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Abstract


In this paper, we analyse a concept of total knowledge based
on the idea that an agent’s total knowledge is the strongest
proposition the agent knows. We propose semantics for
propositional and first-order languages with a modal opera-
tor TK representing total knowledge, and establish a result
showing that total knowledge is ‘epistemically categorical’,
in the sense that it determines the agent’s knowledge over
a broad range of contents. We show that (subject to some
restrictions) total knowledge is always total knowledge of
an objective content, and that, for such objective contents,
our TK-operator corresponds in a straightforward way to
Levesque’s operatorO.
Keywords: mathematical foundations, philosophical foun-
dations, nonmonotonic reasoning.


Introduction
An agent that acquires information by the gradual accre-
tion of propositions has finite knowldge: there is some
propositionφ—the conjunction of all the propositions so-far
acquired—which constitutes that agent’s total knowledge.
Since we can imagine situations in which it is useful for
agents to reflect on their current epistemic states, it is natu-
ral to examine epistemic logics in which such states of total
knowledge can be explicitly represented. That is the goal of
the present paper.


To date, most research on representing total knowledge
has focused on its role in reconstructing various forms of
nonmonotonic logic. The origin of these ideas can be
traced back to the original non-monotonic logic of (Mc-
Dermott & Doyle 1980; 1982) and its later modifications
e.g. in (Halpern & Moses 1985). However, the best-
known such reconstruction is (Levesque 1990), extended
and discussed in (Halpern & Lakemeyer 1995), (Lakemeyer
1993; 1996) and (Lakemeyer & Levesque 1998). For an
overview of the relationships between these closely related
approaches, see (Donini, Nardi, & Rosati 1997) and (Rosati
2000). Chen (1997) presents an analysis relating Levesque’s
concept of only knowing to the method of epistemic specifi-
cations of (Gelfond 1991).
∗The author thanks Nick Player, Manfred Jaeger and Renate
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However, references to a proposition’s being all that an
agent knows also occur outside nonmonotonic logic, most
notably, in discussions of probabilistic updating. For exam-
ple, debates about the appropriateness of conditionalization
as an updating strategy generally assume that probabilities
are conditionalized on one’stotal knowledge: conditional-
izing on justpart of what one knows is (as far as the author
is aware) never seriously proposed. But what does it mean,
in this context, to say that a given proposition is one’s to-
tal knowledge or total evidence? What are the implications
of the assumption that such a proposition exists? Does this
assumption affect the logic of knowledge in any way? Al-
though there is much debate in the philosophical literature
about the reasonableness of the assumption that evidence is
propositional at all (see, e.g. (Jeffrey 1992), ch. 1), the im-
plications for epistemic logic of the assumption that agents
have (finite) total knowledge have been relatively neglected.


The goal of the present paper is to analyse a concept of
total knowledge based on the intuition that an agent’s total
knowledge is the logically strongest proposition the agent
knows, and to relate it to the corresponding concept em-
ployed by Levesque. In the course of our analysis, we will
see that our concept of total knowledge shares many of the
properties of Levesque’s, though not the latter’s central role
in defeasible inference. This is a useful insight, because the
concept presented here is arguably simpler and more intu-
itive than that used by Levesque, and may therefore be more
appropriate in contexts other than the reconstruction of non-
monotonic inference. Certainly, the nontrivial and subtle na-
ture of the relationship we map out illustrates the complexity
and fecundity of the relevant concepts.


Total knowledge
The concept of total knowledge we will be working with is
that of the strongest proposition an agent knows. Roughly,
TKφmeans that the agent knowsφ, but does not know any-
thing which knowingφ does not entail. This seems to be the
most natural reconstruction of the concept of total knowl-
edge appealed to when one is is enjoined to conditionalize
on one’s total knowledge.


Definition 1. Assume as given a countable set ofvariables,
a countable set ofnamesand, for eachn (0 ≤ n), a countable
set ofn-ary predicate letters. The symbol= is one of the







Proceedings, 17th National Conference on Artificial Intelligence (AAAI-00), 2000, pp. 423–428 2


binary predicate letters. We call the 0-ary predicate letters
proposition letters. A term is a variable or a name.


