
A Topological Constraint Language with
Component Counting

Ian Pratt-Hartmann

Department of Computer Science,
University of Manchester, U.K.
ipratt@cs.man.ac.uk

ABSTRACT. A topological constraint language is a formal language whose variables range over
certain subsets of topological spaces, and whose nonlogical primitives are interpreted as topo-
logical relations and functions taking these subsets as arguments. Thus, topological constraint
languages typically allow us to make assertions such as “region

���
touches the boundary of

region
���

”, “region
���

is connected” or “region
���

is a proper part of the closure of region���
”. A formula 	 in a topological constraint language is said to be satisfiable if there ex-

ists an assignment to its variables of regions from some topological space under which 	 is
made true. This paper introduces a topological constraint language which, in addition to the
usual mechanisms for expressing Boolean combinations of regions and their topological clo-
sures, includes primitives for bounding the number of components of a region. We call this
language
���� , a rough acronym for “topological constraint language with component count-
ing”. (Thus,
���� extends earlier topological constraint languages based on the so-called
RCC-primitives.) Our main result is that the problem of determining the satisfiability of a

���� -formula is NEXPTIME-complete.

KEYWORDS: Topology, Constraints, Spatial Reasoning, Computational Complexity

1. Introduction

A topological constraint language is a formal language whose variables range over
certain subsets of topological spaces—henceforth called regions—and whose nonlog-
ical primitives are interpreted as topological relations and functions taking regions as
arguments. Thus, topological constraint languages typically allow us to make asser-
tions such as “region �� touches the boundary of region �� ”, “region �� is connected”
or “region �� is a proper part of the closure of region �� ”. A formula � in a topo-
logical language is said to be satisfiable if there exists an assignment to its variables
of regions from some topological space under which � is made true. A central ques-

Journal of Applied Non-Classical Logics. Volume 11 - n � 3-4/2001, pages 1 to 90

2 Journal of Applied Non-Classical Logics. Volume 11 - n � 3-4/2001

tion regarding any topological constraint language is to determine the computational
complexity of deciding whether a given formula in that language is satisfiable.

Region-based topological languages trace their origins to Laguna [LAG 22] and
Whitehead [WHI 29], and were later revived by Clarke [CLA 85, CLA 81]. For our
purposes however, the most convenient point of departure is the development of the
so-called RCC theory of Randell, Cui and Cohn [RAN 92]. This theory introduced the
collections of primitive topological relations now known as RCC-5 and RCC-8, which
have attracted continued attention ever since. Thus, Renz and Nebel [REN 99], show
that satisfiability for a topological constraint language based on the RCC-8 primitives
is NP-complete, and Jonsson and Drakengren [JON 97] obtain corresponding results
for a similar constraint language based on the RCC-5 primitives. More recently, work
by Nutt [NUT 99] and Wolter and Zakharyaschev [WOL 00a, WOL 00b] has treated
more expressive topological constraint languages. For example, Nutt’s language con-
tains statements about the equality or inequality of complex terms denoting arbitrary
Boolean combinations of regions and their topological closures, yielding a satisfia-
bility problem which is PSPACE-complete. The present paper continues this trend
towards topological constraint languages of greater expressive power. Specifically,
we define a language which allows us to place bounds on the number of components
(maximal connected subsets) possessed by any region. We call this language ����� , a
rough acronym for “topological constraint language with component counting”. Our
main result is that the satisfiability problem for ����� is NEXPTIME-complete.

The plan of the paper is as follows. Section 2 reviews the the notational conven-
tions and background material assumed in this paper. Section 3 defines the language
����� and states our main result. Sections 4 and 5 are devoted to the proof of this result.
Section 6 relates the work reported here to the development of topological constraint
languages more generally.

2. Technical preliminaries

This section reviews the the notational conventions and background material as-
sumed in this paper. Basic facts about topology have been included to render the paper
more self-contained; readers familiar with this material may skip to the next section.

If � is any set, we denote the power set of � by �
	��� . If ����� , we denote the
complement of � in � , namely ����� , by ��� , provided that the embedding set � is
clear from context. A topological space is a pair ��������� where ����� 	��!� satisfying
the following properties: (i) "�#$� , (ii) �%#&� , (iii) � is closed under arbitrary
unions, (iv) � is closed under finite intersections. The elements of � are called the
open subsets of ' . Any set �(��� such that ���$#)� is called a closed subset of � .
It is usual to identify the topological space ��������� with its carrier set � , leaving the
designation of the open subsets implicit.

Let � be a topological space. If ���*� , we say that the interior of � (relative to
�), denoted ��+�, , is the largest open subset of � included in � , and that the closure

Topological Constraints 3

of � (relative to �), denoted ��� , , is the smallest closed subset of � which includes
� . Since the set of opens is closed under arbitrary unions, it follows that interiors and
closures always exist. When the embedding topological space � is clear from context,
we omit subscripts, writing � + instead of ��+ , and ��� instead of ��� , . Note that a
set � � � is open if and only if � � � + and closed if and only if � � ��� . The
following routine observation will be used below:

Observation 1. Let � be a topological space and � � � subsets of � with
�

open. If
����� ���� " , then �	� �
�� " .

Of particular interest will be the topological space arising from a graph. Let � be
a set and � a binary relation on � . Take the open subsets of � to be those sets
satisfying the property that ������� and ��� #� implies � #� . It is easy to check that
this is indeed a topological space, and that a subset of � is closed in this topology
if and only if it satisfies the property that ������� and ��#� implies ����#� . If,
in addition, the relation � is reflexive and transitive, then the closure operator �����
satisfies, for any ��� ,

 � � � � � #��"!#�$�%� � for some � #�'&)(

If ����� � � is a topological space and �%��� , we can regard � as a topological
space with open sets +* � ��! * # ��& . In this case, we say that � (as a topological
space) has the subspace topology induced by � . The space � is said to be connected
if it is not the union of two nonempty, disjoint, closed (equivalently: open) subsets � �
and � � . A subset � of � is said to be connected (in the space �) if it is a connected
space under the subspace topology. Equivalently, � is connected if and only if there
do not exist � � � � and � � � � such that: (i) � � � � �� " and � � � � �� " ; (ii)
��� � �-, � � ; and (iii) � � � � � � � � � � " . Intuitively, connected sets should be
thought of as consisting of ‘one piece’. In particular, for a topological space arising
from a graph, a subset turns out to be connected if and only if any two points in
 are connected by a finite path (ignoring the directions of the edges) which does not
stray outside . The following observation follows easily from the definitions just
given.

Observation 2. Let � be a topological space with � � � ,
� � � . If � and

�
are

connected with �	� ���� " , then � , � is connected.

If � is a topological space and �$��� , a component of � is a maximal connected
subset of � . If

� � � is nonempty, then
�

is always included within a unique compo-
nent of � . Every set has at least one component; the empty set is the only component
of itself; and all components of a nonempty set are nonempty. A set is connected if and
only if it has exactly one component. Of course, the notion of component is relative
to the assumed topology. The following routine observations will be used below:

Observation 3. Let � be a topological space, and suppose
� ���$� � . Then, taking

� to have the subspace topology, we have
� ��. � �	� � ��, .

4 Journal of Applied Non-Classical Logics. Volume 11 - n � 3-4/2001

Observation 4. Let � be a topological space, and suppose
� ���$� � . Then, taking

� to have the subspace topology,
�

has the same components in � as it does in � .

Let � and ' be topological spaces, and let ��� � � ' be any function. We
say that � is continuous if, for any subset � of ' such that � is open (in the space
'), � � � 	�� � is open (in the space �). This is equivalent to the condition that, for any
subset � of ' such that � is closed, � � � 	�� � is closed. It is an easy exercise to show
that, if �%� � is connected (in the space �) and ��� � � ' is continuous, then
� 	��� �$' is also connected (in the space '). More generally, if � has at most �
components and � is continuous, then � 	�� � has at most � components (though it may
certainly have fewer).

