

M , over topological space X (x, y ∈M ⊆ P(X)) 45

5.1 Three relations definable in terms of contact. 70

5.2 The eight RCC8 relations. 71

6.1 Interval algebra relations. 82

6.2 Egenhofer topological relations. 85

4

List of Figures

3.1 Drawing a window around the intersections. 32

3.2 Performing circular inversion on sections of the curves. 32

3.3 Mirror along e, then shift e to minimise intersections. 33

3.4 Example of a triangulation numbering. 35

3.5 Triangle variables. 36

4.1 Layout of the tiles. 49

6.1 The triangle operation. 83

6.2 The K5 graph. 86

6.3 The eight mereotopological relations of RCC8. 86

6.4 Model of Formula 6.1. 87

6.5 Elements of RC(R2) that are not path consistent. 88

6.6 Sets produced by A1-A5, within each Aij region. 94

5

Abstract

Spatial logics are formal languages whose predicate and function symbols are in-

terpreted as geometric relations and properties. In order to use these logics to

perform automated reasoning on spatial data, we must have formal procedures

which can decide the satisfiability of the formulae of these logics. However, first

order spatial logics are typically undecidable and thus have no such formal proce-

dure. By restricting the syntax of a spatial logic in certain ways, we can achieve

languages which are decidable.

This thesis provides a new and consolidated survey of spatial logics and their

complexity, and examines the effect of syntactic restriction on a particular family

of spatial logics called topological constraint languages. The thesis also con-

tributes two complexity results. The first is a considerably simplified proof of

the NP membership of a spatial logic called RCC8. The second contribution is a

new complexity result for the RCC8 language with the addition of a topological

connectedness predicate.

6

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

7

Copyright

i. The author of this thesis (including any appendices and/or schedules to this

thesis) owns any copyright in it (the “Copyright”) and s/he has given The

University of Manchester the right to use such Copyright for any adminis-

trative, promotional, educational and/or teaching purposes.

ii. Copies of this thesis, either in full or in extracts, may be made only in

accordance with the regulations of the John Rylands University Library of

Manchester. Details of these regulations may be obtained from the Librar-

ian. This page must form part of any such copies made.

iii. The ownership of any patents, designs, trade marks and any and all other

intellectual property rights except for the Copyright (the “Intellectual Prop-

erty Rights”) and any reproductions of copyright works, for example graphs

and tables (“Reproductions”), which may be described in this thesis, may

not be owned by the author and may be owned by third parties. Such Intel-

lectual Property Rights and Reproductions cannot and must not be made

available for use without the prior written permission of the owner(s) of the

relevant Intellectual Property Rights and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication

and exploitation of this thesis, the Copyright and any Intellectual Property

Rights and/or Reproductions described in it may take place is available from

the Head of School of School of Computer Science (or the Vice-President).

8

Acknowledgements

Firstly, I would like to thank my supervisor, Dr. Ian Pratt-Hartmann. Without

his guidance and patience, this thesis would never have been completed.

For all their love and support, I must thank my parents. Without their en-

couragement, I would never have begun the PhD in the first place, and would

certainly never have finished it - it is to them that I dedicate this thesis.

Thanks to Allan for all the illuminating discussions in the first half of my

PhD, and thanks to Don for chess, chats, advice, and proofreading.

Finally, thanks to Manu, for everything, ti amo.

9

Chapter 1

Introduction

Space is a fundamental aspect of our perception of reality. For a human, it is

trivial to perform inference with the spatial information that we receive through

our senses. However, automating this process of inference, so that it may be

performed by a computer is far from trivial. In order that we may automate such

inferences, we must have formal languages with which we can describe spatial

structures. Furthermore, given information expressed in such a language, we

must have formal procedures which can tell us which conclusions can be inferred

from the information.

Traditionally, the mathematical view of space is of a collection of points. Spa-

tial relations and properties are said to hold between either the points themselves,

or sets of the points - subsets of the space. We may impose a metric on this set

of points, and refer to each point by a numerical coordinate. Traditional, or

quantitative spatial representation involves storing the coordinates of a set of ob-

jects, and performing inference then involves drawing inferences about the spatial

relationships from this raw numerical data.

However, there are problems associated with this quantitative approach to

space. Firstly, we have a difficult issue of whether points physically exist. We

cannot physically produce a point as evidence of their existence, and space is

certainly not perceived as a collection of points. We must at least concede that

the notion of space as points is mathematically convenient, but nevertheless an

abstraction from what is perceived. We also have more practical problems regard-

ing the quantitative approach. Performing inference on data consisting of lists of

numerical coordinates can be very difficult. Although numerical coordinates are

an ideal notation for determining things such as which of two object is closest to

10

CHAPTER 1. INTRODUCTION 11

a third object, or what the distance between two objects is, they are quite far

removed from the actual structure of a space, and are quite unsuitable for some

kinds of questions. Determining whether one object contains another, or whether

the surfaces of two objects intersect can require many numerical calculations,

and if this process of inference is automated, answering these questions could be

computationally expensive.

The alternative to quantitative spatial representation is qualitative spatial rep-

resentation. Instead of points we take subsets, or regions, of a space as the prim-

itive entities. Thus we represent spatial information by recording the qualitative

spatial relations which hold between these regions. We are concerned solely with

the qualitative relations and properties that belong to the field of mereotopology.

Mereotopology is the name given to the study of relations and structures from

two areas of mathematics, Mereology and Topology. Mereology is the study of

part-whole relationships. Topology is the study of geometric properties which are

preserved under continuous change.

A spatial logic is a formal language whose formulae are interpreted over a

class of geometric structure. We will use the term spatial logic to mean a quali-

tative spatial logic, that is, variables are interpreted over elements corresponding

to the regions of a space, and predicate and function symbols are interpreted

as mereotopological relations and properties. Because it is already used in the

literature of spatial logics, we use the term topological inference to describe the

process of logical inference when restricted to spatial logics.

One of the problems central to performing inference with formulae of a spatial

logic, is that of deciding the satisfiability of a formula. We say that a formula

is satisfiable, if in the class over which the language is interpreted, there exists

a structure in which the formula is true. For a given spatial logic, we call the

problem of deciding the satisfiability of a formula the satisfiability problem of that

spatial logic. If there is a formal procedure for deciding the satisfiability problem

of a spatial logic, then we say that the logic is decidable, otherwise we call the

logic undecidable.

In order to guarantee that we can perform topological inference with a spatial

logic, the language must be decidable. Furthermore, the formal procedures for

deciding the satisfiability of the formulae of these spatial logics must be of low

complexity that is, they must execute in a reasonable time. One way to achieve

spatial logics of lower complexity is to place limitations on the syntax of our

CHAPTER 1. INTRODUCTION 12

language which reduce the range of formulae we are able to express. The main

challenge in producing practical spatial logics is to strike a balance between having

a language which can express all the things we need, while still having a decision

procedure which is not too computationally complex. This thesis examines the

effect of certain restrictions and expansions to the syntax of spatial logics on the

complexity of those logics. We examine in detail a family of spatial logics called

topological constraint languages, and pay close attention to the methods by which

their satisfiability problems are solved.

If our aim is to be able to perform automated spatial reasoning which behaves

at all like human reasoning, then we may wish to have the ability restrict our

definition of regions to subsets of Euclidean spaces, as opposed to abstract many-

dimensional spaces, which may bear no relation to the physical world. For this

reason, this thesis looks at the general problem of topological inference, but with

a special emphasis on topological inference over the two dimensional Euclidean

plane.

This thesis aims to provide a new and consolidated survey of spatial logics

focusing on the class of logics called topological constraint languages. In partic-

ular, we examine the effect that syntactic restriction has on the complexity of

these logics. We also contribute new complexity results for two of these topo-

logical constraint languages. The first result is a simplified complexity proof of

the NP membership of the spatial logic RCC8. This proof is completely different

from the existing ones, and allows a considerably simpler proof to be made. The

RCC8 result is shown by proving that a restricted fragment of RCC8 is decidable

in NLOGSPACE. We can also give simpler proofs of a number of side results, in

particular involving the applicability of using methods from relation algebras to

solve the satisfiability problem of RCC8. The second contribution is a completely

new complexity result for the RCC8 language with the addition of a connected-

ness operator. By using results from a solution to the string graph problem (see

Chapter 3) we show that this language is in NP.

The structure of this thesis is as follows. Firstly, Chapter 2 contains basic

mathematical preliminaries, and also serves the purpose of fixing the mathemati-

cal notation used throughout the rest of the thesis. In Chapter 3 we introduce the

graph theoretic notion of the string graph problem, and we provide an outline of

the proof of its solution. We introduce the topic of spatial logic in Chapter 4, and

formally define the languages and models which we investigate over the following

CHAPTER 1. INTRODUCTION 13

chapters. Chapter 5 introduces a range of spatial logics, showing in detail how

they are related to one another in terms of syntactic restrictions, and examining

effect these restrictions have on the complexity of the logics. Finally, Chapter 6

investigates the effect of restricting the interpretation of a number of topological

constraint languages to regions of the Euclidean plane.

In terms of the contribution of this thesis, Chapters 2 and 3 simply provide

background material, while Chapters 4 and 5 provide the consolidated survey

of spatial logics, and Chapter 6 provides both the simplified RCC8 complexity

result, and the RCC8 with connectedness complexity result.

Chapter 2

Preliminaries

This chapter introduces some of the basic concepts that will be used throughout

the rest of the thesis. This will involve the topics of Modal Logic, Topology,

Boolean Algebra, and Computational Complexity. This chapter can be skipped

entirely, if the reader is already familiar with these topics. It also provides a

description of the notational conventions used throughout the thesis, and for this

purpose, the chapter may be useful as a reference.

2.1 Modal Logic

A very comprehensive exploration of modal logics can be found in [BdRV01].

Syntactically, we can view modal logics as a propositional logic with an additional

operator.

Modal logics were first proposed as a formal way of representing systems

involving ideas of necessity and possibility. However, depending on the interpre-

tation of the modal operator, the logics may be given other semantics. They can,

for example, represent relations of knowledge and belief.

There is a simple, yet powerful, semantics for modal logics, called relational

semantics. Kripke proved that a certain class of relational structures is complete

with respect to modal logic [Kri59], thus these semantics are often called Kripke

semantics.

In propositional logic, the value of a variable is either true or false. The value

depends on the definition of the valuation function of an interpretation. Modal

logic allows us to describe a structure where the value of a variable depends on the

circumstances in which the variable is encountered. We call this kind of structure

14

CHAPTER 2. PRELIMINARIES 15

a Kripke frame.

Definition 2.1.1. A Kripke frame is a pair 〈W,�〉 where W is a non-empty set,

and � is a binary relation, � ⊆ W ×W . Elements of W are known as worlds

or nodes. The relation � is known as the accessibility or reachability relation. If

w�w′ then we say that world w′ is accessible from w.

Definition 2.1.2. Given a Kripke frame 〈W,�〉 a valuation function is a map

η : P → P(W)

which assigns to each propositional variable p ∈ P those worlds in which p is

true. We say that a propositional variable p holds in a world w if w ∈ η(p).

Definition 2.1.3. A Kripke model is a triple 〈W,�, η〉 where 〈W,�〉 is a Kripke

frame and η is a valuation function on that frame.

The value of a variable depends, therefore, on both the valuation function of

the Kripke model, and on whichever world of that model we choose to interpret

the variable in.

As mentioned before, modal logic is syntactically very similar to propositional

logic, but with the addition of a unary operator. We call this operator the modal

operator and write it as 3. We will use the symbol 2 as shorthand for ¬3¬.

A modal formula is a finite sequence of symbols, built with the following rules:

any propositional variable pi is a formula, if ϕ and ψ are formulae, then so are

¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ), 2ϕ, and 3ϕ.

The symbols ∧, ∨, ¬, and → have the same meanings as they do in proposi-

tional logic. The symbols 2 and 3 traditionally stand for, respectively, “neces-

sity” and “possibility”. However, we will now formally define their interpretations

within a Kripke model.

Definition 2.1.4. Let M = 〈W,�, η〉 be a Kripke model. Given a world w ∈ W ,

we define the satisfaction relation, �, as follows:

M |=w p iff w ∈ η(p)

M |=w ¬ϕ iff M 6|=w ϕ

M |=w ϕ ∨ ψ iff M |=w ϕ or M |=w ψ

M |=w 3ϕ iff there exists w′ ∈ W such that w�w′ and M |=w′ ϕ

CHAPTER 2. PRELIMINARIES 16

We say that ϕ is satisfiable in M if and only if there exists a w ∈ W such that

M |=w ϕ. If no such world in the model exists, then ϕ is said to be unsatisfiable

in M. If every world satisfies ϕ, then ϕ is said to be valid in M.

Furthermore, given a modal formula, ϕ, we say that ϕ is satisfiable if there

exists a model M such that ϕ is satisfiable in M. If there is no such model, then

ϕ is unsatisfiable.

The standard modal logic is known as K, after Kripke, and is characterised by

the set of all Kripke frames. In these frames, the � relation obeys the following

axiom, where ϕ, ψ are modal formulae.

K: 2(ϕ→ ψ) → (2ϕ→ 2ψ)

We can restrict the class of Kripke frames which characterise a modal logic

with the following axioms.

T : 2ϕ→ ϕ

4: 2ϕ→ 22ϕ

5: 3ϕ→ 23ϕ

The T axiom ensures that the � relation is reflexive. The 4 axiom ensures

that the � relation is transitive. The 5 axiom ensures that the � relation is

Euclidean. There are of course many other axioms which can restrict the class of

Kripke frames, however these are the only ones we are interested in.

We refer to a modal logic by the axioms which characterise the logic, for

example KT4 is axiomatised by the axioms K, T & 4. We are only interested in

the logics KT4 and KT5, or as they are usually called, S4 and S5.

2.1.1 Universal S4

We can increase the expressiveness of S4 by adding two additional modal op-

erators, written ∃ and ∀. The interpretation of these operators is given below

(extending Definition 2.1.4).

M |=w ∀ϕ iff for every w′ ∈ W , M |=w′ ϕ,

M |=w ∃ϕ iff there exists a w′ ∈ W such that M |=w′ ϕ.

CHAPTER 2. PRELIMINARIES 17

We call this extension of S4, universal S4, or S4U . Strictly speaking, S4U is a

bimodal logic - a hybrid of S4 and S5. An S4U frame consists of two reachability

relations, one for the S4 model operator, and the other for the S5 modal operator.

The S5 modal operator normally splits the worlds of a frame into equivalence

classes, however we use a single class to encompass all the worlds of the frame.

Therefore we will simply view S4U as S4 with the addition of first-order -like

quantifiers.

2.2 Topology

The reader is assumed to have some familiarity with topology, as the follow-

ing definitions are mainly for the purpose of fixing notational standards. If a

slower introduction to topology is needed, both [New64] and [Kah75] provide a

good introduction, whereas a more advanced treatment can be found in [Kel60].

Topology is a branch of mathematics that involves the study of geometric rela-

tions that are preserved through continuous transformation, such as stretching or

warping.

Topological Space

Definition 2.2.1. Given a set X, we can define a topological space on this set as

a pair 〈X,U〉, where U ⊆ P(X) such that the following hold.

1. ∅ ∈ U and X ∈ U .

2. If u1, u2, . . . , un ∈ U then u1 ∩ u2 ∩ · · · ∩ un ∈ U .

3. If for any U ′ ⊆ U , then
⋃

u∈U ′

u ∈ U .

This set of open sets U is called the topology on X.

Let 〈X,U〉 be a topological space.

Definition 2.2.2. Let p ∈ X, v ⊆ X, and u ∈ U . A neighbourhood of p is a set

v which contains an open set u containing p.

Definition 2.2.3. A basis for X is a set B ⊆ U such that every open set in U is

a union of elements of B.

CHAPTER 2. PRELIMINARIES 18

Definition 2.2.4. We say that X is T1 if and only if, for all p, p′ ∈ X, there exist

u, u′ ∈ U such that p ∈ u, p′ ∈ u′, p 6∈ u′, and p′ 6∈ u.

Definition 2.2.5. We say that X is T2 or Hausdorff if and only if, for any

p, p′ ∈ X (where p 6= p′) there is a neighbourhood v of p and a neighbourhood v ′

of p′ such that v ∩ v′ = ∅.

Definition 2.2.6. We say that X is an Alexandroff space if and only if for any

U ′ ⊆ U , then
⋂

u∈U ′

u ∈ U .

Definition 2.2.7. A cover of a set v ⊆ X is a collection of subsets of X whose

union contains v. A cover is open if each of its elements is open.

Definition 2.2.8. We say that v ⊆ X is compact if for every open cover of v

there is a finite subcover of v.

Definition 2.2.9. Let v ⊆ X. We define the following set.

Uv = { v ∩ u | u ∈ U }

This set, Uv, fulfills all three conditions on a topological space. Therefore Uv is a

topology on v. We call 〈v,Uv〉 a relative or subspace topology for the subset v of

the space X.

Interior, Closure, Boundary and Complement

If 〈X,U〉 is a topological space and v ⊆ X, then:

Definition 2.2.10. The complement of v is X \ v which we write as −v.

Definition 2.2.11. The interior of v is the largest open set contained in v, which

we write as v◦.

Definition 2.2.12. The closure of v is the smallest closed subset ofX, or member

of the set of complements of U , containing v, which we write as v−. From this

definition, we can see that v− is expressible in terms of the interior of v.

v− = −((−v)◦)

CHAPTER 2. PRELIMINARIES 19

Definition 2.2.13. The boundary of v, written v∂, is defined as follows.

v∂ = v− ∩ −(v◦)

Definition 2.2.14. The set v is regular open if and only if v = ((v)−)◦ and

is regular closed if and only if v = ((v)◦)−. We denote the set of regular open

subsets of X by RO(X), and the set of regular closed subsets of X by RC(X).

Definition 2.2.15. We say that X is semi-regular if it has a basis of regular open

sets. We say that X is weakly regular if it is semi-regular and, for any non-empty

open set u ∈ U there exists a non-empty open set u′ such that (u′)− ⊆ v.

Definition 2.2.16. We call the largest open subset of X which is disjoint from

v the pseudocomplement of v, which we write as v∗.

It is clear that v∗ = X \ v− and v∗∗ = (v−)◦. Hence, v is regular if and only

if v = v∗∗.

Observation 2.2.17. Let 〈X,U〉 be a topological space. Note that the following

properties hold, for every v, v′ ⊆ X.

(i) X◦ = X

(ii) v◦ ⊆ v

(iii) (v◦)◦ = v◦

(iv) v◦ ∩ v′◦ = (v ∩ v′)◦

Note the similarity between (i), (ii), (iii), (iv) and the modal logic axioms K, T ,

and 4.

Definition 2.2.18. We define an interior operator, i : P(X) → P(X), as a

function which maps a subset of X to its interior. If the conditions in Observation

2.2.17 are satisfied by the mapping i, then we say that i defines a topology on

X. Therefore a topological space can also be defined by a pair (X, i) where i is

an interior operator.

Connectedness

Definition 2.2.19. Given a topological space 〈X,U〉, we say that the space is

disconnected, if there exist u, u′ ∈ U such that:

CHAPTER 2. PRELIMINARIES 20

1. u 6= ∅ and u′ 6= ∅

2. u ∪ u′ = X

3. u ∩ u′ = ∅

If a space is not disconnected, then it is connected. A subset v ⊆ X is said to be

connected if it is connected under the subspace topology (of v in X).

Components

Definition 2.2.20. Given a topological space 〈X,U〉 and a subset v ⊆ X, a

component of v is a maximal connected subset of v. Every set has at least one

component; the empty set is the only component of itself; all components of a

nonempty set are nonempty. A set is connected if and only if it has exactly one

component.

2.2.1 Geometric Topology

Let 〈X,U〉 be a topological space.

Definition 2.2.21. We say that X is locally Euclidean if there is a n ∈ N

such that every point in X has a neighbourhood which is homeomorphic to the

Euclidean space R
n.

Definition 2.2.22. We say that X is a manifold if X is a locally Euclidean

Hausdorff space.

Definition 2.2.23. We say that X is a surface if it is a two-dimensional manifold.

Definition 2.2.24. A surface S is orientable if and only if there is no continuous

function f : D× [0, 1] → S from the product of a disc and the unit interval [0, 1]

to the surface such that f(j, i) = f(k, i) only if j = k for all i ∈ [0, 1], and there

is a reflection function r such that f(d, 0) = f(r(d), 1) for all d ∈ D.

Definition 2.2.25. A triangulation of a surface is the partitioning of the surface

into a set of triangles such that each triangle side is entirely shared by two adjacent

triangles.

Definition 2.2.26. A curve is a continuous function f : [0, 1] → X.

CHAPTER 2. PRELIMINARIES 21

A plane curve is a curve whose codomain is the Euclidean plane. We say that

a curve is simple if f(i) = f(j) ⇒ i = j. We call a curve a loop if f(0) = f(1).

A simple loop is called a Jordan curve.

Definition 2.2.27. The interior of a curve f is the set {f(i) | 0 < i < 1}.

Now, we state two well known results.

Theorem 2.2.28 (Jordan curve theorem). Let f be a Jordan curve in the Eu-

clidean plane. Then R
2 \ f has two components, an inside, and an outside, both

of which have f as their boundary.

Theorem 2.2.29 (Jordan-Schönflies theorem). Let f be a Jordan curve in the

Euclidean plane. The closure of one of the components of R
2 \f is homeomorphic

to the open unit disc.

2.3 Graph Theory

Definition 2.3.1. A graph is a pair G = (V,E) of sets such that E ⊆ V 2.

We call the elements of V vertices, and the elements of E edges. For any edge

e ∈ E where e = (v, v′), we call the vertices v and v′ the endpoints of e, and say

that e is incident on both v and v′.

Definition 2.3.2. An embedding of a graph is a pair of functions (f, g) with

f : V → R
2 and g : E → C, where C is the set of simple plane curves, such that

the following hold. For each e ∈ E where e = (v, v′), g(e) is a simple curve with

endpoints f(v) and f(v′), and for all v′′ ∈ V the interior of the curve g(e) does

not contain the point f(v′′).

Definition 2.3.3. We say that a graph (V,E) is planar if it has an embedding

(f, g) such that for each e, e′ ∈ E, the interiors of the curves g(e) and g(e′) do

not intersect.

2.4 Boolean Algebras

This subsection presents basic definitions of Boolean algebra concepts, mainly

for the purpose of fixing notational standards. Koppelberg [Kop89] provides a

comprehensive reference for Boolean algebras.

CHAPTER 2. PRELIMINARIES 22

Definition 2.4.1. A Boolean algebra is a structure 〈A,+, ·,−, 0, 1〉, consisting of

a set of elements, A, two binary operations, + and ·, a unary operation, −, and

two constants, 0 and 1, such that the following holds (where a, b, c ∈ A):

a + −a = 1 a · −a = 0

a + (b+ c) = (a + b) + c a · (b · c) = (a · b) · c

a + b = b + a a · b = b · a

a + (a · b) = a a · (a+ b) = a

a · (b+ c) = (a · b) + (a · c) a+ (b · c) = (a+ b) · (a + c)

These axioms define a natural partial order ≤ over the set A, where we say that

a ≤ b if and only if a+ b = b.

Definition 2.4.2. An atom in a Boolean algebra is a nonzero element a such

that there is no element b such that 0 < b < a. A Boolean algebra is atomic if

every nonzero element of the algebra is above an atom.

Let A be a Boolean algebra.

Definition 2.4.3. For B ⊆ A and b ∈ B, we say that b is a lower bound of B

if b ≤ b′ for every b′ ∈ B. We say that b is a greatest lower bound of B if b is a

lower bound of B and b′ ≤ b holds for each lower bound b′ of B. Likewise, we

say that b is an upper bound of B if b′ ≤ b for every b′ ∈ B. And we say that b

is a least upper bound of B if b is an upper bound of B and b ≤ b′ holds for each

upper bound b′ of B.

Definition 2.4.4. We say that A is complete if, for each B ⊆ A, B has both a

least upper bound and a greatest lower bound.

Definition 2.4.5. We call B ⊆ A a sub-algebra of A, if the restriction of ≤A to

B satisfies the axioms of 2.4.1. We say that B is a dense sub-algebra of A if, for

every a ∈ A with 0 < a, there exists b ∈ B with 0 < b ≤ a.

The following is a well known theorem, a proof of which can be found in

[Joh82].

Theorem 2.4.6. Let X be a topological space. The set of regular open sets in X,

written RO(X), forms a Boolean algebra with top and bottom defined by 1 = X

CHAPTER 2. PRELIMINARIES 23

and 0 = ∅, and Boolean operations defined by u+u′ = ((u∪u′)−)◦, u ·u′ = u∩u′

and −u = (X − u)◦, where u, u′ ∈ RO(X).

Similarly, the set of regular closed sets in X, written RC(X), also forms a

Boolean algebra, the difference being that the Boolean operations are defined by

u+ u′ = u ∪ u′, u.u′ = ((u ∩ u′)◦)− and −u = (X − u)−.