Define the formulas ofFOLTK to be the smallest set of
expressions satisfying the following rules:


if r is ann-ary predicate letter andt1, . . . , tn are terms,
thenr(t1, . . . , tn) is a formula ofFOLTK;


if φ andψ are formulas ofFOLTK andx is a variable,
thenφ∧ψ, φ∨ψ, ¬φ, ∃xφ, ∀xφ andKφ are formulas of
FOLTK;


If φ is a formula ofFOLTK and contains no occurrence
of TK, thenTKφ is a formula ofFOLTK.


Define the formulas ofPCKT to be those formulas of
FOLTK involving no occurrences of∃ or ∀ and non-ary
relations forn > 0.


Formulas involving no occurrences ofTK are calledba-
sic; formulas involving no occurrences ofK or TK are
calledobjective. Formulas in which every predicate letter
appears within the scope of eitherK or TK are calledsub-
jective. The notion of afreeoccurrence of a variable is de-
fined in the usual way. We use the connectives→ and↔ as
abbreviations with their usual meanings. A formula with no
free variables is asentence.


We have restricted the syntax ofFOLTK so thatTK
may apply only to basic formulas. In fact, this restriction is
inessential: all the theorems reported below hold even when
it is lifted. However, we maintain it throughout most of this
paper for the purpose of simplifying proofs. (We indicate
inessential restrictions of theorems to basic formulas using
parentheses.)


The general semantic framework used here is that
of (Levesque 1990). Models forFOLTK-formulas are sets
of “interpretations”, where an interpretation is just a model
of the underlying nonmodal language. The most notable fea-
tures are that names denote rigidly and uniquely, and that the
domain of quantification is covered by the names. We have
taken advantage of these features to simplify the statement
of the semantics slightly, and we have made one additional,
substantive change (discussed below).


Definition 2. An interpretationw is a function mapping any
n-ary predicate letterr to a setrw of n-tuples of names,
subject to the constraint that=w is the identity relation on
the set of names. (As usual, we assume that there is exactly
one 0-tuple of names.)


LetW be a set of interpretations, letw ∈W , and letφ be
a sentence ofFOLTK. We defineW |=w φ inductively as
follows:


If r is a predicate letter anda1, . . . , an are names, then
W |=w r(a1, . . . , an) if and only if a1, . . . , an ∈ rw;


W |=w φ ∧ ψ if and only ifW |=w φ andW |=w ψ, and
similarly for the other Boolean connectives;


W |=w ∃xφ if and only if W |=w φ[x/a] for some name
a, and similarly for the universal quantifier;


W |=w Kφ if and only if, for allw′ ∈W ,W |=w′ φ;


? W |=w TKφ if W |=w Kφ andW |=w ¬Kχ for all
objective sentencesχ such that6|= Kφ→ χ.


Here,φ[x/a] denotes the result of substituting the namea
for every free occurrence ofx in φ.


Since onlysentencesreceive truth-values, we will hence-
forth notate free variables explicitly. Thus,φ will denote a
sentence, andψ(x̄) a formula withx̄ as its only free vari-
ables. Note that ifφ is objective, we can write|=w φ for
W |=w φ, and if φ is subjective, we can writeW |= φ
for W |=w φ. More generally, we writeW |= φ to mean
W |=w φ for all w ∈ W , and |= φ to meanW |= φ for
all W . We sayφ is consistentif W |=w φ for someW and
somew ∈ W , and we sayφ is valid if |= φ. Clearly, the
usual S5-axioms forK are valid.


At this point, we might pause to get a feel for our new
operator by examining some of its salient properties. It is
immediate from definition 2 that|= TKφ→ Kφ and, more-
over, that


if |= Kφ↔ Kψ then |= TKφ↔ TKψ. (1)


That is: if knowingφ and knowingψ are the same state of
affairs, then only knowingφ and only knowingψ are also
the same state of affairs. Moreover, since|= Kφ ↔ KKφ,
condition (1) has, as an immediate consequence


|= TKφ↔ TKKψ. (2)


Finally, anticipating a result proved below, it turns out that
if we lift the restriction stating thatTK may apply only to
basic formulas, we obtain:


|= TKφ↔ TKTKψ. (3)


Properties (1)–(3) seem reasonable ones for a concept of
total knowledge to exhibit, though, admittedly, intuition may
be uncertain on the last of these. By contrast, if we consider
Levesque’s operatorO (which corresponds roughly to our
operatorTK), we see that these properties fail. In particular,
if φ is objective and is not logically true, then, on Levesque’s
semantics,OKφ andOOφ are both logically false. (At the
same time, for any formulaφ,O(Kφ∧φ) is logically equiv-
alent toOφ!) One of the surprising results of this paper is
just how many features of Levesque’sO-operator do never-
theless carry over toTK.


