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Abstract. The satisfiability and finite satisfiability problems for the
two-variable fragment of first-order logic with counting were shown in [5]
to be in NExpTime. This paper presents a simplified proof via a result
on integer programming due to Eisenbrand and Shmonina [2].
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1 Introduction

The two-variable fragment with counting quantifiers, here denoted C2, is the set
of function-free, first-order formulas containing at most two variables, but with
the counting quantifiers ∃≤C , ∃≥C and ∃=C (for every C > 0) allowed. Thus, for
example, the sentences

No professor supervises more than three students

Every student is supervised by at most one professor

may be formalized using the respective C2-formulas:

¬∃x(professor(x) ∧ ∃≥4y(student(y) ∧ supervises(x, y)))

∀x(student(x) → ∃≤1y(professor(y) ∧ supervises(y, x))).

The satisfiability problem for C2, denoted Sat-C2, is the problem of deter-
mining whether a given C2-formula has a model. The finite satisfiability prob-
lem for C2, denoted Fin-Sat-C2, is the problem of determining whether a given
C2-formula has a finite model. Since C2 lacks the finite model property, these
problems are distinct. Both problems, however, were shown in [5] to be in
NExpTime, thus improving earlier results in [3] and [4]. The proof given in that
paper features a long, combinatorial argument to show that, if a C2-formula has
a model at all, then it has a model in which only a small number of distinct ‘local
configurations’ arise. The present paper presents a shorter and more perspicuous
proof via a result on integer programming due to Eisenbrand and Shmonina [2].
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2 Preliminaries

In the sequel, all signatures will be silently assumed to be purely relational. This
results in no loss of generality, as function-symbols are not allowed in C2, and
individual constants can easily be simulated by means of unary predicates. We
further assume, also without loss of generality, that all predicates have arity 1
or 2. Finally, we assume all structures to be finite or countably infinite. If ϕ is
a C2-formula, we write ‖ϕ‖ to denote the total number of symbols in ϕ. Here,
we assume numerical subscripts in counting quantifiers to be coded as binary
strings. Thus, for example, the number of symbols contributed by a quantifier
∃≤C is approximately dlogCe, where dre denotes the smallest integer greater
than or equal to r. In this paper, all logarithms are base 2.

We begin with the reduction of C2-formulas to ‘Scott-form’.

Lemma 1. Let ψ be a C2-formula. We can generate, in time bounded by a poly-
nomial function of ‖ψ‖, a quantifier-free C2-formula α, a list of positive integers
C1, . . . , Cm and a list of binary predicates f1, . . . , fm (m ≥ 1) such that the
formulas ψ and

ϕ = ∀x∀y(α ∨ x ≈ y) ∧
∧

1≤h≤m

∀x∃=Ch
y(fh(x, y) ∧ x 6≈ y) (1)

are satisfiable over the same domains containing at least C + 1 elements, where
C = maxh Ch.

Proof. Routine adaptation of the re-naming technique used in [7].

Henceforth, then, we may restrict attention to C2-formulas of the form (1),
since the truth of ψ in a model of size C or less can evidently be checked in
time bounded by an exponential function of ‖ψ‖. In the ensuing analysis of such
formulas, the binary predicates f1, . . . , fm will play a special role. We adopt the
following (non-standard) terminology.

Definition 1. Let Σ be a signature, and f1, . . . , fm (m ≥ 1) a tuple of distinct
binary predicates in Σ. The pair 〈Σ, (f1, . . . , fm)〉 is called a classified signature,
and the f1, . . . , fm are referred to as its featured predicates.

Let Σ be a signature (not necessarily classified). We follow standard termi-
nology, and say that a 1-type (over Σ) is a maximal consistent set of equality-free
literals over Σ involving only the variable x. Likewise, a 2-type (over Σ) is a max-
imal consistent set of equality-free literals over Σ involving only the variables
x and y. Reference to Σ is suppressed where clear from context. If A is any
structure interpreting Σ, and a ∈ A, then there exists a unique 1-type π(x) over
Σ such that A |= π[a]; we denote π by tpA[a]. If, in addition, b ∈ A is distinct
from a, then there exists a unique 2-type τ(x, y) over Σ such that A |= τ [a, b];
we denote τ by tpA[a, b]. We do not define tpA[a, b] if a = b. If π is a 1-type, we
say that π is realized in A if there exists a ∈ A with tpA[a] = π. If τ is a 2-type,
we say that τ is realized in A if there exist distinct a, b ∈ A with tpA[a, b] = τ .
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Notation 1 Let τ be a 2-type over a signature Σ. The result of transposing the
variables x and y in τ is also a 2-type, denoted τ−1; and the set of literals in τ

not featuring the variable y is a 1-type, denoted tp1(τ). We write tp2(τ) for the
1-type tp1(τ

−1).