3. The Main Result

We begin with the syntax of our topological constraint language ����� .

Definition 1. Let � be some fixed countable set. We refer to the elements of � as
variables. The set of terms is defined inductively as follows:

1) every variable is a term;

2) if 	 is a term, then so are �
	 and 	 � ;

3) if 	 and 	 � are terms, then so is 	 ��	 � .
An atomic formula is an expression of either of the forms:

1) 	 � 	 � , where 	���	 � are terms

2) ���� 	�	� , where 	 is a term and � is a binary numeral.

A formula is a Boolean combination of atomic formulas. The language ����� is the
set of formulas. If � # ����� , we take the size of � , denoted ! � ! , to be the number of
symbols occurring in � .

�

Thus, the symbols � , � and � do double duty: as operators on subsets of topological
spaces and as term-constructors in ����� . This overloading of notation makes the se-
mantics of ����� more mnemonic, and should cause no confusion. We note in passing
that the size of a binary numeral is the number of digits it contains (not the integer it
represents). We allow binary numerals to have leading zeros.

Next, we provide a semantics for ����� . Exploiting the overloading of the symbols
� , � and � , we may write:

Definition 2. A structure � is a pair 	������ � , where � is a topological space and ���
� � �
	��!� . The interpretation 	�� of a term 	 in a structure � � 	������ � is defined
inductively with respect to the topological space � as follows:

Topological Constraints 5

 � � ��	 �� for all variables
	 �
	!� � � ��	�	 � �
	 	 � � � � 	 	 � � �
	 	 � 	 � � � � 	 ��� 	 � � .

If � is the atomic formula 	 � 	 � , then � satisfies � if 	 � � 	 � � . If � is the atomic
formula �� � 	 	!� , then � satisfies � if 	�� has at most � components, where � is the
(non-negative) integer represented by the binary numeral � . Satisfaction is extended
to Boolean combinations of atomic formulas in the obvious way. If � satisfies � , we
write � ! � � . A formula is satisfiable if there exists a structure which satisfies it.
Two formulas � and ��� are equisatisfiable if either both are satisfiable or neither is
satisfiable.

�

In the sequel, we freely equivocate between binary numerals � and the integers they
represent. Under this equivocation, for example, we can say that � satisfies ��� 	�	� if
and only if 	�� has at most � components. In addition, we allow ourselves to perform
arithmetic on binary numerals, for example writing ����� and ����� (if ���
) with the
obvious meaning. These expedients avoid cumbersome circumlocutions, and should
cause no confusion.

The following abbreviations promote readability in ����� . Let + be some variable.
We abbreviate the term + � � + by " , and any term of the form ��	 �
	�� �
	 � � by
	 , 	 � . Likewise, we abbreviate any formula of the form 	 � 	 � � 	 � by 	 � � 	 ,
any formula of the form � 	 � 	 � by 	 �� 	 � , and any formula of the form � ��� 	 	�
by � ��� � 	 	� . Thus, for any non-zero binary numeral � , ���� 	�	� states that 	 has at
least � components. Finally, we write 	�	� in place of the more cumbersome � � 	 	�
to state that 	 is connected.

The following simple examples illustrate the language � � � .

Example 1. Let 	 and 	 � be any terms. The formula � given by

 	�	��� 	 	 � ��� 	'� 	 � �� "���� 	 	 , 	 � �
is unsatisfiable.

Proof. A reformulation of Observation 2.

Example 2. Let 	 be a term and � � , . . . � � be variables not occurring in 	 . Then
the formula ���� 	�	� is equisatisfiable with the formula � given by:

6 Journal of Applied Non-Classical Logics. Volume 11 - n � 3-4/2001

	 � �
� ��� � � � � � �� ��� � � � �

�� " � �
� ������� ��	 	 � � �� � � �� � "�(

Proof. If � ! � � , then the sets � �� (��
��
 �) must be unions of disjoint sets of
components of 	�� . Hence � ! � � � 	 	!� .

Conversely, if � ! � �� � 	 	� , choose any � � � components � � � (((� � � � � of 	 � .
Define a structure � � to be just like � except that � ���� � � � for all � (��
���� �) and
������ � 	�� ��	�� � , (((, � � � � � . Since the variables � � do not occur in 	 , we have
	 ��� � 	 � . It is then easy to check that � � ! � � .

Example 3. Let � and � be integers such that ������� � , and let 	 , 	 � , . . . , 	 	 be
any terms. Then the formula � given by

 	�	��� 	 � �
� ������	 	 � � �� ������	 	 	 �� � 	 � , 	 � � � � ��	 �	 � 	 	 ��

� ������� ��	 	�	 � ��	 � � " ��� 	 �
�� "�� 	 	 �� "�� 	�� � "

is unsatisfiable.

Proof. Suppose, for contradiction, � ! � � . Let � � 	 � , and consider the sets � � �
	 	 � , (((� � � � � and � � � 	 	 � � � , (((� � . The conjuncts 	 �� � 	 � , 	 � � �
(��
���� �) and 	 �	 � 	 	 ensure that � �� � � � � " and � �� � � � , whence
� �� � � �� � " . The conjuncts 	 � �� " and 	 	 �� " ensure that � � and � � are nonempty.
Finally, the conjuncts 	 ��� � ������	 	 � and 	 � � " ensure that � � � � , � � . Thus,
� is not connected, which is impossible given the conjunct 	 	!� .

Following standard practice, we write ! � � if ��!� � for every structure � —that
is to say, if � � is not satisfiable. Thus we have, for ����� � � and any terms
	�� 	 � � (((� 	 	 :
! �"!# 	 	!��� 	 � �

� ������	 	 � � �� ������	 	�	 �� � 	 � , 	 � � � ����	 �	 � 	 	 �
�

� �����$� ��	 	�	 � � 	 � � " ��� 	 �
�� "�� 	 	 �� "&%' � 	�� �� "

The notion of satisfiability in ����� leads naturally to the following problem.

Definition 3. The problem ����� -SAT is defined as follows :

Topological Constraints 7

Instance: A ����� formula �
Question: Is � satisfiable?

�

We can now state the main result of this paper.

Theorem. The problem ����� -SAT is NEXPTIME-complete.

The next two sections are devoted to a proof of this result.

4. Membership in NEXPTIME

4.1. Conventions and strategy

We use the term constraint to refer to a formula of one of the following types:

Type I: 	 � 	 �
Type II: 	 �� 	 �
Type III: �� � 	 	!� (���
)
Type IV: � � 	 	� (��� �).

If � is a set of constraints and � a structure, we write � ! � � to mean that ��!� � for
every � #�� , and we say that � is satisfiable if there exists such an � . If � is a finite
set of constraints, we take the size of � to be the sum of the sizes of its members. The
main goal of this section is to prove that the satisfiability of a set of constraints can be
decided in non-deterministic exponential time. That ����� -SAT is in NEXPTIME then
follows as an easy corollary.

Our strategy is as follows. We prove that any satisfiable set � of constraints
containing no type-IV constraints is satisfiable in a topological space whose size is
bounded by an exponential function of the size of � . (We take the size of a topolog-
ical space to be the cardinality of its carrier set.) We then show that, given any finite
set of constraints � , we may compute, in polynomial time, an equisatisfiable set of
constraints � � which is type-IV-free.

4.2. Small model property

Let � be a topological space and let � be a finite set of subsets of � , with the
property that � #����%��� #�� . Define a binary relation � on � by setting 	
���

8 Journal of Applied Non-Classical Logics. Volume 11 - n � 3-4/2001

if, for all � # � , 	 # � � �!# � . Let � � � � � and define a function � � ��� �
by

� 	 	 � � ��# � ! � � 	 &)(

Observation 5. ! ��!
���� ��� .
Observation 6. If 	 # � and �$# � , then 	 # � if and only if � 	 	 � # � 	�� � .