Let us return to the semantics ofTK, given in clause?
of definition 2. Observe that the quantification in this clause
is restricted toobjectivesentencesχ. (This restriction has
nothing to do with our earlier syntactic stipulation thatTK
can apply only to basic formulas!) Allowingχ to range over
arbitrary sentences in? would result in a nonterminating re-
cursive definition of|=, since the truth ofTKφ in W would
depend on the truth of more complex sentencesχ. More-
over, allowingχ to range overbasicsentences in?, though
it would result in a well-formed definition, would have other
undesirable consequences. Consider, for example, the sen-
tenceTKp1. We do not want this sentence to be incon-
sistent, since it seems reasonable that an agent may have
simply learnedp1 and nothing else. YetKp1 fails to imply
both p2 and¬Kp2, so that, without the restriction ofχ to
objective sentences, clause? would makeTKp1 entail both
¬Kp2 and¬K¬Kp2, which is inconsistent on our seman-
tics. Hence the restriction ofχ to objective sentences in?.


However, this restriction creates a problem. Consider the
following consequence of?.
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Lemma 1. For any (basic) sentenceφ and any objective
sentenceχ, |= TKφ→ Kχ or |= TKφ→ ¬Kχ.


Proof. If |= Kφ→ χ then|= TKφ→ Kχ.


Lemma 1 states that, as we might say,TKφ is epistemically
categorical for objective sentencesχ. Yet we would pre-
fer thatTKφ were epistemically categorical forarbitrary
χ. After all, an agent’s total knowledge should determine
exactly what the agent does and does not know. One of the
main results about theTK operator is that, in the current se-
mantic framework, lemma 1 can be strengthened in just this
way. Again, to simplify the proofs, we restrict the result in
this paper to basicχ.


It is worth pausing to see why this result is surprising.
Lemma 1 guarantees that any two agents whose total knowl-
edge isφ know the same objective sentences. However, it
is easy to construct an example of two agents who know
the same objective sentences but who do not know the same
basic sentences. Letp be a unary predicate letter, and enu-
merate the names as{ci}0≤i. Define the interpretationw0


by setting|=w0 p(cj) if and only if j is odd; and define the
interpretationwi, for i ≥ 1 by setting|=wi p(cj) if and only
if j is odd orj = 2i. Assume that all other predicate letters
are assigned the empty interpretation. LetW = {wi|i ≥ 0}
andW ′ = {wi|i ≥ 1}. Then it is easy to see that, for all
objectiveχ, W |= Kχ if and only if W ′ |= Kχ. (For
a sketch proof, see (Levesque 1990), lemma 3.6.2.) How-
ever, we haveW ′ |= K∃x(p(x) ∧ ¬Kp(x)) but W |=
¬K∃x(p(x)∧¬Kp(x)). The analysis below shows that this
sort of situation cannot arise in the presence of total knowl-
edge.


The propositional case
We begin with a simple observation establishing the consis-
tency of certain total-knowledge sentences.


Lemma 2. If a sentenceφ ofFOLTK is objective and con-
sistent, thenTKφ is consistent.


Proof. For each objectiveχ such that6|= Kφ→ χ, we have
6|= φ → χ, so letwχ be an interpretation such that|=wχ
φ ∧ ¬χ. LetW be the set consisting of all thesewχ. Since
φ is consistent,W 6= ∅, and it is easy to see thatW |=
TKφ.


The analysis ofTK in the propositional case is very easy,
and relies on the existence of the following normal-form the-
orem.


Lemma 3. Any basic sentence ofPCTK is equivalent to a
sentence of the form∨


1≤h≤l


(Kψh ∧ ¬Kχh,1 ∧ . . . ∧ ¬Kχh,mh ∧ πh).


in which theψh, χh,i andπh are objective.


Proof. Straightforward from standard S5-identities.