2.5 Computational Complexity

Computers are particularly suited for solving complicated problems which can be

broken down into simple, repetitive actions. An algorithm is simply a description

of how to break down a complicated problem into many smaller ones. If an

algorithm always produces a correct result for a given problem, then the algorithm

is said to solve the problem. Complexity theory studies the factors affecting the

performance of computers executing algorithms which solve problems. In order to

investigate this further, we will introduce a formal model of computation known

as a Turing machine.

2.5.1 Turing Machines

Informally, a Turing machine is a tape beginning with a leftmost ‘start’ cell

which infinitely extends to the right, with a read/write head that has a state and

which can move left and right along the tape, and a program in the form of a

table which, given the current state of the head and the current symbol under

the head, directs the head to write a symbol to the tape, move one step left

or right, then sets the head to a new state. The following definitions are taken

from Papadimitriou [Pap94], which should be consulted for more information on

computational complexity.

Definition 2.5.1. A deterministic Turing machine is a quadruple M = (K,Σ, δ, k),

where K is a finite set of states, Σ is a finite alphabet, δ is a transition function

mapping the set K × Σ to (K ∪ {halt, yes, no}) × Σ × {left, right, wait}, and

k ∈ K is the initial state. We always assume that K∩Σ = ∅, and that Σ contains

symbols representing blank and first.

An input to a Turing machine is a finite string of symbols from Σ not contain-

ing the blank symbol, with the start symbol as the leftmost of the string. The

input represents the contents of the tape before the execution begins. Initially,

CHAPTER 2. PRELIMINARIES 24

the head of the machine is positioned on the leftmost symbol of the string (the

start symbol).

A configuration of a Turing machine is a quadruple (l, S, T, n) consisting of

the current state of the machine l ∈ K, a string of symbols representing the

contents of the tape to the left of (and including) the head, S, a string of symbols

representing the contents of the tape to the right of the head, T , and a step

count n ∈ N. If a string T ′ is the input to a Turing machine, then the initial

configuration of that machine is (k, start, T ′, 0).

Let (l, Ss, tT, n) be a configuration of a Turing machine where s, t ∈ Σ and

S and T are strings over Σ, and δ(l, s) = (l′, s′, D). If D is left, let S ′ = S and

let T ′ = s′tT . If D is right, let S ′ = Ss′t and let T ′ = T . If D is wait, let

S ′ = Ss′ and let T ′ = tT . Then we say that a Turing machine with configuration

(l, Ss, tT, n) yields the configuration (l′, S ′, T ′, n+1) in one step. This is extended

to “yields in n steps” in the obvious way.

We interpret this “yields” relation as the execution of the program δ on a

given input. The machine starts in configuration (k, start, S, 0) for some string

over Σ, S, and each successive configuration is yielded according to δ, until the

Turing machine enters one of the states halt, yes, or no, when we say that the

machine has halted, and execution terminates. If the Turing machine enters the

state yes, then we say that the machine has accepted its input, and if the machine

enters the state no, then we say it has rejected its input. If a Turing machine

finishes in either yes or no, then we say that the output of the machine is yes or

no respectively, if the machine finishes in the state halt, then the output of the

machine is the the machine’s string at the time of termination.

We take a problem Π to be a class of questions, and refer to specific questions

of Π as instances of the problem Π. If the instances of Π are problems which are

answered with a yes or no, then we say that Π is a decision problem.

We can encode instances of a problem Π as strings. If Π is a decision problem,

then we say that a Turing machine solves these Π if it accepts the encoded

yes instances, and rejects the encoded no instances. Otherwise, we say that a

Turing machine solves Π if its output is always a suitably encoded string of the

correct answer to the instance of Π in question. Given a problem Π, if there is a

Turing machine which solves Π, then we say that Π is decidable, otherwise it is

undecidable.

If M is a quadruple satisfying Definition 2.5.1 in every way except that δ

CHAPTER 2. PRELIMINARIES 25

is a relation, δ ⊆ (K × Σ) × ((K ∪ {halt, yes, no}) × Σ × {left, right, wait}), in-

stead of being a function fromK×Σ to (K∪{halt, yes, no})×Σ×{left, right, wait},

then we say that M is a non-deterministic Turing machine. Since δ in a non-

deterministic Turing machine is a relation, each configuration of a non-deterministic

Turing machine could yield multiple configurations. Based on the particular

choice of configuration at each execution step, a Turing machine could pro-

duce different answers to the same instance of a problem. We say that a non-

deterministic Turing machine solves an instance of a problem if there is at least

one run of execution which terminates successfully (it does not matter if other

runs terminate unsuccessfully). The machine fails to solve an instance only when

every run of execution terminates unsuccessfully.

2.5.2 Complexity

We can see that intuitively some problems are ‘harder’ than others. But, we must

have a formal way of showing this, and we must specify formally what ‘harder’

means. By formalising the model of computation in the form of a Turing machine,

we are able to clearly see that some problems are more expensive, in terms of

time, and space, to solve. We measure time as the number of steps a Turing

machine requires to arrive at a correct solution, and we measure space in terms

of the number of symbols on a tape needed to arrive at a correct solution. We

express the time or space required by a Turing machine M to solve a problem

as a function of the size of the input to M , and in complexity theory, we are

interested in which general class of functions this function belongs, for example,

logarithmic, polynomial, and so on. We use the so called ‘Big O’ notation to

denote which class these input functions belong to.

Definition 2.5.2. Let f : N → N and g : N → N be functions. We say that

f(n) = O(g(n)) if there are positive integers c and n0 such that for all n > n0,

f(n) ≤ c.g(n).

Let f : N → N be a function, then given any instance of a problem Π which

is encoded as input of size n to a Turing machine M , if M terminates in O(f(n))

steps, then we say that M implements an algorithm of time complexity O(f(n))

which solves Π. Likewise, let g : N → N be a function, then given any instance

of a problem Π which is encoded as input of size n to a Turing machine M , if M

terminates having used O(g(n)) cells of the tape, then we say that M implements

CHAPTER 2. PRELIMINARIES 26

an algorithm of space complexity O(g(n)) which solves Π. Note that the input

and output strings are not counted when considering the space complexity, we

only consider the space used during the algorithm.

In order to study the difficulty of a problem Π, we must consider only the

instance of Π which is the worst case in terms of difficulty. By examining the

time and space taken for M to reach a solution, as functions of the size of the

input to M , we achieve an upper bound on the computational complexity of Π.

We can split complexity classes into two kinds, those of time complexity, and

those of space complexity. Time complexity classes are those classes whose prob-

lems have a known upper bound in terms of time complexity, with no restriction

on space complexity. Likewise, space complexity classes are those classes whose

problems have a known upper bound on their space complexity, with no restric-

tion on time complexity.

The time complexity classes that we encounter during this thesis are as follows.

PTIME is the set of problems which are solvable by a deterministic Turing

machine in time which is bounded by a polynomial function of the size of

the input. The class PTIME is normally abbreviated to P.

NPTIME is the set of problems which are solvable by a nondeterministic

Turing machine in time which is bounded by a polynomial function of the

size of the input. The class NPTIME is normally abbreviated to NP.

EXPTIME is the set of problems which are solvable by a deterministic

Turing machine in time which is bounded by a exponential function of the

size of the input. The class EXPTIME is normally abbreviated to EXP.

NEXPTIME is the set of problems which are solvable by a nondetermin-

istic Turing machine in time which is bounded by a exponential function of

the size of the input. The class NEXPTIME is normally abbreviated to

NEXP.

As these classes represent upper bounds on complexity, they form the following

hierarchy.

P ⊆ NP ⊆ EXP ⊆ NEXP

It is not known whether any of these individual relations are strict subset or

equality, although it is known that P 6= EXP . We are also interested in the

following space complexity classes.

CHAPTER 2. PRELIMINARIES 27

LOGSPACE is the set of problems which are solvable by a deterministic

Turing machine in space which is bounded by a logarithmic function of the

size of the input. The class LOGSPACE is normally abbreviated to L.

NLOGSPACE is the set of problems which are solvable by a nondetermin-

istic Turing machine in space which is bounded by a logarithmic function

of the size of the input. The class NLOGSPACE is normally abbreviated

to NL.

PSPACE is the set of problems which are solvable by a deterministic Tur-

ing machine in space which is bounded by a polynomial function of the size

of the input.

These space classes fit into the hierarchy of time classes in the following way.

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ NEXP

Now we define the concept of a reduction from one decision problem to an-

other. Roughly speaking, a reduction is the transformation of one problem into

another problem.

Definition 2.5.3. We say that a decision problem Π is reducible to the problem

Π′ if for every instance π of Π, there is an efficient algorithm which encodes π as

π′ ∈ Π′ such that π and π′ have the same answer.

What we mean by efficient varies slightly depending on the complexity class

that Π belongs to. If Π is an NL or P problem, the reduction must be in L. For

all other complexity classes we consider, the reduction must in P .

Given a complexity class C, we say that a problem Π is C-hard if every

problem in C is reducible to Π. A problem Π is C-complete if Π ∈ C and Π is

C-hard. For every class C, the C-complete problems are the hardest group of

problems for that class. Many problems in C ′ may also have algorithms in C,

however all of the problems which are C-complete do not have algorithms in C,

unless C = C ′.

The satisfiability problem for first order logic is undecidable, however the

satisfiability problem for the modal logic S4 is in PSPACE, and the satisfiability

problem for propositional logic is in NP . Both of these satisfiability problems

are complete for their respective complexity classes, and in fact, propositional

logic satisfiability is one of the most famous examples of NP -completeness, see

[Coo71].

CHAPTER 2. PRELIMINARIES 28

For the remainder of this thesis, we investigate the topological inference prob-

lem. That is, the problem of determining the satisfiability of logics which are

interpreted over topological structures.

Chapter 3

String Graphs

This chapter introduces background information regarding a graph theoretic

problem called the string graph problem. The string graph problem was re-

cently solved independently by Schaefer & Štefankovič [SŠ04] and by Pach &

Tóth [PT02]. In this chapter we give an outline of the proof of the decidability

of string graphs given by Schaefer & Štefankovič.

3.1 String Graph Problem

First we define some concepts needed in order to introduce the string graph

problem. The following definitions, theorems and corresponding proofs are all

taken from [SŠ04], except where otherwise stated.

Definition 3.1.1. Given a collection of curves C1, . . . , Cn in the plane, the cor-

responding intersection graph is as follows.

({v1, . . . , vn}, {(vi, vj) | Ci and Cj intersect, for all i < j ≤ n})

The size of a collection of curves is the number of intersection points. A graph

isomorphic to the intersection graph of a collection of curves in the plane is called

a string graph. Note that Ci and Cj may intersect more than once, though this

does not affect the intersection graph.

The string graph problem is as follows: given a graph G, is G a string graph?

Alternatively, we can rephrase the problem. Can we draw a set of curves in the

plane, such that only the curves we specify intersect?

Before we investigate this further, we need to define some more concepts.

29

CHAPTER 3. STRING GRAPHS 30

Definition 3.1.2. Let G = (V,E) be a graph, and let H ⊆
(

E
2

)

(where
(

E
2

)

is

the set of unordered pairs of E), we call this pair (G,H) an abstract topological

graph, or AT-graph.

Definition 3.1.3. We call a drawing D in the plane of G a weak realization of

(G,H) if only pairs of edges which are in H intersect in D. We call (G,H) weakly

realizable if it has a weak realization. Note that in a weak realization the pairs

of edges in H do not have to intersect.

Definition 3.1.4. We say that a drawing D of G is a realization of (G,H), and

say that (G,H) is realizable if exactly the edges in H intersect in D.

Let cs(G) be the size of a smallest (i.e. smallest number of intersections) set

of curves whose intersection graph is isomorphic to G, then we define cs(m) =

max{cs(G) | G has m edges }. Let cw(G,H) be the smallest number of intersec-

tions in a weak realization of (G,H), let cw(G) = max{cw(G,H) | (G,H) has a

weak realization }, and let cw(m) = max{cw(G) | G has m edges }. Similarly,

we can define cr(G,H), cr(G) and cr(m) for realizations. It is simple to see that

cw(m) ≤ cr(m).

We will now examine an overview of a proof that a solution to the string graph

problem belongs to the NEXP time complexity class. The method we will follow

is the one given in Schaefer & Štefankovič [SŠ04].

As shown in [Kra91], the string graph problem can be reduced to AT-graph

weak realizability, as follows.

Theorem 3.1.5. Given a graph G = (V,E), let G′ = (V ∪E, {(u, e) | u ∈ e ∈ E})

and let H = {((u, e), (v, f)) | {u, v} ∈ E}. Then G is a string graph if and only

if (G′, H) is weakly realizable.

As a result, we have the following bound cs(m) ≤ 4cw(2m) + 2m, see [Kra91]

for more details.

Our overall aim here is to prove that if an AT-graph has a weak realization,

then it has a weak realization of a certain (maximum) size. It will follow, there-

fore, that if a graph G is weakly realizable as its AT-graph (Theorem 3.1.5)

within the maximum bound, then G is a string graph.

First we need to prove the finiteness of string graphs; we can take the following

result from [KGK86].

CHAPTER 3. STRING GRAPHS 31

Lemma 3.1.6. A string graph can be realized by a family of polygonal arcs with

a finite number of intersections.

As a result cs(G) is a finite number, if G is a string graph. Given a system

of curves, (Ci)i∈I , and an alphabet of size |I|, we can assign each curve in the

system a letter from the alphabet, and we can, therefore, encode the intersections

of each curve as a word of this alphabet. If we encode each curve as a word of

an alphabet, the following lemma shows that each of these words has a property

which we can use to determine a bound on the size of the words.

Lemma 3.1.7 ([SŠ04]). Every word of length at least 2n over an alphabet of size

n contains a non-trivial subword in which every character occurs an even number

of times.

Proof. Let Σ = {1, . . . , n} be an alphabet of length n, and let w ∈ Σ∗ be a word

of that alphabet, |w| ≥ 2n. To every i ∈ {0, . . . , 2n} assign a vector vi in Z
n
2

whose jth coordinate is the parity of the number of occurrences of the symbol j

in the prefix of w of length i (v0 is the all-zero vector). Since there are 2n + 1

indices, but only 2n vectors in Z
n
2 , there are 0 ≤ i < j ≤ 2n such that vi = vj.

Since each successive vi will have one digit different to vi−1, j > i+ 1 and so, the

non-trivial subword of w starting in position i+ 1 and ending in position j fulfils

the conditions of the lemma.

The following theorem states that the number of intersections along a curve of

a weak realization of a graph is bounded by an exponential value of the number

of edges of the graph.

Theorem 3.1.8 ([SŠ04]). Let G be a graph with m edges, H ⊆
(

E
2

)

such that

(G,H) is weakly realizable, and let D be a weak realization of (G,H) with the

minimal number of intersections. Then for any edge e ∈ G there are fewer than

2m intersections on the curve realizing e in D.

Proof. We will prove this by contradiction by assuming that we have a minimal

(in terms of the number of intersections) weak realization of (G,R) with an edge

e that has more than 2m − 1 intersections.

Lemma 3.1.7 shows us that we can choose a segment of e, in which e is inter-

sected only an even number of times by other curves in the system. We then draw

a ‘window’ around this segment of the curve, containing no other intersections of

CHAPTER 3. STRING GRAPHS 32

e

a

b

e

a

b

1

2 3

4

5

67

81

2 3

4

Figure 3.1: Drawing a window around the intersections.

D (see Figure 3.1). This is possible because D is finite by Lemma 3.1.6. Let 2nf

(nf ∈ N) be the number of intersections of any curve f with the curve e inside

the window. For each edge f assign numbers 1, 2, . . . , 4nf to the intersection with

the window, in the order they appear along f (choose an arbitrary orientation of

f), again see Figure 3.1.

e

1

2 3

4

5

67

81

2 3

4

e

1

2 3

4

5

67

81

2 3

4

Figure 3.2: Performing circular inversion on sections of the curves.

We can assume that the window is a circle (by application of the Jordan-

Schoenflies theorem, [MT01]), and that e is a straight line passing through the

centre, and for each curve f , the window intersection points 2i−1 and 2i (along f)

are mirror images of each other (with e as the mirror), for i ∈ {1, . . . , 2nf}. Now,

we remove everything inside the window, except the line e, see first diagram of

Figure 3.2. For each edge f , there is a curve (segment of f) between intersections

4i−2 and 4i−1 lying outside the window (i ∈ {1, . . . , nf}). Use circular inversion

along the window to bring all of these segments inside the window, see second

diagram of Figure 3.2. Now mirror the curves inside the window along e, see first

diagram of Figure 3.3.

There will now be connections, for every edge f , between intersections 4i− 3

and 4i, i ∈ {1, . . . , nf}, inside the window. Now with reference to the first diagram

of Figure 3.3, we demonstrate how to construct a new version of the curve f . Take,

CHAPTER 3. STRING GRAPHS 33

ee

a

b

1 4

581 4

ee

a

b

Figure 3.3: Mirror along e, then shift e to minimise intersections.

for example, curve a: we start at intersection 1 (which is connected to the start

point of the curve), continue inside the window to intersection 4, move outside

the window from intersection 4 to intersection 5, back inside the window through

to intersection 8, and outside the window along to the endpoint of the curve.

This new version of f still connects its two endpoints, hence the need for f to

intersect e an even number of times.

Every intersection between curves which happens inside the window corre-

sponds to an intersection outside the window, hence this drawing is still a weak

realization of G with respect to R. As we only require a weak realization, it does

not matter if some intersections between curves have been lost.

It is possible that a curve brought inside the window by circular mirroring may

intersect e, thus increasing the intersections along e. We have certainly decreased

the number of intersections with the boundary of the window by half; we can

split the boundary of the window into two arcs, according to where e intersects

the boundary, and one of these arcs has half (or less) of the intersections that e

did originally. We can, therefore, re-route e through the path of the arc with the

least intersections, see second diagram of Figure 3.3.

We have reduced the number of intersections of any curve f along a segment

of e from 2nf to less than or equal to nf , thus contradicting the assumption that

D was of minimal size.

We now have the following corollary:

Corollary 3.1.9 ([SŠ04]). String graph recognition is in NEXP.

Proof. Theorem 3.1.8 shows that cw(m) ≤ m2m, and since cs(m) ≤ 4cw(2m)+2m,

then we can state that cs(m) ≤ 8m.22m+2m. Therefore given a graph G = (V,E),

if G is a string graph then there is a collection of curves of size N = O(2m) whose

CHAPTER 3. STRING GRAPHS 34

intersection graph is isomorphic to G. The drawing of this collection of curves

can be considered as a planar graph with at most N vertices.

By a result of Schnyder [Sch90], there is a drawing of this graph on an N ×N

grid. We can construct all possible planar graphs of up to N vertices, with the

curves of the collection being represented by disjoint sets of edges, and intersec-

tions between curves being represented by the vertices of the graph. Each curve

is represented by a set of edges which form a continuous non-intersecting path

in these graphs. Two curves intersect if their edge sets have elements which are

adjacent to a common vertex. By this definition of curve intersection, given a

planar graph G′ of up to N vertices, we can partition the edges of this graph

into |V | disjoint edge sets and compute an intersection graph for each of these

partitionings. If any of these intersection graphs are isomorphic to G, then G is

a string graph.

However, Corollary 3.1.9 is not the result we are aiming for. We can reduce

the complexity bound to NP, as we shall see. First, we must introduce some

results about word equations.

3.1.1 Word Equations

Let Σ be an alphabet of symbols, and Θ a disjoint alphabet of variables.

Definition 3.1.10. A word equation u = v is a pair of words such that (u, v) ∈

(Σ ∪ Θ)∗ × (Σ ∪ Θ)∗.

Definition 3.1.11. Let u = v be a word equation. A solution to u = v is a

morphism h : (Σ ∪ Θ)∗ → Σ∗, such that h(a) = a for all a ∈ Σ and h(u) = h(v).

Definition 3.1.12. An LZ-encoding of a solution h to a word equation is the

sequence of LZ-encodings of h(x) for all x ∈ Θ.

Theorem 3.1.13. ([GKPR96]) Let u = v be a word equation. Given an LZ-

encoding of a morphism h, we can check whether h is a solution of the equation

in time polynomial in |LZ(h)|.

Theorem 3.1.14. ([PR98]) Let u = v be a word equation with lengths specified

by function f . Assume u = v has a solution respecting f . Then, there is a

solution h respecting the lengths such that |LZ(h)| is polynomial in the size of a

binary encoding of f and the size of the equation. Moreover, the lexicographically

least solution can be found in P time.

CHAPTER 3. STRING GRAPHS 35

00

0
0

1

1

0
1

1

0

0

2

1

1

1

1

2

1

1

1
0

Figure 3.4: Example of a triangulation numbering.

Finally, we take the following result which follows from Gasieniec et al. [GKPR96].

Lemma 3.1.15. Given an LZ-encoding LZ(w) of a word w and a letter a ∈ Σ, we

can compute the number of occurrences of a in w in time polynomial in |LZ(w)|.

3.1.2 Main String Graph Result

Let M be a compact orientable (see Definition 2.2.24) surface with a boundary.

Definition 3.1.16. A properly embedded arc (in M) is an arc whose endpoints

are on the boundary of M , and whose internal points are in the interior of M .

Let T be a planar graph which forms a triangulation (see Definition 2.2.25)of

M , with ET being the edge set of T .

Definition 3.1.17. We say that an arc is normal with respect to T if all inter-

sections with T are transversal, and if the arc enters a triangle via one edge, and

leaves the triangle via a different edge.

We make the following claim.

Lemma 3.1.18. Let γ be a properly embedded arc in M . There is always an

isotopically equivalent arc which is normal with respect to T .

CHAPTER 3. STRING GRAPHS 36

u

v w

xu,v

xv,w

yt,v

yu,t

yv,t

Figure 3.5: Triangle variables.

Given a properly embedded arc γ which is normal with respect to T , we can

label each edge of the triangulation with the number of intersections of gamma

with that edge, see Figure 3.4. We say that a numbering ` : ET → N is valid

if there is a properly embedded arc, which is normal with respect to T , which

intersects each edge e ∈ T , `(e) times. And we say that γ realizes `. Note that

all arcs which realize a given numbering are isotopically equivalent.

Let ` be a valid numbering. The sum of the labels of edges from ET ∩M
∂ is 2.

For each triangle t ∈ T the labels a, b, c of edges of t satisfy a + b ≥ c, a+ c ≥ b,

b + c ≥ a and a + b + c is even. These conditions are necessary for validity,

but not sufficient. We call a labeling satisfying these conditions semi-valid. Any

semi-valid labeling defines a properly-embedded arc and a (possibly empty) set

of closed curves.

For each oriented edge (u, v) ∈ T there is a variable xu,v encoding the order

in which the curves intersect on (u, v). Let t ∈ T be a triangle with vertices

u, v, w. We add six variables yt,u, yt,v, yt,w, yu,t, yv,t, yw,t as shown in Figure 3.5.

We associate the following set of equations with the triangulation T .

xu,v = yu,tyt,v xv,u = yv,tyt,u

xv,w = yv,tyt,w xw,v = yw,tyt,v

xu,w = yu,tyt,w xw,u = yw,tyt,u

CHAPTER 3. STRING GRAPHS 37

Lemma 3.1.19 ([SSŠ03]). Given a numbering `, we can test whether ` is valid

in polynomial time.

Proof. First we verify if ` is semi-valid, and reject ` if it is not. Let σ = {a, b}, we

take the set of equations associated with T over σ, and for each edge e = (u, v) ∈

ET we specify that |xu,v| = `(e). For each edge e = (u, v) ∈ ET ∩M∂ we specify

xu,v = b`(e).

We claim that if ` is valid, then the set of equations associated with T has a

unique solution. Take the properly embedded arc γ which realizes `, number the

intersections of γ with T in the order in which they occur on γ. Each intersec-

tion corresponds to a position in some variable. By induction on the number of

intersections it follows that each position in every variable is forced to be b.

On the other hand, let us assume that ` is not valid. Because it is semi-valid,

there is a solution to the set of word equations. However, a lexicographically

smallest solution will now contain the letter a, which corresponds to one of the

members of the set of closed curves defined by a semi-valid labeling.

Because of Theorem 3.1.14 we can compute the lexicographically least solution

in polynomial time, and we can check by Lemma 3.1.15 that it does not contain

any occurrences of a. So, by solving the set of equations associated with T , we

can check if ` is valid.

Lemma 3.1.20 ([SSŠ03]). Let γ1, γ2 be properly embedded arcs which realize

the numberings `1, `2. If γ1 and γ2 do not intersect, then we can verify that

i(γ1, γ2) = 0 in polynomial time. Moreover, if the verification concludes that

i(γ1, γ2) = 0 then γ1 and γ2 are isotopically disjoint.

We now introduce a topological variant of the graph weak realizability prob-

lem. Say we have a weakly realizable graph (G,H). Then, let M be the surface

obtained by drilling a hole, for each vertex of the graph G, in the Euclidean plane.

Now, a set S of properly embedded arcs on M is called a weak realization with

holes, if, for each edge between a pair of vertices in the graph, we have a properly

embedded arc connecting the two holes representing those vertices, and, for each

pair of edges not in H, the arcs representing those edges are isotopically disjoint.

Lemma 3.1.21 ([SSŠ03]). Let (G,R) be an AT-graph. The graph (G,R) is weakly

realizable if and only if it has a weak realization with holes.