Now define a binary relation � on � by

�$�%��� if and only if, for all �$# � , � # � 	�� � �%��� # � 	���� � .
Lemma 1. The directed graph 	 � � � � is reflexive and transitive.

Proof. Since � � ��� , � 	�� �!� � 	���� � , so that ��� � for all � #'� . Suppose now
that � � � � � � � � . Let � # � and � # � 	�� � . Since � � � � , � � # � 	�� � � . Since
��� # � and ��� ����� � , ��� � # � 	���� � � � � 	���� � . Hence ���%��� � .

We noted in section 2 that any reflexive, transitive, directed graph 	 � � � � can be
regarded as a topological space with closure operator � ��� satisfying:

 � � � � � #��"!#�$�%� � for some � #�'&)(

For the sake of readability in the following argument, we shall use � � to denote the
closure operator in the topological space � , and � ��� to denote the closure operator in
the topological space � .

We now establish some properties of the function � � �	��� .

Lemma 2. If � # � and 	 # 	�� � � 	�� � � � , then �$� � 	 	 � .

Proof. Suppose � #�� and � # � 	�� � . We must show that � 	 	 � # � 	�� � � . By
Observation 6 (if-direction), � # � 	�� � � � � � 	 � � � � . Hence 	�� � � 	 � � � ��� ��� .
But then 	 # ��� and so � 	 	 � # � 	���� � as required.

Lemma 3. The function � � �	� � is continuous.

Proof. Let �"� be closed; we must show that � � � 	 � �$� is also closed. Let
 � � + � (((� � & , and suppose 	 # 	 � � � 	 � � � . Since 	�� � � 	 � � � � 	�� � � 	 � + � � � ,(((, 	 � � � 	 � �!� � � , we have 	 #�	�� � � 	�� � � � � for some � , so that, by Lemma 2, � � �� 	 	 � . Since is closed, � 	 	 � # , so that 	�# � � � 	 � . Hence 	�� � � 	 � � �(�
� � � 	 � , and so � � � 	 � is closed as required.

Lemma 4. Let � # � such that ��� # � . Then � 	 ��� � � � � 	�� � . Furthermore,
Let � � � � # � such that �	� � � # � . Then � 	�� � � � � � � 	�� � � � 	�� � � .

Topological Constraints 9

Proof. Instant from Observation 6.

Lemma 5. �$# � � � 	���� � � � 	�� � � � .

Proof. Certainly, � 	�� � � � 	���� � . Moreover, � # � � � 	���� � is closed. For
suppose � # � 	���� � and �$�%��� : since ��� # � and ��� � � ��� , ��� # � 	���� � by the
definition of � . It thus suffices to show that �$# � � � 	�� � � � � 	�� � � � .

Suppose that � # � and ����# � 	���� � . We show that there exists a � # � 	�� � such
that ���%� � . Let � � � (((� � � be a complete listing of the elements � � of � for which
��� �# � 	�� � � � . Let 	���# � such that � 	 	�� � � ��� . Since ���
� � �� � (((� ���� are all
elements of � , we have, by Observation 6,

	 � # � � � ��	�� �� � � � � � �)��	�� �� � (
The set ��	�� �� � ��� � � � ��	�� �� � is open in � , so that, by Observation 1, there exists an
element 	 of � such that

	 # ��� ��	�� �� � � � � � � ��	�� �� � (
Let � � � 	 	 � . By Observation 6 again,

� # � 	�� � �)� � 	�� �� � � � � � � � � 	�� �� � (
Since � # � 	�� � , we need only show that ��� � � . Suppose � � #�� with � # � 	�� � � .
Certainly, then, � # � 	�� � � � , whence � � �� � � for all � (��
 �
 �). But by the choice
of these � � , ��� # � 	�� � � � . That is: � � # � and � # � 	�� � � implies ����# � 	�� � � � .
Hence, �$�%��� .

With these preliminaries behind us, let � be a type-IV-free set of constraints—
i.e. one with no elements of the form ���� 	�	� —and let � � ������� � be a structure such
that � ! � � ; we now show how to manufacture a “small” structure satisfying � .

Let

� � � 	 � !
	 is a term occurring in � &
� � � � , � � ! �$# � � &)(

Thus, � is a finite set of subsets of � , with the property that � # � � ��� # � .
Defining � � �	� � as above, let � 	�� � be the structure ��� 	��� ����� � � .
Lemma 6. For every term 	 occurring in � ,

� 	 	 � � � 	
���
�
�
(

10 Journal of Applied Non-Classical Logics. Volume 11 - n � 3-4/2001

Proof. By induction on the structure of 	 . If 	 is a variable, the equation is immediate
by the definition of � 	�� � . The cases 	 � �
	 � and 	 � 	 ��� 	 � � are dealt with by
Lemma 4. The case 	 � 	 � � is dealt with by Lemma 5.

Lemma 7. If � is type-IV-free, � ! � � , and � is as defined above, then � 	 � � ! � � .

Proof. We deal with the three types of constraints in turn. I: � ! � 	 � 	 � � 	 � �
	 � � � � 	 	 � � � � 	 	 � � � � 	

���
�
� � 	 �

���
�
�

(by Lemma 6) � � 	�� �$!� 	 � 	 � .
II: � ! � 	 �� 	 � � 	 � �� 	 � � � � 	�	 � � �� � 	 	 � � � (by Observation 6, since
	 � and 	 � � are both in �) � 	

���
�
� �� 	 �

���
�
�

(by Lemma 6) � � 	�� � ! � 	 ��
	 � . III: � ! � �� � 	 	� � 	�� has at most � components � � 	�	�� � has at most �
components (by Lemma 3) � 	

���
�
�

has at most � components (by Lemma 6) �
� 	 � � ! � ��� 	 	!� .
Corollary 1. If � is a satisfiable set of constraints of types I, II and III, then � is
satisfied in a structure of size bounded by � � � � � .

Proof. By Lemma 7 and Observation 5, noting that the set � has at most � ! � ! ele-
ments.

Of course, Lemma 7 is not correct if type-IV constraints are permitted, since ap-
plying a continuous function to a set may decrease the number of its components. It
is to constraints of this type that we now turn, therefore.

4.3. Eliminating type-IV constraints

The task before us is as follows. Given a set of constraints � , compute, in polyno-
mial time, an equisatisfiable set of constraints which is type-IV-free.

Let us first pause to see where the difficulty lies. Recasting Example 2 slightly, we
can equisatisfiably replace any constraint ��� 	�	� # � by the set of constraints

 	 � �
� ��� � � � � & , � �

�� "�! �
��
 � & ,
 	 � � �� � � �� � "�! �
 � � �
 � &)(

where � � (��
��
 �) are variables not occurring in � . Carrying out this process for
all type-IV constraints in � (choosing new variables � � each time) would thus yield
an equisatisfiable set of constraints which was type-IV-free.

However, the above replacement process is not a solution to our problem, because
it violates the requirement that the resulting set of type-IV-free constraints should
be computed in polynomial time. The difficulty is that the number of new variables
introduced for a constraint �� � is exponential in the size of (i.e. number of digits in)

Topological Constraints 11

the binary numeral � . Evidently, more work is required. Nevertheless, the idea of
Example 2 does give us the following useful result. Call the numeral (or, equivocally,
the number) � in a type-IV constraint ���� 	 	�
� , the exponent of the constraint.

Lemma 8. Let � be a set of constraints. Then we can compute, in polynomial time,
an equisatisfiable set of constraints � � in which all type-IV constraints have exponents
which are powers of � .

Proof. Let � � � � 	 	� # � , and let be a variable not occurring in � . Let � � ��� � � be
binary numerals such that � � � � � � � � , and let � � be the result of replacing � in � by
the set of constraints

 	 � �� " ��	'�)� �� " �� � � � 	�	 � ���� ��� � � 	�	 �)� ��� 	 � � � 	 � � � � "�&)(
By a similar argument to that used in Example 2, � and � � are equisatisfiable. But of
course � can be written as a sum of powers of 2 involving no more terms than there
are digits in the numeral � . Hence, by carrying out the above replacement process re-
peatedly, we obtain, in polynomial time, an equisatisfiable set of constraints satisfying
the requirements of the lemma.