Thus, K-operators occurring in the scope of otherK-
operators in basicPCTK sentences can always be elimi-
nated. Of course,FOLTK lacks this feature: the embedded
K in K∃x(p(x) ∧ ¬Kp(x)) cannot be removed.


As a corollary of this normal form lemma, we have


Lemma 4. Let φ be a consistent (basic) sentence of
PCTK. Then there exists a basic (in fact, objective) sen-
tenceψ, such thatφ ∧ TKψ is consistent.


Proof. Assume without loss of generality thatφ is of the
form given in lemma 3, with the first disjunct consistent.
Then 6|= Kψ1 → χ1,j for all j (1 ≤ j ≤ m1), and 6|= ψ1 →
¬π1.


Now considerTKψ1. This sentence is consistent by
lemma 2. Moreover,6|= Kψ1 → χ1,j implies |= TKψ1 →
¬Kχ1,j . Finally, since the objective sentenceψ1∧π1 is true
in some interpretationw, if W |= TKψ1, then it is easy to
see thatW ∪ {w} |=w π1 ∧ TKψ1. Henceφ ∧ TKψ1 is
consistent.


Lemma 4 ensures that, in the propositional case, the assump-
tion that there is a sentence which is the agent’s total knowl-
edge does not change the finitary logic of knowledge: any
(basic) sentence which is consistent without this assumption
is consistent in its presence. However, we show below that
lemma 4 is false forFOLTK.


The first-order case
The following construction is crucial in understanding the
behaviour ofTK in the first-order case.


Definition 3. A permutation of individualsis a function
from the set of names to the set of names which is 1–1 and
onto. If f is a permutation of individuals, then it is ex-
tended to apply to interpretations and formulas as follows.
If w is an interpretation, for anyn-ary predicate letterr, let
a1, . . . an ∈ rf(w) if and only if f−1(a1), . . . , f−1(an) ∈
rw. If x is a variable, letf(x) = x. If r(t1, . . . tn) is an
atomic formula, letf(r(t1, . . . tn)) = r(f(t1), . . . f(tn)),
and letf be defined on nonatomic formulas byf(φ ∧ ψ) =
f(φ) ∧ f(ψ), f(φ ∨ ψ) = f(φ) ∨ f(ψ), f(¬φ) = ¬f(φ),
f(∃xφ) = ∃xf(φ), f(∀xφ) = ∀xf(φ), f(Kφ) = Kf(φ),
f(TKφ) = TKf(φ).


Thus, when applyingf to interpretations and formulas,
we switch round the extensions of predicates and the names
occurring in formulas in corresponding ways.


Lemma 5. If f is a permutation of individuals, thenf is
also 1–1 and onto on the set of interpretations, the set of
formulas, the set of basic formulas and the set of objective
formulas. Furthermore, for all sentencesφ, sets of interpre-
tationsW and interpretationsw ∈W ,W |=w φ if and only
if f(W ) |=f(w) f(φ).


Proof. The first part of the lemma is obvious. The second
part follows by structural induction onφ.


Definition 4. Let x̄ = x1, . . . xn be a tuple of variables with
X the set{x1, . . . , xn}. LetA = {a1, . . . , am} (with theai
distinct) be a set of names. LetP1, . . . , Pm be a set of (pos-
sibly empty) disjoint subsets ofX and letPm+1, . . . , Pm+l
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be a partition ofX \
⋃


1≤i≤m Pi. (Thus,0 ≤ l ≤ n.) A
distribution formula(for x̄ andA) is a consistent formula of
the formδ(x̄) :=∧
{xj = ai|1 ≤ i ≤ m, 1 ≤ j ≤ n, andxj ∈ Pi}∧
{xj = xk|m+ 1 ≤ i ≤ m+ l, andxj , xk ∈ Pi}∧
{xj 6= ai|1 ≤ i ≤ m,m+ 1 ≤ i′ ≤ m+ l, andxj ∈ Pi′}∧
{xj 6= xk|m+ 1 ≤ i < i′ ≤ m+ l,


xj ∈ Pi andxk ∈ Pi′}.
For a givenx̄ andA, denote the set of all such formulas by
∆A(x̄). If n = 0, set∆A = {>}.