Note that tp2(τ) is the result of taking the set of literals in τ not featuring the
variable x, and then replacing y throughout by x.

Remark 1. If τ is any 2-type over a signature Σ, A is a structure interpreting Σ,
and a, b are distinct elements of A such that tpA[a, b] = τ , then tpA[b, a] = τ−1,
tpA[a] = tp1(τ) and tpA[b] = tp2(τ).

The following terminology, relating to classified signatures, is non-standard:

Definition 2. Let A be a structure interpreting a classified signature 〈Σ, f̄〉 and
C a positive integer. We say that A is C-bounded if, for all a ∈ A and all featured
predicates f in f̄ ,

1 ≤ |{b ∈ A \ {a} | A |= f [a, b]}| ≤ C.

We say that A is bounded if it is C-bounded for some C.

Thus, A is C-bounded just in case, for every featured predicate f , no element
of A is non-reflexively related to more than C elements of A by f , and every
element of A is non-reflexively related to some element of A by f .

Remark 2. If ϕ is of the form (1), C ≥ maxh Ch and A |= ϕ, then A is C-
bounded.

Definition 3. Let 〈Σ, f̄〉 be a classified signature, and let τ be a 2-type over
Σ. We say that τ is a message-type (over Σ) if f(x, y) ∈ τ for some featured
predicate f . If τ is a message-type such that τ−1 is also a message-type, we say
that τ is invertible. On the other hand, if τ is a 2-type such that neither τ nor
τ−1 is a message-type, we say that τ is a silent 2-type.

Thus, a 2-type τ is an invertible message-type if and only if there are featured
predicates f and f ′ such that f(x, y) ∈ τ and f ′(y, x) ∈ τ . The terminology is
meant to suggest the following imagery. Let A be a structure interpreting the
classified signature in question. If tpA[a, b] is a message-type µ, then we may
imagine that a sends a message (of type µ) to b. If µ is invertible, then b replies
by sending a message (of type µ−1) back to a. If tpA[a, b] is silent, then neither
element sends a message to the other.

3 A Result on Solutions to Integer Programming

Problems

Our strategy in analysing the problems Sat-C2 and Fin-Sat-C2 is to reduce them
to integer programming problems. Having done so, we shall employ a variant of
a result of Eisenbrand and Shmonina [2] (also used in [6] in connection with the
one-variable fragment with counting).
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Lemma 2. Let E be a set of m linear inequalities of the form

a0 + a1x1 + · · · + anxn ≤ b0 + b1x1 + · · · + bnxn,

in variables x1, . . . , xn, where a0, b0 ∈ N and ai, bi ∈ {0, 1} for all i (1 ≤ i ≤ n).
If E has a solution over N, then it has a solution over N in which at most
5m(logm+ 1) variables take non-zero values.

Proof. Routine adaptation of [6, Theorem 1].

Notice that the bound in Lemma 2 depends only on the number of equations,
and not on the number of variables, nor indeed on the sizes of the constant
terms.

We need to generalize this result slightly to deal with infinite solutions.

Notation 2 Let N
∗ denote the set N∪{ℵ0}. We extend the ordering > and the

arithmetic operations + and · from N to N
∗ in the obvious way. Specifically, we

define ℵ0 > n for all n ∈ N; we define ℵ0+ℵ0 = ℵ0·ℵ0 = ℵ0 and 0·ℵ0 = ℵ0·0 = 0;
we define n+ℵ0 = ℵ0 +n = ℵ0 for all n ∈ N; and we define n · ℵ0 = ℵ0 ·n = ℵ0

for all n ∈ N such that n > 0. Under this extension, > remains a total order,
and +, · remain associative and commutative.

A system of linear inequalities defining an integer programming problem can of
course be re-interpreted so that solutions are sought not over N but over N

∗.
(We always assume that the coefficients occurring in such problems are in N.)
As an example, the single inequality x1 ≥ x1 + 1 has no solutions over N, but it
does have a solution over N

∗, namely, x1 = ℵ0.

Lemma 3. Let E be a system of m linear inequalities as in Lemma 2. If E has a
solution over N

∗, then E has a solution over N
∗ in which at most 5m(logm+ 1)

variables take non-zero values.