Thus the main hurdle we have to overcome is the following. Given a natural num-
ber � , devise a set of constraints of types I, II and III, of size bounded by some fixed
polynomial in � , which force some set to have at least ��� components. We begin with
some routine lemmas on structures.

Definition 4. Let � � ������� � be a structure and a variable. The relativization of �
to is the structure ��� � ����������� � , where ��� � ��	 � (with the subspace topology)
and ��� 	 � � � � 	 � � � ��� for all variables � .

Let 	 be a term and a variable. The relativization 	 � of 	 to is defined induc-
tively as follows:

	 � � � � � �
	 	 � 	 � � � � 	 � � 	 ��
	 �
	� � � �)�
	 �
	 	 � ��� � � 	�		� � �

If � is a set of constraints and a variable, the relativization �
� of � to is the
result of replacing every term in � by its relativization to .

�

Thus, the relativization of a structure � to is simply the structure obtained from
� by chopping away everything outside the subspace � . The following lemmas
show that the relativization of a set of constraints � to is defined in a “matching”
fashion.

12 Journal of Applied Non-Classical Logics. Volume 11 - n � 3-4/2001

Lemma 9. Let � be a structure, 	 a term, and a variable. Then 	�	 �
� � � 	 � � .

Proof. Routine induction on the structure of 	 . The only (slightly) nontrivial case
is given by 	 � 	 � � . We have 	 	 � � � � 	 	�	 � � � �
� � � 	 ��	�	 �� � � � � . Setting
� � � , we obtain 	�	 � � � � ��� 	 	�	 �� � � � � � ��� 	�	 �� � � � � ��� 	�	 � � � � � (by
inductive hypothesis). Now setting

� � 	 � � � so that
� � � � � , Observation 3

gives us 	 	 �
� � � 	 	 � � � � ��. � 	�	 � � � � � .

Lemma 10. Let � be a structure, � a set of constraints, and a variable. Then
� ! � � � if and only if ��� ! � � .

Proof. The result for type-I and type-II constraints is immediate from Lemma 9. The
result for type-III and type-IV constraints follows from Lemma 9 and Observation 4.

Lemma 11. Let � be a set of constraints, and a variable not occurring in � . Then
� and � � are equisatisfiable.

Proof. If � ! � � � , then �
� ! � � by the previous lemma. Conversely, suppose
� ! � � . Since does not occur in � , we may suppose that � � � . But then it is
obvious that 	 �� � 	 � for every term 	 , whence ��!� � � .

The main idea in the elimination of type-IV constraints involves the simulation of
binary arithmetic in structures. In the sequel, if � is a � -digit binary numeral (allowing
leading zeros) and �
 ��
 � , we take � � ��� to denote the � th bit of � , counting from
right to left (so that � �

��� denotes the least significant bit of �). Note that, if � and � � are
both � -digit binary numerals, the expressions ��� � � � � and (in that case) � � � � � �
are meaningful.

Lemma 12. Let � and � � be � -digit binary numerals, with � � � �� � . Let � be the
least value of

�
such that � � � � � 	 . Then ��� �# � ��� � �#& if and only if at least one of

the following conditions holds:

a) for some
�

(��� �
 �), � � � � �� � � � � � ;
b) � � � ��� � 	 , and for some

�
(��
 � ���), � � � � � � 	 ;

c) � � � ��� � � , and for some
�

(��
 � � �), � � � � � � � .

Proof. It is straightforward to check that, if any of a)–c) hold, then � � �� � and � � ��
��� � . For the converse, suppose that conditions a)–c) all fail; we must show that
� � � � or � � � � � � . By the failure of a), � and ��� are identical after (i.e. to the left
of) the � th bit. If � � � , then � �

��� � 	 , and so we instantly have ��� � � or � � � � �
� .
Thus, we may assume that � � � , so that � has the appearance:

Topological Constraints 13

� �
� � � � � � � � � ��� 	 � � � � � .

Clearly, either � � � ��� � 	 or � � � ��� � � , so that, by the failure of b) and c), and by the
fact that � � � , exactly one of the following conditions holds:

d) for all
�

(�
 � ���), � � � � � � � ;
e) for all

�
(��
 � � �), � � � � � � 	 .

If d) holds and e) fails, then by the failure of c), we have � � � ��� � 	 , whence � � � � .
On the other hand, if e) holds and d) fails, then by the failure of b), we have � � � ��� � � ,
whence � � � � � � .

In the sequel, we use the (possibly subscripted) letters
�

, , � , ' and � to
range over variables—i.e. over the elements of � . Let ' � � (((� ' � be variables, then.
Denote by �' � either of the terms ' � or � ' � . Then the terms of the form

�' � � � � � ���' �
correspond in the obvious way to � -digit binary numerals, where ' � represents � � ��� �
� and � ' � represents � � ��� � 	 . In addition, we use the letters � and ��� equivocally for
� -digit binary numerals, integers in the range

�
	 � � � � ��� and terms of the above form.

Finally, for all � (��
 �
 �), we use '��� as an abbreviation for the term

� ' � � ' ��� � � ' ��� � � � � �+� ' � � ' �+(
(If � � � , then '��� is just � ' � .)

Recall that we write ! � � if ��!� � for every structure � .

Example 4. If � is odd, then ! � � � ' � ; if � is even, then ! � � � � ' � .
Example 5. Taking � ��� , the trivial fact

! � ' � � ' �-�)� ' � � ' � � ' ��*� ' � � ' � � ' �
can be written more suggestively as ! � �	� � ' �� , indicating that the first zero bit in
the binary representation of 27, counting from the right, is the third bit.

For the next lemma, remember that � ��� � abbreviates the term ' � � � � � � ' � .
Lemma 13. Let ' � � (((� ' � be variables (� � �), and 	 � a term. Let � consist of the
following constraints:

(1) For all � , �
(��
���� �
 �),

	 � �)	 ' �� � ' � � � �)� ' � � "
	 � �)	 ' �� � � ' � � � � ' � � "

14 Journal of Applied Non-Classical Logics. Volume 11 - n � 3-4/2001

(2) For all � , �
(��
 � � �
 �),

	 � � 	�' �� � � � ' � � ' � � "
	 � �)	�' �� � � �)� ' � �)� ' � � "

(3) 	 � � 	 � � � � � � � 	 � � � � � .

Suppose � ! � � . Then, for all � , ��� (
 � ��� �
 � � � �), � ! � 	 � � � � � � � �� " only
if � � � � or � � � � � � .

Proof. Let � ! � 	 � � � ��� � � �� " with � � �� � and � � �� � � � . By (3), �
 � � � � ,
so let � be the smallest

�
such that � � � � � 	 . By Lemma 12, one of the conditions

a)–c) listed there holds. Suppose a) holds, with, say, � � � � � � and � � � � � � 	 for
some

� � � . Then we have ! � ����	 '��� � ' � � and ! � � ��� � ' � . But given that
� ! � 	 ��� � ��� � � �� " , we have � ! � 	 �)� 	 '��� � ' � � ��� � ' � �� " , contradicting
the assumption that � satisfies constraints (1). Similarly, supposing that b) or c) hold
contradicts the assumption that � satisfies constraints (2).

