
TEMPORAL

CONTROLLED NATURAL LANGUAGE

FOR

FORMAL SPECIFICATION

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Science and Engineering

2017

By

Reyadh Alluhaibi

School of Computer Science

Contents

Abstract 7

Declaration 9

Copyright 10

Acknowledgements 11

List of Abbreviations 12

1 Introduction 13

1.1 Research goals . 16

1.2 Thesis outline . 18

2 Technical Background 19

2.1 Montague Semantics . 19

2.2 Top-Down Parsing Algorithm . 27

2.3 Linear Temporal Logic (LTL) . 31

2.4 Natural Language Specifications . 34

2.5 SystemVerilog Assertions (SVA) . 36

2.6 Interval Temporal Logic . 43

3 Linguistic Background 47

3.1 Theory of Events . 47

3.2 Grammatical Aspect and Aspectual class 50

3.3 Temporal Prepositions . 58

4 Temporal Controlled Natural Language 70

4.1 The Structure of TempCNL Parsing Engine 71

4.2 Anaphora Resolution . 73

4.3 TempCNL lexicon . 76

2

4.4 TPL+ Semantics . 89

4.5 Grammar . 96

4.6 Restricted TPL+ . 135

4.7 Rewriting TPL+ Primitives . 136

5 Generating LTL and SVA from TPL+ 139

5.1 Expressiveness of FOL and LTL . 140

5.2 From TPL+ to LTL . 143

5.3 From LTL to SVA . 158

5.4 Direct Transformations . 162

5.5 Conclusion . 171

6 Evaluation 173

6.1 Dataset Collections . 173

6.2 Evaluating the TPE System for Generating SVA 178

6.3 Comparing the TPE with an Existing Tool 183

6.4 Comparing the TPE and D-TPE Systems 185

6.5 Conclusion . 187

7 Conclusion and Future Work 188

7.1 Conclusion . 188

7.2 Future Work . 190

A A list of special terms in Natural Language Specifications 202

B The TPE Grammar 204

Word Count: 42832

3

List of Tables

2.5.1 The built-in functions with their syntax. 42

3.2.1 Grammatical aspect types and their Markers in English 51

3.2.2 List of examples of verbs or verb phrases and their assignment to aspectual

classes based on Dowty (1979). 54

3.2.3 Classification of aspectual classes in Moens and Steedman (1988). 56

4.2.1 A list of anaphora-antecedent pairs. 75

4.3.1 A list of determiners with their quantification types. 77

4.3.2 The possible combinations of verb phrases with multiple auxiliaries. 78

4.3.3 Our method to select a quantified type for a verb. 86

4.3.4 The inflectional suffixes with their associated aspects. 86

4.5.1 The TPL+ syntax with their corresponding ASCII codes in SWI-Prolog. . . 107

4.5.2 Quantifier modification. 117

4.7.1 A list of common primitives which share the same meanings in SVA. 137

4.7.2 A list of some common TPL+ primitives and their simplifications. 138

5.3.1 LTL operators and their equivalent operators in SVA. 159

5.4.1 The direct rules map commonly-occurring TPL+-formulas into simpler SVA.164

6.1.1 The number of temporal prepositions that occur per sentence. 176

6.1.2 Statistical Information on Anaphora and sentence length in the both datasets.177

6.2.1 The performance of the TPE system for generating SVA. 181

6.3.1 Comparison between the TPE system and Harris (2013)’s Toolkit. 184

6.4.1 The performance results of both systems for generating SVA. 186

A.1 A list of terms and their descriptions in natural language specifications . . . 203

4

List of Figures

2.1.1 A sample grammar and the structures of some sentences that are generated

by it. 21

2.1.2 A sample annotated grammar. 24

2.1.3 Computing semantics from an annotated grammar in Figure 2.1.2. 25

2.2.1 Top-down depth-first parsing. 29

2.2.2 Simple grammar rules with left-recursive. 31

2.2.3 Simple grammar rules with non-left-recursive. 31

2.5.1 Waveform for sequence Seq1 in (7). 37

2.5.2 Waveform shows a successful match of assertion (25). 41

2.6.1 Illustrating the functions init(J, I) and fin(J, I). 44

3.2.1 Classification of aspectual classes in Bach (1986) 55

4.1.1 The TPE structure. 73

4.3.1 Extracting inflectional suffixes from verbs. 84

4.5.1 Simple grammar rules for TempCNL. 98

4.5.2 The phrase structures of sentences (148) and (149). 100

4.5.3 The structure of sentences (153) and (154), respectively. 103

4.5.4 Grammar rules for inflectional phrase. 104

4.5.5 A sample rule for the ip1 category. 104

4.5.6 Computing the sem’s value of the ip1 category using the predicates var replace

and beta. 105

4.5.7 The phrase structure of sentence (155). 106

4.5.8 Grammar rules for sentence (155). 106

4.5.9 Grammar rules for temporal noun phrases. 108

4.5.10 The phrase structures of temporal noun expressions in (157) and (156). . . 109

4.5.11 The phrase structures of temporal noun expressions in (158) and (159). . . 110

4.5.12 Grammar rules for non-temporal noun phrases. 111

4.5.13 The phrase structures of noun expressions in (160) and (161). 112

4.5.14 Grammar rules for the predicate phrase. 113

4.5.15 The structure of sentences (162) and (163), respectively. 115

5

4.5.16 The phrase structure of (164). 117

4.5.17 The phrase structure of sentence (165). 118

4.5.18 Grammar rules for inflectional phrases that consist of temporal preposition

phrases . 119

4.5.19 Closed-class lexicon for temporal prepositions with nominal complements. . 120

4.5.20 The structure of phrase (166). 122

4.5.21 The structure of phrase (167). 122

4.5.22 The structure of phrase for (168). 123

4.5.23 The phrase structures of sentences (171) and (172). 125

4.5.24 The phrase structure for the preposition after in sentence (174). 126

4.5.25 The grammar rules for temporal prepositions with clausal complements. . . 127

4.5.26 Closed-class lexicon for temporal prepositions with clausal complements. . . 128

4.5.27 The phrase structures of (178) and (179). 129

4.5.28 The phrase structure of sentence (180). 131

4.5.29 The phrase structure of a sentence coordination. 132

4.5.30 The phrase structure of a noun phrase coordination. 133

4.6.1 The phrase structure of a temporal noun coordination. 134

5.2.1 The interpretation of (199) and (200) graphically. 145

5.2.2 Illustrating the proof of rule (T1). 148

5.2.3 Illustrating the proof of rule (T2). 149

5.2.4 Illustrating the proof of rule (T3). 149

5.2.5 Illustrating the proof of rule (T4). 150

5.2.6 Illustrating the proof of rule (T5). 150

5.2.7 Illustrating the proof of rule (T7). 151

5.2.8 Illustrating the proof of rule (T8). 152

5.2.9 Illustrating the proof of rule (T9). 152

5.2.10 Illustrating the proof of rule (T10). 153

5.2.11 Illustrating the proof of rule (T11). 154

5.2.12 Illustrating the proof of rule (T12). 154

5.2.13 Illustrating the proof of rule (T13). 155

5.4.1 Our model for generating SVA from TempCNL sentences 166

5.4.2 Two cases for evaluating the SVA formulas in our two approaches. 168

5.4.3 A model for the SVA formula (211). 169

5.4.4 A model for the SVA formula (212). 169

5.4.5 A model for the SVA formula (213). 170

5.4.6 A model for the SVA formula (214). 170

6.2.1 The steps in our experimental method. 179

6

Abstract

Temporal
Controlled Natural Language

for
Formal Specification

Reyadh Alluhaibi
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2017

Formal specifications describe behaviours and properties of embedded systems within

a wide range of settings, i.e. from portable mobile devices, such as smartphones and

tablets, to large stationary installations such as MRI machines and automobiles. These

formal specifications are statements expressed in a temporal logic. Moreover, the formal

specifications help to detect problems in system requirements by verifying the correct-

ness of systems with respect to their formal specifications through automated reasoning

tools. With the growing complexity of embedded system designs, industries employ for-

mal specifications to verify the implementation of systems to reduce space, power and

costs.

In recent years, controlled natural language, which is a subset of natural language with

restricted syntax and semantics, is used to extract formal specifications from natural

language specifications for embedded systems. Controlled natural language can reduce

ambiguity and eliminate the complexity of natural language specifications. However, after

the critical analysis of existing proposals in literature with regard to generating formal

specifications from natural language specifications, we have observed that there is a lack

of scalable tools for capturing temporal constructions in natural language specifications.

This thesis presents a scalable controlled natural language for generating formal spec-

ifications from natural language specifications featuring temporal constructions. These

constructions are one of the greatest challenges in this field, since there are many obstacles

7

within the field of the temporal semantics of natural languages, such as tenses, aspects

and temporal prepositions. We examine a variety of formal semantics of temporal con-

structions in literature. However, there are still many varieties of temporal expressions in

English which these existing theories cannot account for.

Therefore, we exploit and extend an interval temporal logic, called TPL, to capture

formally a range of temporal constructions that are often featured in natural language

specifications. The logic TPL has variables which range over time-intervals and predicates

corresponding to event-types and temporal order-relations. We then construct a trans-

formation method that maps TPL into our desired formal specifications. TPL makes the

transformations from natural language descriptions to formal specification possible since

TPL has enough expressive power to deal with most temporal constructions commonly

encountered in natural language specifications. We are able to prove the translation

from TPL to formal specification theoretically. We also demonstrate the efficiency of our

method in practice, which shows enormous performance improvements in comparison to

known tools.

8

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

9

Copyright

i. The author of this thesis (including any appendices and/or schedules to this thesis)

owns certain copyright or related rights in it (the “Copyright”) and he has given

The University of Manchester certain rights to use such Copyright, including for

administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic

copy, may be made only in accordance with the Copyright, Designs and Patents

Act 1988 (as amended) and regulations issued under it or, where appropriate, in

accordance with licensing agreements which the University has from time to time.

This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other intel-

lectual property (the “Intellectual Property”) and any reproductions of copyright

works in the thesis, for example graphs and tables (“Reproductions”), which may

be described in this thesis, may not be owned by the author and may be owned by

third parties. Such Intellectual Property and Reproductions cannot and must not

be made available for use without the prior written permission of the owner(s) of

the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and com-

mercialisation of this thesis, the Copyright and any Intellectual Property and/or

Reproductions described in it may take place is available in the University IP Policy

(see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487), in any

relevant Thesis restriction declarations deposited in the University Library, The Uni-

versity Library’s regulations (see http://www.manchester.ac.uk/library/aboutus/

regulations) and in The University’s policy on presentation of Theses

10

Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisor, Dr. Ian Pratt-

Hartmann for the continuous support of my Ph.D study and related research, for his

patience, motivation, and immense knowledge. His guidance helped me at all times while

researching and writing this thesis. I could not have imagined having a better supervisor

and mentor for my Ph.D study.

I would also like to extend my gratitude to my examiners Professor Allan Ramsay and

Dr. Antony Galton for their valuable suggestions on how to improve my thesis, and those

who donated their precious time to discuss various parts of my thesis with me, especially

Adel Binbusayyis, Ayoade Adeniyi, Fabio Papacchin, Muhannad Almohaimeed, Patrick

Koopmann, Thamer Ba-Dhafari and Yizheng Zhao.

A special thanks to my family. Words cannot express how grateful I am to my mother,

and father for all of the sacrifices that you’ve made on my behalf. Your prayer for me was

what sustained me thus far. They have been my inspiration and motivation for continuing

to improve my knowledge and for moving my career forward.

At the end I would like express appreciation to my beloved wife Nuran who inspired

me and provided constant encouragement during the entire process. Finally, I would also

like to thank my three beautiful kids Salmaan, Sulaf and Safana who missed out on a lot

of Daddy time while I sought intellectual enlightenment. I thank all four of you for your

patience and love you more than you will ever know.

11

List of Abbreviations

The following is a list of various abbreviations used throughout the thesis.

ACE Attempto Controlled English

AMBA The Advanced Microcontroller Bus Architecture

CFG Context Free Grammar

CNL Controlled Natural Language

CTL Computation Tree Logic

DFA Deterministic Finite-state Automaton

DRS Discourse Representation Structures

D-TPE Direct TempCNL Parsing Engine

DSVA AMBA SVA taken from AMBA dataset for the D-TPE system

DSVA OCP SVA taken from OCP dataset for the D-TPE system

FOL First-Order Logic

ITL Interval Temporal Logic

LTL Linear Temporal Logic

LTL+ LTL with only the future operators

OCP Open Core Protocol

OWL Web Ontology Language

SVA SystemVerilog assertions

SVA AMBA SVA taken from AMBA dataset for the TPE system

SVA OCP SVA taken from OCP dataset for the TPE system

TPL Temporal Preposition Logic

TPL+ An extension of Temporal Preposition Logic

TempCNL Temporal Controlled Natural Language

TPE TempCNL Parsing Engine

12

Chapter 1

Introduction

Formal specifications are used to describe the requirements of computer hardware in di-

verse environments. They build on end-user requirements which demand consistent per-

formance, reliability, and integration of systems. Formal specifications are like processes

in some cases. If a company is planning to build a computer network, formal specifications

would be a key step in that company’s planning.

In recent years, there has been an increasing interest in formal verification techniques

(Darringer, 1988; Milne, 1993) for checking whether a design fulfils certain requirements

(properties). Verification techniques —such as theorem proving or model checking—

are used to prove or disprove the correctness of a system design with respect to formal

specifications expressed in the appropriate formal language, such as computation tree logic

(henceforth CTL), linear temporal logic (henceforth LTL) and SystemVerilog assertions

(henceforth SVA). These languages are, in effect, forms of temporal logic, which have

formed a significant research subject in hardware designs. They have a proven track-

record in industrial applications.

Most such specifications must be written manually which leads to various practical dif-

ficulties such as (i) the time spent in generating formal specifications, (ii) the number of

design errors, (iii) incomplete and inconsistent specifications, and (iv) the cost of training

13

CHAPTER 1. INTRODUCTION 14

users for writing formal specifications which require high levels of mathematical and an-

alytical skills to formulate the complexities of hardware designs such as system-on-a-chip

(SoC), the properties of the design of which is difficult to verify in clear and precise ways.

We therefore employ a so-called controlled natural language (henceforth CNL) to specify

system behaviour. CNL will help to eliminate all the previously mentioned limitations

by decreasing the time spent in generating formal specifications, reducing the number of

design errors, and identifying incomplete and inconsistent specifications in the early stages

of planning. CNL is a subset of natural language with a restricted syntax and semantics

defined by a set of syntax and semantic rules. CNL texts are processable by computer and

can be translated into formal representations such as discourse representation structures

(henceforth DRS) and first-order logic (henceforth FOL), and Web Ontology Language

(henceforth OWL). For example, Attempto Controlled English (henceforth ACE) is a

CNL introduced in Fuchs and Schwitter (1996). ACE has a tool called Attempto Parsing

Engine which helps users to represent their texts into DRS, FOL, and OWL.

CNL has been used in the areas of software and hardware specifications (e.g. Fuchs

and Schwitter, 1996; Grover et al., 2000), specifications of legal contracts (e.g. Pace and

Rosner, 2009; Wyner et al., 2016), text summaries (e.g. Kuhn et al., 2006), business rule

specifications (e.g. Ross, 2003; Bajwa et al., 2011), and interfaces to formal ontologies (e.g.

Funk et al., 2007). Any CNL must include the following vocabulary types: predefined

words (such as determiners, prepositions, conjunctions etc.) and content words (such as

nouns, verbs, adjectives, and adverbs etc.). Moreover, CNL is constructed from a grammar

which consists of a small set of syntactic and semantic rules. The syntax rules determine

the acceptable sentence structures and also avoid ambiguous or imprecise syntax. The

semantic rules define the meanings of CNL texts, which requires first controlling logical

analysis of acceptable sentence and second, solving remaining ambiguities.

Various attempts have been made to generate formal system requirements from natural

language documents such as (Clarke et al., 1986; Osborne and MacNish, 1996; Holt, 1999;

CHAPTER 1. INTRODUCTION 15

Grover et al., 2000; Lamar, 2009; Harris, 2013). However, generating formal requirements

from natural language specifications is still limited because (1) most such approaches

fail to cope with natural language specifications featuring temporal constructions such as

tenses, aspects, and temporal prepositions, and (2) hardware languages such as SVA and

LTL are less expressive than natural languages, thus, these approaches are inadequate

for handling the complexity of natural languages when they are mapped directly into

hardware languages.

Accordingly, we review several studies on providing the formal semantics for tempo-

ral expressions in natural language (e.g. Reichenbach, 1947; Prior, 1967; Davidson, 1967;

Vendler, 1967; Dowty, 1972; Steedman, 1977; Moens, 1987; Parsons, 1990; Ogihara, 1994;

Pratt and Francez, 2001). In the history of the development of the temporal representa-

tions of natural language, tense, aspect and temporal preposition phenomena have become

central issues for this area. Tense logic (Prior, 1967) was one of the first attempts to cap-

ture temporal expressions in natural language. Prior represents the meaning of sentences

as having tense based on specific points of the timeline. The definition of the timeline is

a linearly ordered set of points that is unbounded at both ends. Lyons (1977) describes

tense as a deictic category which will contain a reference to some point or period of time

that is only identifiable in the zero-point of the utterance.

The second area of temporal semantics we consider is aspect. During the last decade,

linguists such as Vendler (1967), Dowty (1972), Steedman (1977) and Moens (1987) have

worked to build a taxonomy of temporal-event descriptions to provide better descriptions

of how people describe events in our language. Vendler (1967) began the study of the

internal structure of temporal-events and the way in which language users can describe

various subparts of events based on the sentences or discourses in which they appear.

Understanding aspectual class is essential for giving us the proper interpretations for the

internal structure of temporal-events.

1.1. RESEARCH GOALS 16

The final topic in temporal semantics of natural language that we consider is tempo-

ral prepositions (such as once, until, when etc.). The temporal prepositions commonly

occur in natural language specifications. In recent years, Ogihara (1994) and Pratt and

Francez (2001) have provided formal representations for temporal prepositions in English.

Temporal prepositions express the relations between events which add a level of complex-

ity to the semantics of sentence. In another study, Pratt-Hartmann (2005) introduced

an interval temporal logic called TPL. This logic can capture formally most temporal

constructions that are described in natural language specifications. TPL is a first-order

language having variables which range over time-intervals, and predicates corresponding

to event-types and temporal order-relations.

1.1 Research goals

As mentioned above, most of the current approaches, such as (Clarke et al., 1986; Holt,

1999; Grover et al., 2000; Harris, 2013), fail to capture certain temporal constructions com-

monly occurring in natural language specifications such as aspects and temporal prepo-

sitions. Therefore, our goal in this study is to implement a CNL to generate formal

specifications from natural language specifications. Using a CNL helps reduce ambiguity

and eliminate the complexity of natural language specifications since it is constructed

with a restricted syntax and semantics.

In this study, we choose to dedicate our CNL for generating SVA which is one of the

preferred languages for writing formal specifications. SVA is a subset of SystemVerilog,

which combines hardware descriptions and formal verifications. SVA can validate the

behaviour of a design dynamically using a simulator (such as Cadence in Simulator (2005),

Modelsim in Graphics (2015), and VCS in Synopsys (2004)). SVA is a linear temporal

logic which can express complex temporal behaviours of the system designs in a concise

and accurate way.

1.1. RESEARCH GOALS 17

In order to capture the semantics of temporal constructions in natural language specifi-

cations, we will use TPL, introduced in Pratt-Hartmann (2005), since theories of natural

language temporal semantics are most naturally interval-based. Moreover, TPL is ex-

pressive enough to deal formally with the semantics of temporal constructions – such as

prepositions – in natural language specifications. However, TPL must be extended to

capture more temporal constructions in English. Using TPL with some extensions makes

the transformations from natural language specifications to SVA possible.

But translating TPL to SVA in turn leads to another difficulty, since TPL is an interval-

based logic, whereas SVA (which is essentially LTL) is a point-based logic. Such trans-

lations cause a major theoretical challenge because (1) TPL and SVA have different

syntactic and semantic notions, and (2) interval-based logics are already known to be

more expressive than point-based ones. We therefore need to find a convenient way to

express TPL into SVA.

The main contributions of this study are as follows:

• To implement a CNL that can capture temporal expressions in English.

• To extend TPL to capture more temporal constructions in English.

• To define a context-free grammar for extracting our extended TPL formulas.

• To construct transformation rules for generating SVA from our extended TPL.

• To improve the accuracy rate of generating SVA from natural language specifica-

tions, compared to existing tools.

1.2. THESIS OUTLINE 18

1.2 Thesis outline

The structure of this thesis is as follows. Chapter 2 gives technical background on Mon-

tague semantics, linear temporal logic, SystemVerilog assertions and interval temporal

logic. In Chapter 3, we present an overview of formal temporal semantics in natural

languages by explaining what methods have been developed in the literature to capture

temporal semantics from texts. In Chapter 4, we present a prototype CNL that extracts

temporal expressions from raw text. Chapter 5 provides transformation methods for

generating linear temporal logic and SystemVerilog assertions from our extended TPL.

Chapter 6 describes the evaluation of our temporal CNL for generating SystemVerilog

assertions from natural languages specifications. Finally, in Chapter 7, we conclude and

discuss future work.

Chapter 2

Technical Background

In this chapter we present the technical background that is used in the rest of the the-

sis. Section 2.1 imparts the basic concepts of Montague semantics for building semantic

representations for a fragment of English. Section 2.2 describes the top-down parsing

algorithm which will be used to parse our CNL sentences. Section 2.3 presents the syntax

and the semantics of linear temporal logic. Section 2.4 shows what sort of sentences we

are dealing with in natural language specifications. Section 2.5 presents the syntax and

the semantics of SystemVerilog assertions. In final section, we give the syntax and the

semantics of interval-temporal logic.

2.1 Montague Semantics

Montague (1974) connected the syntactic structure and semantic structure of natural

language in a way that allows for a better understanding of the semantic meanings of

sentences. Nowadays, many approaches use Montague semantics to build their semantic

representations for a fragment of English. In this section, we will show how we automat-

ically translate sentences from English into first-order logic (henceforth FOL) based on

Montague’s method which uses context free grammars (henceforth CFG) that combines

19

2.1. MONTAGUE SEMANTICS 20

typed logic with lambda abstraction.

Before we start to look at the Montague semantics in more detail, we begin by intro-

ducing CFG. The following definition is proposed by Hopcroft and Ullman (1979).

Definition 2.1.1. A context-free grammar G is a tuple (N, Σ, P, S), where N is a finite

set of non-terminal symbols such as S, NP, and VP ; Σ is a finite set of terminal symbols ;

P is a set of (phrase structure) rules of the form α → β, where α ∈ N and β is a string

of symbols from N ∪ Σ, and S ∈ N is the start symbol.

We can generate strings of the S category by recursively evaluating the rules of G as

follows. If α ∈ N is a non-terminal symbol, S1, ..., Sm ∈ N ∪ Σ and α→ S1, ..., Sm ∈ P is

a rule in G, then α evaluates to the sequence of the evaluations of S1, ..., Sm. If some Si ∈

N, 1 ≤ i ≤ m, then evaluation of Si proceeds recursively. Every terminal symbol evaluates

to itself. A string of category S is then a result of evaluating S in G. For example, Let

G1 = ({S, T,O, I}, {0, 1}, P, S), where P contains the following productions:

S → OT

S → OI

T → SI

O → 0

I → 1

The above grammar can be used to describe the set {0n1n | n ≥ 1}, and the string

“000111” is a sentence generated by G1.

For the English language, we can simply represent a grammar G = (N, Σ, P, S) via

a given a list of rules P, as shown in Figure 2.1.1, where the start symbol, in the given

example, is S. Moreover, Figure 2.1.1 shows the phrase structures of some sentences that

2.1. MONTAGUE SEMANTICS 21

are generated by this grammar.

S → NP, VP

NP → Det, N

NP → PN

VP → V, NP

Det → every|some|a
N → boy|girl

PN → John|Mary

V → loves

(a) S

NP

Det
every

N
boy

VP

V
loves

NP

Det
a

N
girl

(b) S

NP

Det
a

N
boy

VP

V
loves

NP

Det
some

N
girl

(c) S

NP

PN
John

VP

V
loves

NP

PN
Mary

(d) S

NP

PN
Mary

VP

V
loves

NP

PN
John

Figure 2.1.1: A sample grammar and the structures of some sentences that are generated
by it.

In the grammar in Figure 2.1.1, the category coressponding to the star symbol is sentence

(S), which consists of a noun phrase (NP) followed by a verb phrase (VP). The NP

consists of either a proper noun (PN) or a determiner (Det) followed by a noun (N).

Returning to the verb phrase (VP), it consists of a verb (V) followed by an NP.

Every English grammar is divided into three parts. The first part is called the syntax

which is the set of rules with non-terminal symbols on the right-hand side. The second

and third parts are called the formal lexicon and the content lexicon which both describe

the set of rules with only terminal categories on the right-hand side. The formal lexicon

has rules extracting the closed class of grammaticalised words such as every, some, a and

2.1. MONTAGUE SEMANTICS 22

not. However, the content lexicon also has rules for extracting the open classes of nouns

and verbs.

Now, let us turn to how we can extract the semantics of sentences using Montague

semantics. Montague (1974) provides an effective way to extract the meaning of frag-

ments of English into intensional logic. He makes this possible by using a context-free

grammar that combines typed logic with lambda abstraction. Montague (1974) defines

the semantics of λ-expressions for generating the semantics of sentences as follows.

Definition 2.1.2. Suppose we have a set of types, consisting of basic type e (the type of

entities) and t (the type of truth values) and functional types, where a functional type is

of the form 〈τ1, τ2〉 for some basic or functional types τ1, τ2.

Let µ be a first-order signature, and let a typed variable be a symbol not occurring in

µ which has an associated type τ .

The set of λ-expressions over a given signature µ and set T of typed variables is con-

structed recursively by the consecutive conditions:

1. Every first-order term over the signature µ and every element of T of type e is a

λ-expression of type e.

2. Every closed first-order formula over the signature µ and every element of T of type

t is a λ-expression of type t.

3. If φ is a λ-expression of type τ2, and x is a variable of type τ1 in T possibly taking

place in φ, then λx[φ] is a λ-expression of type 〈τ1, τ2〉. In this case we say that λx

binds x in φ.

4. If ψ is a λ-expression of type τ1, and φ is a λ-expression of type 〈τ1, τ2〉, then φ(ψ)

is a λ-expression of type τ2. In this condition we say that φ is applied to ψ.

2.1. MONTAGUE SEMANTICS 23

Let us now give an example of how we compute a FOL formula with λ-expressions as

follows: let q have type 〈e, t〉, let x have type e and let boy, human be unary predicates.

Then the λ-expressions λy[human(y)] and λq[∀x(boy(x) → q(x))] has types 〈e, t〉 and

〈〈e, t〉, t〉 respectively, as can be seen if we apply the latter to the former and compute the

β-reduction. We begin with

λq[∀x(boy(x)→ q(x))](λy[human(y)]),

and substitute every occurrence of q in ∀x(boy(x)→ q(x)) with λy[human(y)], to get

∀x(boy(x)→ (λy[human(y)])(x)),

This expression has another instance of λ-expression application, and thus we β-reduce

again, to obtain

∀x(boy(x)→ human(x)),

where it has type t, as required.

Observe that, to prevent any possible clashes arising from two λ-expressions containing

common variables, we assume, in every instance of β-reduction, that neither formula in-

cludes any typed variables taking place in the other. We quietly substitute any expressions

violating this case with an α-equivalent expression wherever needed.

Now, we get to Montague semantics for extracting the semantics of words in English.

We can use λ-expressions to extract the semantics of a phrase from the semantics of

its components. For instance, if John has the semantics λp[p(john)], and walks has the

semantics λx[walks(x)], then the semantics of John walks can be computed by applying

the semantics of John to the semantics of walks, to produce walks(john).

We represent the assignment of semantics to words and phrases through semantically

annotated grammars. Suppose a grammar G includes a rule of the form R → R1, R2, and

a semantically annotated version G′ of G includes a rule of the form R/ψ(φ) → R1/φ,

2.1. MONTAGUE SEMANTICS 24

R2/ψ. Then G′ is interpreted as stipulating that if R1, R2 are assigned semantics φ, ψ,

then the semantics of R are computed by applying the semantics of R2 to the semantics

of R1. The real values of φ, ψ can be computed by recursively evaluating R1, R2 by

additional annotated rules of G′. If R1 is a terminal category, then the meaning of φ is a

λ-expression.

Figure 2.1.2 shows how the grammar of Figure 2.1.1 can be annotated with compositional

semantics in this manner.

S/φ(ψ) → NP/φ, VP/ψ
NP/φ(ψ) → Det/φ,N/ψ
NP/φ → PN/φ
VP/φ(ψ) → V/φ,NP/ψ
Det/λqλp[∃x(q(x) ∧ p(x))]→ some | a
Det/λqλp[∀x(q(x)→ p(x))]→ every
N/λx[boy(x)]→ boy
N/λx[girl(x)]→ girl
PN/λp[p(john)]→ John
PN/λp[p(mary)]→ Mary
V/λsλx[s(λy[love(x, y)])]→ loves

Figure 2.1.2: A sample annotated grammar.

The rule S/φ(ψ) → NP/φ, VP/ψ in Figure 2.1.2 is interpreted as follows: a sentence

consists of a noun phrase and a verb phrase. If the meaning of the noun phrase is φ and

the meaning of the verb phrase is ψ, then the meaning of the sentence is ψ applied to φ.

Other rules are interpreted similarly. Figure 2.1.3 shows how the annotated grammar of

Figure 2.1.2 maps a range of English sentences into formulas of first-order logic.

2.1. MONTAGUE SEMANTICS 25

S

love(john,mary)

NP

PN

λp[p(john)]

VP

λx[love(x,mary)]

V

λsλx[s(λy[love(x, y)])]

NP

PN

λp[p(mary)]

(a)

S

∀x(boy(x)→ ∃x′′(girl(x′′) ∧ love(x, x′′))

NP

λp[∀x(boy(x)→ p(x))]

Det

λqλp[∀x(q(x)→ p(x))]

N

λp′[boy(p′)]

VP

λx′[∃x′′(girl(x′′) ∧ love(x′, x′′))]

V

λsλx′[s(λy[love(x′, y)])]

NP

λp[∃x′′(girl(x′′) ∧ p(x′′))]

Det

λqλp[∃x′′(q(x′′) ∧ p(x′′))]

N

λp′′[girl(p′′)]

(b)

Figure 2.1.3: Computing semantics from an annotated grammar in Figure 2.1.2.

We have shown Montague semantics that preform operations on functions and entities.

However, an alternative possibility is to use Montague semantics to preform operations

2.1. MONTAGUE SEMANTICS 26

on strings. The idea is that the λ-expressions denote functions mapping strings to strings.

For example, we might have

[[runs]] = λx[“run(”+ x + “)”].

Note that + denotes string concatenation here. Moreover, here the string x is mapped to

the concatenation of the strings “run(”, x itself and “)”. Thus,

[[runs]](“john”) = “run(”+ “john” + “)”.

= “run(john)”.

If, then

[[John]] = λp[p(“john”)],

we have

[[John]]([[runs]]) = λp[p(“john”)](λx[“run(”+ x + “)”]).

= λx[“run(”+ x + “)”](“john”).

= “run(”+ “john” + “)”.

= “run(john)”.

Similarly, if

[[every]] = λpλq[“∀x(”+p(“x”)+“→”+q (“x”)+“)”],

[[boy]] = λx′[“boy(”+x′+“)”] and

[[loves some girl]] = λx′[“∃y (girl(y) ∧ love(”+x′+“,y))”].

then we first compute the meaning of “every boy” as follows:

[[every]]([[boy]]) = λpλq[“∀x(”+p(“x”)+“→”+q(“x”)+“)”](λx′[“boy(”+ x′ +“)”]).

= λq[“∀x(”+λx′[“boy(”+ x′+“)”](“x”)+“→”+q (“x”)+“)”].

= λq[“∀x(” +“boy(”+“x”+“)”+“→”+q(“x”)+“)”].

= λq[“∀x(boy(x) →”+q (“x”)+“)”].

Secondly, we compute the meaning of “every boy loves some girl” by combining the

2.2. TOP-DOWN PARSING ALGORITHM 27

meaning of “every boy” with the meaning of “loves some girl” as follows:

[[every boy]]([[loves some girl]]) = λq[“∀x(boy(x) →”+q(“x”)+“)”](λx′[“∃y(girl(y)∧ love(”+x′+“,y))”])

= “∀x(boy(x) →”+(λx′[“∃y(girl(y)∧ love(”+x′+“,y))”]) (“x”) +“)”

= “∀x(boy(x) →”+“∃y(girl(y) ∧ love(”+“x”+“,y))”+“)”

= “∀x(boy(x) → ∃y(girl(y)∧ love(x,y)))”.

The style of semantics is conceptually less satisfying Montague’s; however, it sometimes

saves effort, as we shall see in Chapter 4.

Making a concession to informality we omit the “+”s and quotes, but writing @ for

function application. For example

[[every]] = λpλq[∀x(p@x→ q@x)],

and so on.

In summary, using Montague semantics with CFG enables us to extract the semantics

of our extended TPL formulas in a similar way, except, of course, we need to annotate

grammars with the corresponding semantics of that logic. In this section, we have shown

how to extract the semantics of a small fragment of English. Moreover, we have shown

that Montague semantics can preform operations not only on functions and objects but

also on strings. It should be borne in mind that we have presented only simple syntax

which do not include tense and aspect.

2.2 Top-Down Parsing Algorithm

Parsing (syntactic analysis) is a process that constructs automatically a syntactic structure

(i.e. parse tree) from an input sentence in terms of a given grammar and lexicon in order to

determine its grammar structure. Occasionally, the resulting syntactic analyses are used

as input to a process of semantic interpretation. There are various parsing algorithms

2.2. TOP-DOWN PARSING ALGORITHM 28

that developed in last century such as top-down parsing, bottom-up parsing, left-corner

parsing, chart parsing, and shift-reduce parsing. These algorithms can be run either using

depth-first or breadth-first search strategy.

In this thesis, we use the top-down parsing algorithm to construct the parse trees from

the input sentences in our controlled natural language as we shall see in Chapter 4. This

section describes this algorithm and how it can obtain the parse trees using depth-first

search. We will use an example sentence to illustrate and describe the way it process

sentences to produce parse trees. Finally, this section shows some limitations of the top-

down parsing algorithm in term of its performance, and how we can possibly avoid some

of these limitations.

The top-down parsing algorithm splits up a sentence into words and phrases until the

phrase structure for a given sentence is generated. The process of this algorithm starts

from top of a parse tree with the start symbol (S) and expands it downwards by employing

and expanding rules of a given grammar until it reaches the terminal symbols (Aho and

Ullman, 1972, p. 285). Top-down algorithms can produce the correct syntactic parse tree

for a sentence based on a set of grammar rules of a natural language.

We use the grammar rules in Figure 2.1.1 to parse the sentence “John loves Mary” as

shown in Figures 2.2.1 to illustrate the parsing process in the top-down algorithm using

depth-first search. Note that the parsing steps in each figure are presented using numbers

to indicate the parser’s steps.

In Figure 2.2.1, a top-down parser uses depth-first search to explore recursively the left

branch of the tree until it finds the target (which is an input word or phrase). Then, it

would explore the right branch of the tree. However, if any of the selected branches fails,

then the parser needs to backtrack and explores the alternative(s), and follows the same

strategy. A depth-first search explores one branch at a time. As shown in Figure 2.2.1,

after the root (S) of the parse tree is constructed, the search goes down to the left branch

first, which toward the NP category since it is the first element of the S category in the

2.2.
T
O
P
-D

O
W

N
P
A
R
S
IN

G
A
L
G
O
R
IT

H
M

29

S
1.

S

NP

2.
S

NP

PN

3.
S

NP

PN

John

4.
S

NP

PN

John

VP

5.

S

NP

PN

John

VP

V

6.
S

NP

PN

John

VP

V

loves

7.
S

NP

PN

John

VP

V

loves

NP

8.
S

NP

PN

John

VP

V

loves

NP

PN

9.
S

NP

PN

John

VP

V

loves

NP

PN

Mary

10.

Figure 2.2.1: Top-down depth-first parsing.

2.2. TOP-DOWN PARSING ALGORITHM 30

grammar rules in Figure 2.1.1. Therefore, the parser creates a new partial parse tree as

shown in 2.2.1(2). Next, the search continues going down further deep into the lower level

by processing the PN category based on the grammar rules in 2.1.1. The PN category is

a pre-terminal category which consists the word “John” on its right-hand side. At this

stage, the search reaches the first word of the given sentence. Now, we move to the right

branch of the root (S) of the parse tree and follow the same steps of the left branch until

the parser generates the complete parse tree for the given sentence as shown in 2.2.1(10).

In practice, we prefer depth-first strategy over breadth-first strategy because the depth-

first strategy requires an amount of memory that is proportional to the size of the problem

(with respect to the given input sentences) while breadth-first search may require expo-

nential memory since it keep tracks of all the nodes on the path from the root to the

current node. Moreover, Prolog language, which we require to build our tool, uses a

top-down depth-first parsing algorithm in order to define a large number of grammars in

very elegantly. Thus, the code of a top-down depth-first parser can be smaller than other

types of parsers. Therefore, we choose to build our controlled natural language using the

top-down depth-first parser.

Now let us discuss some limitations of the top-down parsing algorithm using depth-first

strategy as follows:

• This parsing algorithm is basically rule-driven because it does not have any knowl-

edge of the the terminal symbols (words). Therefore, when it discovers that the

current terminal symbol cannot be used as a production for the chosen pre-terminal

symbol, it backtracks to explore alternative analyses that can be used as a produc-

tion for the pre-terminal symbols in question. However, backtracking may impact

the parser’s performance since it requires the parser to repeat tasks that had already

been done before backtracking since all the productions prior to the backtracking

stage are lost (Chapman, 1987, p. 22). Specifically, a top-down parser requires an

exponential number of steps (with respect to the length of the sentence) to try all

2.3. LINEAR TEMPORAL LOGIC (LTL) 31

the alternative analyses for producing a full parse tree for a complete sentence.

• It can not handle left recursion rules such as the following grammar rules:

NP → NP, PP

NP → Det, N

PP → P, NP

Figure 2.2.2: Simple grammar rules with left-recursive.

where the first rule has the NP category in right and left hand sides, which is

not allow in this type of parsing algorithm. The reason is that because it does

not guarantee to find a solution even if there is one exists since it is possible to

proceed down an infinitely long branch, without ever returning to explore other

branches. However, there is alternative way to avoid left-recursive rules in this

parsing algorithm and that is by transforming the grammar to a weakly equivalent

non-left-recursive ones as shown in Figure 2.2.3, where it derives the same set of

sentences as the grammar rules in Figure 2.2.2. This approach is well-known (see

e.g. Moore, 2000).

NP1 → NP0, PPS

NP1 → NP0

NP0 → Det, N

PPS → PP, PPS

PPS → ε

PP → P, NP1

Figure 2.2.3: Simple grammar rules with non-left-recursive.

2.3 Linear Temporal Logic (LTL)

LTL was introduced by Pnueli (1977). A LTL formula express a property of a linear

sequence of states. Any actual sequence of states may or may not match that property.

For instance, the fact that properties such as p hold at some state in the sequence or p

2.3. LINEAR TEMPORAL LOGIC (LTL) 32

holds at two consecutive states in the future can be expressed in LTL.

The LTL language consists of a finite set of atomic propositional variables P, the usual

Boolean connectives, i.e. ¬,∧,∨,→,↔, and the future temporal operators G (‘always’),

F (‘eventually’), U (‘until’), and X (‘next’), and as well as the past temporal operators H

(‘always in the past’), F -1 (‘once in the past’), S (‘since’), and X -1 (‘next in the past’). We

define LTL-formula φ in the following Backus-Naur form, where P represents an atomic

formula.

φ := P | ¬φ | Gφ | Fφ | Xφ | U(φ′, φ) | Hφ | F -1φ | X -1φ | S(φ′, φ) | φ ∧ φ′ | φ ∨ φ′.

Before giving the formal semantics of LTL formulas, we will define the notion of LTL

interpretation.

Definition 2.3.1. In LTL interpretation L is a function mapping propositional letters

to subsets of N (the natural numbers).

Let us now turn to the definition of the truth-conditions for formulas in LTL.

Definition 2.3.2. Let α be a formula and t ∈ π. We write L |=t α to denote that “α is

true at time instant t in the model L”. This notion is defined recursively, according to

the structure of α.

1. For p ∈ P , L |=t p iff t ∈ L(p);

2. L |=t ¬α iff L |=t α is false;

3. L |=t α ∧ α′ iff both L |=t α and L |=t α
′;

4. L |=t α ∨ α′ iff L |=t α or L |=t α
′;

5. L |=t Gα iff for all t′ ≥ t, L |=t′ α

2.3. LINEAR TEMPORAL LOGIC (LTL) 33

6. L |=t Fα iff for some t′ ≥ t, L |=t′ α

7. L |=t U(α′, α) iff some t′ ≥ t such that L |=t′ α
′ and for every t′′ such that t ≤ t′′ < t′,

L |=t′′ α;

8. L |=t Xα iff L |=t+1 α

9. L |=t Hα iff for all t′ ≤ t, L |=t′ α

10. L |=t F
-1α iff for some t′ ≤ t, L |=t′ α

11. L |=t S(α′, α) iff some t′ ≤ t such that L |=t′ α
′ and for every t′′ such that t′ < t′′ ≤ t,

L |=t′′ α;

12. L |=t X
-1α iff L |=t-1 α

Let us consider a few examples of how our LTL can express properties. We provide

LTL formulas with their intuitive semantics in a timeline diagram.

• G(p→ Fq): q holds at some time after p holds.

s0 s1 s2 s3 s4 s5 s6 s7 s8

arbitrary arbitrary p arbitrary arbitrary q arbitrary arbitrary arbitrary

• G(p→ X(U(q,¬p))): After p holds, it must not occur again until q holds.

s0 s1 s2 s3 s4 s5 s6 s7 s8

arbitrary p ¬p ¬p ¬p q arbitrary arbitrary arbitrary

• G(p→ Hq): If p holds, q must hold at all previous states.

s0 s1 s2 s3 s4 s5 s6 s7 s8

q q q q p arbitrary arbitrary arbitrary arbitrary

• G(p→ F -1q): Before p holds, q must hold.

2.4. NATURAL LANGUAGE SPECIFICATIONS 34

s0 s1 s2 s3 s4 s5 s6 s7 s8

arbitrary arbitrary q arbitrary arbitrary arbitrary p arbitrary arbitrary

• G(p→ X−1(X−1q)): If p holds, q must hold two steps earlier.

s0 s1 s2 s3 s4 s5 s6 s7 s8

arbitrary arbitrary arbitrary q arbitrary p arbitrary arbitrary arbitrary

In the above examples, each diagram gives only one way for the formula to hold, there

being other possible diagrams which can be used to describe different views of the same

formula.

Note that the temporal operators G, F, U, and X express properties in the future states

while the temporal operators H ,F -1, S, and X -1 express the same properties for the past

instead of the future. We will denote LTL with the future operators only by LTL+, to

distinguish it from the full logic LTL.

2.4 Natural Language Specifications

The purpose of this section is to show what sort of sentences we are dealing with. The

sentences that we refer to are written for specifying protocol requirements in formal spec-

ifications. Here are some typical sentences:

(1) Awready becomes low;

(2) Awvalid remains high;

(3) Awid is asserted.

We need to make certain assumptions about these sentences. For example, the above

sentences contain various signal names (such as Awready, Awvalid and Awid) and these

2.4. NATURAL LANGUAGE SPECIFICATIONS 35

signal names are all treated as proper nouns. Based on their definitions in (ARM Ltd,

2012b), Awready stands for “write address ready”, Awvalid stands for “write address

valid”, and Awid stands for “write address ID”. These signals are treated as time-

dependent values since they have states where they can be either true or false.

There are certain other words in these sentences that must treated differently than the

way they widely used in English. For example, the verbs such as “become”, “assert”

and “remain” have special meanings in natural language specifications. Let us see what

their interpretations are according the context they appear in. First of all, sentence

(1) entails that the associated boolean variable “Awready” is false at a particular time

during the evaluation because the verb “become” denotes as an event. Sentence (2)

entails that the associated boolean variable “Awvalid” is true for several time points

during the evaluation because the verb “remain” denotes a state. Sentence (3) entails that

the associated boolean variable “Awid” holds at a particular time during the evaluation

because the verb “assert” denotes an event. The distinction between events and states

will be explained more in Section 3.2.

Let us turn to some words that are treated as temporal nouns. Consider the following

sentences:

(4) Awready becomes low after every burst;

(5) Awvalid remains high until the EXOKAY response;

(6) Awid is asserted within MaxWaits cycles.

where “burst”, “response” and “cycles” here are temporal nouns. Based on their de-

scriptions in ARM Ltd (2012b), a burst consists of a specified number of transfers. The

“EXOKAY response” indicates that the associated transaction has passed. MaxWaits is

a maximum number of cycles between particular two events. We treat MaxWaits as a

constant. (Its value is actually 16.)

2.5. SYSTEMVERILOG ASSERTIONS (SVA) 36

These temporal nouns denote particular events in the system where their main clauses

“Awready becomes low”, “Awvalid remains high, and “Awid is asserted” must be eval-

uated with respect to the events present in those temporal nouns. Thus, these temporal

nouns must be treated differently from the non-temporal nouns when we extract their

meanings from natural language specifications (Section 4.5 shows how we make these

distinctions). The entire list of all these assumptions is given in Appendix A.

2.5 SystemVerilog Assertions (SVA)

SVA is a subset of SystemVerilog which combines hardware descriptions and formal ver-

ifications. Assertions formally define the conditions required for an implementation to

be correct. SVA has the capacity to define sequential expressions with clear temporal

relationships between them. SystemVerilog has two types of assertions: immediate as-

sertions and concurrent assertions. Immediate assertions are based on simulation event

semantics. Moreover, they are executed in a similar way to an if statement in traditional

programming languages. Obviously, they are not temporal in nature since they describe

behaviours at instants of time. In contrast, concurrent assertions are primarily based on

clock semantics. They use sampled values of variables. The sampled values are values

of the variables used in evaluation. The assertions of benefit to us are of the concurrent

type since they detect behaviours over periods of time. For example, assertion (7) checks

that the signal a is high at every rising clock edge. If the signal a is not high at any rising

clock edge, the assertion will fail. When the signal a is high, the value of it is “1’b1”.

(7) sequence Seq1;

@(posedge clk) a;

endsequence.

Note that SVA syntax defines a sequence using a keyword pair “sequence-endsequence”

with an associated name. Figure 2.5.1 shows a sample waveform for the signal a and

2.5. SYSTEMVERILOG ASSERTIONS (SVA) 37

how sequence Seq1 reacts to this signal during simulation. The signal a goes to 0 on the

positive edge of clock cycles 4 and 10, and hence the sequence fails. By contrast, the

signal a goes to 1 on the rest of clock cycles, and hence the sequence succeeds.

clk

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

a

Figure 2.5.1: Waveform for sequence Seq1 in (7).

SVA has a rich set of unary and binary temporal operators. Let us recall some of these

operators from IEEE Std 1800-2012 (2013). Suppose we want to write assertions that

check the following sequences of events:

(8) Awid must be asserted 4 clocks after Awready is de-asserted

(9) Once Awid is asserted, Awvalid is asserted two clocks later.

The corresponding assertions of the above sentences respectively will be as follows:

(10) sequence Seq2;

@(posedge clk) not AWREADY ##4 AWID ;

endsequence.

(11) sequence Seq3;

@(posedge clk) AWID ##2 AWVALID ;

endsequence.

In SVA, The ## operator defines delays in term of clock cycles - for instance, ##4 means

a delay of 4 clock cycles as shown in assertion (10) between the signals not AWREADY

and AWID. In SVA, We may use of one sequence inside another as shown in (12).

(12) sequence Seq4;

@(posedge clk) Seq2 ##2 AWVALID ;

2.5. SYSTEMVERILOG ASSERTIONS (SVA) 38

endsequence.

Assertion (12) is written to describe sequences (10) and (11) together.

Another important use of the ## operator is that we can specify a range of absolute

delays by it. For example,

(13) AWID ##[1:4] AWVALID.

Assertion (13) states that, when the signal AWID becomes true, the occurrence of the

variable AWVALID could be delayed from one cycle up to 3 further clock cycles. Note

that we can specify an assertion with infinite repetition range such as in (14) where the

$ symbol indicates that the signal AWVALID will eventually occur.

(14) AWID ##[1:$] AWVALID.

Now we will discuss how we specify a signal or sequence that occurs a number of times.

In SVA, we can apply consecutive repetition operator [*] to a sequence to indicate that the

sequence repeats itself either a fixed number of times or presents a range of repetitions.

If a sequence repeats in a range of repetition from n to m, then maximum of m times can

be specified as ’$’, which indicates a finite but unbounded range.

Let us illustrate how we use consecutive repetition operator [*] in SVA. For example,

assertion (15) states that the signal AWID is true, and must remain true for exactly 2

further clock cycles, 2 clock cycles before which the variable AWVALID will be true.

(15) AWID [*3] ##2 AWVALID ;

this is equivalent to

(16) AWID ##1 AWID ##1 AWID ##2 AWVALID.

Using the repetition operator [*] allows us to express sequences in a range of repetition

such as the following assertion:

2.5. SYSTEMVERILOG ASSERTIONS (SVA) 39

(17) AWID [*1:3] ##2 AWVALID,

which asserts that, the signal AWID is true, and may remain true for up to 2 further

clock cycles, 2 clock cycles after which the signal AWVALID will be true. Moreover, we

may write assertion (17) in another way as follows:

(18) AWID ##2 AWVALID

or AWID ##1 AWID ##2 AWVALID

or AWID ##1 AWID ##1 AWID ##2 AWVALID,

where the resultant of the “or” operands is true whenever at least one of the sequences

is true. The “or” and “and” operators work with at least two sequences or Boolean

expressions. The “and” operator means that if both sequences or Boolean expressions

are true, then the result of “and” operation is true. Note that if the maximum number

of a range is unknown, then we express that by using the form a[*1:$] which means the

expression a will stands for finite, but unbounded number of iterations using ‘$’ which

indicates the maximum limit of the range as mentioned earlier. For example, we can write

an assertion using this form as follows:

(19) AWID [*1:$] ##2 AWVALID,

which asserts that, the signal AWID is true, and must remain true until 2 clock cycles

before the variable AWVALID will be true.

Let us review some more SVA operators. There are two types of implication in SVA:

an overlapped implication and a non-overlapped implication. The overlapped implication

is denoted by the symbol |−>, while the non-overlapped implication is denoted by the

symbol |=> as shown in the following examples, respectively.

(20) AWID |−> AWVALID

(21) AWID |=> AWVALID.

2.5. SYSTEMVERILOG ASSERTIONS (SVA) 40

Assertion (20) states that, if the antecedent AWID holds, then the consequent expression

AWVALID holds in the same clock cycle. On the other hand, assertion (21) states that,

if the antecedent AWID holds, then the consequent expression AWVALID holds in the

next clock cycle. Note that assertion (21) can be expressed differently using the “##”

operator as shown below in (22), where ##1 means a delay of one clock cycle before the

consequent expression AWVALID holds.

(22) AWID |−> ##1 AWVALID.

Now let us discuss important operators in SVA called sequence match operators. These

operators are: throughout, within, ended and first match. These operators take sequences

as operands and generates new sequences as a result. Moreover, these operators can take

sampled values of expressions and generate true or false as a result. The syntax of these

operators is shown below:

(expression) throughout (sequence);

(sequence) within (sequence);

(sequence).ended;

first match(sequence).

The throughout operator is used to assert that a certain expression is valid over the

period of the sequence. Meanwhile, the within operator is used to assert that there is

the containment of one sequence within another sequence. For example, the following

assertions illustrate how the throughout and within operators are used in practice:

(23) AWID throughout Seq4;

(24) Seq1 within Seq4.

Assertion (23) asserts that, the signal AWID must be true at every clock cycle during the

occurrence of the sequence Seq4. By contrast, assertion (24) asserts that, the sequence

Seq1 happens within the start and completion of the sequence Seq4.

2.5. SYSTEMVERILOG ASSERTIONS (SVA) 41

The ended operator returns a Boolean value true or false depending on whether the

associated sequence achieves a match on that particular clock cycle. Consider the following

example:

(25) Seq1 ##1 Seq3.ended,

which asserts that, the sequence Seq3 must be completed one clock cycle after the sequence

Seq1 completes (regardless of when Seq3 starts). Figure 2.5.2 shows a sample waveform

for assertion (25) and how sequence Seq3 terminates one clock cycle after the sequence

Seq1 terminates during simulation.

clk

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Seq1

Seq3

Figure 2.5.2: Waveform shows a successful match of assertion (25).

The first match operator matches only the first occurrence of its sequence argument and

discards all subsequent matches from consideration. For example,

(26) first match(AWID ##[1:2] AWVALID),

whichever of the (AWID ##1 AWVALID) and (AWID ##2 AWVALID) matches first

becomes the result of the first match operator.

In SVA, there are built-in functions that help in accessing the sampled values of an

expression or detecting changes in a sample value of an expression. These functions are

$rose, $fell, $stable and $past. The $rose, $fell and $stable functions compare the

values of their arguments in the present cycle with the previous cycle. The $past function

returns the previous value of its argument. Table 2.5.1 shows the syntax of these functions.

2.5. SYSTEMVERILOG ASSERTIONS (SVA) 42

Functions

$rose(Boolean expression or signal name)

$fell(Boolean expression or signal name)

$stable(Boolean expression or signal name)

$past(signal name, number of clock cycles)

Table 2.5.1: The built-in functions with their syntax.

The $rose function evaluates to true if the value of the expression is changed to 1. On

the other hand, the $fell function has the inverse behaviour, and evaluates to true if the

least significant bit of the expression changed to 0. The $stable function evaluates to

true if the value of the expression did not change. The $past function gets the value of

its signal from the previous clock cycle. The number of clock cycles in the past can be

given using the second parameter.

Lastly, SVA has the standard LTL operators X, G, F and U but with the different

names as follows:

X ≡ nexttime

G ≡ always

F ≡ eventually

U ≡ s until

The LTL operators are defined in Section 2.3. Thus, we skip discussing them here to

avoid repetition. All of the above-mentioned operators will be used for constructing

transformation rules between TPL and SVA. For a more detailed account of SVA refer

to IEEE Std 1800-2012 (2013).

2.6. INTERVAL TEMPORAL LOGIC 43

2.6 Interval Temporal Logic

In this section, we introduce interval temporal logic (henceforth, ITL). We recall the

semantics of ITL presented in Pratt-Hartmann (2005). ITL is a first-order language

having variables which range over time-intervals, and predicates corresponding to event-

types and temporal order-relations. Pratt-Hartmann (2005) follows the same way of

introducing modal operators as in Halpern and Shoham (1991).

Let us recall the formal definitions of ITL which will be used throughout the thesis.

Definition 2.6.1. In the sequel, let IR be a set of intervals, where an interval is a closed,

bounded, non-empty subset of the real numbers. Moreover, we use the letters I, J,

with or without decorations as temporal variables ranging over IR.

Definition 2.6.2. Let I = [a,b] and J = [c,d] be intervals. If a < c < d < b, we let the

terms init(J,I) and fin(J,I) denote the intervals [a,c] and [d,b], respectively, where init

and fin are partial functions to denote the initial segment of I up to the beginning of J,

and the final segment of I from the end of J, respectively.

Let us review the semantics of ITL using examples from natural language specifications.

Consider the following sentences:

(27) Awid is asserted

(28) Awid is asserted during every cycle.

Sentence (27) states that, within some contextually specified interval of interest, there

is an interval over which Awid is asserted. The meaning of (27) can be represented as

follows:

(29) ∃J0(assert(Awid, J0) ∧ J0 ⊆ I).

Note that the quantification of J0 is limited to the temporal context which is represented

2.6. INTERVAL TEMPORAL LOGIC 44

by the free variable I. We can assume that the value of this variable is assigned by the

context of utterance. For example, I may denote a time interval over which some system

is required to have the specified behaviour.