Intuitively, δ(x̄) assigns every variable in̄x to one ofm+l
‘boxes’. Variables assigned to the same box are asserted
to be identical and variables assigned to different boxes are
asserted to be distinct. Variables assigned to boxi (1 ≤ i ≤
m) are asserted to be identical toai.


Lemma 6. Let x̄ = x1, . . . xn be a tuple of variables and
A a set of names. Then∆A(x̄) is a partition. That is:
|= ∀x̄


∨
∆A(x̄), and |= ∀x̄¬(δ(x̄) ∧ δ′(x̄)) for distinct


δ(x̄), δ′(x̄) ∈ ∆A(x̄).


Proof. Obvious.


We note that distribution formulas arerigid: they are sat-
isfied by the same tuples regardless of the interpretation.
Hence we sometimes write|= δ(ā) without mentioningW
orw.


Lemma 7. Letφ be a sentence andψ(x̄) a formula. LetC
be the set of names occurring in either formula. Then there
exists a disjunctionπ(x̄) of formulas in∆C(x̄) such that, for
all tuplesā, |= π(ā) if and only if|= φ→ ψ(ā).


Proof. Suppose that̄a and ā′ satisfy the sameδ(x̄) in
∆C(x̄). Then the mappinḡa 7→ ā′ is well-defined and ex-
tends to a permutation of individualsf such thatf is the
identity onC. Hencef(φ) = φ andf(ψ(ā)) = ψ(ā′). By
lemma 5,|= φ → ψ(ā) if and only if |= φ → ψ(ā′). Now
setπ(x̄) :=∨
{δ(x̄) ∈ ∆C(x̄) :|= δ(ā′) for someā′ s.t. |= φ→ ψ(ā′)}.


(As usual, we take
∨
∅ to be⊥.) Suppose|= φ → ψ(ā).


Since∆C(x̄) is a partition,|= δ(ā) for someδ(x̄), so |=
π(ā). Conversely, suppose|= π(ā). Then|= δ(ā) for some
δ(x̄), such that, for somēa′, |= δ(ā′) and |= φ → ψ(ā′).
But sinceā andā′ satisfy the sameδ(x̄) in ∆C(x̄), we have
|= φ→ ψ(ā).


Lemma 8. Letφ be a (basic) sentence andψ(x̄) an objec-
tive formula. LetC be the set of names occurring in either
formula. Then there exists a disjunctionπ(x̄) of formulas in
∆C(x̄) such that|= TKφ→ ∀x̄(Kψ(x̄)↔ π(x̄)).


Proof. By lemma 7, letπ(x̄) be such that, for all tuples̄a,
|= π(ā) if and only if |= Kφ → ψ(ā). Let W be any set
of interpretations and let̄a be any tuple. IfW |= TKφ,
then, by the semantics ofTK, W |= Kψ(ā) if and only if
|= Kφ→ ψ(ā). The result is then immediate.


Theorem 1. Letφ be a (basic) sentence andψ(x̄) a (basic)
formula. Then there is a disjunctionπ(x̄) of elements of
∆C(x̄) for someC, such that|= TKφ → ∀x̄(Kψ(x̄) ↔
π(x̄)).


Proof. We proceed by induction on the numbern of oc-
currences ofK in ψ(x̄). The casen = 0 is handled by
lemma 8. Ifn > 0, letKψ′(x̄′) be a subformula ofψ(x̄),
with ψ′(x̄′) objective. By lemma 8, letπ′(x̄′) be such that
|= TKφ → ∀x̄′(Kψ′(x̄′) ↔ π′(x̄′)). and letψ′′(x̄) be
the result of substitutingπ′(x̄′) for Kψ′(x̄′) in ψ(x̄). Then,
|= TKφ → ∀x̄(Kψ(x̄) ↔ Kψ′′(x̄)). Sinceψ′′(x̄) has
fewer thann occurrences ofK, the result follows by induc-
tive hypothesis.


Note that this straightforward induction depends on the fact
that ψ(x̄) is basic. This is because, in any set of inter-
pretationsW , the truth-values ofKψ(ā) andKψ′′(ā) de-
pend only on the truth-values of their subformulasat the
worlds inW . Sinceπ′(x̄′) andKψ′(x̄′) are satisfied by
the same tuples in any world ofW , it is obvious thatψ(ā)
andψ′′(ā) must have the same truth value in every world of
W as well. However, such a substitution within the scope of
TK-operators would in general not be truth-preserving. (As
stated above, theorem 1 does in fact hold for arbitraryψ(x̄);
however, the proof in this case is more delicate.)