Lemma 14. Let ' � � (((� ' � be variables and 	 � a term. Let � consist of (1)–(3) of
Lemma 13 together with the constraint:

(4) 	�	 � �

stating that 	 � is connected. Suppose that � ! � � , � ! � 	 � � 	 �� " and � ! �
	 � � 	 � � �
� � �� " . Then ��!� 	 � � � � � 	 � � � � �� " for all � (
 ��
 � � � �).
Proof. By Lemma 13, for all � (
 ��
�� � � �),

� ! � 	 � � � � � � , 	 � � � � ((1)

Now we apply reasoning similar to that of Example 3. Suppose, for contradiction, that
� ! � 	 ��� � + � � 	 � + � � � � " for some � + (�
 � +
 � �!� �). Consider the sets
� � � 	 	�	 � � 	 � , (((, 	�	 � � � + � � � and � � � 	 	�	 � ��	 � + ��� � � , (((, 	 	 � ��	 � ��� � � � � � .
From (1) and constraint (3), � � and � � are then closed in the subspace 	 � � and are
visibly disjoint. Moreover, the fact that � ! � 	 � � 	 �� " and � ! � 	 � � 	 � � �
� � �� "
implies that � � and � � are nonempty. But this contradicts constraint (4).

Lemma 15. Let ' � � (((� ' � �
� � be variables. Setting 	 � to the term 	 � , � �� , let

� consist of (1)–(4) above together with the constraints

(5) �� �

Topological Constraints 15

(6) for all � (�
 �
 �),

	 � � ' � � � � 	 � �)� ' � � � "
	 � �)� ' � � � �)	 � � ' � � � "

(7) for all � (�
 �
 �),

	 � � ' � � � � 	 � �)� ' � � � "
	 � �)� ' � � � �)	 � � ' � � � "

(8)
� � 	 �� " and

� � 	 � ��� � � �� " .

Suppose � ! � � . Then � ! � �� ��� 	 � � .

Proof. Since � satisfies the constraints (6),

� ! � � � � � � � � � "

for all distinct � , � � (
 � ��� ��
 � ��� �). It suffices to show that, for all such � ,
� ! � � � � �� " , for then each of the sets 	 � � ��� � must contain points belonging to
pairwise distinct components of

� � .

Let �
 ��
 � � � � . Trivially, ! � � � � 	 � � �� � , 	 � �)� �� � , whence

! � � � � � �)	 � � � � � 	 	 ��� �� � �)� �� , 	 	 � �)� �� � � 	 � � � � �)� �� (
By constraint (5), ��!� 	 � � � � ��� � " , and by constraints (7), � ! � 	 � ��� � � �
	 � � � � �)� � " . Hence

� ! � � � � � � 	 � � � � � "�((2)

By constraints (1)–(4) (with 	 � set to
� , �) and constraints (8), the conditions of

lemma 14, are satisfied, so that if 	
 ��
 � ��� � ,
� ! � 	 � , � �� � � � � 	 � � � � �� " ((3)

Putting together (2) and (3) gives us

��!� � � � � �)	 � � � � �� " (

Thus, if 	
 ��
 � ��� � , then � ! � � � 	 � � � � �� " ; the fact that � ! � � � 	 �� " is
guaranteed by constraints (8).

16 Journal of Applied Non-Classical Logics. Volume 11 - n � 3-4/2001

Lemma 16. Let 	 be a term and � a set of constraints containing � � � ��� 	 	� (with
� �). Let

� � � ' � � (((� ' � be variables not occurring in � . Let
�

be the set of
constraints (1)–(8) above (with 	 � set to

� , �), together with the constraints:

(9)
� � 	 �

(10)
� � � 	 � � � ��� 	 � � " .

Let � � � 	 � � � � � & � , � . Then � and � � are equisatisfiable.

Proof. Suppose � ! � � � . By Lemma 15,
� � has at least � � components, whence, by

constraints (9) and (10), 	��� also has at least � � components. Hence � ! � � � , so that
� ! � � � . By Lemma 10, � � ! � � .

Conversely, suppose ��!� � . We construct � satisfying � � as follows. Refer to fig-
ure 1. Let

�
+ � (((�

� � � � � be distinct components of 	 � , and choose points � + � (((�� � � � �
with � � # � � for all � (
 �
 � � � �). Let � � �� + � (((� � � � � � & be a set of � � dis-
tinct points not in � . Let � � � , � . For all � (
 �
 � � � �), let � � � � � ��� � � �+&
and let � � � � � �� � � � � � & . To turn � into a topological space, let the closed sets of �
be those of the form

� � � , � � , � � �� ! � � #�� � &
where � � � � and � � �	� . (Note that the closure operators in this expression refer to
the topological space �). It is routine to check that � is a topological space; indeed,
� has the subspace topology induced by � . To define the structure � � ��� ��
 � ,
let
 be the same as � , with the following exceptions. Set
 	 �� � � and
 	 � � ��
+ , � � � ,

� � � � � ; furthermore, fix the
 	�' � � (��
 �
 �) in such a way that, for all
� (
 ��
 � ��� �), 	 � � ����� � �� , and 	 � � ����� �� �� & , as shown in figure 1.
It is obvious that such an assignment is possible.

To see that �%!� � � , define � � � ��������� � to be exactly like the structure � except that
we fix � � 	 � �
 	 � � � , � � 	 � � �
 	 � � � � ��
 	 � � , and, for all � (�
 �
 �),
�)� 	 ' � � � � ��
 	 ' � � . Since

� � � ' � � (((� ' � do not occur in � , � � ! � � . Moreover,
by the construction of � and � � , we have � � � � � . By Lemma 10, � ! � � � . It is
routine to verify, by inspection of figure 1, that � ! � � .

We have now completed the task of this section.

Theorem 1. The problem ����� -SAT is in NEXPTIME.

Proof. Let � be a given set of constraints. By Lemmas 8 and 16, we can compute
in polynomial time an equisatisfiable set of constraints � � such that � � is type-IV-
free. By corollary 1, if � � is satisfiable, then ��!� � � for some � � ������� � , with
! �$! bounded by an exponential function of ! � � ! . In fact, we may assume that � is
presented in the form of a reflexive, transitive graph. But we can verify that �"!� � �
in time polynomially bounded by ! � ! �	! � � ! .

Topological Constraints 17

����

���� ��������	�	

���

��

�����������
�

�������
�

����

����

�����! "� � � � �$#�#&%

��'((� � � � �$#�#&% �)'* (� � � � �+#�#,%

�)�-�. (� � � � �+#�#&%

/!0 �)�-� # % 132
�54761 2

�54 2132
�54981 21 613:

�����. �$# %���-�; =< #,% �����. �+# %

��'(�$#&%�)'* �+#&%��'(>< #&%

? 0 � %

Figure 1. Construction of the structure � : the irregularly shaped regions represent
the components of 	�� ; arrows point from each � � to all points in the corresponding
� � .

We end this section with a brief discussion of the techniques employed. Previous
investigations of the complexity of topological constraint languages have exploited
the relationship between topological spaces and Kripke frames for the modal logic
S4. (See section 6 for references.) The filtration technique employed in section 4.2
to prove the small model property for type-IV-free sets of constraints comes as no
surprise, therefore: we have avoided the translation of ����� -SAT into a satisfiability
problem in modal logic by re-casting the standard filtration argument for S4 in topo-
logical terms. The advantage of our approach is of course the ease with which we
can deal with connectedness constraints. Lemma 3 assures us that the filtration used
to generate small models is a continuous function, and hence preserves type-III con-
straints. Note that this very simple fact would be completely obscured by translation
into propositional modal logics such as S4, in which the property of connectedness is
not expressible!

5. NEXPTIME-Hardness

The following definitions are well-known.

Definition 5. A tiling system @ is a finite set
�

, whose elements are called tiles,
together with a tile � # � and two relations � � �BA �

. An � -tiling using
@ is a function � mapping pairs of integers in the range

�
	 � � � ��� to

�
such that

� 	 	 � 	 � � � and for all � � �
(
 � � � , 	
 �
 �), ��� 	�� � � ����� 	�� � � � � � �!#' and

��� 	 � � � � ��� 	 � � � � � � � # .

�

18 Journal of Applied Non-Classical Logics. Volume 11 - n � 3-4/2001

Think of as expressing horizontal constraints (which tiles can go immediately to
the right of which other tiles) and as expressing vertical constraints (which tiles can
go immediately above which other tiles). Then an � -tiling is an arrangement of tiles
on a grid of size � , with � in the bottom left-hand corner, respecting these constraints.