Sentence (28) states that, within the temporal context, every interval over which a

cycle occurs includes an interval over which Awid is asserted. The meaning of (28) can

be represented as follows:

(30) ∀J1(cycle(J1) ∧ J1 ⊆ I → ∃J0(assert(Awid, J0) ∧ J0 ⊆ J1)).

The noun cycle is considered in Pratt and Francez (2001) as a temporal noun which

denotes an interval time such as meeting, Monday and 1995. Thus, the meaning of cycle

should be as follows:

(31) λJλI.cycle(J) ∧ J ⊆ I,

Intuitively, the word “cycle” picks out those intervals J over which a cycle occurs with

some temporal context I as shown in formula (30).

Let us now turn to events that take place not during, but before or after various time

intervals. In ITL, we use init and fin functions, described in Definition 2.6.2, to express

the before and after relations, respectively as shown in Figure 2.6.1

I

init(J, I) J fin(J, I)

Figure 2.6.1: Illustrating the functions init(J, I) and fin(J, I).

where init(J,I) denotes the initial segment of I up to the beginning of J, while fin(J,I)

denotes the final segment of I from the end of J.

Let us consider a few examples of how we interpret English sentences having the before

and after relations into ITL. Consider the following sentences:

2.6. INTERVAL TEMPORAL LOGIC 45

(32) Awid is asserted during every cycle until Awvalid goes high

(33) After the response phase, Awid must be asserted during every cycle until Awvalid

goes high.

The semantics of sentences (32) and (33) in ITL are as follows, respectively

(34) ıJ2(high(Awvalid, J2) ∧ J2 ⊆ I,

∀J1(cycle(J1) ∧ J1 ⊆ init(J2, I)→ ∃J0(assert(Awid, J0) ∧ J0 ⊆ J1))).

(35) ıJ3(response phase(J3) ∧ J3 ⊆ I,

ıJ2(high(Awvalid, J2) ∧ J2 ⊆ fin(J3, I),

∀J1(cycle(J1) ∧ J1 ⊆ init(J2, fin(J3, I))→

∃J0(assert(Awid, J0) ∧ J0 ⊆ J1)))).

In these examples, we employ the definite quantifier ıx(ψ, ψ′) with the standard (Rus-

sellian) semantics. Formula (34) states that, within the temporal context I, there is a

unique interval J2 such that Awvalid goes high at J2 and every interval J1 such that J1 is

a cycle and J1 is contained in init(J2, I), in turn includes an interval J0 over which Awid

is asserted. Formula (35) asserts that, within the temporal context I, there is a unique

interval J3 such that the response phase occurs at J3, and there is a unique J2 subinterval

of fin(J3, I) such that Awvalid goes high at J2 and every interval J1 over which a cycle

occurs includes an interval J0 over which Awid is asserted, and moreover J1 is contained

in init(J2, fin(J3, I)).

Generally speaking, ITL is a suitable logical form for encoding events and their temporal

locations from English sentences. In this section, we have given a flavour of the language

ITL. For a complete specification, we refer the reader to Pratt-Hartmann (2005).

In this study, we capture the semantics of temporal constructions from natural language

specifications using ITL which is known as interval-based logic. Then, we generate SVA

(which is essentially point-based logic) from ITL. SVA has different characters than ITL.

2.6. INTERVAL TEMPORAL LOGIC 46

Can we connect them? Can we map from English to SVA either via TPL translations or

directly? These questions are addressed in Chapter 5.

Chapter 3

Linguistic Background

The aim of this chapter is to provide an overview of the field of temporal semantics from

the point of view of linguistics. It begins with semantic theories of events. Following

is an overview of grammatical aspect and aspectual class of verb phrases. Finally, this

chapter reviews the semantic features of temporal prepositions as well as their formal

representations.

3.1 Theory of Events

Semantic theories using quantification of implicit variables ranging over events have been

applied to a variety of problems in linguistic theory such as the semantics of temporal

prepositions, perceptions, thematic relations, and nominalisation. These theories, how-

ever, differ from each other in respect of the variables they employ and the way in which

these variables are added to the non-logical predicates involved. Event semantics refer

to semantic analyses which adopt the suggestion of Davidson (1967) that specific predi-

cates pick an implicit variable over events as an argument. In Davidson’s initial proposal,

this event argument is included as an additional argument to the predicate. The event

variable is existentially quantified, with the result that sentence (36) is assigned a logical

47

3.1. THEORY OF EVENTS 48

form such as (37) instead of the classical treatment as in (38).

(36) Brutus stabbed Caesar;

(37) ∃e(stab(Brutus, Caesar, e));

(38) stab(Brutus,Caesar).

Thus stab is analysed as expressing a three-place relation, between the person who stabs,

the person who gets stabbed, and a stabbing event; and the sentence is analysed as

asserting that, there exists an event in which Caesar is being stabbed by Brutus.

The primary motivation for this solution is that it offers a way to analyse prepositions

such as temporal, spatial and instrumental preposition phrases. These prepositions can

be treated as predicates of the event or more particularly as predicates that share the

event variable of the verb. Every preposition takes a two-place predicate over an event,

which applies to the verbal event argument using an ordinary propositional conjunction.

The existential quantification that binds the event variable takes scope over the whole

sentence structure. For example sentence (39) is assigned to the logical structure (40).

(39) Brutus stabbed Caesar in the back with a knife.

(40) ∃e(stab(Brutus, Caesar, e) ∧ in(e, the back) ∧ with(e, a knife)).

Note that the predicates stab, in, and with are linked because they apply to the same event.

This approach offers an elegant solution to the problem that arises whereby prepositions

are treated as arguments of the verb. Consequently, we avoid expressing stab in a four-

place relation as in (41).

(41) stab(Brutus, Caesar, the back, a knife).

If we adopt a logical structure such as (41) and continue to express Brutus stabbed Caesar

as in (38) with a two-place relation, we cannot claim that what stab expresses has the same

3.1. THEORY OF EVENTS 49

meaning in both sentences; on the contrary, we would say it is ambiguous. Therefore,

adopting this approach will cause massive ambiguity when we express sentences that have

the same predicate with more or fewer prepositions. For instance, stab will be expressed

with different relations in each of the sentences below:

(42) Brutus stabbed Caesar in the back with a knife.

(43) Brutus stabbed Caesar in the back.

(44) Brutus stabbed Caesar with a knife.

(45) Brutus stabbed Caesar.

Sentences with more prepositions typically entail the same sentences with fewer prepo-

sitions as stated in Bartsch and Kiefer (1976) and Davidson (1967). Hence, using this

analysis, we correctly capture the fact that sentence (42) entails all the other sentences

(43)–(45), where sentence (42) also entails the conjunction of sentence (43) and sentence

(44) but not inversely, because the conjunction of (43) and (44) does not require that the

two stabbings are the same. Moreover, sentence (43) or sentence (44) can entail sentence

(45), however sentence (45) cannot entail sentence (43) or sentence (44).

Another advantage of this approach is that certain types of nominalisation require an

analysis in terms of events. Thus, Higginbotham (1985) and Parsons (1990) express event

nominals with the same predicate of events as the verbs in which event nominals can be

explicitly quantified over the event. Adopting this suggestion provide a nice account for

the validity of the argument. Consider the following examples:

(46) In every burning, oxygen is consumed;

(47) Agatha burned some wood;

(48) Oxygen was consumed.

3.2. GRAMMATICAL ASPECT AND ASPECTUAL CLASS 50

In traditional logic, inferring sentence (46) from sentences (47) and (48) is problematic,

since the burning event in sentence (46) is not expressed in the same way as the individual

events of the verbs burned and consumed. Applying explicit quantification over event

nominals by using variable reference to events allows us to find inferences and connect

it with explicit quantification over events such as the logical relational between sentence

(46) and sentences (47) and (48) in a very straightforward manner. For example, Parsons

(1990) shows how the quantification over an event burning in (46) can be logically related

to (47) and (48). The logical forms that associate sequentially with that are:

(49) ∀e(burn(e)→ ∃e′(consume(e′) ∧ object(e′, oxygen) ∧ in(e, e′))).

(50) ∃e(burn(e) ∧ subject(e, Agatha) ∧ object(e, wood)).

(51) ∃e′(consume(e′) ∧ object(e′, oxygen)).

where the burning event in sentence (46) is formally represented using the same type

of event as the burning referred to in sentence (47). As a result, sentence (48) follows

from (46) and (47), since the logical form of (48) can be derived by using the resolution

inference rules which follows from the logical form of (46) and (47).

Event semantics has also been successfully applied to a variety of other problems, al-

though a discussion of them here is not necessary for the purpose of this thesis: perceptions

(Higginbotham, 1983; Vlach, 1983; Parsons, 1990), adjectives (Larson, 1998), temporal

anaphora and narrative progression (Hinrichs, 1986; Partes, 1984), plurality (Schein, 1993;

Landman, 2001), and many other phenomena.

3.2 Grammatical Aspect and Aspectual class

In this section, we give an overview of grammatical aspect and aspectual class of verbs.

According to Comrie (1976), aspect is concerned with different ways of describing the

3.2. GRAMMATICAL ASPECT AND ASPECTUAL CLASS 51

internal structure of events based on the sentences or discourses in which they appear.

Lehman (1972) calls aspect the status of a situation. Within the study of aspect, there

are two types of aspectual distinction in language: grammatical and lexical aspects.

Grammatical aspect refers to what has traditionally been termed “aspect” (Comrie,

1976), “aspectual form” (Dowty, 1979) and “viewpoint aspect” (Smith, 1991). Gram-

matical aspect expresses how an event or state extends over time. In English, grammat-

ical aspect has two different dimensions: perfective/non-perfective and progressive/non-

progressive. There are 4 possible combinations of these forms as shown in Table 3.2.1.

Each aspect realizes by a specific marker. Note that the ∅ symbol means no marker

between non-perfective and non-progressive aspect forms.

Aspect Combination of Marker
Simple Non-perfective and Non-progressive ∅
Perfective Perfective and Non-progressive Have + -en
Progressive Progressive and Non-perfective Be + -ing
Progressive Perfective Progressive and Perfective Have been + -ing

Table 3.2.1: Grammatical aspect types and their Markers in English

These aspects can be illustrated for the verb “build” in (52) – (55) where they locate the

situations in the past. Note that these aspects can be available in all tenses.

(52) John built a house.

(53) John has built a house.

(54) John was building a house.

(55) John has been building a house.

The simple aspect (or indefinite aspect as it is more frequently called) is a combination of

the non-perfective and non-progressive aspects. Any verb (in the past, present or future)

in the simple tense is consider to be in the simple aspect. The simple aspect does not

tell us whether the event is a complete event or a habitual event. Any verb in the simple

aspect depends on the context and tense to determine whether the event is complete or

3.2. GRAMMATICAL ASPECT AND ASPECTUAL CLASS 52

in progress. Let us illustrate this by giving one more sentence as follows:

(56) John built houses.

The “building” event in (52) is a complete event because the tense and context tells us

this event is not a habitual event. Moreover, the semantic nature of the verb “build”

tells us the event has a culmination point (this will be discussed later in the lexical aspect

domain). However, the “building” event in (56) is unclear whether this is a habitual event

or not based on the context; even though the tense tell us this event is a complete event.

The perfective aspect is formed with the auxiliary verb have and the past (-en) partici-

ple. The auxiliary verb have can be changed to has, had, or added by the future marker

will. The perfective aspect indicates that the event is to be viewed as a bounded whole,

and looks at the event from the outside, without reference to any of its internal structure.

For example, the verb built in (53) reports the event as complete, with both initial and

terminal points. Thus, sentence (53) implies that there is a house and that John built it.

The progressive aspect is formed with the auxiliary verb ‘to be’ and the lexical verb

in the the present (-ing) participle form. The progressive aspect looks at the event from

inside, or looks inside its internal temporal structure. For example, the verb in (54)

reports the event as in progress, and does not reference to its initial and terminal points.

Thus, the meaning of sentence (54) does not tell us whether or not John has completed

building the house.

The progressive perfective aspect is a combination of the progressive and perfective

aspects. The perfective progressive aspect is formed with have been and the lexical verb in

the present (-ing) participle form. The progressive perfective aspect expresses an ongoing

situation that began somewhere in the past but that is still incomplete at the reference

time. For example, the verb “has been building” in (55) reports the event that stretches

backward from now and continues into the present moment. There is also the sense of

incompleteness since the event in progressive form which does not tell us whether or not

3.2. GRAMMATICAL ASPECT AND ASPECTUAL CLASS 53

John has finished building the house.

Now, let us begin to discuss lexical aspect. Lexical aspect refers to what has been termed

“Aktionsart”, but also “aspect” (Verkuyl, 1972), “inherent lexical aspect” (Comrie, 1976),

“aspectual class” (Dowty, 1979), “situation aspect” (Smith, 1991) and “eventuality type”

(Bach, 1986; Filip, 1999). Lexical aspect denotes the internal temporal structure of an

event, which is determined by the semantic nature of the verb, by the properties of the

verb’s argument, and by the way the verb is related to its argument. Much work on lexical

aspect depends on the aspectual classes initially introduced by Vendler (1967). Vendler

identified four aspectual verb classes based on static vs. dynamic, punctual vs. durative,

and telic vs. atelic. In the Vendler classification, verbs may denote states, activities,

accomplishments or achievements.

State and activity verbs have atelic situation aspect (unbounded). State verbs

denote situations that last for certain periods of time with non-dynamic (static) changes

throughout their entire duration. By contrast, activity verbs denote dynamic situations

that occur over a duration of time.

denotes several instances of the action

For example, consider the following sentences:

(57) John liked Mary

(58) John ran.

In sentence (57), the verb “liked” is a state verb which denotes a non-dynamic situation,

whereas in sentence (58), the verb “ran” is an activity verb which denotes a dynamic

situation. Both situations extend in time and have no culmination point.

Accomplishment and achievement verbs have dynamic and telic situation aspects

(bounded). Accomplishment verbs denote events that take place over a duration of time.

3.2. GRAMMATICAL ASPECT AND ASPECTUAL CLASS 54

On other hand, achievement verbs denote events that occur instantaneously – they are

inherently punctual in nature– at a specific point in time. Consider the following examples:

(59) Mary wrote a letter

(60) Chris reached the summit.

In sentence (59), “wrote a letter” is an accomplishment event that extends in time but

it has a culmination point. By contrast, “reached the summit” in sentence (60) is an

achievement event that occurs at instantaneous time and has a culmination point.

Dowty (1979) proposed several diagnostic tests to distinguish one class from other

classes. Dowty combines aspect markers and temporal prepositions with verbs to de-

cide whether verbs have different interpretations or not after having restrictions by these

markers and prepositions. Thus, he proposed a list of different verbs or verb phrases that

correspond to each aspectual class as instances of Vendler’s four classes, and the list is

presented in Table 3.2.2.

States Activities Accomplishments Achievements
know run run a mile recognize

believe push a cart draw a circle reach the summit
think breathe build a house die
like write write a letter arrive

Table 3.2.2: List of examples of verbs or verb phrases and their assignment to aspectual
classes based on Dowty (1979).

Several other classification systems have been proposed since Vendler’s work. Some of

this work makes the same distinctions, dividing some classes or removing others. We

intend to describe the most relevant contributions for distinguishing aspectual classes.

In particular, we show the classification systems for aspectual classes developed by Bach

(1986) and Moens and Steedman (1988). Let us begin with Bach’s work.

Bach (1986) adopts the term ‘eventualities’ for aspectual classes. His primary proposal

for distinguishing aspectual classes is presented in Figure 3.2.1.

3.2. GRAMMATICAL ASPECT AND ASPECTUAL CLASS 55

eventualities

states

dynamic static

non-states

processes events

protracted momentaneous

culminations happenings

Figure 3.2.1: Classification of aspectual classes in Bach (1986)

As shown in Figure 3.2.1, eventualities have divided into states and non-states. States

have two types of state verbs based on their ability to occur with the progressive: static

states and dynamic states. Static states (equivalent to Vendler’s states) do not occur with

progressive as shown in sentence (61). On other hand, the dynamic state verbs can freely

occur with progressive as shown in sentence (62). Dynamic states are episodic in the

sense that they only apply to ‘spatio-temporal slices’ of individuals. Bach’s distinction

on states mainly follows Carlson’s (1981) analysis.

(61) * John is knowing the answer. (static state)

(62) Mary is feeling cold. (dynamic state)

Non-states are divided into processes (equivalent to Vendler’s activities) and events

(including Vendler’s accomplishments and achievements). Events are either protracted

(equivalent to Vendler’s accomplishments) or momentaneous (equivalent to Vendler’s

achievements). Momentaneous events are further subdivided into culminations (e.g. die,

win, reach the top) and happenings (e.g. knock, notice, recognize, and flash once). Hap-

penings normally occur very quickly, with no result other than the occurrence of the

event. Thus, they are characterised by the dynamic, atelic and punctual features such as

in sentence (63), but culminations involve a transition to a new state that is associated

with telic features such as in sentence (64).

3.2. GRAMMATICAL ASPECT AND ASPECTUAL CLASS 56

(63) Mary knocked at the door. (happening)

(64) John won the race. (culmination)

Moens and Steedman (1988) extend Vendler’s classification and introduce another as-

pectual class called points that have punctual and atelic feature as with the happening

events in Bach’s classification. Point classes have no consequences and also have virtually

no time such as “cough”,“tap” and “wink”. The authors have changed the Vendler’s

classification to different names, for example activities to processes, accomplishments to

culminated processes, and achievements to culminations. They distinguish five aspectual

types: states, processes, culminated processes, points and culminations as shown in Table

3.2.3.

Event States

+conseq
atomic extended

understand,

love, know,

resemble

Culmination

recognize, spot,

win the race

Culminated

Process

build a house,

eat a sandwich

-conseq

Point

hiccup,

tap, wink

Process

run,swim, walk,

play the piano

Table 3.2.3: Classification of aspectual classes in Moens and Steedman (1988).

As shown in Table 3.2.3, they give a clear distinction between states and all the other

categories, denoted “events”. States now include only stative verbs that make no time-

related reference to start and end points. For instance, a sentence such as “John is tall”

does not refer to a certain point in time at which the state of John being tall began

(unbounded). Within the event categories, they delimit these classes based on atomic

vs. extended events, and +consequent state vs. -consequent state. A consequent state is

3.2. GRAMMATICAL ASPECT AND ASPECTUAL CLASS 57

often considered to coincide with a telic feature. For example, a sentence such as “John

ran a mile” has an accomplishment event which occurs over an extension of time but it

has a telic situation aspect (bounded). Therefore, the consequence of John running a mile

takes place and it can be referred to by using a perfect entailment to denote that John

has run a mile. Conversely, there are events that have a period of time without a telic

situation aspect. Thus, they do not refer to consequences such as activities in a sentence

like “John plays the piano” which has no consequence of playing the piano or that has a

particular finishing point that could be associated with a consequence of the event.

We have seen all these different aspectual classes in natural language. We need to

be able to process them grammatically. We also know that they have various semantic

effects. What do we require for our problem? Probably, for the purpose for handling

natural language protocol specifications, we only need to distinguish between events and

states, and here is why. Consider the following examples:

(65) Awid remains low until Awvalid occurs.

(66) * Awid goes high until Awvalid occurs.

The verb “remains” in (65) is a state verb which indicates that the situation has no cul-

mination point and extends in time. Therefore, we assign universal quantification to the

verb “remains”. The meaning of until preposition requires its main clause to be restricted

with universal quantifier (this restriction is discussed further in the next section). There-

fore, we can say sentence (65) is acceptable while (66) is not acceptable since the verb

“goes” is an event verb which takes existential quantification. Thus, we need to build a

semantic grammar that can only accept the correct sentences. Section 4.5 describes how

we build our semantic grammar to enforce these assumptions. In Section 4.3.2, we show

how we encode aspetucal classes, namely events and states, and grammatical aspects for

our problem.

3.3. TEMPORAL PREPOSITIONS 58

This section has explained the central importance of aspectual classification in natu-

ral language semantics. The purpose of the current study was to determine aspectual

categories for verbs and sentences in the contexts. We have shown the classification sys-

tems for aspectual classes that developed by Vendler (1967), Bach (1986) and Moens and

Steedman (1988). However, in this thesis, the only thing we really require is to make a

distinction between states and events.

3.3 Temporal Prepositions

Temporal adverbials report temporal relations between a pair of times or events. These

include adverbs (e.g. yesterday), noun phrases (e.g. last year) or prepositional phrases

(e.g. on Monday). In English, we can express time-related information in terms of point,

interval, frequency and temporal relationship. When expressing a time point, temporal

prepositions can precisely locate the exact time an event occurs, as in sentence (67).

When expressing a time interval, temporal adverbials can denote the event occurs within

a period of time, as in sentence (68). Frequency adverbials denote how often an event

occurs, as in the temporal noun “every Tuesday” in (69). Temporal relationships –often

introduced by after, before, during, etc.– are used to state that an event described in

the main clause may be next to, previous to, or concurrent with the time of the event

described by the temporal clause, as in sentence (70).

(67) Mary arrived home at 1:30 pm.

(68) John was in Boston last year.

(69) Mary ate a pizza every Tuesday.

(70) Mary visited France after she finished her book.

3.3. TEMPORAL PREPOSITIONS 59

In this section, we present an account of English sentences featuring temporal preposi-

tions. Then, we show the effects of the interaction of temporal prepositions with temporal

temporal expressions (aspectual classes, grammatical aspects and tense) on the temporal

ordering of events and states.

3.3.1 The Semantics of Temporal Prepositions

Adequate representations for the semantics of temporal prepositions are provided by a va-

riety of formal approaches (see Bennett, 1975; Kamp, 1981; Brée and Smit, 1986; Richards

et al., 1989; Allen and Ferguson, 1994). However, our focus will be on approaches that

we think can improve on the practice of, for example, Pratt and Brée (1993), Pratt and

Francez (1997, 2001), and Pratt-Hartmann (2005). These other approaches fail to make

use of their theory in practice for encoding the semantics of temporal prepositions sys-

tematically.

Let us begin by introducing the semantics of temporal prepositions based on interval-

based logic. Consider the following sentences:

(71) Mary arrived home between 1 o’clock and 2 o’clock.

(72) John worked in Boston from 1996 until 2000.

Sentence (71) reports an event –namely, Mary’s arriving home– and locates that event

as having occurred during the interval [1:00, 2:00]. Sentence (72) also reports an event

–namely, John’s working in Boston– but locates that event as having occurred over the

entire interval [1996, 2000].

Now let us express sentences (71) and (72) without tense markers as follows, respectively.

(73) Mary arrive home between 1 o’clock and 2 o’clock.

(74) John work in Boston from 1996 until 2000.

3.3. TEMPORAL PREPOSITIONS 60

which receive truth-values with respect to intervals of time. Therefore, (73) is true over

an interval J fully contained within the interval [1:00, 2:00], such that “Mary arrive

home” is true over J ; also, (74) is true over every interval J fully contained within the

interval [1996, 2000], such that “John work in Boston” is true over J. We can write these

truth-conditions using ITL (described in Section 2.6) as follows

(75) ∃J(J ⊆ [1:00, 2:00] ∧ (Mary arrive home)(J))

(76) ∀J(J ⊆ [1996, 2000] → (John work in Boston)(J))

where tenseless sentences interpreted as one-place predicates have arguments which range

over time intervals. There are alternative approaches to the semantics of tensed sentences

such as those of Reichenbach (1947), Bäuerle and von Stechow (1980), Parsons (1989),

and Blackburn (1994) who adopted logics based on time points. However, the framework

adopted here performs well with most temporal constructions in English sentences.

We have performed the task of mapping the underlying tenseless sentences onto preposi-

tions and establishing how temporal prepositions can play an important role for providing

the semantics of tenseless sentences over intervals, as in (73) and (74). However, sentences

(71) and (72) contain, beside prepositional phrases and past-tense markers, a grammatical

aspect (simple, perfective, progressive and/or progressive perfective aspect) and an as-

pectual class (state, activity, accomplishment and/or achievement classes). These aspect-

markers can also play a role in determining the truth-values of English sentences. To give

an idea of how these aspect-markers are essential for providing proper interpretations,

take for instance the verb “arrive” in sentence (71) which is an achievement verb, whereas

“work” in sentence (72) is an activity verb. As explained in Section 3.2, an achievement

class has punctual and telic features which naturally takes existential quantification over

intervals. By contrast, an activity class has durative and atelic features which normally

takes universal quantification over intervals. Therefore, we should take these factors into

account when we specify the truth-values of English sentences.

3.3. TEMPORAL PREPOSITIONS 61

Within this approach, the reference interval I is specified either indexically or anaphor-

ically. 1 Let us give an example of an indexical reference with English sentences; consider

the following examples:

(77) John has been living in France since 2014.

(78) John has been living in France for two years.

where the truth-conditions of (77) and (78) are plausibly given, respectively, by

(79) ∀J(J ⊆ [2014,TOU]→ (John live in France)(J)).

(80) ∀J(J ⊆ [TOU - 2yrs, TOU]→ (John live in France)(J)).

As the reference interval above is bounded by the time of utterance (henceforth TOU),

we call this an indexical usage. The perfect tense in sentences (77) and (78) indicates

the reference interval stretches backward from the TOU. In Pratt and Brée (1993), it is

suggested that the temporal prepositions since and for restrict their main clause to be

quantified universally over a time interval as shown in (79) and (80). In fact, the verb

live is a state verb which has durative and atelic features. Thus, the tenseless sentence

“John live in France” naturally takes universal quantification over a time interval. With

respect to anaphorical cases for specifying the reference interval I, we refer the reader to

Pratt and Brée (1993). Our interest here is to give an introduction of interpreting English

sentences using interval-based semantics rather than to give a full specification.

Another approach to interval-based semantics for capturing English sentences featuring

temporal prepositions is given by Pratt and Francez (1997, 2001). These proposals can

adequately provide compositional semantics of temporal preposition phases, with special

emphasis on their quantificational roles. Their theory is to use generalised temporal quan-

tifiers to represent temporal noun phrases, temporal preposition phases, and sentences.

The advantage of using their framework is that it provides an elegant account for cascaded

1In Pratt and Brée (1993), the reference interval I classified into the eight reference intervals with
respect to the time of utterance (TOU) and the reference time (TOR).

3.3. TEMPORAL PREPOSITIONS 62

temporal preposition phase modifications in English sentences, such as:

(81) John telephoned Mary during every meeting until Christmas.

These cascades can be handled correctly by their semantics. Their proposal leads to the

following interpretation for sentence (81):

(82) ıJ2(Christmas(J2) ∧ J2 ⊆ I,

∀J1(meeting(J1) ∧ J1 ⊆ init(J2, I)→

∃J0((John telephone Mary)(J0) ∧ J0 ⊆ J1))).

Before giving an explanation of the above formula, recall from Section 2.6 that the terms

init(J,I) and fin(J,I) denote the initial segment of I up to the beginning of J, and the final

segment of I from the end of J, respectively. The meaning of (82) asserts that, within the

temporal context I, there is an interval of John’s telephoning Mary that holds at every

meeting until the unique interval of Christmas in the temporal context I. Notice that, we

assume Christmas to have a missing determiner which contributes a definite article. The

authors suggest that if there is no overt determiner in a temporal preposition phase, we

need to assign an article to that temporal preposition phase based on the one that is most

suitable semantically. Thus, we quantify the meaning of until ’s complement with definite

quantification, since until requires its complement to be definite quantified as shown in

(83). This restriction is also applied to by as shown in (84), which by ’s complement resists

being with anything other than a definite article.

(83) John telephoned Mary every day until {the exam/* every exam/* an exam}.

(84) John telephoned Mary by {the exam/* every exam/* an exam}.

This discovery constitutes the second advantage of these proposals, which is restricting

temporal preposition phrases with some particular quantifications to generate the correct

truth-conditions of sentences featuring temporal prepositions. This provides adequate sys-

tematic treatments of the semantics of sentences with even multiple temporal preposition

3.3. TEMPORAL PREPOSITIONS 63

phrases.

Let us give an example of a sentential complement in a temporal preposition phrase

based on Pratt and Francez’s (2001) approach. Consider the following sentence:

(85) John telephoned Mary whenever she arrived.

where the temporal preposition whenever requires its complement sentence to be uni-

versally quantified. Thus, sentence (85) asserts that, an event of John’s telephoning

Mary occurs after every interval over which Mary’s arriving. Note that not all temporal

prepositions have restriction on their complements. For example temporal prepositions

like during, at and on allow their complements to have any quantification pattern as in

sentences (86) and (87).

(86) John telephoned Mary during {the exam/ every exam/ an exam}.

(87) John telephoned Mary on {Tuesday/ a Tuesday/ every Tuesday}.

Let us now turn to quantification restrictions on the modificand of temporal preposi-

tions. Pratt and Francez (1997, 2001) observe that some temporal prepositions require

their modificands to be universally quantified rather than existentially quantified such as

for, until and throughout as shown in the following examples:

(88) John telephoned Mary during every meeting {for five weeks/until Christmas/through-

out the winter}.

(89) John telephoned Mary during a meeting *{for five weeks/until Christmas/through-

out the winter}.

In fact these words can also force eventive-sentences to be universally quantified as shown

in (90).

(90) John telephoned Mary {for five weeks/until Christmas/throughout the winter}.

3.3. TEMPORAL PREPOSITIONS 64

where the event of John’s telephoning Mary has a repeated or habitual reading.

In contrast, some other temporal prepositions accept either universal or existential

temporal quantification over their modificands such as in, before and after as given in the

following examples:

(91) John telephoned Mary every day {in May/before Christmas/after the conference}.

(92) John telephoned Mary one day {in May/before Christmas/after the conference}.

Restricting temporal preposition phrases with some particular quantifications makes

systematically generating the semantics of English sentences featuring temporal preposi-

tions possible. Of course, Pratt and Francez’s (1997; 2001) theory paid little attention to

some important topics such as tense and aspect, as well as the way temporal prepositions

employ the time of reference and their role in temporal anaphora.

3.3.2 The Interaction of Prepositions with Tenses and Aspects

In this section, we show that temporal prepositions are not the only means to convey

temporal information, but that there are others such as tenses (past, present or future)

of the main verb, aspectual classes and grammatical aspects. These also play an essential

role in defining the temporal semantics of English sentences. We begin by introducing

the interpretations of temporal prepositions depending on their aspectual classes. Then,

we discuss the semantics of temporal information concerning the interaction of temporal

prepositions with tense and grammatical aspects.

3.3.2.1 Temporal Prepositions and Aspectual Classes

In this section we discuss the effect of the aspectual classes on the interpretation of

temporal prepositions. Consider the following sentences:

3.3. TEMPORAL PREPOSITIONS 65

(93) When John finished his thesis, he went to Australia.

(94) When Mary went to the zoo, she saw some penguins.

Sentence (93) describes an achievement in when’s complement and an accomplishment

in the main clause. Achievements have the property of being punctual. As a result, we

can think of the event in the main clause as occurring immediately after the event in the

when’s complement. On the other hand, sentence (94) describes an accomplishment in

when’s complement and an achievement in the main clause. Accomplishments have the

property of being durative. As a result, the event in the main clause naturally occurs

within the event in when’s complement. Thus, the preposition when can have more than

one temporal relation based on the aspectual classes of its complement and main clause

(see Moens and Steedman, 1988; Sandström, 1993; Glasbey, 2004, for more discussion

about the interpretation of when).

Pratt and Francez (1997) draw attention to the semantics of temporal prepositions

involving stative verbs in their main clauses. Consider the following sentences:

(95) Mary slept throughout the lecture.

Sentence (95) describes a state in the main clause. States have the properties of being

durative and atelic. Thus, we get

(96) ıJ(lecture(J) ∧ J ⊆ I,∀J ′(J ′ ⊆ J →(Mary sleep)(J ′))).

which asserts that, the state of Mary’s sleeping holds at every time point in the unique

interval of the temporal context I occupied by a lecture. Note that stative verbs cannot

be combined with prepositions such as the preposition in in the following sentence:

(97) * Mary slept in two hours.

Sentence (97) appears odd since the preposition in requires a culmination point on its

main clause. Thus, the stative verbs fail to cope with the preposition in. However, they

3.3. TEMPORAL PREPOSITIONS 66

can come naturally with the preposition for as shown in (98).

(98) Mary slept for two hours.

Activities shares a similarity with states – they both have durative and atelic features.

Thus, activities can only cope with a temporal preposition that allows its main clauses

be universally quantified. For example,

(99) John worked on the paper for 2 hours.

(100) * John wrote the paper for 2 hours.

where sentence (99) describes an activity in the main clause which comes normally with

the preposition for, since it does not require its main clause to have a telic feature. Thus,

sentence (99) asserts that, the activity of John’s working on the paper holds at every time

point for the past two hours from the time of reference (TOR), as interpreted in (101).

(101) ∀J(J ⊆ [TOR-2h, TOR] → (John work on the paper) (J)).

On other hand, sentence (100) describes an accomplishment in the main clause which

appears unusual with the preposition for, because an accomplishment only combines with

a temporal preposition that allows its main clause to be existentially quantified.

3.3.2.2 Temporal Prepositions with Tense and Grammatical

Aspect

This section shows the effects of tense and the grammatical aspect (perfective or pro-

gressive) of main verbs on the semantics of temporal prepositions. Let us begin with the

preposition since. Pratt and Brée (1993) note that in standard British English the prepo-

sition since requires its main clause to have a perfective tense. Consider the following

sentences:

3.3. TEMPORAL PREPOSITIONS 67

(102) John has worked on the letter since 9:00.

(103) * John was working on the letter since 9:00.

(104) John has been working on the letter since 9:00.

Sentence (102) describes a present perfective in the main clause. Thus, it asserts that

the event of John’s working on the letter stretching backward from 9:00 until the TOU

as shown in (105). By contrast, sentence (103) uses a past progressive tense in the main

clause, thus this sentence appears irregular with the preposition since. Instead of (103),

we may use a present progressive prefect tense with since as shown in (104).

(105) ∀J(J ⊆ [9:00, TOU] → (John work on the letter)(J)).

The interpretation of the preposition for can be affected by tense and grammatical

aspect in its main clause. Consider the following sentences:

(106) John will be working on the letter for three hours.

(107) John has worked on the letter for three hours.

Sentence (106) has a future non-perfective in the main clause. Thus, this sentence asserts

that the event of John’s working on the letter stretches forward for three hours from

the TOR as shown in (108). By contrast, sentence (107) has a present perfective in the

main clause. Thus, this sentence asserts that, the event of John’s working on the letter

stretching backward for three hours from the TOR as shown in (109).

(108) ∀J(J ⊆ [TOR, TOR+3hr] → (John work on the letter)(J)).

(109) ∀J(J ⊆ [TOR-3hr,TOR] → (John work on the letter)(J)).

Furthermore, even though the temporal preposition by has the same meaning as until,

the temporal preposition by can produce the temporal relation during if its main clause

has a progressive aspect. Consider the following example:

3.3. TEMPORAL PREPOSITIONS 68

(110) Mary posted the package by 10 o’clock.

(111) Mary was working on her project by 10 o’clock

Sentence (110) has a past tense and a perfective aspect in the main clause. Thus, this

sentence asserts that the event of Mary’s posting the package occurs before 10 o’clock as

shown in (112). By contrast, sentence (111) has a past tense and a progressive aspect in

the main clause. Thus, this sentence asserts that Mary was still working on her project

at 10 o’clock. Pratt and Francez (1997) state that the complex interactions with aspects

leads to some difficulties for giving the proper interpretations for some prepositions.

(112) ∃J(J ⊆ [TOR, 10:00] ∧ (Mary post the package)(J)).

Different theories exist in the literature regarding the complex interactions of temporal

prepositions with aspects. Moens and Steedman (1988) presented a theory explaining

the conversion of one aspectual class to another depending on the verb’s grammatical

aspect. According to their theory, the perfective converts statives, activities and accom-

plishments into achievements, placing focus on the consequent state of the described event.

Progressives on the other hand convert achievements, accomplishments and statives into

activities. Consider the following sentences:

(113) When John arrived at the pub, he drank a bottle of beer.

(114) When John arrived at the pub, he had drunk a bottle of beer.

Sentences (113) and (114) each describe the events of John arriving at the pub and drink-

ing a bottle of beer. Moreover, both events in the given examples have the perfective

aspect which describes a situation as a simple whole without an internal structure. How-

ever, we have the temporal ordering of these events altered by the presence of the perfect

tense in sentence (114). It places focus on the consequent state of the event. Activities

and accomplishments are converted to achievements when they occur in the perfective

tense. Sentence (113) places the event of John drinking a bottle of beer after his arrival

3.3. TEMPORAL PREPOSITIONS 69

at the pub, but having the main clause event in its perfective form places the focus on the

consequent state of the event, we therefore have the event in when’s complement placed

after the event in the main clause as illustrated in sentence (114).

The progressive converts states, accomplishments and achievements into activities.

(115) ? When John baked the cake, the oven stopped working.

(116) When John was baking the cake, the oven stopped working.

Sentence (115) describes an accomplishment in when’s complement, but semantic consid-

erations prevent us from locating the main clause event in the preparatory process of the

accomplishment. Sentence (115) is considered odd because if the oven stopped working

while John was baking the cake, then it hard to say that John finish baking the cake.

When the event in when’s complement is however in its progressive form, it is converted

to an activity and we therefore have the event in the main clause located within the event

in when’s complement as illustrated by sentence (116). This allows us therefore to have a

temporal inclusion as expected for activities. The results of this study show the temporal

relations in temporal prepositions are affected not only by their aspectual classes, but

also by tense and grammatical aspects which transform the interpretation of temporal

prepositions from a particular relation to another.

In this section, we provide an overview of the semantics of temporal prepositions in

English. The purpose of these studies is to determine the temporal semantics concerning

the interaction of temporal prepositions with the temporal expressions: tense and aspect.

We see how these expressions can change the behaviours of some temporal prepositions.

However, for the purpose of this thesis –namely, interpreting protocol specifications in

natural languages– we do not need to do justice to every single aspect of the behaviours

of temporal prepositions in English.

Chapter 4

Temporal Controlled Natural

Language

In this chapter we present temporal controlled natural language (TempCNL) and its asso-

ciated software. In Section 4.1, we show the structure of TempCNL Parsing Engine (TPE)

which is used for extracting temporal semantic representations from TempCNL sentences.

In Section 4.2, anaphora resolution is presented as a part of the TPE structure to handle

the problem of resolving references to earlier or later items in the inputs. In Section 4.3,

we describe how we build the TempCNL lexicon for the TPE system. In Section 4.4, an

extension of the temporal logic (TPL) is defined as temporal semantic representations for

TempCNL sentences. In Section 4.5, our context free grammar (CFG) is constructed for

extracting the temporal semantics from TempCNL sentences. In section 4.6, we restrict

some of the extended TPL languages in order to make their mapping into LTL and SVA

possible (as explained in the next Chapter). At the end of the chapter, we rewrite some

of the extended TPL primitives to simplify this translation process.

70

4.1. THE STRUCTURE OF TEMPCNL PARSING ENGINE 71

4.1 The Structure of TempCNL Parsing Engine

A controlled natural language is a formal language with a precisely specified syntax,

lexicon and semantics, which, however, resembles a natural language to a sufficient degree

that its well-formed sentences are recognizable and (within certain limits) interpretable by

a native speaker of that language. Some CNLs are designed for general use, for example

ASD (2013) and Avaya Inc. (2004). Other CNLs, by contrast, are designed specifically for

translation into formal specification languages, for example Fuchs et al. (1998), Schwitter

(2002) and Sowa (2004). Our language, TempCNL, falls into this latter category.

As is common with CNLs, TempCNL departs from natural language in certain, precisely

specified, respects, stemming from the fact that it is designed primarily for the specifi-

cation of communication protocols involving Boolean-valued variables in the context of

clocked systems. In such a context, the term “cycle”, for example, has a special meaning:

one tick of the clock. Likewise, a signal can typically have only two values—variously

referred to in practice as “high”/“low”, or, equivalently, as “asserted”/“not asserted”, or

“holding”/“not holding”. These terms, though not equivalent in English, in practice have

the same meanings in the contexts for which TempCNL is designed; and the semantics of

TempCNL reflects this.

Likewise, the primary target-language into which TempCNL is translated, namely, the

formal language SVA (or, equivalently, LTL), has certain syntactic limitations which

reflect in obvious ways on the allowed syntax of TempCNL. Thus, for example, SVA

is fundamentally a propositional language—all quantification is temporal. For instance,

we can say that a particular signal, Awid, is low whenever another particular signal,

AwidEnable, is low (temporal quantification); however, we cannot say that all signals

satisfying some property P are low whenever some signal satisfying some other property

Q is low (atemporal and temporal quantification). Since propositions of the latter kind are

not in our target language, they need not be in TempCNL; accordingly, the grammar will

not allow them. Thus, the grammar of TempCNL is, in certain respects, greatly simplified

4.1. THE STRUCTURE OF TEMPCNL PARSING ENGINE 72

in comparison to English. Thus, we can say all TempCNL sentences are acknowledged as

English sentences, but that not all English sentences are approved in TempCNL.

Now, let us explain the syntax of TempCNL via examples. Consider the following:

(117) Awvalid occurs when Awid is low;

(118) Every write burst occurs when Awid is low;

(119) The order in which addresses and the data item are produced must match.

Sentence (117) belongs to TempCNL because it can be recognized by our grammar. By

contrast, sentence (118) does not belong to TempCNL because the article “Every” is

considered as non-temporal quantification. Thus, sentence (118) cannot be translated

into SVA. Such these examples with non-temporal quantification will be rejected by our

grammar rules. Sentence (119) also does not belong to TempCNL because, in the corpora

considered in this thesis, very few relative clauses were encountered. Relative clauses

are excluded from TempCNL because of the difficulty of distinguishing restrictive from

non-restrictive clauses, and because they degrade performance of our parser. They could

be considered in future developments.

Given this degree of regimentation of syntax and semantics, the issue arises of course

arises as to whether the CNL language we end up with is in fact natural at all—or whether

it is not in fact just some formal language like SVA with verbose or clumsy syntax, no

easier to understand than SVA, and twice as difficult to write. The investigations of

this Thesis indicate that, for TempCNL, this is not the case. We have striven to design

a CNL which really is natural (for the intended users), firstly, by relating it closely to

existing theories of temporal semantics in natural language, and secondly—and more

importantly—by tailoring it specifically to parse sentences taken from real corpora of

specifications.

4.2. ANAPHORA RESOLUTION 73

In this thesis, we have constructed grammar rules for TempCNL using only two cor-

pora that are taken from natural language specifications. These corpora are Advanced

Microcontroller Bus Architecture in ARM Ltd (2009, 2012a,b) and Open Core Protocol in

OCP-IP Association (2013). The complete grammar rules are listed in Appendix B and

consisted of lexicon, syntax and semantics. It is important to clarify that if a user wants

to use the listed grammar, he or she may require to predefine the words or rules related

to his or her specific domain.

We extract temporal semantics from TempCNL sentences using the TempCNL Pars-

ing Engine (TPE). The TPE system is written in SWI-Prolog and based on the main

components in Figure 4.1.1. The main components are anaphora resolution and semantic

parsing. The semantic parsing depends on two components which are the lexicon and the

context-free grammar (CFG).

TempCNL
Sentence

Anaphora
Resolution

Semantic
Parser

Lexicon CFG

Output

Figure 4.1.1: The TPE structure.

Based on the TPE structure in Figure 4.1.1, any TempCNL sentence will be tested by

an anaphora resolution to check if any anaphora occurs. Then, we replace the anaphor

with its antecedent. Finally, we parse the input without any anaphora using our semantic

parser to extract the temporal semantics.

4.2 Anaphora Resolution

This section presents our method for resolving references to earlier or later items in the

text using anaphora resolution. We choose one of the most efficient anaphora resolution

4.2. ANAPHORA RESOLUTION 74

systems which is JavaRAP Qiu et al. (2004). JavaRAP resolves third person pronouns,

lexical anaphors, and recognises expletive pronouns. Note that expletive (or dummy)

pronouns are words that refer to nothing particular, instead allowing the sentences to

function correctly in a grammatical context. Based on JavaRAP’s evaluation in Qiu et al.

(2004), JavaRAP has been tested on the MUC-6 dataset (see Grishman and Sundheim,

1996) which contains 235 lexical anaphors and third person pronouns.

The result was that the JavaRAP labelled 136 correctly and the accuracy was 57.9%.

The low accuracy of JavaRAP is mainly due to the limitation of the performance of

Charniak’s (2000) parser. JavaRAP uses Charniak’s (2000) parser for taking text with

sentence delimitation as input and generating a parse tree. In the TPE system, our aim

is to parse sentences specifying system requirements. These types of sentences are usually

written shorter than sentences in the MUC-6 dataset. Therefore, the performance of

JavaRAP in term of accuracy is higher than that reported in Qiu et al. (2004). Section

6.2.2 shows JavaRAP’s evaluation on a corpus that contains English sentences explaining

system requirements.

Let us show how we use the JavaRAP tool to resolve references. We first parse the inputs

through the JavaRAP tool to produce a list of anaphora-antecedent pairs as outputs. Then

we replace all anaphors with their antecedents in the given inputs. For example,

(120) When Acvalid is asserted, it must remain asserted until Acready is asserted.

(121) If they are active, MReset and SReset must stay active at least 16 consecutive

cycles.

In sentence (120), the third-person singular pronoun “it” refers to its antecedent “Ac-

valid”. In contrast, in sentence (121), the third-person plural personal pronoun “they”

refers to its postcedent “MReset and SReset”. Using the JavaRAP tool allows us to

generate a list of anaphora-antecedent pairs as shown in Table 4.2.1.

4.2. ANAPHORA RESOLUTION 75

Antecedent or Postcedent Anaphora

Acvalid ⇐ it

MReset and SReset ⇐ they

Table 4.2.1: A list of anaphora-antecedent pairs.

We take the output shown in Table 4.2.1 and replace any anaphora with its antecedent or

its postcedent in the original sentences such as sentences (120) and (121) and reproduce

sentences without any anaphora such as the following sentences:

(122) When Acvalid is asserted, Acvalid must remain asserted until Acready is asserted.

(123) If MReset and SReset are active, MReset and SReset must stay active at

least 16 consecutive cycles.

Note that the above method is not applicable if the antecedent preforms as a quantified

noun phrase such as (124) since if we replace “he” with “a man” such as in (125), it does

not mean the same as (124).

(124) A man came into the room. He sat down.

(125) A man came into the room. A man sat down.

Luckily, there are no examples of pronouns referring back to indefinite noun phrases

in the corpora that we work on. More importantly, the TPE grammar will not allow

non-temporal quantification such as “A” in our TempCNL as explained in Section 4.1.

No anaphora resolution method is perfect, of course. However, in practice, the JavaRAP

tool works well. For the data sets we considered, all sentences are short and have partic-

ularly simple anaphoric structure with little ambiguity.

Of course, the exact manner in which the JavaRAP tool works depends on the details

of the algorithm involved, and is not specified as part of our definition of TPE. This, of

4.3. TEMPCNL LEXICON 76

course, represents a weakness in our system, one which should be repaired by deciding on

the best anaphora-resolution strategy from the point of view of the design of a controlled

natural language, and then implementing that strategy. We plan to address this issue in

future work. We note however, that the JavaRAP tool works well on the corpora we have

considered.

4.3 TempCNL lexicon

This section describes how we build the TempCNL lexicon for the TPE system. Our

lexicon contains detailed information about the words belonging to the possible syntactic

categories. We define the lexical entry using one of the following formats:

lexEntry(Cat ,[symbol:Sym ,syntax:Word ,num:Num]).

lexEntry(Cat ,[syntax:Word ,type:Q]).

where Cat is the syntactic category, Word the strings of the word, Sym the relation symbol

or the constant of the given word, and Num lists the singular or plural information for

nouns and verbs. In the second lexical entry, we have the variable Q which lists additional

information about the quantification type for a determiner or the type of coordination,

as discussed below.

Now let us show the TempCNL lexical rules. The lexical rules include only terminal

categories on the right-hand side, and they are classified into two classes: closed class (or

predefined function words) and open class (or content words). Let us discuss each class

in detail.

4.3.1 Closed class lexicon

Closed class lexicon consists of 6 different categories: determiner, auxiliary verb, negation,

coordination, temporal adjective and temporal preposition.

4.3. TEMPCNL LEXICON 77

1. Determiners are defined in the following form:

det([type:Q]) -->

{lexEntry(det ,[syntax:Word ,type:Q])}, Word.

where the variable Q uses to store the quantification type that determiner has in its

lexicon entry as shown, below:

lexEntry(det ,[syntax :[every],type:forall]).

lexEntry(det ,[syntax :[a],type:exists]).

lexEntry(det ,[syntax :[the],type:def]).

The tags forall, exists and def denote universal, existential and definite quan-

tifications, respectively. These tags are used to give some syntactic restrictions to

certain phrase categories as we shall see later in the following section. In the Tem-

pCNL lexicon, there are six determiners as shown in Table 4.3.1 with their associated

quantification types.

Determiner Quantification type
any, every or all forall
a, an or some exists

the def

Table 4.3.1: A list of determiners with their quantification types.

2. Auxiliary verbs are defined in the following form:

aux([num:Num]) -->

{lexEntry(aux ,[syntax:Word ,num:Num])},Word.

The TempCNL lexicon has 19 auxiliary verbs as follows:

are is was were be being been have has had

may must might can could would should shall will

Here are some of their lexical entries as follows:

lexEntry(aux ,[syntax :[is],num:sg]).

4.3. TEMPCNL LEXICON 78

lexEntry(aux ,[syntax :[are],num:pl]).

lexEntry(aux ,[syntax :[must],num:_]).

The sg denotes that the auxiliary verb “is” is singular while the pl denotes that

the auxiliary verb “are” is plural. Note that the modal auxiliary “must” does not

have third-person singular present tense form. Thus, we leave this field empty.

Note that, in our TempCNL grammar, we allow multiple auxiliaries such as the

following sentences:

Subject MODAL PERF PROG PASS LEXICAL

The game was played.
The game was being played.
The game has been played.
The game has been being played.
The game might have been being played.

Thus, we add another lexicon rule to handle multiple auxiliaries as follows:

extraAux --> {lexEntry(extraAux ,[syntax:Word])},Word.

This category has 6 lexical entries as follows:

lexEntry(extraAux ,[syntax :[be]]).

lexEntry(extraAux ,[syntax :[been]]).

lexEntry(extraAux ,[syntax :[being]]).

lexEntry(extraAux ,[syntax :[have , been]]).

lexEntry(extraAux ,[syntax :[have , being]]).

lexEntry(extraAux ,[syntax :[been , being]]).

Those lexical entries defined based on the verb forms for the possible combinations

of verb phrases with multiple auxiliaries in Table 4.3.2.

modal + perfect have + passive be + Verb
modal + perfect have + progressive be + Verb

perfect have + progressive be + passive be + Verb
modal + progressive be + passive be + Verb

Table 4.3.2: The possible combinations of verb phrases with multiple auxiliaries.

4.3. TEMPCNL LEXICON 79

3. Negations are defined in the following form:

neg --> {lexEntry(neg ,[syntax:Word])},Word.

There are only three lexical entries for negations and they are as follows:

lexEntry(neg ,[syntax :[no]]).

lexEntry(neg ,[syntax :[not]]).

lexEntry(neg ,[syntax :[never]]).

4. Coordination is classified into three different types of lexical categories since we

allow coordination for sentences, noun phrases and temporal nominal phrases. We

define their closed-class lexical rules as follows:

ipcoord --> {lexEntry(coord ,[syntax:Word ,type:Type])}, Word.

npcoord --> {lexEntry(coord ,[syntax:Word ,type:Type])},Word.

tncoord --> {lexEntry(coord ,[syntax:Word ,type:Type])},Word.

The ipcoord category denotes the coordination for sentences, the npcoord category

denotes the coordination for noun phrases, and the tncoord category denotes the

coordination for temporal nominal phrases. Note that all the above rules have

the same syntactic category coord; however each rule will have different semantic

interpretations as we shall see later in Section 4.5.5. There are only two lexical

entries for coordination as shown, below:

lexEntry(coord ,[syntax :[and],type:conj]).

lexEntry(coord ,[syntax :[or],type:disj]).

5. Temporal adjectives are defined in the following form:

tAdj --> {lexEntry(tadj ,[symbol:Sym ,syntax:Word])}, Word.

There are only two lexical entries for the order-denoting adjectives. These entries

are as follows:

lexEntry(tadj ,[symbol:f,syntax :[first]]).

lexEntry(tadj ,[symbol:l,syntax :[last]]).

4.3. TEMPCNL LEXICON 80

6. Temporal Prepositions are classified into two different types of lexical categories:

temporal prepositions with nominal complements and temporal prepositions with

clausal complements.

(a) Closed-class lexical rule for temporal prepositions with nominal complements

is defined as follows:

tpn([qclause:Q,mclause:M]) -->

{lexEntry(tpn ,[symbol:Sym ,syntax:Word ,

qclause:Q,mclause:M])},Word.

The TempCNL lexicon has 13 temporal prepositions that can select nominal

complements, and these temporal prepositions are as follows:

within at during on for in throughout
until by since before after until after

(b) Closed-class lexical rule for temporal prepositions with clausal complements is

defined as follows:

tps([qclause:Q,mclause:M]) -->

{lexEntry(tps ,[symbol:Sym ,syntax:Word ,

qclause:Q,mclause:M])},Word.

The TempCNL lexicon has 11 temporal prepositions that can select clausal

complements, and these temporal prepositions are as follows:

whilst when while whenever once until
before by the time after since until after

Note that there are some prepositions that can be either temporal or non-

temporal. However, there are very low probabilities for ambiguity occurring,

since temporal prepositions will only combine with temporal nouns in our gram-

mar as we shall see in Section 4.5.

4.3. TEMPCNL LEXICON 81

Note that some temporal prepositions enforce their complements and main

clauses to be restricted with particular quantifications. Thus, we add two vari-

ables Q and M in the tpn and tps categories to restrict the complements and

main clauses with the quantification types that associated with those tempo-

ral prepositions. These restrictions provide adequate systematic treatments of

which sentences are acceptable in our TempCNL grammar based on the com-

mon use of the temporal preposition in English. For example, the temporal

prepositions until and by require their complements to be definitely quantified

as shown in (83) and (84), which we repeat here for convenience as follows,

respectively:

(126) John telephoned Mary every day until {the exam/* every exam/* an

exam}.

(127) John telephoned Mary by {the exam/* every exam/* an exam}.

Moreover, the temporal preposition until requires its main clause to be univer-

sally quantified while the temporal preposition by requires its main clause to

be existentially quantified. Thus, we write their lexical entries as follows:

lexEntry(tpn ,[symbol:before ,syntax :[by],

qclause:def ,mclause:exists]).

lexEntry(tpn ,[symbol:before ,syntax :[until],

qclause:def ,mclause:forall]).

Both lexicon entries have, in the symbol filed, the temporal order relation

before. This is due to the initial meaning of the temporal prepositions by and

until which locates one event or state before another in time. The temporal

relation before will be used later to produce the meanings of those temporal

prepositions. The rest of lexical rules for temporal prepositions including their

restrictions is listed in Appendix B.

4.3. TEMPCNL LEXICON 82

4.3.2 Open class lexicon

Open class lexicon consists of 9 different categories: temporal nouns, proper names, car-

dinal numbers, adverbs, adjectives, inflections, intransitive verbs, transitive verbs and

ditransitive verbs.

1. Temporal Nouns are defined in the following form:

tn([num:Num]) -->

{lexEntry(tnoun ,[symbol:Sym ,num:Num ,syntax:Word])},Word.

We define the lexical entry for a temporal noun such as “cycles” and “transaction”

as follows:

lexEntry(tnoun ,[symbol:cycle ,num:pl,syntax :[cycles]]).

lexEntry(tnoun ,[symbol:transaction ,num:sg,syntax :[transaction]]).

2. Proper names are classified into two different versions: one for those that stand by

itself (e.g. “John”, “Microsoft”) and one for those that require a preceeding definite

article (e.g. “the Atlantic”, “the USA”). We define them as follows, respectively:

pn([num:Num]) -->

{lexEntry(pn ,[symbol:Sym ,num:Num ,syntax:Word])}, Word.

pn_def ([num:Num]) -->

{lexEntry(pn_def ,[symbol:Sym ,num:Num ,syntax:Word])}, Word.