Corollary 1. For all (basic) sentencesφ andψ, |= TKφ→
Kψ or |= TKφ→ ¬Kψ.


Proof. By theorem 1,|= TKφ → ∀x̄(Kψ ↔ π), where
π is a disjunction of elements of∆C for someC (with a
0-tuple of variables). Henceπ is⊥ or>.


Corollary 2. Letφ be a (basic) sentence andψ(x) a basic
formula with one free variable. Suppose thatW |= TKφ.
Then the set{a : W |= Kψ(a)} is finite or cofinite.


Proof. By theorem 1,|= TKφ → ∀x(Kψ(x) ↔ π(x)),
whereπ(x) is a disjunction of elements of∆C(x) for some
C (with a single variablex). Clearly, the set ofa satisfying
π(x) is finite or cofinite.


Recall that, in the propositional case, ifφ is consistent, then
we can findψ such thatφ ∧ TKψ is consistent. In the first-
order case, this is no longer true.


Theorem 2. There exists a consistent basic sentenceφ such
that, for all (basic) sentencesψ, |= φ→ ¬TKψ.


Proof. If ψ′(x) is any formula with one free variablex, let
∃∞xψ′(x) abbreviate some sentence or other implying that
ψ′(x) is satisfied by infinitely many values ofx. Let p(x)
be a unary predicate letter, and letφ be a consistent basic
sentence of the form∃∞xKp(x) ∧ ∃∞x¬Kp(x). It is easy
to see that such aφ can be found. By corollary 2,|= φ →
¬TKψ for all basic sentencesψ.


Thus, in the first-order case, the assumption that there is total
knowledge changes the finitary logic of knowledge: basic
sentences that are consistent without this assumption may
be inconsistent in its presence.
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Next, we show that total knowledge of any (basic) sen-
tence is logically equivalent to total knowledge of an objec-
tive sentence. We need the following general lemma.


Lemma 9. Let φ and ψ be (basic) sentences such that|=
TKφ → Kψ, |= Kψ → Kφ andTKφ is consistent. Then
|= TKφ↔ TKψ.


Proof. SupposeW |= TKφ. ThenW |= Kψ. Let χ be
objective with 6|= Kψ → χ. Then 6|= Kφ → χ, because
|= Kψ → Kφ. SoW |= ¬Kχ. HenceW |= TKψ.


Conversely, supposeW |= TKψ. ThenW |= Kφ. Let
χ be objective with6|= Kφ → χ, so that|= TKφ →
¬Kχ. Then 6|= Kψ → χ also, since otherwise, given
that |= TKφ → Kψ, we would have|= TKφ → Kχ,
contradicting the hypothesised consistency ofTKφ. But if
6|= Kψ → χ, thenW |= ¬Kχ. HenceW |= TKφ.


Theorem 3. Let φ be a (basic) sentence. Then there exists
an objective sentenceφ∗ such that|= TKφ↔ TKφ∗.


Proof. If φ is already objective or ifTKφ is inconsistent,
the result is trivial, so we may assume otherwise. Let
Kψ1(x̄1) be a subformula ofφ, withψ1(x̄1) objective. Then
we can findρ1 such that|= φ→ ρ1, whereρ1 is the sentence
∀x̄1(Kψ(x̄1) ↔ π1(x̄)) constructed as in lemma 8. Letφ1


be the result of substitutingπ1(x̄) for Kψ(x̄1) in φ. By
lemma 8,|= TKφ→ K(φ1 ∧ ρ1), and certainly|= K(φ1 ∧
ρ1)→ Kφ. SinceTKφ is assumed consistent, lemma 9 im-
plies that|= TKφ↔ TK(φ1∧ρ1). If there is a subformula
Kψ2(x̄2) in φ1 with ψ2(x̄2) objective, we proceed as before,
obtaining|= TKφ ↔ TK(φ2 ∧ ρ1 ∧ ρ2), and so on, until
we eventually obtain|= TKφ↔ TK(φm ∧ ρ1 ∧ . . .∧ ρm),
with φm objective andm ≥ 1.