CHAPTER 3. STRING GRAPHS 38

Lemma 3.1.22 ([SSŠ03]). Let G be a graph with m edges and n vertices. Assume

that (G,H) has a weak realization with holes. Let M be the surface obtained from

the plane by drilling |V | holes. Let T be a minimal triangulation of M . Then,

there is a weak realization with holes of (G,H) in M such that there are at most

212n+m intersections on each edge of T .

Theorem 3.1.23 ([SSŠ03]). The weak realizability problem is in NP.

Proof. Let (G,R) be an AT-graph with n = |VG| and m = |EG|. We show

that deciding whether (G,R) has a weak realization with holes lies in NP. Since

Lemma 3.1.21 shows the equivalence of weak realizability and weak realizability

with holes, this proves the result.

Suppose (G,R) has a weak realization with holes. Let T be a minimal trian-

gulation of M , Lemma 3.1.22 implies that there is a weak realization with holes

in which every edge of T is intersected at most 212n+m times. So every edge e of

G can be represented by an arc γ with a numbering `γ : ET → {0, . . . , 212n+m}.

By Lemma , we can assume that two arcs γ1, γ2 representing two edges (e, f) 6∈ R

are disjoint. To verify weak realizability with holes of (G,R), it is sufficient to

guess for each edge e of G a numbering `e : ET → {0, . . . , 212n+m} of T (note

that the numbering has size polynomial in G). Then we check that all guessed

numberings are valid and verify that for every (e, f) 6∈ R the curves representing

e and f are isotopically disjoint. Both of these tasks can be performed in poly-

nomial time, by Lemma 3.1.19 and Lemma 3.1.20. The verification succeeds if

and only if (G,R) has a weak realization with holes, so this implies that weak

realizability with holes can be verified in NP.

3.2 Conclusion

This chapter has given an outline of the solution for the string graph problem,

and for the AT-graph weak realizability problem. All of the results in this chap-

ter have come from Schaefer & Štefankovič [SŠ04], and Schaefer, Sedgwick, and

Štefankovič [SSŠ03]. These results are used later on in this thesis, in Chapter 6.

Chapter 4

Spatial Logics and Reasoning

In order to study instances of the topological inference problem, we must first

examine the spatial logics with which we specify the instances of the problem.

This chapter introduces the concept of a spatial logic and defines the structures

which we interpret these logics over. We take a model theoretic approach to

examining the computational properties of the topological inference problem, that

is, we investigate the relationship between the spatial logics and the topological

structures we interpret them over. This chapter, provides the first part of a new

and consolidated survey of spatial logics, which is one of the major contributions

of this thesis.

4.1 Spatial Logic

A spatial logic is a formal language whose formulae are interpreted over a class

of geometric structures. The variables of our language are interpreted as the

primitives of our geometric structures and the predicate and function symbols

are interpreted as various geometric relations and properties. We are inter-

ested in qualitative spatial logics, which are concerned with mereotopological

properties and relations, as opposed to quantitative spatial logics, which are con-

cerned with quantifiable spatial properties and relations, such as size and distance.

Mereotopology is a combination of two fields of mathematics. Mereology, which is

the study of part-whole relationships, and Topology, which was briefly introduced

in Section 2.2. Furthermore, as mentioned in Chapter 1, we restrict ourselves

primarily to qualitative spatial logics which are interpreted over structures which

inhabit the Euclidean plane.

39

CHAPTER 4. SPATIAL LOGICS AND REASONING 40

It is difficult to identify a beginning of the development of qualitative spatial

logics. Traditionally, the primitive units of a space are taken to be its points.

But, the very notion of a ‘point’ is something which does not fit in very well

with our perception of space. If each physical object occupies a set of points,

then a question arises. Is this set topologically open, or closed? So, in order to

avoid these difficult philosophical issues, perhaps we should consider other kinds

of entities as our primitive units.

One of the first systems of geometry to consider alternative primitives to the

point was Whitehead’s ‘point-free geometry’. In [Whi19] and [Whi20], Whitehead

presented a system of spatiotemporal ordering and measurement where ‘regions’

are the primitive entity. While Whitehead’s system appears to have some flaws,

certain parts of it were used by de Laguna ([dL22a], [dL22b]) to describe some

standard geometrical concepts in [dL22c]. De Laguna does not attempt to con-

struct a complete system of geometry, but simply to show “the possibility of

a geometry” based on the concepts he defines. Inspired by de Laguna’s work,

Whitehead proposed a modified system [Whi29], based on a topological relation

which he called ‘extensive connection’. Although Whitehead doesn’t specify a

specific domain for interpretation, the ‘extensive connection’ relation seems to

behave similarly to the relation which holds between two subsets of a topolog-

ical space whose closures intersect. Somewhat counter-intuitively, Whitehead’s

relation does not allow for a region to be connected to itself.

Perhaps the first fully realised ‘spatial logic’ was presented by Tarski in [Tar56]

(this is actually a summary of an address Tarski gave to a mathematical confer-

ence in 1927). The primitives over which the variables of this logic range are sets

of regions, or solids as he called them, thus making this language a second-order

logic. According to the way Tarski’s regions are defined, these regions are simply

regular closed subsets of R
3. The language has two predicates, one interpreted

as the property of being a ‘sphere’, and the other interpreted as the ‘part-of’

relation. A complete axiomatization of the theory is provided, and it is shown

that all models of the theory are isomorphic to the standard interpretation of

the language over R
3. This is done by showing that the points in R

3 can be

represented by sets of converging solids (or spheres).

While Tarski’s results would seem to provide a sound foundation for the fur-

ther development of spatial logics, they were largely ignored for a long time, in

favour of Whitehead’s work. Clarke [Cla81] proposed a ‘calculus of individuals’

CHAPTER 4. SPATIAL LOGICS AND REASONING 41

based on Whitehead’s ‘extensive connection’ relation. Clarke calls this relation,

simply, ‘connection’, and makes the modification of permitting a region to be

connected to itself. Although Clarke suggests that the language is taken to range

over ‘spatio-temporal’ regions, the system is presented as an ‘uninterpreted cal-

culus’ and so the purpose of the axiomatization is a little unclear, as there can be

no proof of correctness with regards to an interpretation. Clarke’s axioms appear

to suggest that there is some distinction between open and closed regions, as he

defines both the ‘connection’ relation and an ‘overlap’ relation, the latter seems

to be the relation which holds between regions when their interiors intersect.

As we are interested in the topological inference problem, we are interested in

spatial logics mainly in relation to the structures we interpret them over.

4.1.1 Models

Although Clarke’s calculus was presented without any specific interpretation in

mind, it is a natural question to wonder what kind of structures are models for the

axiomatization that was provided. Biacino & Gerla [BG91] investigated this and

found that Clarke’s axioms characterise the complete atomless Boolean algebras,

thus in a sense the class of non-empty regular open subsets of a topological space

are models for the axiomatization. Unfortunately, as defined over this domain,

the connection and overlap relations are equivalent. This leaves Clarke’s calculus

being able to express mereological relations, but not topological ones, this renders

it unsuitable as a spatial logic.

Inspired by Allen’s temporal calculus [All83], the Region Connection Calculus,

or RCC [RCC92b] was an attempt to correct Clarke’s calculus (especially the

issues raised by Biacino & Gerla) and to create a spatio-temporal logic, based on

a connection relation. As with Clarke’s calculus, an axiomatization was provided

but with no proof of correctness with respect to any particular interpretation.

The RCC has received considerable attention and we shall examine parts of it in

more detail in Chapters 5 and 6.

The rest of this chapter looks at an approach to spatial logic which is much

more in the tradition of Tarski. Instead of choosing a language, creating a set

of axioms which seem to correspond with intuition, and then finding out if our

system is modelled by any kind of space in existence, we begin by first examining

the kind of geometric structures that we wish to interpret our spatial logics over.

We now introduce the concept of a mereotopology.

CHAPTER 4. SPATIAL LOGICS AND REASONING 42

4.1.2 Mereotopologies

One of the first questions we must answer is: How do we define the regions which

our language ranges over? Since we are restricting our attention to topological

inference in the real plane, we assume from now on that our regions are subsets of

the real plane. And as we are mainly concerned with topological inference in spa-

tial structures that may occur in the physical world, as mentioned in Chapter 1,

we may wish to restrict what kind of subsets that we consider to be regions.

We call our choice of what defines the regions of a space, the mereotopology

of the space. The definitions and corresponding examples in the rest of this

subsection are taken from [PH07].

Definition 4.1.1. Given a topological space X, we define a mereotopology over

X to be a Boolean sub-algebra M of RO(X) such that, if u is an open subset of

X and p ∈ u, there exists m ∈M such that p ∈ m ⊆ u. We refer to the elements

of M as regions.

The real plane contains many subsets that could not possibly be occupied by

a physical object, for example, and we may wish our domain of regions to not

include such subsets.

Consider that although open and closed sets are well-defined mathematical

concepts, they are difficult to understand intuitively, and many difficult questions

arise as a result of this distinction. For example, take a physical object (in three

dimensional Euclidean space) - is the subset of the space that this object occupies

open, or closed? In other words - do objects contain their boundary points? We

may wish to bypass questions of this nature by considering either open, or closed,

subsets to be regions.

Additionally, as a result of Theorem 2.4.6 it is common to restrict attention

to only regular open subsets. This guarantees us an algebra which is closed under

intersection, union and complement of regions. Therefore, for our first example

of a mereotopology, we choose the set of all regular open subsets of R
2.

Example 4.1.2. The set RO(R2) is a mereotopology over R
2.

Proof. Given p ∈ o ⊆ R
2 such that o is open, let u, v be disjoint open subsets

of R
2 such that p ∈ u and R

2 \ o ⊆ v. Since v is open, u− ∩ v = ∅, whence

u− ⊆ o, and so p ∈ (u−)0 ⊆ o. But (u−)0 ∈ RO(R2). Hence RO(R2) is a

mereotopology.

CHAPTER 4. SPATIAL LOGICS AND REASONING 43

The mereotopology RO(R2) avoids any difficulty regarding the distinction

between open and closed sets, however it still contains every regular open subset

of R
2. Many of these subsets form regions which no physical object could possibly

inhabit. For example, subsets with infinitely convoluted boundaries. If our aim is

to represent regions which are representative of objects, or regions which exist in

the physical world, then we may want to further restrict our definition of regions.

Given any straight line in the plane, we can cut the plane into two halves.

These halves are regular open, each being the pseudocomplement (Definition 2.2.16)

of the other, and are called half-planes.

Definition 4.1.3. A basic polygon in R
2 is the intersection of finitely many half-

planes in R
2. A polygon in R

2 is the sum, in RO(R2) of a finite set of basic

polygons. We denote the set of polygons in R
2 by ROP (R2).

Example 4.1.4. The set ROP (R2) is a mereotopology over R
2.

Proof. We need only show that ROP (R2) is closed under the Boolean operations.

This is obvious given the distribution laws for RO(R2).

We now present another mereotopology which will be used later to show that

changing the definition of the regions does not necessarily affect the spatial logic.

If a line is defined by an equation such as ax + by + c = 0, where a, b and c

are rational numbers, we call it a rational line; if a half-plane is bounded by a

rational line, we call it a rational half-plane. A pair of rational lines can intersect

only at points with rational coordinates.

Definition 4.1.5. A rational basic polygon is the intersection of finitely many ra-

tional half-planes. A rational polygon is the sum, in the Boolean algebra RO(R2),

of a finite set of rational basic polygons. We denote the set of rational polygons

in R
2 by ROQ(R2).

Example 4.1.6. The set ROQ(R2) is a mereotopology over R
2.

Proof. Similar to Example 4.1.4.

CHAPTER 4. SPATIAL LOGICS AND REASONING 44

4.1.3 First Order Spatial Logic

Now, we have introduced structures which we have called mereotopologies which

are essentially sets of elements which we refer to as regions. We now look at

the construction of logics whose variables range over the elements (regions) of a

mereotopology.

First, we must choose what spatial operations and relations we wish to be able

to express. By choosing which spatial primitives we include, we select a signature,

σ, for our logic. Given a signature σ, we denote the first-order language over σ

by L(σ).

So, we choose a signature, σ, of our language, and we define the predicates,

functions and constants in σ over the chosen mereotopology M . The resulting

construction, which we write M(σ), is known as a structure. A structure along

with an interpretation function, allows us to determine the truth value of a given

formula.

Let M(σ) be a structure, and let α be a valuation function, mapping variables

to regions of the mereotopology. If ϕ is true in M(σ) under α, then we say that

M(σ) satisfies ϕ under α. If there exists an α such that M(σ) �α ϕ, then we say

that ϕ is satisfiable in M(σ), and write M(σ) � ϕ. If there exists a M(σ) such

that ϕ is satisfiable in M(σ), then we say that ϕ is satisfiable.

Definition 4.1.7. We call a L(σ) formula with no free variables a sentence. Given

an L(σ) sentence, ϕ, if M(σ) �α ϕ for some assignment α, then M(σ) �α ϕ for

any assignment α, and we write M(σ) � ϕ.

Definition 4.1.8. Given a structure M(σ), the set of all L formulas ϕ such that

M(σ) � ϕ is known as the L-theory of M(σ), written Th(M(σ)).

By choosing the signature σ of our language, and by defining what the regions

of our mereotopology M are, we define the structure M(σ), which is our model of

space, or spatial ontology. Quoted from [PH01a]: . . . a spatial ontology is a model

of what we think space is like at the level of regions: it tells us what regions exist

and what properties those regions have.

The theory of a spatial ontology is simply all the true statements about the

ontology. A theory Th(M(σ)) is clearly characterised by the spatial ontology

M(σ) that is, the choices relating to the definition of regions and the composition

of the signature directly affect the contents of this theory. Given the theory of

an ontology M(σ), a number of questions are raised. What other ontologies

CHAPTER 4. SPATIAL LOGICS AND REASONING 45

characterise this theory? And how are these ontologies related to M(σ)? Are we

able to further restrict the definition of the regions which make up M , while still

characterising Th(M(σ))? The first of these questions is one of many investigated

in [PH01a], and it is shown that the spatial ontologies ROP (c,≤) and ROQ(c,≤)

have the same theory.

An axiom system of a spatial ontology is a set of axioms and rules of inference

whose consequences are exactly the theory of the spatial ontology. Having a

complete axiom system for a spatial ontology allows us to determine, for any

given formula, whether that formula is true or satisfiable in the spatial ontology.

Given a spatial ontology, an important question is whether its theory can be

axiomatised, and if so, what are its axioms?

Choice of Signature

The operations +, · and − are so commonly included in spatial logics, that

they will be present in the signatures implicitly. Thus we write L(C) instead

of L(+, ·,−, C). We take the symbols 0, 1, +, ·, − and ≤ to have their usual

(Boolean algebra) interpretations. We take the binary predicate C to denote a

standard contact relation, that is, C holds between two regions if their topological

closures intersect. The interpretation of these symbols is given in Table 4.1.

Symbol Definition

0 (0)M = ∅

1 (1)M = X
+ +M(x, y) = ((x ∪ y)−)◦

· ·M(x, y) = x ∩ y
− −M (x) = X \ x−

C CM = {(x, y) ∈M2 : x− ∩ y− 6= ∅}

Table 4.1: Definitions of simple constants and functions in a mereotopology, M ,
over topological space X (x, y ∈M ⊆ P(X))

We now look at the structures involving just a C contact relation.

4.1.4 Contact Relations

Since Whitehead’s extensive connection relation, there have been a number of

investigations of spatial logics using contact relations. The standard topological

interpretation of a contact relation is that it holds between two subsets of a

CHAPTER 4. SPATIAL LOGICS AND REASONING 46

topological space, if their closures have a non empty intersection. We now give a

more general definition of a contact relation.

Definition 4.1.9. We say that a binary relation C is a contact relation if it

satisfies the following.

C1: ∀x(C(x, x)).

C2: ∀x∀y(C(x, y) → C(y, x)).

C3: ∀x∀y(∀z(C(z, x) ↔ C(z, y)) → x = y).

These axioms correspond to the axioms given by Clarke for his ‘calculus of

individuals’ [Cla81].

Now we introduce the structures that result when these contact relations are

taken to range over elements of Boolean algebras. The following definition is

taken from [BD07].

Definition 4.1.10. Let A be a Boolean algebra, and let C be a binary relation on

A. The pair 〈A,C〉 is a Boolean contact algebra if C has the following properties

(for all x, y, z ∈ A).

BCA0: C(x, y) → x, y 6= 0.

BCA1: x 6= 0 → C(x, x).

BCA2: C is symmetric.

BCA3: C(x, y) and y ≤ z → C(x, z).

BCA4: C(x, y + x) → C(x, y) or C(x, z).

We are also interested in cases of C that have the following properties.

(Ext): (C(x, z) → C(y, z)) → x ≤ y.

(Con): x 6∈ {0, 1} → C(x,−x).

Note that C is a contact relation by Definition 4.1.9.

In [DW05], the following observations are made about BCAs in relation to

regular closed subsets of a topological space, but they are also true for any

mereotopology.

CHAPTER 4. SPATIAL LOGICS AND REASONING 47

Observation 4.1.11. If 〈X,U〉 is a topological space, and M is a mereotopology

over X, with CU being a standard topological contact relation over M then the

following hold.

1. M(CU) |= BCA0-4.

2. M(CU) |= (Ext) if and only if X is weakly regular (see Definition 2.2.15).

3. M(CU) |= (Con) if and only if X is connected (see Definition 2.2.19).

That is, the BCA0-4 axioms seem to capture the behaviour of a topological

contact relation. However, there is a much stronger result regarding contact

relations and these axioms.

BCA Representation Theorem

Similar to Stone’s theorem, Düntsch & Winter give a representation theorem for

BCAs in [DW05].

Theorem 4.1.12. Each BCA 〈A,C〉 is isomorphic to a dense substructure of

some regular closed algebra 〈RC(X), CU〉, where 〈X,U〉 is a weakly regular T1

space, and C is the restriction of CU to A.

As a result of the observations (similar to 4.1.11) in [DW05], we have the

following theorem.

Theorem 4.1.13. If 〈X,U〉 is a weakly regular T1 space, and A is a dense sub-

algebra of RC(X), with C being the restriction of the standard contact relation

on RC(X), then 〈A,C〉 is a BCA.

And therefore, we have the following result.

Theorem 4.1.14. The axioms of BCAs are complete with respect to the class

of dense substructures of regular closed algebras of weakly regular T1 spaces with

standard contact.

4.1.5 BCA Undecidability

The satisfiability problem of first order logic is undecidable. Similarly, first-order

spatial logics are generally undecidable. The first order theory of the RCC (see

CHAPTER 4. SPATIAL LOGICS AND REASONING 48

Section 4.1.1) was first observed to be undecidable by Gotts, Gooday, and Cohn

[GGC96] and it was shown by Dornheim [Dor98] that the first-order theory of

polygons in the real plane is undecidable.

We now present a proof of the undecidability of the first-order theory of BCAs

by reducing the tiling problem to BCA language satisfiability. Dornheim’s proof

used the Post correspondence problem to show that first order mereotopology over

the regular closed polygons was undecidable. First, we make some definitions that

we use as shorthand, to improve the readability of the proof.

1. EC(x, y) ≡def C(x, y) ∧ y ≤ (−x)

2. O(x, y) ≡def x.y 6= ∅

3. Co(x, y) ≡def cc(x) ∧ x ≤ y ∧ ¬∃z(cc(z) ∧ x < z ≤ y)

4. cc(x) ≡def ¬∃x1, x2(x1 6= ∅ ∧ x2 6= ∅ ∧ x1 + x2 = x ∧ ¬C(x1, x2))

We take formulae 1,2, and 3 to represent external contact, overlapping, and

‘maximal component of’ relations respectively and we take formula 4 to represent

the property of having a connected closure.

Additionally, we make the following abbreviations.

J(x, y,X,K) ≡defCo(x,X) ∧ Co(y,X)∧

∃j(Co(j,K) ∧ EC(x, j) ∧ O(j, y))

D(x, z,X) ≡defCo(x,X) ∧ Co(z,X)∧

∃yv(Co(yv, X) ∧ J(x, yv, X, V) ∧ J(yv, z, X,H))∧

∃yh(Co(yh, X) ∧ J(x, yh, X,H) ∧ J(yh, z, X, V))

The J relation states that x is connected to y by a (joiner) maximal component

of K. The D relation ensures diagonal consistency between the tiles, that is, for

any two tiles x and z, if z is above the tile to the right of x, then z is also to the

right of the tile above x.

Now, let Φ(X, V,H, Y1, . . . , YN) be the following set of twelve formulae, with

free variables: X, V,H, Y1, . . . , YN . We will use upper case letters for free vari-

ables, and lower case letters for bound variables.

1. X 6= ∅ ∧ ∃x(Co(x,X))

CHAPTER 4. SPATIAL LOGICS AND REASONING 49

0.9

0.3

Figure 4.1: Layout of the tiles.

2. X = Y1 + · · · + YN ∧
∧

1≤i,j≤N
i6=j

¬C(Yi, Yj)

3. ∀x
(

Co(x,X) → ¬Co(x,H) ∧ ¬Co(x, V)
)

4. ¬C(V,H)

5. ∀x
(

Co(x,X) → ∃y(J(x, y,X, V) ∧ ∀z(J(x, z,X, V) → z = y))
)

6. ∀x
(

Co(x,X) → ∃y(J(x, y,X,H) ∧ ∀z(J(x, z,X,H) → z = y))
)

7. ∀x
(

Co(x,X) → ∃y(D(x, y,X))
)

8. ¬∃x1, x2

(

J(x1, x2, X, V) ∧ (
∨

1≤i,j≤N
(i,j)/∈V

(x1 ≤ Yi ∧ x2 ≤ Yj))
)

9. ¬∃x1, x2

(

J(x1, x2, X,H) ∧ (
∨

1≤i,j≤N
(i,j)/∈H

(x1 ≤ Yi ∧ x2 ≤ Yj))
)

The strategy is that we construct all the tiles such that each tile has two

‘joining’ tiles which connect it to the tile above, and to the right, respectively.

See Figure 4.1.

CHAPTER 4. SPATIAL LOGICS AND REASONING 50

Lemma 4.1.15. Given a tiling T for (C,V,H) where C = c1, . . . , cN , we can

construct S,M,N, P1, . . . , PN ∈ RC(R2) such that

RC(R2) � Φ[S,M,N, P1, . . . , PN].

Proof. Let S be the region consisting of the union of all square regions of RC(R2),

of side-length 0.9 whose bottom left corner is at a co-ordinate (i, j) of R
2, for all

(i, j) ∈ N
2. We call the maximal components of S squares.

Let M be the region consisting of the union of all square regions of side-

length 0.3 whose bottom left corner is at co-ordinate (i + 0.3, j + 0.9) of R
2, for

all (i, j) ∈ N
2. We call the maximal components of M vertical joiners.

Let N be the region consisting of the union of all square regions of side-length

0.3 whose bottom left corner is at a co-ordinate (i + 0.9, j + 0.3) of R
2, for all

(i, j) ∈ N
2. We call the maximal components of N horizontal joiners.

We construct a function τ : N
2 → S by setting τ(i, j) to be the square region

(maximal component of S) whose bottom left co-ordinate is at (i, j). Let

Pk =
∑

{τ(i, j) : i, j ∈ N and T (i, j) = ck}.

Now we show that the formulae of Φ are satisfied.

1. By the fact that S is not empty.

2. By the definition of Pk (and the fact that T is well-defined and total)

Y1, . . . , YN are pairwise disjoint, and X is the union of Y1, . . . , YN .

3. By the definition of S, M and N , no square can also be a joiner.

4. By the definition of M and N , a joiner cannot be both horizontal and

vertical.

5. By the definition of S, M and N , each square is vertically joined to a

distinct unique square.

6. By the definition of S, M and N , each square is horizontally joined to a

distinct unique square.

7. By the definition of S, M , N and τ , for each square (i, j), the square in

vertical contact (i, j + 1) is in horizontal contact with (i + 1, j + 1), while

the square in horizontal contact (i + 1, j) is below (i+ 1, j + 1).

CHAPTER 4. SPATIAL LOGICS AND REASONING 51

8. By the definition of Pk and the fact that T respects V.

9. By the definition of Pk and the fact that T respects H.

Lemma 4.1.16. If there exists a structure A and S,M,N, P1, . . . , PN ∈ A such

that

A � Φ[S,M,N, P1, . . . , PN],

then there exists a tiling T for (C,V,H), where C = c1, . . . , cN .

Proof. First, we define a mapping σ : N
2 → S such that:

〈σ(i, j), σ(i+ 1, j)〉 ∈ H

〈σ(i, j), σ(i, j + 1)〉 ∈ V.

Formula 1 ensures that S is non-empty and has at least one maximal component,

so we may choose a maximal component s ⊆ S and set σ(0, 0) = s.

We define the following sets.

Iv ={(a, b) : A � J [a, b, S,M] where a, b are maximal components of S}

Ih ={(a, b) : A � J [a, b, S,N] where a, b are maximal components of S}

Id ={(a, b) : A � D[a, b, S] where a, b are maximal components of S}

1. If σ(0, j) is defined but σ(0, j + 1) isn’t, then set σ(0, j + 1) = a′ where

(σ(0, j), a′) ∈ Iv.