We write the lexical entry for proper names such as “John” and “the USA” as

follows:

lexEntry(pn ,[symbol:‘John ’,num:sg,syntax:[‘John ’]]).

lexEntry(pn_def ,[symbol:‘USA ’,num:sg,syntax:[‘USA ’]]).

Note that some proper names can also be declared in both of those categories (e.g.

“(the) Awvalid”, “(the) Eiffel Tower”).

3. Cardinal numbers are defined in the following form:

4.3. TEMPCNL LEXICON 83

num --> {lexEntry(number ,[symbol:Sym ,syntax:Word])}, Word.

We write the lexical entry for numbers such as “4” and “six” (which is written in

words) as follows:

lexEntry(number ,[symbol:‘4’,syntax :[‘4’]]).

lexEntry(number ,[symbol:’6’,syntax :[six]]).

4. Adverbs are defined in the following form:

adv --> {lexEntry(adv ,[syntax:Word])}, Word.

We write the lexical entry for adverbs such as quickly and exactly as follows:

lexEntry(adv ,[syntax :[exactly]]).

lexEntry(adv ,[syntax :[eventually]]).

5. Adjectives are defined in the following form:

adj --> {lexEntry(adj ,[symbol:Sym ,syntax:Word])},Word.

We write the lexical entry for adjectives such as high and low as follows:

lexEntry(adj ,[symbol:high ,syntax :[high]]).

lexEntry(adj ,[symbol:low ,syntax :[low]]).

6. Inflections refer here to the extra letter or letters added to verbs. Inflectional

endings can indicate the tense of verbs. Inflections are defined in the following

forms:

i([symbol:Root ,num:sg]) -->

{morph_type(Word , Root ,-s), lexEntry(iv ,[syntax:Root])}, [Word].

i([symbol:Root ,num:_]) -->

{morph_type(Word , Root ,none), lexEntry(iv ,[syntax:Root])},[Word].

i([symbol:Root ,num:_]) -->

{morph_type(Word , Root ,-ed), lexEntry(iv ,[syntax:Root])}, [Word].

4.3. TEMPCNL LEXICON 84

Note that, in the above rules, the lexical entry belongs to the intransitive verb (iv)

category. However, we can apply the above rules to the categories transitive and

ditransitive verbs in the similar way. The main purpose of the inflection category

is to extract the root of the verb and move it to the appropriate position where we

can extract its meaning. For more clarification, see the phrase structure of sentence

(149) in Figure 4.5.2). Note that, in the symbol field, the variable Root stores the

base form of the given verb.

To extract inflectional suffixes of the verb, we use the function morph type. This

function is built in a morphological analysis tool called ProNTo (developed in

Schlachter (2003)). The ProNTo tool is written in Prolog which make it easy for

us to integrate the ProNTo tool with the TPE system. Figure 4.3.1 illustrates how

to extract inflectional suffixes of verbs “played” and “remains” using the function

morph type.

1. morph type(played, R, S)

2. Output:

Root (R) = play

Suffix (S) = -ed

1. morph type(remains, R, S)

2. Output:

Root (R) = remain

Suffix (S) = -s

Figure 4.3.1: Extracting inflectional suffixes from verbs.

After that we check if the verbs “played” and “remains” have lexical entries in our

lexicon as shown below:

lexEntry(iv ,[syntax :[remain]]).

lexEntry(tv ,[syntax :[play]]).

7. Intransitive verbs are classified into two categories: verbs that do not take direct

objects and verbs that are followed by adjectives. We define both lexicon categories

as shown in the following forms, respectively:

iv([symbol:Word ,mclause:M]) -->

{morph_type(Word ,Root ,Suffix), grammatical_aspect(Suffix ,GrAsp),

aspectual_class(Root ,Type), quantifier_type(GrAsp ,Type ,M),

lexEntry(iv ,[syntax:Root])},[].

4.3. TEMPCNL LEXICON 85

iv([symbol :[], mclause:M]) -->

{morph_type(Word ,Root ,Suffix), grammatical_aspect(Suffix ,GrAsp),

aspectual_class(Root ,Type), quantifier_type(GrAsp ,Type ,M),

lexEntry(iv ,[syntax:Root])}, [Word].

iv_adj ([symbol:Word ,mclause:M]) -->

{morph_type(Word ,Root ,Suffix), grammatical_aspect(Suffix ,GrAsp),

aspectual_class(Root ,Type), quantifier_type(GrAsp ,Type ,M),

lexEntry(iv ,[syntax:Root])},[].

iv_adj ([symbol :[], mclause:M]) -->

{morph_type(Word ,Root ,Suffix), grammatical_aspect(Suffix ,GrAsp),

aspectual_class(Root ,Type), quantifier_type(GrAsp ,Type ,M),

lexEntry(iv ,[syntax:Root])}, [Word].

All the above rules are defined in the same way, except the first and third rules

which do not take the next word in the given sentences since the variable Word

in the symbol feature has the root of the verb that is passed from the inflection

category. Note that all the above rules use the same part-of-speech tag which is iv;

however the rules for the iv category will have different semantic interpretations

than the rules for the iv adj category as we shall see later in Section 4.5.2.2. The

variable M stores the quantification type of a verb.

To assign the proper quantification types for verbs, we must have additional rules

to extract two important features: the grammatical aspects (simple, perfective, pro-

gressive) and the aspectual classes (state, event). The grammatical aspects of verbs

tell us whether the event verb has a culmination point or not. In contrast, the

aspectual classes tell us whether events extend in time or occur at an instantaneous

time (more details are given in Section 3.2). We use those features to select a quan-

tifier type (existential or universal) for a verb. For example, consider the following

sentences:

(128) Awvalid is asserted

(129) Awvalid remains high.

4.3. TEMPCNL LEXICON 86

In (128), the verb “asserted” is an event verb, and it has grammatically passive con-

struction; however in this case we are going to treat it like a perfective aspect because

that what it makes most sense in natural language protocol specifications. In (129),

the verb “remains” is a state verb and has a simple aspect. We assign existential

quantification to the verb “asserted” since any event verb with the perfective aspect

indicates that the event has a culmination point which occurs instantaneously; and

universal quantification to the verb “remains” since any state verb with the simple

aspect indicates that the event has no culmination point and extends in time. Ta-

ble 4.3.3 shows our quantifier selection decision for verbs based on the grammatical

aspects and the aspectual classes.

Grammatical Aspects × Aspectual classes → Quantified types
Simple aspect × State class → Universal type
Simple aspect × Event class → Existential type
Perfective aspect × State class → Universal type
Perfective aspect × Event class → Existential type
Progressive aspect × State class → Universal type
Progressive aspect × Event class → Universal type

Table 4.3.3: Our method to select a quantified type for a verb.

Let us discuss how to extract the grammatical aspects of verbs. Then we show how

we set the lexicon rules for aspectual classes.

We take advantage of the ProNTo tool to extract the inflectional suffixes as shown in

the given examples in Figure 4.3.1. Then, we can obtain those aspects of verbs using

the simple Prolog rule “grammatical aspect(Suffix, GrAsp)” that retrieves the

associated aspects of the given inflectional suffixes. Table 4.3.4 shows a summary

of the inflectional suffixes that we require to determine the grammatical aspects.

Suffix Grammatical change Grammatical Aspects
none none simple Aspect
-ed past tense/past participle perfect Aspect
-en past participle (irregular) perfect Aspect
-ing continuous/progressive progressive Aspect

Table 4.3.4: The inflectional suffixes with their associated aspects.

4.3. TEMPCNL LEXICON 87

As shown in Table 4.3.4, every inflectional suffix is associated with a particular

aspect. The “none” word means that there is no suffix on the given verbs.

Now let us show how we build the rules for the aspectual classes of verbs. As

mentioned in Section 3.2, in this thesis, the only thing we really require is to make a

distinction between states and events for our problem since our purpose is to handle

natural language protocol specifications. Therefore, we have two class names: state

and event. For those classes, we write the rules, for example, to the verbs in sentences

(128) and (129) as shown, below:

aspectual_class(assert ,event).

aspectual_class(remain ,state).

Finally, when we extract the grammatical aspect (its variable GrAsp) and the as-

pectual class (its variable Type) for the given verb, we select the suitable quantifier

for that verb using the Prolog function “quantifier type(GrAsp,Type, M)” to

retrieve the quantifier type (its variable M) for the verbs based on our quantifier

selection decision in Table 4.3.3. Here are the full details of the verbs “asserted”

and “remain” based on our set-up lexical rules for the iv and iv adj categories:

iv([symbol :[], mclause:exists]) -->

{morph_type(asserted ,assert ,-ed),grammatical_aspect(-ed,perf),

aspectual_class(assert ,event),quantifier_type(perf ,event ,exists),

lexEntry(iv ,[syntax:assert])}, [asserted].

iv_adj ([symbol :[], mclause:forall]) -->

{morph_type(remain ,remain ,none),grammatical_aspect(remain ,state),

aspectual_class(remain ,state),quantifier_type(simple ,state ,forall)

,lexEntry(iv ,[syntax:remain])}, [remain].

As noted above, the lexical rules for the iv and iv adj categories are complex.

Thus, form now on, we write the following forms instead of the above forms for

simplicity’s sake when we discuss the lexical rules for these two categories.

iv([symbol :[], mclause:exists]) --> [asserted].

iv_adj ([symbol :[], mclause:forall]) --> [remain].

4.3. TEMPCNL LEXICON 88

8. Transitive verbs are verbs that can take direct objects. We define its lexical rules

as follows:

tv([symbol:Word ,mclause:M]) -->

{morph_type(Word ,Root ,Suffix), grammatical_aspect(Suffix ,GrAsp),

aspectual_class(Root ,Type), quantifier_type(GrAsp ,Type ,M),

lexEntry(tv ,[syntax:Root])}, [].

tv([symbol :[], mclause:M]) -->

{morph_type(Word ,Root ,Suffix), grammatical_aspect(Suffix ,GrAsp),

aspectual_class(Root ,Type), quantifier_type(GrAsp ,Type ,M),

lexEntry(tv ,[syntax:Root])}, [Word].

Here is an example of a transitive verb and its lexical rules:

tv([symbol :[], mclause:forall]) -->

{morph_type(eating , eat , -ing), grammatical_aspect(-ing , prog),

aspectual_class(eat ,event), quantifier_type(prog ,event ,forall),

lexEntry(tv ,[syntax:eat])}, [eating].

9. Ditransitive verbs are verbs which take a subject and two objects. We define its

lexical rules as follows:

dtv([symbol:Word ,mclause:M]) -->

{morph_type(Word ,Root ,Suffix), grammatical_aspect(Suffix ,GrAsp),

aspectual_class(Root ,Type), quantifier_type(GrAsp ,Type ,M),

lexEntry(dtv ,[syntax:Root])},[].

dtv([symbol :[], mclause:M]) -->

{morph_type(Word ,Root ,Suffix), grammatical_aspect(Suffix ,GrAsp),

aspectual_class(Root ,Type), quantifier_type(GrAsp ,Type ,M),

lexEntry(dtv ,[syntax:Root])}, [Word].

Here is an example of a ditransitive verb and its lexical rules:

dtv([symbol :[], mclause:exists]) -->

{morph_type(give , give , none),grammatical_aspect(none ,simple),

aspectual_class(give ,event),quantifier_type(simple ,event ,exists),

lexEntry(dtv ,[syntax:give])}, [give].

4.4. TPL+ SEMANTICS 89

Note that the lexical rules for transitive and ditransitive verbs are similar to the

rules of intransitive verbs except its lexical entry. Again, for simplicity’s sake, we

write the lexical rules for transitive and ditransitive verbs in the following forms

when we discuss them later.

tv([symbol :[], mclause:forall]) --> [eating].

dtv([symbol :[], mclause:exists]) --> [give].

The TempCNL lexicon consists of 814 domain-specific words that taken from Advanced

Microcontroller Bus Architecture in ARM Ltd (2009, 2012a,b) and Open Core Protocol in

OCP-IP Association (2013).

4.4 TPL+ Semantics

In this section we present the syntax and semantics of the logic TPL+, which is an

extension of TPL as defined in Pratt-Hartmann (2005). The TPE system translates

TempCNL sentences unambiguously into TPL+.

Let us begin with the syntax of TPL+ as follows.

In the sequel, let E be a finite set. We refer to the elements of E as event-atoms.

Definition 4.4.1. Let e range over the set E of event-atoms. We define the categories

of event-relation α, TPL+-formula ψ as follows:

α := e | ef | el;

θ := > | 〈e〉=θ | |e〉=θ | 〈e⇔〉=θ | [[e]];

ψ := θ | ¬ψ | 〈e〉=ψ | [e]=ψ | {α}=ψ | |n〉∗ψ | [e]<ψ | [e]>ψ | {α}<ψ | {α}>ψ | {α}<+ψ |

ψ ∧ ψ′ | ψ ∨ ψ′.

The symbols <, >, = denote the temporal order relations before, after and during,

respectively. Moreover, the bracket-pairs 〈 〉, [], { }, | 〉 denote existential , universal,

4.4. TPL+ SEMANTICS 90

definite and initial existential quantifiers, respectively, and the symbol (⇔) indicates that

its argument holds at the time of evaluation if and only if it held at the previous time

point. The symbol (∗) denotes the repetition of ψ a given number of times. The Boolean

connectives →, ↔, and ⊥ are understood in the usual way. Finally, we may remove the

= subscript (which denotes the during relation) and consider any formula omitting its

binary relation as a formula with the during relation. For example, we write 〈e〉> and

{α}ψ rather than 〈e〉=> and {α}=ψ, respectively.

Recall IR from Definition 2.6.1 is a set of intervals, where an interval is a closed,

bounded, non-empty subset of the real numbers. Analogously, we define I in the following

definition.

Definition 4.4.2. We take an interval to be a closed, bounded and non-empty subset

of the natural numbers. More formally we say that an interval is a pair [a, b] such that

a, b ∈ N and a ≤ b. We denote the set of all intervals {[a, b] : a ≤ b ∧ a, b ∈ N} by I, and

we use the letters I, J, with or without decorations as variables ranging over I.

From now on, we are going to consider intervals not over the real numbers but over

the natural numbers. Thus, the logic TPL+ is a slightly different from TPL since TPL+

only makes sense over discrete time.

Here, we also define the functions start and end return the beginning and end points

of an interval, respectively. For example, start([a, b]) returns a and end([a, b]) returns b.

Moreover, let us recall the terms init(J,I) and fin(J,I) which denote the initial segment

of I up to the beginning of J, and the final segment of I from the end of J, respectively.

Before giving the formal semantics of TPL+ formulas, we will define the notion of

TPL+-interpretation.

Definition 4.4.3. A TPL+-interpretation A (henceforth, interpretation) is a finite subset

of I × E. For any J ∈ I, we write A(J) for {e ∈ E |〈J, e〉 ∈ A}, and for any e ∈ E, we

write A(e) for {J ∈ I |〈J, e〉 ∈ A}.

4.4. TPL+ SEMANTICS 91

Intuitively, 〈J, e〉 ∈ A means that an event of type e occurred over the interval J.

Let us now discuss the interpretation of event-relations. We recall the following termi-

nology from Pratt-Hartmann (2005) which defines the meanings of the words first and

last to apply to event-types of which there is no unambiguously first or last instance.

Definition 4.4.4. Let α be an event-relation, A an interpretation, and I, J ∈ I. We

define A |=I,J α by cases as follows:

1. A |=I,J e iff J ⊂ I and e ∈ A(J);

2. A |=I,J ef iff A |=I,J e and there is no J ′ such that A |=I,J ′ e and start(J ′) <

start(J);

3. A |=I,J e
l iff A |=I,J e and there is no J ′ such that A |=I,J ′ e and end(J) < end(J ′);

It is evident that, since A is finite, if there exists any J ⊂ I such that 〈J, e〉 ∈ A, then the

first and last intervals such J exist and are unique.

Let us now turn to the definitions of the truth-conditions for formulas in T PL+.

Definition 4.4.5. Let φ be a formula, A an interpretation, and I ∈ I. We define A |=I φ

recursively as follows:

1. A |=I 〈e〉> iff for some J ⊆ I, J ∈ A(e);

2. A |=I |e〉> iff for some J ⊆ I, J ∈ A(e) and J is an initial interval of I ;

3. A |=I 〈e⇔〉> iff A |=[start(I),start(I)] e⇔ A |=[start(I)-1,start(I)-1] e;

4. A |=I [[e]] iff for all J ⊆ I, J ∈ A(e);

5. A |=I 〈e〉ψ iff for some J ⊆ I, J ∈ A(e) and A |=J ψ;

6. A |=I [e]ψ iff for all J ⊆ I, J ∈ A(e) implies A |=J ψ;

4.4. TPL+ SEMANTICS 92

7. A |=I {α}ψ iff there is a unique J ⊂ I such that J ∈ A(α), and for that J,A |=J ψ;

8. A |=I |n〉∗ψ iff A |=[start(I),start(I)+n] ψ and |I| ≥ n, where n is a number;

9. A |=I [e]>ψ iff for all J ⊂ I, J ∈ A(e) implies A |=[end(J)+1,end(J)+1] ψ;

10. A |=I [e]<ψ iff for all J ⊂ I, J ∈ A(e) implies A |=[start(J)−1,start(J)−1] ψ;

11. A |=I {α}<ψ iff there is a unique J ⊂ I such that J ∈ A(α), and for that

J,A |=init(J,I) ψ;

12. A |=I {α}>ψ iff there is a unique J ⊂ I such that J ∈ A(α), and for that

J,A |=fin(J,I) ψ;

13. A |=I {α}<+ψ iff there is a unique J ⊂ I such that J ∈ A(α), and for that

J,A |=[start(I),end(J)+1] ψ;

14. A |=I ¬ψ iff it is not true that A |=I ψ.

15. A |=I ψ ∧ ψ′ iff A |=I ψ and A |=I ψ
′.

16. A |=I ψ ∨ ψ′ iff A |=I ψ or A |=I ψ
′.

In Definition 4.4.5, the TPL+ formulas |e〉>, 〈e⇔〉>, [[e]], |n〉∗ψ, [e]>ψ, [e]<ψ and {α}<+ψ

are defined in this thesis while the rest of them have already been introduced in Pratt-

Hartmann (2005). The motivation behind these extensions is to (i) handle more temporal

constructions occur commonly in English (such as throughout, until after, since, stable,

etc), and (ii) provide a suitable temporal logic that has sufficient expressive power for

hardware specifications.

Note that, in Definition 4.4.5, there is a difference between double square bracket [[]] in

4 and the square bracket [] in 6. The [[e]] entails that all subintervals of the interval of

evaluation must satisfy e whereas the [e]ψ entails that all intervals which satisfy e make

ψ true.

4.4. TPL+ SEMANTICS 93

Let us give some examples of how TPL+ interprets English sentences having temporal

expressions and relate these interpretations to those given using ITL (see the formal

semantics of ITL in Section 2.6). Consider the following sentences:

(130) Awid is asserted

(131) Awid is asserted during every cycle

(132) Awid is asserted during every cycle until Awvalid goes high.

The semantics of the above sentences in TPL+ are:

(133) 〈assert(Awid)〉>

(134) [cycle]〈assert(Awid)〉>

(135) {high(Awvalid)}<[cycle]〈assert(Awid)〉>.

From Definition 4.4.5, we see that the truth-conditions of the above TPL+-formulas

correspond exactly to ITL formulas as shown below, respectively

(136) ∃J0(assert(Awid, J0) ∧ J0 ⊆ I)

(137) ∀J1(cycle(J1) ∧ J1 ⊆ I → ∃J0(assert(Awid, J0) ∧ J0 ⊆ J1))

(138) ıJ2(high(Awvalid, J2) ∧ J2 ⊆ I,

∀J1(cycle(J1) ∧ J1 ⊆ init(J2, I)→ ∃J0(assert(Awid, J0) ∧ J0 ⊆ J1))).

We derive the ITL formula (136) from the TPL+-formula (133) using the clause (1),

the ITL formula (137) from the TPL+-formula (134) using the clauses (6) and (1), and

the ITL formula (138) from the TPL+-formula (135) using the clauses (11), (6) and

(1). Note that the interval variables J0, J1 and J2 do not appear in TPL+ formulas

because the semantics of the operators {}, [], 〈〉 etc in Definition 4.4.4 bind those interval

variables over which the formulas in their scopes are evaluated. On the other hand, in

4.4. TPL+ SEMANTICS 94

ITL formulas these variables become arguments of the predicates such as assert, cycle

and high as shown in formulas (136)–(138). ITL has an extra argument place that is

filled by interval variables. It is important to mention that we do not intend to translate

TPL+ formulas from ITL formulas since (1) they are equivalent, (2) TPL+ is easier to

extract from English and translate it into LTL and SVA as we shall see in Chapter 5.

The meanings of formulas (136)–(138) were explained previously in (29), (30), and (34),

respectively. Note that, in this section, ITL formulas describe over discrete time rather

than continuous time.

Now, let us provide interpretations for some temporal expressions that often occur in

natural language specifications. Consider the following sentences:

(139) Awvalid remains high for three cycles

(140) After the last ACK, Awid must eventually occur.

(141) Awvalid must be stable once Acvalid goes high

Before we discuss the meaning representations of sentences (140) – (141), we want to

point out that the words stable and cycles with cardinal number have special meanings in

hardware languages such as SVA. Thus, the adjective stable is assigned to 〈e⇔〉> which

is defined in clause (3) of Definition 4.4.5.

Moreover, if the word cycle occurs in the following forms: (one cycle, two cycles, three

cycles, etc.), it has a special meaning in SVA, because there are two assertion types:

immediate assertions which are based on event semantics and concurrent assertions which

are based on clock semantics. Therefore we must treat the word “cycle” differently to any

other events. For example, “three cycles” in (139) means that the main clause “Awvalid

must remain high” will be evaluated for the specified number of clocking cycles. Recall

that TempCNL will treat certain words in a special way. Hence, we would prefer to

interpret “three cycles” as |3〉 where we omit the word cycles from any TPL+ formula if

4.4. TPL+ SEMANTICS 95

it occurs with a cardinal number.

The semantics of sentences (140)–(141) in TPL+ are:

(142) |3〉∗[[high(Awvalid)]]

(143) {ACK l}>〈occur(Awid〉)>

(144) [high(Acvalid)]>〈Awvalid⇔〉>.

From Definitions 4.4.4 and 4.4.5, we see that the truth-conditions of the above TPL+-

formulas correspond exactly to ITL formulas as shown below, respectively

(145) ∀J(J ⊆ [start(I), start(I) + 3]→ high(Awvalid, J))

(146) ıJ2(ACK(J2) ∧ J2 ⊆ I ∧ ∀J1(ACK(J1)→ ¬J1 ⊆ fin(J2, I)),

∃J0(J0 ⊆ fin(J2, I) ∧ high(Awid, J0))).

(147) ∀J1(high(Acvalid)(J1) ∧ J1 ⊆ I →

∃J0(J0 ⊆ [end(J0)+ 1, end(J0)+ 1] ∧

(Awvalid([start(J0), start(J0)])⇔ Awvalid([start(J0)− 1, start(J0)− 1])))).

We derive the ITL formula (145) from the TPL+-formula (142) using the clauses (8) and

(4) in Definition 4.4.5, the ITL formula (146) from the TPL+-formula (143) using the

clause (3) in Definition 4.4.4 and the clauses (12) and (1) in Definition 4.4.5. Moreover,

We derive the ITL formula (147) from the TPL+-formula (144) using the clauses (9) and

(3) in Definition 4.4.5.

Let us explain the interpretations of the above ITL formulas. Formula (145) asserts

that, within the given temporal context I, every interval J includes the occurrence of

Awvalid being high and J is contained in [start(I), start(I) + 3]. The last interpretation

is (146) which asserts that, within the given temporal context I, there is an interval J2

over which ACK begins and ends after all other ACKs; after the interval J2, there is

4.5. GRAMMAR 96

an interval J0 includes the occurrence of Awid. The meaning of formula (147) asserts

that, within the given temporal context I, immediately after every interval J1 over which

Acvalid is high, there exists a time point J0 over which Awvalid is true if and only if

Awvalid held at the previous time point [start(J0)− 1, start(J0)− 1].

TPL+ formulas are evaluated over discrete time intervals. However, SVA (closely related

to LTL) employs predicates evaluated at a single point in time and does not allow arbitrary

quantification. So it is not obvious how we can map TPL+ to SVA. This problem is shown

in Chapter 5.

4.5 Grammar

This section shows the TPE grammar which is used to extract TPL+ formulas from

TempCNL sentences. The TPE grammar uses a depth-first top-down parser as discussed

in Section 2.2. The TPE grammar is a context-free grammar that combines typed logic

with lambda abstraction to obtain TPL+ formulas. This method, defined in Montague

(1974), has been used to build semantic representations for various fragments of English.

However, we use Montague semantics to generate TPL+ formulas from strings of symbols

as described previously in Section 2.1. This means that those strings in our grammar will

not have full meanings until TPL+ formulas are extracted.

In this section, we first discuss the importance of adding syntactic restrictions on our

grammar to generate TPL+ formulas. Then, we provide the grammar rules of sentence

structure, temporal preposition phrase with nominal complements, temporal preposition

phrase with clausal complements, and coordination categories separately.

4.5. GRAMMAR 97

4.5.1 Syntactic Restrictions

This section shows how and why we add some syntactic restrictions to certain phrase

categories in the TPE grammar. We first show a sample of our grammar and how we

generate the phrase structures of some sentences using our grammar. Then, we discuss

the necessity of adding syntactic restrictions on the grammar.

Let us show a sample of our grammar rules. Figure 4.5.1 presents a grammar rules that

written in SWI-prolog. As shown in Figure 4.5.1, the head of the TPE grammar is the

ip1 category. The term ip refers to a phrase that is headed by a tense or an auxiliary.

We usually represent a sentence as an inflectional phrase. The ip1 category consists of

another inflectional phrase ip0. We use a different number for the embedded inflectional

phrase to avoid left recursive grammar rules. We use the same method for noun phrase

categories (e.g. np1 and np0). The structure of ip1 also consists of the ip0 category,

followed by a temporal preposition phrase tpp.

The grammar rules, in Figure 4.5.1, are built entirely using a CFG formalism. A CFG is

similar to a definite clause grammar (DCG) but is less powerful since it has no variables

in the productions. However, if G is a DCG but variables rang over finite sets, there

exists a CFG G′ such that L(G) = L(G′). Thus, our grammar has four variables: Q, M,

Num and V. These variables are located in the syntactic features qclause, mclause, type

and symbol, respectively. We use the first two variables to give syntactic restrictions on

the complements and main clauses for some temporal prepositions, receptively. The vari-

able Q ranges over forall, exists, init exists and def tags which denote universal,

existential, initial existential and definite quantifications. On the other hand, the variable

M ranges over forall, exists and init exists tags which denote universal, existential

and initial existential quantifications. Moreover, we use the variable Num to enforce sub-

jects and verbs to agree with one another in number (singular or plural). These variables

range over finite sets of tags. Therefore, using variables in our grammar does not take

us out of CFG. For linguistic processing, the variable V in the symbol feature is used in

4.5. GRAMMAR 98

/* ==

Phrase rules

=== */

ip1 --> ip0([mclause:exists]).

ip1 --> ip0([mclause:forall]).

ip1 --> ip0([mclause:M]), tpp([mclause:M]).

ip0([mclause:M]) --> np0([num:Num]),

ibar([num:Num ,mclause:M]).

tpp([mclause:M]) --> tpn([qclause:Q,mclause:M]),

tnp0([qclause:Q,num:_]).

np0([num:Num]) --> pn([num:Num]).

tnp0([qclause:Q,num:Num]) --> det([type:Q]),

tnbar0 ([type:Q,num:Num]).

tnbar0 ([type:def ,num:Num]) --> tAdj , tn([num:Num]).

tnbar0 ([type:_,num:Num]) --> tn([num:Num]).

ibar([num:Num ,mclause:M]) --> aux([num:Num]),

vp([symbol :[], mclause:M]).

ibar([num:Num ,mclause:M]) --> i([symbol:V,num:Num]),

vp([symbol:V,mclause:M]).

vp([symbol:V,mclause:M]) --> v([symbol:V,mclause:M]).

v([symbol:V,mclause:M]) --> iv([symbol:V,mclause:M]).

v([symbol:V,mclause:M]) --> iv_adj ([symbol:V,mclause:M]), adj.

/* ==

Closed Class Lexicon

=== */

det([type:def]) --> [the].

det([type:forall]) --> [every].

det([type:exists]) --> [a].

aux([num:sg]) --> [is].

tAdj --> [first].

tAdj --> [last].

tpn([qclause:def ,mclause:exists]) --> [by].

tpn([qclause:def ,mclause:forall]) --> [until].

/* ==

Open Class Lexicon

=== */

tn([num:sg]) --> [transaction].

pn([num:sg]) --> [’Awid’].

pn([num:sg]) --> [’Awvalid ’].

adj --> [high].

adj --> [low].

i([symbol :[remain],num:sg]) --> [remains].

iv([symbol :[], mclause:exists]) --> [asserted].

iv_adj ([symbol :[remain],mclause:forall]) --> [].

Figure 4.5.1: Simple grammar rules for TempCNL.

4.5. GRAMMAR 99

our grammar for a simple verb movement. The variable V stores the base form of the

verb in the i category and moving it to the appropriate position where we can extract

its meaning. Since we use only a simple verb movement, we still can build our grammar

rules in a CFG formalism.

Let us start with two simple examples of this structure in English:

(148) Awid is asserted.

(149) Awvalid remains high.

We use the grammar rules in Figure 4.5.1 to generate the phrase structures of the above

two sentences as shown in Figure 4.5.2. In Figure 4.5.2, in the top phrase structure,

the ip0 category is tagged with existential quantification since the verb “asserted” is an

event verb while in the bottom phrase structure the ip0 category is tagged with universal

quantification since the verb “remains” is an state verb. The process of selecting the

quantification type of these verbs is discussed in Section 4.3.2.

Note that, in the bottom phrase structure in Figure 4.5.2, the verb “remain” is moved

to the iv-adj category and then we assign universal quantification for it. However, if

the vp category combines with the aux category, the value in the symbol feature will be

empty (which denoted by []), because there is no verb movement that required in this

rule. For example, in the top phrase structure in Figure 4.5.2, the value in the symbol

feature is bound by the [] since there is no verb movement in the given sentence.

4.5. GRAMMAR 100

ip1

ip0([mclause:exists])

np0([num:sg])

pn([num:sg])

[‘Awid’]

ibar([num:sg,mclause:exists])

aux([num:sg])

[is]

vp([symbol:[],mclause:exists])

v([symbol:[],mclause:exists])

iv([symbol:[],mclause:exists])

[asserted]

ip1

ip0([mclause:forall])

np0([num:sg])

pn([num:sg])

[‘Awvalid’]

ibar([num:sg,mclause:forall])

i([symbol:[remain],num:sg])

[remains]

vp([symbol:[remain],mclause:forall])

v([symbol:[remain],mclause:forall])

iv-adj([symbol:[remain],mclause:forall])

[]

adj

[high]

Figure 4.5.2: The phrase structures of sentences (148) and (149).

4.5. GRAMMAR 101

Let us now explain briefly why we give some syntactic restrictions to certain phrase

categories using variable such Q and M in the grammar rule in Figure 4.5.1. Basically,

we apply these syntactic restrictions to our grammar rules to extract TPL+ formulas

based on the TPL+ semantics given in Section 4.4. This is because there are some phrase

categories, such as temporal prepositions and the adjectives first and last, that require

additional restrictions on other phrase categories.

We begin by introducing the use of the variable Q in the type feature in the rules at

Figure 4.5.1. One of the main reasons for using the variable Q is to impose syntactic

restrictions on phrases taking the adjectives first and last – specifically, to require them

to combine with the definite article. This is due to the fact that it is ordinarily difficult

to combine the adjectives first and last with a universal or existential article such as “a

first” or “every first”. Of course, there are some English sentences such as the following:

(150) You can have one last chance;

(151) Every first attempt at the test resulted in failure;

where the adjectives first and last come with existential and universal articles. However,

the phrase “one last chance” in sentence (150) is used here in a non-literal way because

it cannot be another chance unless if they occur simultaneously, which is impossible. On

the other hand, the phrase “every first attempt” involves a repeated sequence of temporal

contexts within which the adjectives first and last are interpreted. Note that these types

of phrases are not common in natural language protocol specifications. Thus, we do not

include them in our TempCNL. To show how we apply the restriction on the adjectives

first and last, see the phrase structure of (156) in Figure 4.5.10.

Our second reason for using additional syntactic restrictions is that some temporal

prepositions enforce their complements and main clauses to be restricted with particular

quantifications. For example, consider the following sentences:

(152) ? Awvalid remains asserted by the transaction.

4.5. GRAMMAR 102

(153) Awvalid is asserted by the transaction.

(154) Awvalid remains high until the transaction.

The temporal prepositions until and by require their complements to be definitely quan-

tified as explained previously in examples (83) and (84) in Section 3.3.1. Moreover, the

temporal preposition by naturally forces its main clause to take existential quantification

while the temporal preposition until forces its main clause to take universal quantifica-

tion. Figure 4.5.3 shows how we generate the phrase structures for sentences (153) and

(154) using the grammar rules in Figure 4.5.1.

As shown in Figure 4.5.3, both temporal prepositions until and by have two syntactic

features called qclause and mclause. Each temporal preposition has both features to

store the value of quantification type of its complement in the qclause feature and its

main clause in the mclause feature. These features are defined in TempCNL lexicon in

Section 4.3.1.

Moreover, in the grammar rules in Figure 4.5.1, if both ip0 and tpp categories have

the same value of quantification type in the mclause feature, then the grammar rules

generate the phrase structures for the corresponding sentences such as (153) and (154);

otherwise, no result will be computed. For example, (152) is considered as an ungram-

matical sentence in the TPE grammar since the temporal prepositions by forces its main

clause to take existential quantification while its main clause here is restricted with the

universal quantification. We discuss the use of these variables in detail in the upcoming

sections.

4.5. GRAMMAR 103

ip1

ip0([mclause:exists])

Awready is asserted

tpp([mclause:exists])

tpn([qclause:def,mclause:exists])

[by]

tnp0([qclause:def,num:sg])

det([type:def])

[the]

tnbar0([type:def,num:sg])

tn([num:sg])

[transaction]

ip1

ip0([mclause:forall])

Awvalid remains high

tpp([mclause:forall])

tpn([qclause:def,mclause:forall])

[until]

tnp0([qclause:def,num:sg])

det([type:def])

[the]

tnbar0([type:def,num:sg])

tn([num:sg])

[transaction]

Figure 4.5.3: The structure of sentences (153) and (154), respectively.

4.5. GRAMMAR 104

4.5.2 Sentence Structure

Now let us show how we extract TPL+ formulas from simple sentences. We show the

grammar rules for sentence, temporal noun, non-temporal noun and predicate categories

respectively. Then, we illustrate the process for extracting TPL+ formulas from each

category using phrase structures.

We begin with writing the grammar rules for the ip2, ip1, ip0 categories as follows:

ip2([sem:IP]) --> ip1([sem:IP]).

ip2([sem:TPP@IP]) --> tpps([sem:TPP]),ip1([sem:IP]).

ip2([sem:TPP@IP]) --> ip1([sem:IP]), tpps([sem:TPP]).

ip1([sem:TPP@IP]) --> tpp([mclause:M,sem:TPP]),

ip0([mclause:M,sem:IP]).

ip1([sem:TPP@IP]) --> ip0([mclause:M,sem:IP]),

tpp([mclause:M,sem:TPP]).

ip1([sem:IP]) --> ip0([mclause:exists ,sem:IP]).

ip1([sem:IP]) --> ip0([mclause:forall ,sem:IP]).

ip0([mclause:M,sem:IBar@NP]) --> np0([num:Num ,sem:NP]),

ibar([num:Num ,mclause:M,sem:IBar]).

Figure 4.5.4: Grammar rules for inflectional phrase.

The head of the TPE grammar is the ip2 category. In the above rules, we add a semantic

feature called sem to store the corresponding string in every category. The following rule

is a part of the rules in Figure 4.5.4, and it is interpreted as follows: a sentence consists of

a tpp category, followed by a ip0 category. If the sem’s value of the tpp category is TPP

and the sem’s value of the ip0 category is IP, then the sem’s value of the ip1 category

will be the result of TPP@IP, which means we apply IP to TPP. Other rules in Figure 4.5.4

are interpreted similarly.

ip1 ([sem:TPP@IP]) --> tpp ([mclause:M,sem:TPP]),

ip0 ([mclause:M,sem:IP]).

Figure 4.5.5: A sample rule for the ip1 category.

The @-operator usually is used to combine semantic representations while parsing a sen-

tence, then β-converting the result in a subsequent post-processing step. However, we use

the @-operator to show the order of applying the function to the argument statements.

4.5. GRAMMAR 105

In practice, we compute the sem’s value of each category directly in the grammar rules as

shown below with the previous rules:

ip1([sem:IP1]) --> tpp([mclause:M,sem:TPP]),

ip0([mclause:M,sem:IP0]),

{var_replace(TPP ,TPP1),beta(TPP1@IP0 ,IP1)}.

Figure 4.5.6: Computing the sem’s value of the ip1 category using the predicates
var replace and beta.

Here, the predicate var replace is used to perform α-conversion and the predicate beta

is used to implement β-reduction, assuming that there are no variable clashes. These two

predicates are called in each rule to compute the sem’s value. Note that the rules that

consist of one category such as the following rule:

ip2([sem:IP]) --> ip1([sem:IP]).

where the left-hand side has only one category that does not require any computation.

Note that we omit to write the predicates var replace and beta in our grammar for

simplicity and write instead the @-operator as shown with the rule in Figure 4.5.5 since

it is clear to the reader how this part can be done from the given rule in Figure 4.5.6.

As previously mentioned, in the grammar rules at Figure 4.5.4, the variable M ranges over

the tags forall, exists and init exists, which denote universal, existential and initial

existential quantifications which are used in our grammar to give syntactic restrictions on

the main clauses for some temporal prepositions.

Let us start with an example of a simple sentence in English:

(155) Awvalid is asserted.

To obtain the TPL+ formula for (155), Figure 4.5.7 shows how to assign the phrase

structure using the grammar rules in Figure 4.5.8. (Note that these grammar rules are

parts of the grammar rules that presented in Figures 4.5.4, 4.5.12 and 4.5.14.)

As shown in Figure 4.5.7, we produce TPL+ formula “〈assert(Awvalid)〉>” for sentence

4.5. GRAMMAR 106

ip1([sem:〈assert(Awvalid)〉>])

ip0([mclause:exists,sem:〈assert(Awvalid)〉>])

np0([num:sg,sem:Awvalid])

Awvalid

ibar([num:sg,mclause:exists,sem:λx.〈assert(x)〉>])

is asserted

Figure 4.5.7: The phrase structure of sentence (155).

/* ==

Phrase structure rules

=== */

ip2([sem:IP]) --> ip1([sem:IP]).

ip1([sem:IP]) --> ip0([mclause:exists ,sem:IP]).

ip0([mclause:M,sem:IBar@NP]) --> np0([num:Num ,sem:NP]),

ibar([num:Num ,mclause:M,sem:IBar]).

np0([num:Num ,sem:PN]) --> pn([num:Num ,sem:PN]).

ibar([num:Num ,mclause:M,sem:VP]) -->

aux([num:Num]), vp([symbol :[], mclause:M,sem:VP]).

vp([symbol:V,mclause:M,sem:VP]) --> v([symbol:V,mclause:M,sem:VP]).

v([symbol:V,mclause:M,sem:IV]) --> iv([symbol:V,mclause:M,sem:IV]).

/* ==

Class Lexicon

=== */

pn([num:_,sem:Awvalid]) --> [’Awvalid ’].

iv([symbol :[], mclause:exists ,sem:λx.〈assert(x)〉>]) --> [asserted].

aux([num:sg]) --> [is].

Figure 4.5.8: Grammar rules for sentence (155).

(155) by replacing the string x with Awvalid in 〈assert(x)〉>. Note that the ip0 category

is tagged with existential quantification since the verb “asserted” is an event verb. Note

also that the above phrase structure is not fully explained at this stage, but it will be

discussed later. In particular, the top phrase structure in Figure 4.5.15 is the extended

version of the phrase structure in Figure 4.5.7.

A further note on the phrase structure in Figure 4.5.7 and the grammar rules in Figure

4.5.8, we use the TPL+ syntax in LaTeX expressions rather than the actual forms in

SWI-Prolog because (1) SWI-Prolog does not recognize the TPL+ syntax that defined in

Section 4.4 and (2) we want to eliminate any confusion between the TPL+ syntax and the

different formats that are used for it in SWI-Prolog. In practice, we use the ASCII codes

to represent the TPL+ syntax in SWI-Prolog as shown in Table 4.5.1, where it provides

4.5. GRAMMAR 107

the TPL+ syntax with their corresponding ASCII codes in SWI-Prolog.

TPL+ syntax Their ASCII codes TPL+ syntax Their ASCII codes
λx.x lbd(x,x) ¬φ ∼ φ
〈e〉 exists(e) φ<φ

′ φ before φ′

|e〉 init exists(e) φ>φ
′ φ after φ′

[e] forall(e) φ=φ
′ φ during φ′

{e} def(e) φ<+φ
′ φ until after φ′

ef f(e) φ∗φ
′ φ repeat φ′

el l(e) φ ∧ φ′ φ & φ′

e⇔ e<<- φ ∨ φ′ φ v φ′

Table 4.5.1: The TPL+ syntax with their corresponding ASCII codes in SWI-Prolog.

In this chapter, we will use the LaTeX expressions for TPL+ syntax in our grammar

rules rather than the actual forms in Prolog. However, in Appendix B, we use the ASCII

codes in our grammar rules.

Let us now explain the internal structure of the ip0 category in detail.

4.5.2.1 Noun Phrases

English noun phrases are usually taken to include temporal and non-temporal nouns. Our

grammar will treat them separately. We follow the same approaches in Pratt and Francez

(1997, 2001) mentioned previously in Section 3.3. This distinction will play an important

role when we extract the semantics of temporal preposition phrases, since temporal nouns

can help us to distinguish between temporal prepositions and other types of prepositions

(we discuss this topic, in Section 4.5.3).

Let us write the grammar rules for temporal noun phrases as given in Figure 4.5.9.

We now show how to extract the semantics of temporal noun phrases using our rules.

Consider the following examples:

(156) every reset

(157) the first acknowledgement

4.5. GRAMMAR 108

/* ==

Temporal Noun Phrase rules

=== */

tnp0([qclause:D,num:Num ,sem:Det@TnBar]) -->

det([type:D,sem:Det]), tnbar0 ([type:D,num:Num ,sem:TnBar]).

tnp0([qclause:init_exists ,num:Num ,sem:NumS]) -->

num([sem:NumS]), tnbar0 ([type:_,num:Num ,sem:_]).

tnbar0 ([type:def ,num:Num ,,sem:Tadj@Tn]) -->

tAdj([sem:Tadj]), tn([num:Num ,sem:Tn]).

tnbar0 ([type:_,num:Num ,sem:Tn]) --> tn([num:Num ,sem:Tn]).

/* ==

Open Class Lexicon

=== */

tn([num:pl ,sem:cycle]) --> [cycles].

tn([num:sg ,sem:reset]) --> [reset].

tn([num:sg ,sem:ack]) --> [acknowledgement].

num([sem:|3〉]) --> [’3’].

num([sem:|16〉]) --> [’MaxWaits ’].

/* ==

Closed Class Lexicon

=== */

det([type:forall ,sem:λx.[x]]) --> [every].

det([type:exists ,sem:λx.〈x〉]) --> [some].

det([type:def ,sem:λx.{x}]) --> [the].

tAdj([sem:λx.xf]) --> [first] .

tAdj([sem:λx.xl]) --> [last].

Figure 4.5.9: Grammar rules for temporal noun phrases.

where the nominal expressions reset and acknowledgement are temporal nouns since they

refer to event-types. To extract the strings of noun expressions in (156) and (157), we

assign the phrase structures using the rules in Figure 4.5.9 as shown in Figure 4.5.10.

As can be seen in Figure 4.5.10, λx takes the string x and substitute it with the string of

the tnbar0 category in [x]. Moreover, the top phrase shows that the tnbar0 category is

tagged with universal quantification since it combines with the det category that is tagged

with universal quantification, whereas the bottom phrase shows that the tnbar0 category

is tagged with definite quantification not only because it combines with the det category

that has a definite article, but also because the tnbar0 category has the order-denoting

adjective first which naturally enforces its determiner to be a definite article as explained

previously in Section 4.5.1. Note that the strings of tnp0 (such as {ackf} and [reset])

are taken to be the first argument of the modal operators <, <+, > and = in the TPL+

language.

4.5. GRAMMAR 109

tnp0([qclause:forall,num:sg,sem:[reset]])

det([type:forall,sem:λx.[x]])

[every]

tnbar0([type:forall,num:sg,sem:reset])

tn([num:sg,sem:reset])

[reset]

tnp0([qclause:def,num:sg,sem:{ackf}])

det([type:def,sem:λx.{x}])

[the]

tnbar0([type:def,num:sg,sem:ackf])

tAdj([sem:λx.xf])

[first]

tn([num:sg,sem:ack])

[acknowledgement]

Figure 4.5.10: The phrase structures of temporal noun expressions in (157) and (156).

Let us now turn to how we extract the string of the num category when it combines with

the word cycles such as in (158) and (159) using the rules we have set out.

(158) 3 cycles

(159) MaxWaits cycles.

In (158), “3 cycles” has the cardinal number 3 which describes the number of repeti-

tions that the cycle generates as mentioned with example (139) in Section 4.4. In (159),

MaxWaits is a constant and its value is 16 as shown in our grammar rules. Thus, we

assign the phrase structures using the rules in Figure 4.5.9 as shown in Figure 4.5.11.

In both phrase structures in Figure 4.5.11, we ignore the sem’s value of the tnbar0 category

since the word cycles has no effect on the TPL+ semantics if it occurs with a cardinal

number as explained earlier with example (139). From the grammar rules in Figure 4.5.9,

We employ the rule

tnp0([qclause:init_exists ,num:Num ,sem:NumS]) -->

num([sem:NumS]), tnbar0 ([type:_,num:Num ,sem:_]).

4.5. GRAMMAR 110

tnp0([qclause:init exists,num:pl,sem:|3〉])

num([sem:|3〉])

[‘3’]

tnbar0([type:,num:pl,sem:cycle])

tn([num:pl,sem:cycle])

[cycles]

tnp0([qclause:init exists,num:pl,sem:|16〉])

num([sem:|16〉])

[‘MaxWaits’]

tnbar0([type:,num:pl,sem:cycles])

tn([num:pl,sem:cycles])

[cycles]

Figure 4.5.11: The phrase structures of temporal noun expressions in (158) and (159).

to take NumS as the sem’s value of the num category and ignore the sem’s value of the

tnbar0 category. We also tag the tnp0 category with initial existential quantifier using

the same grammar rule. This tag type enforces the strings of the tnp0 categories having

the num category (such as |3〉 and |16〉) to combine only with the modal operator ∗ as

its first argument. As defined in Section 4.4, the modal operator ∗ in |n〉∗ψ denotes the

repetition of ψ a given number of times. Note that |3〉 and |16〉 are strings which do not

mean here as TPL+ formulas. For a complete example of this kind of construction, see

the top phrase structure in Figure 4.5.23. The rest of the grammar rules for temporal

noun phrases are given in Appendix B.

Now, let us write the grammar rules for the non-temporal noun phrases as given in

Figure 4.5.12. The remaining grammar rules for non-temporal noun phrases are given in

Appendix B.

In our grammar rules in Figure 4.5.12, we do not have a rule that allows a noun phrase

including non-temporal quantification. Therefore, we cannot say every signal or some

signal of a certain kind in TempCNL. This is because those articles are considered as non-

temporal quantification whereas TPL+, LTL and SVA are propositional languages—all

4.5. GRAMMAR 111

/* ==

Non -temporal noun phrase

=== */

np0([num:Num ,sem:PN]) -->

det([type:def ,sem:_]), pn_def ([num:Num ,sem:PN]).

np0([num:Num ,sem:PN]) --> pn([num:Num ,sem:PN]).

/* ==

Open Class Lexicon

=== */

pn_def ([num:_,sem:Awready]) --> [’Awvalid ’].

pn_def ([num:_,sem:Acvalid]) --> [’Awid’].

pn([num:_,sem:Awvalid]) --> [’Awvalid ’].

pn([num:_,sem:Awid]) --> [’Awid’].

Figure 4.5.12: Grammar rules for non-temporal noun phrases.

quantification is temporal. Thus, they cannot cope with non-temporal quantification as

explained previously in Section 4.1. Therefore, such these noun phrases should not be

processed by our grammar because their interpretations will take us outside the TPL+

language. The non-temporal noun phrases in TempCNL can be either single names such

as “Awvalid” or single names that allow a preceeding definite article such as “the Awid”.

Let us use the above rules to extract the semantics of a non-temporal noun phrase.

Consider the following examples:

(160) the Awid

(161) Awvalid

where we assign the phrase structures of the above noun expressions using the rules in

Figure 4.5.12 as shown in Figure 4.5.13.

In Figure 4.5.13, the sem’s value of the noun phrase “the Awid” will be only “Awid” since

definite article comes optional with the signal names. Therefore, we ignore the sem’s

value of the det category using the rules in Figure 4.5.12. Note that we enforce the det

category to have only definite article by using the def tag in the same rule. Later, the

sem’s values of the proper nouns “Awid” and “Awvalid” will be applied with the sem’s

value of the predicate phrase. In particular, the sem’s value of predicate phrase ibar takes

the sem’s value of non-temporal noun phrases as its arguments. We will see how this can

4.5. GRAMMAR 112

np0([num: ,sem:Awid])

det([type:def,sem:λx.{x}])

[the]

pn def([num: ,sem:Awid])

[‘Awid’]

np0([num: ,sem:Awvalid])

pn([num: ,sem:Awvalid])

[‘Awvalid’]

Figure 4.5.13: The phrase structures of noun expressions in (160) and (161).

be computed in Section 4.5.2.2.

4.5.2.2 Predicate Phrase

The predicate phrase belongs to the ibar category, which usually has the following sub-

categories: an inflection (i), an auxiliary verb (aux), a negated phrase (negP) and a verb

phrase (vp). Those categories tell us when the events are happening and whether they

extend in time or occur at an instantaneous time as explained in Section 4.3.

We begin with the grammar rules for the predicate phrase as given in Figure 4.5.14.

In our grammar rules in Figure 4.5.14, auxiliary verbs, such as must and is, are not

included in TPL+ since, in this thesis, we deal with natural language requirements where

these types have no major effects on the interpenetration of formal specification, namely

SVA. Thus, we only focus on the main verbs in this domain.

Moreover, in our grammar in Figure 4.5.14, the bracket-pairs 〈 〉, [[]], | 〉 denote exis-

tential , universal and initial existential quantifiers, respectively, and the 〈x⇔〉> indicates

that x holds at the time of evaluation if and only if it held at the previous time point (they

are introduced in the TPL+ language as base cases). After we assign these forms to their

arguments, they will be taken as arguments of the modal operators {<, <+, >, =, ∗}

4.5. GRAMMAR 113

/* ==

Predicate Phrases

=== */

ibar([num:Num ,mclause:M,sem:NegP]) -->

aux([num:Num]), negP([symbol :[], mclause:M,sem:NegP]).

ibar([num:Num ,mclause:M,sem:VP]) -->

aux([num:Num]), vp([symbol :[], mclause:M,sem:VP]).

ibar([num:Num ,mclause:M,sem:VP]) -->

i([symbol:V,num:Num]), vp([symbol:V,mclause:M,sem:VP]).

negP([symbol:V,mclause:NewM ,sem:Neg@VP]) -->

neg([sem:Neg]), vp([symbol:V,mclause:M,sem:VP]),

{quantifier_modification(M,NewM)}.

vp([symbol:V,mclause:M,sem:VP]) -->

extraAux , v([symbol:V,mclause:M,sem:VP]).

vp([symbol:V,mclause:M,sem:VP]) --> v([symbol:V,mclause:M,sem:VP]).

v([symbol:V,mclause:M,sem:IV]) --> iv([symbol:V,mclause:M,sem:IV]).

v([symbol:V,mclause:M,sem:Adj]) -->

iv_adj ([symbol:V,mclause:_,sem:_]), adj([type:M,sem:Adj]).

v([symbol:V,mclause:M,sem:IV@Adj]) -->

iv_adj ([symbol:V,mclause:M,sem:IV]), adj([sem:Adj]).

v([symbol:V,mclause:M,sem:TV@NP]) -->

tv([symbol:V,mclause:M,sem:TV]), np0([num:_,sem:NP]).

/* ==

Open Class Lexicon

=== */

adj([sem:λx.high(x)]) --> [high].

adj([sem:λx.low(x)]) --> [low].

i([symbol :[remain],num:sg]) --> [remains].

i([symbol :[go],num:sg]) --> [goes].

iv([symbol :[], mclause:exists ,sem:λx.〈assert(x)〉>]) --> [asserted].

iv([symbol :[], mclause:init_exists ,sem:λx.|assert(x)〉>]) --> [asserted].

iv_adj ([symbol :[remain],mclause:forall ,sem:λpλx.[[p(x)]]]) --> [].

iv_adj ([symbol :[], mclause:forall ,sem:λpλx.[[p(x)]]]) --> [remain].

iv_adj ([symbol :[go],mclause:exists ,sem:λpλx.〈p(x)〉>]) --> [].

iv_adj ([symbol :[go],mclause:init_exists ,sem:λpλx.|p(x)〉>]) --> [].

/* ==

Closed Class Lexicon

=== */

aux([num:sg]) --> [is].

aux([num:pl]) --> [are].

aux([num:_]) --> [must].

neg([sem:λpλx.¬p(x)]) --> [not].

neg([sem:λpλx.¬p(x)]) --> [never].

extraAux --> [be].

adj([type:exists ,sem:λx.〈x⇔〉>]) --> [stable].

adj([type:init_exists ,sem:λx.〈x⇔〉>]) --> [stable].

Figure 4.5.14: Grammar rules for the predicate phrase.

4.5. GRAMMAR 114

in the TPL+ language.

Another feature of our grammar rules in Figure 4.5.14 is that any verb which has

existential quantification can also have initial existential quantification, such as the verbs

“asserted” and “go”. Does this mean that we have ambiguity in our grammar? No,

because (i) if we have a sentence that only consists of a noun phrase, followed by a

predicate phrase, then we only allow this sentence to be either universally or existentially

quantified by using the following rules from Figure 4.5.4:

ip1([sem:IP]) --> ip0([mclause:exists ,sem:IP]).

ip1([sem:IP]) --> ip0([mclause:forall ,sem:IP]).

and (ii) if we have a sentence that consists of a temporal preposition phrase, followed

by a sentence or vice versa, then the grammar rule for that temporal preposition will

determine whether its main clause requires initial existential quantification or not. For

example, when the complements of after and once have universal quantification, then

their main clauses must only take initial existential quantification. However, when the

complement of in has universal quantification and the complement of by has definite

quantification, then their main clauses must only take existential quantification. Giving

two meanings for each verb will not cause ambiguity since every preposition only takes

one of those meanings but not both of them. We shall see that in detail in Section 4.5.3.

Let us use the rules in Figure 4.5.14 to extract the semantics of the predicate phrase in

the following sentences:

(162) Awvalid is asserted

(163) Awvalid remains high.

We assign the phrase structures of (162) and (163) as shown in Figure 4.5.15.

As shown in Figure 4.5.15, the verb “asserted” is assigned to existential quantification 〈 〉>

while the verb “remains” is assigned to universal quantification [[]]. The figure shows that

4.5. GRAMMAR 115

ip1([sem:〈assert(Awvalid)〉>])

ip0([mclause:exists,sem:〈assert(Awvalid)〉>])

np0([num:sg,sem:Awvalid])

Awvalid

ibar([num:sg,mclause:exists,sem:λx.〈assert(x)〉>])

aux([num:sg])

[is]

vp([symbol:[],mclause:exists,sem:λx.〈assert(x)〉>])

v([symbol:[],mclause:exists,sem:λx.〈assert(x)〉>])

iv([symbol:[],mclause:exists,sem:λx.〈assert(x)〉>])

[asserted]

ip1([sem:[[high(Awvalid)]]])

ip0([mclause:forall,sem:[[high(Awvalid)]]])

np0([num:sg,sem:Awvalid])

Awvalid

ibar([num:sg,mclause:forall,sem:λx.[[high(x)]]])

i([symbol:[remain],num:sg])

[remains]

vp([symbol:[remain],mclause:forall,sem:λx.[[high(x)]]])

v([symbol:[remain],mclause:forall,sem:λx.[[high(x)]]])

iv adj([symbol:[remain],mclause:forall,sem:λpλx.[[p(x)]]])

[]

adj([sem:λx′.high(x′)])

[high]

Figure 4.5.15: The structure of sentences (162) and (163), respectively.