Definition 6. The problem TILING is defined as follows (again, using the usual equiv-
ocation between numerals and integers):

Instance: A tiling system @ and a nonzero binary numeral � .

Question: Does @ have a � -tiling?

�

We may take the size of an instance of TILING to be the number of digits in � plus
the number of tiles in @ . The following result is simple to establish by encoding runs
of Turing machines using tilings (see, e.g. Papadimitriou [PAP 94], problem 20.2.10a).

Theorem 2. The problem TILING is NEXPTIME-hard.

Indeed, inspection of the encoding shows that Theorem 2 continues to hold in the case
where the integer represented by � is restricted to be a power of 2.

To show NEXPTIME hardness of ����� -SAT, it suffices to encode a given tiling
problem as a ����� -SAT problem in time bounded by a polynomial function of the
original tiling problem. In fact, we show below how a given tiling problem can be
polynomially mapped into the problem of determining the satisfiability of a set � of
constraints of types I, II and III.

5.1. Establishing a grid

Let ' � � (((� ' � , � � � (((��� � be variables. As before, any term

�' � � (((� �' � ��� � � � (((� � � �
encodes a pair of integers in the range

�
	 � � � � ��� in the obvious way. We use 	 � ��� � ,

	 � � ����� � etc. equivocally for such expressions and the corresponding pairs of integers.
It helps to think of the 	 � ��� � as squares arranged in a grid-like pattern, with � � rows
and � � columns. Consider the constraints:

(11) for all
�
, � (��
 � ���
 �),

	 ' � ��� � � � � 	 � ' � �)� � � � � "
	 � ' � � � � � � � 	�' � �)� � � � � "
	 ' � � � � � � � � 	 � ' � � � � � � "
	 � ' � �)� � � � � � 	 ' � � � � � � "�(

Topological Constraints 19

It is easy to see that, for any structure � satisfying (11), if � ! � 	 � ��� � � � 	 � � ����� � �� " ,
then � � � � or ��� � � . (Proof: If � �� � � and �

�� ��� , let � and � � differ in the�
th digit and let � and � � differ in the � th digit. Recalling that � � � � � � is the same

as ! � � ��' � , � � � � � 	 is the same as ! � � � � ' � , and similarly for � � , � and
��� , we cannot have � ! � 	 � ��� � � � 	 � � ����� � �� " without violating one of the above
constraints.)

For all � (�
��
 �) use the abbreviation '��� for the term � ' � � ' � � � � ' � � � �� � � � ' � � ' � as before, and the abbreviation � �� analogously. By analogy with the
constraints (1)–(3) of Lemma 13, consider the constraints:

(1) � for all � , �
(�
 � � �
 �),

	 ' �� � ' � � � �)� ' � � "
	 ' �� �)� ' � � � � ' � � "

(2) � for all � , �
(�
 � ����
 �),

	 ' �� � � � ' � � ' � � "
	 ' �� � � � � ' � �)� ' � � "

(3) � 	 ' � � � � �+� ' � � � � ' � � � � � � ' � .
(1) � for all � , �

(��
���� �
 �),

	�� �� � � � � � �)� � � � "
	�� �� � � � � � � � � � � "

(2) � for all � , �
(��
 � � �
 �),

	�� �� � � � � � � � � � "
	�� �� � � � � � � � � � � � "

(3) � 	�� � � � � � � � � � � � � � � � � � � ��� .

By reasoning identical to that of lemma 13 , we have that, for any structure � satisfying
(1) � –(3) � , (1) � –(3) � and (11), if � ! � 	 � ��� � ��� 	 � ������� � �� " , then 	 � � ����� � � 	 � ��� �
or 	 � � ����� � � 	 � � � ��� � or 	 � ������� � � 	 � ��� � � � .

20 Journal of Applied Non-Classical Logics. Volume 11 - n � 3-4/2001

� � � � � ���

+
�

+ � � � � � � � �
� + � +

�

� � � � � � ��� � � �

Figure 2. The grid and its periphery

We now write constraints forcing the 	 � ��� � to connect up in a grid-like way. The
idea is similar to that of lemma 14. We need one extra piece of notation. If � is in the
range

�
	 � � ��� ��� , then write �

� for the term involving the ' � � (((' � representing � ,
and write �

� for the term involving the � � � (((�� � representing � . Remembering that
the 	 � ��� � are to be regarded as squares on a grid, we can think of the �

� as the grid’s
columns and the �

� as its rows. Suppose we add the constraints

(12) 	 	 � 	 � �� " , 	 � ��� � � � � � � � �� " , 	 	 � , 	 � ��� � � � � , 	 	 � , 	 � ��� � � ��� .

By reasoning identical to that of Lemma 14, we see that, for any structure satisfying
the constraints (1) � –(3) � , (1) � –(3) � , (11) and (12), all the squares on the periphery
of the grid are forced to be nonempty (figure 2).

Now let us turn our attention to the non-peripheral squares on the grid. Geomet-
rically, the term ' � picks out the collection of squares in the odd columns, and the
term � ' � , the collection of squares in the even columns. Similarly � � picks out the
odd rows, and � � � , the even rows. Thus, the term 	 � , � ' � picks out the comb-
like region shown in figure 3, consisting of a horizontal bar and � � � � vertical ‘teeth’.
Given the above constraints, it is clear that adding the single constraint 	 	 � , � ' ���
is sufficient to force every square in this comb-like region to be non-empty. For the

Topological Constraints 21

� + �� ��� � � � ��� � � �

� � � � � � + �� + � +
� � � � + � � ��� � � � + �

Figure 3. The comb-like region 	 � , � ' �

end-squares of each tooth, being peripheral, are non-empty, and these can only be
connected to each other in the relevant region via the other squares in the teeth.

Consider, then the constraints

(13) 	 	 � , � ' � � , 	 	 � , ' � � , 	 	 � , � � � � , 	 	 ��, � � � .

It is now obvious that if � satisfies (1) � –(3) � , (1) � –(3) � , (11), (12) and (13), then
� ! � 	 � ��� � �� " for all � and � in the range

�
	 � � � � � � ; in fact, ��!� 	 � ��� � �-�	 � � ����� � ��

" if and only if 	 � � ����� � is one of the squares 	 � ��� � , 	 � � � ��� � or 	 � ��� � � � .
We need one more encoding trick before we are ready to translate a tiling problem

into a set of constraints. If 	 and 	 � are terms, we take 	 � 	 � to abbreviate 	 	 �
�
	 � � , 	 �
	�� 	 � � . Thus,

�
expresses the symmetric difference operator. Then the

term ' � � � � picks out the ‘black’ squares (under a normal chequered pattern), and
��	 ' � � � � � , the ‘white’ squares. Abbreviate these terms by � and � , respectively.
Notice that, if 	 � ��� � and 	 � � ����� � are distinct squares falling within the region � , then,
for any � satisfying the constraints (1) � –(3) � , (1) � –(3) � and (11), � ! � 	 � ��� � � �
	 � � ����� � � " . Hence, for any � satisfying the constraints (1) � –(3) � , (1) � –(3) � and
(11)–(13), we have � ! � �� � � 476 	�� � and � ! � �� ��� 476 	 � � . It follows that if � also
satisfies the constraints

(14) �� ��� 476 	�� � and �� � � 476 	 � � ,

22 Journal of Applied Non-Classical Logics. Volume 11 - n � 3-4/2001

then � must interpret each 	 � ��� � as a connected set. Let us denote the set of constraints
(1) � –(3) � , (1) � –(3) � and (11)–(14) by � � (� for ‘grid’). By inspection, ! � � ! is
bounded by some fixed polynomial in � .