To show that a′ is unique we must show that for each a there is a unique

b such that A � J [a, b, S,M]. By formula 5, there exists exactly one square

which is vertically joined to a.

2. If σ(i, 0) is defined but σ(i + 1, 0) isn’t, then set σ(i + 1, 0) = a′ where

(σ(i, 0), a′) ∈ Ih.

To show that a′ is unique we must show that for each a there is a unique

b such that A � J [a, b, S,N]. By formula 6, there exists exactly one square

which is horizontally joined to a.

CHAPTER 4. SPATIAL LOGICS AND REASONING 52

3. If σ(i, j) is defined but σ(i + 1, j + 1) isn’t, then set σ(i + 1, j + 1) = a′

where (σ(i, j), a′) ∈ Id

To show that a′ is unique we must show that for each a there is a unique

b such that A � D[a, b, S]. By forumla 7, there is at least one such b. By

formulae 5 and 6, there is at most one such b.

Now we define T : N
2 → C by setting T (i, j) = ck where σ(i, j) is a maximal

component of Pk, for all i, j ∈ N. Now we show that:

1. T is well defined. Assume the opposite, then σ(i, j) is a maximal component

of Pk and σ(i, j) is a maximal component of Pl, so Pk.Pl 6= ∅. However, by

formula 2, ¬C(Pk, Pl).

2. T respects V and H. Assume the opposite. Suppose T does not respect V.

There exist i, j ∈ N such that 〈T (i, j), T (i, j + 1)〉 6∈ V, it is straighforward

to show that A � J [σ(i, j), σ(i, j + 1), S,M]. However, this contradicts

formula 8. The proof that T respects H is similar.

We have the following theorem.

Theorem 4.1.17. The formula Φ(S,M,N, P1, . . . , PN) is satisfiable if and only

if there exists a tiling T for (C,V,H) where C = c1, . . . , cN .

Proof. By Lemmas 4.1.15 and 4.1.16.

4.2 Conclusion

Many questions regarding spatial logics remain unanswered. However, this the-

sis focuses on questions relating to the computational properties of a theory of

space. For instance, is there an algorithm which can determine whether any

given sentence is a member of that theory? If so, how complex is its satisfiability

problem?

Given a formula in a spatial logic and a specific domain over which the vari-

ables of that logic may range, is there an assignment of variables to elements of

the domain such that the formula is satisfied? This is the topological inference

problem.

CHAPTER 4. SPATIAL LOGICS AND REASONING 53

In this chapter, we introduced many of the concepts that we make extensive

use of throughout the rest of the thesis. But the overall aim of the chapter has

been to introduce the topological inference problem so that we may now examine

the computational properties of this problem.

We have seen that the first order language with a contact relation is undecid-

able, however there are many less expressive languages which are decidable. The

following chapters are concerned with investigating the computational properties

of these languages.

Chapter 5

Satisfiability

This chapter forms the second part of the new survey of spatial logics provided

by this thesis. In this chapter, we look at different approaches to solving the

topological inference problem. We start with with a simple spatial logic called T ,

giving a proof of its equivalence to the modal logic S4. The rest of the chapter

examines some languages which are related to T . We look at T CC which is a

superset of T , and over this chapter and the next, we look at a series of languages

which are progressively stronger restrictions of T , including RCC8.

5.1 Modal Logic and Topology

In Observation 2.2.17, we noted the similarity between properties of a topological

space and the S4 modal logic axioms. In fact, there is a much deeper connection

between the S4 modal logic and topological spaces. McKinsey & Tarski ([McK41]

and [MT44]) show that when the modal 3 operator is taken to mean topological

closure, S4 is complete with respect to the interpretation over topological spaces.

The most common interpretation of modal logics is the relational semantics,

using Kripke structures, as discussed in Section 2.1. The logic S4 is known to be

complete with respect to the Kripke frames whose reachability relation is reflexive

and transitive. There is a strong connection between S4 Kripke frames and a type

of topological space known as an Alexandroff space (see Definition 2.2.6). First,

we introduce the following definition.

Definition 5.1.1. Let F = 〈W,�〉 be an S4 Kripke frame (so � is reflexive and

54

CHAPTER 5. SATISFIABILITY 55

transitive). Given W ′ ⊆ W , we define the following set.

IF(W ′) = { w ∈ W | ∀w′ : w�w′ =⇒ w′ ∈ W ′ }

We can see that I
F is an interior operator according to Definition 2.2.18, and so

defines a topology on W . We call 〈W, IF〉 the topological space defined by F.

It is straightforward to show that the topological space defined by an S4

Kripke frame is an Alexandroff space. In fact, given a topological space X, if we

define a relation x�x′ for all x, x′ ∈ X if and only if x ∈ {x′}−, then it is easy to

show that � is reflexive and transitive if and only if X is an Alexandroff space.

This implies that there is a 1-1 correspondence between S4 Kripke frames,

and Alexandroff spaces. And since every finite topological space is an Alexandroff

space, there is a 1-1 correspondence between finite S4 Kripke frames and finite

topological spaces. Essentially, what this means is that the theory of the S4

language over finite topological spaces is equivalent to the more standard theory

of S4 over finite Kripke frames.

5.1.1 Simple Topological Constraints

We will now introduce a simple topological language, which was first introduced

by Nutt ([Nut99]). We shall call this topological constraint language T .

Definition 5.1.2. We define the terms of T as follows.

1. Every variable is a term.

2. If s is a term, so are −s, s−, and s◦.

3. If s and t are terms, so are s ∩ t and s ∪ t.

The domain of the T language is the set P(X) where 〈X,U〉 is a topological

space. As usual, we denote the domain of this language by the symbol U . We

extend the interpretation functions of this language over the connectives −, ∪

and ∩ and the interior and closure operators as follows (where s and t are terms).

α(−s) = X \ (α(s))

α(s−) = (α(s))− and α(s◦) = (α(s))◦

CHAPTER 5. SATISFIABILITY 56

α(s ∩ t) = α(s) ∩ α(t) and α(s ∪ t) = α(s) ∪ α(t)

Thus the interpretation of a term s is the element of U described by s. We

define the constraints of T as follows.

Definition 5.1.3. If s and t are terms, then s = t is a constraint and so is s 6= t.

Let the language T be the set of all T formulae.

Definition 5.1.4. Let ϕ, ψ ∈ T . We define a T formula as follows.

1. Every T constraint is a formula.

2. ¬ϕ is a formula.

3. ϕ ∧ ψ is a formula.

4. ϕ ∨ ψ is a formula.

The operators ∧, ∨ and ¬ are interpreted as the logical operators conjunction,

disjunction, and negation respectively. We may refer to a conjunction of formulae

as a set of T constraints.

Now we will define what it means for a T formula to be satisfiable.

Definition 5.1.5. We define a topological model to be a pair (U, α) which consists

of a set U of subsets of a topological space and a function α mapping variables

to the elements of U .

Definition 5.1.6. Let s and t be T terms and let ϕ, ψ ∈ T . Given a topological

model A = (U, α) we say the following.

If ϕ is s = t, then A satisfies ϕ iff α(s) = α(t).

If ϕ is s 6= t, then A satisfies ϕ iff α(s) 6= α(t).

If A satisfies a T formula, ϕ, then we write A � ϕ. We can extend � over Boolean

combinations of T formulae in the following way.

A � ¬ϕ iff A 2 ϕ

A � ϕ ∧ ψ iff A � ϕ and A � ψ

A � ϕ ∨ ψ iff A � ϕ or A � ψ

A � ϕ→ ψ iff A 2 ϕ or A � ψ

CHAPTER 5. SATISFIABILITY 57

Given a T formula, ϕ, we say that ϕ is satisfiable if there is a topological model,

A, such that A � ϕ.

Using the connection discussed in earlier on in the chapter, Nutt showed the

T satisfiability problem to be equivalent to the S4 satisfiability problem, and

therefore, that the T satisfiability problem is PSPACE-complete.

Now, we give a proof of the equivalence of the S4 satisfiability problem with

the T satisfiability problem (over arbitrary subsets of a topological space).

5.1.2 Translating Topological Constraints

First, we define the translation of the language T into S4U . Given a term s, we

denote the translation into S4U of s by (s)∗. We translate variables of T into a

corresponding proposition letter, (xi)
∗ = pi, where xi is a variable of T , and pi is

a proposition letter. We then structurally extend our translation over the terms

of T as follows (where s and t are terms, and the symbols ¬, ∧ and 2 represent

S4U symbols):

1. (−s)∗ = ¬(s)∗,

2. (s ∪ t)∗ = (s)∗ ∧ (t)∗,

3. (s◦)∗ = 2(s)∗.

It is trivial to extend this translation to cover formulae of T (where s is a term,

and ∀ and ∃ are the S4U universal modal operators):

1. (s = >)∗ = ∀(s)∗,

2. (s 6= >)∗ = ¬∀(s)∗,

3. (s = ⊥)∗ = ¬∃(s)∗,

4. (s 6= ⊥)∗ = ∃(s)∗.

This kind of translation was first proposed by Bennett [Ben96] specifically

for formulae of a more restricted fragment of T called RCC8, which we shall see

later on in this chapter. We will now show the correctness of this translation with

respect to the formulae of T , which is more general than RCC8.

First we must show that if we have a T formula ϕ and a topological model

A, then we can construct an S4U Kripke model MA such that A |= ϕ if and only

if MA |= ϕ∗.

CHAPTER 5. SATISFIABILITY 58

Lemma 5.1.7. Given a finite topological model A = 〈(X,U), α〉, let MA = 〈X,�, η〉,

where

v�v′ if and only if v ∈ {v′}− (for v, v′ ∈ X),

and

η(pi) = α(xi),

for all variables xi. Then MA is an S4-Kripke model.

Proof. MA is an S4 -Kripke model if and only if the relation � is reflexive and

transitive. Since v ∈ {v}−, � is reflexive. Suppose (i) v ∈ {v′}− and (ii)

v′ ∈ {v′′}− for some v′′ ∈ X. By (ii), v′ ⊆ {v′′}−, {v′}− ⊆ ({v′′}−)− and

{v′}− ⊆ {v′′}−. By (i), v ∈ {v′}− ⊆ {v′′}−, i.e. v ∈ {v′′}−, therefore � is

transitive.

Lemma 5.1.8. If s is a T term, then for every w ∈ X,

MA |=w s
∗ if and only if w ∈ sA.

Proof. By Structural induction on s∗ (where t1 and t2 are terms):

1. If s is a variable, xi

w ∈ xi
A ⇔ w ∈ α(xi) ⇔ w ∈ η(pi) ⇔ MA |=w pi ⇔ MA |=w s

∗

2. If s is t1 ∩ t2
w ∈ (t1 ∩ t2)A ⇔ w ∈ t1

A and w ∈ t2
A

⇔ MA |=w (t1)∗ and MA |=w (t2)∗ (IH)

⇔ MA |=w (t1)∗ ∧ (t2)
∗

⇔ MA |=w (t1 ∩ t2)
∗

⇔ MA |=w s
∗

3. If s is −t1

w ∈ sA ⇔ w ∈ (−t1)A ⇔ w /∈ t1
A ⇔ MA 6|=w (t1)

∗ (IH) ⇔ MA |=w s
∗

4. If s is t−1
MA |=w s∗ ⇒ ∃w′ such that w�w′ and MA |=w′ (t1)∗

⇒ w�w′ and w′ ∈ t1
A

⇒ w ∈ w′− and w′ ∈ t1
A

⇒ w ∈ (t1
A)− = t−1

A
.

CHAPTER 5. SATISFIABILITY 59

Conversely, suppose w ∈ t−1
A

= (t1
A)−. Since A is finite, (t1

A) = {w1
′, . . . , wk

′}

hence (t1
A)− = w1

′− ∪ · · · ∪ wk
′−. Without loss of generality, w ∈ w1

′−.

Hence wRw1
′, and (IH) MA |=w1

′ (t1)
∗. Hence MA |=w 3(t1)∗, i.e. MA |=w

s∗

Lemma 5.1.9. If ϕ is a formula of T and A is a finite topological model, then

MA |= ϕ∗ if and only if A |= ϕ.

Proof. Will show for the case that ϕ is s = >, where s is a term.

s = X ⇔ ∀u ∈ X u ∈ sA ⇔ ∀u ∈ X u ∈ (s)∗ (by Lemma 5.1.8) ⇔ ∀(s)∗.

Lemma 5.1.10. Given a T formula ϕ, as defined in Definition 5.1.3, then ϕ is

satisfiable in a topological model if and only if it is satisfiable in a finite topological

model

Proof. The small model property in Section 4.2 of [PH01b] shows this for T CC

(see Section 5.2) formulae of which T formulae are a restricted case.

Theorem 5.1.11. Let A be a topological model, let ϕ be a T formula. We can

construct an S4U Kripke model MA such that A |= ϕ if and only if MA |= ϕ∗.

Proof. Lemma 5.1.9 proves this theorem if A is finite. Lemma 5.1.10 shows that

if ϕ is satisfiable, it is satisfiable in a finite topological model.

Now we must show that if we have a T formula ϕ and a S4U Kripke model

M then we can construct a topological model AM such that M |= ϕ∗ if and only

if AM |= ϕ.

Lemma 5.1.12. Let M = 〈W,�, η〉 be an S4-Kripke model, and let IM be

the topology defined by M, as in Lemma 5.1.1. Let AM = 〈(W, IM), α〉 be the

topological model such that the valuation function α is defined as

α(xi) = η(pi) for all proposition letters pi.

Then, for every w ∈ W ,

w ∈ sAM if and only if M |=w s
∗;

CHAPTER 5. SATISFIABILITY 60

where s is a T term.

Proof. Proof is similar in structure to that given in Lemma 5.1.8, except for the

fourth part.

4. If s∗ is 2(t1)∗:

M |=w 2(t∗1) ⇔ ∀w′ : w�w′ =⇒ M |=w′ (t1)∗

⇔ w�w′ =⇒ w′ ∈ t1
AM (IH)

⇔ w ∈ IM(t1
AM) (def. interior op, Lemma 5.1.1)

⇔ w ∈ (IMt1)AM

Theorem 5.1.13. Let M be an S4U Kripke model, let ϕ∗ be a modal formula. We

can construct a topological model AM such that M |= ϕ∗ if and only if AM |= ϕ.

Proof. Proof is similar to Lemma 5.1.9.

Corollary 5.1.14. A T formula ϕ is satisfiable if and only if its corresponding

S4U translation, ϕ∗, is satisfiable.

Proof. Direct result of Theorems 5.1.11 and 5.1.13.

Corollary 5.1.14 proves the correctness of the translation from the T to the

S4U modal logic. The following theorem can be found in Halpern & Moses

[HM92].

Theorem 5.1.15. Let ϕ1, . . . , ϕm, ψ1, . . . , ψn be S4U formulae. Then

∀ϕ1 ∧ · · · ∧ ∀ϕm ∧ ∃ψ1 ∧ · · · ∧ ∃ψn (5.1)

is satisfiable if and only if for each j ≤ m the formula

ϕ1 ∧ · · · ∧ ϕm ∧ ψj (5.2)

is satisfiable.

Observe that all the S4U formulae resulting from the T translations are of

the form given in formula (5.1), such that the formula given in (5.2) will be an

S4 formula. The satisfiability of S4 formulae is known to be PSPACE-complete

[HM92], so the following corollary is immediate.

Corollary 5.1.16. The satisfiability problem of T formulae is PSPACE-complete.

CHAPTER 5. SATISFIABILITY 61

5.2 Topological Component Counting

Now we look at the satisfiability problem for a spatial logic called T CC1. This

language is a superset of T , with the addition of a predicate which is interpreted

as a kind of topological connectedness property.

As with the T language, the domain U of T CC will be the subsets of a topo-

logical space X, and we let α be a function mapping variables to elements of U .

We denote the interpretation of a term s in the topological space by α(s). The

interpretation of a variable x is the element of U which is mapped to x by α. The

interpretation is extended over the connectives −, ∪ and ∩ and the interior and

closure operators exactly as with T .

Definition 5.2.1. We define a T CC constraint as follows (where s and t are T CC

terms).

1. s = t is a constraint.

2. s 6= t is a constraint.

3. c6k(s) is a constraint (if k is a binary numeral and k > 0).

4. c>k(s) is a constraint (if k is a binary numeral and k > 1).

Although the parameter k is a binary numeral, in order to simplify the notation,

we will treat k as the integer value which the binary numeral represents.

Note that any type 1 or 2 constraint can be converted to the form s = > or

s 6= > (using s = t⇔ (−s ∪ t) ∩ (s ∪ −t) = >).

We define the formulae of T CC in exactly the same way as T (Definition 5.1.4)

with the addition of permitting type 3 and type 4 constraints.

Now we define what it means for a T CC formula to be satisfiable.

Definition 5.2.2. Let the language T CC be the set of all T CC formulae, let s

and t be T CC terms, and let ϕ, ψ ∈ T CC. Given a topological model A, we say

that:

if ϕ is s = t, then A satisfies ϕ iff α(s) = α(t),

if ϕ is s 6= t, then A satisfies ϕ iff α(s) 6= α(t),

if ϕ is c6n(s), then A satisfies ϕ iff α(s) has at most n components,

if ϕ is c>n(s), then A satisfies ϕ iff α(s) has at least n components.

1Rough abbreviation of “topological constraint language with component counting”

CHAPTER 5. SATISFIABILITY 62

If A satisfies a T CC formula, ϕ, then we write A � ϕ. We can extend � over

Boolean combinations of T CC formulae in the following way:

A � ¬ϕ iff A 2 ϕ,

A � ϕ ∧ ψ iff A � ϕ and A � ψ,

A � ϕ ∨ ψ iff A � ϕ or A � ψ,

A � ϕ→ ψ iff A 2 ϕ or A � ψ.

Given a T CC formula, ϕ, we say that ϕ is satisfiable if there exists a topological

model, A, such that A � ϕ.

T CC examples

Here are some examples of what we can express in T CC:

Example 5.2.3. Let s, t be terms.

s ∩ t 6= ⊥

Let A = (U, α) be a model of this formula. Then α(s) and α(t) intersect, or

overlap.

Example 5.2.4. Let s, t be terms.

s ∩ t = ⊥ ∧ s− ∩ t− 6= ⊥

Let A = (U, α) be a model of this formula. Then α(s) and α(t) touch, i.e. their

closures overlap, but α(s) and α(t) do not overlap.

Example 5.2.5. Let s be a term.

c61(s) → c61(s−)

Any topological model is a model of this formula, as the closure of any connected

set is connected.

Example 5.2.6. Let r, s, t be terms.

c61(r) ∧ r = s ∪ t ∧ s− ∩ t− = ∅ ∧ r 6= ∅ ∧ t 6= ∅

This formula is unsatisfiable, as there is no topological model under which a

connected set may be split into two non-empty disjoint sets.

CHAPTER 5. SATISFIABILITY 63

We will now give an outline of the proof of membership in the NEXP time

complexity class for the satisfiability problem of the T CC language. The full proof

can be found in [PH01b]. First, we give a brief outline of a proof of the small

model property (which is presented fully in [PH01b]).

Let 〈X,U〉 be a topological space, and let B be a finite set of subsets of X,

such that B ∈ B ⇒ B− ∈ B. Define a binary relation ∼ on X by setting a ∼ b

if, for all B ∈ B, a ∈ B ⇔ b ∈ B.

Definition 5.2.7. Let G = X/ ∼ and define a function f : X → G as

f(a) = {b ∈ X | b ∼ a}

Note that if a ∈ X and B ∈ B, then a ∈ B if and only if f(a) ∈ f(B). Also, note

that |G| < 2|B|.

Let us define a binary relation → on G as

v → v′ if and only if, for all B ∈ B, v ∈ f(B) ⇒ v′ ∈ f(B−)

Definition 5.2.8. The reflexive, transitive, directed graph, 〈G,→〉 can be re-

garded as a topological space with a closure operator −G for any H ⊆ G, defined

as follows:

H−G = { v′ ∈ G | v → v′ for some v ∈ H }.

For the duration of this section, we will use − to denote the closure operator

in the topological space X, and we will use −G to denote the closure operator

in the topological space G. If we are defining a topological space with a closure

operator, then from now on, instead of writing 〈X,U〉, we will abbreviate it to

merely X.

The following lemmas establish properties of the function f : X → G. Proofs

for the following can be found in [PH01b].

Lemma 5.2.9. The function f : X → G is continuous.

Given a T CC formula, the size of ϕ, i.e. the number of symbols occurring in

ϕ, is written as |ϕ|.

Let ϕ be a set of T CC constraints, which contains no constraints of type 4. Let

A = 〈X,α〉 such that A � ϕ, and given a T CC term, s, let sA be the interpretation

of term s in A.

Let

CHAPTER 5. SATISFIABILITY 64

B′ = { sA | s is a term occurring in ϕ }

B = B′ ∪ { B− | B ∈ B′ }

Defined in this way, B is a finite set of subsets ofX, such thatB ∈ B ⇒ B− ∈ B.

And defining f : X → G as above, let f(A) be the structure 〈f(X), f ◦ α〉.

Lemma 5.2.10. For each term s in ϕ,

f(sA) = sf(A).

Theorem 5.2.11. If A � ϕ, and f is defined as above, then f(A) � ϕ.

Proof. The following proof is presented unchanged from what is presented in

[PH01b]. We will present the proof for types 1, 2 and 3 separately. Let s and t

be T CC terms.

Type 1: A |= s = t⇒ sA = tA ⇒ f(sA) = f(tA) ⇒ sf(A) = tf(A) by Lemma 5.2.10

⇒ f(A) � s = t.

Type 2: A |= s 6= t ⇒ sA 6= tA ⇒ f(sA) 6= f(tA) by Definition 5.2.7 (since both

sA and tA are in B) ⇒ sf(A) 6= tf(A) by Lemma 5.2.10 ⇒ f(A) � s 6= t.

Type 3: A |= c6k(s) ⇒ sA has at most k components ⇒ f(sA) has at most

k components, by Lemma 5.2.9 ⇒ sf(A) has at most k components, by

Lemma 5.2.10 ⇒ f(A) � c6k(s).

Corollary 5.2.12. If ϕ is a satisfiable set of constraints of types 1,2 and 3, then

ϕ is satisfied in a structure of size bounded by 22|ϕ|.

Proof. By Theorem 5.2.10, and the fact that |B| has at most 2|ϕ| elements meant

that f(A) is of maximum size 22|ϕ|.

CHAPTER 5. SATISFIABILITY 65

Building Models

Corollary 5.2.12 tells us that if a set of T CC constraints, of types 1, 2 or 3, is

satisfiable, then it is satisfiable in a finite model; it also tells us the maximum

possible size of this model. Given a model, A, which satisfies a T CC constraint set,

the function f will generate a finite model from A which satisfies the constraint

set.

Let ϕ be a set of T CC constraints which contains no constraints of type 4.

Let A be a topological model such that A � ϕ.

Let us also define another set:

T′ = { s | s is a term occurring in ϕ }

T = T′ ∪ { s− | s ∈ T′ }

in this case, s− is a new term resulting from applying the closure operator −

to the term s. The set P(T) is the set of subsets of T. Where S is a set of

terms, {s1, . . . , sn},
⋂

S represents the intersection of each element of the set, i.e.

s1 ∩ · · · ∩ sn.

Now we can give a slightly different definition for the equivalence relation; let

us define an equivalence relation, ∼, on U as a ∼ b if, for all s ∈ T, a ∈ sA ⇔ b ∈

TA. Now, if G = U/ ∼, then for each equivalence class, e ∈ G, we can say that

e is defined by a set of terms, S, where S is the set of all and only those s ∈ T

such that for every point p ∈ e, p ∈ sA.

Thus, we can define a function g : G→ P(T)

g(e) = {s | ∀p ∈ e, p ∈ sA}.

which maps each equivalence class, e, to the set of terms which define e.

Because P(T) contains the sets of all possible combinations of elements of

T, we might say that it also contains the definitions for all possible equivalence

classes.

However, because P(T) contains all possible combinations of elements of T,

it also contains combinations which cannot possibly define an equivalence class.

For example, if T = {x ∩ y, x, y, (x ∩ y)−, x−, y−}, then the equivalence class

represented by the set {x} is invalid, as it is not possible, given a point p, that

p ∈ xA and p /∈ (x−)
A
. Likewise, the equivalence class represented by the set

{x ∩ y, x, (x ∩ y)−, x−} is invalid, as it is not possible, given a point, that p,

p ∈ (x ∩ y)A and p /∈ yA

CHAPTER 5. SATISFIABILITY 66

Given an element, S, of P(T), we define

Smax = S ∪ {−s | s ∈ (ϕ \ S)}.

For every element in S, Smax contains the element or the negation of the

element.

Given that S is a set of terms, saying that S is topologically consistent is

equivalent to saying that
⋂

S 6= ∅

is satisfiable. Since the above is a type 2 constraint, the problem of determining

the consistency of S is an instance of S4 -SAT (which is in the PSPACE complexity

class).

Definition 5.2.13. We say that a set of terms, S, defines an equivalence class if

and only if Smax is topologically consistent.