4.5. GRAMMAR 116

when the iv category (which stands for Intransitive Verb) combines with the adj category

as in the bottom phrase structure, we assign to the iv category a different semantic type

than the iv category without the adj category as in the top phrase structure. Therefore,

we write the iv category that combines with the adj category in this form “iv adj”.

The verb “remains” is a state verb and has a simple aspect. Thus, it is assigned with

λpλx.[[p(x)]] where λp takes the string p and replace it by the string of the adj category

“λx′.high(x′)” and obtains “λx.[[high(x)]]”. After that, we compute the last result with

the string of the np0 category “Awvalid” to produce “[[high(Awvalid)]]”. On the other

hand, the verb “asserted” is an event verb and has a perfective aspect. Thus, it is assigned

with λx.〈assert(x)〉> where λx takes the string x and replace it by the string of the np0

category “Awvalid” and obtains “〈assert(Awvalid)〉>”.

Another observation, in our grammar at Figure 4.5.14, is that when the adj category

has an additional feature called type, it means that the adj category requires its own

specific quantification. Therefore, we ignore the semantics of the iv adj category to avoid

redundancy in assigning two quantifications on the v category. For a very similar reason,

we also ignore the value in the mclause feature. Let us illustrate this by an example as

follows:

(164) Awvalid must remain stable.

We assign its meaning based on the phrase structure given in Figure 4.5.16. As shown

in Figure 4.5.16, we ignore the sem’s value of the iv adj category since it combines with

the adj category that has the type feature with an exists tag. The adjective “stable”

has a special treatment in TPL+ as explained in Section 4.4. Thus, our grammar treats

it differently than any other adjective. Note that the string of the adjective “stable” is

〈e⇔〉> which is considered to be an event type. Therefore, the adjective “stable” has two

lexical rules similar to the lexical rules of the verbs “asserted” and “go”. The type feature

of the adj category can be bounded by either exists or init exists tag. Again, there

is not ambiguity that can be risen from these rules for the similar reasons of the rules in

4.5. GRAMMAR 117

the iv and iv adj categories.

ip1([sem:〈Awvalid⇔〉>])

ip0([mclause:exists,sem:〈Awvalid⇔〉>])

np0([num:sg,sem:Awvalid])

Awvalid

ibar([num:sg,mclause:exists,sem:λx.〈x⇔〉>])

aux([num:])

[must]

vp([symbol:[],mclause:exists,sem:λx.〈x⇔〉>])

v([symbol:[],mclause:exists,sem:λx.〈x⇔〉>])

iv adj([symbol:[],mclause:forall,sem:λpλx.[[p(x)]]])

[remain]

adj([type:exists,sem:λx′.〈x′⇔〉>])

[stable]

Figure 4.5.16: The phrase structure of (164).

Now, let us show how we compute the meaning of a sentence including a negation via

our grammar rules by giving the following example:

(165) Awvalid is not asserted.

We assign its meaning using the rules in Figure 4.5.14, as shown in Figure 4.5.17. In Figure

4.5.17, note that combining the neg category with the vp category affects the quantifica-

tion type that is stored in the mclause feature, where the exists quantifier becomes the

forall quantifier in the negP category. We use the predicate quantifier modification

in the grammar rules in Figure 4.5.14 to modify the quantifier type based on the additional

rules in Table 4.5.2.

M ∈ vp → NewM ∈ ibar

exists → forall

init exists → forall

forall → exists

Table 4.5.2: Quantifier modification.

4.5. GRAMMAR 118

Based on the rules in the above table, whenever the neg category combines with the vp

category, the variable NewM of the ibar category will have an quantifier that is opposite

the one stored in M of the vp category. Modifying the quantification type in this level

is necessary to provide the proper tag for higher categories. For example, when the

ip0 category combines with the tpp category, their tags must match up, otherwise the

grammar will reject the sentence as explained earlier with sentences (152) and (153).

ip1([sem:¬〈assert(Awvalid)〉>])

ip0([mclause:forall,sem:¬〈assert(Awvalid)〉>])

np0([num:sg,sem:Awvalid])

Awvalid

ibar([num:sg,mclause:forall,sem:λx.¬〈assert(x)〉>])

aux([num:sg])

[is]

negP([symbol:[],mclause:forall,sem:λx.¬〈assert(x)〉>])

neg([sem:λpλx.¬p(x)])

[not]

vp([symbol:[],mclause:exists,sem:λx′.〈assert(x′)〉>])

v([symbol:[],mclause:exists,sem:λx′.〈assert(x′)〉>])

iv([symbol:[],mclause:exists,sem:λx′.〈assert(x′)〉>])

[asserted]

Figure 4.5.17: The phrase structure of sentence (165).

4.5.3 Temporal Preposition with nominal complements

Now let us show our grammar rules for temporal prepositions with nominal complements.

Temporal preposition phrases (which are denoted by the tpp category) combine with the

ip0 category as shown in the grammar rules in Figure 4.5.18. These rules were previously

presented in Figure 4.5.4, except the last two rules of the tpps category which is used

in our grammar rules to allow up to three temporal preposition phrases appear in one

sentence.

Again, the variable M ranges over forall, exists and init exists, which is used for

the following reason: some temporal prepositions require quantification restrictions over

4.5. GRAMMAR 119

ip2([sem:TPP@IP]) --> ip1([sem:IP]), tpps([sem:TPP]).

ip2([sem:TPP@IP]) --> tpps([sem:TPP]),ip1([sem:IP]).

ip1([sem:TPP@IP]) --> ip0([mclause:M,sem:IP]),

tpp([mclause:M,sem:TPP]).

ip1([sem:TPP@IP]) --> tpp([mclause:M,sem:TPP]),

ip0([mclause:M,sem:IP]).

tpps([sem:TPP]) --> tpp([mclause:_,sem:TPP]).

tpps([sem:TPP2@TPP1]) --> tpp([mclause:_,sem:TPP1]),

tpp([mclause:_,sem:TPP2]).

Figure 4.5.18: Grammar rules for inflectional phrases that consist of temporal preposition
phrases

their main clauses as well as their own complements such as until, by, and for. Thus, we

write the grammar rule for a temporal preposition with nominal complements as follows:

tpp([mclause:M,sem:TP@NP]) -->

tpn([qclause:Q,mclause:M,sem:TP]), tnp0([type:Q,num:_,sem:NP]).

The temporal prepositions with nominal complements belongs to the tpn category. More-

over, the variable Q, ranging over forall, exists, init exists and def, is used to restrict

the complements of the temporal prepositions. Accordingly, we write the closed-class lex-

icon for temporal prepositions as given in Figure 4.5.19.

As shown in our grammar rules at Figure 4.5.19, λp takes the string p in the string of the

tpn category and substitute it with the string of temporal noun phrase (tnp0) and write

one of the modal operators {<, <+, >, =} as a subscript of the replaced string. Then

λq takes the string q in the string of the tpn category and substitute it with the string of

the ip0 category where it is considered the second argument of any of those mentioned

operators. Note that λn, on the other hand, takes the string n in λp.n∗p and substitute it

with the string of temporal noun phrase (tnp0) that has a number that restricted by the

form | 〉 (such as |3〉). Then we write the modal operator ∗ as a subscript of the replaced

string.

In our grammar rules at Figure 4.5.19, we restrict the complements and the main clauses

of some temporal prepositions. We follow the same approach in Pratt and Francez’s (2001)

for restricting some temporal prepositions based on the common use in English. However,

4.5. GRAMMAR 120

tpn([qclause:forall ,mclause:exists ,sem:λpλq.p=q]) --> [within].

tpn([qclause:def ,mclause:exists ,sem:λpλq.p=q]) --> [within].

tpn([qclause:init_exists ,mclause:exists ,sem:λnλp.n∗p]) --> [within].

tpn([qclause:forall ,mclause:exists ,sem:λpλq.p=q]) --> [at].

tpn([qclause:def ,mclause:exists ,sem:λpλq.p=q]) --> [at].

tpn([qclause:init_exists ,mclause:exists ,sem:λnλp.n∗p]) --> [at].

tpn([qclause:forall ,mclause:forall ,sem:λpλq.p=q]) --> [at].

tpn([qclause:def ,mclause:forall ,sem:λpλq.p=q]) --> [at].

tpn([qclause:init_exists ,mclause:forall ,sem:λnλp.n∗p]) --> [at].

tpn([qclause:forall ,mclause:exists ,sem:λpλq.p=q]) --> [during].

tpn([qclause:def ,mclause:exists ,sem:λpλq.p=q]) --> [during].

tpn([qclause:init_exists ,mclause:exists ,sem:λnλp.n∗p]) --> [during].

tpn([qclause:forall ,mclause:forall ,sem:λpλq.p=q]) --> [during].

tpn([qclause:def ,mclause:forall ,sem:λpλq.p=q]) --> [during].

tpn([qclause:init_exists ,mclause:forall ,sem:λnλp.n∗p]) --> [during].

tpn([qclause:forall ,mclause:exists ,sem:λpλq.p=q]) --> [on].

tpn([qclause:def ,mclause:exists ,sem:λpλq.p=q]) --> [on].

tpn([qclause:init_exists ,mclause:exists ,sem:λnλp.n∗p]) --> [on].

tpn([qclause:forall ,mclause:forall ,sem:λpλq.p=q]) --> [on].

tpn([qclause:def ,mclause:forall ,sem:λpλq.p=q]) --> [on].

tpn([qclause:init_exists ,mclause:forall ,sem:λnλp.n∗p]) --> [on].

tpn([qclause:forall ,mclause:forall ,sem:λpλq.p=q]) --> [for].

tpn([qclause:def ,mclause:forall ,sem:λpλq.p=q]) --> [for].

tpn([qclause:init_exists ,mclause:forall ,sem:λnλp.n∗p]) --> [for].

tpn([qclause:forall ,mclause:exists ,sem:λpλq.p=q]) --> [in].

tpn([qclause:def ,mclause:exists ,sem:λpλq.p=q]) --> [in].

tpn([qclause:init_exists ,mclause:exists ,sem:λnλp.n∗p]) --> [in].

tpn([qclause:forall ,mclause:forall ,sem:λpλq.p=q]) --> [throughout].

tpn([qclause:def ,mclause:forall ,sem:λpλq.p=q]) --> [throughout].

tpn([qclause:init_exists ,mclause:forall ,sem:λnλp.n∗p]) --> [throughout].

tpn([qclause:def ,mclause:forall ,sem:λpλq.p<q]) --> [until].

tpn([qclause:def ,mclause:exists ,sem:λpλq.p<q]) --> [by].

tpn([qclause:def ,mclause:forall ,sem:λpλq.p>q]) --> [since].

tpn([qclause:def ,mclause:exists ,sem:λpλq.p<q]) --> [before].

tpn([qclause:forall ,mclause:init_exists ,sem:λpλq.p<q]) --> [before].

tpn([qclause:def ,mclause:exists ,sem:λpλq.p>q]) --> [after].

tpn([qclause:def ,mclause:forall ,sem:λpλq.p>q]) --> [after].

tpn([qclause:forall ,mclause:init_exists ,sem:λpλq.p>q]) --> [after].

tpn([qclause:def ,mclause:forall ,sem:λpλq.p<+q]) --> [until ,after].

Figure 4.5.19: Closed-class lexicon for temporal prepositions with nominal complements.

4.5. GRAMMAR 121

there are other temporal prepositions are not discussed in Pratt and Francez (2001). Thus,

we assign to them the most suitable quantification based on the most common use of those

temporal prepositions within the natural language protocol specifications.

Note that, in our grammar rules in Figure 4.5.19, each temporal preposition indicating

the during relation (such as within, for, in, etc) allows its complement to be restricted

with def, forall and init exists quantifiers. The temporal prepositions at, during

and on have six rules because they allow their main clauses to be restricted with exists

and forall quantifiers. On the other hand, the temporal prepositions within, for, in and

throughout have only three rules since they permit their main clauses to be restricted only

with one type of quantifier. Another note is that when the complement of a temporal

preposition is restricted with init exists quantifier, the meaning of that temporal prepo-

sition will be different than the other rules. Finally, no temporal preposition restricts its

main clause with existential and initial existential quantifications together. Therefore, we

avoid any ambiguity that might occur from the predicate phrase rules in Figure 4.5.14,

where any verb can have either existential quantification or initial existential quantifi-

cation. This leads us to have two different meanings and that is not acceptable by our

TempCNL.

Let us explain the grammar rules in Figure 4.5.19 by showing a few examples where

those grammar rules work. Consider the following examples

(166) during every reset

(167) until the response phase

(168) after the last transaction.

The phrase structures of the above examples are given in Figures 4.5.20, 4.5.21 and 4.5.22,

respectively. In the phrase structure of example (166), the preposition during has universal

quantification on its complement while in the phrase structures of examples (167) and

(168), the prepositions until and after have a definite quantification on their complements.

4.5. GRAMMAR 122

Moreover, the prepositions during and after have the variable M on their main clauses,

which means it can be either restricted with existential or universal quantifier while the

preposition until is restricted its main clause with universal quantification.

tpp([mclause:M,sem:λq.[reset]=q])

tpn([qclause:forall,mclause:M,sem:λpλq.p=q])

[during]

tnp0([qclause:forall,num:sg,sem:[reset]])

det([type:forall,sem:λx.[x]])

[every]

tnbar0([type:forall,num:sg,sem:reset])

tn([num:sg,sem:reset])

[reset]

Figure 4.5.20: The structure of phrase (166).

tpp([mclause:forall,sem:λq.{resp-phase}<q])

tpn([qclause:def,mclause:forall,sem:λpλq.p<q])

[until]

tnp0([qclause:def,num:sg,sem:{resp-phase}])

det([type:def,sem:λx.{x}])

[the]

tnbar0([type:def,num:sg,sem:resp-phase])

tn([num:sg,sem:resp-phase])

[response phase/resp-phase]

Figure 4.5.21: The structure of phrase (167).

4.5. GRAMMAR 123

tpp([mclause:M,sem:λq.{transl}>q])

tpn([qclause:def,mclause:M,sem:λpλq.p>q])

[after]

tnp0([qclause:def,num:sg,sem:{transl}])

det([type:def,sem:λx.{x}])

[the]

tnbar0([type:def,num:sg,sem:transl])

tAdj([sem:λx.xl])

[last]

tn([num:sg,sem:trans])

[transaction/trans]

Figure 4.5.22: The structure of phrase for (168).

Note that in our grammar rules in Figure 4.5.19, no temporal prepositions can take in-

definite articles (such as a, an and some) in their complements, and here is why. Consider

the following sentences:

(169) FAIL response must occur on a WRC request.

(170) FAIL response must occur before a WRC request.

Both sentences are acceptable in general English. “a WRC request” asserts that there

is one instance over which WRC request is true and the occurrence of “FAIL response”

must be evaluated during that instance as in (169) or before it as in (170). However,

these sentences are considered odd in natural language protocol requirements because

what if “FAIL response” occurs more than one and “WRC request” occurs once during

the evaluation? This can be shown as follows:

FAIL responses
WRC request

FAIL response

FAIL responses
WRC request

FAIL response

where the first “FAIL response”, in both diagrams, is satisfied the conditions that are

4.5. GRAMMAR 124

given in (169) and (170) with respect to the event “WRC request”. However, the second

“FAIL response” occurs freely without any constrain, and that contradicts the conditions

that are given in (169) and (170). The purpose of using these requirements is to apply

them for all “FAIL responses” rather than one “FAIL response”. Thus, we must constrain

all “FAIL response” to be evaluated on every time over which “WRC request” occurs or

on a unique time over which “WRC request” during the evaluation. Thus, we choose not

to accept sentences having indefinite articles in the complements of temporal prepositions.

Another feature of our grammar rules in Figure 4.5.19 is that any temporal preposition

having the modal operator ∗ in its meaning can combine only with the tnp0 category

having init exists tag in the qclause feature. This is because a cardinal number with

a temporal noun is the only type that can have the modal operator ∗ as explained after the

rules in Figure 4.5.9 in Section 4.5.2.1. On the other hand, if those temporal prepositions

do not have a tnp0 category that consists of a cardinal number and a temporal noun,

then we have different interpretations for them. Consider the following examples:

(171) Awid goes high in 3 cycles

(172) Awid goes high in every reset

where sentence (171) asserts that, within the temporal context I, the initial interval of

I over which 3 cycles occur includes an interval over which Awid becomes high; while

sentence (172) asserts that, within the temporal context I, every interval over which reset

occurs includes an interval over which Awid becomes high. Thus, the semantics of the

preposition in in the above examples differ. Hence, we produce their phrase structures

differently using our grammar rules as shown in Figure 4.5.23.

Let us give another justification for these restrictions. Some prepositions may come

with more than one quantification, such as the prepositions before and after such as the

following examples:

(173) Awid goes high (before/after) the response phase

4.5.
G
R
A
M
M
A
R

125

ip1([sem:|3〉∗〈high(Awid)〉>])

ip0([mclause:exists,sem:〈high(Awid)〉>])

Awid goes high

tpp([mclause:exists,sem:λp.|3〉∗p])

tpn([qclause:initexists,mclause:exists,sem:λnλp.n∗p])

[in]

tnp0([qclause:init exists,num:pl,sem:|3〉])

num([sem:|3〉])

[‘3’]

tnbar0([type:,num:pl,sem:cycles])

tn([num:pl,sem:cycles])

[cycles]

ip1([sem:[reset]=〈high(Awid)〉>])

ip0([mclause:exists,sem:〈high(Awid)〉>])

Awid goes high

tpp([mclause:exists,sem:λq.[reset]=q])

tpn([qclause:forall,mclause:exists,sem:λpλq.p=q])

[in]

tnp0([qclause:forall,num:sg,sem:[reset]])

det([type:forall,sem:λx.[x]])

[every]

tnbar0([type:forall,num:sg,sem:reset])

tn([num:sg,sem:reset])

[reset]

Figure 4.5.23: The phrase structures of sentences (171) and (172).

4.5. GRAMMAR 126

(174) Awid goes high (before/after) every response phase.

In sentence (173), the terms before and after are interpreted in the sense of some time

before and some time after, respectively. However, in sentence (174), the terms before and

after are interpreted in the sense of shortly-before and shortly-after, respectively. Thus,

we write grammar rules for shortly-before and shortly-after interpretations as follows:

tpn([qclause:forall ,mclause:init_exists ,sem:λpλq.p<q]) --> [before].

tpn([qclause:forall ,mclause:init_exists ,sem:λpλq.p>q]) --> [after].

where the init exists tag enforces the semantics of the main clauses (which are repre-

sented here by the string q) to be shortly-before or shortly-after.

Let us produce the phrase structure for the preposition after in sentence (174) using

the above rules, as shown in Figure 4.5.24.

ip1([sem:[resp-phase]>|high(Awid)〉>])

ip0([mclause:init exists,sem:|high(Awid)〉>])

Awid goes high

tpp([mclause:init exists,sem:λq.[resp-phase]>q])

tpn([qclause:forall,mclause:init exists,sem:λpλq.p>q])

[after]

tnp0([qclause:forall,num:sg,sem:[resp-phase]])

every response phase

Figure 4.5.24: The phrase structure for the preposition after in sentence (174).

Our grammar produces |high(awid)〉> for the sentence “Awid goes high” since the prepo-

sition after requires its main clause to be restricted with initial existential quantifier | 〉>.

We make this restriction by adding init exists tag to the rule of the temporal prepo-

sition after, where the complement of the temporal preposition after must be universaly

quantified.

4.5. GRAMMAR 127

4.5.4 Temporal Prepositions with Clausal complements

Now let us turn to our grammar rules for temporal prepositions with clausal complements,

as denoted by the tps category, as shown in Figure 4.5.25.

tpp([mclause:M,sem:TP@IP]) --> tps([qclause:_,mclause:M,sem:TP]),

removeQ ([mclause:_,sem:IP]).

removeQ ([mclause:_,sem:e]) --> ip0([mclause:_,sem:〈e〉>]).
removeQ ([mclause:_,sem:e]) --> ip0([mclause:_,sem:[[e]]]).

Figure 4.5.25: The grammar rules for temporal prepositions with clausal complements.

Each temporal preposition with a clausal complement has its own quantification restriction

in our grammar. Thus, we must remove any quantification restriction (either existential

or universal) that rises from the ip0 category. This can be done by using an additional

category called removeQ which stands for removing quantifiers. This category takes only

the event e and drops the bracket-pair 〈 〉> or the bracket-pair [[]] that occurs in the ip0

category as shown in Figure 4.5.25.

(175) Awid must remain high until Awready goes high.

where it is perfectly natural to have in until ’s complement a sentence that is restricted

with existential quantification; however when we interpret it into the TPL+ logic, we

prefer until with definite quantification as shown in the following TPL+ formulas:

(176) ? 〈high(Awready)〉<[[high(Awid)]],

(177) {high(Awready)}<[[high(Awid)]].

Formula (176) is slightly odd since the modal operator < (which stands for the relation

before) does not accept existential quantification on its left argument, unlike formula (177)

where definite quantification on the left of the modal operator < is more natural. Note

that the topic of enforcing until ’s complement to be definite quantified is explained before

in examples (83) in Section 3.3.1.

4.5. GRAMMAR 128

Now, we write the closed-class lexicon for temporal preposition with clausal comple-

ments as given in Figure 4.5.26.

tps([qclause:forall ,mclause:exists ,sem:λpλq.[p]=q]) --> [when].

tps([qclause:forall ,mclause:forall ,sem:λpλq.[p]=q]) --> [when].

tps([qclause:forall ,mclause:exists ,sem:λpλq.[p]=q]) --> [whilst].

tps([qclause:forall ,mclause:forall ,sem:λpλq.[p]=q]) --> [whilst].

tps([qclause:forall ,mclause:exists ,sem:λpλq.[p]=q]) --> [while].

tps([qclause:forall ,mclause:forall ,sem:λpλq.[p]=q]) --> [while].

tps([qclause:forall ,mclause:exists ,sem:λpλq.[p]=q]) --> [whenever].

tps([qclause:forall ,mclause:forall ,sem:λpλq.[p]=q]) --> [whenever].

tps([qclause:def ,mclause:forall ,sem:λpλq.{p}<q]) --> [until].

tps([qclause:def ,mclause:exists ,sem:λpλq.{p}<q]) --> [before].

tps([qclause:def ,mclause:exists ,sem:λpλq.{p}<q]) --> [by,the ,time].

tps([qclause:def ,mclause:exists ,sem:λpλq.{p}>q]) --> [after].

tps([qclause:def ,mclause:forall ,sem:λpλq.{p}>q]) --> [after].

tps([qclause:forall ,mclause:init_exists ,sem:λpλq.[p]>q]) --> [once].

tps([qclause:def ,mclause:forall ,sem:λpλq.{p}>q]) --> [since].

tps([qclause:def ,mclause:forall ,sem:λpλq.{p}<+q]) --> [until ,after].

Figure 4.5.26: Closed-class lexicon for temporal prepositions with clausal complements.

In our grammar rules at Figure 4.5.26, each temporal preposition indicating the during

relation (such as when, while, etc) allows its main clause to be restricted with exists

and forall quantifiers. Therefore, each of them has two rules. Moreover, the temporal

preposition after also has two rules since it allows its main clause to be restricted with

exists and forall quantifiers. Finally, the only temporal preposition that allows its

main clause to be restricted with init exists quantifier is the temporal preposition

once because it locates the event in its main clause immediately after the event in its

complement finishes.

Let us begin explaining the above rules with the following example:

(178) whenever Awvalid goes low

(179) until Awready goes high

The phrase structures of (178) and (179) are shown in Figure 4.5.27.

The phrase structure (a) shows that whenever is only associated with universal quan-

tification. Thus, we must remove the existential quantification from 〈low(Awvalid)〉>

4.5. GRAMMAR 129

(a) tpp([mclause:M,sem:λq.[low(Awvalid)]=q])

tps([qclause:forall,mclause:M,sem:λpλq.[p]=q])

[whenever]

removeQ([mclause:exists,sem:low(Awvalid)])

ip0([mclause:exists,sem:〈low(Awvalid)〉>])

Awvalid goes low

(b) tpp([mclause:forall,sem:λq.{high(Awvalid)}<q])

tps([qclause:def,mclause:forall,sem:λpλq.{p}<q])

[until]

removeQ([mclause:exists,sem:high(Awvalid)])

ip0([mclause:exists,sem:〈high(Awvalid)〉>])

Awvalid goes high

Figure 4.5.27: The phrase structures of (178) and (179).

by moving only the string low(Awvalid) to the removeQ category. Then, λp takes the

string p in λpλq.[p]=q and substitute it with the string low(Awvalid). Now, low(Awvalid)

becomes restricted by universal quantification rather than existential one. On the other

hand, the phrase structure (b) shows that until is only associated with definite quantifi-

cation. Thus, we must remove the existential quantification from 〈high(Awready)〉> by

moving only the string high(Awvalid) to the removeQ category. Then, λp takes the string

p in λpλq.{p}<q and substitute it with the string high(Awready). Now, high(Awready)

becomes restricted by definite quantification rather than existential one. These phrase

structures show that applying these restrictions on the semantics of temporal preposi-

tions help to produce correct TPL+ formulas that correspond to the truth-condition of

English sentences. Note that, in the phrase structure (a), the preposition whenever has

the variable M on its mclause feature, which means the variable M can be bound by either

existential or universal quantifier based on its lexicon rules in Figure 4.5.26.

Let us show how to extract a TPL+ formula from a sentence having two temporal

4.5. GRAMMAR 130

prepositions based on our grammar rules. Consider the following sentence:

(180) After Awvalid becomes low, Awid remains asserted until Awready goes high.

We assign to sentence (180) the phrase structure shown in Figure 4.5.28. As shown

in Figure 4.5.28, combining the tpps category with the ip1 category that has another

tpp category works perfectly using our grammar rules in Figure 4.5.18. Moreover, the

temporal preposition after has the variable M on its mclause feature; however this variable

will be ignored since it has no effect during the process of extracting the TPL+ formula.

4.5.
G
R
A
M
M
A
R

131

ip2([sem:{low(Awvalid)}>{high(Awready)}<[[assert(Awid)]]])

tpps([sem:λq.{high(Awvalid)}>q])

tpp([mclause:M,sem:λq.{high(Awvalid)}>q])

tps([qclause:def,mclause:M,sem:λpλq.{p}>q])

[after]

removeQ([mclause:exists,sem:high(Awvalid)])

ip0([mclause:exists,sem:〈high(Awvalid)〉>])

Awvalid becomes low

ip1([sem:{high(Awvalid)}<[[assert(Awid)]]])

ip0([mclause:forall,sem:[[assert(Awid)]]])

Awid remains asserted

tpp([mclause:forall,sem:λq.{high(Awvalid)}<q])

tps([qclause:def,mclause:forall,sem:λpλq.{p}<q])

[until]

removeQ([mclause:exists,sem:high(Awvalid)])

ip0([mclause:exists,sem:〈high(Awready)〉>])

Awready goes high

Figure 4.5.28: The phrase structure of sentence (180).

4.5. GRAMMAR 132

4.5.5 Coordination

In this section, we extend our grammar rules for a variety of forms of coordination.

Coordination is possible for sentences, noun phrases and temporal nominal phrases. For

each phrase, let us show how our grammar rules work with coordination.

Let sentence coordination and its associated rules be defined by the phrase structure rules:

ip2([sem:(B@A)@C]) --> ip1([sem:A]), ipcoord ([sem:B]), ip1([sem:C]).

ipcoord ([sem:λpλq.p ∧ q]) --> [and].

ipcoord ([sem:λpλq.p ∨ q]) --> [or].

We can apply the above phrase structure rules to extract the semantics in TPL+ for a

sentence like “Rvalid is asserted and Awready is low ” as shown in Figure 4.5.29.

ip2([sem:〈assert(Rvalid)〉> ∧ 〈low(Awready)〉>])

ip1([sem:〈assert(Rvalid)〉>])

Rvalid is asserted

ipcoord([sem:λpλq.p ∧ q])

[and]

ip1([sem:〈low(Awready)〉>])

Awready goes low

Figure 4.5.29: The phrase structure of a sentence coordination.

We now turn to noun phrase coordination and its associated rules. We write the phrase

structure rules for them as follows:

ip0([mclause:M,sem:NP@IBar]) --> np1([num:Num ,sem:NP]),

ibar([num:Num ,mclause:M,sem:IBar]).

np1([num:Num ,sem:(B@A)@C]) -->

np0([num:Num ,sem:A]),npcoord ([sem:B]), np0([num:Num ,sem:C]).

npcoord ([sem:λpλqλs.s(p) ∧ s(q)]) --> [and].

npcoord ([sem:λpλqλs.s(p) ∨ s(q)]) --> [or].

Note the ip0 category consists of the np1 category, followed by the ibar category. Thus,

we apply the sem’s value of the ibar category to the sem’s value of the np1 category

rather than the opposite direction since the np1 has the npcoord category which requires

4.5. GRAMMAR 133

us to use the application operator in this direction to extract the meaning of the given

sentences that include noun phrase coordination. For example, we can extract the TPL+

formula for a sentence like “Rvalid or Awready becomes low” using the above phrase

structure rules as shown in Figure 4.5.30.

ip1([sem:〈low(Rvalid)〉> ∨ 〈low(Awready)〉>])

ip0([mclause:exists,sem:〈low(Rvalid)〉> ∨ 〈low(Awready)〉>])

np1([num:sg,sem:λs.s(Rvalid) ∨ s(Awready)])

np0([num:sg,sem:Rvalid])

Rvalid

npcoord([sem:λpλqλs.s(p) ∨ s(q)])

[or]

np0([num:sg,sem:Awready])

Awready

ibar([num:sg,mclause:exists,sem:λx.〈low(x)〉>])

becomes low

Figure 4.5.30: The phrase structure of a noun phrase coordination.

The final form of coordination we consider is that of temporal nouns. Let temporal

noun coordination and its associated rules be defined by the phrase structure rules:

tpp([mclause:M,sem:NP@TP]) -->

tpn([qclause:Q,mclause:M,sem:TP]), tnp1([type:Q,num:_,sem:NP]).

tnp1([qclause:D,num:Num ,sem:TnBar@Det]) -->

det([type:D,sem:Det]), tnbar1 ([type:D,num:Num ,sem:TnBar]).

tnbar1 ([type:_,num:Num ,sem:(B@A)@C]) -->

tn([num:Num ,sem:A]), tncoord ([sem:B]), tn([num:Num ,sem:C]).

tncoord ([sem:λpλqλzλs.s(z(p)) ∧ s(z(q))]) --> [and].

tncoord ([sem:λpλqλzλs.s(z(p)) ∨ s(z(q))]) --> [or].

When the tpp category consists of the tpn category, followed by the tnp1 category,

we apply the sem’s value of the tpn category to the sem’s value of the tnp1 category.

Moreover, when the tnp1 category consists of the det category, followed by the tnbar1

category, we apply the sem’s value of the det category to the sem’s value of the tnbar1

category. Combining the sem’s values in this order is important to extract the meaning

of the given sentences that include temporal noun coordination. For example, we can

extract the TPL+ formula for a sentence like “Rvalid is asserted during every request and

acknowledgement” using the above phrase structure rules as shown in Figure 4.6.1.

4.6.
R
E
S
T
R
IC

T
E
D
T
P
L

+
134

ip1([sem:[req]=〈assert(Rvalid)〉> ∧ [ack]=〈assert(Rvalid)〉>])

ip0([mclause:exists,sem:〈assert(Rvalid)〉>])

Rvalid is asserted

tpp([mclause:exists,sem:λq.[req]=q ∧ λq.[ack]=q])

tpn([qclause:forall,mclause:exists,sem:λpλq.p=q])

[during]

tnp1([qclause:forall,num:sg,sem:λs.s([req]) ∧ s([ack])])

det([type:forall,sem:λx.[x]])

[every]

tnbar1([type:forall,num:sg,sem:λzλs.s(z(req)) ∧ s(z(ack))])

tn([num:sg,sem:req])

[request/req]

tncoord([sem:λpλqλzλs.s(z(p)) ∧ s(z(q))])

[and]

tn([num:sg,sem:ack])

[acknowledgement/ack]

Figure 4.6.1: The phrase structure of a temporal noun coordination.

4.6. RESTRICTED TPL+ 135

4.6 Restricted TPL+

In this section, we restrict some TPL+ formulas defined in Section 4.4 to simplify their

mapping into LTL and SVA as described in the next Chapter. The TPL+ formulas that

require to be more restricted as follows: {e}ψ, {e}>ψ, {e}<ψ and {e}<+ψ. Let us start

by motivating these restrictions using some examples.

Consider the following sentences:

(181) Awid remains high throughout the Ack;

(182) Awid must be high after the Ack;

The corresponding TPL+ formulas for the above sentences are as follows, respectively:

(183) {Ack}[[high(Awid)]]

(184) {Ack}>〈high(Awid)〉>.

The TPL+ formulas (183) and (184) have the same truth conditions as the sentences

(181) and (182). However, mapping these kinds of TPL+ formulas into LTL and SVA

is hard because the definite quantifier does not exist in the semantics of LTL and SVA.

However, if the definite quantifier comes with the event-relation category ef or el, then

we can express them in LTL as we shall see in Section 5.2. The event e (such as Ack)

might occur several times during the evaluation as shown below:

ef e e els0

ψψ

Therefore, we restrict the event e to be the first e or the last e to avoid evaluating the

embedded formula (such as ψ in the previous time line) in the other occurrences of e. For

example, if we evaluate ψ in the time line, we must evaluate it only with respect to the

first e or the last e and ignore the rest of e being occurred.

4.7. REWRITING TPL+ PRIMITIVES 136

Here is how we can make these modifications on such TPL+ formulas. After they are

generated using our grammar rules (discussed in Section 4.5), if an TPL+ formula occurs

in the following forms:{e}ψ, {e}>ψ, {e}<ψ and {e}<+ψ then we rewrite them as shown

in the following cases:

• {e}ψ ⇒ {ef}ψ

• {e}>ψ ⇒ {el}>ψ

• {e}<ψ ⇒ {ef}<ψ

• {e}<+ψ ⇒ {ef}<+ψ.

Now, let us apply these modifications using the above rules on TPL+ formulas (183)

and (184) as follows, respectively

(185) {Ackf}[[high(Awid)]]

(186) {Ackl}>〈high(Awid)〉>

The reason for not applying these modifications during the process of extracting TPL+

formulas is to avoid the case where sentences already have the adjective first and last.

This case will cause some duplications on the event-relation category ef or el as shown in

(187) and (188).

(187) * {eff}ψ

(188) * {ell}>ψ

Thus, applying these modifications after TPL+ formulas are generated is consider the

best solution for this issue. From now on, we rewrite the mentioned forms of TPL+ as

suggested above.

4.7 Rewriting TPL+ Primitives

In this section, we rewrite TPL+ primitives to simplify the translation process from TPL+

to SVA as we see in the next Chapter. TPL+ primitives will be rewritten after they are

4.7. REWRITING TPL+ PRIMITIVES 137

generated using our grammar rules. We start by introducing TPL+ primitives that require

some simplifications. Then, we show how we rewrite those TPL+ primitives.

In practice, there are some common TPL+ primitives that are interpreted in the same

way in SVA as shown in Table 4.7.1.

Group A Group B
assert(ψ) permit(ψ) deassert(ψ) disabled(ψ)
hold(ψ) valid(ψ) illegal(ψ) absent(ψ)

active(ψ) occur(ψ) inactive(ψ) invalid(ψ)
enabled(ψ) high(ψ) low(ψ)

Table 4.7.1: A list of common primitives which share the same meanings in SVA.

Indeed, those primitives can have different meanings if they occur in other domains.

However, in SVA, the primitives in Group A mean that ψ is true while the primitives

in Group B mean that ψ is false since they have implicitly negative readings such as

deassert(ψ) and low(ψ) as described in Section 2.4.

Let us now show how we can simplify the primitives in Table 4.7.1. Consider the

following TPL+ formulas for representing the meanings of sentences (131) and (139),

respectively:

(189) [cycle]〈assert(Awid)〉>

(190) |3〉∗[[high(Awvalid)]]

where assert(Awid) and high(Awvalid) are unary predicate constants. Our simplifica-

tion requires us to (i) remove any unary predicates in Table 4.7.1 and (ii) replace it by

capitalising its argument to denote the unary predicate and its argument together. For

example, we can simplify the TPL+ formulas (189) and (190) as follows, respectively:

(191) [CY CLE]〈AWID〉>

(192) |3〉∗[[AWV ALID]]

where CY CLE is also rewritten using uppercase letters. Now, AWID and AWV ALID

4.7. REWRITING TPL+ PRIMITIVES 138

are considered as predicates with zero arguments. Moreover, AWID and AWV ALID

denote that AWID and AWV ALID respectively are true at the time in question. How-

ever, the primitives in Group B at Table 4.7.1 must be treated differently than the above

simplifications since they have implicitly negative reading. For example, consider the

following TPL+ formula for representing the meaning of sentence (180):

(193) {low(Awvalid)}>{high(Awready)}<[[assert(Awid)]],

where high(Awready) and assert(Awid) can be simplified in the similar way of the pre-

vious examples. On the other hand, low(Awvalid) must be simplified differently by (i)

replacing the unary predicate low by the negation symbol ¬ and (ii) capitalising its argu-

ment (Awvalid) to denote that its argument is restricted by a negation as shown below:

(194) {¬AWV ALID}>{AWREADY }<[[AWID]],

where ¬AWV ALID denotes that AWV ALID is false at the time in question.

To summarize, any TPL+ primitive from Table 4.7.1 will be rewritten as shown in

Table 4.7.2. These modifications are essential for simplifying the translation process from

TPL+ to SVA as we shall see in the next chapter.

Group TPL+

A
assert(ψ), permit(ψ), hold(ψ),
valid(ψ), active(ψ), occur(ψ),
enabled(ψ), and high(ψ)

⇒ Ψ

B
de-assert(ψ), disabled(ψ), absent(ψ),
illegal(ψ), inactive(ψ), invalid(ψ),
and low(ψ)

⇒ ¬Ψ

Table 4.7.2: A list of some common TPL+ primitives and their simplifications.

Beside rewriting these TPL+ primitives, we also rewrite primitives’ arguments, which

denoted by ψ in Table 4.7.2, using the capital letters as part of our simplification process.

Here we represent writing ψ with the capital letters as Ψ. Form now, we shall rewrite

TPL+ formulas using these simplification rules.

Chapter 5

Generating LTL and SVA from

TPL+

In this chapter, we consider the problem of translating TPL+ to SVA (a variant of LTL).

We certainty have reason to believe that such a translation is possible. After all, consider-

ation of the semantics of TPL+ suggests that TPL+ can be translated into first-order logic

(henceforth, FOL) with a signature of unary predicates and the temporal order-relations.

And we know from the works of (Kamp, 1968; Gabbay et al., 1980, 1994) that all FOL

formulas over such a signature can be expressed in LTL. The question arises however as

to whether simply composing these translations gives us the most efficient mapping from

TPL+ to LTL (equivalently SVA). In fact, we provide two different approaches for such

a translation exploiting the fact that TPL+ translates to a proper subset of FOL. In the

first approach, we translate first TPL+ to LTL. Then, we translate LTL to SVA. On the

other hand, the second approach translates directly TPL+ to SVA. Our translations run

in linear time and avoid the non-elementary blow-up potentially entailed by the composed

translations. Before giving these translations, we review some background work on the

expressiveness of FOL and LTL in Section 5.1. Then, Sections 5.2 and 5.3 present the

first approach which maps TPL+ into LTL and then into SVA. In Section 5.4, we present

the second approach which can map TPL+ into SVA directly.

139

5.1. EXPRESSIVENESS OF FOL AND LTL 140

5.1 Expressiveness of FOL and LTL

This section presents earlier investigations into the translation from FOL to LTL and

vice versa (see Kamp, 1968; Gabbay et al., 1980; McNaughton and Papert, 1971). We

show these studies to give a better understanding of the difficulties when we translate

TPL+ to LTL since TPL+ is a first-order language having variables which range over

time-intervals. By contrast, the investigations mentioned above focus only on FOL that

has variables which range over N = {0, 1, 2, . . .}, unary predicates, a binary relation

symbol <, and one free variable. This fragment of FOL is known as a monadic first-order

logic. The monadic term means that all relation symbols other than < and = contain

only one variable in each formula. Note that syntax and semantics of LTL are introduced

in Section 2.3.

Let us show how we express LTL formulas into FOL. Given LTL formulas “Fp” and

“U(p, q)”, we can clearly express them into FOL as follows, respectively:

(195) ∃t′ [t′ > t ∧ p(t′)]

(196) ∃t′ [t′ > t ∧ p(t′) ∧ ∀t′′[t 6 t′′ < t′ → q(t′′)]].

Formula (195) asserts that, there exists t′ > t such that p occurs at t′, where t denotes

the present time. Formula (196) asserts that, with respect to the free variable t, there

exists t′ > t such that p occurs at t′. Moreover, q occurs for all t′′ such that t 6 t′′ < t′.

From the above examples, It is obvious that any LTL formula can be translated into a

FOL formula. This translation is linear in the size of the input.

The question then arises whether the translations can be carried out in the other di-

rection. In fact this is the case. In Kamp (1968), Kamp proved that, over discrete linear

orders, LTL including “strict until” and “strict since” operators is expressively complete

for FOL with monadic predicates.

5.1. EXPRESSIVENESS OF FOL AND LTL 141

Theorem 5.1.1. (Kamp, 1968)

LTL with the binary temporal connectives (strict until, strict since) has the expressive

power of FOL over ordered natural numbers.

Kamp’s theorem does not include LTL+ which is LTL without past operators as defined

in Section 2.3. However, Gabbay in (Gabbay et al., 1980, 1994) proved that the above

theorem can include LTL+ using the separation property. This property states that, every

LTL formula is equivalent to a Boolean combination of “pure past time”, “pure present

time”, or “pure future time” formulas. For example, F (q ∧ Hr) is not a pure formula.

However, it is equivalent over linear time to the separated formula “Hr ∧ r ∧ U(q, r)”

which is a conjunction of a pure past, a pure present and a pure future formula.

We mention, in passing, that the equivalence of FOL and LTL can be alternatively

established using star-free languages (McNaughton and Papert, 1971). A star-free regular

language is a subset of regular expressions which is constructed from finite languages Σ by

applications of the Boolean operations + (union), v (complement) and · (concatenation

dot). The syntax of star-free expressions over Σ is given by:

ϕ ::= ∅ | ε | a | ϕ + ϕ′ | ϕ . ϕ′ | v ϕ

where ∅, ε, and a denote the empty set, the empty string, and constants, respectively.

Notice that a ranges over all symbols in Σ. By a natural correspondence between the

operations (+, v, and ·) and the logical connectives (¬, ∨, and ∃), it is easy to transform

star-free expressions into FOL formulas. For example, over A = {a, b, c} the expression

v ∅ . (a+ c) . v (v ∅ . b . v ∅) defines by a FOL formula as follows:

(197) ∃x((a(x) ∨ c(x)) ∧ ¬∃y(x < y ∧ b(y))),

This example shows that it is possible to describe star-free languages using FOL. In (Mc-

Naughton and Papert, 1971), McNaughton proved that any FOL formula can be translated

into a free-star regular expression and vice versa based on the following theorem:

5.1. EXPRESSIVENESS OF FOL AND LTL 142

Theorem 5.1.2. (McNaughton and Papert, 1971) A language is star-free if and only if

it is FOL expressible (in the signature with <).

Furthermore, translating star-free expressions into LTL is possible using counter-free

DFA (stands for Deterministic Finite-state Automaton) based on Theorems 5.1.3 and

5.1.4. A counter-free DFA is defined as follows:

Definition 5.1.1. A DFA is a tuple A = (Q,Σ, δ, q0, F), where Q is a finite set of states;

Σ is an alphabet of input symbols; δ : Q × Σ → Q is the transition function; q0 ∈ Q is

the initial state; F ⊆ Q is the set of final (or accepting) states. A DFA is said to have a

counter if there exist distinct states q0, q1, ..., qn in A, with n ≥ 1, and a string w ∈ Σ∗,

such that δ(qi, w) = qi+1 for each i ∈ {0, ..., n − 1} and δ(qn, w) = q0. A DFA is said to

counter-free if it has no such counter, and a regular language is said to be counter-free if

the minimal automaton accepting it is counter-free.

Theorem 5.1.3. (Schützenberger, 1965) A language is counter-free DFA if and only if it

is star-free expressible.

Theorem 5.1.4. (Wilke, 1999) A language L is expressible in LTL if and only if it is

recognised by a counter-free DFA.

Therefore, from theorems 5.1.2, 5.1.3 and 5.1.4, the equivalence of FOL and LTL also

follows.

We mentioned earlier that the translation from LTL to FOL is easy and runs in linear

time. However, translating FOL into LTL has some effects on the satisfiability problem

in FOL. Since the satisfiability problem in LTL is PSPACE-complete, there is certainly

an exponential blow-up. In fact, there is a nonelementary explosion (see Meyer, 1975).

The translation FOL into LTL is the most interesting for us because we start from

TPL+ (which can be expressed in FOL) and translate it to LTL (equivalently SVA).

Does this mean that we have a problem? No, because we have only a subset of FOL. It

5.2. FROM TPL+ TO LTL 143

will turn out in the next section that for our subset of FOL we do not have an exponential

blow-up.

5.2 From TPL+ to LTL

This section presents generic transformation rules generating LTL from TPL+. The

transformation rules are generic in the sense that the transformations can be done recur-

sively. In providing these transformation rules, we must of course bridge the gulf between

interval-based and point-based semantics, and the first question that arises is how best

to do this.

The applications we have in mind—verification of protocols for clocked systems—employ

models which are naturally point-based, and interpreted over the temporal frame (N, <).

That is, time points succeed one another in a regular series of ticks, and proposition-

letters are simply true or false at those time points. Thus, all evaluation will be over

point-based structures of the form A = (N, <, pAp∈P), and, in particular, we lose any

meaningful distinction between (atomic) events and (atomic) states. How can we apply

the semantics of TPL+ (pp. 91 ff.) to such structures?

The most sensible approach is as follows. We continue to evaluate TPL+ formulas

at intervals—in this case, the domain intervals over N. All the recursive cases in the

semantics for TPL+ are unaffected; however, the base cases must be modified, to take

account of the fact that atomic events and states simply arise from the truth or falsity of

proposition letters at times. More specifically, we define a truth-relation |≈ for TPL+ in

which the recursive clauses are identical to those for |=, but where the base cases are as

follows.

1. A |≈I 〈e〉> if there is a maximal subinterval J ⊆ I such that t ∈ A(e) for all t ∈ J ,

and J ⊆ I.

5.2. FROM TPL+ TO LTL 144

2. A |≈I |e〉> if start(I) ∈ A(e).

3. A |≈I 〈e⇔〉> if start(I) ∈ A(e)↔ start(I)− 1 ∈ A(e).

4. A |≈I [[e]] if t ∈ A(e) for all t ∈ I.

Note that Case 1 handles classical ‘events’ which take place over an extended time period.

Here, we think of an a point-based structure A as saying that an event occurs within some

temporal context I just in case, within I, there is a continguous interval at all points of

which A takes the corresponding proposition letter to by true, and that this interval is

maximal (is not properly contained in any other such interval). We can represent the

event e occurring in Case 1 as follows:

ee ¬e¬e e e e

J

I

Case 4, by contrast, handles classical ‘states’, which hold at points. Here, we think of an a

point-based structure A as saying that a state occurs throughout some temporal context

I just in case, at all points of I, A makes the appropriate proposition letter true. Cases

2 and 3 are similar in character to Case 4.

Now that we have discussed how to interpret TPL+ over point-based models, the ques-

tion still arises as to how to translate its formulas into LTL. After all, TPL+-formulas

are still evaluated at intervals, while LTL-formulas are evaluated at points. How can we

compare the two?

Before we give an idea of how we accomplish the comparison task, let us present an-

other difference between interval-based and point-based semantics. Consider the following

sentence:

(198) Awid remains asserted until Awready goes high.

We write the corresponding TPL+ formula using the simplification suggested in Table

5.2. FROM TPL+ TO LTL 145

4.7.2 in Section 4.7. Thus, the meaning of sentence (198) in TPL+ is written as follows:

(199) {AWREADY f}<[[AWID]].

TPL+ is evaluated over intervals which are characterized by two numerical parameters,

start and end points. In contrast, LTL is evaluated over time points which are character-

ized by a single numerical parameter. To translate TPL+ into LTL, we must have another

point in LTL that represents the end point of TPL+. Thus, we use the parameter END

to represent the end point in TPL+. This modification allows us to translate any prop-

erty in TPL+ into LTL using constructive rules as we shall see later. The corresponding

meaning of the above TPL+ formula in LTL is:

(200) U(¬END ∧ AWREADY ∧ F (END),¬END) ∧ U(AWREADY,AWID).

Let us illustrate by giving the interpretations of (199) and (200) graphically and analyti-

cally. We first show graphically in Figure 5.2.1 that the interpretations of (199) and (200)

can be represented in the same way.

AWID AWID AWIDAWREADY AWREADY
¬END ¬END ¬END ¬END

END

t

¬END

s t0

Figure 5.2.1: The interpretation of (199) and (200) graphically.

Let us analyse the above figure based on the truth condition of TPL+ and LTL. Example

(199) asserts that, there is a unique time point t0 over which AWREADY starts and the

interval between the start point s and the unique point t0 includes the occurrence of AWID

at every interval. By contrast, example (200) asserts that, from the start point s of the

evaluation, AWID must repeatedly hold until the time point before the first occurrence

of AWREADY. Moreover, the property ¬END must start holding from the beginning

of the evaluation until after AWREADY holds and after that the property END will

eventually hold. Thus, both interpretations are clearly describing the same the truth

condition, where END is taken to devote the end of the interval of TPL+ evaluation.

5.2. FROM TPL+ TO LTL 146

Let us take another example to further observe the differences between TPL+ and LTL.

Consider the following sentence:

(201) Awid must be asserted within MaxWaits cycles,

where MaxWaits is a constant and its value is 16 (as discussed in Section 2.4). Let us

suppose that MaxWaits = 4 instead of 16 for simplicity’s sake in describing the corre-

sponding LTL formula of sentence (201). The meaning of sentence (201) in TPL+ is as

follows:

(202) |4〉∗〈AWID〉>.

Again, we write the above TPL+ formula following the simplification suggested in Table

4.7.2 in Section 4.7. We also show how we extract the meaning of “MaxWaits cycles”

in TPL+ (see example (159) on page 109). The equivalent interpretation of the above

TPL+ formula in LTL is as follows:

(203) (AWID ∨X(AWID ∨X(AWID ∨X(AWID)))) ∧ F (END).

Let us now describe analytically the interpretations of (202) and (203). Example (202)

asserts that, within the temporal context [s, t], there is an interval J that includes the

occurrence of AWID being true, and J is contained in [s, s + 4]. By contrast, example

(203) asserts that, from the start point s of the evaluation, the signal AWID is true, and

may remain true for three more clock cycles. Then, the property END will eventually

hold. Again, the property END is taken to represent the end of the interval of TPL+

evaluation.

From the above examples, TPL+ can be expressed in LTL if we adopt the following

approach. We suppose that we have a special atomic proposition, END, which signals

the end of the time-period we are interested in. We define a function # such that, for

any TPL+-formula ψ any point-based structure A = (N, <, pAp∈P), and any time-point

s ∈ N,A |=s #(ψ,END) if and only if there exists some t > s such that A |=t END and,

5.2. FROM TPL+ TO LTL 147

taking t′ to be the smallest such t for which this is the case, A |≈[s,t′] ψ.

For technical reasons, we take # to apply to two arguments: a TPL+-formula (the

formula that we want to translate) and an LTL formula picking out the end-point over

evaluation. This (somewhat unusual) approach allows the transformations to be carried

out recursively. Formally, the function # is given by Definition 5.2.1. The definition is

devised to secure the following theorem:

Theorem 5.2.1. For all TPL+-sentences ψ, all LTL sentences, π all point-based struc-

tures A = (N, <, pAp∈P), and all s ∈ N, A |=s #(ψ, π) if and only if there exists some

t > s such that A |=t π and, taking t′ to be the smallest such t for which this is the case,

A |≈[s,t′] ψ.

Definition 5.2.1. We define a function

#: TPL+ × LTL→ LTL

by recursion on the structure of the first argument as follows.

(T1) #(〈e〉>, π) = U(X -1¬e ∧ e ∧ U(¬e,¬π),¬π) ∧ F (π).

(T2) #(|e〉>, π) = U(¬e ∧ ¬π, e ∧ ¬π) ∧ F (π).

(T3) #([[e]], π) = U(π, e).

(T4) #(〈e⇔〉>, π) = (e↔ X -1e) ∧ F (π).

(T5) #(|n〉∗[[e]], π) = (e ∧ (Xe ∧ (XXe∧ n times.....))) ∧ F (π).

(T6) #(|n〉∗〈e〉>, π) = (e ∨X(e ∨X(e∨ n times.....))) ∧ F (π).

Base Cases

(T7) #({ef}ψ, π) = U(e ∧ #(ψ,¬e) ∧ U(¬e,¬π),¬π) ∧ U(π,¬e).

(T8) #([e]ψ, π) = U(π, e ∧#(ψ,¬e)).

(T9) #({ef}<ψ, π) = U(¬π ∧ e ∧ F (π),¬π) ∧#(ψ, e).

5.2. FROM TPL+ TO LTL 148

(T10) #({el}>ψ, π) = U(e ∧ U(¬e ∧#(ψ, π) ∧ U(π,¬e),¬π ∧ e),¬π).

(T11) #([e]>ψ, π) = U(π, e→ X(#(ψ,>) ∨ π)).

(T12) #([e]<ψ, π) = U(π, e→ X -1(¬e ∧#(ψ, e))).

(T13) #({ef}<+ψ, π) = U(¬π ∧ e ∧ F (π),¬π) ∧#(ψ, e ∧X¬e ∧ ¬π).

We now turn to the proof of Theorem 5.2.1 which states that any TPL+ formula can be

mapped into an LTL formula using transformation rules that appear in Definition 5.2.1.

Proof of Theorem 5.2.1. We proceed by induction on the structure of φ.

Base case (1): φ = 〈e〉>. Suppose A |=s #(φ, π). i.e. A |=s #(〈e〉>, π) i.e. A |=s

U(X -1¬e ∧ e ∧ U(¬e,¬π),¬π) ∧ F (π). From the conjunct F (π), there exists t ≥ s such

that A |=t π. Take t′ to be the smallest such t. From the first conjunct, there exists

a t0 ≥ s such that A |=t0 X -1¬e ∧ e ∧ U(¬e,¬π), and moreover, ¬π is true at every

time point from s to t0. Therefore t0 ≤ t′. Let take t0 to be the first such time. Now

A |=t0 X
-1¬e ∧ e ∧ U(¬e,¬π) so there exists a time point t1 ≥ t0 such that A |=t1 ¬e,

and moreover ¬π holds at all points from t0 to t1-1 inclusive, whence t1 ≤ t′. We may as

well take t1 to be the smallest such point. So [t0, t1] is a maximal interval J such that eA

for every t ∈ J . Therefore, A |≈[s,t′] 〈e〉> for any I such that J ⊆ I and I = [s, t′], i.e.

A |≈[s,t′] φ.

Conversely, suppose that t′ is the smallest number > s such that A |=t π. Certainly,

then we have A |=s F (π). Moreover, suppose A |≈[s,t′] 〈e〉>. From the semantics of 〈e〉>,

for some J ⊆ [s, t′], J ∈ A(e). Furthermore, we take J to be a maximal subinterval of

eA. Hence, A |=s U(X -1¬e∧ e∧U(¬e,¬π),¬π). So we have A |=s #(〈e〉>, π) (see Figure

5.2.2).

π

t′s t1

¬e
e ee¬e
t0

¬π

Figure 5.2.2: Illustrating the proof of rule (T1).