Now consider in more detail the sentenceρ1∧. . .∧ρm. Ig-
noring the previous numbering, this may be written out as a
conjunction of the form


∧
1≤j≤M ∀x̄j(δj(x̄j)→ Kψj(x̄j))


∧
∧


1≤j≤M ′ ∀x̄′j(δ′j(x̄′j) → ¬Kψ′j(x̄′j)) where theδj(x̄j),
δ′j(x̄


′
j) are conjunctions of equality and inequality formulas,


and theψj(x̄j), ψ′j(x̄
′
j) are objective. Since theδj(x̄j) are


in fact rigid, we have


|= K∀x̄j(δj(x̄j)→ Kψj(x̄j))↔ K∀x̄j(δj(x̄j)→ ψj(x̄j)).


Hence we can omit theK from the relevant conjuncts and
setφ∗ to be


φm ∧
∧


1≤j≤M


∀x̄j(δj(x̄j)→ ψj(x̄j)),


whence|= TKφ↔ TK(φ∗ ∧ σ1 ∧ . . . ∧ σM ′) whereσj is
∀x̄′j(δ′j(x̄′j)→ ¬Kψ′j(x̄′j)).


To complete the proof, supposeā is a tuple with|= δ′j(ā).
Since TKφ is consistent,6|= Kφ∗ → ψ′j(ā). Hence,
sinceψ′j(ā) is objective,|= TKφ∗ → ¬Kψ′j(ā). Thus,
|= TKφ∗ → ∀x̄′j(δ′j(x̄′j) → ¬Kψ′j(x̄′j)). Hence, we have
|= TKφ∗ → K(φ∗∧σ1∧ . . .∧σM ′), |= K(φ∗∧σ1∧ . . .∧
σM ′) → Kφ∗ and finally, by lemma 2,TKφ∗ consistent.
By lemma 9,|= TKφ∗ ↔ TK(φ∗ ∧ σ1 ∧ . . . ∧ σM ′), and
we are done.


Comparison with only knowing
An alternative approach to total knowledge is provided
by (Levesque 1990). Before we give the semantics for
Levesque’s operator, we need to mention a difference be-
tween Levesque’s basic formalism and the one adopted in
this paper. So far, we have assumed that, in an assertion
of the formW |=w φ, w is a member ofW . But in fact,
the definitions work perfectly well without this assumption,
the major effect being thatKφ ∧ ¬φ becomes satisfiable.
(Levesque actually uses the letterB where we have used
K.) Given this change, Levesque can give the semantics of
the modal operatorO as:


W |=w Oφ if and only ifW |= Kφ and, for allw such that
W |=w φ, w ∈W .


The semantics forK and the nonmodal connectives are un-
affected.


Levesque’s semantics forO have the desired effect only
when the set of interpretationsW is maximal in the follow-
ing sense:


Definition 5. LetW andW ′ be sets of interpretations. We
say thatW andW ′ areequivalentif, for all basic sentences
φ,W |= Kφ if and only ifW ′ |= Kφ.


A set of interpretationsW is maximalif, for all W ′ such
thatW ≡W ′ andW ⊆W ′, we haveW = W ′.


The motivation for this definition is that, ifW is a set
of interpretations andw ∈ W is an interpretation such that
W |=w φ, then it can turn out thatOφ is true inW and
false inW \{w}, even though andW andW \{w} give the
agent the same basic beliefs! By ignoring nonmaximal sets
W , this anomaly is avoided.


Theorem 4. Let φ be objective and letW 6= ∅ be any set
of interpretations (not necessarily maximal) such thatW |=
Oφ. ThenW |= TKφ. Conversely, Letφ be objective and
let W 6= ∅ be a maximal set of interpretations such that
W |= TKφ. ThenW |= Oφ.


Proof. For the first part, we certainly haveW |= Kφ. More-
over, let χ be objective with 6|= Kφ → χ. Certainly,
then 6|= φ → χ. So letw be an interpretation such that
|=w φ ∧ ¬χ. SinceW |= Oφ, we havew ∈ W , whence
W |= ¬Kχ. Thus,W |= TKφ.