We will now define a set which consists of all the combinations of T which

define a valid equivalence class.

Definition 5.2.14. Given a set of terms, T, the set of all possible valid equiva-

lence classes is defined as:

Seq = { S | S ∈ P(T) and (
⋂

Smax 6= ∅) is S4 -satisfiable }.

Now, we can state that g(G) ⊆ Seq.

Let ϕ be a set of T CC constraints of types 1,2 and 3, and let Seq be the

corresponding set of all possible equivalence classes for the set of terms in ϕ. For

every model, A = 〈X,α〉, if A � ϕ then

g(f(X)) ⊆ Seq.

We can define a topological model from each subset of Seq as follows.

For each Q ∈ P(Seq):

We define a binary relation, →, on Q as follows:

S → S ′ if and only if, for all s ∈ T, s ∈ S ⇒ s− ∈ S ′

We define a closure operator, −Q, on Q as follows, where V ⊆ Q:

CHAPTER 5. SATISFIABILITY 67

V −Q = { S ′ | S → S ′ for some S ∈ V }

We define a valuation function αQ : V → P(Q), given a variable p :

αQ(p) = { S ∈ Q | p ∈ S }.

Definition 5.2.15. Thus, we define a set of topological models generated from

Seq as

T = { 〈Q,αQ〉 | Q ∈ P(Seq) }.

Given a set, ϕ, of T CC constraints of types 1,2 and 3, if ϕ is satisfiable, then

there exists a A ∈ T such that A � ϕ.

The satisfiability of T CC formulae containing types 1, 2 and 3 constraints is

defined in definition 5.2.2.

Type 4 Constraint Removal

So far, we are still not able to decide the satisfiability of a set of constraints

containing type 4 constraints, that is, a constraint of the form:

c>k(s).

The following lemma is presented as an example in [PH01b]; however, it cannot

be accomplished in polynomial time; a more complicated method, which can be

accomplished in polynomial time, is also described in the paper.

Let z1, . . . , zk be variables not occurring in the term s, then:

Lemma 5.2.16. The formula c>k(s) is equisatisfiable with the formula ϕ given

by:

s =
⋃

16i6k

zi ∧
∧

16i6k

zi 6= ∅ ∧
∧

16i<j6k

s ∩ zi
− ∩ zj

− = ∅

Proof. This is proved in [PH01b].

So, we can determine satisfiability of T CC formulae in NEXP time. First, we

have shown that if a set of constraints is topologically satisfiable, then they are

satisfiable in a finite model. Then we have shown how to build a set of ‘candidate’

models for the set of constraints. These models are of exponential size (22|ϕ|) to

CHAPTER 5. SATISFIABILITY 68

the set of constraints, and can be tested for satisfiability (in exponential time). If

a model is found which satisfies the constraint set, then the whole T CC constraint

set is, obviously, satisfiable.

When we compare the T CC language with the T language, we can see that

syntactically, the T CC language is the same language with the addition of the

component counting constraints. But, we also see that the addition of this added

expressiveness comes with a large increase in complexity - from PSPACE to NEX-

PTIME. Indeed, if we take the T CC language, but remove the ability for the

connectedness predicate to specify a number of components (we may call this the

T C language), then the satisfiability problem of this language is in EXPTIME

(see [KPHWZ08] for details and proof).

It is also interesting to compare the different methods for solving the re-

spective satisfiability problems for T CC and T . The satisfiability problem of

the T language in Subsection 5.1.2 was simply shown to be equivalent to the

S4 -satisfiability problem. In a sense, this translation to modal logic cuts many

topological links, and certainly makes it harder to expand the language with more

topological constraints. On the other hand, the T CC-satisfiability problem was

solved in a way which remains grounded in topology - thus, adding topological

constraints (in this case, for component counting) was much more straightfor-

ward.

It should also be noted that the results for both these languages are for when

they are interpreted over arbitrary subsets of a topological space. We currently

have no results regarding the complexity of these logics when restricted to subsets

of the Euclidean plane.

Now we shall examine languages which are restrictions of T , starting with one

which is a fragment of the undecidable first order theory of BCAs (see Chapter 4).

5.3 Boolean Contact Algebras

Let us now define another restricted spatial logic, which we will call BC. The lan-

guage BC has only one binary predicate, C, a contact relation (see Section 4.1.4),

which may hold between Boolean combinations of variables.

Definition 5.3.1. We define the terms of BC as follows.

1. Every variable is a term.

CHAPTER 5. SATISFIABILITY 69

2. If s is a term, so is −s.

3. If s and t are terms, so are s ∩ t and s ∪ t.

The domain U of this language are the regular open (or regular closed) subsets

of a topological space X, and we let α be a function mapping variables to elements

of the U , as with T . The interpretation α is extended over the connectives −, ∪

and ∩ as it is with T . We define the constraints of BC as follows.

Definition 5.3.2. If s and t are terms, then s = t is a constraint, so is s 6= t,

and so is C(s, t).

We interpret the C predicate as a standard topological contact relation. Since

the contact relation can be expressed by the T constraint s− ∩ t− 6= ∅, we can

easily see that BC is a restriction of T . Note that since the variables of BC range

over regular closed or open sets, every BC term s would be represented by the

T term s◦− (for regular closed) or s−
◦

(for regular open). This is extended over

Boolean connectives in the obvious way.

Moreover, the theory of the BC language over regular open (or regular closed)

subsets of a topological space is equivalent to the existential theory of BCAs. That

is, the theory of the language of BCAs where every variable is implicitly taken to

be existentially quantified.

Now, we introduce three more spatial logics, one of whom, called BRCC8, is

equivalent to BC and which has some complexity results which allow us to easily

achieve complexity results for BC.

5.3.1 Region Connection Calculus

With the aim of developing a spatial counterpart to Allen’s interval algebra,

Randell et al. developed Clarke’s ‘calculus of individuals based on connection’

[Cla81], into the Region Connection Calculus. Influenced by Hayes’s näıve physics

[Hay79], the RCC aimed to provide a framework for spatial reasoning using re-

gions instead of points as the primitive entity. The intention of taking regions

as primitive is to create a system which corresponds much closer to the human

perception of space and in particular, to jettison the ‘tricky’ notion of points in

a space.

The language of the RCC is simply first order logic with a single binary

‘contact’ predicate C. A set of axioms was also provided for the RCC language

CHAPTER 5. SATISFIABILITY 70

P : {(u, v) ∈ RC(R2) | ∀w ∈ RC(R2), C(w, u) =⇒ C(w, v)}
PP : {(u, v) ∈ RC(R2) | P (u, v) and ¬P (v, u)}
O : {(u, v) ∈ RC(R2) | ∃w ∈ RC(R2) s.t. P (w, u) and P (w, v)}

Table 5.1: Three relations definable in terms of contact.

which corresponds to the BCA0-4 axioms, together with the (Ext) and (Con)

axioms (see Definition 4.1.10). As a result, Theorem 4.1.14 means that we have

the following completeness theorem for RCC.

Theorem 5.3.3. The axioms for RCC are complete with respect to the class of

dense substructures of regular closed algebras of weakly regular T1 spaces with the

standard contact relation.

However, for our purposes, we are only interested in the RCC language. Al-

though the intention with RCC was to avoid point set topology, we can view the

contact predicate as being interpreted over the relation which includes all pairs

of regions whose closures have a non-empty intersection.

The language of the RCC is known to be undecidable over a number of do-

mains, including RO(R2) and ROP (R2) ([Dor98]). As mentioned previously,

RCC was developed in order to provide a spatial counterpart to Allen’s interval

algebra and, with this in mind, a particular fragment of RCC called RCC8 was

proposed.

RCC8

Let us now formally define a ‘contact’ relation over the set of regular closed

subsets of R
2.

C = {(u, v) ∈ RC(R2) | u ∩ v 6= ∅}

Using this contact relation we can define more specific relations, and we can

see in Table 5.1 how we can define relations representing the mereotopological

relations part-of (P), proper part-of (PP), and overlaps (O). These relations,

together with the C relation, allow the definition of a further eight more specific

relations as defined in Table 5.2 (the names stand for disconnected, external con-

tact, partial overlap, equality, tangential proper part, and non-tangential proper

part, respectively). These eight relations have direct parallels in the eight rela-

tions Egenhofer defines in [Ege91]; DC is ‘disjoint’, EQ is ‘equal’, NTPP is

‘inside’, TPP is ‘covered’, EC is ‘meet’ and PO is ‘overlap’. The language

CHAPTER 5. SATISFIABILITY 71

DC : {(u, v) ∈ RC(R2) | ¬C(u, v)}
EC : {(u, v) ∈ RC(R2) | C(u, v) and ¬O(u, v)}
PO : {(u, v) ∈ RC(R2) | O(u, v) and ¬P (u, v) and ¬P (v, u)}
EQ : {(u, v) ∈ RC(R2) | P (u, v) and P (v, u)}

TPP : {(u, v) ∈ RC(R2) | PP (u, v) and ∃w ∈ RC(R2) s.t. (EC(w, u) and EC(w, v))}
TPP−1 : {(u, v) ∈ RC(R2) | TPP (v, u)}
NTPP : {(u, v) ∈ RC(R2) | PP (u, v) and ¬∃w ∈ RC(R2) s.t. (EC(w, u) and EC(w, v))}

NTPP−1 : {(u, v) ∈ RC(R2) | NTPP (v, u)}

Table 5.2: The eight RCC8 relations.

whose formulae consist of conjunctions of disjunctions of predicates which are

interpreted as the relations in Table 5.2, over existentially quantified variables, is

called RCC8.

It is trivial to see that the RCC8 relations can all be expressed in terms of T

formulae, as follows.

DC(xi, xj) = (xi ∩ xj) = ⊥

EC(xi, xj) = (xi ∩ xj) 6= ⊥ ∧ (x◦i ∩ x
◦
j) = ⊥

PO(xi, xj) = (x◦i ∩ x
◦
j) 6= ⊥ ∧ (x◦i ∩ ¬xj) 6= ⊥ ∧

(¬xi ∩ x
◦
j) 6= ⊥

EQ(xi, xj) = (xi ↔ xj) = >

TPP (xi, xj) = (¬xi ∩ xj) = > ∧ (xi ∩ (¬xj)
−) 6= ⊥∧

(¬xi ∩ xj) 6= ⊥

NTPP (xi, xj) = (¬xi ∩ x
◦
j) = > ∧ (¬xi ∩ xj) 6= ⊥

We will return to the RCC8 language in Chapter 6, but for now we introduce

an expansion of RCC8.

5.3.2 BRCC8

Wolter and Zakharyaschev [WZ00] extend the RCC8 language, interpreted over

RC(R2), to allow predicates to hold between Boolean combinations of regions.

They call this language BRCC8. We can state, for instance, that the intersection

of x and y overlaps with z, “PO(x∩ y, z)”, or that the complement of x is a non-

tangential proper part of y, “NTPP (−x, y)”. Note that this allows the whole

space >, and the empty region ⊥ to feature in BRCC8 formulae. Here is an

example of what we can express in BRCC8.

CHAPTER 5. SATISFIABILITY 72

Example 5.3.4. Let x, y, z be variables.

TPP (x, y) ∧ EQ(−x,−y ∪ z) ∧DC(−y, z)∧

¬EQ(x,⊥) ∧ ¬EQ(y,⊥) ∧ ¬EQ(z,⊥)

¬EQ(x,>) ∧ ¬EQ(y,>) ∧ ¬EQ(z,>)

In any model of this formula, the region z is mapped to will be a hole of the

region y is mapped to.

We can easily express BC constraints in terms of BRCC8 constraints, since

C(s, t) ≡ ¬DC(s, t), s = t ≡ EQ(s, t), and s 6= t ≡ ¬EQ(s, t). And we can easily

express BRCC8 constraints in terms of BC constraints, as follows (for regular open

subsets of a topological space).

DC(s, t) ≡ ¬C(s, t)

PO(s, t) ≡ s ∩ t 6= ⊥ ∧ s ∩ −t 6= ⊥ ∧−s ∩ t 6= ⊥

EC(s, t) ≡ C(s, t) ∧ s ∩ t = ⊥

TPP (s, t) ≡ s ⊂ t ∧ C(s,−t) ∧ s 6= t

NTPP (s, t) ≡ s ⊂ t ∧ ¬C(s,−t) ∧ s 6= t

EQ(s, t) ≡ s = t

For regular closed subsets of a topological space, the translation is identical except

for the following cases.

PO(s, t) ≡ s ∩ t 6= ⊥ ∧ s ∩ −t 6= ⊥ ∧−s ∩ t 6= ⊥ ∧ ¬EC(s, t)

EC(s, t) ≡ C(s, t) ∧ −s ∪ −t = >

This language is less expressive than T , and as a result, we can achieve an

NP-completeness result. We are also interested in the effect that interpreting

spatial logics over the Euclidean plane has on the complexity of those spatial

logics. In the case of BRCC8, the complexity rises from NP-complete, as we shall

see. Consider the following example (from [WZ00]).

Example 5.3.5. Consider the following BRCC8 formula.

ϕ =EQ(x1 ∪ x2, x3) ∧NTPP (x1, x3) ∧NTPP (x2, x3)∧

¬EQ(x3,>) ∧ ¬EQ(x1,⊥) ∧ ¬EQ(x2,⊥) ∧ ¬EQ(x3,⊥)

CHAPTER 5. SATISFIABILITY 73

The formula ϕ can be satisfied in the discrete topological space consisting of

three points {p1, p2, p3}, with the identity function as interior operator. If we

map the variables x1 and x2 to {p1} and {p2}, respectively, and map the variable

x3 to {p1, p2}, then we can see, by the definition of the EQ and NTPP relations,

that this assignment satisfies this formula. Now, suppose that ϕ has a model α

in a topological space 〈X,U〉. The region α(x1)∪α(x2) is included in the interior

of α(x3). On the other hand, it coincides with α(x3). Hence α(x3) is both closed

and open. It follows that X is the union of two disjoint non-empty open sets,

α(x3) and X \α(x3), so 〈X,U〉 is not connected. So, ϕ is not satisfiable in R
n for

any n ≥ 1.

So, now we will present an outline of the NP-completeness for BRCC8 over

subsets of a topological space (and PSPACE for subsets of the Euclidean plane).

We must preserve the fact that variables range over the domain of the regular

closed subsets of R
2. So, where xi is a variable, and s and t are terms (or Boolean

combinations of variables), we extend the translation as follows.

1. (xi)
∗ = pi,

2. (−s)∗ = 32¬s∗,

3. (s ∪ t)∗ = 32(s∗ ∨ t∗),

4. (s ∩ t)∗ = 32(s∗ ∧ t∗).

Now, we will show how the BRCC8 relations can be expressed in S4U . For

each BRCC8 relation P (s, t), we associate a translated formula (P (s, t))∗, defined

as follows (where s and t are terms).

(DC(s, t))∗ = ¬∃(s∗ ∧ t∗)

(EC(s, t))∗ = ∃(s∗ ∧ t∗) ∧ ¬∃(2s∗ ∧ 2t∗)

(PO(s, t))∗ = ∃(2s∗ ∧ 2t∗) ∧ ∃(2s∗ ∧ ¬t∗) ∧ ∃(¬s∗ ∧ 2t∗)

(EQ(s, t))∗ = ∀(s∗ ↔ t∗)

(TPP (s, t))∗ = ∀(¬s∗ ∧ t∗) ∧ ∃(s∗ ∧ 3¬t∗) ∧ ∃(¬s∗ ∧ t∗)

(NTPP (s, t))∗ = ∀(¬s∗ ∧ 2t∗) ∧ ∃(¬s∗ ∧ t∗)

These obviously follow the translation which was proved correct in Corol-

lary 5.1.14. Given a BRCC8 formula, ϕ, we denote the result of replacing each

occurrence of an BRCC8 relation P (s, t) with its translation (P (s, t))∗ by ϕ∗. We

CHAPTER 5. SATISFIABILITY 74

translate a conjunction of BRCC8 formulae ϕ as follows.

ϕ† = ϕ∗ ∧
∧

xi∈var(ϕ)

(pi ⇔ 32pi)

A demonstration of NP-completeness for satisfiability of BRCC8 in arbitrary

topological spaces is given in [WZ00], however this does not hold for connected

topological spaces, and therefore neither for R
2 (see Example 5.3.5). We will

now give an outline of the proof that the satisfiability problem of BRCC8 in the

Euclidean plane (as a consequence for R
n where n ≥ 1) is still decidable. The

complexity grows from NP-complete up to PSPACE.

Definition 5.3.6. A partial order 〈V, S〉 is of depth ≤ 1 if and only if V can be

represented as the disjoint union of two sets, V1 and V0, in such a way that S is

the reflexive closure of a subset of V1 × V0. The points in Vi are said to be of

depth i.

The width of a partial order is the maximum number of successors any element

may have (via the ordering).

Definition 5.3.7. A partial order of depth ≤ 1 and width ≤ 2 is called a quasi-

saw, and a Kripke model based on a quasisaw is called a quasisaw model.

Definition 5.3.8. A frame F = 〈W,�〉 is connected if, for any two points

x, y ∈ W we have x(�∪�−1)→y, where x(�∪�−1)→y is the transitive closure

of the relation � ∪ �−1.

The following lemmas and theorems are taken from Wolter & Zakharyaschev

[WZ00]. Only outlines of the full proofs are presented here; the reader is referred

to the source in the event that more information is required.

Lemma 5.3.9. Every S4U-formula satisfiable in a connected topological space is

satisfiable in a finite connected frame.

Proof. Given an S4U -formula ϕ and a topological model A = (X,U , α), we build

a frame, which is shown to be connected if A is connected, and which satisfies ϕ.

First we partition the topological space with an equivalence relation ∼ on X.

We take v ∼ w if and only if for every subformula ψ of ϕ, we have v ∈ ψA if

and only if w ∈ ψA. Let W = {[v] : v ∈ u} where [v] = {w : w ∼ v}. Let

� = {([v], [w]) : for every subformula 2ψ of ϕ, w ∈ (2ψ)A whenever v ∈ (2ψ)A

}.

CHAPTER 5. SATISFIABILITY 75

It should be clear that F = 〈W,�〉 is an S4 Kripke frame; i.e. � is reflexive

and transitive. Furthermore, F is connected if A is connected, and it can be

shown that the formula ϕ is satisfiable in F.

Lemma 5.3.10. If a BRCC8 formula ϕ is satisfiable in a finite connected frame,

then the translated formula ϕ† is satisfiable in a finite quasisaw model.

Proof. We can construct a partial order F of depth ≤ 1 which satisfies ϕ, under

some valuation η, such that F is connected, and every point of depth 1 has at

least two proper successors.

Let X be the set of all pairs {x, y} of distinct points of F of depth 0, for which

there is a z ∈ W with z�x and z�y. For each {x, y} ∈ X we make a new point

ux,y and define a new frame F′ = 〈W ′,�′〉 where W ′ = {w ∈ W : depth of w

is 0} and �′ is the reflexive closure of {(ux,y, x) : {x, y} ∈ U} and we define a

valuation function η′, for each proposition letter p, x ∈ η′(p) if and only if there

exists a y ∈ W ′ of depth 0 such that x�y and y ∈ η(p).

It can be shown that ϕ† is satisfiable in F under the valuation η′.

Theorem 5.3.11. A BRCC8 formula ϕ is satisfiable in R if and only if it is

satisfiable in a finite quasisaw of size ≤ 2c.l(ϕ), where c is some constant value

and l(ϕ) is the number of occurrences of predicate symbols in ϕ.

Proof. Given a connected topological space, like R, which satisfies ϕ, Lemma 5.3.9

shows us that there is a finite connected frame which satisfies ϕ, Lemma 5.3.10

then shows us that there is a finite saw model which satisfies ϕ.

For the other direction, Lemma 5.3.10 tells us that ϕ† is satisfied in a saw

model N, this can be transformed into a model M = 〈Z,�, v〉 which satisfies

ϕ† such that � = {(x, y) : x = y or there exists n ∈ Z with x = 2n and

y ∈ {2n−1, 2n+ 1}}. We can define η′ in R as: η′(p) =
⋃

{(2n, 2n+ 2) : 2n+ 1 ∈

η(p)} ∪ {2n : 2n ∈ η(p)} for all proposition letters p.

It can be shown that ϕ† is satisfied in the topological model (R, η′).

Because of Theorem 5.3.11, we have the following theorem:

Theorem 5.3.12. The satisfiability problem for BRCC8 formulae in R is decid-

able in PSPACE.

CHAPTER 5. SATISFIABILITY 76

Because of Savitch’s theorem, it is sufficient to present a nondeterministic

polynomial space algorithm. We present an outline of an algorithm which consists

of two parts. The first part ‘guesses’ a quasisaw model M which satisfies a

formula ϕ, and which consists of a maximum of 9l(ϕ) points, generates a new set

of sentences:

L = {¬∃ ∈ sub(ϕ) | M |= ¬∃ϕ} ∪ {pi ↔ 32pi |Xi ∈ var(ϕ)},

(where sub(ϕ) is the set of subformulae of ϕ, and var(ϕ) is the set of variables

letters which occur in ϕ) and generates a set Π of all pairs of points of depth 0

in M that are not connected by the quasisaw.

The second part of the algorithm checks if pairs from Π can be connected by a

quasisaw model with ≤ 2c.l(ϕ) points which validates L, thus meaning the original

formula ϕ is satisfiable.

Theorem 5.3.13. Satisfiability of BRCC8 formulae (interpreted over subsets of

R) is PSPACE-complete.

Proof. See [WZ00] for the proof.

These theorems have only shown decidability of the satisfiability problem of

BRCC8 formulae in R, however decidability in R
n for (n ≥ 1) coincides with

decidability in R. This may not seem intuitively correct, however it is due to

the fact that the property of internal connectedness of regions is not preserved

over the translation to modal logic. As a consequence, we also have the results

that the BC satisfiability problem over regular closed subsets of a topological

space is NP-complete, and over regular closed subsets of the Euclidean plane it

is PSPACE-complete.

5.4 Conclusion

This chapter has presented a family of related spatial logics. The language T CC is

the most expressive, with the (briefly mentioned) T C and T being simple restric-

tions of that language. These restrictions in expressiveness cause a reduction in

the complexity of the satisfiability problems for the respective languages. While

the satisfiability problem of T CC is in NEXP-time, the satisfiability problems of

T C and T are in EXP-time, and PSPACE, respectively.

CHAPTER 5. SATISFIABILITY 77

We have also looked at a restricted version of the language of BCAs, which we

called BC, which is a subset of T , and whose satisfiability problem is decidable in

NP-time. The special case of the BC satisfiability problem, where the language

is interpreted over subsets of the Euclidean plane is slightly more complex, being

PSPACE.

The following chapter begins by introducing a type of language which is a

restriction of the BC language. We are interested in the effect of these syntactic

restrictions on the computational complexity of these languages, and in particular,

what happens when we interpret them over the Euclidean plane.

Chapter 6

Topological Constraint Languages

This chapter provides two of the main contributions of this thesis, in the form

of two separate complexity results. The first is a new and simplified proof of

the NP membership of RCC8, given in Section 6.4, with Theorem 6.4.11. The

second contribution is a new complexity result for the RCC8 language with a

connectedness predicate, which is given in Section 6.4.3, with Corollary 6.4.19.

In this chapter, we continue our investigation into the effect of restricting the

syntax of a language on the computational complexity of the language. This chap-

ter introduces a particular approach to solving the topological inference problem

called constraint satisfaction. In particular, we are interested in the languages

used in these constraint satisfaction problems. Some of these languages have

been shown to be decidable, and decidable in low complexity classes. We will

investigate some of these languages which are restrictions of the T , BC language

group. First, we introduce the concept of a relation algebra.

6.1 Relation Algebras

Given a set U , a binary relation R on U is a subset of U × U (relations may

be empty). If two elements u, v ∈ U are in a relation R, we write R(u, v), as a

shorthand for 〈u, v〉 ∈ R.

Now, we will introduce two operators on relations, composition and converse.

Definition 6.1.1. The composition R ◦R′ of two binary relations is defined as:

R ◦R′ = {〈u, w〉 | ∃v[R(u, v) and R′(v, w)]}

78

CHAPTER 6. TOPOLOGICAL CONSTRAINT LANGUAGES 79

Definition 6.1.2. The converse R˘ of a binary relation is defined as:

R˘= {〈v, u〉 | R(u, v)}

Additionally, we define the following property of a set of relations:

Definition 6.1.3. A set of relations R is said to be jointly-exhaustive pairwise-

disjoint if and only if R forms a partition of U × U .

Systems of relations were first studied by de Morgan [dM64]. However, it was

Tarski [Tar41] who first defined the concept of a relation algebra.

Definition 6.1.4. A Relation algebra is a structure 〈A,+, ·,−, 0, 1, ◦, ,̆ 1′〉 where

〈A,+, ·,−, 0, 1〉 is a Boolean algebra, and the following conditions hold (for u, v, w ∈

A):

1. u ◦ (v ◦ w) = (u ◦ v) ◦ w.

2. (u+ v) ◦ w = (u ◦ w) + (v ◦ w).

3. u ◦ 1′ = u.

4. u˘̆ = u.