5.2. FROM TPL+ TO LTL 149

Base case (2): φ = |e〉>. Suppose A |=s #(φ, π). i.e. A |=s #(|e〉>, π) i.e. A |=s

U(¬e∧¬π, e∧¬π)∧F (π). From the conjunct F (π), there exists t ≥ s such that A |=t π.

From the first conjunct, A |=s U(¬e ∧ ¬π, e ∧ ¬π). Moreover, there exists a time point

t0 ≥ s such that A |=t0 ¬e ∧ ¬π. So by semantics of TPL+, A |≈[s,t′] |e〉>, i.e. A |≈[s,t′] φ.

Conversely, suppose that t′ is the smallest number > s such that A |=t π. Certainly,

then we have A |=s F (π). Moreover, suppose A |≈[s,t′] |e〉>. From the semantics of |e〉>,

for some J, J ∈ A(e) and J is the initial interval of [s, t′]. Hence, A |=s U(¬e∧¬π, e∧¬π).

So we have A |=s #(|e〉>, π) (see Figure 5.2.3).

π

t′s

¬e
e e e e e e

t0

¬π

Figure 5.2.3: Illustrating the proof of rule (T2).

Base case (3): φ = [[e]]. Suppose A |=s #(φ, π). i.e. A |=s #([[e]], π) i.e. A |=s U(π, e).

We see there exists t ≥ s such that A |=t π. Take t′ to be the smallest such t. Moreover,

for all t0 ≥ s such that A |=t0 e. So by semantics of TPL+, A |≈[s,t′] [[e]], i.e. A |≈[s,t′] φ.

Conversely, suppose that t′ is the smallest number > s such that A |=t π, and suppose

A |≈[s,t′] [[e]]. From the semantics of [[e]], for all J ⊆ [s, t′] such that J ∈ A(e). Hence,

A |=s U(π, e). So we have A |=s #([[e]], π) (see Figure 5.2.4).

t′

π

s
e e e e e e eeee

Figure 5.2.4: Illustrating the proof of rule (T3).

Base case (4): φ = 〈e⇔〉>. Suppose A |=s #(φ, π). i.e. A |=s #(〈e⇔〉>, π) i.e.

A |=s (e↔ X -1e)∧F (π). From the second conjunct, there exists t ≥ s such that A |=t π.

Take t′ to be the smallest such t. From the first conjunct, A |=s e ⇔ A |=s-1 e. So by

semantics of TPL+, A |≈[s,t′] 〈e⇔〉>, i.e. A |≈[s,t′] φ.

Conversely, suppose that t′ is the smallest number > s such that A |=t π. Certainly,

5.2. FROM TPL+ TO LTL 150

then we have A |=s F (π). Moreover, suppose A |≈[s,t′] 〈e⇔〉>. From the semantics of

〈e⇔〉>, since start([s, t′]) = s, A |=[s,s] e ⇔ A |=[s-1,s-1] e. Hence, A |=s e ⇔ A |=s-1 e

which is equivalent to A |=s (e↔ X -1e). So we have A |=s #(〈e⇔〉>, π) (see Figure 5.2.5).

ss-1

ee

t′

π

Figure 5.2.5: Illustrating the proof of rule (T4).

Base case (5): φ = |n〉∗[[e]]. Suppose A |=s #(φ, π) and n=4. i.e. A |=s #(|4〉∗[[e]], π)

i.e. A |=s (e∧ (Xe∧ (XXe∧ (XXXe))))∧ F (π). From the second conjunct, there exists

t ≥ s such that A |=t π. Take t′ to be the smallest such t. From the first conjunct,

A |=s (e ∧ (Xe ∧ (XXe ∧ (XXXe)))) where e must hold for four consecutive points

starting from s. So by semantics of TPL+ in Section 4.4, A |=[s,t′] |4〉∗[[e]] which derived

from A |=[s,t′] |4〉∗ψ and A |≈[s,t′] [[e]], i.e. A |=[s,t′] φ.

Conversely, suppose that t′ is the smallest number > s such that A |=t π. Certainly, then

we have A |=s F (π). Moreover, suppose A |=[s,t′] |4〉∗[[e]]. From the semantics of |4〉∗[[e]],

A |≈[s,s+4] [[e]], and from the semantics of [[e]], for all J ⊆ [s, s+4] such that J ∈ A(e).

Hence, A |=s (e ∧ (Xe ∧ (XXe ∧ (XXXe)))). So we have A |=s #(|4〉∗[[e]], π) (see Figure

5.2.6).

t′

π

s

e e e e

s+1 s+2 s+3

Figure 5.2.6: Illustrating the proof of rule (T5).

Base case (6): φ = |n〉∗〈e〉>. Suppose A |=s #(φ, π) and n=4. i.e. A |=s #(|4〉∗〈e〉>, π)

i.e. A |=s (e ∨ X(e ∨ X(e ∨ X(e)))) ∧ F (π). From the second conjunct, there exists

t ≥ s such that A |=t π. Take t′ to be the smallest such t. From the first conjunct,

A |=s (e ∨ X(e ∨ X(e ∨ X(e)))), where e may hold at any point from s to s+4. So by

semantics of TPL+ in Section 4.4, A |=[s,t′] |4〉∗〈e〉> which derived from A |=[s,t′] |4〉∗ψ

and A |≈[s,t′] 〈e〉>, i.e. A |=[s,t′] φ.

5.2. FROM TPL+ TO LTL 151

Conversely, suppose that t′ is the smallest number > s such that A |=t π. Certainly,

then we have A |=s F (π). Moreover, suppose A |=[s,t′] |4〉∗〈e〉>. From the semantics of

|4〉∗〈e〉>, A |≈[s,s+4] 〈e〉>, and from the semantics of 〈e〉>, for some J ⊆ [s, s+4], J ∈ B(e).

Furthermore, we take J to be a maximal subinterval of eB. Hence, A |=s (e∨X(e∨X(e∨

X(e)))). So we have A |=s #(|4〉∗〈e〉>, π).

Recursive case (1): φ = {ef}ψ. Suppose A |=s #(φ, π). i.e. A |=s #({ef}ψ, π) i.e.

A |=s U(e ∧ #(ψ,¬e) ∧ U(¬e,¬π),¬π) ∧ U(π,¬e). We see first there exists t ≥ s such

that A |=t π. Take t′ to be the smallest such t. From e ∧ #(ψ,¬e) ∧ U(¬e,¬π), there

exists a t0 such that A |=t0 e ∧ #(ψ,¬e) ∧ U(¬e,¬π), and moreover, ¬π is true at every

time point from s to t0. Therefore t0 ≤ t′. By the induction hypothesis, there exists a

time point t1 ≥ t0 such that A |=t1 ¬e, and A |=[t0,t1] ψ. From U(π,¬e), we see that

¬e must remain true until t′-1. So by semantics of TPL+ in Section 4.4, A |=[s,t′] {ef}ψ

which derived from A |=[s,t′] {α}ψ and A |=[s,t′] e
f , i.e. A |=[s,t′] φ.

Conversely, suppose that t′ is the smallest number > s such that A |=t π, and suppose

A |=[s,t′] {ef}ψ. From the semantics of A |=[s,t′] {ef}ψ, there is a unique J ⊆ [s, t′]

such that J ∈ A(e), J is the first such interval, and for that J,A |=J ψ. Hence, A |=s

U(e ∧ #(ψ,¬e) ∧ U(¬e,¬π),¬π) ∧ U(π,¬e). So we have A |=s #({ef}ψ, π) (see Figure

5.2.7).

π

t′s t1

¬eψ

e e e e

t0

¬π

Figure 5.2.7: Illustrating the proof of rule (T7).

Recursive case (2): φ = [e]ψ. Suppose A |=s #(φ, π). i.e. A |=s #([e]ψ, π) i.e.

A |=s U(π, e ∧ #(ψ,¬e)). We see first there exists t ≥ s such that A |=t π. Take t′ to

be the smallest such t. From e ∧ #(ψ,¬e), for all t0 ≥ s such that A |=t0 e ∧ #(ψ,¬e).

By the induction hypothesis, for all t1 ≥ t0 such that A |=t1 ¬e and A |=[t0,t1] ψ. So by

semantics of TPL+ in Section 4.4, A |=[s,t′] [e]ψ, i.e. A |=[s,t′] φ.

5.2. FROM TPL+ TO LTL 152

Conversely, suppose that t′ is the smallest number > s such that A |=t π, and suppose

A |=[s,t′] [e]ψ. From the semantics of [e]ψ in Section 4.4, for all J ⊆ [s, t′-1], J ∈ A(e)

implies A |=J ψ. Hence, A |=s U(π, e∧#(ψ,¬e)). So we have A |=s #([e]ψ, π) (see Figure

5.2.8).

t′s

π

e

e e

¬e e

e e

¬e e

e e

¬e

t0 t1 t0 t1 t0 t1

ψ ψ ψ

Figure 5.2.8: Illustrating the proof of rule (T8).

Recursive case (3): φ = {ef}<ψ. Suppose A |=s #(φ, π). i.e. A |=s #({ef}<ψ, π)

i.e. A |=s U(¬π ∧ e ∧ F (π),¬π) ∧ #(ψ, e). From the conjunct F (π), there exists t ≥ s

such that A |=t π. Take t′ to be the smallest such t. From the first conjunct, there exists

a t0 ≥ s such that A |=t0 ¬π∧ e∧F (π), and moreover ¬π is true at every time point from

s to t0. By the induction hypothesis on the second conjunct, we have A |=[s,t0-1] ψ. So by

semantics of TPL+ in Section 4.4, A |=[s,t′] {ef}<ψ which derived from A |=[s,t′] {α}<ψ

and A |=[s,t′] e
f , i.e. A |=[s,t′] φ.

Conversely, suppose that t′ is the smallest number > s such that A |=t π. Certainly,

then we have A |=s F (π). Moreover, suppose A |=[s,t′] {ef}<ψ. From the semantics of

{ef}<ψ, there is a unique J ⊆ [s, t′] such that J ∈ A(e), J is the first such interval, and

for that J , A |=init(J,[s,t′]) ψ. Hence, A |=s U(¬π ∧ e ∧ F (π),¬π) ∧ #(ψ, e). So we have

A |=s #({ef}<ψ, π) (see Figure 5.2.9).

π

t′s t0

eψ
¬π

Figure 5.2.9: Illustrating the proof of rule (T9).

Recursive case (4): φ = {el}>ψ. Suppose A |=s #(φ, π). i.e. A |=s #({el}>ψ, π) i.e.

A |=s U(e∧U(¬e∧#(ψ, π)∧U(π,¬e),¬π ∧ e),¬π). From π, there exists t ≥ s such that

A |=t π. Take t′ to be the smallest such t. From e ∧ U(¬e ∧#(ψ, π) ∧ U(π,¬e),¬π ∧ e),

5.2. FROM TPL+ TO LTL 153

there exists a t0 ≥ s such that A |=t0 e∧U(¬e∧#(ψ, π)∧U(π,¬e),¬π∧e), and moreover

¬π is true at every time point from s to t0. By the induction hypothesis, there exists

t1 ≥ t0 such that A |=t1 ¬e ∧#(ψ, π). From U(π,¬e), we see that ¬e must remain true

until t′-1. So by semantics of TPL+ in Section 4.4, A |=[s,t′] {el}>ψ which derived from

A |=[s,t′] {α}>ψ and A |=[s,t′] e
l, i.e. A |=[s,t′] φ.

Conversely, suppose that t′ is the smallest number > s such that A |=t π. Moreover,

suppose A |=[s,t′] {el}>ψ. From the semantics of {el}>ψ, there is a unique J ⊆ [s, t′]

such that J ∈ A(e), J is the last such interval, and for that J , A |=fin(J,[s,t′]) ψ. Hence,

A |=s U(e∧U(¬e∧#(ψ, π)∧U(π,¬e),¬π ∧ e),¬π). So we have A |=s #({el}>ψ, π) (see

Figure 5.2.10).

t′

π

s t1

¬e
¬e

t0

¬π
e
e e e e e

ψ

Figure 5.2.10: Illustrating the proof of rule (T10).

Recursive case (5): φ = [e]>ψ. Suppose A |=s #(φ, π). i.e. A |=s #([e]>ψ, π)

i.e. A |=s U(π, e → X(#(ψ,>) ∨ π)). From π, there exists t ≥ s such that A |=t π.

Take t′ to be the smallest such t. From e → X(#(ψ,>) ∨ π), for all t0 ≥ s such

that A |=t0 e → X(#(ψ,>) ∨ π). By the induction hypothesis, for all t0+1 such that

either A |=t0+1 #(ψ,>) or A |=t0+1 π . So by the semantics of TPL+ in Section 4.4,

A |=[s,t′] [e]>ψ, i.e. A |=[s,t′] φ.

Conversely, suppose that t′ is the smallest number > s such that A |=t π. Moreover,

suppose A |≈[s,t′] [e]>ψ. From the semantics of [e]>ψ, for all J ⊆ [s, t′] such that J ∈ A(e)

implies A |=[end(J)+1,end(J)+1] ψ. Hence, A |=s U(π, e → X(#(ψ,>) ∨ π)). So we have

A |=s #([e]>ψ, π) (see Figure 5.2.11).

Recursive case (6): φ = [e]<ψ. Suppose A |=s #(φ, π). i.e. A |=s #([e]<ψ, π)

i.e. A |=s U(π, e → X -1(¬e ∧ #(ψ, e))). From π, there exists t ≥ s such that A |=t π.

Take t′ to be the smallest such t. From e → X -1(¬e ∧ #(ψ, e)), for all t0 ≥ s such

5.2. FROM TPL+ TO LTL 154

t′s

πe

ψ

t0 t0+1

e

ψ

t0 t0+1

e

ψ

t0 t0+1

Figure 5.2.11: Illustrating the proof of rule (T11).

that A |=t0 e → X -1(¬e ∧ #(ψ, π)). By the induction hypothesis, for all t0-1 such that

A |=t0-1 ¬e ∧ #(ψ, π). So by semantics of TPL+ in Section 4.4, A |=[s,t′] [e]<ψ, i.e.

A |=[s,t′] φ.

Conversely, suppose that t′ is the smallest number > s such that A |=t π. Moreover,

suppose A |=[s,t′] [e]<ψ. From the semantics of [e]<ψ, for all J ⊆ [s, t′] such that J ∈ A(e)

implies A |=[start(J)-1,start(J)-1] ψ. Hence, A |=s U(π, e → X -1(¬e ∧ #(ψ, e))). So we have

A |=s #([e]<ψ, π) (see Figure 5.2.12).

t′s

π

¬e ∧ ψ

e

t0-1 t0

¬e ∧ ψ

e

t0-1 t0

¬e ∧ ψ

e

t0-1 t0

Figure 5.2.12: Illustrating the proof of rule (T12).

Recursive case (7): φ = {ef}<+ψ. Suppose A |=s #(φ, π). i.e. A |=s #({ef}<+ψ, π)

i.e. A |=s U(¬π ∧ e ∧ F (π),¬π) ∧ #(ψ, e ∧ X¬e ∧ ¬π). From F (π), there exists t ≥ s

such that A |=t π. Take t′ to be the smallest such t. From the first conjunct, there

exists a t0 ≥ s such that A |=t0 ¬π ∧ e ∧ F (π), and moreover ¬π is true at every time

point from s to t0. By the induction hypothesis on the second conjunct, there exists a

time point t1 ≥ t0 such that A |=[s,t1] ψ. So by the semantics of TPL+ in Section 4.4,

A |=[s,t′] {ef}<+ψ which derived from A |=[s,t′] {α}<+ψ and A |=[s,t′] e
f , i.e. A |=[s,t′] φ.

Conversely, suppose that t′ is the smallest number > s such that A |=t π. Certainly,

then we have A |=s F (π). Moreover, suppose A |=[s,t′] {ef}<+ψ. From the semantics of

{ef}<+ψ, there is a unique J ⊆ [s, t′] such that J ∈ A(e), J is the first such interval, and

for that J , A |=[s,end(J)+1] ψ, where start(I) = s. Hence, A |=s U(¬π ∧ e ∧ F (π),¬π) ∧

5.2. FROM TPL+ TO LTL 155

#(ψ, e ∧X¬e ∧ ¬π). So we have A |=s #({ef}<+ψ, π) (see Figure 5.2.13).

π

t′s t0

e e e e

t1

¬eψ
¬π

Figure 5.2.13: Illustrating the proof of rule (T13).

By Theorem 5.2.1, any TPL+ can be transformed into a satisfactory LTL formula using

the transformation rules in Definition 5.2.1.

Now, we conclude this section with some examples illustrating the mapping procedures.

Examples (5.2.2)—(5.2.6) have TempCNL sentences that are interpreted in TPL+ formu-

las. We map these TPL+ formulas into LTL using our rules in Definition 5.2.1.

Example 5.2.1. Awid must be asserted within (MaxWaits/4) cycles.

#(|4〉∗〈AWID〉>, END) = X(AWID ∨ (AWID ∧XAWID)) ∧ F (END) (T6)

Example 5.2.2. Awid remains asserted until Awready goes high.

#({AWREADY f}<[[AWID]], END) = U(¬END ∧AWREADY ∧ F (END),¬END)∧

#([[AWID]], AWREADY) (T9)

= U(¬END ∧AWREADY ∧ F (END),¬END)∧

U(AWREADY,AWID) (T3)

Example 5.2.3. Awid must be stable once Awvalid goes high.

#([AWV ALID]>〈AWID⇔〉>, END) = U(END,AWV ALID →

X(#(〈AWID⇔〉>,>) ∨ END)) (T11)

= U(END,AWV ALID →

X(((AWID ↔ X-1AWID) ∧ F (>)) ∨ END)) (T4)

5.2. FROM TPL+ TO LTL 156

Example 5.2.4. Bvalid must remain low until after Wlast becomes high.

#({WLAST f}<+[[¬BV ALID]], END) = U(¬END ∧WLAST ∧ F (END),¬END)∧

#([[¬BV ALID]],WLAST ∧X¬WLAST ∧ ¬END) (T13)

= U(¬END ∧WLAST ∧ F (END),¬END)∧

U(WLAST ∧X¬WLAST ∧ ¬END,¬BV ALID) (T3)

Note that each of the above examples have mapped to LTL using only one transformation

rule or two transformation rules. Both TPL+ and LTL formulas in each example show

that temporal properties in TempCNL sentences are expressed in the same way in both

formulas. Thus, mapping TPL+ into LTL using our rules are correct in terms of both

formulas sharing the same truth-condition.

Let us examine TempCNL sentences which have more than two temporal prepositions,

and how we map their TPL+ formulas into LTL using our rules.

Example 5.2.5. After Awvalid goes high, Awid must be high for three cycles.

#({AWV ALIDl}>|3〉∗[[AWID]], END) = U(AWV ALID∧

U(¬AWV ALID

#(|3〉∗[[AWID]], END)∧

U(END,¬AWV ALID),

¬END ∧AWV ALID),¬END) (T10)

= U(AWV ALID∧

U(¬AWV ALID∧

(AWID ∧ (X AWID ∧XX AWID))∧

F (END) ∧ U(END,¬AWV ALID),

¬END ∧AWV ALID),¬END) (T5)

5.2. FROM TPL+ TO LTL 157

Example 5.2.6. After Awvalid goes high, Awid must remain high until Awready becomes

high.

#({AWV ALIDl}>{AWREADY f}<[[AWID]], END) = U(AWV ALID∧

U(¬AWV ALID∧

#({AWREADY f}<[[AWID]], END)∧

U(END,¬AWV ALID),

¬END ∧AWV ALID),¬END) (T10)

= U(AWV ALID∧

U(¬AWV ALID∧

U(¬END ∧AWREADY ∧ F (END),¬END)∧

#([[AWID]], AWREADY)∧

U(END,¬AWV ALID),

¬END ∧AWV ALID),¬END) (T9)

= U(AWV ALID∧

U(¬AWV ALID∧

U(¬END ∧AWREADY ∧ F (END),¬END)∧

U(AWREADY,AWID)∧

U(END,¬AWV ALID),

¬END ∧AWV ALID),¬END) (T3)

Each of the above examples has been mapped to LTL using three transformation rules.

Both TPL+ and LTL formulas in each example show again that temporal properties in

TempCNL sentences are expressed in the same way in both formulas. Thus, by applying

our transformation rules, we can extract LTL from TPL+ in a concise and efficient way.

It is worth pointing out that English sentences often do not include more than three

temporal prepositions. Nevertheless, our transformation rules are robust at mapping

TPL+ formulas possessing more than three depth levels into LTL. To conclude, we have

shown that generating LTL from TPL+ is theoretically possible using our transformation

rules as illustrated using the examples (5.2.2)—(5.2.6).

5.3. FROM LTL TO SVA 158

5.3 From LTL to SVA

In the previous section, we showed how we can map TPL+ into LTL using that transfor-

mation rules listed in Definition 5.2.1, and moreover we proved theoretically the equivalent

between TPL+ and LTL in those rules. Now, we will show how we translate LTL to SVA.

However, first we show how the translation between LTL and SVA was developed histor-

ically.

To begin with, model checking had been having an increasing industrial impact since

Pnueli (1977)’s proposal. Pnueli used LTL to specify and verify the correctness of concur-

rent programs. However, LTL was not expressive enough at that time for this task. This

problem was mentioned in Wolper (1983) who pointed that there are specific ω-regular

events that cannot be expressed in LTL.

In 1995, Intel engineers started the development of industrial temporal logics for verify-

ing properties of hardware designs. The first generation of Intel formal verification tools

was called Prover (see Kamhi et al., 1997). Prover was later enhanced by BDD-based

model checker (developed in McMillan (1993)) and a new specification language, called

FSL which was an LTL-based. FSL was model checked with the automata-theoretic tech-

nique in (Vardi and Wolper, 1986). Comparing FSL with LTL in industrial usage, FSL

can express more properties than LTL.

Later, Intel released a new generation of the specification language, called ForSpec

Temporal logic (FTL) (see Armoni et al., 2002). FTL is basically a combination of LTL,

regular expressions, and some features corresponding to clocks and resets (which comprises

a core of many specification languages). FTL has the full expressive power of ω-regular

expression.

In 2003, Accellera Formal Verification Technical Committee chose some languages (such

as Sugar from IBM, ForSpec from Intel, CBV from Motorola, OpenVera from Synopsys,

etc.) to build an IEEE standard for formal verification language. As result, SVA was

5.3. FROM LTL TO SVA 159

released in IEEE Std 1800-2005 (2005). However, ForSpec was not embedded until the

next version of SVA which was published at IEEE Std 1800-2009 (2009). Then, SVA has

all LTL operators in which SVA have the same expressive power of LTL. The final version

of SVA is described in IEEE Std 1800-2012 (2013).

Now, since the latest version of SVA includes LTL operators, the translation from LTL to

SVA becomes a straightforward task. In Table 5.3.1, we show all standard LTL operators

and their equivalent operators in SVA.

Unary operators Binary operators Other useful constructions

X ≡ nexttime U ≡ s until e↔ X -1e ≡ $stable(e)

F ≡ s eventually → ≡ implies X -1¬e ∧ e ≡ $rise(e)

G ≡ always ∧ ≡ and X -1e ∧ ¬e ≡ $fell(e)

¬ ≡ not ∨ ≡ or X -1e ≡ $past(e,1)

Table 5.3.1: LTL operators and their equivalent operators in SVA.

As shown in Table 5.3.1, the translations from LTL to SVA are easy tasks since any LTL

formula can be expressed in SVA using the equivalent operators.

Let us now show how we can translate LTL formulas of sentences (204) and (205) into

SVA with LTL operators. Note that sentence (198) is repeated here as (204) . Examples

5.4.1 and 5.4.2 on page 161 show the steps of translating LTL formulas into SVA with

LTL operators using the equivalent operators in Table 5.3.1.

(204) Awid remains asserted until Awready goes high

(205) Awid must be stable once Awvalid goes high.

5.4.
D
IR

E
C
T

T
R
A
N
S
F
O
R
M
A
T
IO

N
S

160
Example 5.4.1.

1. fLTL→SV A(U(¬END ∧ AWREADY ∧ F (END),¬END) ∧
U(AWREADY,AWID)) (∧ ≡ and)

2. fLTL→SV A(U (¬END ∧ AWREADY ∧ F (END),¬END)) and
fLTL→SV A(U(AWREADY,AWID)) (U ≡ s until)

3. s until(fLTL→SV A(¬END ∧ AWREADY ∧ F (END)), fLTL→SV A(¬END)) and
fLTL→SV A(U(AWREADY,AWID)) (∧ ≡ and)

4. s until(fLTL→SV A(¬ END) and fLTL→SV A(AWREADY) and fLTL→SV A(F (END)), fLTL→SV A(¬END)) and
fLTL→SV A(U(AWREADY,AWID)) (¬ ≡ not)

5. s until(not fLTL→SV A(END) and fLTL→SV A(AWREADY) and fLTL→SV A(F (END)), fLTL→SV A(¬END)) and
fLTL→SV A(U(AWREADY,AWID)) atomic propositions similarly interpreted

5. s until(not END and fLTL→SV A(AWREADY) and fLTL→SV A(F (END)), fLTL→SV A(¬END)) and
fLTL→SV A(U(AWREADY,AWID)) atomic propositions similarly interpreted

6. s until(not END and AWREADY and fLTL→SV A(F (END)), fLTL→SV A(¬END)) and
fLTL→SV A(U(AWREADY,AWID)) (F ≡ s eventually)

7. s until(not END and AWREADY and s eventually(fLTL→SV A(END)), fLTL→SV A(¬END)) and
fLTL→SV A(U(AWREADY,AWID)) atomic propositions similarly interpreted

7. s until(not END and AWREADY and s eventually(END), fLTL→SV A(¬ END)) and
fLTL→SV A(U(AWREADY,AWID)) (¬ ≡ not)

8. s until(not END and AWREADY and s eventually(END), not fLTL→SV A(END)) and
fLTL→SV A(U(AWREADY,AWID)) atomic propositions similarly interpreted

8. s until(not END and AWREADY and s eventually(END), not END) and

fLTL→SV A(U (AWREADY,AWID)) (U ≡ s until)

9. s until(not END and AWREADY and s eventually(END), not END) and

s until(fLTL→SV A(AWREADY), fLTL→SV A(AWID)) atomic propositions similarly interpreted

10. s until(not END and AWREADY and s eventually(END), not END) and

s until(AWREADY, fLTL→SV A(AWID)) atomic propositions similarly interpreted

11. s until(not END and AWREADY and s eventually(END), not END) and
s until(AWREADY,AWID)

5.4.
D
IR

E
C
T

T
R
A
N
S
F
O
R
M
A
T
IO

N
S

161

Example 5.4.2.

1. fLTL→SV A(U (END,AWV ALID → (U ≡ s until)
X(((AWID ↔ X -1AWID) ∧ F (>)) ∨ END)))

2. s until(fLTL→SV A(END), fLTL→SV A(AWV ALID → atomic propositions similarly interpreted
X(((AWID ↔ X -1AWID) ∧ F (>)) ∨ END)))

3. s until(END, fLTL→SV A(AWV ALID→ →≡ implies
X(((AWID ↔ X -1AWID) ∧ F (>)) ∨ END)))

4. s until(END, fLTL→SV A(AWV ALID) implies atomic propositions similarly interpreted
fLTL→SV A(X(((AWID ↔ X -1AWID) ∧ F (>)) ∨ END)))

5. s until(END,AWV ALID implies X ≡ nexttime

fLTL→SV A(X (((AWID ↔ X -1AWID) ∧ F (>)) ∨ END)))

6. s until(END,AWV ALID implies ∨ ≡ or
nexttime(fLTL→SV A(((AWID ↔ X -1AWID) ∧ F (>)) ∨ END)))

7. s until(END,AWV ALID implies ∧ ≡ and
nexttime(fLTL→SV A(((AWID ↔ X -1AWID) ∧ F (>))) or fLTL→SV A(END)))

8. s until(END,AWV ALID implies e↔ X -1e ≡ $stable(e)

nexttime((fLTL→SV A((AWID ↔ X -1AWID)) and fLTL→SV A(F (>))) or fLTL→SV A(END)))

9. s until(END,AWV ALID implies (F ≡ s eventually)

nexttime(($stable(AWID) and fLTL→SV A(F (>))) or fLTL→SV A(END)))

9. s until(END,AWV ALID implies (> ≡ true)

nexttime(($stable(AWID) and s eventually(fLTL→SV A(>))) or fLTL→SV A(END)))

10. s until(END,AWV ALID implies atomic propositions similarly interpreted

nexttime(($stable(AWID) and s eventually(true)) or fLTL→SV A(END)))

11. s until(END,AWV ALID implies
nexttime(($stable(AWID) and s eventually(true)) or END))

5.4. DIRECT TRANSFORMATIONS 162

5.4 Direct Transformations

This section shows an alternative approach for generating SVA directly from TPL+ with-

out the necessity of translating TPL+ to LTL first as we do in the previous section. This

section also shows a comparison between the indirect and direct approaches in term of

generating SVA formulas.

The direct approach can map only certain commonly-occurring TPL+-formulas into

SVA, unlike the indirect approach which can map any TPL+ formula into SVA. In this

section, we will show later the differences between the two approaches. Now, let us

show how we can express some TPL+ formulas into SVA formulas in a shorter way. For

example, the corresponding meaning of sentence (204) in TPL+ is as follows:

(206) {AWREADY f}<[[AWID]].

On the other hand, we can express the above TPL+ formula in SVA as follows:

(207) first match(AWID s until AWREADY).

The TPL+ formula (206) asserts that, within the temporal context [s, t], there is a unique

first occurrence t0 over which AWREADY starts and the interval between the start point

s and the unique point t0 includes the occurrence of AWID at every interval. In contrast,

the SVA-formula (207) asserts that, from the start (s) of the evaluation, AWID holds at

all times before the first AWREADY. Note that, from the semantics of “first match”, the

sequence property (AWID s until AWREADY) is true at the first occurrence. Both

interpretations describe the same truth-condition of sentence (204). For further detail on

the semantics of SVA operators, we refer the reader to Section 2.5.

Note that when we discussed TPL+ and LTL formulas in Section 5.2, we pointed

out that TPL+ is evaluated over intervals which are characterised by two numerical

parameters, start and end points. Therefore, we must have another point to represent the

end point in any LTL-based language such as SVA. However, SVA formulas are used in

5.4. DIRECT TRANSFORMATIONS 163

practice within a time window that is specified by the system evaluators. Given that the

end point parameter does not occur until the end of the SVA simulation, we may omit

writing the end point parameter in any SVA formulas as shown in (207).

Let us take another example to obtain a better idea about how we can write SVA formu-

las that interpret the same truth-conditions as TPL+. Consider the following sentence:

(208) Awid must be asserted within the first burst.

The semantics of sentence (208) in TPL+ and SVA are shown below, respectively:

(209) {BURST f}〈AWID〉>;

(210) first match(AWID within BURST).

The TPL+ formula (209) asserts that, within the temporal context [s, t], there is a unique

first occurrence over which BURST starts and that interval includes an interval over

which AWID is true. By contrast, SVA formula (210) asserts that, the first time BURST

becomes true, it has to continue until an AWID event has occurred. Again, from the

semantics of “first match”, the sequence “(AWID within BURST)” is true at the first

occurrence. Thus, both formulas hold the same truth-condition of sentence (208).

From the above examples, there are certain commonly-occurring TPL+-formulas can

be translated into SVA without the need of first translating TPL+ to LTL. In fact,

these TPL+-formulas have simpler SVA translations than those produced by the indirect

approach. Table 5.4.1 gives some examples of simpler and better SVA translations than is

achieved by the indirect approach. In Table 5.4.1, we define a procedure 4 for mapping

TPL+-formulas into SVA formulas.

As shown in Table 5.4.1, we take advantage of temporal operators in SVA (described in

Table 5.3.1) to build up our direct rules. These temporal operators can help us to express

all the possible interpretations of temporal behaviours in SVA (see Vijayaraghavan and

Ramanathan, 2006).

5.4. DIRECT TRANSFORMATIONS 164

(R1) (〈e〉>)∆ = s eventually e.

(R2) (|e〉>)∆ = e.

(R3) ([[e]])∆ = e[∗1 : $].

(R4) (〈e⇔〉>)∆ = $stable(e).

(R5) (|n〉∗[[e]])∆ = e[∗n].

(R6) (|n〉∗〈e〉>)∆ = e[∗1 : n].

(R7) ([e]=〈e′〉>)∆ = e |−> s eventually e′.

(R8) ([e]=|e′〉>)∆ = e |−> e′.

(R9) ([e]=〈e′⇔〉>)∆ = e |−> $stable(e′).

(R10) ([e]>〈e′〉>)∆ = e |−> ##1 s eventually e′.

(R11) ([e]>|e′〉>)∆ = e |−> ##1 e′.

(R12) ([e]>〈e′⇔〉>)∆ = e |−> ##1 $stable(e′).

(R13) ([e]>|n〉∗[[e]])∆ = e |−> ##1 e′[∗n].

(R14) ([e]>|n〉∗〈e′〉>)∆ = e |−> ##1 e′[∗1 : n].

(R15) ({el}>〈e′〉>)∆ = e.ended |−> ##1 s eventually e′.

(R16) ({el}>|e′〉>)∆ = e.ended |−> ##1 e′.

(R17) ({el}>[[e′]])∆ = e.ended |−> ##1 e′[∗1 : $].

(R18) ({el}>〈e′⇔〉>)∆ = e.ended |−> ##1 $stable(e′).

(R19) ({el}>|n〉∗[[e]])∆ = e.ended |−> ##1 e′[∗n].

(R20) ({el}>|n〉∗〈e′〉>)∆ = e.ended |−> ##1 e′[∗1 : n].

(R21) ([e]<|e′〉>)∆ = e |−> $past(e′, 1).

(R22) ({ef}=[[e]])∆ = first match(e′ throughout e).

(R23) ({ef}=〈e′〉>)∆ = first match(e′ within e).

(R24) ({ef}<〈e′〉>)∆ = not e s until (e′ and not e).

(R25) ({ef}<[[e′]])∆ = first match(e′ s until e).

(R26) ({ef}<+[[e′]])∆ = first match(e′ s until with e).

Table 5.4.1: The direct rules map commonly-occurring TPL+-formulas into simpler SVA.

5.4. DIRECT TRANSFORMATIONS 165

Moreover, in Table 5.4.1, we use first match and .ended operators to give equivalent

interpretations for the event-relations first and last, respectively. For example, if an

expression has multiple matches, using the “first match” operator will consider only the

first occurrence of this expression to be true and ignore the rest of the matches. In

contrast, if a signal has occurred for several time points, using the “.ended” operator will

only be considered if the last occurrence of this expression is true. Therefore, using these

operators help us to match up with the semantics of the event-relations first and last in

TPL+.

Note that all the rules, in Table 5.4.1, are constructed in non-recursive structures. This

is because some SVA operators require that certain event types be combined with them.

For example, the throughout operator is used to assert that a certain expression is valid

over the period of the sequence. Therefore, in its corresponding TPL+ formula in rule

(R22), the second argument of the modal operator = must be restricted with universal

quantification. Another example is that the within operator is used to assert that there

is the containment of an expression within a sequence. Therefore, in its corresponding

TPL+ formula in rule (R23), the second argument of the modal operator = must be

restricted with existential quantification. Thus, we must have the knowledge about the

quantification type of the second argument in some TPL+ formulas in order to provide

the equivalent and correct interpretations in SVA.

Let us show how we can map TPL+ formulas (206) and (209) into SVA-formulas (207)

and (210) using our direct transformation rules in Table 5.4.1. Mapping both TPL+

formulas into LTL can be done as shown in Examples 5.4.3 and 5.4.4, respectively.

Example 5.4.3.

({AWREADY f}<[[AWID]])∆ = first match(AWID s until AWREADY) – (R25)

Example 5.4.4.

({BURST f}〈AWID〉>)∆ = first match(AWID within BURST) – (R23)

5.4. DIRECT TRANSFORMATIONS 166

By applying our direct rules, we successfully mapped TPL+ formulas (206) and (209)

into SVA formulas (207) and (210).

Now, let us show the differences between direct and indirect approaches for mapping

TPL+ into SVA. Figure 5.4.1 shows a sketch of our model for generating SVA from English

sentences and how both approaches have been used in our model.

TPL+ LTLTempCNL Sentences

SV A SV A

fTPL+→LTLf TempCNL→TPL+

4 : fTPL+→SV A

They are equivalent.

fLTL→SV A

Figure 5.4.1: Our model for generating SVA from TempCNL sentences

As shown in Figure 5.4.1, the indirect approach is started by mapping TPL+ into LTL

and then translating LTL formulas into SVA. We know that the indirect approach is a

valid method based on our proof of Theorem 5.2.1 which states that any TPL+ formula

can be mapped into an LTL formula. (Recall that if ψ is a TPL+ sentence, then the

corresponding LTL sentence is given by #(ψ,END) where END represents the end point

in TPL+.) Moreover, we also observe that any LTL formula can be expressed in SVA after

IEEE Std 1800-2009 (2009) was published which included all LTL operators, as discussed

in Section 5.3.

In the direct approach, we map TPL+ into SVA without the necessity of mapping

TPL+ into LTL first. SVA is a combination of LTL, regular expressions, and some

features corresponding to clocks and resets. Thus, SVA has rich temporal operators that

allow us to express an statement in various ways. However, the direct rules, in Table

5.4.1, are non-recursive rules. This makes the direct rules more restrictive than the rules

in Definition 5.2.1. Therefore, the direct rules can be more efficient with the TPL+

5.4. DIRECT TRANSFORMATIONS 167

formulas that have nesting depth of at most 2, unlike the transformations in Section 5.2

which have more recursive rules, which in turn render the transformations quite effective

for generating SVA from TPL+. We would like to have simple translations from TPL+

to SVA that works generally, but we only have them for fixed cases. This work will be

done in the future.

We claim the direct approach is valid for mapping TPL+ to SVA similar to the indirect

one. Therefore, if there is a possible generated SVA formula from the direct approach, it

must be semantically equivalent to the generated SVA formula from the indirect approach

but they may have different syntactic forms. Thus, the results from both approaches are

equivalent in the following sense. We assume that

A |=s fTPL+→SV A(ψ),

where A is a finite model. Let us take A′ to be the result of including an event END

occurring after the last event occurring in e. We claim that

A′ |=s fLTL→SV A(fTPL+→LTL(ψ)).

Conversely, we take any model of A′ |=s fTPL+→LTL(fLTL→SV A(ψ)) to be a model of

A |=s fTPL+→SV A(ψ). Therefore, we can generate a SVA formula from any TPL+ formula

using the direct rules in Table 5.4.1 that carry out the same truth-condition of the SVA

formula that is generated using transformation rules that listed in Definition 5.2.1 and

the LTL operators in SVA (as shown in Table 5.3.1).

Now, let us take two example cases and check if the generated SVA formulas in each case

are equivalent. Figure 5.4.2a shows us the first case where we apply the same suggested

model in Figure 5.4.1.

In Figure 5.4.2a, we show how we map the TPL+ formula to the LTL formula in Example

5.2.2. Then, we show how we transform the LTL formula to the SVA formula in Example

5.4.1. For the direct approach, we map the TPL+ formula to the SVA formula in Example

5.4.
D
IR

E
C
T

T
R
A
N
S
F
O
R
M
A
T
IO

N
S

168

{AWREADY f}<[[AWID]]
U(¬END ∧AWREADY ∧ F (END),¬END)∧

U(AWREADY,AWID)

first match(AWID s until AWREADY)
s until(not END and AWREADY and s eventually(END), not END) and

s until(AWREADY,AWID)

fTPL+→LTL

fTPL+→SV A

They are equivalent.

fLTL→SV A

(a)

[AWV ALID]>〈AWID⇔〉>
U(END,AWV ALID →

X(((AWID ↔ X-1AWID) ∧ F (>)) ∨ END))

AWV ALID |−> ##1 $stable(AWID)
s until(END,AWV ALID implies

nexttime(($stable(AWID) and eventually(true)) or END))

fTPL+→LTL

fTPL+→SV A

They are equivalent.

fLTL→SV A

(b)

Figure 5.4.2: Two cases for evaluating the SVA formulas in our two approaches.

5.4. DIRECT TRANSFORMATIONS 169

5.4.3. Let us now compare the SVA results and see if they have the same truth-condition.

The SVA results in Figure 5.4.2a are repeated here as follows:

(211) s until(not END and AWREADY and s eventually(END), not END) and

s until(AWREADY,AWID);

(212) first match(AWID s until AWREADY).

The SVA formula (211) is generated using the indirect approach, and a typical model is

shown in Figure 5.4.3. On the other hand, the SVA formula (212) is generated using the

direct approach, and a typical model is shown in Figure 5.4.4.

AWID

AWREADY END

s

Figure 5.4.3: A model for the SVA formula (211).

AWID

AWREADY

s

Figure 5.4.4: A model for the SVA formula (212).

In Figure 5.4.3, a model in which the SVA formula (211) holds is as follows: there is an

event END occurs somewhere, and some time strictly before that there is a unique first

occurrence over which AWREADY starts, and at all times before that AWID occurs.

On the other hand, in Figure 5.4.4, a model in which the SVA formula (212) holds is as

follows: AWID occurs at all times before the first AWREADY.

Now, let us compare those models. If we have a model construction such as in Figure

5.4.3 which is a model of the SVA formula (211), it will be model of the SVA formula

(212). Conversely, if we have a model construction such as in Figure 5.4.4 which is a

model of the SVA formula (212) and we add an event END after all other events in the

model, it will be model of the SVA formula (211).

Figure 5.4.2b shows another example case for evaluating the equivalence relation be-

tween the SVA results that generated from both approaches. In this figure, we show how

5.4. DIRECT TRANSFORMATIONS 170

we map the TPL+ formula to the LTL formula in Example 5.2.3. Then, we show how we

transform the LTL formula to the SVA formula in Example 5.4.2. For the direct approach,

we map the TPL+ formula to the SVA formula using (R12) in Table 5.4.1. Let us now

compare the SVA results and see if they have the same truth-condition. The SVA results

in Figure 5.4.2b are repeated here as follows:

(213) s until(END,AWV ALID implies

nexttime(($stable(AWID) and eventually(true)) or END));

(214) AWV ALID |−> ##1 $stable(AWID).

The SVA formula (213) is generated using the indirect approach, and a typical model is

shown in Figure 5.4.5. On the other hand, the SVA formula (214) is generated using the

direct approach, and a typical model is shown in Figure 5.4.6.

AWID

AWV ALID

AWIDAWID

AWV ALID

AWID ENDs

Figure 5.4.5: A model for the SVA formula (213).

AWID

AWV ALID

AWIDAWID

AWV ALID

AWIDs

Figure 5.4.6: A model for the SVA formula (214).

In Figure 5.4.5, a model in which the SVA formula (213) holds is as follows: there is an

event END occurs, and before that every time that AWVALID occurs must immediately

be followed by a time point which includes the occurrence of AWID if and only if AWID

held at the previous time point. On the other hand, in Figure 5.4.6, a model in which the

SVA formula (214) holds is as follows: immediately after every time over which AWVALID

occurs, there exists a time point over which AWID holds if and only if Awvalid held at

the previous time point.

The proof of this case is very similar to the previous case. If we have a model construc-

tion such as in Figure 5.4.5 which is a model of the SVA formula (213), it will be model

of the SVA formula (214). Conversely, if we have a model construction such as in Figure

5.5. CONCLUSION 171

5.4.6 which is a model of the SVA formula (214) and we add an event END after all other

events in the model, it will be model of the SVA formula (213).

The procedure in all other (twenty-four) cases is similar. We take a TPL+ formula ψ

of each of the forms on the left-hand side of Table 5.4.1 (i.e. the argument of the function

∆). We compute the translation #(ψ,END), and then map to SVA using the translation

in Table 5.3.1. We get an SVA formula ξ. We then show that any (finite) model of ξ

is a model of ψ∆, and that any finite model of ψ∆, together with an extra END-event

appended at the end, is a model of ξ. The checking (laborious, but routine) is similar in

character to the cases (R25) and (R12) considered above. Of course, both ξ and ψ∆ will

each have infinitely many models; however, these will in all cases always have a simple

general form very much as that depicted in Figures 5.4.3 – 5.4.6 for the cases (R25) and

(R12). In this way, the required equivalences can be checked in a similar way. Thus, the

translations given in ∆ amount to nothing more than a series of handy SVA short-cuts

for commonly occurring forms of formulas.

Based on our comparison of direct and indirect approaches, the generated SVA formulas

from TPL+ using both transformations are equivalent. However, the indirect approach

is more general than the direct approach as mentioned previously. Note that both trans-

formation approaches will be integrated with the TPE system (discussed in Section 4.1)

to make generating LTL and SVA from TPL+ possible in practice. Thus, we will call

the TPE system that uses direct approach D-TPE to distinguish it from the TPE system

with the indirect approach.

5.5 Conclusion

In this chapter, we began with an overview of the expressiveness of FOL and LTL. Next,

we showed our transformation rules for generating LTL from TPL+. We proved that

mapping TPL+ into LTL is possible using our transformation rules. Then, we showed

5.5. CONCLUSION 172

the mapping steps of generating LTL from TPL+ using our rules. Next, we presented the

translations from LTL to SVA with a practical example of the transformations. Finally,

we showed an alternative approach for generating SVA directly from TPL+ using our

direct transformations. Again, we demonstrated the mapping procedures by giving some

examples. In the following chapter, we undertake experimental work to prove in practice

the relative validity of each approach.

Chapter 6

Evaluation

In this chapter, we begin by describing the dataset collections and our efforts at refining

them for evaluating the D-TPE and TPE systems. Next, we present several experiments in

generating TPL+ and SVA from natural language specifications. Section 6.2 describes an

evaluation of the TPE’s performance for generating TPL+ and SVA. Section 6.3 illustrates

a comparison between the TPE system and an existing tool for capturing SVA from

natural language descriptions. Section 6.4 makes a comparison between the D-TPE and

TPE systems for generating SVA.

6.1 Dataset Collections

There are few resources available for specifying system requirements in SVA. There are two

possible reasons for the limitation of SVA resources: (i) SystemVerilog assertion became

more effective after adding major new features including LTL operators in IEEE Std 1800-

2009 (2009), and (ii) some computer hardware companies do not make their source code

available to the public. Thus, we have only collected two datasets for testing the TPE

and D-TPE systems: (1) The Advanced Microcontroller Bus Architecture (AMBA) (see

ARM Ltd, 2009, 2012a,b), and (2) Open Core Protocol (OCP) (see OCP-IP Association,

173

6.1. DATASET COLLECTIONS 174

2013). We begin with a general description of our datasets.

6.1.1 AMBA dataset

The AMBA specification defines an on-chip communications standard for designing high-

performance embedded micro-controllers. The AMBA specifications, developed by ARM

Holdings, help to simplify developing multi-processor designs that often have large num-

bers of controllers and peripherals. Nowadays, AMBA is widely used on a range of

Application-Specific Integrated Circuit (ASIC) and System-on-Chip (SoC) parts having

applications processors employed in portable mobile devices such as smartphones and

tablets. The AMBA dataset contains 396 SVAs specifying system requirements together

with English comments explaining their meanings. However, these 396 SVAs are written

without the inclusion of LTL operators. Therefore, we manually shifted them into SVA

with LTL operators to allow us to compare them with the produced SVAs. In fact, since

we will generate SVA formulas using two different systems, we must shift all original SVAs

into two different formats that are suitable for both systems. For example, sentence (215)

and its SVA interpretation in (216) are taken from the AMBA dataset. Sentence (215) is

acknowledged as a TempCNL sentence which can be processed by our parser as presented

in Section 4.1. In view of its interpretation, it states that every point must include the

occurrence of Awvalid until the time point over which Awready is high.

(215) Awvalid must remain asserted until Awready goes high.

(216) AWV ALID & !AWREADY ##1 |−> AWV ALID.

Because SVA formula (216) was written without the inclusion of the s until operator,

SVA formula (216) is difficult to extract from TPL+ using the TPE and D-TPE systems.

On other hand, SVA formulas (217) and (218), for example, are more convenient than

(216); especially from practical viewpoints for mapping TPL+ into SVA using the TPE

and D-TPE systems.

6.1. DATASET COLLECTIONS 175

(217) s until(not END and AWREADY and s eventually(END), not END) and

s until(AWREADY and s eventually(END), AWV ALID).

(218) first match(AWV ALID s until AWREADY).

Thus, we prefer formulas (217) and (218) since there is no available theorem proving

system that can check the equivalence between those SVA forms. Moreover, most of

such SVA formulas were written before including LTL operators (see IEEE Std 1800-2009

(2009)). Note that SVA formulas (217) and (218) are equivalent to statement (215) based

on the proof that the generated SVA formulas from TempCNL sentences using the TPE

and D-TPE systems are equivalent (as shown in Section 5.4). Henceforth, to make a clear

distinction of two different formats such as (217) and (218), we call the AMBA dataset

that is suitable for the TPE system SVA AMBA, and we call the AMBA dataset that is

suitable for the D-TPE system DSVA AMBA.

6.1.2 OCP dataset

The OCP specification defines a high-performance, bus-independent interface between IP

cores. The OCP specifications, developed by the OCP Working Group, help to reduce

design risk, design time, and manufacturing costs for System-on-Chip designs. The OCP

dataset contains 432 English comments explaining system requirements and does not

contain any of their meanings in SVA. Therefore, for each of 432 English comments, we

manually wrote two different formats of SVA, but they are semantically equivalent; similar

to the process we employed with the AMBA dataset. Hence, we call the OCP dataset that

is suitable for the TPE system SVA OCP, and we call the OCP dataset that is suitable

for the D-TPE system DSVA OCP.

Unfortunately, those SVAs are written in an abstract way, since we do not know the

word-knowledge for most of the noun phrases. For example, consider the following:

(219) MTagID must remain high during every non inorder request phase.

6.1. DATASET COLLECTIONS 176

where the noun phrase“the non inorder request phase” refers to a specific term in the

system design that is difficult to extract without the source codes of the OCP specification.

Therefore, we leave it to the designers to decide on the suitable interpretation, as shown

in (220).

(220) s until(END, [non inorder(request phase)] and

s until(not [non inorder(request phase)],MTAGID)).

The expression, highlighted in bold font, must be resolved by the OCP designers to have

the full meaning in SVA. Otherwise, we will consider the generated SVA formula to be

false since it has one argument that requires its SVA’s term. We shall call this problem

the “lack of world-knowledge”. Despite this, for AMBA and OCP datasets, both TPE

and D-TPE systems have approximately 814 words with their logical forms in SVA.

6.1.3 Differences between AMBA and OCP Datasets

In this section, we analyse both datasets in terms of (i) the number of temporal prepo-

sitions that occur per sentence, (ii) the number of pronominal anaphors, and (iii) the

average length of sentence and maximum length of sentence. Showing this analysis helps

us estimate the challenges we may face when we run our experiments.

Let us show first the number of temporal prepositions that occur per sentence as pre-

sented in Table 6.1.1.

Dataset Sentences No TP One TP Two TPs Three TPs Four TPs

AMBA 396 82 280 32 2 n/p

OCP 432 132 166 110 21 3

Table 6.1.1: The number of temporal prepositions that occur per sentence.

As shown in Table 6.1.1, the most frequent number of temporal prepositions that occur

6.1. DATASET COLLECTIONS 177

in both datasets is one per sentence. In contrast, the least frequent number of temporal

prepositions that occurs in the AMBA dataset is 3 per sentence, while the least frequent

number of temporal prepositions that occurs in the OCP dataset is 4 per sentence. We

notice that there are a relatively large number of sentences in both datasets that do

not have a temporal preposition. Thus, the performance of the TPE and D-TPE sys-

tems will highly depend on how much knowledge we have inserted into these systems for

non-temporal sentences. These analyses show us expected challenges such as capturing

complex prepositions in TPL+ and mapping them into SVA.

Let us turn to the analysis of the number of pronominal anaphors, the average sentence

length, and maximum sentence length in both datasets. Table 6.1.2 shows the above

aspects in both datasets.

Dataset Pronominal anaphors Average sentence Maximum sentence

Personal pronoun Other types length length

AMBA 14 4 12.45 61

OCP 25 3 17.84 78

Table 6.1.2: Statistical Information on Anaphora and sentence length in the both datasets.

As noted in Table 6.1.2, we analyse the number of pronominal anaphors in both datasets

based on two different types (personal pronoun and all other types of pronoun). We

show this classification on anaphora types because our adopted anaphora resolution can

only resolve personal pronouns and lexical anaphors and, recognises expletive pronouns as

discussed in Section 4.2. In Table 6.1.2, we find that the occurrence number of personal

pronouns in the AMBA dataset is 14 times; whereas it in the OCP dataset is 25 times.

Moreover, we found also that the occurrence number of other types of pronoun in the

AMBA dataset is 4 times; whereas in the OCP dataset it is 3 times. Here are examples

of pronominal anaphors that can be found in our datasets:

(221) When Rvalid is asserted then it must remain asserted until Rready is high.

6.2. EVALUATING THE TPE SYSTEM FOR GENERATING SVA 178

(222) If either master or slave have connection set to 0 , then ConnectCap for master

and slave that have this parameter to 1 must be tied off to 0.

where in sentence (221) the pronoun it is a personal pronoun, while in sentence (222) the

pronoun this is a demonstrative pronoun which belongs to other types of pronoun.

The average length of sentence in the AMBA dataset is 12.45 words per sentence where

some sentences contain up to 61 words. On the other hand, the average length of sentence

in the OCP dataset is 17.84 words per sentence, where some sentences contain up to 78

words. We mention these facts for showing that long sentences are often hard to parse

using the TPE parser.

6.2 Evaluating the TPE System for Generating SVA

In this Section, we evaluate the TPE system for generating SVA. This evaluation gives

us an idea of the performance of the TPE system in specification requirements written

in English. Section 6.2.1 shows our experimental method for generating SVA with LTL

operators. In Section 6.2.2, we show our experimental results on the collective datasets.

6.2.1 Experimental Method

This section describes our experimental method for generating SVA with LTL operators

from natural language specifications using the TPE system. We set up our experimental

method as follows:

1. Parsing the English comments to JavaRAP tool to check if any anaphora occurs or

not. Then, we replace the anaphor with its antecedent as explained in Section 4.2.

2. Translating the given comments to TPL+ formulas using the TPE parser if these

comments, of course, have the same TempCNL syntax.

6.2. EVALUATING THE TPE SYSTEM FOR GENERATING SVA 179

3. Generating LTL from TPL+ formulas using our transformation rules (described in

Section 5.2).

4. Translating LTL formulas into SVA formulas using the equivalent operators in Table

5.3.1.

5. Comparing SVA formulas that are generated from the AMBA dataset with SVA AMBA,

and comparing SVA formulas that are generated from the OCP dataset with SVA OCP

as discussed in Section 6.1.

To illustrate our experimental method, Figure 6.2.1 shows the process of evaluating the

TPE system based on our dataset collections in Section 6.1.

Input TPE Result

Equivalence

Checking
Yes/No

SVA AMBA

& SVA OCP

Comparison Task

Figure 6.2.1: The steps in our experimental method.

As shown in Figure 6.2.1, we will check the consistency between the generated SVA

formulas and the corresponding meanings in SVA AMBA and SVA OCP. After we run

all sentences using the TPE system, we will sum up all the successful results and compute

the accuracy of the TPE system for generating SVA.

Besides showing TPE’s performance on generating SVA, we will show the performance

of the JavaRAP tool and the TPE parser. These components can have a significant impact

on TPE’s performance as we see in the next section.

6.2. EVALUATING THE TPE SYSTEM FOR GENERATING SVA 180

6.2.2 Results

In this section, we discuss our experimental results from generating SVA from AMBA

and OCP datasets using the TPE system. Our experimental results include the accura-

cies of resolving anaphora, parsing sentences for extracting TPL+, and generating SVA

semantics. We measure their accuracies as follows:

• To obtain the accuracy of resolving anaphora using the JavaRAP tool, we will check

how many cases, including pronominal anaphors, can be resolved. For example sen-

tence (221) contributes to success in JavaRAP, whereas sentence (222) contributes

to failure in JavaRAP, since the personal pronoun it can be resolved while the

demonstrative pronoun this can not be resolved.

• To achieve accuracy in parsing sentences using our context-free grammar, we will

check how many cases, excluding ungrammatical sentences, can be parsed. For

example, sentence (119), which is repeated here as sentence (223), is counted as a

failure in parsing.