5.2. Encoding a tiling system

Let @ be a tiling system consisting of the tile set � � (((�� � (� � �) and binary
relations and � , and let � � � � for some � � � . Form the constraints � � , and select
distinct variables

� � � (((� � � not occurring in � � . In the sequel, we use the letters
�

and
� � to range over the

� � . Consider the constraints:

(15) for all distinct
�

,
� � ,

� � � � � "

(16)
� � � ��	 � � , � � � , � � � � � ,

guaranteeing that the sets assigned to these variables are pairwise disjoint and jointly
exhaustive, as well as the constraints:

(17) for all distinct
�

,
� � ,

	��	� � � � �)	��	� � � � � "
	 � � � � � � 	 � � � � � � "�(

Since the constraints � � force every square 	 � ��� � to be connected, any structure �
satisfying � � and (15)–(17) must satisfy the condition that, for any square 	 � ��� � ,
there exists a unique

�
such that � ! � 	 � ��� � � � . We may think of

�
as the tile

used to cover the square 	 � ��� � . Notice incidentally that constraints (17) do not create
difficulties for (horizontally or vertically) neighbouring squares covered with different
tiles, because no two such neighbouring squares are contained within � , and no two
such neighbouring squares are contained within � .

To encode the relations and , we add the following following constraints:

(18) for all � , �
(��
 � � �
 �) such that �� � �� � � �#� ,

	 ' � � � � � � �)� ' � � � � � "
	 � ' � � � � � � � ' � � � � � "

(19) for all � , �
(��
 � � �
 �) such that �� � �� � � �# ,

	�� � � � � � � � � � � � � � � "
	 � � � � � � � � � � � � � � � "�(

Topological Constraints 23

To see how these constraints have the desired effect, recall that, given � � , if ��
 � � � � ,
then 	 � ��� � � � 	 � ��� ��� � �� " , and if �
 � � � � , then 	 � ��� � � � 	 � ������� � �� " . Noting
that the term ' � picks out the odd-numbered columns of the grid, and the term � ' � ,
its even-numbered columns, constraints (18) impose restrictions on the interpretations
of
� � and

� � corresponding exactly to the horizontal tiling restrictions in @ . A similar
argument shows that (19) handles the vertical constraints. Finally, we add a constraint
specifying which tile covers the bottom left-hand square:

(20) 	 	 � 	 �
� � � .

Let
���

be the set of constraints 	 ��� � – 	���� � .
Summarizing the above argument, we have shown:

Lemma 17. Let � � � � for some � � � , let @ be a tiling system with tiles � � (((�� � ,
and let � � ,

� �
be as defined above. Suppose � ! � � � ,

� �
. For � ��� in the range�

	 ��� � � � , set � 	 � ��� � � � if � ! � 	 � ��� ��� � � . Then � is a � -tiling for @ .

Finally, we show that any � -tiling for @ (where � � � � for some ��� �) can be
used to manufacture a structure satisfying � � ,

� �
. Imagine we have such a � -tiling.

In each grid square, place two points: an ‘input’ point and an ‘output’ point. Now
connect these points by arrows as shown in figure 4 (the input points are coloured
black, and the output points, white); we also assume each point is connected to itself.
By inspection, this graph is reflexive and transitive, and thus defines a topological
space, � , with closure operator defined in the familiar way.

To turn � into a structure � , we interpret the ' � � (((� ' � and � � � (((��� � so that
the expressions 	 � ��� � pick out the corresponding grid squares in the obvious way. In
addition, we let the two points in each grid square 	 � ��� � (under the correspondence
just established) be in the extension of the variable

� � just in case 	 � ��� � is tiled with
 � . It is then routine to check that the constraints � � ,

� �
are satisfied. Thus, we

have,

Lemma 18. Let � � � � for some ��� � , let @ be a tiling problem, and let � � ,
� �

be as defined above. Given a tiling of a � A � grid by @ , form the structure � as just
described. Then � ! � � � ,

���
.

Theorem 3. The problem of determining the satisfiability of a set of constraints of
types I, II and III is NEXPTIME-hard.

Proof. Lemmas 17 and 18, and Theorem 2.

Theorems 1 and 3 complete the proof that the problem ����� -SAT is NEXPTIME-
complete.

24 Journal of Applied Non-Classical Logics. Volume 11 - n � 3-4/2001

Figure 4. Manufacturing a topological space from a tiling

6. Relation to other work

Research into topological constraint languages began with the development of
what has now come to be called RCC-theory. (RCC stands for ‘region-connection cal-
culus’; for a representative sample of this early work, see Randell, Cui and
Cohn [RAN 92].) To relate RCC-theory and its ensuing developments to the present
paper requires us occasionally to sacrifice historical accuracy for the sake of logical
simplicity. However, none of these exegetical distortions affects any matter of sub-
stance.

Let � be a set of variables, as before, and let � denote the set of relation-symbols:
DC, EC, PO, EQ, TPP and NTPP. (These symbols are mnemonics for their fixed in-
terpretations: DC for “disconnected”, EC for “externally connected”, PO for “partial
overlap”, EQ for “equal”, TPP for “tangential proper part”, and NTPP for “non-
tangential proper part”.) Then we can define a topological constraint language—let
us call it � + —as follows: atomic formulas of � + are simply expressions of the form� 	 � � � , where

� #�� and � � # � ; and formulas of � + are Boolean combina-
tions of atomic formulas.

For reasons that need not detain us here, topological constraint languages based on
these relations are standardly interpreted only over regular closed subsets of topolog-
ical spaces. (A set � is regular closed if it is equal to the closure of its interior—in

Topological Constraints 25

the usual notation: � � 	���+ � � .) Formally, then, we take a � + -structure to be a pair
������� � where � is a topological space and � � � � � #*�
	����! � � 	�� + � � & .
Satisfaction for atomic formulas is then defined as follows:

������� � ! � DC 	 � � � � iff ��	 � � � ��	 � � � "
������� � ! � EC 	 � � � � iff ��	 � � � ��	 � � �� "�� � 	 � � + � ��	 � � + � "
������� � ! � PO 	 � � � � iff ��	 � � + � � 	 � � + �� "�� � 	 � � �)� � 	 � � �� "��

� ��	 � � � ��	 � � �� "
������� � ! � EQ 	 �� � �� � iff ��	 �� � � � 	 � �
������� � ! � TPP 	 �� � �� � iff ��	 �� � �)	 � ��	 �� � � � �� "�� � 	 �� � �)� � 	 � � � "

������� � ! � NTPP 	 �� � �� � iff ��	 �� � �)	 � ��	 �� � � � � "�(

The definition of satisfaction for arbitrary � + -formulas proceeds as expected. The
problem � + -SAT is that of determining, for a given � + -formula, whether there exists
a � + -structure satisfying it. (Readers familiar with “RCC-8” who are wondering what
has happened to the relations TPPi and NTPPi are reminded that these primitives are
obviously definable in � + using TPP and NTPP.)

The language � + is a modest liberalization of a topological constraint language
which has received considerable attention in the literature (Bennett [BEN 96], Renz
and Nebel [REN 99]). It follows from the results obtained by Renz and Nebel that
� + -SAT is NP-complete. In fact, Renz [REN 00] provides a comprehensive account
of the complexity of satisfiability for a fragment of � + and its tractable sublanguages,
obtained by restricting the kinds of disjunctions allowed in � + -formulas. We note in
passing that, for the more restricted language studied by Nebel and Renz, the NP-
hardness result is non-trivial; by contrast, � + as just defined is visibly NP-hard.