5. (u+ v)̆ = u˘+ v .̆

6. (u ◦ v)̆ = u˘◦ v .̆

7. (u˘◦ −(u ◦ v)) ≤ −v.

Let A be a relation algebra. If A is finite then it is, in the Boolean algebra

sense, atomic, and the structure of the relation algebra can be determined by

specifying the behaviour of the composition and converse operations. The speci-

fication of the composition operation is usually given in the form of a composition

table which is simply a two-dimensional array. The rows and columns of this ar-

ray are labelled by the atoms of the relation algebra, with the cells of the array

containing sets of the atoms.

Given a cell 〈R,R′〉 in the composition table, if the value of the cell is a set of

atoms T1, . . . , Tk (for some k ∈ N), then R ◦R′ = T1 + . . .+ Tk and the following

CHAPTER 6. TOPOLOGICAL CONSTRAINT LANGUAGES 80

hold:

∀u, v, w ∈ A (R(u, v) ∧R′(v, w) =⇒ T1(u, w) ∨ . . . ∨ Tk(u, w))

∀u, w ∈ A (Ti(u, w) =⇒ ∃v ∈ A (R(u, v) ∧ R′(v, w))) (where i ≤ k)

Now, we introduce constraint satisfaction problems and the constraint lan-

guages used to express these problems.

6.2 Constraint Satisfaction Problems

The constraint satisfaction problem is a type of automated reasoning problem

which originally arose in the field of Artifical Intelligence and was first identified

as a class of problem by Montanari [Mon74]. In general terms, a constraint satis-

faction problem is simply the problem of finding a solution to a set of constraints.

We use the term ‘constraint’ here in a very general sense. These constraints can

be of any type, but will obviously be restricted to those which are relevant to

whatever the particular domain of our problem is.

Definition 6.2.1. A constraint language is a formal language consisting of a set

of variables x1, x2, . . . together with a set of predicates P1, P2, If x1, . . . , xn

are variables and P a predicate, then we call P (x1, . . . , xn) an atom, and we

call a conjunction of atoms a constraint language formula. We call a constraint

language binary, if the predicates are all binary predicates.

Definition 6.2.2. A constraint satisfaction problem (CSP) consists of a con-

straint language C, a domain U , and a finite set of relations R defined over U .

The predicates of the constraint language are interpreted, by R, over U such that

the following conditions hold.

1. The relations in R must be non empty and pairwise disjoint.

2. The union of the relations in R is the universal relation of the domain.

3. The interpretations of the predicates of the constraint language are unions

of the elements of R.

We call a CSP binary if the constraint language is binary.

CHAPTER 6. TOPOLOGICAL CONSTRAINT LANGUAGES 81

Since the relations of a CSP must be pairwise disjoint, without loss of gener-

ality, for binary CSPs, we may assume that there is at most one predicate defined

over any pair of variables, xi, xj, in a constraint language formula, and we refer

to this predicate as Pij.

An instance of a CSP consists of a formula in the constraint language (to

be interpreted over the domain of the CSP). Let u1, . . . , un be elements of the

domain of a CSP and let the predicate P be interpreted as S, a union of relations

in R. Then, as a shorthand, we will overload P and say that P (u1, . . . , un) holds

if and only if (u1, . . . , un) ∈ S.

We call an instance of a CSP explicit if for each of its atoms, P (x1, . . . , xn),

P is interpreted as one of the elements of R.

Definition 6.2.3. A solution to an instance of a CSP is a function, α : V → U ,

mapping the variables of the formula to elements of the domain such that, if

Pi(x1, . . . , xn) is an atom of the formula, then Pi(α(x1), . . . , α(xn)) holds. If an

instance of a CSP has a solution then we say that the instance is satisfiable.

Let ϕ be an instance of a CSP, then without loss of generality we can assume

that ϕ takes the form,

ϕ =
∧

i,j≤n

Pij(xi, xj)

where ϕ involves n variables. Now we give the definition of an important property

of an instance of a constraint satisfaction problem.

Definition 6.2.4. An instance of a binary CSP is path consistent if and only if,

for all i, j, k ≤ n where Pij(xi, xj), Pik(xi, xk), and Pkj(xj, xj) are atoms of the

instance, and for all u, u′′ ∈ U where Pij(u, u
′′) holds, there exists u′ ∈ U such

that Pik(u, u′) and Pkj(u
′, u′′) hold.

Let us consider a well known example of a constraint language, the inter-

val algebra, introduced by Allen [All83]. The language of the interval algebra

consists of a finite set of variables x1, . . . , xn, a set of thirteen binary predicates

(equals, ends, during, begins, overlaps, meets, before, and their inverses) and

the Boolean connectives ∧,∨, =⇒ ,¬. The well formed formulae of this language

are those which consist of Boolean combinations of the thirteen predicates, those

predicates having a pair of variables as arguments. This language is usually inter-

preted over non-empty connected closed subsets of R, with the thirteen relations

CHAPTER 6. TOPOLOGICAL CONSTRAINT LANGUAGES 82

ends : {([q, r], [s, t]) | s < q < r = t, q, r, s, t ∈ R}
during : {([q, r], [s, t]) | q < s < t < r, q, r, s, t ∈ R}
begins : {([q, r], [s, t]) | q = s < r < t, q, r, s, t ∈ R}

overlaps : {([q, r], [s, t]) | q < s < r < t, q, r, s, t ∈ R}
meets : {([q, r], [s, t]) | q < r = s < t, q, r, s, t ∈ R}
before : {([q, r], [s, t]) | q < r < s < t, q, r, s, t ∈ R}

Table 6.1: Interval algebra relations.

being interpreted as given in Table 6.1.

The interval algebra gives us a language in which we can describe structures of

temporal intervals. The usefulness of these constraint languages is largely deter-

mined by the existence of a decision procedure for determining the satisfiability

of the instances of these CSPs. For the interval algebra, which is certainly de-

cidable, a decision procedure was provided in [All83]. This made use of some

properties of relation algebras, which we shall now look at.

6.2.1 Relation Algebras and CSPs

We can rephrase Definition 6.2.4 in terms of relation algebras.

Definition 6.2.5. An instance of a binary constraint satisfaction problem is path

consistent if and only if Pik ⊆ Pij ◦ Pjk for all i, j, k ≤ n.

Given a binary CSP with its set of relations R, if there exists a finite binary

relation algebra whose atoms are the elements of R, then the satisfiability of an

instance of this binary CSP implies the path consistency of that instance (see

[Mon74]), but not necessarily the other way around. However, for some binary

CSPs, path consistency does imply satisfiability, for example the interval algebra

over connected closed subsets of the reals (or intervals) is one of these languages.

Obviously, for these decidable constraint languages, it is important to have

an efficient way to determine path consistency. Most existing algorithms for

determining path consistency are based on the simple operation of calculating

Pik ∩ (Pij ◦ Pjk), for all i, j, k ≤ n. See Figure 6.1. This relation intersection

operation is called the triangle operation in Ladkin & Maddux [LM94]. This

operation is said to stabilize if Pik ∩ (Pij ◦ Pjk) = Pik. A constraint satisfaction

problem is obviously path consistent if every triangle operation stabilizes (that

is, Pik ∩ (Pij ◦ Pjk) = Pik, for all i, j, k ≤ n). Given an instance of a CSP, the

algorithm given by van Beek [vB92] simply performs the triangle operation on

CHAPTER 6. TOPOLOGICAL CONSTRAINT LANGUAGES 83

u w

v

R S

T

u w

v

R ∩ (T ◦ S)̆ S ∩ (R˘◦ T)

T ∩ (R ◦ S)

Figure 6.1: The triangle operation.

every tuple of variables in the formula, until each tuple stabilizes. The van Beek

algorithm computes the path consistency of an instance of a CSP in time O(n3).

However, any algorithm performing the triangle operation is only guaranteed

to terminate if the set of base relations is jointly-exhaustive pairwise-disjoint, and

is the set of atoms of a finite relation algebra. Then, Pij ◦ Pjk is a union of base

relations and Pik ∩ (Pij ◦ Pjk) is either a union of base relations or empty.

Otherwise, the triangle operation Pik∩(Pij ◦Pjk) may lead to a relation which

is not a union of base relations and the triangle operation is then not guaranteed

to terminate.

The interval algebra is jointly-exhaustive pairwise-disjoint and its relations

are the atoms of a finite relation algebra, which means that there is a decision

procedure for the path consistency (and therefore satisfiability) of interval algebra

formulae. In fact, this satisfiability problem is NP-complete [All83].

6.2.2 Algebraic Closure

We now introduce a variant of the relational composition operator called weak

composition, see [DWM01] and [Dün05].

Definition 6.2.6. Let R be a set of relations on a set U and let R,R′ ∈ R. We

define weak relational composition ◦w as follows.

R ◦w R
′ =

⋃

{T ∈ R | (R ◦R′) ∩ T 6= ∅}

As with composition, weak composition is usually specified in the form of

a table. A weak composition table is a two dimensional array whose rows and

columns are labelled by the atomic relations, with the cells of the array containing

sets of the atoms. Given a cell 〈R,R′〉 in a weak composition table, if the value of

the cell is a set of atoms T1, . . . , Tk (for some k ∈ N), then R◦wR
′ = T1 + . . .+Tk

CHAPTER 6. TOPOLOGICAL CONSTRAINT LANGUAGES 84

and the following holds.

∀u, v, w ∈ A(R(u, w) ∧ R′(w, v) =⇒ T1(u, v) ∨ . . . ∨ Tk(u, v))

We can produce an algorithm for determining the algebraic closure of an

instance of a CSP by modifying the van Beek algorithm to perform the triangle

operation with weak composition.

6.3 Topological Constraint Languages

We now introduce a particular class of constraint satisfaction problem, that of

the topological constraint satisfaction problem. We say that a CSP is a topo-

logical CSP if the relations over which the constraint language is interpreted are

topological (or mereotopological) relations. We call the languages used in these

topological CSPs, topological constraint languages.

The constraint languages used in topological CSPs are restricted forms of

spatial logic. Determining the satisfiability of the formulae of a spatial logic is

typically a very computationally complex, and sometimes impossible, task. In

Chapter 4 we saw that the first order language with only a contact relation was

undecidable. In order to make this task more practical, we need some way to

reduce the computational complexity of these languages. One way to achieve this

is to accept a reduction in the expressiveness of the languages we use.

This reduction in expressiveness can be achieved by limiting the languages in

some way. For instance by removing syntactic features, imposing conditions on

the language, or by restricting the domain of the language. All of these methods

can be effective in achieving a lower complexity for the satisfiability problem of

a language. However we focus on the removal of syntactic features from the

language and the fragments of the language this produces. We have already seen

in Chapter 4, that the highly restricted language (equivalent to S4) was decidable

in PSPACE.

Because of their inherently restricted syntax, topological constraint languages

make ideal candidates for practical applications of spatial logics. As a result they

have received considerable attention. We now look at two similar topological con-

straint languages whose satisfiability problems have been presented as topological

constraint problems.

CHAPTER 6. TOPOLOGICAL CONSTRAINT LANGUAGES 85

disjoint : {(u, v) ∈ D(R2)2 | u ∩ v = ∅}
equal : {(u, v) ∈ D(R2)2 | u = v}
inside : {(u, v) ∈ D(R2)2 | u◦ ⊂ v◦ and u∂ ∩ v∂ = ∅}
cover : {(u, v) ∈ D(R2)2 | u◦ ⊂ v◦ and u∂ ∩ v∂ 6= ∅}
meet : {(u, v) ∈ D(R2)2 | u◦ ∩ v◦ = ∅ and u ∩ v 6= ∅}

overlap : {(u, v) ∈ D(R2)2 | u◦ ∩ v◦ = ∅ and u◦ ∩ (−v)◦ 6= ∅ and (−u)◦ ∩ v◦ 6= ∅}

Table 6.2: Egenhofer topological relations.

6.3.1 Egenhofer’s Topological Relations

Egenhofer’s language was motivated specifically by a need for qualitative spatial

logics for geographical information systems. The language consists of a set of vari-

ables, eight binary predicates (disjoint, equal, inside, contains, cover, covered,

meet, and overlap) and the Boolean conjunction (∧) operator. The satisfiability

problem of this language is presented in [Ege91] as a topological constraint prob-

lem whose domain is the set of regions of the real plane homeomorphic to the

closed unit disc (which we call CD(R2)). The predicates are interpreted over the

relations given in Table 6.2. The well formed formulae of this language are simply

conjunctions of the binary constraints whose arguments are pairs of variables.

Significantly, these eight relations are the atoms of a finite relation algebra

([LY03]) which means that a path consistency algorithm using the triangle opera-

tion will terminate. Egenhofer [Ege91] presents a composition table with the aim

of providing a means of deciding the satisfiability of formulae of this language.

However, at this point we reach a problem first raised in [GPP95]. Given an

instance of Egenhofer’s topological CSP with a formula ϕ, the satisfiability of

the instance is not equivalent to the satisfiability of ϕ interpreted over CD(R2).

Take the following formula (to save on space, all pairs of variables not speci-

fied to be in meet are in the disjoint relation) with the variables A, . . . , E and

AB,AC,AD,AE,BC,

meet(A,AB) ∧meet(A,AC) ∧meet(A,AD) ∧meet(A,AE)∧

meet(B,AB) ∧meet(B,BC) ∧meet(B,BD) ∧meet(B,BE)∧

meet(C,AC) ∧meet(C,BC) ∧meet(A,CD) ∧meet(A,CE)∧

meet(D,AD) ∧meet(D,BD) ∧meet(D,CD) ∧meet(D,DE)∧

meet(E,AE) ∧meet(E,BE) ∧meet(E,CE) ∧meet(E,DE)

CHAPTER 6. TOPOLOGICAL CONSTRAINT LANGUAGES 86

Figure 6.2: The K5 graph.

DC(u, v)

u

v

EC(u, v)

u

v

TPP(u, v)

u v

TPP
−1(u, v)

v u

EQ(u, v)

u v

PO(u, v)

u

v

NTPP(u, v)

vu

NTPP
−1(u, v)

v u

Figure 6.3: The eight mereotopological relations of RCC8.

This formula is path consistent, but not satisfiable. A quick check of the composi-

tion table given in [Ege91] shows that no tuple of these relations violates the path

consistency of the formula. However, it is impossible to choose fifteen internally

connected regions in the plane such that this formula is satisfied, for the same

reason that the K5 graph (Figure 6.2) cannot be drawn in the plane such that

no edges intersect each other. The variables A,B,C,D,E can be thought of as

representing the vertices of a K5 graph, with the variables AB,AC,AD,AE, . . .

representing the edges.

It is clear for Egenhofer’s language that we have a CSP that cannot be solved

with path consistency methods. The problem is that path consistency ensures

satisfiability only for every subset of three relations of the formula of the CSP.

Because of planarity constraints in the real plane, path consistency is not suffi-

cient.

CHAPTER 6. TOPOLOGICAL CONSTRAINT LANGUAGES 87

z
x

y

Figure 6.4: Model of Formula 6.1.

6.3.2 Region Connection Calculus

The RCC8 language (from Section 5.3.1) fulfills all our conditions of being a

topological constraint language. If we interpret the RCC8 language over regular

closed subset of a topological space, interpreting the binary predicates as shown

in Figure 6.3 (over the relations given in Table 5.2), then we have the RCC8 CSP.

Note that these relations are jointly-exhaustive pairwise-disjoint. In [RCC92a],

Randell et al. observed that these eight relations are present in the relation

algebra generated by the contact relation in any RCC model. Furthermore, Renz

[Ren98] showed that, for RCC8 formulae, satisfiability over regular closed (or

open) subsets of arbitrary topological spaces coincides with satisfiability in the

Euclidean plane (in fact, in R
n for n > 1).

Unfortunately, when interpreted over the regular closed subsets of a topolog-

ical space, there is no finite relation algebra with the eight RCC8 relations as

its atoms ([LY03]). As a result, performing the triangle operation on a tuple

involving the RCC8 relations is not guaranteed to terminate, as the relational

composition operator can lead to a relation which is not a union of the RCC8

base relations. Furthermore, for the RCC8 CSP, we can easily show that path

consistency is stronger than satisfiability, by giving an example of a formula which

is satisfiable (in RC(R2)) but not path consistent. Take the following example

(from [LW06]).

Example 6.3.1.

PO(x, z) ∧ EC(x, y) ∧NTPP (y, z) (6.1)

This instance of the RCC8 CSP is clearly satisfiable (see Figure 6.4). However,

we can choose elements of the domain of this CSP, which clearly show that the

formula is not path consistent. Let u, v, w ∈ RC(R2) be pairwise disjoint, let a

be the union of u and v, and c be the union of u and w. Obviously PO(a, c)

holds. We can clearly see from Figure 6.5 that there can exist no b ∈ RC(R2)

CHAPTER 6. TOPOLOGICAL CONSTRAINT LANGUAGES 88

u

a, c

v

a

w

c

Figure 6.5: Elements of RC(R2) that are not path consistent.

such that both EC(a, b) and NTPP (b, c) hold.

If we restrict the domain to the regions homeomorphic to the closed (or open)

unit discs (CD(R2)), then the RCC8 relations are the atoms of a finite relation

algebra, [LY03]. However, over this domain, we have the same problem as we’ve

seen with Egenhofer’s language. Because of planarity constraints in the real

plane, path consistency of an instance of the RCC8 CSP (over CD(R2)) is not

equivalent to the satisfiability of the formula of that instance. It is possible that

there are also other domains that result in the RCC8 relations being atoms of a

finite relation algebra, but very few results are known.

Instead of path consistency, we can consider the weaker notion of algebraic

closure. We can compute the algebraic closure of an instance of the RCC8 CSP

by using weak composition tables of the RCC8 relations. These tables have

appeared many times in the literature (see for example [RN99]), but have usually

been mistakenly presented as proper (full) composition tables.

Given two binary relations over the domain of an instance of the RCC8 CSP,

then for any u, v, w such that R(u, v) and R′(v, w), R◦wR
′ is the set of all possible

relations which may hold between u and w. So it is clear that satisfiability of an

instance of the RCC8 CSP implies algebraic closure. But for algebraic closure to

provide a useful means of determining satisfiability for RCC8, we must also show

that algebraic closure implies satisfiability.

In Section 7 of Renz & Nebel [RN99], there is a result showing that ‘path-

consistency’ is equivalent to satisfiability for RCC8. However, the table of rela-

tions (given in [RN99], amongst other places) is not a composition table, but a

weak composition table, and what the result actually shows is that the property

of being algebraic closed is equivalent to satisfiability for a fragment of RCC8.

We will now give a very brief summary of this proof, [RN99] should be consulted

for the full proof.

First a translation is given to transform the RCC8 CSP into the S4-satisfiability

CHAPTER 6. TOPOLOGICAL CONSTRAINT LANGUAGES 89

problem which is in turn translated into a propositional logic satisfiability prob-

lem, see Bennett [Ben94]. For every instance of the RCC8 CSP we have a corre-

sponding propositional logic formula, which is satisfiable if and only if the instance

of the RCC8 CSP is satisfiable. We call the fragment of RCC8 whose formulae

translate into Horn formulae (conjunctions of clauses with at most one positive

literal), H8. We call the CSP involving only formulae which belong to H8, the

H8 CSP.

The proof then shows that, for every instance of the H8 CSP, deciding if the

instance is algebraic closed is equivalent to deciding if the instance is satisfiable.

We can convert an RCC8 formula into at most 3m (where m is the number of

constraints in the formula) H8 formulae, and if any of those H8 are satisfiable

(or path consistent), then the RCC8 formula is satisfiable. Simpler proofs of this

result have been given by Bennett [Ben97], and [Ben98], but as a result of the

theorems in Section 6.4, we are able to present a considerably simpler proof of

this result, in Theorem 6.4.13.

6.4 Complexity of RCC8

Instead of using relation algebraic techniques, we will proceed to show that the

complexity of RCC8 can be established simply, using a model theoretic approach,

simply by building a model whose size has a clear upper bound.

So, we present a decision procedure for the satisfiability problem of a restricted

fragment of RCC8, which we call E . This leads to a simple proof of the NP

completeness of the RCC8 CSP.

6.4.1 Explicit RCC8

First, we define an E formula to be a conjunction of expressions of the form

R(x, y), where R is one of

{PO,DC,EC,EQ,NTPP,NTPP−1, TPP, TPP−1,>}

and x and y are variables, and at most one relation is specified between any

(unordered) pair of variables.

If we let ϕ be an E formula and V be the set of variables in ϕ, then an

interpretation of ϕ, in a topological space X, consists of an assignment α : V →

CHAPTER 6. TOPOLOGICAL CONSTRAINT LANGUAGES 90

P(X), mapping the variables of ϕ to elements of P(X).

Now we will define precisely how the eight topological relations are interpreted

in the language.

Definition 6.4.1. Let ϕ be an E formula. We say that an interpretation α of

ϕ is a model of ϕ if and only if, for each conjunct R(x, y) of ϕ, the following

conditions hold.

1. If R is PO then α(x)◦ ∩ α(y)◦ 6= ∅, α(x)◦ ∩ (−α(y))◦ 6= ∅, and (−α(x))◦ ∩

α(y)◦ 6= ∅.

2. If R is DC then α(x)− ∩ α(y)− = ∅.

3. If R is EC then α(x)∂ ∩ α(y)∂ 6= ∅ and α(x)◦ ∩ α(y)◦ = ∅.

4. If R is EQ then α(x) = α(y).

5. if R is NTPP , α(x)◦ ⊂ α(y)◦ and α(x)∂ ∩ α(y)∂ = ∅,

6. If R is NTPP−1 then α(y)◦ ⊂ α(x)◦ and α(x)∂ ∩ α(y)∂ = ∅.

7. If R is TPP then α(x)◦ ⊂ α(y)◦ and α(x)∂ ∩ α(y)∂ 6= ∅.

8. If R is TPP−1 then α(y)◦ ⊂ α(x)◦ and α(x)∂ ∩ α(y)∂ 6= ∅.

9. If R is >, R is satisfied by any pair of variables.

If there exists a model of ϕ, then we say that ϕ is satisfiable.

We can always convert an E formula into a simplified form, as follows.

Lemma 6.4.2. Let ϕ be an E formula with variables x1, . . . , xn. We can convert

ϕ in polynomial time into an E formula of the form

∧

1≤i<j≤n

Rij(xi, xj) (6.2)

(where Rij ∈ {PO,DC,EC,NTPP, TPP,>}) with exactly the same models as

ϕ. We say that a formula of the form (6.2) is simple.

Proof. First, we consider the case where ϕ is satisfiable. Any conjuncts in ϕ

which are NTPP−1(xi, xj) can simply be replaced by the conjunct NTPP (xj, xi)

(similarly for TPP−1). If ϕ is satisfiable, then the numbering of the variables

CHAPTER 6. TOPOLOGICAL CONSTRAINT LANGUAGES 91

can always be changed such that j < i. If no relation is specified in ϕ between

variables xi and xj, then we simply add the conjunct >(xi, xj). For any conjuncts

EQ(xi, xj) in ϕ, we simply replace every occurrence of xj in ϕ with xi. The

relations DC, EC, and PO are symmetric, so can easily be changed such that

i < j, for Rij(xi, xj).

In the case that ϕ is unsatisfiable, the above changes will preserve the unsat-

isfiability of ϕ.

Definition 6.4.3. Suppose ϕ is a simple E formula and x, y are variables of ϕ.

A chain in ϕ from x to y is a sequence of conjuncts (of ϕ)

R1(x1, x2), R2(x2, x3), . . . , Rm(xm, xm+1)

where x1 = x, xm+1 = y, and Ri is either TPP or NTPP . The chain is strict if

some Ri is NTPP .

As a shorthand, we write x → y if there is a chain from x to y or if x = y,

and we write x ⇒ y if there is a strict chain from x to y.

The following properties hold in every model of an E formula.

Lemma 6.4.4. If ϕ is an E formula with a model α, then for all i, j ≤ n, if

i→ j then α(xi)
◦ ⊂ α(xj)

◦.

Lemma 6.4.5. If ϕ is an E formula with a model α, then for all i, j ≤ n, if

i⇒ j then α(xi)
∂ ∩ α(xj)

∂ = ∅.

Now we define the decision procedure for the satisfiability of E formulae.

Definition 6.4.6. We define a function Sat which takes a E formula with vari-

ables x1, . . . , xn as an argument. The function Sat returns false if:

1. there exists i, j ≤ n such that i→ j and Rij ∈ {PO,DC,EC}, or

2. there exists i, j ≤ n such that i⇒ j and Rij ∈ {TPP}, or

3. there exists i, k, l ≤ n such that i→ k, i→ l, and Rkl ∈ {DC,EC}, or

4. there exists i, j, k, l ≤ n such that (i → k and j → l) or (i → l and j → k)

and Rij ∈ {PO} and Rkl ∈ {DC,EC}, or

CHAPTER 6. TOPOLOGICAL CONSTRAINT LANGUAGES 92

5. there exists i, j, k, l ≤ n such that (i → k and j → l) or (i → l and j → k)

and Rij ∈ {EC} and Rkl ∈ {DC}, or

6. there exists i, j, k, l ≤ n such that (i⇒ k and j → l) or (i→ k and j ⇒ l) or

(i⇒ l and j → k) or (i→ l and j ⇒ k) and Rij ∈ {EC} and Rkl ∈ {EC}.