(223) The order in which addresses and the first write data item are produced must

match.

Since TempCNL does not include relative clauses as discussed in Section 4.1, their

structure is not defined in our grammar rules. Thus, sentence (223) can not be

parsed. However, there are some instances found in our datasets which could be

considered ungrammatical. Therefore, we do not count these instances as failure

cases in our parser. Consider, for example, sentence (169) which will be repeated

here as follows:

(224) FAIL response must occur on a WRC request.

6.2. EVALUATING THE TPE SYSTEM FOR GENERATING SVA 181

Even though sentence (224) is a grammatically correct. However, we are not han-

dling the use of indefinites with universal sense. Accordingly, sentence (224) is re-

jected by our grammar rules. For further clarification, see sentence (169) in Section

4.5.3.

Table 6.2.1 shows the experimental results where the performance of the TPE system

on the AMBA dataset are better than on the OCP dataset.

Dataset Sentences Accuracy

Anaphora Parsing Semantics

AMBA 396 98.9% 89.3% 81.7%

OCP 432 99.3% 83.2% 59.6%

Table 6.2.1: The performance of the TPE system for generating SVA.

We will discuss the above table by examining the results for each column as follows:

• The accuracy of resolving anaphora on the OCP dataset are better than on the

AMBA dataset because the JavaRAP tool failed to resolve 4 pronominal anaphors

in the AMBA dataset and 3 pronominal anaphors in the OCP dataset. All of these

pronominal anaphors are not personal pronouns. These failures are due to the

JavaRAP tool since it only resolves third person pronouns.

• In Table 6.2.1, our parsing scores match those achieved by state-of-the-art parsers

such as SyntaxNet (Andor et al. (2016)). Here is some justification for these scores

comparing with the scores of SyntaxNet parser:

– Both AMBA and OCP texts are much simpler than the kinds of text being

analysed when SyntaxNet parser is evaluated. Generally, our parser gives fairly

reasonable results in the context of natural language specifications. However,

our parser uses a set of restrictive CFG grammars (introduced in Section 4.5).

Moreover, these grammar rules were built using only two corpora that are

6.2. EVALUATING THE TPE SYSTEM FOR GENERATING SVA 182

taken from natural language specifications. Thus, if we want to evaluate new

corpora, we may need to extend our rules to process these corpora.

– On the other hand, SyntaxNet parser uses a large deep-learning neural network.

Therefore, it can provide syntactic analyses for arbitrary English sentences. For

example, Andor et al. (2016) evaluates SyntaxNet parser on the English Wall

Street Journal (WSJ). Thus, WSJ corpus is a collection of articles written in

natural English which our parser, of course, will fail to parse most of its cases.

• Parsing a sentence on the AMBA dataset is more accurate than on the OCP dataset

because:

– The average length sentence in the OCP dataset is 17.84 which is more than

the average length sentence in the AMBA dataset (as shown in Table 6.1.2).

Generally speaking when English sentences are long, they cause some problems

for most of those parsers that are based on context-free grammars as mentioned

in Li et al. (1990).

– As mentioned previously, our context-free grammar does not include relative

clauses. Therefore, the number of sentences in the OCP dataset that have

relative clauses is larger than the number of sentences in the AMBA dataset.

For this reason, the TPE’s parser preforms better with sentences in the AMBA

dataset.

• Generating SVA semantics on the AMBA dataset is more accurate than on the OCP

dataset because in the AMBA dataset the number of sentences that exhibit lack of

word knowledge is less than the number of sentences in the OCP dataset. These

sentences exhibit lack of word knowledge for the following reasons:

– ARM Holdings has provided SVAs together with their English comments.

Therefore, we successfully encode most of them with the TPE system. In

6.3. COMPARING THE TPE WITH AN EXISTING TOOL 183

contrast the OCP Working Group has only provided English comments ex-

plaining OCP system requirements. Therefore, we can not encode most of the

technical expressions with the TPE system.

– Another observation is that it can be difficult to extract the corresponding

semantics in SVA of predicates with more than one argument. In our ex-

periments, we notice that the AMBA dataset has more one-place predicate

numbers than the OCP dataset.

The above results show that the TPE system is sufficiently capable of (i) capturing

temporal expressions in TPL+ from natural language specifications, and (ii) generating

SVA from TPL+. Note that, in Section 6.4, we compare the performance results of the

TPE and D-TPE systems. Moreover, Chapter 7 offers some suggestions for improving

the TPE’s performance.

6.3 Comparing the TPE with an Existing Tool

In this section, we will compare the accuracy of the TPE system with an existing tool

developed in Harris (2013). This tool comprises the only approach intended to capture

SVA from natural language descriptions. The tool is constructed on an attribute grammar

approach that is introduced in Engelfriet (1984). An attribute grammar is a context-free

grammar with a set of attributes, assignment of attribute values, evaluation rules, and

conditions.

The dataset used in Harris (2013)’s tool evaluation was taken from the AMBA 3 AXI

Protocol Checker in ARM Ltd (2009). The AMBA 3 AXI dataset only includes 117

sentences with their equivalent SVAs. Therefore, we compare the TPE with the Har-

ris (2013)’s tool using the same benchmark set. As a result, SVA success rates differ

significantly between ours and Harris (2013)’s tool as shown in Table 6.3.1.

6.3. COMPARING THE TPE WITH AN EXISTING TOOL 184

Tool SVA success rate

TPE 69.2%

Harris (2013)’s Toolkit 44%

Table 6.3.1: Comparison between the TPE system and Harris (2013)’s Toolkit.

The reason why a more accurate result occurs in the TPE system than in Harris (2013)’s

tool for generating SVA from natural language descriptions is that the TPE system cap-

tures all temporal expressions including temporal prepositions in TPL+ which is expres-

sive enough for dealing with all the complex temporal behaviours that are described in

requirements specifications.

In contrast, Harris (2013)’s approach is intended to capture SVA formulas directly from

natural language descriptions which is potentially risky due to the lack of deep semantic

interpretations of sentences featuring temporal information. As we observed in Harris

(2013)’s approach, the logic base was Boolean algebra which employs very basic operations

such as implication, conjunction, disjunction, and negation. For example, the key words

“if”, “then”, and “when” are expressed using an implication operation. Even though we

might agree that the meaning of when does not particularly express temporality, we do

not know how other temporal prepositions can be expressed using these basic operations.

In summary, Harris (2013)’s approach fails to handle the issues of temporal constructions

in natural language descriptions. This approach generally offers a suitable way to generate

SVA from natural language requirements. On the other hand, our approach aims to be

more focused on specifying temporal expressions in natural language assertion descriptions

and provides an efficient method for generating SVA involving temporal behaviours.

6.4. COMPARING THE TPE AND D-TPE SYSTEMS 185

6.4 Comparing the TPE and D-TPE Systems

In this section, we compare the performance of TPE and D-TPE systems for generating

SVA. The motivation is to compare the efficiency of both systems in generating SVA from

TPL+.

We present the performance results of the TPE system for generating SVA in Section

6.2.2. Therefore, we only need to obtain the performance results of the D-TPE system

and compare it with the performance results of the TPE system. Our evaluation steps are

as follows: (1) we generate SVA formulas from TPL+ using D-TPE; (2) we compare the

generated SVA formulas with DSVA AMBA and DSVA OCP where we consider any gen-

erated SVA is true if it is equivalent to the corresponding meaning in either DSVA AMBA

or DSVA OCP ; and (3) finally we compare the accuracy of the D-TPE and TPE systems

for generating SVA.

Here is an example where we contribute to success in both systems:

(225) Awvalid is low for one cycle after Arestn goes high.

where we can map it into SVA using the D-TPE and TPE systems as shown, respectively:

(226) s until(AREASTN and s until(not AREASTN and

not AWV ALID and s eventually END and

s until(END, not AREASTN), not END and AREASTN), not END)

(227) AREASTN.ended |−> ##1 not AWV ALID[∗1].

Both formulas assert that, immediately after the last occurrence of AREASTN, AWVALID

must be low for one cycle. Note that in this evaluation we do not compare the outputs of

both systems with each other, but instead we compare the accuracy of both systems for

generating SVA. We refer the reader to Section 5.4 for further details regarding mapping

procedure from TPL+ into SVA using both systems.

6.4. COMPARING THE TPE AND D-TPE SYSTEMS 186

Let us see an example where we contribute to the failure of the D-TPE system and to

the success of the TPE system:

(228) MRespAccept must be invalid for every non BLCK request during the request

phase.

where the corresponding meaning in TPL+ is:

(229) {REQUEST -PHASEf}=[NON -BLCK-REQUEST]=[¬MRESPACCEPT]

We can map TPL+ formula (229) into SVA using the indirect approach as shown in (230).

(230) s until((MCMD and MADDR and MDATA) and

s until(not (MCMD and MADDR and MDATA), BURSTSEQ BLCK ENABLE and

s until(not BURSTSEQ BLCK ENABLE, not MRESPACCEPT)) and

s until(not (MCMD and MADDR and MDATA), not END), not END) and

s until(END,not (MCMD and MADDR and MDATA))

where “not BURSTSEQ BLCK ENABLE” belongs to “NON -BLCK-REQUEST”

and “(MCMD and MADDR and MDATA)” belongs to “REQUEST -PHASE”. The

nesting depth of TPL+ formula (230) is 2. However, this TPL+ formula can not be

mapped using the direct rules in Table 5.4.1. Thus, the D-TPE system fails to map this

sort of TPL+ formulas into SVA.

The performance results of the TPE and D-TPE systems for generating SVA from

English comments are summarised in Table 6.4.1.

Dataset Sentences TPE D-TPE
AMBA 396 81.7% 81.7%
OCP 432 59.6% 51.5%

Table 6.4.1: The performance results of both systems for generating SVA.

As shown in Table 6.4.1, surprisingly both systems perform the same thing for generating

SVA from sentences in the AMBA dataset, because: (1) the AMBA dataset has few cases

6.5. CONCLUSION 187

where sentences have two or more temporal prepositions, and these cases either fail to be

parsed or have lack of word-knowledge issues; and (2) the successful cases have used the

available non-recursive rules in the D-TPE system at Table 5.4.1. Thus, the number of

generated SVAs using the TPE system is the same number of sentences when we use the

D-TPE system.

For the OCP dataset, Table 6.4.1 shows that the TPE system performs better than

the D-TPE system, because there are 29 TPL+ formulas, which have a nesting depth

of 2 temporal operators which can not cope with the non-restrictive rules in the D-TPE

system. In the end, the TPE system is more efficient than the D-TPE system, because

the TPE system has recursive rules while the D-TPE system has no recursive rules.

6.5 Conclusion

In this chapter we perform several experiments for generating TPL+ and SVA with and

without LTL operators from natural language specifications. The first experiment is on

generating TPL+ and SVA from AMBA and OCP datasets using the TPE system. We

have learned from this experiment that generating SVA from TPL+ gives outstanding

results. The second experiment compares the accuracy of TPE system with an existing

tool. From this experiment we deduce that capturing SVA formulas directly from natural

language descriptions gives a lower chance for achieving an efficient result, since natural

languages such as English require more expressive power than SVA for expressing the

semantics of natural language constructions. The last experiment compares the perfor-

mance results between the TPE and D-TPE systems for generating SVA from English

comments. We deduce from the last experiment that the TPE system is better than the

D-TPE system. In the next chapter, we suggest some ways for improving the TPE’s

accuracy, since it has the potential to become one of the most promising systems for

generating SVA from natural language specifications.

Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis aspires to design a temporal controlled natural language for extracting formal

specifications, namely SVA. In chapter 3, we show several approaches that attempt to

provide formal representations for temporal expressions. From those approaches, we have

chosen the TPL language (discussed in Section 3.3) as a logical form for the TPE system.

TPL is expressive enough to capture temporal expressions (such as temporal prepositions)

in English.

In Chapter 4, we show how the TPE system is constructed. The TPE system consists of

an anaphora resolution, TempCNL lexicons and a semantic parser. In the same chapter,

we extend TPL to handle more temporal expressions in English. This extension was

established after we had observed that many temporal constructions were not covered

by TPL in Pratt-Hartmann (2005), and those temporal constructions occur commonly

in English (such as within, throughout, until after, since, etc). We then showed how our

context-free grammar was defined by combining typed logic with lambda abstraction to

obtain TPL+ formulas. Finally, we restrict some TPL+ formulas defined in Section 4.4

to simplify their mapping into LTL and SVA.

188

7.1. CONCLUSION 189

In Chapter 5, we present two approaches for generating SVA from TPL+. The first

approach is based on indirect transformations where we map first TPL+ into LTL and

then translate LTL into SVA. In this approach, we proved that TPL+ and LTL are

logically equivalent in our transformation rules. Moreover, these transformation rules

allows us to obtain LTL without an explosion problem, unlike the translation approaches

in Kamp (1968), Gabbay et al. (1980), McNaughton and Papert (1971), as discussed

in Section 5.1. The second approach is based on direct transformation rules where we

map directly TPL+ into SVA. Then, each approach is integrated with the TPE system

separately. We name the TPE system with the direct approach D-TPE to distinguish it

from the TPE system with the indirect approach.

In Chapter 6, we show the results of several experiments on both systems. In Section

6.2, the experiment was conducted on the TPE’s performance for generating TPL+ and

SVA from natural language specifications. In Section 6.3, the experiment compared the

performance of the TPE system with an existing tool for generating only SVA from natural

language specifications. Section 6.4 showed an experiment on comparing the performance

of the TPE and D-TPE systems for generating SVA. These experiments confirm that

using the TPE system for generating SVA from natural language specifications is strongly

recommended.

To summarise, in this thesis we make several contributions to the research field of

controlled natural languages :

1. We have built a controlled natural language that can capture temporal expressions

in English.

2. We have extended TPL to capture more temporal constructions.

3. We have constructed a context-free grammar that is annotated with semantic rules

for extracting TPL+ formulas.

4. We have constructed transformation rules to generate LTL from TPL+ without an

7.2. FUTURE WORK 190

explosion problem.

5. We have constructed transformation rules to generate SVA from TPL+ directly.

6. We have improved the accuracy rate of generating SVA from natural language spec-

ifications as shown in Table 6.3.1.

7.2 Future Work

How can the current research be improved? There are many ways to increase the TPE’s

performance and the efficacy of generated SVA. We give a number of possible suggestions

for future work:

1. The TPE system takes only one sentence at a time. Thus, it is worth trying to

extend grammar rules to accept more than one sentence. This extension will make

the TPE system robust enough to handle the temporal relations that hold between

events among multiple sentences.

2. The TPE parser is constructed as a depth-first top-down parser as indicated in

Section 4.5. From the limitations of a depth-first top-down parser in Section 2.2, we

mentioned that this type takes a long time for parsing long sentences since it requires

backtracking and redo operations to produce the complete parse trees. Therefore,

this parser is inefficient for long sentences. In this issue, we would investigate further

how to improve TPE’s performance for parsing long sentences. There are other types

of parsers have been developed as indicated in Section 2.2. They might provide more

efficient performance than the depth-first top-down parser for parsing long sentences.

Thus, further research is required to decide which parsing technique is considered

the most efficient one for this problem.

7.2. FUTURE WORK 191

3. The adopted anaphora resolution in the TPE system has a good accuracy for third

person pronouns. However, its performance in other anaphora types is less efficient.

Therefore, we would investigate further how to reduce the number of sentences

rejected by the TPE system due to unresolved anaphora. The possible suggestion for

solving this issue is to combine more than one anaphora resolution tool to give better

results than each tool in isolation for resolving different types of anaphors. Moreover,

if we also make further investigations on resolving anaphora across sentences, this

could have a significant impact. For example, in the AMBA dataset, we found that

some assertions were expressed in two sentences rather than one sentence. Therefore,

including this sort of anaphora will scale up the TPE’s performance.

4. As indicated in Section 6.2.2, undetermined word-knowledge for some words can

have a major impact on the efficacy of generated SVA. Therefore, we suggest that

designing a front end interface to allow the designer to add word-knowledge of un-

known expressions into our transformation rules. This work can reduce the number

of the lack of word-knowledge in Table 6.2.1.

5. Since there is an intention to design a front end interface, attaching a SystemVer-

ilog simulator (such as Cadence in Simulator (2005), Modelsim in Graphics (2015),

and VCS in Synopsys (2004)) with the front end interface would be a positive de-

velopment. This simulator will help system designers to verify the correctness of

generated SVA formulas against their system requirements.

6. An interesting future endeavour is to generate other specification language such

as Property Specification Language (PSL) and Computation tree logic (CTL) us-

ing our technique, since those languages possess the same challenges of SVA. The

only required step is to construct transformation rules between those languages and

TPL+.

Bibliography

Alfred V Aho and Jeffrey D Ullman. The Theory of Parsing, Translation, and Compiling,

volume 1. Prentice-Hall, Inc., 1972.

James F Allen and George Ferguson. Actions and events in interval temporal logic.

Journal of Logic and Computation, 4(5):531–579, 1994.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman

Ganchev, Slav Petrov, and Michael Collins. Globally normalized transition-based neural

networks. arXiv preprint arXiv:1603.06042, 2016.

ARM Ltd. AMBA 3 AXI Protocol Checker User Guide, 2009.

ARM Ltd. ARM AMBA 4 ACE and ACE-Lite Protocol Checkers User Guide, 2012a.

ARM Ltd. AMBA 4 AXI4, AXI4-Lite, and AXI4-Stream Protocol Assertions User Guide,

2012b.

Roy Armoni, Limor Fix, Alon Flaisher, Rob Gerth, Boris Ginsburg, Tomer Kanza, Avner

Landver, Sela Mador-Haim, Eli Singerman, Andreas Tiemeyer, et al. The forspec tem-

poral logic: A new temporal property-specification language. In Tools and Algorithms

for the Construction and Analysis of Systems, pages 296–311. Springer, 2002.

ASD. AeroSpace and Defence Industries Association of Europe. Simplified Technical En-

glish. Specification ASD-STE100, Issue 6, 2013.

Avaya Inc. Avaya Style Guide. Issue 1, 2004.

Emmon Bach. The algebra of events. Linguistics and Philosophy, 9(1):5–16, 1986.

192

BIBLIOGRAPHY 193

Imran Sarwar Bajwa, Mark G Lee, and Behzad Bordbar. SBVR business rules generation

from natural language specification. In AAAI spring symposium: AI for business agility,

pages 2–8, 2011.

Renate Bartsch and Ferenc Kiefer. The grammar of adverbials: A study in the semantics

and syntax of adverbial constructions. North-Holland Publishing Company, 1976.

Rainer Bäuerle and Arnim von Stechow. Finite and non-finite temporal constructions

in german. In Time, Tense, and Quantifiers: Proceedings of the Stuttgart Conference

on the Logic of Tense and Quantification, Max Niemayer Verlag, Teubingen, pages

375–421, 1980.

David C Bennett. Spatial and temporal uses of English prepositions: An essay in strat-

ificational semantics, volume 17 of Longman linguistics library. Longman Publishing

Group, 1975.

Patrick Blackburn. Tense, temporal reference, and tense logic. Journal of Semantics, 11

(1-2):83–101, 1994.

David S Brée and Ruud A Smit. Temporal relations. Journal of Semantics, 5(4):345–384,

1986.

Lauri Carlson. Aspect and quantification in tense and aspect. ed. by Philip Tedeschi and

Annie Zaenen. Syntax and Semantics Ann Arbor, Mich., 14:31–64, 1981.

David Chapman. Planning for conjunctive goals. Artificial Intelligence, 32(3):333–377,

1987.

Eugene Charniak. A maximum-entropy-inspired parser. In Proceedings of the 1st North

American chapter of the Association for Computational Linguistics conference, pages

132–139. Association for Computational Linguistics, 2000.

Edmund M. Clarke, E Allen Emerson, and A Prasad Sistla. Automatic verification of

finite-state concurrent systems using temporal logic specifications. ACM Transactions

on Programming Languages and Systems,, 8(2):244–263, 1986.

BIBLIOGRAPHY 194

Bernard Comrie. Aspect: An introduction to the study of verbal aspect and related prob-

lems, volume 2. Cambridge University Press, 1976.

John A Darringer. The application of program verification techniques to hardware verifi-

cation. In Papers on Twenty-five years of electronic design automation, pages 373–379.

ACM, 1988.

Donald Davidson. The logical form of action sentences. Essays on actions and events, 5:

105–148, 1967.

David R Dowty. Word meaning and Montague grammar: The semantics of verbs and

times in generative semantics and in Montague’s PTQ, volume 7. Springer, 1979.

David Roach Dowty. Studies in the logic of verb aspect and time reference in English.

Department of Linguistics, University of Texas at Austin, 1972.

Joost Engelfriet. Attribute grammars: Attribute evaluation methods. Methods and tools

for compiler construction, pages 103–138, 1984.

Hana Filip. Aspect, eventuality types and nominal reference. Taylor & Francis, 1999.

Norbert E Fuchs and Rolf Schwitter. Attempto Controlled English (ACE). arXiv preprint

cmp-lg/9603003, 1996.

Norbert E Fuchs, Uta Schwertel, and Rolf Schwitter. Attempto Controlled English? not

just another logic specification language. In International Workshop on Logic Program-

ming Synthesis and Transformation, pages 1–20. Springer, 1998.

Adam Funk, Valentin Tablan, Kalina Bontcheva, Hamish Cunningham, Brian Davis, and

Siegfried Handschuh. Clone: Controlled language for ontology editing. In The Semantic

Web, pages 142–155. Springer, 2007.

Dov Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. On the temporal analysis

of fairness. In Proceedings of the 7th ACM SIGPLAN-SIGACT symposium on Principles

of programming languages, pages 163–173. ACM, 1980.

BIBLIOGRAPHY 195

Dov M Gabbay, Ian Hodkinson, Mark Reynolds, and Marcelo Finger. Temporal logic:

mathematical foundations and computational aspects, volume 1. Clarendon Press Ox-

ford, 1994.

Sheila Glasbey. Event structure, punctuality, and when. Natural Language Semantics, 12

(2):191–211, 2004.

Mentor Graphics. Modelsim simulator, 2015. URL http://www.mentor.com/products/

fpga/model.

Ralph Grishman and Beth Sundheim. Message Understanding Conference-6: A brief his-

tory. In Proceedings of the 16th Conference on Computational Linguistics - Volume 1,

COLING ’96, pages 466–471, Stroudsburg, PA, USA, 1996. Association for Computa-

tional Linguistics. doi: 10.3115/992628.992709. URL http://dx.doi.org/10.3115/

992628.992709.

Claire Grover, Alexander Holt, Ewan Klein, and Marc Moens. Designing a controlled

language for interactive model checking. In Proceedings of the Third International

Workshop on Controlled Language Applications, pages 29–30, 2000.

Joseph Y Halpern and Yoav Shoham. A propositional modal logic of time intervals.

Journal of the ACM (JACM), 38(4):935–962, 1991.

Ian G Harris. Capturing assertions from natural language descriptions. In Natural Lan-

guage Analysis in Software Engineering (NaturaLiSE), 2013 1st International Work-

shop on, pages 17–24. IEEE, 2013.

James Higginbotham. The logic of perceptual reports: An extensional alternative to

situation semantics. The Journal of Philosophy, 80(2):100–127, 1983.

James Higginbotham. On semantics. Linguistic Inquiry, 16(4):547–593, 1985.

Erhard Hinrichs. Temporal anaphora in discourses of English. Linguistics and Philosophy,

9(1):63–82, 1986.

BIBLIOGRAPHY 196

Alexander Holt. Formal verification with natural language specifications: guidelines,

experiments and lessons so far. South African Computer Journal, pages 253–257, 1999.

J Hopcroft and J Ullman. Introduction to the theory of automata, languages and com-

putation, 1979.

Gila Kamhi, Osnat Weissberg, Limor Fix, Ziv Binyamini, and Ze’ev Shtadler. Automatic

datapath extraction for efficient usage of HDD. In Computer Aided Verification, pages

95–106. Springer, 1997.

Hans Kamp. A theory of truth and semantic representation. Formal semantics-the es-

sential readings, pages 189–222, 1981.

Hans W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, Computer

Science Department, University of California at Los Angeles, USA, 1968.

Tobias Kuhn, Löıc Royer, Norbert E Fuchs, and Michael Schroeder. Improving text mining

with controlled natural language: A case study for protein interactions. In International

Workshop on Data Integration in the Life Sciences, pages 66–81. Springer, 2006.

Carl Lamar. Linguistic analysis of natural language engineering requirements. 2009.

F. Landman. Events and Plurality: The Jerusalem Lectures. Events and Plurality.

Springer Netherlands, 2001. ISBN 9780792365693.

Richard K Larson. Events and modification in nominals. In Semantics and Linguistic

Theory, volume 8, pages 145–168, 1998.

Winfred P Lehman. Descriptive Linguistics: An Introduction. New York: Random House.

1972.

Wei-Chuan Li, Tzusheng Pei, Bing-Huang Lee, and Chuei-Feng Chiou. Parsing long En-

glish sentences with pattern rules. In Proceedings of the 13th conference on Computa-

tional linguistics-Volume 3, pages 410–412. Association for Computational Linguistics,

1990.

BIBLIOGRAPHY 197

John Lyons. Semantics (vols i & ii). Cambridge CUP, 1977.

Kenneth L McMillan. Symbolic model checking. In Symbolic Model Checking, pages

25–60. Springer, 1993.

Robert McNaughton and Seymour Papert. Counter-free automata. Research monograph.

Cambridge, Mass. M.I.T. Press, 1971. ISBN 0-262-13076-9. URL http://opac.inria.

fr/record=b1082248.

Albert R Meyer. Weak monadic second order theory of succesor is not elementary-

recursive. In Logic Colloquium, pages 132–154. Springer, 1975.

George J Milne. Formal specification and verification of digital systems. McGraw-Hill,

Inc., 1993.

Marc Moens. Tense, aspect and temporal reference. PhD thesis, The University of Edin-

burgh, 1987.

Marc Moens and Mark Steedman. Temporal ontology and temporal reference. Computa-

tional Linguistics, 14(2):15–28, 1988.

Richard Montague. Formal philosophy: Selected papers of Richard Montague. Number

222–247. Yale University Press, New Haven, London, 1974.

Robert C. Moore. Removing Left Recursion from Context-free Grammars. In Proceed-

ings of the 1st North American Chapter of the ACL, pages 249–255. Association for

Computational Linguistics, 2000.

OCP-IP Association. Open Core Protocol Specification, Release 3.0, 2013. URL

Available:http://www.accellera.org/downloads/standards/ocp/ocp_3.0/.

Toshiyuki Ogihara. Adverbs of quantification and sequence-of-tense phenomena. In Pro-

ceedings from Semantics and Linguistic Theory IV, pages 251–267. DMLL Publications,

Cornell University, 1994.

BIBLIOGRAPHY 198

Miles Osborne and CK MacNish. Processing natural language software requirement spec-

ifications. In Requirements Engineering, 1996., Proceedings of the Second International

Conference on, pages 229–236. IEEE, 1996.

Gordon J Pace and Michael Rosner. A controlled language for the specification of con-

tracts. In International Workshop on Controlled Natural Language, pages 226–245.

Springer, 2009.

Terence Parsons. The progressive in English: Events, states and processes. Linguistics

and Philosophy, 12(2):pp. 213–241, 1989. ISSN 01650157. URL http://www.jstor.

org/stable/25001338.

Terence Parsons. Events in the semantics of English: A study in subatomic semantics.

1990.

Barbara H Partes. Nominal and temporal anaphora. Linguistics and Philosophy, 7(3):

243–286, 1984.

Amir Pnueli. The temporal logic of programs. In Foundations of Computer Science,

1977., 18th Annual Symposium on, pages 46–57. IEEE, 1977.

Ian Pratt and Nissim Francez. On the semantics of temporal prepositions and preposition

phrases. Technical Report LCL9701, Computer Science Department, University of

Manchester, 1997.

Ian Pratt and Nissim Francez. Temporal prepositions and temporal generalized quanti-

fiers. Linguistics and Philosophy, 24(2):187–222, 2001.

Ian Edwin Pratt and David Brée. The expressive power of the English temporal preposition

system. University of Manchester. Department of Computer Science, 1993.

Ian Pratt-Hartmann. Temporal prepositions and their logic. Artificial Intelligence, 166

(1):1–36, 2005.

Arthur N. Prior. Past, Present and Future. Oxford University Press, 1967.

BIBLIOGRAPHY 199

Long Qiu, Min-Yen Kan, and Tat-Seng Chua. A public reference implementation of the

rap anaphora resolution algorithm. arXiv preprint cs/0406031, 2004.

Hans Reichenbach. The tenses of verb. Elements of Symbolic Logic, pages 287–298, 1947.

Barry Richards, Inge Bethke, Jaap van der Does, and Jon Oberlander. Temporal Repre-

sentation and Inference. Academic Press, London, 1989.

Ronald G Ross. Principles of the business rule approach. Addison-Wesley Professional,

2003.

Görel Sandström. When-clauses and the temporal interpretation of narrative discourse,

volume 34. Department of General Linguistics, University of Ume̊a, 1993.

Barry Schein. Plurals and events, volume 23 of ACL-MIT Press Series in Natural Lan-

guage Processing. MIT Press, 1993.

Jason G Schlachter. ProNTo Morph: Morphological analysis tool for use with pronto

(prolog natural language toolkit). Technical report, University of Georgia, 2003. URL

http://www.ai.uga.edu/mc/pronto.

Marcel Paul Schützenberger. On finite monoids having only trivial subgroups. Information

and Control, 8(2):190–194, 1965.

Rolf Schwitter. English as a formal specification language. In Database and Expert Systems

Applications, 2002. Proceedings. 13th International Workshop on, pages 228–232. IEEE,

2002.

Virtuoso Spectre Circuit Simulator. Cadence Design Systems. Inc., Available at: www.

cadence. com, 2005.

Carlota S Smith. The parameter of aspect (studies in linguistics and philosophy, 43),

1991.

John F Sowa. Common Logic Controlled English. Draft. URL http://www. jfsowa. com/-

clce/specs. htm, 2004.

BIBLIOGRAPHY 200

IEEE Std 1800-2005. IEEE standard for SystemVerilog–unified hardware design, speci-

fication, and verification language. pages 1–648, 2005. doi: 10.1109/IEEESTD.2005.

97972.

IEEE Std 1800-2009. IEEE Standard for SystemVerilog–Unified Hardware Design, Spec-

ification, and Verification Language. pages 1–1285, 2009. URL http://dx.doi.org/

10.1109/IEEESTD.2009.5354441.

IEEE Std 1800-2012. IEEE standard for SystemVerilog–unified hardware design, speci-

fication, and verification language. pages 1–1315, Feb 2013. doi: 10.1109/IEEESTD.

2013.6469140.

M. J. Steedman. Verbs, time, and modality*. Cognitive Science, 1(2):216–234, April 1977.

ISSN 1551-6709. URL http://dx.doi.org/10.1207/s15516709cog0102_4.

VCS Synopsys. Verilog simulator. Avaliable HTTP: http://www. synopsys. com/product-

s/simulation/simulation. html, 2004.

Moshe Y Vardi and Pierre Wolper. Automata-theoretic techniques for modal logics of

programs. Journal of Computer and System Sciences, 32(2):183–221, 1986.

Zeno Vendler. Linguistics in Philosophy. Cornell University Press, 1967.

Henk J Verkuyl. On the compositional nature of the aspects, volume 15. Reidel Dordrecht,

1972.

Srikanth Vijayaraghavan and Meyyappan Ramanathan. A practical guide for SystemVer-

ilog assertions. Springer, 2006.

Frank Vlach. On situation semantics for perception. Synthese, 54(1):129–152, 1983.

Thomas Wilke. Classifying discrete temporal properties. In Annual Symposium on The-

oretical Aspects of Computer Science, pages 32–46. Springer, 1999.

Pierre Wolper. Temporal logic can be more expressive. Information and Control, 56(1):

72–99, 1983.

BIBLIOGRAPHY 201

Adam Wyner, Adeline Nazarenko, and François Lévy. Towards a high-level controlled

language for legal sources on the semantic web. In International Workshop on Controlled

Natural Language, pages 92–101. Springer, 2016.

Appendix A

A list of special terms in Natural

Language Specifications

Term Description Syntactic

Category

Awid Write address ID. Proper noun

Awready Write address ready. Proper noun

Awvalid Write address valid. Proper noun

Acvalid Valid signal for the snoop address channel. Proper noun

Acready Ready signal for the snoop address channel. Proper noun

Rvalid Read data valid. Proper noun

Bvalid Write response valid. Proper noun

Arestn Global Reset Signal. Proper noun

MTagID OCP Request tag ID. Proper noun

MReset OCP Master reset. Proper noun

SReset OCP Slave reset. Proper noun

MRespAccept OCP Master accepts response. Proper noun

Wlast Write data last transfer indication. Proper noun

ReadShared For shareable reads where the master can accept cache

line data in any state.

Proper noun

202

APPENDIX A. A LIST OF SPECIAL TERMS IN NATURAL LANGUAGE SPECIFICATIONS203

WRC OCP Write conditional. Adjective

FAIL OCP Write conditional fail. Adjective

EXOKAY Indicates exclusive access has been successful. Adjective

Non BLCK A set of transfers that stays constant throughout the

burst.

Adjective

MaxWaits Maximum number of cycles between two particular

events. Its value is 16.

Number

burst consists of a specified number of transfers. Temporal noun

response indicates the status of a transaction. Temporal noun

transaction is a variable transfer of data or control between design

elements.

Temporal noun

request is used by a master or slave to access the bus. Temporal noun

acknowledgement indicates that a master or slave has completed a read

or write transaction.

Temporal noun

assert The associated boolean variable holds at a particular Intransitive Verb

permit time. Intransitive Verb

hold Intransitive Verb

occur Intransitive Verb

valid Adjective

active Adjective

enabled Adjective

high Adjective

de-assert The associated boolean variable does not hold at a Intransitive Verb

disabled particular time. Adjective

illegal Adjective

absent Adjective

inactive Adjective

invalid Adjective

low Adjective

Table A.1: A list of terms and their descriptions in natural language specifications

Appendix B

The TPE Grammar

/∗===

In f l e c t i o n a l Phrase

==∗/

ip2 ([sem : IP]) −−> ip1 ([sem : IP]) .

ip2 ([sem : IP2]) −−> ip1 ([sem :A]) , ipcoord ([sem :B]) , ip1 ([sem :C]) ,

{ v a r r e p l a c e (B, B1) , beta (B1@A, S) , beta (S@C, IP2) } .

ip2 ([sem : IP2])−−> tpps ([sem :TPP]) , punctuat , ip1 ([sem : IP]) ,

{ v a r r e p l a c e (TPP,TPP1) , beta (TPP1@IP, IP2) } .

ip2 ([sem : IP2])−−> ip1 ([sem : IP]) , tpps ([sem :TPP]) ,

{ v a r r e p l a c e (TPP,TPP1) , beta (TPP1@IP, IP2) } .

ip1 ([sem : IP2])−−> tpp ([mclause :M, sem :TPP]) , punctuat , ip0 ([mclause :M, sem : IP]) ,

{ v a r r e p l a c e (TPP,TPP1) , beta (TPP1@IP, IP2) } .

ip1 ([sem : IP2])−−> ip0 ([mclause :M, sem : IP]) , tpp ([mclause :M, sem :TPP]) ,

{ v a r r e p l a c e (TPP,TPP1) , beta (TPP1@IP, IP2) } .

ip1 ([sem : IP])−−> ip0 ([mclause : e x i s t s , sem : IP]) .

ip1 ([sem : IP])−−> ip0 ([mclause : f o r a l l , sem : IP]) .

ip0 ([mclause :M, sem : IP0])−−> np1 ([num:Num, sem :NP]) ,

i ba r ([num:Num, mclause :M, sem : IBar]) ,

{ v a r r e p l a c e (NP,NP1) , beta (NP1@IBar , IP0) } .

ip0 ([mclause :M, sem : IP0])−−> np0 ([num:Num, sem :NP]) ,

i ba r ([num:Num, mclause :M, sem : IBar]) ,

{ v a r r e p l a c e (IBar , IBar1) , beta (IBar1@NP , IP0) } .

ip0 ([mclause : f o r a l l , sem : IP0])−−> ip ([coord : ant , sem : IP1]) ,

ip ([coord : con , sem : IP2]) ,

{ v a r r e p l a c e (IP1 , IP11) , beta (IP11@IP2 , IP0) } .

ip0 ([mclause : e x i s t s , sem : IP0])−−> ip ([coord : e i th e r , sem : IP1]) ,

ip ([coord : or , sem : IP2]) ,

{ v a r r e p l a c e (IP1 , IP11) , beta (IP11@IP2 , IP0) } .

204

APPENDIX B. THE TPE GRAMMAR 205

i p s i m p l e ([mclause :M, sem : IP0])−−> np1 ([num:Num, sem :NP]) ,

i ba r ([num:Num, mclause :M, sem : IBar]) ,

{ v a r r e p l a c e (NP,NP1) , beta (NP1@IBar , IP0) } .

i p s i m p l e ([mclause :M, sem : IP0])−−> np0 ([num:Num, sem :NP]) ,

i ba r ([num:Num, mclause :M, sem : IBar]) ,

{ v a r r e p l a c e (IBar , IBar1) , beta (IBar1@NP , IP0) } .

ip ([coord : ant , sem : IP0]) −−> i f ([sem : IF]) , punctuat , ip2 ([sem : IP]) ,

{ v a r r e p l a c e (IF , IF1) , beta (IF1@IP , IP0) } .

ip ([coord : ant , sem : IP0]) −−> i p s i m p l e ([mclause : , sem : IP]) , i f ([sem : IF]) ,

{ v a r r e p l a c e (IF , IF1) , beta (IF1@IP , IP0) } .

ip ([coord : con , sem : IP]) −−> punctuat , ip2 ([sem : IP]) .

ip ([coord : con , sem : IP])−−> ip2 ([sem : IP]) .

ip ([coord : e i th e r , sem : IP0])−−> e i t h e r ([sem : EI]) , ip2 ([sem : IP]) ,

{ v a r r e p l a c e (EI , EI1) , beta (EI1@IP , IP0) } .

ip ([coord : or , sem : IP])−−> [or] , ip2 ([sem : IP]) .

/∗===

Temporal Noun Phrase

==∗/

tnp1 ([qc l ause :D,num:Num, sem :TNP1]) −−>

det ([type :D, sem : Det]) , tnbar1 ([type :D,num:Num, sem : TnBar]) ,

{ v a r r e p l a c e (TnBar , TnBar1) , beta (TnBar1@Det ,TNP1) } .

tnp0 ([qc l ause :D,num:Num, sem :TNP1]) −−>

det ([type :D, sem : Det]) , tnbar0 ([type :D,num:Num, sem : TnBar]) ,

{ v a r r e p l a c e (Det , Det1) , beta (Det1@TnBar ,TNP1) } .

tnp0 ([qc l ause : i n i t e x i s t s ,num:Num, sem :NumS]) −−>

num ([sem :NumS]) , tnbar0 ([type : ,num:Num, sem :]) .

tnbar1 ([type : ,num:Num, sem :TNBAR]) −−>

tn ([num:Num, sem :A]) , tncoord ([sem :B]) , tn ([num:Num, sem :C]) ,

{ v a r r e p l a c e (B, B1) , beta (B1@A, S) , beta (S@C,TNBAR) } .

tnbar0 ([type : def ,num:Num, sem :TNBAR]) −−>

tAdj ([sem : Tadj]) , tn ([num:Num, sem :Tn]) ,

{ v a r r e p l a c e (Tadj , Tadj1) , beta (Tadj1@Tn ,TNBAR) } .

tnbar0 ([type : ,num:Num, sem :TNBAR]) −−>

adj ([sem : Adj]) , tnbar0 ([type : ,num:Num, sem :Tn]) ,

{ v a r r e p l a c e (Adj , Adj1) , beta (Adj1@Tn ,TNBAR) } .

tnbar0 ([type : ,num:Num, sem :Tn]) −−> tn ([num:Num, sem :Tn]) .

/∗===

Non−Temporal Noun Phrase

==∗/

np1 ([num:Num, sem :NP1]) −−>

np0 ([num:Num, sem :A]) , npcoord ([sem :B]) , np0 ([num:Num, sem :C]) ,

{ v a r r e p l a c e (B, B1) , beta (B1@A, S) , beta (S@C,NP1) } .

APPENDIX B. THE TPE GRAMMAR 206

np0 ([num:Num, sem :PN]) −−>

det ([type : def , sem :]) , pn def ([num:Num, sem :PN]) .

np0 ([num:Num, sem :PN])−−> pn ([num:Num, sem :PN]) .

/∗===

Predicate Phrases

==∗/

i ba r ([num:Num, mclause :M, sem : NegP])−−> aux ([num:Num]) ,

negP ([symbol : [] , mclause :M, sem : NegP]) .

i ba r ([num:Num, mclause :M, sem :VP]) −−> aux ([num:Num]) ,

vp ([symbol : [] , mclause :M, sem :VP]) .

i ba r ([num:Num, mclause :M, sem : NegP])−−> main verb ([symbol :V,num:Num]) ,

negP ([symbol :V, mclause :M, sem : NegP]) .

i ba r ([num:Num, mclause :M, sem :VP])−−> main verb ([symbol :V,num:Num]) ,

vp ([symbol :V, mclause :M, sem :VP]) .

i ba r ([num:Num, mclause :M, sem :VP])−−> i ([symbol :V,num:Num]) ,

vp ([symbol :V, mclause :M, sem :VP]) .

negP ([symbol :V, mclause :NewM, sem : NegP])−−> neg ([sem : Neg]) ,

vp ([symbol :V, mclause :M, sem :VP]) ,

{ q u a n t i f i e r m o d i f i c a t i o n (M,NewM) ,

v a r r e p l a c e (Neg , Neg1) , beta (Neg1@VP, NegP) } .

vp ([symbol :V, mclause :M, sem :VP])−−> extraAux , v ([symbol :V, mclause :M, sem :VP]) .

vp ([symbol :V, mclause :M, sem :VP])−−> adv , v ([symbol :V, mclause :M, sem :VP]) .

vp ([symbol :V, mclause :M, sem :VP])−−> v ([symbol :V, mclause :M, sem :VP]) , adv .

vp ([symbol :V, mclause :M, sem :VP])−−> adv , extraAux , v ([symbol :V, mclause :M, sem :VP]) .

vp ([symbol :V, mclause :M, sem :VP])−−> v ([symbol :V, mclause :M, sem :VP]) .

v ([symbol :V, mclause :M, sem : IV])−−> i v ([symbol :V, mclause :M, sem : IV]) .

v ([symbol :V, mclause :M, sem : Adj]) −−> i v a d j ([symbol :V, mclause : , sem :]) ,

adj ([type :M, sem : Adj]) .

v ([symbol :V, mclause :M, sem :VSem])−−> i v a d j ([symbol :V, mclause :M, sem : IV]) ,

adj ([sem : Adj]) ,

{ v a r r e p l a c e (IV , IV1) , beta (IV1@Adj ,VSem) } .

v ([symbol :V, mclause :M, sem :VSem])−−> tv ([symbol :V, mclause :M, sem :TV]) ,

np0 ([num: , sem :NP]) ,

{ v a r r e p l a c e (TV,TV1) , beta (TV1@NP,VSem) } .

v ([symbol :V, mclause :M, sem :VSem])−−> tv ([symbol :V, mclause :M, sem :TV]) , [to] ,

np0 ([num: , sem :NP]) ,

{ v a r r e p l a c e (TV,TV1) , beta (TV1@NP,VSem) } .

v ([symbol :V, mclause :M, sem :DTV3])−−> dtv ([symbol :V, mclause :M, sem :DTV]) ,

np0 ([num: , sem :NP1]) ,

np0 ([num: , sem :NP2]) ,

{ v a r r e p l a c e (DTV,DTV1) , beta (DTV1@NP1,DTV2) , beta (DTV2@NP2,DTV3) } .

APPENDIX B. THE TPE GRAMMAR 207

/∗===

Temporal p r epo s i t i on Phrase

==∗/

tpp ([mclause :M, sem :TPP]) −−> tpn ([qc l ause :Q, mclause :M, sem :TP]) ,

tnp1 ([qc l ause :Q,num: , sem :NP]) ,

{ v a r r e p l a c e (NP,NP1) , beta (NP1@TP,TPP) } .

tpp ([mclause :M, sem :TPP]) −−> tpn ([qc l ause :Q, mclause :M, sem :TP]) ,

tnp0 ([qc l ause :Q,num: , sem :NP]) ,

{ v a r r e p l a c e (TP,TP1) , beta (TP1@NP,TPP) } .

tpp ([mclause :M, sem :TPP]) −−> tps ([q c l ause : , mclause :M, sem :TP]) ,

removeQ ([mclause : , sem : IP]) ,

{ v a r r e p l a c e (TP,TP1) , beta (TP1@IP,TPP) } .

removeQ ([mclause : , sem :E]) −−> ip0 ([mclause : , sem : e x i s t s (E) during ’T ’]) .

removeQ ([mclause : , sem :E]) −−> ip0 ([mclause : , sem : f o r a l l (E)]) .

tpps ([sem :TPP])−−> tpp ([mclause : , sem :TPP]) .

tpps ([sem :TPP]) −−> tpp ([mclause : , sem :TPP1]) , tpp ([mclause : , sem :TPP2]) ,

{ v a r r e p l a c e (TPP2, TPP21) , beta (TPP21@TPP1,TPP) } .

/∗===

Punctuataion

==∗/

punctuat −−> [then] .

punctuat −−> [’ , ’] .

punctuat −−> [’ , ’] , [then] .

punctuat −−> [] .

/∗===

Lex i ca l Rules f o r Closed c l a s s

==∗/

det ([type : Type , sem : Det])−−>

{ l exEntry (det , [syntax : Word , type : Type]) } , Word ,

{semLex (det , [type : Type , sem : Det]) } .

aux ([num:Num])−−>

{ l exEntry (aux , [syntax : Word ,num:Num]) } , Word .

main verb ([symbol : be ,num:NUM]) −−>

{ l exEntry (be verb , [syntax : Word ,num:NUM]) } , [Word] .

main verb ([symbol : have ,num:NUM]) −−>

{ l exEntry (po s s e s s i on ve rb , [syntax : Word ,num:NUM]) } , [Word] .

extraAux −−> { l exEntry (extraAux , [syntax : Word]) } , Word .

APPENDIX B. THE TPE GRAMMAR 208

neg ([sem : Neg])−−>

{ l exEntry (neg , [syntax : Word]) } , Word ,

{semLex (neg , [sem : Neg]) } .

tAdj ([sem : Sem])−−>

{ l exEntry (tadj , [symbol : Sym, syntax : Word]) } , Word ,

{semLex (tadj , [symbol : Sym, sem : Sem]) } .

tncoord ([sem : Sem])−−>

{ l exEntry (coord , [syntax : Word , type : Type]) } , Word ,

{semLex (tncoord , [type : Type , sem : Sem]) } .

ipcoord ([sem : Sem])−−>

{ l exEntry (coord , [syntax : Word , type : Type]) } , Word ,

{semLex (ipcoord , [type : Type , sem : Sem]) } .

npcoord ([sem : Sem])−−>

{ l exEntry (coord , [syntax : Word , type : Type]) } , Word ,

{semLex (npcoord , [type : Type , sem : Sem]) } .

tpn ([qc l ause : f o r a l l , mclause : e x i s t s , sem : lbd (p1 , lbd (p2 , p1 during p2))])−−> [w i th in] .

tpn ([qc l ause : def , mclause : e x i s t s , sem : lbd (p1 , lbd (p2 , p1 during p2))])−−> [w i th in] .

tpn ([qc l ause : i n i t e x i s t s , mclause : e x i s t s , sem : lbd (n , lbd (p , n repeat p))])−−> [w i th in] .

tpn ([qc l ause : f o r a l l , mclause : e x i s t s , sem : lbd (p1 , lbd (p2 , p1 during p2))])−−> [at] .

tpn ([qc l ause : def , mclause : e x i s t s , sem : lbd (p1 , lbd (p2 , p1 during p2))])−−> [at] .

tpn ([qc l ause : i n i t e x i s t s , mclause : e x i s t s , sem : lbd (n , lbd (p , n repeat p))])−−> [at] .

tpn ([qc l ause : f o r a l l , mclause : f o r a l l , sem : lbd (p1 , lbd (p2 , p1 during p2))])−−> [at] .

tpn ([qc l ause : def , mclause : f o r a l l , sem : lbd (p1 , lbd (p2 , p1 during p2))])−−> [at] .

tpn ([qc l ause : i n i t e x i s t s , mclause : f o r a l l , sem : lbd (n , lbd (p , n repeat p))])−−> [at] .

tpn ([qc l ause : f o r a l l , mclause : e x i s t s , sem : lbd (p1 , lbd (p2 , p1 during p2))])−−> [at , l e a s t] .

tpn ([qc l ause : def , mclause : e x i s t s , sem : lbd (p1 , lbd (p2 , p1 during p2))])−−> [at , l e a s t] .

tpn ([qc l ause : i n i t e x i s t s , mclause : e x i s t s , sem : lbd (n , lbd (p , n repeat p))])−−> [at , l e a s t] .

tpn ([qc l ause : f o r a l l , mclause : f o r a l l , sem : lbd (p1 , lbd (p2 , p1 during p2))])−−> [at , l e a s t] .

tpn ([qc l ause : def , mclause : f o r a l l , sem : lbd (p1 , lbd (p2 , p1 during p2))])−−> [at , l e a s t] .

tpn ([qc l ause : i n i t e x i s t s , mclause : f o r a l l , sem : lbd (n , lbd (p , n repeat p))])−−> [at , l e a s t] .

tpn ([qc l ause : f o r a l l , mclause : e x i s t s , sem : lbd (p1 , lbd (p2 , p1 during p2))])−−> [dur ing] .

tpn ([qc l ause : def , mclause : e x i s t s , sem : lbd (p1 , lbd (p2 , p1 during p2))])−−> [dur ing] .

tpn ([qc l ause : i n i t e x i s t s , mclause : e x i s t s , sem : lbd (n , lbd (p , n repeat p))])−−> [dur ing] .

tpn ([qc l ause : f o r a l l , mclause : f o r a l l , sem : lbd (p1 , lbd (p2 , p1 during p2))])−−> [dur ing] .

tpn ([qc l ause : def , mclause : f o r a l l , sem : lbd (p1 , lbd (p2 , p1 during p2))])−−> [dur ing] .

tpn ([qc l ause : i n i t e x i s t s , mclause : f o r a l l , sem : lbd (n , lbd (p , n repeat p))])−−> [dur ing] .

tpn ([qc l ause : f o r a l l , mclause : e x i s t s , sem : lbd (p1 , lbd (p2 , p1 during p2))])−−> [on] .

tpn ([qc l ause : def , mclause : e x i s t s , sem : lbd (p1 , lbd (p2 , p1 during p2))])−−> [on] .

tpn ([qc l ause : i n i t e x i s t s , mclause : e x i s t s , sem : lbd (n , lbd (p , n repeat p))])−−> [on] .

APPENDIX B. THE TPE GRAMMAR 209

tpn ([qc l ause : f o r a l l , mclause : f o r a l l , sem : lbd (p1 , lbd (p2 , p1 during p2))])−−> [on] .

tpn ([qc l ause : def , mclause : f o r a l l , sem : lbd (p1 , lbd (p2 , p1 during p2))])−−> [on] .

tpn ([qc l ause : i n i t e x i s t s , mclause : f o r a l l , sem : lbd (n , lbd (p , n repeat p))])−−> [on] .

tpn ([qc l ause : f o r a l l , mclause : f o r a l l , sem : lbd (p1 , lbd (p2 , p1 during p2))])−−> [f o r] .

tpn ([qc l ause : def , mclause : f o r a l l , sem : lbd (p1 , lbd (p2 , p1 during p2))])−−> [f o r] .

tpn ([qc l ause : i n i t e x i s t s , mclause : f o r a l l , sem : lbd (n , lbd (p , n repeat p))])−−> [f o r] .

tpn ([qc l ause : f o r a l l , mclause : e x i s t s , sem : lbd (p1 , lbd (p2 , p1 during p2))])−−> [in] .

tpn ([qc l ause : def , mclause : e x i s t s , sem : lbd (p1 , lbd (p2 , p1 during p2))])−−> [in] .

tpn ([qc l ause : i n i t e x i s t s , mclause : e x i s t s , sem : lbd (n , lbd (p , n repeat p))])−−> [in] .

tpn ([qc l ause : f o r a l l , mclause : f o r a l l , sem : lbd (p1 , lbd (p2 , p1 during p2))])−−> [throughout] .

tpn ([qc l ause : def , mclause : f o r a l l , sem : lbd (p1 , lbd (p2 , p1 during p2))])−−> [throughout] .

tpn ([qc l ause : i n i t e x i s t s , mclause : f o r a l l , sem : lbd (n , lbd (p , n repeat p))])−−> [throughout] .

tpn ([qc l ause : def , mclause : f o r a l l , sem : lbd (p1 , lbd (p2 , p1 be f o r e p2))])−−> [u n t i l] .

tpn ([qc l ause : def , mclause : e x i s t s , sem : lbd (p1 , lbd (p2 , p1 be f o r e p2))])−−> [by] .

tpn ([qc l ause : def , mclause : f o r a l l , sem : lbd (p1 , lbd (p2 , p1 be f o r e p2))])−−> [s i n c e] .

tpn ([qc l ause : def , mclause : e x i s t s , sem : lbd (p1 , lbd (p2 , p1 be f o r e p2))])−−> [b e f o r e] .

tpn ([qc l ause : f o r a l l , mclause : i n i t e x i s t s , sem : lbd (p1 , lbd (p2 , p1 be f o r e p2))])−−> [b e f o r e] .

tpn ([qc l ause : def , mclause : e x i s t s , sem : lbd (p1 , lbd (p2 , p1 a f t e r p2))])−−> [a f t e r] .

tpn ([qc l ause : def , mclause : f o r a l l , sem : lbd (p1 , lbd (p2 , p1 a f t e r p2))])−−> [a f t e r] .

tpn ([qc l ause : f o r a l l , mclause : i n i t e x i s t s , sem : lbd (p1 , lbd (p2 , p1 a f t e r p2))])−−> [a f t e r] .

tpn ([qc l ause : def , mclause : f o r a l l , sem : lbd (p1 , lbd (p2 , p1 u n t i l a f t e r p2))])−−> [un t i l , a f t e r] .

tps ([q c l ause : f o r a l l , mclause : e x i s t s , sem : lbd (p1 , lbd (p2 , f o r a l l (p1) during p2))])−−> [when] .

tps ([q c l ause : f o r a l l , mclause : f o r a l l , sem : lbd (p1 , lbd (p2 , f o r a l l (p1) during p2))])−−> [when] .

tps ([q c l ause : f o r a l l , mclause : e x i s t s , sem : lbd (p1 , lbd (p2 , f o r a l l (p1) during p2))])−−>[w h i l s t] .

tps ([q c l ause : f o r a l l , mclause : f o r a l l , sem : lbd (p1 , lbd (p2 , f o r a l l (p1) during p2))])−−>[w h i l s t] .

tps ([q c l ause : f o r a l l , mclause : e x i s t s , sem : lbd (p1 , lbd (p2 , f o r a l l (p1) during p2))])−−> [whi l e] .

tps ([q c l ause : f o r a l l , mclause : f o r a l l , sem : lbd (p1 , lbd (p2 , f o r a l l (p1) during p2))])−−> [whi l e] .

tps ([q c l ause : f o r a l l , mclause : e x i s t s , sem : lbd (p1 , lbd (p2 , f o r a l l (p1) during p2))])−−>

[whenever] .

tps ([q c l ause : f o r a l l , mclause : f o r a l l , sem : lbd (p1 , lbd (p2 , f o r a l l (p1) during p2))])−−>

[whenever] .

tps ([q c l ause : def , mclause : f o r a l l , sem : lbd (p1 , lbd (p2 , de f (p1) be f o r e p2))])−−> [u n t i l] .

tps ([q c l ause : def , mclause : e x i s t s , sem : lbd (p1 , lbd (p2 , de f (p1) be f o r e p2))])−−> [b e f o r e] .

tps ([q c l ause : def , mclause : e x i s t s , sem : lbd (p1 , lbd (p2 , de f (p1) be f o r e p2))])−−> [by , the , time] .

tps ([q c l ause : def , mclause : e x i s t s , sem : lbd (p1 , lbd (p2 , de f (p1) a f t e r p2))])−−> [a f t e r] .

tps ([q c l ause : def , mclause : f o r a l l , sem : lbd (p1 , lbd (p2 , de f (p1) a f t e r p2))])−−> [a f t e r] .

tps ([q c l ause : f o r a l l , mclause : i n i t e x i s t s , sem : lbd (p1 , lbd (p2 , f o r a l l (p1) a f t e r p2))])−−> [

once] .

tps ([q c l ause : def , mclause : f o r a l l , sem : lbd (p1 , lbd (p2 , de f (p1) a f t e r p2))])−−> [s i n c e] .

tps ([q c l ause : def , mclause : f o r a l l , sem : lbd (p1 , lbd (p2 , de f (p1) u n t i l a f t e r p2))])−−> [un t i l ,

a f t e r] .

i f ([sem : lbd (p1 , lbd (p2 , p1 during p2))]) −−> [i f] .

e i t h e r ([sem : lbd (p1 , lbd (p2 , p1 v p2))]) −−> [e i t h e r] .