For the second part, again we certainly haveW |= Kφ.
Moreover, letw be an interpretation such that|=w φ. Sup-
poseψ is any basic sentence such thatW |= Kψ. Since
W |= TKφ, it follows from corollary 1 that|= TKφ →
Kψ. Now φ is objective, |=w φ andW |= TKφ, so
W ∪ {w} |= TKφ, and soW ∪ {w} |= Kψ. Thus, for
any basicψ, W |= Kψ impliesW ∪ {w} |= Kψ. This
easily implies that, for any basicψ, W |= Kψ if and only
if W ∪ {w} |= Kψ. That is,W ≡ W ∪ {w}. By the
maximality ofW , then,w ∈W , and henceW |= Oφ.


Note that the second part of the above theorem depends cru-
cially on the strengthening of lemma 1 provided by corol-
lary 1.


It is easy to construct examples showing that theorem 4
fails if φ is allowed to be nonobjective. Consider for ex-
ample the sentenceφ := ¬Kp → q. The sentenceOφ is
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consistent, and impliesKq. (Thus,φ can be seen as a de-
fault rule licencing inference toq providedp is not known.)
By contrast,TKφ is easily seen to be inconsistent, sinceKφ
implies neitherp norq, so thatTKφ implies the inconsistent
trio ¬Kp,¬Kq,K(¬Kp→ q).


This last example shows how the failure of property (1)
above is crucial for default inference. By simple S5-
manipulation,


|= K(¬Kp→ q)↔ K(Kp ∨Kq)


and so by property (1),


|= TK(¬Kp→ q)↔ TK(Kp ∨Kq).


But the formula(Kp∨Kq) is symmetric inp andq, and thus
could not possibly favour inferringKq over inferringKp.
Thus, no concept of total knowledge for which property (1)
obtains is likely to be of any use for modelling default infer-
ence along the lines taken by Levesque.


As we have already remarked, the restriction in the final
clause of definition 1 thatTK applies only to formulas not
involving any occurrences ofTK is inessential. The seman-
tics presented in definition 2 work unproblematically even
when it is lifted.


The following result is immediate from the semantics for
TK andK.


Lemma 10. If φ is any sentence, then|= TKφ→ KTKφ.


We note that the proof of lemma 9 does not depend on any
assumption thatφ andψ are basic, so that the result holds for
all φ andψ. We then have


Corollary 3. For any formulaφ, |= TKφ↔ TKTKφ.


Proof. If TKφ is inconsistent, thenTKTKφ is certainly
inconsistent. Hence we may assume thatTKφ is consistent.
We have|= TKφ → KTKφ by lemma 10, and certainly
|= KTKφ→ Kφ. Hence, by lemma 9, puttingψ := TKφ,
we have|= TKφ↔ TKTKφ.


This is the promised proof of the property (3) above.


Conclusions and further work
The purpose of this paper has been to define and analyse a
concept of total knowledge based on the idea that an agent’s
total knowledge is the strongest proposition that the agent
knows. We proposed semantics for the languagesPCTK
andFOLTK, according to which a sentenceTKφ was
guaranteed to be epistemically categorical for objective sen-
tences. We showed that, surprisingly, total knowledge is
epistemically categorical for all basic sentences. We showed
that the assumption that an agent has total knowledge does
not change the finitary logic ofPCTK; but it does change
the finitary logic ofFOLTK. We showed that total knowl-
edge of any basic sentence is logically equivalent to total
knowledge of some objective sentence. Finally, we showed
that, for objective sentences, but not for nonobjective sen-
tences,TK coincides with Levesque’s operatorO, modulo
certain technical details.


The above results can be extended in several ways.
Throughout most of this paper, we have assumed thatTK-
operators could apply only to basic formulas. In fact, this
assumption is unnecessary, and all of the above theorems
remain true when it is removed. The proofs cannot be pre-
sented within the confines of this paper. Another important
extension is to index the modal operatorsK andTK to in-
dicate the time at which the knowledge (or total knowledge)
applies. Thus, we might work instead with operatorsKn (“I
know at timen that. . . ...”) andTKn (“My total knowledge
at timen is that . . . ...”). The extension of the semantics
to these temporally indexed cases is routine. It turns out
that lemma 4 continues to hold for the temporally indexed
version ofPCTK. The proof is more involved than in the
nontemporal case, and cannot be given here.
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