Otherwise, the function returns true.

Now we must prove the correctness of the Sat function in Definition 6.4.6.

Lemma 6.4.7. Let ϕ be a simple E formula. If ϕ is satisfiable, then Sat(ϕ) will

return true.

Proof. Assume ϕ is satisfiable. Let α be a model of ϕ. Let si = α(xi), for all i.

We see from Sat that there are exactly six situations where false may be

returned. We show that if any of these situations had occurred, then ϕ could not

have been satisfiable.

1. In this case Sat will return false if, for any i ≤ n, there exists a j such that

i → j and Rij ∈ {PO,DC,EC}. Since i → j, by Lemma 6.4.4, s◦i ⊂ s◦j .

However, if Rij is PO, s◦i ∩(−sj)
◦ 6= ∅, and if Rij is DC or EC, s◦i ∩s

◦
j = ∅.

2. In this case Sat will return false if, for any i ≤ n, there exists a j such

that i ⇒ j and Rij ∈ {TPP}. Since i ⇒ j, by Lemma 6.4.5 s∂
i ∩ s∂

j = ∅

however, since Rij is TPP , s∂
i ∩ s∂

j 6= ∅.

3. In this case Sat will return false if, for any k, l ≤ n such that Rkl ∈

{DC,EC}, there exists a i ≤ n such that i → k, l. Since Rkl is either

DC or EC, s◦k ∩ s
◦
l = ∅, but since, by Lemmas 6.4.4 & 6.4.5, s◦i ⊂ s◦k and

s◦i ⊂ s◦l , ∅ 6= s◦i ⊆ s◦k ∩ s
◦
l .

4. In this case Sat will return false if, for any k, l ≤ n such that Rkl ∈

{DC,EC}, there exists i, j ≤ n such that Rij ∈ {PO}, i→ k and j → l or

i→ l and j → k. Since Rkl is either DC or EC, s◦k ∩ s
◦
l = ∅. Without loss

of generality, we can take s◦i ⊂ s◦k and s◦j ⊂ s◦l , and therefore s◦i ∩s
◦
j ⊆ s◦k∩s

◦
l .

However, since Rij is PO, s◦i ∩ s
◦
j 6= ∅, so s◦k ∩ s

◦
l 6= ∅.

5. In this case Sat will return false if, for any k, l ≤ n such that Rkl ∈ {DC},

there exists i, j ≤ n such that Rij ∈ {EC}, i → k and j → l or i → l and

j → k. Without loss of generality, we can take s◦i ⊂ s◦k and s◦j ⊂ s◦l . Since

CHAPTER 6. TOPOLOGICAL CONSTRAINT LANGUAGES 93

Rij is EC, s∂
i ∩ s

∂
j 6= ∅. And since Rkl is DC, s−k ∩ s−l = ∅, which implies

s−i ∩ s−j = ∅, and therefore s∂
i ∩ s

∂
j = ∅.

6. In this case Sat will return false if, there exists k, l ≤ n such that Rkl ∈

{EC} and there exists i, j ≤ n such that Rij ∈ {EC}, such that i⇒ k and

j → l or i → k and j ⇒ l or i ⇒ l and j → k or i → l and j ⇒ k. As

Rkl is EC, then s◦k ∩ s
◦
l = ∅, and since Rij is EC, then s∂

i ∩ s
∂
j 6= ∅. Since

EC is symmetric, without loss of generality, we can assume that i ⇒ k,

so s◦i ⊂ s◦k and s∂
i ∩ s∂

k = ∅, and therefore s∂
i ⊂ s◦k, (s∂

i ∩ s∂
j) ⊂ s◦k, and

s∂
j ∩ s◦k 6= ∅ (because s∂

i ∩ s∂
j 6= ∅). Since s◦k is an open set s◦j ∩ s◦k 6= ∅

therefore s◦l ∩ s
◦
k 6= ∅.

Lemma 6.4.8. Let ϕ be a simple E formula. If Sat(ϕ) returns true, given ϕ as

input, then ϕ has a model in RO(R).

Proof. First, for i < j ≤ n, let s = 10((i − 1)n + (j − 1)), and we define the

following sets:

Aij = {x ∈ R | s < x < s+ 10}.

Now, for each conjunct Rij(xi, xj) of ϕ, we define Di and Dj the following

way.

A1: If Rij is PO then:

Dij = {x ∈ R | s+ 2 < x < s+ 4}

Dji = {x ∈ R | s+ 3 < x < s+ 5}

A2: If Rij is DC or > then:

Dij = {x ∈ R | s+ 2 < x < s+ 4}

Dji = {x ∈ R | s+ 6 < x < s+ 8}

A3: If Rij is EC then:

Dij = {x ∈ R | s+ 2 < x < s+ 4}

Dji = {x ∈ R | s+ 4 < x < s+ 6}

CHAPTER 6. TOPOLOGICAL CONSTRAINT LANGUAGES 94

A4: If Rij is NTPP then:

Dij = {x ∈ R | s+ 2 < x < s+ 4}

Dji = {x ∈ R | s+ 1 < x < s+ 5}

A5: If Rij is TPP then:

Dij = {x ∈ R | s+ 2 < x < s+ 4}

Dji = {x ∈ R | s+ 2 < x < s+ 5}

Aij
s t

R

PO

DC

EC

NTPP

TPP
Dij

Dji

Dij

Dji

Dij Dji

Dij

Dji

Dij

Dji

Figure 6.6: Sets produced by A1-A5, within each Aij region.

Note that Aij ∩ (Dk)− = ∅ if k 6= i and k 6= j (for all i, j, k ≤ n). Let ε = 1
n+1

.

For each i ≤ n:

Di =
⋃

j≤n

Dij

CHAPTER 6. TOPOLOGICAL CONSTRAINT LANGUAGES 95

And for each j ≤ n:

Cj = {x ∈ R | x ∈ Di and i→ j or ∃y ∈ Di where |x− y| < (j − i)ε and i⇒ j}

Then, we define an interpretation α(xi) = Ci (for all i ≤ n). We claim that α is

a model of ϕ. We show that, for all i, j (1 ≤ i < j ≤ n) the sets Ci and Cj stand

in the relation Rij. There are five cases for Rij (we can simply ignore >):

PO: We show that C◦
i ∩ C◦

j 6= ∅, C◦
i ∩ (−Cj)

◦ 6= ∅ and (−Ci)
◦ ∩ C◦

j 6= ∅.

By the definitions of Di and Dj, C
◦
i ∩ C◦

j 6= ∅ holds. Since i < j, then

C◦
i ∩(−Cj)

◦ 6= ∅ holds by the definitions of Di, Ci and Cj. And since i 9 j,

by case (1) of Sat, (Aij ∩Ci)
◦ ∩ (Aij ∩−Cj)

◦ 6= ∅ and so (−Ci)
◦ ∩C◦

j 6= ∅.

DC: We must show that C−
i ∩C−

j = ∅. Note that i 9 j, by case (1) of Sat. By

definition of Di and Dj, D
−
i ∩ D−

j = ∅. For C−
i ∩ C−

j 6= ∅ to hold, there

must exist k, l ≤ n where k → i and l → j such that either PO(xk, xl)

or EC(xk, xl) is a conjunct of ϕ. If PO(xk, xl) were a conjunct of ϕ, then

case (4) of Sat would have returned false. Likewise, if EC(xk, xl) were a

conjunct of ϕ, then case (5) of Sat would have returned false.

EC: We must show that C∂
i ∩C

∂
j 6= ∅ and C◦

i ∩C
◦
j = ∅. Trivially D∂

i ∩D
∂
j 6= ∅,

and since i 9 j, by case (1) of Sat, we can see by the definitions of Di, Dj,

Ci, and Cj, that C∂
i ∩ C∂

j 6= ∅. By definition of Di and Dj, D
◦
i ∩D

◦
j = ∅.

So, for C◦
i ∩ C◦

j 6= ∅ to hold, there must exist k, l ≤ n where k → i and

l → j such that PO(xk, xl) is a conjunct of ϕ, or where either k ⇒ i and

l → j or k → i and l ⇒ j such that EC(xk, xl) is a conjunct of ϕ. If

PO(xk, xl) were a conjunct of ϕ, then case (4) of Sat would have returned

false. If EC(xk, xl) were a conjunct of ϕ, then case (6) of Sat would have

returned false.

NTPP : We must show that C◦
i ⊂ C◦

j and C∂
i ∩ C∂

j = ∅. Since i ⇒ j (and i < j),

then for all k ≤ n if k → i, then k ⇒ j, and so by the definition of Ci

and Cj, the closure of every maximally connected component of Ci will be

contained in the interior of a maximally connected component of Cj, thus

C◦
i ⊂ C◦

j and C∂
i ∩ C∂

j = ∅.

TPP : We must show that C◦
i ⊂ C◦

j and C∂
i ∩ C∂

j 6= ∅. Since i → j (and i < j),

then for all k ≤ n if k → i, then k → j, and so by the definition of Ci

CHAPTER 6. TOPOLOGICAL CONSTRAINT LANGUAGES 96

and Cj, the interior of every maximally connected component of Ci will be

contained in the interior of a maximally connected component of Cj, thus

C◦
i ⊂ C◦

j . By the definition of Di and Dj, D
∂
i ∩D∂

j 6= ∅ and D◦
i ⊂ D◦

j . By

the definition of Cj, (Aij ∩ Cj) = Dj, and since i < j, (Aij ∩ Ci) = Di, so

(Aij ∩ Di)
∂ ∩ (Aij ∩ Dj)

∂ 6= ∅, and since (Aij ∩ Ci)
∂ ∩ (Aij ∩ Cj)

∂ ⊂ A◦
ij,

then C∂
i ∩ C∂

j 6= ∅.

We now state the main result.

Theorem 6.4.9. Given an E formula ϕ as input, Sat(ϕ) will return true if and

only if ϕ is satisfiable in RO(R2).

Proof. For the if direction, Lemma 6.4.7 shows that if ϕ is satisfiable, then Sat

will return true. For the only if direction, Lemma 6.4.8 shows that if Sat returns

true, then ϕ is satisfiable.

Theorem 6.4.10. The satisfiability problem of E over RO(R2) is in NLOGSPACE1.

Proof. We show this by reducing the Sat function to a graph reachability prob-

lem. Given a simple E formula ϕ with variables x1, . . . , xn, we define a set of

vertices V = {v1, . . . , vn} and two sets of edges as follows.

E = {(vi, vj) | NTPP (xi, xj) or TPP (xi, xj) are conjuncts of ϕ}

E ′ = {(vi, vj) | TPP (xi, xj) is a conjunct of ϕ}

Also, we define two graphs G = (V,E) and G′ = (V,E ′), and we define two

operators such that i � j if and only if vj is reachable from vi in G, and i < j

if and only if vj is reachable from vi in G, but not in G′. Now, each of the six

cases of Sat (see Definition 6.4.6) can be dealt with simply. For the first case, if

PO(xi, xj), DC(xi, xj), or EC(xi, xj) are conjuncts of ϕ, and if i � j, then the

function Sat would return false. The other cases can be dealt with similarly.

To show that this reduction can be computed in space logn, we can build a

Turing machine which, for each pair of variables i and j calculates if i � j and

i < j hold. Essentially, such a Turing machine would use four counters, two to

1This observation is thanks to R. Kontchakov.

CHAPTER 6. TOPOLOGICAL CONSTRAINT LANGUAGES 97

record i and j, another to traverse the parthood relations (TPP and NTPP) i

is involved in, and another to record whether a TPP relation has been traversed.

Since we consider at most two pairs of variables at once, in clauses 4, 5, and 6,

we need at most eight counters.

Theorem 6.4.11. The satisfiability problem of RCC8 over RO(R2) is in NP-

time.

Proof. By Corollary 6.4.10, the E satisfiability problem is in NLOGSPACE. Ev-

ery RCC8 formula is equisatisfiable with a disjunction of at most 8n2

E formulae,

where n is the number of variables in the RCC8 formula. We can nondeterminis-

tically choose one of these 8n2

E formulae, and verify if it is satisfiable - this can

be done in NP time.

Lemma 6.4.12. Given an E formula ϕ as input, if Sat(ϕ) returns false, then

ϕ is not algebraically closed.

Proof. We see from Sat that there are exactly six situations where false may

be returned. We show that if any of these situations had occurred, then ϕ can-

not be algebraically closed. For any i, j ≤ n, if i → j, then although neither

NTPP (xi, xj) nor TPP (xi, xj) may necessarily be conjuncts of ϕ, since i → j,

for the purposes of this proof we can assume that one of them is, without affecting

the satisfiability of ϕ.

1. In this case, Rij ∈ {NTPP, TPP} and Rij ∈ {PO,DC,EC}, however this

is impossible, and therefore ϕ cannot be algebraically closed.

2. In this case, Rij ∈ {NTPP} and Rij ∈ {TPP}, however this is impossible,

and therefore ϕ cannot be algebraically closed.

3. In this case, Rik ∈ {NTPP, TPP}, Ril ∈ {NTPP, TPP}, and Rkl ∈

{DC,EC}. We can see that Rli 6⊆ (Rik◦wRkl), since {NTPP−1, TPP−1} 6⊆

{DC,EC}, and therefore ϕ cannot be algebraically closed.

4. In this case either (Rik ∈ {NTPP, TPP}, Rjl ∈ {NTPP, TPP}, Rij ∈

{PO}, Rkl ∈ {DC,EC}) or (Ril ∈ {NTPP, TPP}, Rjk ∈ {NTPP, TPP},

Rij ∈ {PO}, Rkl ∈ {DC,EC}). Without loss of generality, we can consider

the case where the former set of constraints hold. The proof for the other

set of constraints is analogous. By looking at an RCC8 weak composition

CHAPTER 6. TOPOLOGICAL CONSTRAINT LANGUAGES 98

table, we can see that (Rjl ◦w Rlk) ∩ (Rji ◦w Rik) = ∅ since {DC,EC} ∩

{PO, TPP,NTPP} = ∅, and so ϕ cannot be algebraically closed.

5. In this case either (Rik ∈ {NTPP, TPP}, Rjl ∈ {NTPP, TPP}, Rij ∈

{EC}, Rkl ∈ {DC}) or (Ril ∈ {NTPP, TPP}, Rjk ∈ {NTPP, TPP},

Rij ∈ {EC}, Rkl ∈ {DC}). Without loss of generality, we can con-

sider the case where the former set of constraints hold. The proof for

the other set of constraints is analogous. By looking at an RCC8 weak

composition table, we can see that (Rjl ◦w Rlk) ∩ (Rji ◦w Rik) = ∅ since

{DC} ∩ {EC, PO, TPP,NTPP} = ∅, and so ϕ cannot be algebraically

closed.

6. In this case either (Rik ∈ {NTPP}, Rjl ∈ {NTPP, TPP}, Rij ∈ {EC},

Rkl ∈ {EC}) or (Rik ∈ {NTPP, TPP}, Rjl ∈ {NTPP}, Rij ∈ {EC},

Rkl ∈ {EC}) or (Ril ∈ {NTPP}, Rjk ∈ {NTPP, TPP}, Rij ∈ {EC},

Rkl ∈ {EC}) or (Ril ∈ {NTPP, TPP}, Rjk ∈ {NTPP}, Rij ∈ {EC},

Rkl ∈ {EC}). Without loss of generality, we can consider the case where the

former set of constraints hold. The proofs for the other sets of constraints

are analogous. By looking at an RCC8 weak composition table, we can see

that (Rjl◦wRlk)∩(Rji◦wRik) = ∅ since {DC,EC}∩{PO, TPP,NTPP} =

∅, and so ϕ cannot be algebraically closed.

Theorem 6.4.13. For the RCC8 CSP (over ROP (R2)), algebraic closure is

equivalent to satisfiability.

Proof. Satisfiability implies algebraic closure, and Lemma 6.4.12 shows that al-

gebraic closure implies satisfiability.

This result has already been provided by Renz [RN99], but the proof given here

is considerably simpler. Bennett [BIC97], and Renz [RL05] have asked questions

about the usefulness of algebraic closure and weak composition regarding the

topological inference problem. It is clear that algebraic closure cannot be shown

to be equivalent to satisfiability for some topological constraint language without

a careful examination of the relationship between the models of the language,

and the language itself.

CHAPTER 6. TOPOLOGICAL CONSTRAINT LANGUAGES 99

6.4.2 AT-graph Realizability

We now investigate a solution to the satisfiability problem of the E language by

reducing the satisfiability problem to one of AT-graph weak realizability. First,

we will examine the case of E formulae interpreted over regions homeomorphic to

the open unit discs of the real plane (we shall use the symbol OD(R2) to denote

this set).

The following lemmas and theorem are taken from [SŠ04]. Lemma 6.4.15 is

presented here in a considerably expanded form, with a few small errors corrected.

Lemma 6.4.14. Let ϕ be an E formula. If ϕ has a model in OD(R2), then ϕ

has a model in OD(R2) in which the number of contact points on the boundary

of each region is bounded by the square of the number of variables in ϕ.

Proof. The bound is a square of the number of variables, as there is potentially a

contact point for each pair of variables. The full proof can be found in [SŠ04].

Lemma 6.4.15. The satisfiability problem of E over OD(R2) NP-reduces to the

AT-graph weak realizability problem. That is, for every E formula ϕ we can in

NP compute AT-graphs (G,R) such that ϕ is satisfiable in OD(R2) if and only

if one of the (G,R) is weakly realizable.

Proof. We can assume that ϕ is in simple form (see Lemma 6.4.2). Now we

describe the structure of the AT-graphs. Firstly, the graph has vertices z,z1,z2,

and z3 which are connected to each other by edges which may not intersect any

other edges. For each variable xi of ϕ, there is a vertex ci and a circle graph Bi

with at least three vertices. For each Bi (i ≤ n) if e1, e2 are edges of Bi, then e1

may not intersect e2. For each vertex v in Bi (i ≤ n), v is connected to ci, z1,

z2, and z3 with edges which may not intersect Bi. Furthermore, for each i ≤ n,

no edge with an endpoint ci may intersect an edge with an endpoint z1, z2, or

z3. We say that a vertex v is an in-xi-witness if it does not belong to Bi and is

adjacent to ci using an edge which does not intersect Bi. We say that a vertex

v is an out-xi-witness if it does not belong to Bi and is adjacent to z1, z2, and

z3 using edges which do not intersect Bi. Now, the rest of the structure of the

(G,R) AT-graphs is determined by ϕ. For each conjunct of ϕ, Rij (which is the

relation specified to hold between variables xi and xj) which can be one of the

following six cases.

CHAPTER 6. TOPOLOGICAL CONSTRAINT LANGUAGES 100

PO: Then, Bi and Bj may share vertices and the edges of Bi may cross the edges

of Bj. Also, Bi must contain an in-xj-witness and an out-xj-witness, and

Bj must contain an in-xi-witness and an out-xi-witness.

DC: Then, Bi and Bj may not share vertices, and the edges of Bi may not cross

the edges of Bj. Also, Bi must contain an out-xj-witness, and Bj must

contain an out-xi-witness.

EC: Then, Bi and Bj must share at least one vertex, but the edges of Bi may

not cross the edges of Bj. Subtracting the vertices of Bj from Bi splits Bi

into a set of paths. Each of these paths must contain an out-xj-witness.

Similarly, Bj \ Bi splits Bj into a set of paths, each of these paths must

contain an out-xi-witness.

NTPP : Then, Bi and Bj may not share vertices, and the edges of Bi may not cross

the edges of Bj. Also, Bi must contain an in-xj-witness.

TPP : Then, Bi and Bj must share at least one vertex, but the edges of Bi may

not cross the edges of Bj. Also, Bi \ Bj splits Bi into a set of paths, each

of these paths must contain an in-xj-witness.

>: Then, Bi and Bj may share vertices and the edges of Bi may cross the edges

of Bj.

Now, we show that if such a (G,R) is realizable, then ϕ is satisfiable in

OD(R2). First, we can assume that the vertex z lies outside of the triangle z1,

z2, z3. As a result, all other vertices and edges must lie inside the triangle. For

all i ≤ n, ci must lie inside the region enclosed by Bi, with the vertices z1, z2,

and z3 being outside. Now, we define a function α which maps each variable xi to

the region enclosed by Bi. For each conjunct of ϕ we will show that the relations

hold under α.

1. For PO, since Bi contains an in-xj-witness and Bj contains an in-xi-witness,

then α(xi)
◦∩α(xj)

◦ 6= ∅, and since Bi contains an out-xj-witness, α(xi)
◦∩

(−α(xj))
◦ 6= ∅, and since Bj contains an out-xi-witness, (−α(xi))

◦ ∩

α(xj)
◦ 6= ∅.

2. For DC, since Bi and Bj may not share vertices, and since the edges of Bi

and Bj may not cross, the fact that Bi contains an out-xj-witness and that

Bj contains an out-xi-witness means that α(xi)
− ∩ α(xj)

− = ∅.

CHAPTER 6. TOPOLOGICAL CONSTRAINT LANGUAGES 101

3. For EC, recall that Bi \ Bj splits Bi into a set of paths, and each path

contains an out-xj-witness (likewise for Bj and its out-xi-witnesses), and

since the edges of Bi and Bj may not cross, then α(xi)
◦ ∩ α(xj)

◦ = ∅, and

since Bi must share at least one vertex with Bj, α(xi)
∂ ∩ α(xj)

∂ 6= ∅.

4. For NTPP , since Bi and Bj may not share vertices, and since the edges of

Bi and Bj may not cross, the fact that Bi contains an in-xj-witness means

that α(xi)
◦ ⊂ α(xj)

◦ and α(xi)
∂ ∩ α(xj)

∂ = ∅.

5. For TPP , recall that Bi \ Bj splits Bi into a set of paths, and each path

contains an in-xj-witness, and since the edges of Bi and Bj may not cross,

α(xi)
◦ ⊂ α(xj)

◦, and since Bi must share at least one vertex with Bj,

α(xi)
∂ ∩ α(xj)

∂ 6= ∅.

6. For >, since Bi and Bj may share vertices, and since the edges of Bi and

Bj may cross, there are no conditions to be violated.

So, given a weakly realizable AT-graph (G,R) which satisfies the previous condi-

tions, we can build a model of ϕ in OD(R2).

Now we show that if ϕ has a model in OD(R2), then there exists a weakly

realizable AT-graph (G,R) satisfying the previous conditions whose size is poly-

nomially bound by the number of variables in ϕ. By Lemma 6.4.14, ϕ has a

model in which the number of contact points is at most n2. We choose a region

Z which contains α(xi) (for all i ≤ n). On Z∂ , we choose three points z1, z2, and

z3, and we choose a point z from the exterior of Z, and we connect z to z1, z2,

and z3 with edges which are outside Z. We choose a point ci in each α(xi) (for

all i ≤ n), and we select at least three points (for Bi) on each α(xi)
∂ including

any contact points, (note that we can draw edges between pairs of vertices in

Bi completely contained within α(xi)
∂). We connect ci to each point in Bi with

edges contained within α(xi), and we connect each point in Bi to the points z1,

z2, and z3 with edges in Z \ α(xi). For each conjunct of ϕ we will show that we

can choose in/out witnesses such that the conditions on (G,R) hold.

1. For PO, we choose a point in α(xi)
∂ ∩ α(xj)

◦ as an in-xj-witness on Bi, a

point in α(xi)
∂∩(−α(xj))

◦ as an out-xj-witness onBi, and we choose a point

in α(xj)
∂ ∩ α(xi)

◦ as an in-xi-witness on Bj, a point in α(xj)
∂ ∩ (−α(xi))

◦

as an out-xi-witness on Bj.

CHAPTER 6. TOPOLOGICAL CONSTRAINT LANGUAGES 102

2. For DC, we choose a point in α(xi)
∂ ∩ (−α(xj))

◦ as an out-xj-witness on

Bi and a point in α(xj)
∂ ∩ (−α(xi))

◦ as an out-xi-witness on Bj. Since

α(xi)
− ∩ α(xj)

− = ∅, then Bi and Bj may not share any vertices, neither

may the edges of Bi and Bj intersect.

3. For EC, α(xi)
∂ \ α(xj)

∂ splits α(xi)
∂ into a number of connected subsets,

in each of these subsets we choose a point as an out-xj-witness, likewise

for α(xj)
∂ and out-xi-witnesses. Since α(xi) and α(xj) have at least one

contact point, Bi and Bj will share at least one vertex. By Lemma 6.4.14,

α(xi) and α(xj) have exactly one contact point, so that the edges of Bi and

Bj will not intersect.

4. For NTPP , we choose a point in α(xi)
∂ ∩ α(xj)

◦ as an in-xj-witness on

Bi. Since α(xi)
∂ ∩α(xj)

∂ = ∅, then Bi and Bj may not share any vertices,

neither may their edges intersect.

5. For TPP , α(xi)
∂ \α(xj)

∂ splits α(xi)
∂ into a number of connected subsets,

in each of these subsets we choose a point as an in-xj-witness. Since α(xi)

and α(xj) have at least one contact point, Bi and Bj will share at least one

vertex. By Lemma 6.4.14, α(xi) and α(xj) have exactly one contact point,

so that the edges of Bi and Bj will not intersect.