APPENDIX B. THE TPE GRAMMAR 210

/∗===

Lex i ca l Rules f o r Open Class

==∗/

pn ([num:Num, sem : Sem])−−>

{ l exEntry (pn , [symbol : Sym,num:Num, syntax : Word]) } , Word ,

{semLex (pn , [symbol : Sym, sem : Sem]) } .

pn ([num: , sem : Sem])−−>

{ l exEntry (number , [symbol : Sym, syntax : Word]) } , Word ,

{semLex (pn , [symbol : Sym, sem : Sem]) } .

pn def ([num:Num, sem : Sem])−−>

{ l exEntry (pn def , [symbol : Sym,num:Num, syntax : Word]) } , Word ,

{semLex (pn , [symbol : Sym, sem : Sem]) } .

tn ([num:Num, sem : Sem])−−>

{ l exEntry (tnoun , [symbol : Sym,num:Num, syntax : Word]) } , Word ,

{semLex (tnoun , [symbol : Sym, sem : Sem]) } .

num ([sem :N]) −−>

{ l exEntry (number , [symbol : Sym, syntax : Word]) } , Word ,

{semLex (number , [symbol : Sym, sem :N]) } .

i ([symbol : Root ,num: sg]) −−>

[Word] , {morph type (Word , Root ,− s) , lexEntry (iv , [syntax : Root]) } .

i ([symbol : Root ,num:]) −−>

[Word] , {morph type (Word , Root , none) , lexEntry (iv , [syntax : Root]) } .

i ([symbol : Root ,num:]) −−>

[Word] , {morph type (Word , Root ,−ed) , lexEntry (iv , [syntax : Root]) } .

i ([symbol : Root ,num: sg]) −−>

[Word] , {morph type (Word , Root ,− s) , lexEntry (tv , [syntax : Root]) } .

i ([symbol : Root ,num:]) −−>

[Word] , {morph type (Word , Root , none) , lexEntry (tv , [syntax : Root]) } .

i ([symbol : Root ,num:]) −−>

[Word] , {morph type (Word , Root ,−ed) , lexEntry (tv , [syntax : Root]) } .

i ([symbol : Root ,num: sg]) −−>

[Word] , {morph type (Word , Root ,− s) , lexEntry (dtv , [syntax : Root]) } .

i ([symbol : Root ,num:]) −−>

[Word] , {morph type (Word , Root , none) , lexEntry (dtv , [syntax : Root]) } .

i ([symbol : Root ,num:]) −−>

[Word] , {morph type (Word , Root ,−ed) , lexEntry (dtv , [syntax : Root]) } .

APPENDIX B. THE TPE GRAMMAR 211

i v ([symbol : [] , mclause :M, sem : Sem]) −−>

[Word] ,

{morph type (Word , Root , S u f f i x) ,

grammat ica l aspect (Su f f i x , GrAsp) ,

a s p e c t u a l c l a s s (Root , Type) ,

q u a n t i f i e r t y p e (GrAsp , Type ,M) ,

lexEntry (iv , [syntax : Root]) ,

semLex (iv , [symbol : Root , type :M, sem : Sem]) } .

i v ([symbol : Word , mclause :M, sem : Sem]) −−>

[] , {Word \= [] , morph type (Word , Root , S u f f i x) ,

grammat ica l aspect (Su f f i x , GrAsp) ,

a s p e c t u a l c l a s s (Root , Type) ,

q u a n t i f i e r t y p e (GrAsp , Type ,M) ,

lexEntry (iv , [syntax : Root]) ,

semLex (iv , [symbol : Root , type :M, sem : Sem]) } .

i v a d j ([symbol : [] , mclause :M, sem : Sem]) −−>

[Word] ,

{morph type (Word , Root , S u f f i x) ,

grammat ica l aspect (Su f f i x , GrAsp) ,

a s p e c t u a l c l a s s (Root , Type) ,

q u a n t i f i e r t y p e (GrAsp , Type ,M) ,

lexEntry (iv , [syntax : Root]) ,

semLex (i v ad j , [symbol : Root , type :M, sem : Sem]) } .

i v a d j ([symbol : Word , mclause :M, sem : Sem]) −−>

[] , {Word \= [] , morph type (Word , Root , S u f f i x) ,

grammat ica l aspect (Su f f i x , GrAsp) ,

a s p e c t u a l c l a s s (Root , Type) ,

q u a n t i f i e r t y p e (GrAsp , Type ,M) ,

lexEntry (iv , [syntax : Root]) ,

semLex (i v ad j , [symbol : Root , type :M, sem : Sem]) } .

tv ([symbol : [] , mclause :M, sem : Sem]) −−>

[Word] ,

{morph type (Word , Root , S u f f i x) ,

grammat ica l aspect (Su f f i x , GrAsp) ,

a s p e c t u a l c l a s s (Root , Type) ,

q u a n t i f i e r t y p e (GrAsp , Type ,M) ,

lexEntry (tv , [syntax : Root]) ,

semLex (tv , [symbol : Root , type :M, sem : Sem]) } .

APPENDIX B. THE TPE GRAMMAR 212

tv ([symbol : Word , mclause :M, sem : Sem]) −−>

[] , {Word \= [] , morph type (Word , Root , S u f f i x) ,

grammat ica l aspect (Su f f i x , GrAsp) ,

a s p e c t u a l c l a s s (Root , Type) ,

q u a n t i f i e r t y p e (GrAsp , Type ,M) ,

lexEntry (tv , [syntax : Root]) ,

semLex (tv , [symbol : Root , type :M, sem : Sem]) } .

dtv ([symbol : [] , mclause :M, sem : Sem]) −−>

[Word] ,

{morph type (Word , Root , S u f f i x) ,

grammat ica l aspect (Su f f i x , GrAsp) ,

a s p e c t u a l c l a s s (Root , Type) ,

q u a n t i f i e r t y p e (GrAsp , Type ,M) ,

lexEntry (dtv , [syntax : Root]) ,

semLex (dtv , [symbol : Root , type :M, sem : Sem]) } .

dtv ([symbol : Word , mclause :M, sem : Sem]) −−>

[] , {Word \= [] , morph type (Word , Root , S u f f i x) ,

grammat ica l aspect (Su f f i x , GrAsp) ,

a s p e c t u a l c l a s s (Root , Type) ,

q u a n t i f i e r t y p e (GrAsp , Type ,M) ,

lexEntry (dtv , [syntax : Root]) ,

semLex (dtv , [symbol : Root , type :M, sem : Sem]) } .

adv −−>

{ l exEntry (adv , [syntax : Word]) } , Word .

adj ([type : e x i s t s , sem : Sem])−−>

{ l exEntry (ad j Stab l e , [syntax : Word]) } , Word ,

{semLex (ad j Stab l e , [sem : Sem]) } .

adj ([type : i n i t e x i s t s , sem : Sem])−−>

{ l exEntry (ad j Stab l e , [syntax : Word]) } , Word ,

{semLex (ad j Stab l e , [sem : Sem]) } .

adj ([sem : Sem])−−>

{ l exEntry (adj , [symbol : Sym, syntax : Word]) } , Word ,

{semLex (adj , [symbol : Sym, sem : Sem]) } .

APPENDIX B. THE TPE GRAMMAR 213

/∗===

Lex i ca l Entry f o r Closed Class ∗/

/∗===

Determiners

==∗/

l exEntry (det , [syntax : [any] , type : f o r a l l]) .

l exEntry (det , [syntax : [every] , type : f o r a l l]) .

l exEntry (det , [syntax : [a l l] , type : f o r a l l]) .

l exEntry (det , [syntax : [a] , type : e x i s t s]) .

l exEntry (det , [syntax : [an] , type : e x i s t s]) .

l exEntry (det , [syntax : [some] , type : e x i s t s]) .

l exEntry (det , [syntax : [the] , type : de f]) .

/∗===

Aux i l i a ry Verbs

==∗/

l exEntry (aux , [syntax : [i s] , num: sg]) .

lexEntry (aux , [syntax : [are] ,num: p l]) .

l exEntry (aux , [syntax : [was] ,num: sg]) .

lexEntry (aux , [syntax : [were] ,num: p l]) .

l exEntry (aux , [syntax : [has] ,num: sg]) .

lexEntry (aux , [syntax : [have] ,num: sg]) .

lexEntry (aux , [syntax : [had] ,num: p l]) .

l exEntry (aux , [syntax : [must] ,num:]) .

lexEntry (aux , [syntax : [may] ,num:]) .

lexEntry (aux , [syntax : [might] ,num:]) .

lexEntry (aux , [syntax : [can] ,num:]) .

lexEntry (aux , [syntax : [could] ,num:]) .

lexEntry (aux , [syntax : [w i l l] ,num:]) .

lexEntry (aux , [syntax : [would] ,num:]) .

lexEntry (aux , [syntax : [s h a l l] ,num:]) .

lexEntry (aux , [syntax : [should] ,num:]) .

/∗===

Mul t i p l e a u x i l i a r i e s

==∗/

l exEntry (extraAux , [syntax : [be]]) .

l exEntry (extraAux , [syntax : [been]]) .

l exEntry (extraAux , [syntax : [be ing]]) .

l exEntry (extraAux , [syntax : [have , been]]) .

l exEntry (extraAux , [syntax : [have , be ing]]) .

l exEntry (extraAux , [syntax : [been , be ing]]) .

/∗===

Negation

==∗/

l exEntry (neg , [syntax : [no]]) .

APPENDIX B. THE TPE GRAMMAR 214

l exEntry (neg , [syntax : [not]]) .

l exEntry (neg , [syntax : [never]]) .

/∗===

Temporal Ad j e c t i v e s

==∗/

l exEntry (tadj , [symbol : f , syntax : [f i r s t]]) .

l exEntry (tadj , [symbol : l , syntax : [l a s t]]) .

/∗===

Coordinat ions

==∗/

l exEntry (coord , [syntax : [and] , type : conj]) .

l exEntry (coord , [syntax : [or] , type : d i s j]) .

/∗===

BE Verbs

==∗/

l exEntry (be verb , [syntax : is , num: sg]) .

lexEntry (be verb , [syntax : are ,num: p l]) .

l exEntry (be verb , [syntax : was ,num: sg]) .

lexEntry (be verb , [syntax : were ,num: p l]) .

/∗===

Possess ion Verbs

==∗/

l exEntry (po s s e s s i on ve rb , [syntax : has ,num: sg]) .

lexEntry (po s s e s s i on ve rb , [syntax : have ,num: p l]) .

l exEntry (po s s e s s i on ve rb , [syntax : had ,num:]) .

/∗===

Lex i ca l Entry f o r Open Class ∗/

/∗===

Proper Names

==∗/

l exEntry (pn , [symbol : ’X ’ ,num: , syntax : [’X ’]]) .

l exEntry (pn , [symbol : ’Z ’ ,num: , syntax : [’Z ’]]) .

l exEntry (pn , [symbol : ’Awid ’ ,num: , syntax : [’Awid ’]]) .

l exEntry (pn , [symbol : ’ Awvalid ’ ,num: , syntax : [’ Awvalid ’]]) .

l exEntry (pn , [symbol : ’ Awready ’ ,num: , syntax : [’ Awready ’]]) .

l exEntry (pn , [symbol : ’ Awprot ’ ,num: , syntax : [’ Awprot ’]]) .

l exEntry (pn , [symbol : ’ Tval id ’ ,num: , syntax : [’ Tval id ’]]) .

l exEntry (pn , [symbol : ’WRAP’ ,num: , syntax : [’WRAP’]]) .

l exEntry (pn , [symbol : ’Awaddr ’ ,num: , syntax : [’Awaddr ’]]) .

l exEntry (pn , [symbol : ’Wready ’ ,num: , syntax : [’Wready ’]]) .

l exEntry (pn , [symbol : ’ Arcache ’ ,num: , syntax : [’ Arcache ’]]) .

l exEntry (pn , [symbol : ’Wid ’ ,num: , syntax : [’Wid ’]]) .

l exEntry (pn , [symbol : ’ Arcache [1] ’ ,num: , syntax : [’ Arcache [1] ’]]) .

l exEntry (pn , [symbol : ’ Arcache [3 : 2] ’ ,num: , syntax : [’ Arcache [3 : 2] ’]]) .

APPENDIX B. THE TPE GRAMMAR 215

l exEntry (pn , [symbol : ’ Arprot ’ ,num: , syntax : [’ Arprot ’]]) .

l exEntry (pn , [symbol : ’ Ars i z e ’ ,num: , syntax : [’ Ar s i z e ’]]) .

l exEntry (pn , [symbol : ’ Arburst ’ ,num: , syntax : [’ Arburst ’]]) .

l exEntry (pn , [symbol : ’RID ’ ,num: , syntax : [’RID ’]]) .

l exEntry (pn , [symbol : ’ Rready ’ ,num: , syntax : [’ Rready ’]]) .

l exEntry (pn , [symbol : ’ Rval id ’ ,num: , syntax : [’ Rval id ’]]) .

l exEntry (pn , [symbol : ’ CsysReq ’ ,num: , syntax : [’ CsysReq ’]]) .

l exEntry (pn , [symbol : ’ CsysAck ’ ,num: , syntax : [’ CsysAck ’]]) .

l exEntry (pn , [symbol : ’ Cact ive ’ ,num: , syntax : [’ Cact ive ’]]) .

l exEntry (pn , [symbol : ’ Arlock ’ ,num: , syntax : [’ Arlock ’]]) .

l exEntry (pn , [symbol : ’ Rdata ’ ,num: , syntax : [’ Rdata ’]]) .

l exEntry (pn , [symbol : ’ Bresp ’ ,num: , syntax : [’ Bresp ’]]) .

l exEntry (pn , [symbol : ’ Wstrb ’ ,num: , syntax : [’ Wstrb ’]]) .

l exEntry (pn , [symbol : ’Wdata ’ ,num: , syntax : [’Wdata ’]]) .

l exEntry (pn , [symbol : ’ Araddr ’ ,num: , syntax : [’ Araddr ’]]) .

l exEntry (pn , [symbol : ’ Arlen ’ ,num: , syntax : [’ Arlen ’]]) .

l exEntry (pn , [symbol : ’ Arval id ’ ,num: , syntax : [’ Arval id ’]]) .

l exEntry (pn , [symbol : ’ Wlast ’ ,num: , syntax : [’ Wlast ’]]) .

l exEntry (pn , [symbol : ’ Arready ’ ,num: , syntax : [’ Arready ’]]) .

l exEntry (pn , [symbol : ’ Arid ’ ,num: , syntax : [’ Arid ’]]) .

l exEntry (pn , [symbol : ’ Awlen ’ ,num: , syntax : [’ Awlen ’]]) .

l exEntry (pn , [symbol : ’Awdomain ’ ,num: , syntax : [’Awdomain ’]]) .

l exEntry (pn , [symbol : ’ Ardomain ’ ,num: , syntax : [’ Ardomain ’]]) .

l exEntry (pn , [symbol : ’ Awuser ’ ,num: , syntax : [’ Awuser ’]]) .

l exEntry (pn , [symbol : ’ Awuser Width ’ ,num: , syntax : [’ Awuser Width ’]]) .

l exEntry (pn , [symbol : ’ Awsize ’ ,num: , syntax : [’ Awsize ’]]) .

l exEntry (pn , [symbol : ’ Bval id ’ ,num: , syntax : [’ Bval id ’]]) .

l exEntry (pn , [symbol : ’ Bready ’ ,num: , syntax : [’ Bready ’]]) .

l exEntry (pn , [symbol : ’ Wvalid ’ ,num: , syntax : [’ Wvalid ’]]) .

l exEntry (pn , [symbol : ’ Awburst ’ ,num: , syntax : [’ Awburst ’]]) .

l exEntry (pn , [symbol : ’ Awlock ’ ,num: , syntax : [’ Awlock ’]]) .

l exEntry (pn , [symbol : ’ Awcache ’ ,num: , syntax : [’ Awcache ’]]) .

l exEntry (pn , [symbol : ’ Awcache [1] ’ ,num: , syntax : [’ Awcache [1] ’]]) .

l exEntry (pn , [symbol : ’ Awcache [3 : 2] ’ ,num: , syntax : [’ Awcache [3 : 2] ’]]) .

l exEntry (pn , [symbol : ’ Aresetn ’ ,num: , syntax : [’ Aresetn ’]]) .

l exEntry (pn , [symbol : ’BID ’ ,num: , syntax : [’BID ’]]) .

l exEntry (pn , [symbol : ’ Arestn ’ ,num: , syntax : [’ Arestn ’]]) .

l exEntry (pn , [symbol : ’ Data Width Bytes ’ ,num: , syntax : [’ Data Width Bytes ’]]) .

l exEntry (pn , [symbol : ’ Rresp ’ ,num: , syntax : [’ Rresp ’]]) .

l exEntry (pn , [symbol : ’ Rlast ’ ,num: , syntax : [’ Rlast ’]]) .

l exEntry (pn , [symbol : ’ Addr Width ’ ,num: , syntax : [’ Addr Width ’]]) .

l exEntry (pn , [symbol : ’Wdepth ’ ,num: , syntax : [’Wdepth ’]]) .

l exEntry (pn , [symbol : ’ MaxrBursts ’ ,num: , syntax : [’ MaxrBursts ’]]) .

l exEntry (pn , [symbol : ’ MaxwBursts ’ ,num: , syntax : [’ MaxwBursts ’]]) .

APPENDIX B. THE TPE GRAMMAR 216

l exEntry (pn , [symbol : ’Awsnoop ’ ,num: , syntax : [’Awsnoop ’]]) .

l exEntry (pn , [symbol : ’Awbar ’ ,num: , syntax : [’Awbar ’]]) .

l exEntry (pn , [symbol : ’Awqos ’ ,num: , syntax : [’Awqos ’]]) .

l exEntry (pn , [symbol : ’ Awregion ’ ,num: , syntax : [’ Awregion ’]]) .

l exEntry (pn , [symbol : ’S OK ’ ,num: , syntax : [’S OK ’]]) .

l exEntry (pn , [symbol : ’ Buser Width ’ ,num: , syntax : [’ Buser Width ’]]) .

l exEntry (pn , [symbol : ’ Buser ’ ,num: , syntax : [’ Buser ’]]) .

l exEntry (pn , [symbol : ’ Aruser Width ’ ,num: , syntax : [’ Aruser Width ’]]) .

l exEntry (pn , [symbol : ’ Aruser ’ ,num: , syntax : [’ Aruser ’]]) .

l exEntry (pn , [symbol : ’MRMD’ ,num: , syntax : [’MRMD’]]) .

l exEntry (pn , [symbol : ’ Arqos ’ ,num: , syntax : [’ Arqos ’]]) .

l exEntry (pn , [symbol : ’ Arregion ’ ,num: , syntax : [’ Arregion ’]]) .

l exEntry (pn , [symbol : ’ Ruser Width ’ ,num: , syntax : [’ Ruser Width ’]]) .

l exEntry (pn , [symbol : ’ Ruser ’ ,num: , syntax : [’ Ruser ’]]) .

l exEntry (pn , [symbol : ’ Data width ’ ,num: , syntax : [’ Data width ’]]) .

l exEntry (pn , [symbol : ’Exmon Width ’ ,num: , syntax : [’Exmon Width ’]]) .

l exEntry (pn , [symbol : ’TID ’ ,num: , syntax : [’TID ’]]) .

l exEntry (pn , [symbol : ’ Tready ’ ,num: , syntax : [’ Tready ’]]) .

l exEntry (pn , [symbol : ’ Tdest ’ ,num: , syntax : [’ Tdest ’]]) .

l exEntry (pn , [symbol : ’ Tdata ’ ,num: , syntax : [’ Tdata ’]]) .

l exEntry (pn , [symbol : ’ Tstrb ’ ,num: , syntax : [’ Tstrb ’]]) .

l exEntry (pn , [symbol : ’ T last ’ ,num: , syntax : [’ T last ’]]) .

l exEntry (pn , [symbol : ’ Tkeep ’ ,num: , syntax : [’ Tkeep ’]]) .

l exEntry (pn , [symbol : ’ Tuser ’ ,num: , syntax : [’ Tuser ’]]) .

l exEntry (pn , [symbol : ’ Dest Width ’ ,num: , syntax : [’ Dest Width ’]]) .

l exEntry (pn , [symbol : ’ User Width ’ ,num: , syntax : [’ User Width ’]]) .

l exEntry (pn , [symbol : ’ Arsnoop ’ ,num: , syntax : [’ Arsnoop ’]]) .

l exEntry (pn , [symbol : ’ Arbar ’ ,num: , syntax : [’ Arbar ’]]) .

l exEntry (pn , [symbol : ’ Resp [3] ’ ,num: , syntax : [’ Resp [3] ’]]) .

l exEntry (pn , [symbol : ’ Resp [2] ’ ,num: , syntax : [’ Resp [2] ’]]) .

l exEntry (pn , [symbol : ’ Rack ’ ,num: , syntax : [’ Rack ’]]) .

l exEntry (pn , [symbol : ’Wack ’ ,num: , syntax : [’Wack ’]]) .

l exEntry (pn , [symbol : ’AW’ ,num: , syntax : [’AW’]]) .

l exEntry (pn , [symbol : ’ Acval id ’ ,num: , syntax : [’ Acval id ’]]) .

l exEntry (pn , [symbol : ’ Crva l id ’ ,num: , syntax : [’ Crva l id ’]]) .

l exEntry (pn , [symbol : ’ Cdvalid ’ ,num: , syntax : [’ Cdvalid ’]]) .

l exEntry (pn , [symbol : ’ MaxcBursts ’ ,num: , syntax : [’ MaxcBursts ’]]) .

l exEntry (pn , [symbol : ’ Max Barr iers ’ ,num: , syntax : [’ Max Barr iers ’]]) .

l exEntry (pn , [symbol : ’ Acready ’ ,num: , syntax : [’ Acready ’]]) .

l exEntry (pn , [symbol : ’ Wuser ’ ,num: , syntax : [’ Wuser ’]]) .

l exEntry (pn , [symbol : ’ Wuser Width ’ ,num: , syntax : [’ Wuser Width ’]]) .

l exEntry (pn , [symbol : ’ ID Width ’ ,num: , syntax : [’ ID Width ’]]) .

l exEntry (pn , [symbol : ’ Acsnoop ’ ,num: , syntax : [’ Acsnoop ’]]) .

l exEntry (pn , [symbol : ’ Acprot ’ ,num: , syntax : [’ Acprot ’]]) .

APPENDIX B. THE TPE GRAMMAR 217

l exEntry (pn , [symbol : ’ Crresp [2] ’ ,num: , syntax : [’ Crresp [2] ’]]) .

l exEntry (pn , [symbol : ’ Crresp ’ ,num: , syntax : [’ Crresp ’]]) .

l exEntry (pn , [symbol : ’ Crresp [4 : 0] ’ ,num: , syntax : [’ Crresp [4 : 0] ’]]) .

l exEntry (pn , [symbol : ’ Crready ’ ,num: , syntax : [’ Crready ’]]) .

l exEntry (pn , [symbol : ’ Cdlast ’ ,num: , syntax : [’ Cdlast ’]]) .

l exEntry (pn , [symbol : ’ Cddata ’ ,num: , syntax : [’ Cddata ’]]) .

l exEntry (pn , [symbol : ’ Cdready ’ ,num: , syntax : [’ Cdready ’]]) .

l exEntry (pn , [symbol : ’ Acaddr ’ ,num: , syntax : [’ Acaddr ’]]) .

l exEntry (pn , [symbol : ’ CD Data Width ’ ,num: , syntax : [’ CD Data Width ’]]) .

l exEntry (pn , [symbol : ’Addr ’ ,num: , syntax : [’Addr ’]]) .

l exEntry (pn , [symbol : ’Mcmd ’ ,num: , syntax : [’Mcmd ’]]) .

l exEntry (pn , [symbol : ’ AtomicLength ’ ,num: , syntax : [’ AtomicLength ’]]) .

l exEntry (pn , [symbol : ’ Atomiclength Wdth ’ ,num: , syntax : [’ Atomiclength Wdth ’]]) .

l exEntry (pn , [symbol : ’BCST ’ ,num: , syntax : [’BCST ’]]) .

l exEntry (pn , [symbol : ’ MBlockHeight ’ ,num: , syntax : [’ MBlockHeight ’]]) .

l exEntry (pn , [symbol : ’ BlockHeight Wdth ’ ,num: , syntax : [’ BlockHeight Wdth ’]]) .

l exEntry (pn , [symbol : ’ B lockSt r ide ’ ,num: , syntax : [’ B lockSt r ide ’]]) .

l exEntry (pn , [symbol : ’ Broadcast Enable ’ ,num: , syntax : [’ Broadcast Enable ’]]) .

l exEntry (pn , [symbol : ’ Burst Al igned ’ ,num: , syntax : [’ Burst Al igned ’]]) .

l exEntry (pn , [symbol : ’ BurstLength ’ ,num: , syntax : [’ BurstLength ’]]) .

l exEntry (pn , [symbol : ’ MBlockStride [0] ’ ,num: , syntax : [’ MBlockStride [0] ’]]) .

l exEntry (pn , [symbol : ’ MBlockStride [1 : 0] ’ ,num: , syntax : [’ MBlockStride [1 : 0] ’]]) .

l exEntry (pn , [symbol : ’ MBlockStride [2 : 0] ’ ,num: , syntax : [’ MBlockStride [2 : 0] ’]]) .

l exEntry (pn , [symbol : ’ MBlockStride [3 : 0] ’ ,num: , syntax : [’ MBlockStride [3 : 0] ’]]) .

l exEntry (pn , [symbol : ’Maddr [0] ’ ,num: , syntax : [’Maddr [0] ’]]) .

l exEntry (pn , [symbol : ’Maddr [1 : 0] ’ ,num: , syntax : [’Maddr [1 : 0] ’]]) .

l exEntry (pn , [symbol : ’Maddr [2 : 0] ’ ,num: , syntax : [’Maddr [2 : 0] ’]]) .

l exEntry (pn , [symbol : ’Maddr [3 : 0] ’ ,num: , syntax : [’Maddr [3 : 0] ’]]) .

l exEntry (pn , [symbol : ’ BurstLength Wdth ’ ,num: , syntax : [’ BurstLength Wdth ’]]) .

l exEntry (pn , [symbol : ’ Bur s tPrec i s e ’ ,num: , syntax : [’ Bur s tPrec i s e ’]]) .

l exEntry (pn , [symbol : ’ BurstSeq ’ ,num: , syntax : [’ BurstSeq ’]]) .

l exEntry (pn , [symbol : ’ BurstSeq Blck Enable ’ ,num: , syntax : [’ BurstSeq Blck Enable ’]]) .

l exEntry (pn , [symbol : ’ BurstSeq Df l t1 Enable ’ ,num: , syntax : [’ BurstSeq Df l t1 Enable ’]]) .

l exEntry (pn , [symbol : ’ BurstSeq Df l t2 Enable ’ ,num: , syntax : [’ BurstSeq Df l t2 Enable ’]]) .

l exEntry (pn , [symbol : ’ BurstSeq Enable ’ ,num: , syntax : [’ BurstSeq Enable ’]]) .

l exEntry (pn , [symbol : ’ BurstSeq Incr Enable ’ ,num: , syntax : [’ BurstSeq Incr Enable ’]]) .

l exEntry (pn , [symbol : ’ BurstSeq Strm Enable ’ ,num: , syntax : [’ BurstSeq Strm Enable ’]]) .

l exEntry (pn , [symbol : ’ BurstSeq Unkn Enable ’ ,num: , syntax : [’ BurstSeq Unkn Enable ’]]) .

l exEntry (pn , [symbol : ’ BurstSeq Wrap Enable ’ ,num: , syntax : [’ BurstSeq Wrap Enable ’]]) .

l exEntry (pn , [symbol : ’ BurstSeq XOR Enable ’ ,num: , syntax : [’ BurstSeq XOR Enable ’]]) .

l exEntry (pn , [symbol : ’ BurstSingleReq ’ ,num: , syntax : [’ BurstSingleReq ’]]) .

l exEntry (pn , [symbol : ’ ByteEn ’ ,num: , syntax : [’ ByteEn ’]]) .

l exEntry (pn , [symbol : ’CmdAccept ’ ,num: , syntax : [’CmdAccept ’]]) .

l exEntry (pn , [symbol : ’ ConnectCap ’ ,num: , syntax : [’ ConnectCap ’]]) .

APPENDIX B. THE TPE GRAMMAR 218

l exEntry (pn , [symbol : ’ Connection ’ ,num: , syntax : [’ Connection ’]]) .

l exEntry (pn , [symbol : ’ Control ’ ,num: , syntax : [’ Control ’]]) .

l exEntry (pn , [symbol : ’ ControlBusy ’ ,num: , syntax : [’ ControlBusy ’]]) .

l exEntry (pn , [symbol : ’ ControlWr ’ ,num: , syntax : [’ ControlWr ’]]) .

l exEntry (pn , [symbol : ’ Corresponding Exact ’ ,num: , syntax : [’ Corresponding Exact ’]]) .

l exEntry (pn , [symbol : ’ DataAccept ’ ,num: , syntax : [’ DataAccept ’]]) .

l exEntry (pn , [symbol : ’ Datahandshake ’ ,num: , syntax : [’ Datahandshake ’]]) .

l exEntry (pn , [symbol : ’ DataLast ’ ,num: , syntax : [’ DataLast ’]]) .

l exEntry (pn , [symbol : ’ DataRowLast ’ ,num: , syntax : [’ DataRowLast ’]]) .

l exEntry (pn , [symbol : ’ Data Wdth ’ ,num: , syntax : [’ Data Wdth ’]]) .

l exEntry (pn , [symbol : ’DLFT1 ’ ,num: , syntax : [’DLFT1 ’]]) .

l exEntry (pn , [symbol : ’DLFT2 ’ ,num: , syntax : [’DLFT2 ’]]) .

l exEntry (pn , [symbol : ’DFLT2 ’ ,num: , syntax : [’DFLT2 ’]]) .

l exEntry (pn , [symbol : ’ SThreadBusy Exact ’ ,num: , syntax : [’ SThreadBusy Exact ’]]) .

l exEntry (pn , [symbol : ’ SThreadBusy ExactCan ’ ,num: , syntax : [’ SThreadBusy ExactCan ’]]) .

l exEntry (pn , [symbol : ’ MThreadBusy Exact ’ ,num: , syntax : [’ MThreadBusy Exact ’]]) .

l exEntry (pn , [symbol : ’ SDataThreadBusy Exact ’ ,num: , syntax : [’ SDataThreadBusy Exact ’]]) .

l exEntry (pn , [symbol : ’ Force Al igned ’ ,num: , syntax : [’ Force Al igned ’]]) .

l exEntry (pn , [symbol : ’ IDLE ’ ,num: , syntax : [’ IDLE ’]]) .

l exEntry (pn , [symbol : ’INCR ’ ,num: , syntax : [’INCR ’]]) .

l exEntry (pn , [symbol : ’ Jtag Enable ’ ,num: , syntax : [’ Jtag Enable ’]]) .

l exEntry (pn , [symbol : ’ J tag t r s t Enab l e ’ ,num: , syntax : [’ J t ag t r s t Enab l e ’]]) .

l exEntry (pn , [symbol : ’MAddr ’ ,num: , syntax : [’MAddr ’]]) .

l exEntry (pn , [symbol : ’MAddrSpace ’ ,num: , syntax : [’MAddrSpace ’]]) .

l exEntry (pn , [symbol : ’ MAtomicLength ’ ,num: , syntax : [’ MAtomicLength ’]]) .

l exEntry (pn , [symbol : ’ MBlockHeight ’ ,num: , syntax : [’ MBlockHeight ’]]) .

l exEntry (pn , [symbol : ’ MBurstPrecise ’ ,num: , syntax : [’ MBurstPrecise ’]]) .

l exEntry (pn , [symbol : ’ MBlockStride ’ ,num: , syntax : [’ MBlockStride ’]]) .

l exEntry (pn , [symbol : ’ MBurstLength ’ ,num: , syntax : [’ MBurstLength ’]]) .

l exEntry (pn , [symbol : ’ MBurstSeq ’ ,num: , syntax : [’ MBurstSeq ’]]) .

l exEntry (pn , [symbol : ’ MBurstSingleReq ’ ,num: , syntax : [’ MBurstSingleReq ’]]) .

l exEntry (pn , [symbol : ’MByteEn ’ ,num: , syntax : [’MByteEn ’]]) .

l exEntry (pn , [symbol : ’M CON’ ,num: , syntax : [’M CON’]]) .

l exEntry (pn , [symbol : ’MConnect ’ ,num: , syntax : [’MConnect ’]]) .

l exEntry (pn , [symbol : ’MConnID ’ ,num: , syntax : [’MConnID ’]]) .

l exEntry (pn , [symbol : ’MData ’ ,num: , syntax : [’MData ’]]) .

l exEntry (pn , [symbol : ’MDataByteEn ’ ,num: , syntax : [’MDataByteEn ’]]) .

l exEntry (pn , [symbol : ’ MDataInfo ’ ,num: , syntax : [’ MDataInfo ’]]) .

l exEntry (pn , [symbol : ’ MDataInfoByte Wdth ’ ,num: , syntax : [’ MDataInfoByte Wdth ’]]) .

l exEntry (pn , [symbol : ’ MDataLast ’ ,num: , syntax : [’ MDataLast ’]]) .

l exEntry (pn , [symbol : ’MDataRowLast ’ ,num: , syntax : [’MDataRowLast ’]]) .

l exEntry (pn , [symbol : ’MDataTagID ’ ,num: , syntax : [’MDataTagID ’]]) .

l exEntry (pn , [symbol : ’ MDataThreadID ’ ,num: , syntax : [’ MDataThreadID ’]]) .

l exEntry (pn , [symbol : ’ MDataValid ’ ,num: , syntax : [’ MDataValid ’]]) .

APPENDIX B. THE TPE GRAMMAR 219

l exEntry (pn , [symbol : ’M DISC ’ ,num: , syntax : [’M DISC ’]]) .

l exEntry (pn , [symbol : ’M OFF ’ ,num: , syntax : [’M OFF ’]]) .

l exEntry (pn , [symbol : ’ MError ’ ,num: , syntax : [’ MError ’]]) .

l exEntry (pn , [symbol : ’ MReqInfo ’ ,num: , syntax : [’ MReqInfo ’]]) .

l exEntry (pn , [symbol : ’MReqLast ’ ,num: , syntax : [’MReqLast ’]]) .

l exEntry (pn , [symbol : ’MReqRowLast ’ ,num: , syntax : [’MReqRowLast ’]]) .

l exEntry (pn , [symbol : ’ MReset ’ ,num: , syntax : [’ MReset ’]]) .

l exEntry (pn , [symbol : ’ MReset n ’ ,num: , syntax : [’ MReset n ’]]) .

l exEntry (pn , [symbol : ’ Reset ’ ,num: , syntax : [’ Reset ’]]) .

l exEntry (pn , [symbol : ’ MRespAccept ’ ,num: , syntax : [’ MRespAccept ’]]) .

l exEntry (pn , [symbol : ’MTagID ’ ,num: , syntax : [’MTagID ’]]) .

l exEntry (pn , [symbol : ’ MTagInOrder ’ ,num: , syntax : [’ MTagInOrder ’]]) .

l exEntry (pn , [symbol : ’MThreadBusy ’ ,num: , syntax : [’MThreadBusy ’]]) .

l exEntry (pn , [symbol : ’MThreadID ’ ,num: , syntax : [’MThreadID ’]]) .

l exEntry (pn , [symbol : ’ SThreadBusy Pipel ined ’ ,num: , syntax : [’ SThreadBusy Pipel ined ’]]) .

l exEntry (pn , [symbol : ’ MThreadBusy Pipelined ’ ,num: , syntax : [’ MThreadBusy Pipelined ’]]) .

l exEntry (pn , [symbol : ’ SDataThreadBusy Pipelined ’ ,num: , syntax : [’ SDataThreadBusy Pipelined ’

]]) .

l exEntry (pn , [symbol : ’RD’ ,num: , syntax : [’RD’]]) .

l exEntry (pn , [symbol : ’RDEX’ ,num: , syntax : [’RDEX’]]) .

l exEntry (pn , [symbol : ’RDL’ ,num: , syntax : [’RDL’]]) .

l exEntry (pn , [symbol : ’ RDLwrc Enable ’ ,num: , syntax : [’ RDLwrc Enable ’]]) .

l exEntry (pn , [symbol : ’ Read Enable ’ ,num: , syntax : [’ Read Enable ’]]) .

l exEntry (pn , [symbol : ’ReadEx ’ ,num: , syntax : [’ReadEx ’]]) .

l exEntry (pn , [symbol : ’ ReadEx Enable ’ ,num: , syntax : [’ ReadEx Enable ’]]) .

l exEntry (pn , [symbol : ’ ReqData Together ’ ,num: , syntax : [’ ReqData Together ’]]) .

l exEntry (pn , [symbol : ’ ReqLast ’ ,num: , syntax : [’ ReqLast ’]]) .

l exEntry (pn , [symbol : ’ ReqRowLast ’ ,num: , syntax : [’ ReqRowLast ’]]) .

l exEntry (pn , [symbol : ’RESP ’ ,num: , syntax : [’RESP ’]]) .

l exEntry (pn , [symbol : ’ RespAccept ’ ,num: , syntax : [’ RespAccept ’]]) .

l exEntry (pn , [symbol : ’ RespInfo ’ ,num: , syntax : [’ RespInfo ’]]) .

l exEntry (pn , [symbol : ’ Res as t ’ ,num: , syntax : [’ Res as t ’]]) .

l exEntry (pn , [symbol : ’ RespRowLast ’ ,num: , syntax : [’ RespRowLast ’]]) .

l exEntry (pn , [symbol : ’ RiteNonPost Enable ’ ,num: , syntax : [’ RiteNonPost Enable ’]]) .

l exEntry (pn , [symbol : ’ SCmdAccept ’ ,num: , syntax : [’ SCmdAccept ’]]) .

l exEntry (pn , [symbol : ’S CON ’ ,num: , syntax : [’S CON ’]]) .

l exEntry (pn , [symbol : ’ SConnect ’ ,num: , syntax : [’ SConnect ’]]) .

l exEntry (pn , [symbol : ’ SData ’ ,num: , syntax : [’ SData ’]]) .

l exEntry (pn , [symbol : ’ SDataAccept ’ ,num: , syntax : [’ SDataAccept ’]]) .

l exEntry (pn , [symbol : ’ SDataInfo ’ ,num: , syntax : [’ SDataInfo ’]]) .

l exEntry (pn , [symbol : ’ SDataInfoByte Wdth ’ ,num: , syntax : [’ SDataInfoByte Wdth ’]]) .

l exEntry (pn , [symbol : ’ SDataInfo Wdth ’ ,num: , syntax : [’ SDataInfo Wdth ’]]) .

l exEntry (pn , [symbol : ’ SDataThreadBusy ’ ,num: , syntax : [’ SDataThreadBusy ’]]) .

l exEntry (pn , [symbol : ’ SError ’ ,num: , syntax : [’ SError ’]]) .

APPENDIX B. THE TPE GRAMMAR 220

l exEntry (pn , [symbol : ’ S Inte r rupt ’ ,num: , syntax : [’ S Inte r rupt ’]]) .

l exEntry (pn , [symbol : ’ SReset ’ ,num: , syntax : [’ SReset ’]]) .

l exEntry (pn , [symbol : ’ SReset n ’ ,num: , syntax : [’ SReset n ’]]) .

l exEntry (pn , [symbol : ’ SResp ’ ,num: , syntax : [’ SResp ’]]) .

l exEntry (pn , [symbol : ’ SRespInfo ’ ,num: , syntax : [’ SRespInfo ’]]) .

l exEntry (pn , [symbol : ’ SRes ast ’ ,num: , syntax : [’ SRes ast ’]]) .

l exEntry (pn , [symbol : ’ SRespRowLast ’ ,num: , syntax : [’ SRespRowLast ’]]) .

l exEntry (pn , [symbol : ’SRMD’ ,num: , syntax : [’SRMD’]]) .

l exEntry (pn , [symbol : ’ STagID ’ ,num: , syntax : [’ STagID ’]]) .

l exEntry (pn , [symbol : ’ STagInOrder ’ ,num: , syntax : [’ STagInOrder ’]]) .

l exEntry (pn , [symbol : ’ Status ’ ,num: , syntax : [’ Status ’]]) .

l exEntry (pn , [symbol : ’ StatusBusy ’ ,num: , syntax : [’ StatusBusy ’]]) .

l exEntry (pn , [symbol : ’ StatusRd ’ ,num: , syntax : [’ StatusRd ’]]) .

l exEntry (pn , [symbol : ’ SThreadBusy ’ ,num: , syntax : [’ SThreadBusy ’]]) .

l exEntry (pn , [symbol : ’ SThreadID ’ ,num: , syntax : [’ SThreadID ’]]) .

l exEntry (pn , [symbol : ’STRM’ ,num: , syntax : [’STRM’]]) .

l exEntry (pn , [symbol : ’ SWait ’ ,num: , syntax : [’ SWait ’]]) .

l exEntry (pn , [symbol : ’ TagInOrder ’ ,num: , syntax : [’ TagInOrder ’]]) .

l exEntry (pn , [symbol : ’UNKN’ ,num: , syntax : [’UNKN’]]) .

l exEntry (pn , [symbol : ’ MDataInfo Wdth ’ ,num: , syntax : [’ MDataInfo Wdth ’]]) .

l exEntry (pn , [symbol : ’ MDataInfoByte Wdth ’ ,num: , syntax : [’ MDataInfoByte Wdth ’]]) .

l exEntry (pn , [symbol : ’WR’ ,num: , syntax : [’WR’]]) .

l exEntry (pn , [symbol : ’WRC’ ,num: , syntax : [’WRC’]]) .

l exEntry (pn , [symbol : ’ Write Enable ’ ,num: , syntax : [’ Write Enable ’]]) .

l exEntry (pn , [symbol : ’ WriteNonPost Enable ’ ,num: , syntax : [’ WriteNonPost Enable ’]]) .

l exEntry (pn , [symbol : ’WRNP’ ,num: , syntax : [’WRNP’]]) .

l exEntry (pn , [symbol : ’MRespRowLast ’ ,num: , syntax : [’MRespRowLast ’]]) .

l exEntry (pn , [symbol : ’XOR’ ,num: , syntax : [’XOR’]]) .

l exEntry (pn , [symbol : ’ Ba r r i e r ’ ,num: , syntax : [’ Ba r r i e r ’]]) .

l exEntry (pn , [symbol : ’ Data Width ’ ,num: , syntax : [’ Data ’ , ’ Width ’]]) .

l exEntry (pn , [symbol : ’ AC payload ’ ,num: , syntax : [’AC’ , payload]]) .

l exEntry (pn , [symbol : ’ CD payload ’ ,num: , syntax : [’CD’ , payload]]) .

l exEntry (pn , [symbol : ’ CR payload ’ ,num: , syntax : [’CR’ , payload]]) .

l exEntry (pn , [symbol : ’ TUSER payload ’ ,num: , syntax : [’TUSER ’ , payload]]) .

l exEntry (pn , [symbol : ’ RData va l id byte l ane s ’ ,num: , syntax : [’RData ’ , va l id , byte , l ane s]]) .

l exEntry (pn , [symbol : ’ WData va l id byte lanes ’ ,num: , syntax : [’WData ’ , va l id , byte , l ane s]]) .

/∗===

Proper Names tha t r e qu i r e a preceed ing d e f i n i t e a r t i c l e

==∗/

l exEntry (pn def , [symbol : ’Awid ’ ,num: , syntax : [’Awid ’]]) .

l exEntry (pn def , [symbol : ’ Awvalid ’ ,num: , syntax : [’ Awvalid ’]]) .

l exEntry (pn def , [symbol : ’ Awready ’ ,num: , syntax : [’ Awready ’]]) .

APPENDIX B. THE TPE GRAMMAR 221

l exEntry (pn def , [symbol : ’ Awprot ’ ,num: , syntax : [’ Awprot ’]]) .

l exEntry (pn def , [symbol : ’ Tval id ’ ,num: , syntax : [’ Tval id ’]]) .

l exEntry (pn def , [symbol : ’WRAP’ ,num: , syntax : [’WRAP’]]) .

l exEntry (pn def , [symbol : ’Awaddr ’ ,num: , syntax : [’Awaddr ’]]) .

l exEntry (pn def , [symbol : ’Wready ’ ,num: , syntax : [’Wready ’]]) .

l exEntry (pn def , [symbol : ’ Arcache ’ ,num: , syntax : [’ Arcache ’]]) .

l exEntry (pn def , [symbol : ’Wid ’ ,num: , syntax : [’Wid ’]]) .

l exEntry (pn def , [symbol : ’ Arcache [1] ’ ,num: , syntax : [’ Arcache [1] ’]]) .

l exEntry (pn def , [symbol : ’ Arcache [3 : 2] ’ ,num: , syntax : [’ Arcache [3 : 2] ’]]) .

l exEntry (pn def , [symbol : ’ Arprot ’ ,num: , syntax : [’ Arprot ’]]) .

l exEntry (pn def , [symbol : ’ Ar s i z e ’ ,num: , syntax : [’ Ar s i z e ’]]) .

l exEntry (pn def , [symbol : ’ Arburst ’ ,num: , syntax : [’ Arburst ’]]) .

l exEntry (pn def , [symbol : ’RID ’ ,num: , syntax : [’RID ’]]) .

l exEntry (pn def , [symbol : ’ Rready ’ ,num: , syntax : [’ Rready ’]]) .

l exEntry (pn def , [symbol : ’ Rval id ’ ,num: , syntax : [’ Rval id ’]]) .

l exEntry (pn def , [symbol : ’ CsysReq ’ ,num: , syntax : [’ CsysReq ’]]) .

l exEntry (pn def , [symbol : ’ CsysAck ’ ,num: , syntax : [’ CsysAck ’]]) .

l exEntry (pn def , [symbol : ’ Cact ive ’ ,num: , syntax : [’ Cact ive ’]]) .

l exEntry (pn def , [symbol : ’ Arlock ’ ,num: , syntax : [’ Arlock ’]]) .

l exEntry (pn def , [symbol : ’ Rdata ’ ,num: , syntax : [’ Rdata ’]]) .

l exEntry (pn def , [symbol : ’ Bresp ’ ,num: , syntax : [’ Bresp ’]]) .

l exEntry (pn def , [symbol : ’ Wstrb ’ ,num: , syntax : [’ Wstrb ’]]) .

l exEntry (pn def , [symbol : ’Wdata ’ ,num: , syntax : [’Wdata ’]]) .

l exEntry (pn def , [symbol : ’ Araddr ’ ,num: , syntax : [’ Araddr ’]]) .

l exEntry (pn def , [symbol : ’ Arlen ’ ,num: , syntax : [’ Arlen ’]]) .

l exEntry (pn def , [symbol : ’ Arval id ’ ,num: , syntax : [’ Arval id ’]]) .

l exEntry (pn def , [symbol : ’ Wlast ’ ,num: , syntax : [’ Wlast ’]]) .

l exEntry (pn def , [symbol : ’ Arready ’ ,num: , syntax : [’ Arready ’]]) .

l exEntry (pn def , [symbol : ’ Arid ’ ,num: , syntax : [’ Arid ’]]) .

l exEntry (pn def , [symbol : ’ Awlen ’ ,num: , syntax : [’ Awlen ’]]) .

l exEntry (pn def , [symbol : ’Awdomain ’ ,num: , syntax : [’Awdomain ’]]) .

l exEntry (pn def , [symbol : ’ Ardomain ’ ,num: , syntax : [’ Ardomain ’]]) .

l exEntry (pn def , [symbol : ’ Awuser ’ ,num: , syntax : [’ Awuser ’]]) .

l exEntry (pn def , [symbol : ’ Awuser Width ’ ,num: , syntax : [’ Awuser Width ’]]) .

l exEntry (pn def , [symbol : ’ Awsize ’ ,num: , syntax : [’ Awsize ’]]) .

l exEntry (pn def , [symbol : ’ Bval id ’ ,num: , syntax : [’ Bval id ’]]) .

l exEntry (pn def , [symbol : ’ Bready ’ ,num: , syntax : [’ Bready ’]]) .

l exEntry (pn def , [symbol : ’ Wvalid ’ ,num: , syntax : [’ Wvalid ’]]) .

l exEntry (pn def , [symbol : ’ Awburst ’ ,num: , syntax : [’ Awburst ’]]) .

l exEntry (pn def , [symbol : ’ Awlock ’ ,num: , syntax : [’ Awlock ’]]) .

l exEntry (pn def , [symbol : ’ Awcache ’ ,num: , syntax : [’ Awcache ’]]) .

l exEntry (pn def , [symbol : ’ Awcache [1] ’ ,num: , syntax : [’ Awcache [1] ’]]) .

l exEntry (pn def , [symbol : ’ Awcache [3 : 2] ’ ,num: , syntax : [’ Awcache [3 : 2] ’]]) .

l exEntry (pn def , [symbol : ’ Aresetn ’ ,num: , syntax : [’ Aresetn ’]]) .

APPENDIX B. THE TPE GRAMMAR 222

l exEntry (pn def , [symbol : ’BID ’ ,num: , syntax : [’BID ’]]) .

l exEntry (pn def , [symbol : ’ Arestn ’ ,num: , syntax : [’ Arestn ’]]) .

l exEntry (pn def , [symbol : ’ Data Width Bytes ’ ,num: , syntax : [’ Data Width Bytes ’]]) .

l exEntry (pn def , [symbol : ’ Rresp ’ ,num: , syntax : [’ Rresp ’]]) .

l exEntry (pn def , [symbol : ’ Rlast ’ ,num: , syntax : [’ Rlast ’]]) .

l exEntry (pn def , [symbol : ’ Addr Width ’ ,num: , syntax : [’ Addr Width ’]]) .

l exEntry (pn def , [symbol : ’Wdepth ’ ,num: , syntax : [’Wdepth ’]]) .

l exEntry (pn def , [symbol : ’ MaxrBursts ’ ,num: , syntax : [’ MaxrBursts ’]]) .

l exEntry (pn def , [symbol : ’ MaxwBursts ’ ,num: , syntax : [’ MaxwBursts ’]]) .

l exEntry (pn def , [symbol : ’Awsnoop ’ ,num: , syntax : [’Awsnoop ’]]) .

l exEntry (pn def , [symbol : ’Awbar ’ ,num: , syntax : [’Awbar ’]]) .

l exEntry (pn def , [symbol : ’Awqos ’ ,num: , syntax : [’Awqos ’]]) .

l exEntry (pn def , [symbol : ’ Awregion ’ ,num: , syntax : [’ Awregion ’]]) .

l exEntry (pn def , [symbol : ’S OK ’ ,num: , syntax : [’S OK ’]]) .

l exEntry (pn def , [symbol : ’ Buser Width ’ ,num: , syntax : [’ Buser Width ’]]) .

l exEntry (pn def , [symbol : ’ Buser ’ ,num: , syntax : [’ Buser ’]]) .

l exEntry (pn def , [symbol : ’ Aruser Width ’ ,num: , syntax : [’ Aruser Width ’]]) .

l exEntry (pn def , [symbol : ’ Aruser ’ ,num: , syntax : [’ Aruser ’]]) .

l exEntry (pn def , [symbol : ’MRMD’ ,num: , syntax : [’MRMD’]]) .

l exEntry (pn def , [symbol : ’ Arqos ’ ,num: , syntax : [’ Arqos ’]]) .

l exEntry (pn def , [symbol : ’ Arregion ’ ,num: , syntax : [’ Arregion ’]]) .

l exEntry (pn def , [symbol : ’ Ruser Width ’ ,num: , syntax : [’ Ruser Width ’]]) .

l exEntry (pn def , [symbol : ’ Ruser ’ ,num: , syntax : [’ Ruser ’]]) .

l exEntry (pn def , [symbol : ’ Data width ’ ,num: , syntax : [’ Data width ’]]) .

l exEntry (pn def , [symbol : ’Exmon Width ’ ,num: , syntax : [’Exmon Width ’]]) .

l exEntry (pn def , [symbol : ’TID ’ ,num: , syntax : [’TID ’]]) .

l exEntry (pn def , [symbol : ’ Tready ’ ,num: , syntax : [’ Tready ’]]) .

l exEntry (pn def , [symbol : ’ Tdest ’ ,num: , syntax : [’ Tdest ’]]) .

l exEntry (pn def , [symbol : ’ Tdata ’ ,num: , syntax : [’ Tdata ’]]) .

l exEntry (pn def , [symbol : ’ Tstrb ’ ,num: , syntax : [’ Tstrb ’]]) .

l exEntry (pn def , [symbol : ’ T last ’ ,num: , syntax : [’ T last ’]]) .

l exEntry (pn def , [symbol : ’ Tkeep ’ ,num: , syntax : [’ Tkeep ’]]) .

l exEntry (pn def , [symbol : ’ Tuser ’ ,num: , syntax : [’ Tuser ’]]) .

l exEntry (pn def , [symbol : ’ Dest Width ’ ,num: , syntax : [’ Dest Width ’]]) .

l exEntry (pn def , [symbol : ’ User Width ’ ,num: , syntax : [’ User Width ’]]) .

l exEntry (pn def , [symbol : ’ Arsnoop ’ ,num: , syntax : [’ Arsnoop ’]]) .

l exEntry (pn def , [symbol : ’ Arbar ’ ,num: , syntax : [’ Arbar ’]]) .

l exEntry (pn def , [symbol : ’ Resp [3] ’ ,num: , syntax : [’ Resp [3] ’]]) .

l exEntry (pn def , [symbol : ’ Resp [2] ’ ,num: , syntax : [’ Resp [2] ’]]) .

l exEntry (pn def , [symbol : ’ Rack ’ ,num: , syntax : [’ Rack ’]]) .

l exEntry (pn def , [symbol : ’Wack ’ ,num: , syntax : [’Wack ’]]) .

l exEntry (pn def , [symbol : ’AW’ ,num: , syntax : [’AW’]]) .

l exEntry (pn def , [symbol : ’ Acval id ’ ,num: , syntax : [’ Acval id ’]]) .

l exEntry (pn def , [symbol : ’ Crva l id ’ ,num: , syntax : [’ Crva l id ’]]) .