One way to increase � + ’s expressiveness is to incorporate function-symbols de-
noting operations on sets. Thus, Wolter and Zakharyaschev [WOL 00a] extend the
usual RCC-language by allowing function-symbols denoting operations within the
Boolean algebra of regular closed sets. Liberalizing Wolter and Zakharyaschev’s
syntax slightly, we may define a topological constraint language � � extending � + as
follows. Terms in � � are formed by applying the unary function-symbol � and the
binary function-symbol , to variables; atomic formulas in � � are defined as expres-
sions of the form

� 	 	���	 � � , where
� # � and 	 , 	 � are terms; and formulas in � �

are Boolean combinations of atomic formulas. Semantically, a ��� -structure is a pair
������� � where � is a topological space and � � � � �(# � 	��� ! � � 	�� + � � & . The
function � is extended from variables to terms by the rules � 	�	 � � � 	 � ��	 	!� � � and
� 	�	 , 	 � � � ��	 	!� , � 	�	 � � . Satisfaction and the problem ��� -SAT are then defined in
the obvious way. It turns out that ��� -SAT is still NP-complete; thus, ��� represents an
increase of expressive power over � + without changing the complexity of satisfiabil-
ity. This result appears to derive primarily from Wolter and Zakharyaschev’s careful

26 Journal of Applied Non-Classical Logics. Volume 11 - n � 3-4/2001

choice of primitive functions rather than on any special properties of the relations in
� . It is likely, therefore, that the result can be extended to richer sets of primitive
relations.

What happens if the primitive functions are not restricted to the regular closed al-
gebra? This question is partially answered by Nutt [NUT 99], who investigates the
topological constraint language with the three function-symbols � , � , � and the sin-
gle binary relation-symbol � , under the semantics given in section 3. (As with ����� ,
variables are now interpreted as arbitrary subsets of some topological space—i.e. they
need not be regular closed.) Thus, Nutt’s language, which we might call ��� , is the
fragment of ����� involving only those atomic propositions expressing equality be-
tween two terms. There is no need to include in � � the remaining primitives of � ,
since these are definable using the resources already available. Nutt observes that de-
termining satisfiability in � � is essentially the same as determining satisfiability in the
modal logic S4, and is thus PSPACE-complete. The translation of topological con-
straint languages into modal logics in fact originated Bennett’s analysis of a language
based on the RCC relations; Nutt was the first to present the semantics of topologi-
cal constraint languages in a rigorous form, allowing a more precise statement of the
relevant complexity result.

Though visibly more expressive than � + or � � , � � still does not allow us to bound
the number of components of a region, or even to state that a region is connected at all.
The results of this paper show that adding this capability raises the complexity from
PSPACE-complete to NEXPTIME-complete. Thus, in the broader context of topo-
logical constraint languages, our result continues a general trend towards considering
formalisms of ever greater expressiveness and complexity.

Having seen how ����� fits into a series of progressively complex topological con-
straint languages, it is natural to ask what lies beyond. Perhaps the most obvious
extension to the expressive power of these languages is the introduction of quantifica-
tion. The extension of the notion of satisfaction to quantified languages is completely
standard, and need not be rehearsed here. Some results have indeed been obtained
regarding such languages. However, because this work has been motivated largely
by possible applications to spatial reasoning in Artificial Intelligence, most of these
results restrict the domain of quantification to certain very well-behaved subsets of the
single topological spaces

� � or
� � . The satisfiability problem for

� � was shown to be
undecidable by Dornheim [DOR 98]; consequently, investigations tend to concentrate
on issues such as alternative models (Pratt and Lemon [PRA 97]), expressive power
(Papadimitriou, Suciu and Vianu [PAP 96], Pratt and Schoop [PRA 00]) and axiom-
atization (Pratt and Schoop [PRA 98]). An analysis of these issues for

� � is given
in Pratt and Schoop [PRA 02]. Little has been published on quantified topological
languages interpreted over arbitrary topological spaces.

Topological Constraints 27

Acknowledgements

The author wishes to thank Paolo Torrini and the anonymous referees for their
comments.

7. References

[BEN 96] BENNETT B., “Modal Logics for Qualitative Spatial Reasoning”, Journal of the
Interest Group on Pure and Applied Logics, vol. 4, 1996, p. 23–45.

[CLA 81] CLARKE B. L., “A calculus of individuals based on “connection””, Notre Dame
Journal of Formal Logic, vol. 22, num. 3, 1981, p. 204–218.

[CLA 85] CLARKE B. L., “Individuals and points”, Notre Dame Journal of Formal Logic,
vol. 26, num. 1, 1985, p. 61–75.

[DOR 98] DORNHEIM C., “Undecidability of Plane Polygonal Mereotopology”, COHN

A. G., SCHUBERT L. K., SCHUBERT S. C., Eds., Principles of Knowledge Representation
and Reasoning: Proceedings of the Sixth International Conference (KR ’98), San Francisco,
CA, 1998, Morgan Kaufmann, p. 342-353.

[JON 97] JONSSON P., DRAKENGREN T., “A complete classification of tractability in RCC5”,
Journal of Artificial Intelligence Research, vol. 6, 1997, p. 211–221.

[LAG 22] DE LAGUNA T., “Point, line, and surface as sets of solids”, The Journal of Philoso-
phy, vol. 19, 1922, p. 449-461.

[NUT 99] NUTT W., “On the Translation of Qualitative Spatial Reasoning Problems into
Modal Logics”, BURGARD W., CHRISTALLER T., CREMERS A., Eds., Advances in Arti-
ficial Intelligence, Proc. 23rd Annual German Conference on Artificial Intelligence, KI’99,
vol. 1701 of Lecture Notes in Computer Science, Berlin, 1999, Springer-Verlag, p. 113–
124.

[PAP 94] PAPADIMITRIOU C. H., Computational Complexity, Addison-Wesley, Reading,
MA, 1994.

[PAP 96] PAPADIMITRIOU C. H., SUCIU D., VIANU V., “Topological Queries in Spatial
Databases”, Proceedings of PODS’96, ACM, 1996, p. 81–92.

[PRA 97] PRATT I., LEMON O., “Ontologies for plane, polygonal mereotopology”, Notre
Dame Journal of Formal Logic, vol. 38, num. 2, 1997, p. 225-245.

[PRA 98] PRATT I., SCHOOP D., “A complete axiom system for polygonal mereotopology of
the real plane”, Journal of Philosophical Logic, vol. 27, num. 6, 1998, p. 621–658.

[PRA 00] PRATT I., SCHOOP D., “Expressivity in polygonal, plane mereotopology”, Journal
of Symbolic Logic, vol. 65, num. 2, 2000, p. 822–838.

[PRA 02] PRATT I., SCHOOP D., “Elementary polyhedral mereotopology”, Journal of Philo-
sophical Logic, vol. 31, 2002, p. 461–498.

[RAN 92] RANDELL D. A., CUI Z., COHN A. G., “A Spatial Logic Based on Regions and
Connection”, NEBEL B., RICH C., SWARTOUT W., Eds., Principles of Knowledge Repre-
sentation and Reasoning: Proceedings of the Third International Conference (KR ’92), San
Mateo, CA, 1992, Morgan Kaufmann, p. 165–176.

[REN 99] RENZ J., NEBEL B., “On the complexity of qualitative spatial reasoning: A
maximal tractable fragment of the Region Connection Calculus”, Artificial Intelligence,

28 Journal of Applied Non-Classical Logics. Volume 11 - n � 3-4/2001

vol. 108, 1999, p. 69-123.

[REN 00] RENZ J., “Qualitative Spatial Reasoning with Topological Information”, PhD thesis,
Albert-Ludwigs-Universität Freiburg im Breisgau, 2000.

[WHI 29] WHITEHEAD A. N., Process and Reality, The MacMillan Company, New York,
1929.

[WOL 00a] WOLTER F., ZAKHARYASCHEV M., “Spatial reasoning in RCC-8 with Boolean
region terms”, HORN W., Ed., ECAI 2000: Fourteenth European Conference on Artificial
Intelligence, Amsterdam, 2000, IOS Press, p. 244-248.

[WOL 00b] WOLTER F., ZAKHARYASCHEV M., “Spatio-temporal representation and reason-
ing based on RCC-8”, COHN A. G., GIUNCHIGLIA F., SELMAN B., Eds., Principles of
Knowledge Representation and Reasoning: Proceedings of the Seventh International Con-
ference (KR-00), San Francisco, 2000, Morgan Kaufmann, p. 3–14.