6. For >, no in/out witnesses are required, vertices are permitted to be shared,

and edges are permitted to cross.

So, we can see that given a model of ϕ in OD(R2), we can build a suitable weakly

realizable AT-graph (G,R).

Theorem 6.4.16. The satisfiability of an E formula over OD(R2) can be decided

in NP.

Proof. Lemma 6.4.15 allows us in NP to translate the satisfiability of E formulas

to the weak realizability of some AT-graph (G,R). So, since the weak realizability

of an AT-graph (G,R) can be decided in NP (by Theorem 3.1.23), the satisfiability

of E formulas over OD(R2) can also be decided in NP.

CHAPTER 6. TOPOLOGICAL CONSTRAINT LANGUAGES 103

6.4.3 Adding Connectedness to E

Earlier on in this chapter, we saw the T C language, which is the result of adding

a connectedness predicate to the T language, as well as a number of restricted

fragments of the T language. Although we know that adding the connectedness

predicate to T increases the complexity from PSPACE to EXP [KPHWZ08], we

have no results regarding the effect of adding this predicate to any fragments of

T .

We define the language Ec to be the result of taking the language E defined in

Chapter 5, and adding a single unary predicate c, interpreted as connectedness.

Given an Ec formula ϕ, we denote by ϕE the formula which contains only the

E-constraints from ϕ.

Note that the proof of Lemma 6.4.14 from [SŠ04] can also be simply modified

to work for Ec interpreted over ROP (R2). We now reduce the Ec satisfiability

problem over ROP (R2) to the E satisfiability problem over OD(R2). Note that

by Theorem 6.4.9, there always exists a small model of any satisfiable E formula

which has a size (the number of components) of 2n3. That is, each variable is

mapped to a region consisting of at most 2n2 components.

So, given an Ec formula ϕ, we describe a transformation of ϕ to an E formula

ϕ∗, such that ϕ is satisfiable in ROP (R2) if and only if ϕ∗ is satisfiable in OD(R2).

We start with ϕ∗ = ϕ, and we will systematically replace the conjuncts as follows.

For each i ≤ n such that c(xi) is not a conjunct of ϕ, we create m (m = 2n2) new

variables xi1 , . . . , xim . Now, for each j ≤ n such that Rij(xi, xj) or Rji(xj, xi) is

a conjunct of ϕ, we replace the conjunct as follows.

1. If Rij (or Rji) is DC, without loss of generality, we replace the conjunct

DC(xi, xj) with the following conjunction.

∧

k≤m

DC(xik , xj) ∧
∧

l<l′≤m

DC(xil , xi
l′
)

2. If Rij (or Rji) is PO, without loss of generality, we replace the conjunct

PO(xi, xj) with the following conjunction (for some k ≤ m).

PO(xik, xj) ∧
∧

k′≤m,k′ 6=k

>(xi
k′
, xj) ∧

∧

l<l′≤m

DC(xil, xi
l′
)

3. If Rij (or Rji) is EC, without loss of generality, we replace the conjunct

CHAPTER 6. TOPOLOGICAL CONSTRAINT LANGUAGES 104

EC(xi, xj) with the following conjunction (for some k ≤ m).

EC(xik , xj) ∧
∧

k′≤m,k′ 6=k

DC(xi
k′
, xj) ∧

∧

l<l′≤m

DC(xil, xi
l′
)

4. (i): If Rij is NTPP , we replace the conjunct NTPP (xi, xj) with the fol-

lowing conjunction.

∧

k≤m

NTPP (xik , xj) ∧
∧

l<l′≤m

DC(xil , xi
l′
)

(ii): If Rji is NTPP , we replace the conjunct NTPP (xj, xi) with the fol-

lowing conjunction (for some k ≤ m).

NTPP (xj, xik) ∧
∧

k′≤m,k′ 6=k

>(xj, xi
k′

) ∧
∧

l<l′≤m

DC(xil , xi
l′
)

5. (i): If Rij is TPP , we replace the conjunct TPP (xi, xj) with the following

conjunction (for some k ≤ m).

TPP (xik, xj) ∧
∧

k′≤m,k′ 6=k

NTPP (xi
k′
, xj) ∧

∧

l<l′≤m

DC(xil , xi
l′
)

(ii): If Rji is TPP , we replace the conjunct TPP (xj, xi) with the following

conjunction (for some k ≤ m).

TPP (xj, xik) ∧
∧

k′≤m,k′ 6=k

>(xj , xi
k′

) ∧
∧

l<l′≤m

DC(xil, xi
l′
)

6. If Rij (or Rji) is >, without loss of generality, we replace the conjunct

>(xi, xj) with the following conjunction.

∧

k≤m

>(xik , xj) ∧
∧

l<l′≤m

DC(xil, xi
l′
)

Lemma 6.4.17. We can transform an Ec formula ϕ in polynomial time, to an E

formula ϕ∗ such that ϕ is satisfiable in ROP (R2) if and only if ϕ∗ is satisfiable

in OD(R2).

Proof. Firstly, if we have a model of ϕ in ROP (R2), we can build a model in

CHAPTER 6. TOPOLOGICAL CONSTRAINT LANGUAGES 105

OD(R2) of ϕ∗. It is straightforward to see that for each variable xi where c(xi) is

a conjunct of ϕ, we can take an open disc subset of α(xi) such that all relations

in ϕ∗ involving xi are preserved, and assign α∗(xi) respectively to this subset.

Similarly, for each variable xj where c(xj) is not a conjunct of ϕ, we can take

a set of open disc subsets of α(xj), corresponding to each xjk
variable (where

k ≤ 2n2), such that every relation in ϕ∗ involving xjk
is preserved, and assign

α∗(xjk
) respectively to these subsets.

Secondly, if we have a model of ϕ∗, α∗, in OD(R2), we can easily produce

a model of ϕ in ROP (R2). For each i ≤ n where c(xi) is a conjunct of ϕ, we

set α(xi) = α∗(xi), and for each i ≤ n where c(xi) is not a conjunct of ϕ, we

set α(xi) =
⋃

k≤m α
∗(xik). It is straightforward to see that α is a model of ϕ in

ROP (R2).

Theorem 6.4.18. The satisfiability problem of the Ec language over ROP (R2)

is in NP time.

Proof. By Theorem 6.4.16, the satisfiability problem of the E language over

OD(R2) is decidable in NP time. By Lemma 6.4.17, we can reduce the satis-

fiability problem of the Ec language over ROP (R2) to the satisfiability problem

of the E language over OD(R2).

We can now extend this result to the language which results from adding a

unary connectedness predicate to RCC8.

Corollary 6.4.19. The satisfiability problem of RCC8 with connectedness over

ROP (R2) is in NP time.

Proof. By the same reasoning as Theorem 6.4.11, each RCC8 with connectedness

formula is equisatisfiable with at most 8n2

Ec formulae. We can nondeterministi-

cally choose one of these, and verify its satisfiability in NP time.

6.5 Conclusion

This chapter has provided two new results on the complexity of the RCC8 lan-

guage and two related languages E , and Ec.

First, this chapter introduced relation algebras, which were first introduced

by Tarski [Tar41]. Then, we introduced a class of problems involving systems of

CHAPTER 6. TOPOLOGICAL CONSTRAINT LANGUAGES 106

relations called constraint satisfaction problems. Constraint satisfaction problems

are well known in the field of computer science, and in particular in artificial intel-

ligence (see for example [Mac77]), and there have been efforts to apply techniques

for solving constraint satisfaction problems to the topological inference problem.

If we restrict our spatial logics down to languages which fulfill the requirements of

constraint languages, then the topological inference problem for these languages

becomes a constraint satisfaction problem.

There has been considerable attention paid to applying one particular tech-

nique from constraint satisfaction, called path consistency, to the topological in-

ference problem, see [RN99]. However, path consistency required a very specific

property of the system of relations, which many of these spatial logics did not

have. As a result of this, applying constraint satisfaction techniques to the topo-

logical inference problem is difficult at best. The class of topological constraint

languages is still a useful class of restricted spatial logics, however, and one which

contains a number of languages of low complexity. One of the most famous of

these topological constraint languages is called RCC8, and the second half of this

chapter gave a number of complexity results regarding this language.

First, we provide a complexity result showing a restricted fragment of RCC8,

called E , to be in NLOGSPACE, which gives a simple proof of NP-time mem-

bership for RCC8. This result allowed us to give a simple proof that the relation

algebraic property of algebraic closure can be used to determine the satisfiability

of RCC8, and although this result has appeared in [RN99], the result we present

is considerably simpler. Then, we gave a simplified and corrected version of the

proof that the complexity of E over internally connected subsets of the Euclidean

plane is NP-complete - the original proof, with minor errors, appeared in [SŠ04].

Finally, we expanded the previous proof to cover a new language Ec which in-

cludes a predicate which is interpreted as being the property of a region being

internally connected.

Chapter 7

Conclusion

This thesis has investigated the computational complexity of the satisfiability

problems of a class of spatial logics called topological constraint languages. In

order to perform automated reasoning on spatial data, we need spatial logics

whose satisfiability problems are in low complexity classes. However, spatial

logics are extremely computationally complex. First order spatial logics are typ-

ically undecidable. The expressiveness of a spatial logic is very closely linked to

its complexity. One way to achieve spatial logics with practically computable

satisfiability problems is to restrict the expressiveness of our logics. Topological

constraint languages are the result of a particular kind of syntactical restriction.

This thesis provides an introduction and survey of spatial logics and in partic-

ular, topological constraint languages, with attention to the relationship between

the constraint languages and the models of these languages. In Chapter 4 we in-

troduced an algebraic structure which incorporates a topological relation, called

a Boolean contact algebra. The starting point in this thesis for spatial logics

is the first order language of these Boolean contact algebras. We gave a proof

of the undecidability of this language, and then introduced a series of increas-

ingly stronger restrictions of the language, in the form of a group of topological

constraint languages.

In Chapter 5, we gave a survey of the approaches to solving the satisfiability

problem of various spatial logics. The strong connection between modal logic

and topology has been known since McKinsey & Tarski [MT44], and we started

with the spatial logic T which is equivalent to the modal logic S4. We gave a

simple proof of the equivalence of T and S4, and then examined a superset of T

which adds the ability to place restrictions on the number of components a region

107

CHAPTER 7. CONCLUSION 108

may have, called T CC, and gave a brief outline of its membership in the NEXP

time complexity class. Then, we looked at a languages which are progressively

stronger restrictions of T . We showed that the BRCC8 language is equivalent to

the existential theory of Boolean connection algebras, and gave an outline of the

proof of the membership of BRCC8 in NP (for arbitrary topological spaces) and

in PSPACE (for the Euclidean plane).

In Chapter 6, we introduced topological constraint languages in terms of rela-

tion algebras. We highlighted the problems associated with using techniques from

relation algebras to determine the satisfiability problems of topological constraint

languages. In particular, we explained that a property of relation algebras called

‘path consistency’ is not necessarily equivalent to the satisfiability problem for

topological constraint languages. The main result of this thesis concerns RCC8,

and a fragment of RCC8 which we call E . The formulae of RCC8 are expressible

in terms of an exponential number of E formulae, and we showed that the E

satisfiability problem is in NLOGSPACE. We also provided a very simple deci-

sion procedure for the satisfiability problem of E formulae. The NLOGSPACE

complexity result also allows us to provide an easy proof of the equivalence of a

technique similar to ‘path consistency’ of E formulae to the E satisfiability prob-

lem. We then gave a thorough and expanded proof of the NP completeness of

the E satisfiability problem over the domain of regions homeomorphic to the open

unit discs by using the string graph result given in Chapter 3. Furthermore, we

expanded on this graph theoretic result to solve the problem of a language, based

on E , which allows constraints to be made on the connectedness of regions.

7.1 Further Work

A fairly simple result can be obtained by extending Theorem 6.4.18. Instead of

simply adding a connectedness predicate to the language E , we could fairly easily

add a predicate similar to that of the T CC language, which allows component

counting. Adding such a predicate would almost certainly cause the complexity

of Ec to increase, but it may possibly still remain within NP.

Additionally, in terms of syntactic features, we have focused solely on lan-

guages with either a contact, or a connectedness predicate, using other geometric

relations would result in a whole family of different logics, see for example spatial

logics with convexity [DGC99].

CHAPTER 7. CONCLUSION 109

Many questions remain completely open, and we will only consider those

which are directly related to the content of the thesis. This thesis has had a

special emphasis on topological inference in the Euclidean plane, but many of

the complexity results regarding the satisfiability problems of spatial logics are

concerned only with arbitrary topological spaces.

In Chapter 6, we saw results regarding E over the domain of regions home-

omorphic to the open unit disc OD(R2), as well as an extension of E to allow

restrictions to be placed on the connectedness of regions, called Ec. Although the

results for E easily translate to results for RCC8, any such results for BRCC8/BC

are far from trivial. And similarly, results regarding adding a connectedness

predicate to E translate to allow the addition of the predicate to RCC8, but what

effect the addition of a connectedness predicate to BRCC8 would have on the

complexity of BRCC8 is unknown.

Another interesting area to investigate would be the expressiveness of these

spatial logics (see [PS00], [Dav06]). Adding and removing syntactic features of

a language can be a rather imprecise way of modifying these languages. A full

analysis of the effect of particular syntactic restrictions on the expressiveness of

these languages could provide additional insights into the languages, and allow

us to identify more languages in low complexity classes.

Bibliography

[All83] J. F. Allen. Maintaining knowledge about temporal intervals. Com-

mun. ACM, 26(11):832–843, 1983.

[BD07] B. Bennett and I. Düntsch. Axioms, algebras and topology. In

Handbook of Spatial Logics, chapter 3. Springer, 2007.

[BdRV01] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge

University Press, 2001.

[Ben94] B. Bennett. Spatial reasoning with propositional logic. In Proceed-

ings of the 4th International Conference on Knowledge Representa-

tion and Reasoning, pages 51–62. Morgan Kaufmann, 1994.

[Ben96] B. Bennett. Modal logics for qualitative spatial reasoning. Journal

of the Interest Group on Pure and Applied Logic, 4:23–45, 1996.

[Ben97] B. Bennett. Logical representations for automated reasoning about

spatial relationships. PhD thesis, School of Computing, The Uni-

versity of Leeds, 1997.

[Ben98] B. Bennett. Determining consistency of topological relations. Con-

straints, 3(2&3):213–225, 1998.

[BG91] L. Biacino and G. Gerla. Connection structures. Notre Dame Jour-

nal of Formal Logic, 32(2):242–247, 1991.

[BIC97] B. Bennett, A. Isli, and A.G. Cohn. When does a composition table

provide a complete and tractable proof procedure for a relational

constraint language. In Proceedings of the IJCAI-97 workshop on

Spatial and Temporal Reasoning, Nagoya, Japan, 1997.

110

BIBLIOGRAPHY 111

[Cla81] B. L. Clarke. A calculus of individuals based on ’connection’. Notre

Dame Journal of Formal Logic, 22(3):204–218, 1981.

[Coo71] S. Cook. The complexity of theorem proving procedures. In Proceed-

ings of the Third Annual ACM Symposium on Theory of Computing,

pages 151–158, 1971.

[Dav06] E. Davis. The expressivity of quantifying over regions. Journal of

Logic and Computation, 16(6):891–916, 2006.

[DGC99] E. Davis, N. Gotts, and A. G. Cohn. Constraint networks of topo-

logical relations and convexity. Constraints, 4(3):241–280, 1999.

[dL22a] T. de Laguna. The nature of space – i. The Journal of Philosophy,

19(15):393–407, 1922.

[dL22b] T. de Laguna. The nature of space – ii. The Journal of Philosophy,

19(16):421–440, 1922.

[dL22c] T. de Laguna. Point, line and surface as sets of solids. The Journal

of Philosophy, 19(17):449–461, 1922.

[dM64] A. de Morgan. On the syllogism: Iv, and on the logic of relations.

Transactions of the Cambridge Philosophical Society, 10:331–358,

1864.

[Dor98] C. Dornheim. Undecidability of plane polygonal mereotopology. In

L. Schubert A. Cohn and S. Shapiro, editors, Principles of Knowl-

edge Representation and Reasoning: Proceedings of the 6th Inter-

national Conference (KR’98), pages 342–353. Morgan Kaufmann,

1998.

[Dün05] I. Düntsch. Relation algebras and their application in temporal and

spatial reasoning. Artificial Intelligence Review, 23:315–357, 2005.

[DW05] I. Düntsch and M. Winter. A representation theorem for boolean

contact algebras. Theoretical Computer Science, 347(3):498–512,

2005.

BIBLIOGRAPHY 112

[DWM01] I. Düntsch, H. Wang, and S. McCloskey. A relation-algebraic ap-

proach to the region connection calculus. Theoretical Computer

Science, 255(1-2):63–83, 2001.

[Ege91] M. J. Egenhofer. Reasoning about binary topological relations. In

SSD ’91: Proceedings of the Second International Symposium on

Advances in Spatial Databases, pages 143–160, London, UK, 1991.

Springer-Verlag.

[GGC96] N. M Gotts, J. M. Gooday, and A. G. Cohn. A connection based

approach to common-sense topological description and reasoning.

The Monist, 79(1):51–75, 1996.

[GKPR96] L. Gasieniec, M. Karpinski, W. Plandowski, and W. Rytter. Effi-

cient algorithms for Lempel-Ziv encoding (extended abstract). In

SWAT ’96: Proceedings of the 5th Scandinavian Workshop on Algo-

rithm Theory, pages 392–403, London, UK, 1996. Springer-Verlag.

[GPP95] M. Grigni, D. Papadias, and C. H. Papadimitriou. Topological

inference. In Proceedings of the 14th International Joint Conference

on Artificial Intelligence, Montreal, pages 901–905, 1995.

[Hay79] P. J. Hayes. The naive physics manifesto. In D. Michie, editor,

Expert Systems in the Micro-Electronic Age, pages 242–270. Edin-

burgh University Press, 1979.

[HM92] J. Y. Halpern and Y. Moses. A guide to completeness and complex-

ity for modal logics of knowledge and belief. Artificial Intelligence,

54(3):319–380, 1992.

[Joh82] P. T. Johnstone. Stone Spaces. Cambridge University Press, 1982.

[Kah75] D.W. Kahn. Topology: An Introduction to the Point-Set and Alge-

braic Areas. Williams & Wilkins Company, Baltimore, 1975.

[Kel60] J. L. Kelley. General Topology. Van Nostrand, Princeton (New

Jersey, USA), 1960.

[KGK86] J. Kratochv́ıl, M. Goljan, and P. Kučera. String graphs. Rozpravy

Československ Akad. Věd Řada Mat. Př́ırod. Věd., 3(96):1–96, 1986.

BIBLIOGRAPHY 113

[Kop89] S. Koppelberg. Handbook of Boolean Algebras, volume 1. North-

Holland, Amsterdam, 1989.

[KPHWZ08] R. Kontchakov, I. Pratt-Hartmann, F. Wolter, and M. Za-

kharyaschev. Topology, connectedness, and modal logic. In Pro-

ceedings of AiML 2008, 2008.

[Kra91] J. Kratochv́ıl. String graphs. ii. recognizing string graphs is np-hard.

Journal of Combinatorial Theory, Series B, 52:67–78, 1991.

[Kri59] S. Kripke. A completeness theorem in modal logic. Journal of

Symbolic Logic, 24:1–14, 1959.

[LM94] P. B. Ladkin and R. D. Maddux. On binary constraint problems.

J. ACM, 41(3):435–469, 1994.

[LW06] S. Li and H. Wang. RCC8 binary constraint network can be con-

sistently extended. Artificial Intelligence, 170:1–18, 2006.

[LY03] S. Li and M. Ying. Region connection calculus: Its models and

composition table. Artificial Intelligence, 145:121–146, 2003.

[Mac77] A. K. Mackworth. Consistency in networks of relations. Artificial

Intelligence, 8(1):99–118, 1977.

[McK41] J. C. C. McKinsey. A solution of the decision problem for the Lewis

systems S2 and S4, with an application to topology. Journal of

Symbolic Logic, 6:117–134, 1941.

[Mon74] U. Montanari. Networks of constraints: Fundamental proper-

ties and applications to picture processing. Information Sciences,

7(2):95–132, 1974.

[MT44] J. C. C. McKinsey and A. Tarski. The algebra of topology. Annals

of Mathematics, 45:141–191, 1944.

[MT01] B. Mohar and C. Thomassen. Graphs on Surfaces. John Hopkins

University Press, Baltimore, 2001.

[New64] M. H. A. Newman. Elements of the Topology of Plane Sets of Points.

Cambridge University Press, Cambridge, 1964.

BIBLIOGRAPHY 114

[Nut99] W. Nutt. On the translation of qualitative spatial reasoning prob-

lems into modal logics. In KI ’99: Proceedings of the 23rd Annual

German Conference on Artificial Intelligence, pages 113–124, Lon-

don, UK, 1999. Springer-Verlag.

[Pap94] C. H. Papadimitriou. Computational Complexity. Addison Wesley,

1994.

[PH01a] I. Pratt-Hartmann. Empiricism and rationalism in region-based

theories of space. Fundamenta Informaticae, 46:159–186, 2001.

[PH01b] I. Pratt-Hartmann. A topological constraint language with compo-

nent counting. Journal of Applied Non-Classical Logics, 11(3-4):1–

90, 2001.

[PH07] I. Pratt-Hartmann. First-order mereotopology. In Handbook of Spa-

tial Logics, chapter 2. Springer, 2007.

[PR98] W. Plandowski and W. Rytter. Application of lempel-ziv encodings

to the solutions of word equations. In Proceedings of the 25th In-

ternational Colloquium on Automata, Languages and Programming,

volume 1443 of Lecture Notes in Computer Science, pages 731–742,

1998.

[PS00] I. Pratt and D. Schoop. Expressivity in polygonal, plane

mereotopology. Journal of Symbolic Logic, 65(2):822–838, 2000.

[PT02] J. Pach and G. Tóth. Recognizing string graphs is decidable. In

GD ’01: Revised Papers from the 9th International Symposium on

Graph Drawing, pages 247–260, London, UK, 2002. Springer-Verlag.

[RCC92a] D. A. Randell, A. G. Cohn, and Z. Cui. Computing transitivity

tables: A challenge for automated theorem provers. In D. Kapur,

editor, Proceeding of the 11th International Conference on Auto-

mated Deduction (CADE-11), volume 607 of LNAI, pages 786–790.

Springer, Saratoga Springs, NY., 1992.

[RCC92b] D. A. Randell, Z. Cui, and A. G. Cohn. A spatial logic based

on regions and connection. In Proc. 3rd Int. Conf. on Knowledge

BIBLIOGRAPHY 115

Representation and Reasoning, pages 165–176, San Mateo, 1992.

Morgan Kaufmann.

[Ren98] J. Renz. A canonical model of the region connection calculus.

In Proceedings of the 6th International Conference on Knowledge

Representation and Reasoning, pages 330–341. Morgan Kaufmann,

1998.

[RL05] J. Renz and G. Ligozat. Weak composition for qualitative spatial

and temporal reasoning. In Proceedings of the Eleventh Interna-

tional Conference on Principles and Practice of Constraint Pro-

gramming (CP’05), 2005.

[RN99] J. Renz and B. Nebel. On the complexity of qualitative spatial

reasoning: a maximal tractable fragment of the region connection

calculus. Artif. Intell., 108(1-2):69–123, 1999.

[Sch90] W. Schnyder. Embedding planar graphs on the grid. In SODA ’90:

Proceedings of the first annual ACM-SIAM symposium on Discrete

algorithms, pages 138–148, Philadelphia, PA, USA, 1990. Society

for Industrial and Applied Mathematics.

[SŠ04] M. Schaefer and D. Štefankovič;. Decidability of string graphs. J.

Comput. Syst. Sci., 68(2):319–334, 2004.

[SSŠ03] M. Schaefer, E. Sedgwick, and D. Štefankovič;. Recognizing string

graphs in np. J. Comput. Syst. Sci., 67(2):365–380, 2003.

[Tar41] A. Tarski. On the calculus of relations. The Journal of Symbolic

Logic, 6(3):73–89, 1941.

[Tar56] A. Tarski. Foundations of the geometry of solids. In Logic, Seman-

tics, Metamathematics, chapter 2, pages 24–29. Clarendon Press,

Oxford, 1956.

[vB92] P. van Beek. Reasoning about qualitative temporal information.

Artificial Intelligence, 58(1-3):297–321, 1992.

[Whi19] A. N. Whitehead. An Enquiry Concerning the Principles of Natural

Knowledge. Cambridge University Press, Cambridge, 1919.

BIBLIOGRAPHY 116

[Whi20] A. N. Whitehead. The Concept of Nature. Cambridge University

Press, Cambridge, 1920.

[Whi29] A. N. Whitehead. Process and Reality. The MacMillan Company,

New York, 1929.

[WZ00] F. Wolter and M. Zakharyaschev. Spatial reasoning in RCC-8 with

boolean region terms. In W. Horn, editor, Proceedings of the Four-

teenth European Conference on Artificial Intelligence, ECAI 2000,

Berlin, Germany, pages 244–248. IOS Press, 2000.