APPENDIX B. THE TPE GRAMMAR 223

l exEntry (pn def , [symbol : ’ Cdvalid ’ ,num: , syntax : [’ Cdvalid ’]]) .

l exEntry (pn def , [symbol : ’ MaxcBursts ’ ,num: , syntax : [’ MaxcBursts ’]]) .

l exEntry (pn def , [symbol : ’ Max Barr iers ’ ,num: , syntax : [’ Max Barr iers ’]]) .

l exEntry (pn def , [symbol : ’ Acready ’ ,num: , syntax : [’ Acready ’]]) .

l exEntry (pn def , [symbol : ’ Wuser ’ ,num: , syntax : [’Wuser ’]]) .

l exEntry (pn def , [symbol : ’ Wuser Width ’ ,num: , syntax : [’ Wuser Width ’]]) .

l exEntry (pn def , [symbol : ’ ID Width ’ ,num: , syntax : [’ ID Width ’]]) .

l exEntry (pn def , [symbol : ’ Acsnoop ’ ,num: , syntax : [’ Acsnoop ’]]) .

l exEntry (pn def , [symbol : ’ Acprot ’ ,num: , syntax : [’ Acprot ’]]) .

l exEntry (pn def , [symbol : ’ Crresp [2] ’ ,num: , syntax : [’ Crresp [2] ’]]) .

l exEntry (pn def , [symbol : ’ Crresp ’ ,num: , syntax : [’ Crresp ’]]) .

l exEntry (pn def , [symbol : ’ Crresp [4 : 0] ’ ,num: , syntax : [’ Crresp [4 : 0] ’]]) .

l exEntry (pn def , [symbol : ’ Crready ’ ,num: , syntax : [’ Crready ’]]) .

l exEntry (pn def , [symbol : ’ Cdlast ’ ,num: , syntax : [’ Cdlast ’]]) .

l exEntry (pn def , [symbol : ’ Cddata ’ ,num: , syntax : [’ Cddata ’]]) .

l exEntry (pn def , [symbol : ’ Cdready ’ ,num: , syntax : [’ Cdready ’]]) .

l exEntry (pn def , [symbol : ’ Acaddr ’ ,num: , syntax : [’ Acaddr ’]]) .

l exEntry (pn def , [symbol : ’ CD Data Width ’ ,num: , syntax : [’ CD Data Width ’]]) .

l exEntry (pn def , [symbol : ’Addr ’ ,num: , syntax : [’Addr ’]]) .

l exEntry (pn def , [symbol : ’Mcmd ’ ,num: , syntax : [’Mcmd ’]]) .

l exEntry (pn def , [symbol : ’ AtomicLength ’ ,num: , syntax : [’ AtomicLength ’]]) .

l exEntry (pn def , [symbol : ’ Atomiclength Wdth ’ ,num: , syntax : [’ Atomiclength Wdth ’]]) .

l exEntry (pn def , [symbol : ’BCST ’ ,num: , syntax : [’BCST ’]]) .

l exEntry (pn def , [symbol : ’ MBlockHeight ’ ,num: , syntax : [’ MBlockHeight ’]]) .

l exEntry (pn def , [symbol : ’ BlockHeight Wdth ’ ,num: , syntax : [’ BlockHeight Wdth ’]]) .

l exEntry (pn def , [symbol : ’ B lockSt r ide ’ ,num: , syntax : [’ B lockSt r ide ’]]) .

l exEntry (pn def , [symbol : ’ Broadcast Enable ’ ,num: , syntax : [’ Broadcast Enable ’]]) .

l exEntry (pn def , [symbol : ’ Burst Al igned ’ ,num: , syntax : [’ Burst Al igned ’]]) .

l exEntry (pn def , [symbol : ’ BurstLength ’ ,num: , syntax : [’ BurstLength ’]]) .

l exEntry (pn def , [symbol : ’ MBlockStride [0] ’ ,num: , syntax : [’ MBlockStride [0] ’]]) .

l exEntry (pn def , [symbol : ’ MBlockStride [1 : 0] ’ ,num: , syntax : [’ MBlockStride [1 : 0] ’]]) .

l exEntry (pn def , [symbol : ’ MBlockStride [2 : 0] ’ ,num: , syntax : [’ MBlockStride [2 : 0] ’]]) .

l exEntry (pn def , [symbol : ’ MBlockStride [3 : 0] ’ ,num: , syntax : [’ MBlockStride [3 : 0] ’]]) .

l exEntry (pn def , [symbol : ’Maddr [0] ’ ,num: , syntax : [’Maddr [0] ’]]) .

l exEntry (pn def , [symbol : ’Maddr [1 : 0] ’ ,num: , syntax : [’Maddr [1 : 0] ’]]) .

l exEntry (pn def , [symbol : ’Maddr [2 : 0] ’ ,num: , syntax : [’Maddr [2 : 0] ’]]) .

l exEntry (pn def , [symbol : ’Maddr [3 : 0] ’ ,num: , syntax : [’Maddr [3 : 0] ’]]) .

l exEntry (pn def , [symbol : ’ BurstLength Wdth ’ ,num: , syntax : [’ BurstLength Wdth ’]]) .

l exEntry (pn def , [symbol : ’ Bur s tPrec i s e ’ ,num: , syntax : [’ Bur s tPrec i s e ’]]) .

l exEntry (pn def , [symbol : ’ BurstSeq ’ ,num: , syntax : [’ BurstSeq ’]]) .

l exEntry (pn def , [symbol : ’ BurstSeq Blck Enable ’ ,num: , syntax : [’ BurstSeq Blck Enable ’]]) .

l exEntry (pn def , [symbol : ’ BurstSeq Df l t1 Enable ’ ,num: , syntax : [’ BurstSeq Df l t1 Enable ’]]) .

l exEntry (pn def , [symbol : ’ BurstSeq Df l t2 Enable ’ ,num: , syntax : [’ BurstSeq Df l t2 Enable ’]]) .

l exEntry (pn def , [symbol : ’ BurstSeq Enable ’ ,num: , syntax : [’ BurstSeq Enable ’]]) .

APPENDIX B. THE TPE GRAMMAR 224

l exEntry (pn def , [symbol : ’ BurstSeq Incr Enable ’ ,num: , syntax : [’ BurstSeq Incr Enable ’]]) .

l exEntry (pn def , [symbol : ’ BurstSeq Strm Enable ’ ,num: , syntax : [’ BurstSeq Strm Enable ’]]) .

l exEntry (pn def , [symbol : ’ BurstSeq Unkn Enable ’ ,num: , syntax : [’ BurstSeq Unkn Enable ’]]) .

l exEntry (pn def , [symbol : ’ BurstSeq Wrap Enable ’ ,num: , syntax : [’ BurstSeq Wrap Enable ’]]) .

l exEntry (pn def , [symbol : ’ BurstSeq XOR Enable ’ ,num: , syntax : [’ BurstSeq XOR Enable ’]]) .

l exEntry (pn def , [symbol : ’ BurstSingleReq ’ ,num: , syntax : [’ BurstSingleReq ’]]) .

l exEntry (pn def , [symbol : ’ ByteEn ’ ,num: , syntax : [’ ByteEn ’]]) .

l exEntry (pn def , [symbol : ’CmdAccept ’ ,num: , syntax : [’CmdAccept ’]]) .

l exEntry (pn def , [symbol : ’ ConnectCap ’ ,num: , syntax : [’ ConnectCap ’]]) .

l exEntry (pn def , [symbol : ’ Connection ’ ,num: , syntax : [’ Connection ’]]) .

l exEntry (pn def , [symbol : ’ Control ’ ,num: , syntax : [’ Control ’]]) .

l exEntry (pn def , [symbol : ’ ControlBusy ’ ,num: , syntax : [’ ControlBusy ’]]) .

l exEntry (pn def , [symbol : ’ ControlWr ’ ,num: , syntax : [’ ControlWr ’]]) .

l exEntry (pn def , [symbol : ’ Corresponding Exact ’ ,num: , syntax : [’ Corresponding Exact ’]]) .

l exEntry (pn def , [symbol : ’ DataAccept ’ ,num: , syntax : [’ DataAccept ’]]) .

l exEntry (pn def , [symbol : ’ Datahandshake ’ ,num: , syntax : [’ Datahandshake ’]]) .

l exEntry (pn def , [symbol : ’ DataLast ’ ,num: , syntax : [’ DataLast ’]]) .

l exEntry (pn def , [symbol : ’ DataRowLast ’ ,num: , syntax : [’ DataRowLast ’]]) .

l exEntry (pn def , [symbol : ’ Data Wdth ’ ,num: , syntax : [’ Data Wdth ’]]) .

l exEntry (pn def , [symbol : ’DLFT1 ’ ,num: , syntax : [’DLFT1 ’]]) .

l exEntry (pn def , [symbol : ’DLFT2 ’ ,num: , syntax : [’DLFT2 ’]]) .

l exEntry (pn def , [symbol : ’DFLT2 ’ ,num: , syntax : [’DFLT2 ’]]) .

l exEntry (pn def , [symbol : ’ SThreadBusy Exact ’ ,num: , syntax : [’ SThreadBusy Exact ’]]) .

l exEntry (pn def , [symbol : ’ SThreadBusy ExactCan ’ ,num: , syntax : [’ SThreadBusy ExactCan ’]]) .

l exEntry (pn def , [symbol : ’ MThreadBusy Exact ’ ,num: , syntax : [’ MThreadBusy Exact ’]]) .

l exEntry (pn def , [symbol : ’ SDataThreadBusy Exact ’ ,num: , syntax : [’ SDataThreadBusy Exact ’]]) .

l exEntry (pn def , [symbol : ’ Force Al igned ’ ,num: , syntax : [’ Force Al igned ’]]) .

l exEntry (pn def , [symbol : ’ IDLE ’ ,num: , syntax : [’ IDLE ’]]) .

l exEntry (pn def , [symbol : ’INCR ’ ,num: , syntax : [’INCR ’]]) .

l exEntry (pn def , [symbol : ’ Jtag Enable ’ ,num: , syntax : [’ Jtag Enable ’]]) .

l exEntry (pn def , [symbol : ’ J t ag t r s t Enab l e ’ ,num: , syntax : [’ J t ag t r s t Enab l e ’]]) .

l exEntry (pn def , [symbol : ’MAddr ’ ,num: , syntax : [’MAddr ’]]) .

l exEntry (pn def , [symbol : ’MAddrSpace ’ ,num: , syntax : [’MAddrSpace ’]]) .

l exEntry (pn def , [symbol : ’ MAtomicLength ’ ,num: , syntax : [’ MAtomicLength ’]]) .

l exEntry (pn def , [symbol : ’ MBlockHeight ’ ,num: , syntax : [’ MBlockHeight ’]]) .

l exEntry (pn def , [symbol : ’ MBurstPrecise ’ ,num: , syntax : [’ MBurstPrecise ’]]) .

l exEntry (pn def , [symbol : ’ MBlockStride ’ ,num: , syntax : [’ MBlockStride ’]]) .

l exEntry (pn def , [symbol : ’ MBurstLength ’ ,num: , syntax : [’ MBurstLength ’]]) .

l exEntry (pn def , [symbol : ’ MBurstSeq ’ ,num: , syntax : [’ MBurstSeq ’]]) .

l exEntry (pn def , [symbol : ’ MBurstSingleReq ’ ,num: , syntax : [’ MBurstSingleReq ’]]) .

l exEntry (pn def , [symbol : ’MByteEn ’ ,num: , syntax : [’MByteEn ’]]) .

l exEntry (pn def , [symbol : ’M CON’ ,num: , syntax : [’M CON’]]) .

l exEntry (pn def , [symbol : ’MConnect ’ ,num: , syntax : [’MConnect ’]]) .

l exEntry (pn def , [symbol : ’MConnID ’ ,num: , syntax : [’MConnID ’]]) .

APPENDIX B. THE TPE GRAMMAR 225

l exEntry (pn def , [symbol : ’MData ’ ,num: , syntax : [’MData ’]]) .

l exEntry (pn def , [symbol : ’MDataByteEn ’ ,num: , syntax : [’MDataByteEn ’]]) .

l exEntry (pn def , [symbol : ’ MDataInfo ’ ,num: , syntax : [’ MDataInfo ’]]) .

l exEntry (pn def , [symbol : ’ MDataInfoByte Wdth ’ ,num: , syntax : [’ MDataInfoByte Wdth ’]]) .

l exEntry (pn def , [symbol : ’ MDataLast ’ ,num: , syntax : [’ MDataLast ’]]) .

l exEntry (pn def , [symbol : ’MDataRowLast ’ ,num: , syntax : [’MDataRowLast ’]]) .

l exEntry (pn def , [symbol : ’MDataTagID ’ ,num: , syntax : [’MDataTagID ’]]) .

l exEntry (pn def , [symbol : ’ MDataThreadID ’ ,num: , syntax : [’ MDataThreadID ’]]) .

l exEntry (pn def , [symbol : ’ MDataValid ’ ,num: , syntax : [’ MDataValid ’]]) .

l exEntry (pn def , [symbol : ’M DISC ’ ,num: , syntax : [’M DISC ’]]) .

l exEntry (pn def , [symbol : ’M OFF ’ ,num: , syntax : [’M OFF ’]]) .

l exEntry (pn def , [symbol : ’ MError ’ ,num: , syntax : [’ MError ’]]) .

l exEntry (pn def , [symbol : ’ MReqInfo ’ ,num: , syntax : [’ MReqInfo ’]]) .

l exEntry (pn def , [symbol : ’MReqLast ’ ,num: , syntax : [’MReqLast ’]]) .

l exEntry (pn def , [symbol : ’MReqRowLast ’ ,num: , syntax : [’MReqRowLast ’]]) .

l exEntry (pn def , [symbol : ’ MReset ’ ,num: , syntax : [’ MReset ’]]) .

l exEntry (pn def , [symbol : ’ MReset n ’ ,num: , syntax : [’ MReset n ’]]) .

l exEntry (pn def , [symbol : ’ Reset ’ ,num: , syntax : [’ Reset ’]]) .

l exEntry (pn def , [symbol : ’ MRespAccept ’ ,num: , syntax : [’ MRespAccept ’]]) .

l exEntry (pn def , [symbol : ’MTagID ’ ,num: , syntax : [’MTagID ’]]) .

l exEntry (pn def , [symbol : ’ MTagInOrder ’ ,num: , syntax : [’ MTagInOrder ’]]) .

l exEntry (pn def , [symbol : ’MThreadBusy ’ ,num: , syntax : [’MThreadBusy ’]]) .

l exEntry (pn def , [symbol : ’MThreadID ’ ,num: , syntax : [’MThreadID ’]]) .

l exEntry (pn def , [symbol : ’ SThreadBusy Pipel ined ’ ,num: , syntax : [’ SThreadBusy Pipel ined ’]]) .

l exEntry (pn def , [symbol : ’ MThreadBusy Pipelined ’ ,num: , syntax : [’ MThreadBusy Pipelined ’]]) .

l exEntry (pn def , [symbol : ’ SDataThreadBusy Pipelined ’ ,num: , syntax : [’

SDataThreadBusy Pipelined ’]]) .

l exEntry (pn def , [symbol : ’RD’ ,num: , syntax : [’RD’]]) .

l exEntry (pn def , [symbol : ’RDEX’ ,num: , syntax : [’RDEX’]]) .

l exEntry (pn def , [symbol : ’RDL’ ,num: , syntax : [’RDL’]]) .

l exEntry (pn def , [symbol : ’ RDLwrc Enable ’ ,num: , syntax : [’ RDLwrc Enable ’]]) .

l exEntry (pn def , [symbol : ’ Read Enable ’ ,num: , syntax : [’ Read Enable ’]]) .

l exEntry (pn def , [symbol : ’ReadEx ’ ,num: , syntax : [’ReadEx ’]]) .

l exEntry (pn def , [symbol : ’ ReadEx Enable ’ ,num: , syntax : [’ ReadEx Enable ’]]) .

l exEntry (pn def , [symbol : ’ ReqData Together ’ ,num: , syntax : [’ ReqData Together ’]]) .

l exEntry (pn def , [symbol : ’ ReqLast ’ ,num: , syntax : [’ ReqLast ’]]) .

l exEntry (pn def , [symbol : ’ ReqRowLast ’ ,num: , syntax : [’ ReqRowLast ’]]) .

l exEntry (pn def , [symbol : ’RESP ’ ,num: , syntax : [’RESP ’]]) .

l exEntry (pn def , [symbol : ’ RespAccept ’ ,num: , syntax : [’ RespAccept ’]]) .

l exEntry (pn def , [symbol : ’ RespInfo ’ ,num: , syntax : [’ RespInfo ’]]) .

l exEntry (pn def , [symbol : ’ Res as t ’ ,num: , syntax : [’ Res as t ’]]) .

l exEntry (pn def , [symbol : ’ RespRowLast ’ ,num: , syntax : [’ RespRowLast ’]]) .

l exEntry (pn def , [symbol : ’ RiteNonPost Enable ’ ,num: , syntax : [’ RiteNonPost Enable ’]]) .

l exEntry (pn def , [symbol : ’ SCmdAccept ’ ,num: , syntax : [’ SCmdAccept ’]]) .

APPENDIX B. THE TPE GRAMMAR 226

l exEntry (pn def , [symbol : ’S CON ’ ,num: , syntax : [’S CON ’]]) .

l exEntry (pn def , [symbol : ’ SConnect ’ ,num: , syntax : [’ SConnect ’]]) .

l exEntry (pn def , [symbol : ’ SData ’ ,num: , syntax : [’ SData ’]]) .

l exEntry (pn def , [symbol : ’ SDataAccept ’ ,num: , syntax : [’ SDataAccept ’]]) .

l exEntry (pn def , [symbol : ’ SDataInfo ’ ,num: , syntax : [’ SDataInfo ’]]) .

l exEntry (pn def , [symbol : ’ SDataInfoByte Wdth ’ ,num: , syntax : [’ SDataInfoByte Wdth ’]]) .

l exEntry (pn def , [symbol : ’ SDataInfo Wdth ’ ,num: , syntax : [’ SDataInfo Wdth ’]]) .

l exEntry (pn def , [symbol : ’ SDataThreadBusy ’ ,num: , syntax : [’ SDataThreadBusy ’]]) .

l exEntry (pn def , [symbol : ’ SError ’ ,num: , syntax : [’ SError ’]]) .

l exEntry (pn def , [symbol : ’ S Inte r rupt ’ ,num: , syntax : [’ S Inte r rupt ’]]) .

l exEntry (pn def , [symbol : ’ SReset ’ ,num: , syntax : [’ SReset ’]]) .

l exEntry (pn def , [symbol : ’ SReset n ’ ,num: , syntax : [’ SReset n ’]]) .

l exEntry (pn def , [symbol : ’ SResp ’ ,num: , syntax : [’ SResp ’]]) .

l exEntry (pn def , [symbol : ’ SRespInfo ’ ,num: , syntax : [’ SRespInfo ’]]) .

l exEntry (pn def , [symbol : ’ SRes ast ’ ,num: , syntax : [’ SRes ast ’]]) .

l exEntry (pn def , [symbol : ’ SRespRowLast ’ ,num: , syntax : [’ SRespRowLast ’]]) .

l exEntry (pn def , [symbol : ’SRMD’ ,num: , syntax : [’SRMD’]]) .

l exEntry (pn def , [symbol : ’ STagID ’ ,num: , syntax : [’ STagID ’]]) .

l exEntry (pn def , [symbol : ’ STagInOrder ’ ,num: , syntax : [’ STagInOrder ’]]) .

l exEntry (pn def , [symbol : ’ Status ’ ,num: , syntax : [’ Status ’]]) .

l exEntry (pn def , [symbol : ’ StatusBusy ’ ,num: , syntax : [’ StatusBusy ’]]) .

l exEntry (pn def , [symbol : ’ StatusRd ’ ,num: , syntax : [’ StatusRd ’]]) .

l exEntry (pn def , [symbol : ’ SThreadBusy ’ ,num: , syntax : [’ SThreadBusy ’]]) .

l exEntry (pn def , [symbol : ’ SThreadID ’ ,num: , syntax : [’ SThreadID ’]]) .

l exEntry (pn def , [symbol : ’STRM’ ,num: , syntax : [’STRM’]]) .

l exEntry (pn def , [symbol : ’ SWait ’ ,num: , syntax : [’ SWait ’]]) .

l exEntry (pn def , [symbol : ’ TagInOrder ’ ,num: , syntax : [’ TagInOrder ’]]) .

l exEntry (pn def , [symbol : ’UNKN’ ,num: , syntax : [’UNKN’]]) .

l exEntry (pn def , [symbol : ’ MDataInfo Wdth ’ ,num: , syntax : [’ MDataInfo Wdth ’]]) .

l exEntry (pn def , [symbol : ’ MDataInfoByte Wdth ’ ,num: , syntax : [’ MDataInfoByte Wdth ’]]) .

l exEntry (pn def , [symbol : ’WR’ ,num: , syntax : [’WR’]]) .

l exEntry (pn def , [symbol : ’WRC’ ,num: , syntax : [’WRC’]]) .

l exEntry (pn def , [symbol : ’ Write Enable ’ ,num: , syntax : [’ Write Enable ’]]) .

l exEntry (pn def , [symbol : ’ WriteNonPost Enable ’ ,num: , syntax : [’ WriteNonPost Enable ’]]) .

l exEntry (pn def , [symbol : ’WRNP’ ,num: , syntax : [’WRNP’]]) .

l exEntry (pn def , [symbol : ’MRespRowLast ’ ,num: , syntax : [’MRespRowLast ’]]) .

l exEntry (pn def , [symbol : ’XOR’ ,num: , syntax : [’XOR’]]) .

l exEntry (pn def , [symbol : ’ Ba r r i e r ’ ,num: , syntax : [’ Ba r r i e r ’]]) .

l exEntry (pn def , [symbol : ’ Data Width ’ ,num: , syntax : [’ Data ’ , ’ Width ’]]) .

l exEntry (pn def , [symbol : ’ AC payload ’ ,num: , syntax : [’AC’ , payload]]) .

l exEntry (pn def , [symbol : ’ CD payload ’ ,num: , syntax : [’CD’ , payload]]) .

l exEntry (pn def , [symbol : ’ CR payload ’ ,num: , syntax : [’CR’ , payload]]) .

l exEntry (pn def , [symbol : ’ TUSER payload ’ ,num: , syntax : [’TUSER ’ , payload]]) .

APPENDIX B. THE TPE GRAMMAR 227

l exEntry (pn def , [symbol : ’ RData va l id byte l ane s ’ ,num: , syntax : [’RData ’ , va l id , byte , l ane s

]]) .

l exEntry (pn def , [symbol : ’ WData va l id byte lanes ’ ,num: , syntax : [’WData ’ , va l id , byte , l ane s

]]) .

/∗===

Temporal Nouns

==∗/

l exEntry (tnoun , [symbol : r e s e t ,num: sg , syntax : [r e s e t]]) .

l exEntry (tnoun , [symbol : acce s se ,num: pl , syntax : [a c c e s s e s]]) .

l exEntry (tnoun , [symbol : request ,num: sg , syntax : [r eque s t]]) .

l exEntry (tnoun , [symbol : request ,num: pl , syntax : [r e q u e s t s]]) .

l exEntry (tnoun , [symbol : response ,num: sg , syntax : [r e sponse]]) .

l exEntry (tnoun , [symbol : ack ,num: sg , syntax : [acknowledgement]]) .

l exEntry (tnoun , [symbol : t ransac t i on ,num: sg , syntax : [t r a n s a c t i o n]]) .

l exEntry (tnoun , [symbol : cyc l e ,num: sg , syntax : [c y c l e]]) .

l exEntry (tnoun , [symbol : sequence ,num: sg , syntax : [sequence]]) .

l exEntry (tnoun , [symbol : t ransac t i on ,num: pl , syntax : [t r a n s a c t i o n s]]) .

l exEntry (tnoun , [symbol : cyc l e ,num: pl , syntax : [c y c l e s]]) .

l exEntry (tnoun , [symbol : cyc l e ,num: pl , syntax : [consecut ive , c y c l e s]]) .

l exEntry (tnoun , [symbol : sequence ,num: pl , syntax : [sequences]]) .

l exEntry (tnoun , [symbol : phase ,num: sg , syntax : [phase]]) .

l exEntry (tnoun , [symbol : o cp r e s e t ,num: sg , syntax : [’OCP’ , r e s e t]]) .

l exEntry (tnoun , [symbol : o cp t ransac t i on ,num: sg , syntax : [’OCP’ , t r a n s a c t i o n]]) .

l exEntry (tnoun , [symbol : ocp c lock ,num: sg , syntax : [’OCP’ , c l o ck]]) .

l exEntry (tnoun , [symbol : c l o c k c y c l e ,num: sg , syntax : [c lock , c y c l e]]) .

l exEntry (tnoun , [symbol : c l o c k c y c l e ,num: pl , syntax : [c lock , c y c l e s]]) .

l exEntry (tnoun , [symbol : c l o c k s i g n a l ,num: sg , syntax : [c lock , s i g n a l]]) .

l exEntry (tnoun , [symbol : r equest phase ,num: sg , syntax : [request , phase]]) .

l exEntry (tnoun , [symbol : response phase ,num: sg , syntax : [response , phase]]) .

l exEntry (tnoun , [symbol : datahandshake phase ,num: sg , syntax : [datahandshake , phase]]) .

l exEntry (tnoun , [symbol : data phase ,num: sg , syntax : [data , phase]]) .

l exEntry (tnoun , [symbol : response datahandshake ,num: sg , syntax : [response , datahandshake]]) .

l exEntry (tnoun , [symbol : t r a n s f e r ,num: pl , syntax : [t r a n s f e r s]]) .

l exEntry (tnoun , [symbol : d a t a t r a n s f e r ,num: pl , syntax : [data , t r a n s f e r s]]) .

l exEntry (tnoun , [symbol : burs t sequence ,num: pl , syntax : [burst , sequences]]) .

l exEntry (tnoun , [symbol : t r ansac t i on s equence ,num: pl , syntax : [t ransac t i on , sequences]]) .

l exEntry (tnoun , [symbol : bur s t r eque s t ,num: sg , syntax : [burst , r eque s t]]) .

l exEntry (tnoun , [symbol : wrc request ,num: sg , syntax : [’WRC’ , r eque s t]]) .

l exEntry (tnoun , [symbol : dvm response ,num: sg , syntax : [’DVM’ , re sponse]]) .

l exEntry (tnoun , [symbol : aw handshake ,num: sg , syntax : [’AW’ , handshake]]) .

l exEntry (tnoun , [symbol : r l a s t handshake ,num: sg , syntax : [’ Rlast ’ , handshake]]) .

l exEntry (tnoun , [symbol : burst ,num: sg , syntax : [burst]]) .

l exEntry (tnoun , [symbol : burst ,num: pl , syntax : [bur s t s]]) .

l exEntry (tnoun , [symbol : d f l t 2 b u r s t s ,num: pl , syntax : [’DFLT2 ’ , bur s t s]]) .

APPENDIX B. THE TPE GRAMMAR 228

l exEntry (tnoun , [symbol : srmd burst ,num: sg , syntax : [’SRMD’ , burst]]) .

l exEntry (tnoun , [symbol : mrmd burst ,num: sg , syntax : [’MRMD’ , burst]]) .

l exEntry (tnoun , [symbol : i n c r b u r s t ,num: sg , syntax : [’INCR ’ , burst]]) .

l exEntry (tnoun , [symbol : i n c r b u r s t ,num: sg , syntax : [’WRAP’ , burst]]) .

l exEntry (tnoun , [symbol : p r e c i s e b u r s t ,num: pl , syntax : [p r e c i s e , bur s t s]]) .

l exEntry (tnoun , [symbol : e v i c t t r a n s a c t i o n ,num: pl , syntax : [’ Evict ’ , t r a n s a c t i o n s]]) .

l exEntry (tnoun , [symbol : dvm complete transact ion ,num: pl , syntax : [’DVM’ , complete ,

t r a n s a c t i o n s]]) .

l exEntry (tnoun , [symbol : dvm read transact ion ,num: pl , syntax : [’DVM’ ,read , t r a n s a c t i o n s]]) .

l exEntry (tnoun , [symbol : wr i t enosnoop t ransac t i on ,num: pl , syntax : [’ WriteNoSnoop ’ ,

t r a n s a c t i o n s]]) .

/∗===

Number

==∗/

l exEntry (number , [symbol : ’ 0 ’ , syntax : [ze ro]]) .

l exEntry (number , [symbol : ’ 0 ’ , syntax : [z e r o s]]) .

l exEntry (number , [symbol : ’ 0 ’ , syntax : [’ 0 ’]]) .

l exEntry (number , [symbol : ’ 1 ’ , syntax : [’ 1 ’]]) .

l exEntry (number , [symbol : ’ 1 ’ , syntax : [’ 1 s ’]]) .

l exEntry (number , [symbol : ’ 2 ’ , syntax : [’ 2 ’]]) .

l exEntry (number , [symbol : ’ 3 ’ , syntax : [’ 3 ’]]) .

l exEntry (number , [symbol : ’ 4 ’ , syntax : [’ 4 ’]]) .

l exEntry (number , [symbol : ’ 5 ’ , syntax : [’ 5 ’]]) .

l exEntry (number , [symbol : ’ 6 ’ , syntax : [’ 6 ’]]) .

l exEntry (number , [symbol : ’ 7 ’ , syntax : [’ 7 ’]]) .

l exEntry (number , [symbol : ’ 8 ’ , syntax : [’ 8 ’]]) .

l exEntry (number , [symbol : ’ 9 ’ , syntax : [’ 9 ’]]) .

l exEntry (number , [symbol : ’ 10 ’ , syntax : [’ 10 ’]]) .

l exEntry (number , [symbol : ’ 16 ’ , syntax : [’ 16 ’]]) .

l exEntry (number , [symbol : ’ 32 ’ , syntax : [’ 32 ’]]) .

l exEntry (number , [symbol : ’ 64 ’ , syntax : [’ 64 ’]]) .

l exEntry (number , [symbol : ’ 128 ’ , syntax : [’ 128 ’]]) .

l exEntry (number , [symbol : ’ 256 ’ , syntax : [’ 256 ’]]) .

l exEntry (number , [symbol : ’ 512 ’ , syntax : [’ 512 ’]]) .

l exEntry (number , [symbol : ’ 1024 ’ , syntax : [’ 1024 ’]]) .

l exEntry (number , [symbol : ’ 16 ’ , syntax : [’MaxWaits ’]]) .

l exEntry (number , [symbol : ’ 1 ’ , syntax : [one]]) .

l exEntry (number , [symbol : ’ 2 ’ , syntax : [two]]) .

l exEntry (number , [symbol : ’ 3 ’ , syntax : [th ree]]) .

l exEntry (number , [symbol : ’ 4 ’ , syntax : [f our]]) .

l exEntry (number , [symbol : ’ 5 ’ , syntax : [f i v e]]) .

l exEntry (number , [symbol : ’ 6 ’ , syntax : [s i x]]) .

l exEntry (number , [symbol : ’ 7 ’ , syntax : [seven]]) .

l exEntry (number , [symbol : ’ 8 ’ , syntax : [e i gh t]]) .

APPENDIX B. THE TPE GRAMMAR 229

l exEntry (number , [symbol : ’ 9 ’ , syntax : [n ine]]) .

l exEntry (number , [symbol : ’ 10 ’ , syntax : [ten]]) .

l exEntry (number , [symbol : ’ 5 b 0 0 0 x 0 ’ , syntax : [’ 5 b 0 0 0 x 0 ’]]) .

l exEntry (number , [symbol : ’ 2 b 1 1 ’ , syntax : [’ 1 b 1 ’]]) .

l exEntry (number , [symbol : ’ 2 b 0 0 ’ , syntax : [’ 1 b 0 ’]]) .

l exEntry (number , [symbol : ’ 2 b 1 1 ’ , syntax : [’ 2 b 1 1 ’]]) .

l exEntry (number , [symbol : ’ 2 b 0 0 ’ , syntax : [’ 2 b 0 0 ’]]) .

l exEntry (number , [symbol : ’ 2 b 0 0 0 0 ’ , syntax : [’ 2 b 0 0 0 0 ’]]) .

l exEntry (number , [symbol : ’ 0001 ’ , syntax : [’ 0001 ’]]) .

l exEntry (number , [symbol : ’ 0010 ’ , syntax : [’ 0010 ’]]) .

l exEntry (number , [symbol : ’ 0100 ’ , syntax : [’ 0100 ’]]) .

l exEntry (number , [symbol : ’ 1000 ’ , syntax : [’ 1000 ’]]) .

l exEntry (number , [symbol : ’ 0011 ’ , syntax : [’ 0011 ’]]) .

l exEntry (number , [symbol : ’ 1100 ’ , syntax : [’ 1100 ’]]) .

l exEntry (number , [symbol : ’ 1111 ’ , syntax : [’ 1111 ’]]) .

l exEntry (number , [symbol : ’ 0000 ’ , syntax : [’ 0000 ’]]) .

l exEntry (number , [symbol : ’ 00000001 ’ , syntax : [’ 00000001 ’]]) .

l exEntry (number , [symbol : ’ 00000010 ’ , syntax : [’ 00000010 ’]]) .

l exEntry (number , [symbol : ’ 00000100 ’ , syntax : [’ 00000100 ’]]) .

l exEntry (number , [symbol : ’ 00001000 ’ , syntax : [’ 00001000 ’]]) .

l exEntry (number , [symbol : ’ 00010000 ’ , syntax : [’ 00010000 ’]]) .

l exEntry (number , [symbol : ’ 00100000 ’ , syntax : [’ 00100000 ’]]) .

l exEntry (number , [symbol : ’ 01000000 ’ , syntax : [’ 01000000 ’]]) .

l exEntry (number , [symbol : ’ 10000000 ’ , syntax : [’ 10000000 ’]]) .

l exEntry (number , [symbol : ’ 00000011 ’ , syntax : [’ 00000011 ’]]) .

l exEntry (number , [symbol : ’ 00001100 ’ , syntax : [’ 00001100 ’]]) .

l exEntry (number , [symbol : ’ 00110000 ’ , syntax : [’ 00110000 ’]]) .

l exEntry (number , [symbol : ’ 11000000 ’ , syntax : [’ 11000000 ’]]) .

l exEntry (number , [symbol : ’ 00001111 ’ , syntax : [’ 00001111 ’]]) .

l exEntry (number , [symbol : ’ 11110000 ’ , syntax : [’ 11110000 ’]]) .

l exEntry (number , [symbol : ’ 11111111 ’ , syntax : [’ 11111111 ’]]) .

l exEntry (number , [symbol : ’ 00000000 ’ , syntax : [’ 00000000 ’]]) .

l exEntry (number , [symbol : ’ 0000000000000001 ’ , syntax : [’ 0000000000000001 ’]]) .

l exEntry (number , [symbol : ’ 0000000000000010 ’ , syntax : [’ 0000000000000010 ’]]) .

l exEntry (number , [symbol : ’ 0000000000000100 ’ , syntax : [’ 0000000000000100 ’]]) .

l exEntry (number , [symbol : ’ 0000000000001000 ’ , syntax : [’ 0000000000001000 ’]]) .

l exEntry (number , [symbol : ’ 0000000000010000 ’ , syntax : [’ 0000000000010000 ’]]) .

l exEntry (number , [symbol : ’ 0000000000100000 ’ , syntax : [’ 0000000000100000 ’]]) .

l exEntry (number , [symbol : ’ 0000000001000000 ’ , syntax : [’ 0000000001000000 ’]]) .

l exEntry (number , [symbol : ’ 0000000010000000 ’ , syntax : [’ 0000000010000000 ’]]) .

l exEntry (number , [symbol : ’ 0000000100000000 ’ , syntax : [’ 0000000100000000 ’]]) .

l exEntry (number , [symbol : ’ 0000001000000000 ’ , syntax : [’ 0000001000000000 ’]]) .

l exEntry (number , [symbol : ’ 0000010000000000 ’ , syntax : [’ 0000010000000000 ’]]) .

l exEntry (number , [symbol : ’ 0000100000000000 ’ , syntax : [’ 0000100000000000 ’]]) .

APPENDIX B. THE TPE GRAMMAR 230

l exEntry (number , [symbol : ’ 0001000000000000 ’ , syntax : [’ 0001000000000000 ’]]) .

l exEntry (number , [symbol : ’ 0010000000000000 ’ , syntax : [’ 0010000000000000 ’]]) .

l exEntry (number , [symbol : ’ 0100000000000000 ’ , syntax : [’ 0100000000000000 ’]]) .

l exEntry (number , [symbol : ’ 1000000000000000 ’ , syntax : [’ 1000000000000000 ’]]) .

l exEntry (number , [symbol : ’ 0000000000000011 ’ , syntax : [’ 0000000000000011 ’]]) .

l exEntry (number , [symbol : ’ 0000000000001100 ’ , syntax : [’ 0000000000001100 ’]]) .

l exEntry (number , [symbol : ’ 0000000000110000 ’ , syntax : [’ 0000000000110000 ’]]) .

l exEntry (number , [symbol : ’ 0000000011000000 ’ , syntax : [’ 0000000011000000 ’]]) .

l exEntry (number , [symbol : ’ 0000001100000000 ’ , syntax : [’ 0000001100000000 ’]]) .

l exEntry (number , [symbol : ’ 0011000000000000 ’ , syntax : [’ 0011000000000000 ’]]) .

l exEntry (number , [symbol : ’ 1100000000000000 ’ , syntax : [’ 1100000000000000 ’]]) .

l exEntry (number , [symbol : ’ 0000000000001111 ’ , syntax : [’ 0000000000001111 ’]]) .

l exEntry (number , [symbol : ’ 0000000011110000 ’ , syntax : [’ 0000000011110000 ’]]) .

l exEntry (number , [symbol : ’ 0000111100000000 ’ , syntax : [’ 0000111100000000 ’]]) .

l exEntry (number , [symbol : ’ 1111000000000000 ’ , syntax : [’ 1111000000000000 ’]]) .

l exEntry (number , [symbol : ’ 0000000011111111 ’ , syntax : [’ 0000000011111111 ’]]) .

l exEntry (number , [symbol : ’ 1111111100000000 ’ , syntax : [’ 1111111100000000 ’]]) .

l exEntry (number , [symbol : ’ 1111111111111111 ’ , syntax : [’ 1111111111111111 ’]]) .

l exEntry (number , [symbol : ’ 0000000000000000 ’ , syntax : [’ 0000000000000000 ’]]) .

/∗===

In t r a n s i t i v e verbs

==∗/

l exEntry (iv , [syntax : accept]) .

l exEntry (iv , [syntax : e x i s t]) .

l exEntry (iv , [syntax : go]) .

lexEntry (iv , [syntax : hold]) .

lexEntry (iv , [syntax : keep]) .

lexEntry (iv , [syntax : begin]) .

lexEntry (iv , [syntax : s e t]) .

l exEntry (iv , [syntax : take]) .

lexEntry (iv , [syntax : change]) .

lexEntry (iv , [syntax : match]) .

lexEntry (iv , [syntax : remain]) .

lexEntry (iv , [syntax : assert]) .

l exEntry (iv , [syntax : d e a s s e r t]) .

l exEntry (iv , [syntax : be]) .

lexEntry (iv , [syntax : permit]) .

l exEntry (iv , [syntax : change]) .

lexEntry (iv , [syntax : d r i v e]) .

l exEntry (iv , [syntax : s tay]) .

lexEntry (iv , [syntax : s t a l l]) .

l exEntry (iv , [syntax : occur]) .

l exEntry (iv , [syntax : enable]) .

l exEntry (iv , [syntax : f a i l]) .

APPENDIX B. THE TPE GRAMMAR 231

l exEntry (iv , [syntax : become]) .

/∗===

Trans i t i v e verbs

==∗/

l exEntry (tv , [syntax : be]) .

lexEntry (tv , [syntax : accept]) .

l exEntry (tv , [syntax : a l low]) .

lexEntry (tv , [syntax : a s s i g n]) .

lexEntry (tv , [syntax : has]) .

l exEntry (tv , [syntax : have]) .

lexEntry (tv , [syntax : g ive]) .

l exEntry (tv , [syntax : go]) .

lexEntry (tv , [syntax : hold]) .

lexEntry (tv , [syntax : permit]) .

l exEntry (tv , [syntax : c r o s s]) .

l exEntry (tv , [syntax : i s s u e]) .

lexEntry (tv , [syntax : complete]) .

l exEntry (tv , [syntax : change]) .

lexEntry (tv , [syntax : l i m i t]) .

l exEntry (tv , [syntax : sample]) .

l exEntry (tv , [syntax : produce]) .

lexEntry (tv , [syntax : match]) .

lexEntry (tv , [syntax : i n t e r l e a v e]) .

lexEntry (tv , [syntax : r e s t r i c t]) .

l exEntry (tv , [syntax : s e t]) .

l exEntry (tv , [syntax : t r a n s i t i o n]) .

/∗===

Di t r an s i t i v e verbs

==∗/

l exEntry (dtv , [syntax : a l low]) .

lexEntry (dtv , [syntax : a s s i g n]) .

lexEntry (dtv , [syntax : permit]) .

l exEntry (dtv , [syntax : get]) .

l exEntry (dtv , [syntax : g ive]) .

/∗===

Adjec t i v e s

==∗/

l exEntry (adj , [symbol : a s soc i a t ed , syntax : [a s s o c i a t e d]]) .

l exEntry (adj , [symbol : f a l s e , syntax : [f a l s e]]) .

l exEntry (adj , [symbol : given , syntax : [g iven]]) .

l exEntry (adj , [symbol : permitted , syntax : [permitted]]) .

l exEntry (adj , [symbol : read , syntax : [read]]) .

l exEntry (adj , [symbol : i nva l i d , syntax : [i n v a l i d]]) .

l exEntry (adj , [symbol : true , syntax : [true]]) .

APPENDIX B. THE TPE GRAMMAR 232

l exEntry (adj , [symbol : va l id , syntax : [v a l i d]]) .

l exEntry (adj , [symbol : accepted , syntax : [accepted]]) .

l exEntry (adj , [symbol : ac t ive , syntax : [a c t i v e]]) .

l exEntry (adj , [symbol : al lowed , syntax : [a l lowed]]) .

l exEntry (adj , [symbol : locked , syntax : [l ocked]]) .

l exEntry (adj , [symbol : write , syntax : [write]]) .

l exEntry (adj , [symbol : unlocked , syntax : [unlocked]]) .

l exEntry (adj , [symbol : f u l l , syntax : [f u l l]]) .

l exEntry (adj , [symbol : re served , syntax : [r e s e rved]]) .

l exEntry (adj , [symbol : read , syntax : [read]]) .

l exEntry (adj , [symbol : ex c lu s i v e , syntax : [e x c l u s i v e]]) .

l exEntry (adj , [symbol : add i t i ona l , syntax : [a d d i t i o n a l]]) .

l exEntry (adj , [symbol : a s s e r t ed , syntax : [a s s e r t e d]]) .

l exEntry (adj , [symbol : outs t ing , syntax : [ou t s t i ng]]) .

l exEntry (adj , [symbol : same , syntax : [same]]) .

l exEntry (adj , [symbol : shareab le , syntax : [sha r eab l e]]) .

l exEntry (adj , [symbol : corresponding , syntax : [cor re spond ing]]) .

l exEntry (adj , [symbol : requ i red , syntax : [r equ i r ed]]) .

l exEntry (adj , [symbol : a l igned , syntax : [a l i gned]]) .

l exEntry (adj , [symbol : outer , syntax : [outer]]) .

l exEntry (adj , [symbol : inner , syntax : [inne r]]) .

l exEntry (adj , [symbol : ’ 4kb ’ , syntax : [’ 4KB’]]) .

l exEntry (adj , [symbol : i n c l u s i v e , syntax : [i n c l u s i v e]]) .

l exEntry (adj , [symbol : s i n g l e , syntax : [s i n g l e]]) .

l exEntry (adj , [symbol : high , syntax : [high]]) .

l exEntry (adj , [symbol : low , syntax : [low]]) .

l exEntry (adj , [symbol : non f inshed , syntax : [non , f i n s he d]]) .

l exEntry (adj , [symbol : d i sconnect , syntax : [d i s connec t]]) .

l exEntry (adj , [symbol : connected , syntax : [connected]]) .

l exEntry (adj , [symbol : d i sab led , syntax : [d i s ab l ed]]) .

l exEntry (adj , [symbol : non blck , syntax : [non , b lck]]) .

l exEntry (adj , [symbol : r i s i n g , syntax : [r i s i n g]]) .

l exEntry (adj , [symbol : equal , syntax : [equal]]) .

l exEntry (adj , [symbol : d i f f e r e n t , syntax : [d i f f e r e n t]]) .

l exEntry (adj , [symbol : provided , syntax : [provided]]) .

l exEntry (adj , [symbol : i na c t i v e , syntax : [i n a c t i v e]]) .

l exEntry (adj , [symbol : enabled , syntax : [enabled]]) .

l exEntry (adj , [symbol : non enabled , syntax : [non , enabled]]) .

l exEntry (adj , [symbol : block , syntax : [b lock]]) .

l exEntry (adj , [symbol : absent , syntax : [absent]]) .

l exEntry (adj , [symbol : l e g a l , syntax : [l e g a l]]) .

l exEntry (adj , [symbol : i l l e g a l , syntax : [i l l e g a l]]) .

l exEntry (adj , [symbol : ac t ive , syntax : [a c t i v e]]) .

l exEntry (adj , [symbol : busy , syntax : [busy]]) .

APPENDIX B. THE TPE GRAMMAR 233

l exEntry (adj , [symbol : unknown , syntax : [unknown]]) .

l exEntry (adj , [symbol : normal , syntax : [normal]]) .

l exEntry (adj , [symbol : outstanding , syntax : [outstanding]]) .

l exEntry (adj , [symbol : supported , syntax : [supported]]) .

l exEntry (adj , [symbol : tagged , syntax : [tagged]]) .

l exEntry (adj , [symbol : unlocking , syntax : [un lock ing]]) .

l exEntry (adj , [symbol : exokay , syntax : [’EXOKAY’]]) .

l exEntry (adj , [symbol : pas sd i r ty , syntax : [’ PassDirty ’]]) .

l exEntry (adj , [symbol : i s shared , syntax : [’ I sShared ’]]) .

l exEntry (adj , [symbol : c leanunique , syntax : [’ CleanUnique ’]]) .

l exEntry (adj , [symbol : c l eanshared , syntax : [’ CleanShared ’]]) .

l exEntry (adj , [symbol : c l e a n i n v a l i d , syntax : [’ C l eanInva l id ’]]) .

l exEntry (adj , [symbol : makeunique , syntax : [’ MakeUnique ’]]) .

l exEntry (adj , [symbol : makeinval id , syntax : [’ MakeInvalid ’]]) .

l exEntry (adj , [symbol : make , syntax : [’Make ’]]) .

l exEntry (adj , [symbol : c lean , syntax : [’ Clean ’]]) .

l exEntry (adj , [symbol : readunique , syntax : [’ ReadUnique ’]]) .

l exEntry (adj , [symbol : readshared , syntax : [’ ReadShared ’]]) .

l exEntry (adj , [symbol : readonce , syntax : [’ ReadOnce ’]]) .

l exEntry (adj , [symbol : r eadnotsharedd i r ty , syntax : [’ ReadNotSharedDirty ’]]) .

l exEntry (adj , [symbol : readnosnoop , syntax : [’ ReadNoSnoop ’]]) .

l exEntry (adj , [symbol : readc lean , syntax : [’ ReadClean ’]]) .

l exEntry (adj , [symbol : wr iteunique , syntax : [’ WriteUnique ’]]) .

l exEntry (adj , [symbol : writenosnoop , syntax : [’ WriteNoSnoop ’]]) .

l exEntry (adj , [symbol : wr i t e l i n eun ique , syntax : [’ WriteLineUnique ’]]) .

l exEntry (adj , [symbol : wr i t e c l ean , syntax : [’ WriteClean ’]]) .

l exEntry (adj , [symbol : writeback , syntax : [’ WriteBack ’]]) .

l exEntry (adj , [symbol : f a i l , syntax : [’FAIL ’]]) .

l exEntry (adj , [symbol : blck , syntax : [’BLCK’]]) .

l exEntry (adj , [symbol : non blck , syntax : [non , ’BLCK’]]) .

l exEntry (adj , [symbol : b a r r i e r , syntax : [b a r r i e r]]) .

l exEntry (adj , [symbol : non bar r i e r , syntax : [non , b a r r i e r]]) .

l exEntry (adj , [symbol : non inorder , syntax : [non , i no rde r]]) .

/∗===

Adjec t i v e (S t a b l e)

==∗/

l exEntry (ad j Stab l e , [syntax : [s t a b l e]]) .

l exEntry (ad j Stab l e , [syntax : [s teady]]) .

l exEntry (ad j Stab l e , [syntax : [constant]]) .

/∗===

Adverbs

==∗/

l exEntry (adv , [syntax : [exac t l y]]) .

l exEntry (adv , [syntax : [ev en tua l l y]]) .

APPENDIX B. THE TPE GRAMMAR 234

/∗===

Semantic Lexicon Lambda

===

Det Semantics

==∗/

semLex (det , [type : f o r a l l , sem : lbd (g , f o r a l l (g))]) .

semLex (det , [type : e x i s t s , sem : lbd (g , e x i s t s (g))]) .

semLex (det , [type : def , sem : lbd (g , de f (g))]) .

/∗===

Verb Semantics

==∗/

semLex (iv , [symbol : Sym, type : f o r a l l , sem : lbd (g , f o r a l l (Fla))]) :− Fla = . . [Sym, g] .

semLex (iv , [symbol : Sym, type : e x i s t s , sem : lbd (g , e x i s t s (Fla) during ’T ’)]) :−

Fla = . . [Sym, g] .

semLex (iv , [symbol : Sym, type : i n i t e x i s t s , sem : lbd (g , i n i t e x i s t s (Fla) dur ing ’T ’)]) :−

Fla = . . [Sym, g] .

semLex (i v ad j , [symbol : , type : f o r a l l , sem : lbd (p , lbd (g , f o r a l l (p@g)))]) .

semLex (i v ad j , [symbol : , type : e x i s t s , sem : lbd (p , lbd (g , e x i s t s (p@g) during ’T ’))]) .

semLex (i v ad j , [symbol : , type : i n i t e x i s t s , sem : lbd (p , lbd (g , i n i t e x i s t s (p@g) during ’T ’))])

.

semLex (tv , [symbol : Sym, type : f o r a l l , sem : lbd (h , lbd (g , f o r a l l (Fla)))]) :− Fla = . . [Sym, g , h] .

semLex (tv , [symbol : Sym, type : e x i s t s , sem : lbd (h , lbd (g , e x i s t s (Fla) dur ing ’T ’))]) :−

Fla = . . [Sym, g , h] .

semLex (tv , [symbol : Sym, type : i n i t e x i s t s , sem : lbd (h , lbd (g , i n i t e x i s t s (Fla) dur ing ’T ’))]) :−

Fla = . . [Sym, g , h] .

semLex (dtv , [symbol : Sym, type : f o r a l l , sem : lbd (h , lbd (g , lbd (f , f o r a l l (Fla))))]) :−

Fla = . . [Sym, f , h , g] .

semLex (dtv , [symbol : Sym, type : e x i s t s , sem : lbd (h , lbd (g , lbd (f , e x i s t s (Fla) during ’T ’)))]) :−

Fla = . . [Sym, f , h , g] .

semLex (dtv , [symbol : Sym, type : i n i t e x i s t s , sem : lbd (h , lbd (g , lbd (f , i n i t e x i s t s (Fla) dur ing ’T

’)))]) :− Fla = . . [Sym, f , h , g] .

/∗===

Coord Semantics

==∗/

semLex (ipcoord , [type : conj , sem : lbd (q , lbd (p , (p & q)))]) .

semLex (ipcoord , [type : d i s j , sem : lbd (q , lbd (p , (p v q)))]) .

semLex (tncoord , [type : conj , sem : lbd (p , lbd (q , lbd (z , lbd (s , lbd (r , (s@(z@p))@r & (s@(z@q))@r))))

)]) .

semLex (tncoord , [type : d i s j , sem : lbd (p , lbd (q , lbd (z , lbd (s , lbd (r , (s@(z@p))@r v (s@(z@q))@r))))

)]) .

APPENDIX B. THE TPE GRAMMAR 235

semLex (npcoord , [type : conj , sem : lbd (p , lbd (q , lbd (r , (r@p & r@q))))]) .

semLex (npcoord , [type : d i s j , sem : lbd (p , lbd (q , lbd (r , (r@p v r@q))))]) .

/∗===

PN, Temporal Noun , and Number Semantics

==∗/

semLex (pn , [symbol : Sym, sem :Sym]) .

semLex (tnoun , [symbol : Sym, sem :Sym]) .

semLex (number , [symbol : Sym, sem : i n i t e x i s t s (Sym)]) .

/∗===

Adjec t i v e Semantics

==∗/

semLex (adj , [symbol : Sym, sem : lbd (g , Fla)]) :− Fla = . . [Sym, g] .

semLex (ad j Stab l e , [sem : lbd (g , e x i s t s (g <<−) during ’T ’)]) .

semLex (tadj , [symbol : f , sem : lbd (g , Fla)]) :− Fla = . . [f , g] .

semLex (tadj , [symbol : l , sem : lbd (g , Fla)]) :− Fla = . . [l , g] .

/∗===

Negation Semantics

==∗/

semLex (neg , [sem : lbd (p , lbd (k ,∼(p@k)))]) .

/∗===

Grammatical Aspect

==∗/

grammat ica l aspect (−past , p e r f) .

grammat ica l aspect (−ed , p e r f) .

grammat ica l aspect (−en , p e r f) .

grammat ica l aspect (− ing , prog) .

grammat ica l aspect (none , s imple) .

/∗===

Aspectua l C lasses f o r some verbs

==∗/

a s p e c t u a l c l a s s (assert , event) .

a s p e c t u a l c l a s s (deas se r t , event) .

a s p e c t u a l c l a s s (give , event) .

a s p e c t u a l c l a s s (set , event) .

a s p e c t u a l c l a s s (c ros s , event) .

a s p e c t u a l c l a s s (use , event) .

a s p e c t u a l c l a s s (change , event) .

a s p e c t u a l c l a s s (go , event) .

a s p e c t u a l c l a s s (run , event) .

a s p e c t u a l c l a s s (become , event) .

a s p e c t u a l c l a s s (exceed , event) .

a s p e c t u a l c l a s s (l im i t , event) .

a s p e c t u a l c l a s s (be , event) .

a s p e c t u a l c l a s s (permit , event) .

APPENDIX B. THE TPE GRAMMAR 236

a s p e c t u a l c l a s s (occur , event) .

a s p e c t u a l c l a s s (r equ i r e , event) .

a s p e c t u a l c l a s s (begin , event) .

a s p e c t u a l c l a s s (accept , event) .

a s p e c t u a l c l a s s (al low , event) .

a s p e c t u a l c l a s s (ass ign , event) .

a s p e c t u a l c l a s s (enable , event) .

a s p e c t u a l c l a s s (ex i s t , event) .

a s p e c t u a l c l a s s (f a i l , event) .

a s p e c t u a l c l a s s (get , event) .

a s p e c t u a l c l a s s (i n t e r l e a v e , event) .

a s p e c t u a l c l a s s (i s sue , event) .

a s p e c t u a l c l a s s (take , event) .

a s p e c t u a l c l a s s (s t a l l , event) .

a s p e c t u a l c l a s s (produce , event) .

a s p e c t u a l c l a s s (r e s t r i c t , event) .

a s p e c t u a l c l a s s (sample , event) .

a s p e c t u a l c l a s s (t r a n s i t i o n , event) .

a s p e c t u a l c l a s s (be , s t a t e) .

a s p e c t u a l c l a s s (remain , s t a t e) .

a s p e c t u a l c l a s s (stay , s t a t e) .

a s p e c t u a l c l a s s (wait , s t a t e) .

a s p e c t u a l c l a s s (have , s t a t e) .

a s p e c t u a l c l a s s (match , s t a t e) .

a s p e c t u a l c l a s s (keep , s t a t e) .

a s p e c t u a l c l a s s (hold , s t a t e) .

/∗===

Se l e c t i n g a q u an t i f i e r Type

==∗/

q u a n t i f i e r t y p e (simple , s ta te , f o r a l l) .

q u a n t i f i e r t y p e (simple , event , e x i s t s) .

q u a n t i f i e r t y p e (simple , event , i n i t e x i s t s) .

q u a n t i f i e r t y p e (per f , s ta te , f o r a l l) .

q u a n t i f i e r t y p e (per f , event , e x i s t s) .

q u a n t i f i e r t y p e (per f , event , i n i t e x i s t s) .

q u a n t i f i e r t y p e (prog , s ta te , f o r a l l) .

q u a n t i f i e r t y p e (prog , event , f o r a l l) .

/∗===

Modifing a q u an t i f i e r when the neg category combines with the vp category

==∗/

q u a n t i f i e r m o d i f i c a t i o n (e x i s t s , f o r a l l) .

q u a n t i f i e r m o d i f i c a t i o n (i n i t e x i s t s , f o r a l l) .

q u a n t i f i e r m o d i f i c a t i o n (f o r a l l , e x i s t s) .

q u a n t i f i e r m o d i f i c a t i o n (f o r a l l , i n i t e x i s t s) .