Proof. Pick some solution of E over N
∗, and list those inequalities whose right-

hand sides are infinite for this solution. For each such inequality, pick one variable
xi with infinite value whose coefficient bi is 1. By re-ordering the variables if
necessary, let x1, . . . , xk be the selected variables, xk+1, . . . , x` the other variables
taking infinite values, and x`+1, . . . , xn the variables taking finite values. Let E ′

be the set of inequalities in E whose right- (and therefore left-) hand sides are
finite for the given solution. Clearly, the coefficients a1, . . . , a` and b1, . . . , b`
are all zero for these inequalities. Assuming ` < m, E ′ therefore has a solution
(0, . . . , 0, x′`+1, . . . , x

′
n) over N with at most 5(m − `)(log(m − `) + 1) non-zero

values. But then (ℵ0, . . . ,ℵ0, 0, . . . , 0, x
′
`+1, . . . , x

′
n), with k ℵ0s, is a solution for

E .

4 The Main Result

The principal challenge in establishing upper complexity bounds for Sat-C2 and
Fin-Sat-C2 consists in the very general nature of the structures we must work
with. The following two notions help to reduce this generality slightly.
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Definition 4. Let A be a structure interpreting a classified signature 〈Σ, f̄〉. We
say that A is chromatic if, for all a, a′, a′′ ∈ A:

1. if a 6= a′ and tpA[a, a′] is an invertible message-type, then tpA[a] 6= tpA[a′];
and

2. if a, a′, a′′ are all distinct and both tpA[a, a′] and tpA[a′, a′′] are invertible
message-types, then tpA[a] 6= tpA[a′′].

Thus, a structure is chromatic just in case distinct elements connected by a chain
of 1 or 2 invertible message-types always have distinct 1-types.

Remark 3. Let A be a chromatic structure interpreting a classified signature
〈Σ, f̄〉, and let π′ be a 1-type over Σ. Let a be an element of A. Then there is
at most one element a′ ∈ A \ {a} with 1-type π′ such that a sends an invertible
message to a′. Furthermore, if tpA[a] = π′, then there is no such element a′.

Definition 5. Let A be a structure interpreting a signature Σ, and Z a positive
integer. We say that A is Z-differentiated if, for every 1-type π over Σ, the
number u of elements in A having 1-type π satisfies either u ≤ 1 or u > Z.

Thus, in a Z-differentiated structure, every 1-type is realized either at most once
or more than Z times (possibly infinitely often).

The following lemmas have straightforward proofs [5, Lemmas 2 and 3].

Lemma 4. Let A be a C-bounded structure interpreting a classified signature
〈Σ, f̄〉, and m = |f̄ |. Then A can be expanded to a chromatic structure A

′ by
interpreting dlog((mC)2 + 1)e new unary predicates.

Lemma 5. Let A be a chromatic structure interpreting a classified signature
〈Σ, f̄〉, and Z a positive integer. Let Σ′ be the signature obtained by adding
dlogZe new unary predicates to Σ. Then A can be expanded to a chromatic,
Z-differentiated structure interpreting the classified signature 〈Σ′, f̄〉.

Our next task is to acquire the means to talk about ‘local configurations’ in
bounded structures interpreting a classified signature.

Notation 3 Fix a classified signature 〈Σ, f̄〉 with f̄ = (f1, . . . , fm) and |Σ| = s.
We assume a standard enumeration

π1, . . . , πL

of the 1-types over Σ, with arbitrary ordering, where L = 2s. We likewise assume
a standard enumeration

µ1, . . . , µM∗ , µM∗+1, . . . , µM ,

of the message-types over 〈Σ, f̄〉, where µ1, . . . , µM∗ are the invertible message-
types, and µM∗+1, . . . , µM the non-invertible message-types. (Otherwise, the or-
dering in this enumeration is again arbitrary.)
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s the number of symbols in Σ

π1, . . . , πL the 1-types over Σ

µ1, . . . , µM∗ the invertible message-types over 〈Σ, f̄〉
µM∗+1, . . . , µM the non-invertible message-types over 〈Σ, f̄〉
σ1, . . . , σN the C-bounded star-types over 〈Σ, f̄〉

Table 1. Quick reference guide to symbols used in connection with a classified signature
〈Σ, f̄〉.

The above notation, which will be used throughout this section, is summarized
in the first four rows of Table 1. We remark that M ≤ m24s−1.

Definition 6. Let A be a bounded structure interpreting a classified signature
〈Σ, f̄〉, and let a be an element of A. The star-type of a in A, denoted stA[a], is
the M -tuple σ = (v1, . . . , vM ) of natural numbers where, for all j (1 ≤ j ≤M),

vj = |{b ∈ A \ {a} : tpA[a, b] = µj}|.

Evidently, σ satisfies the condition

vj > 0 implies tp1(µj) = tpA[a],

for all j (1 ≤ j ≤ M). Accordingly, we take a star-type over 〈Σ, f̄〉 to be any
M -tuple σ of natural numbers satisfying the condition

vj > 0 and vj′ > 0 implies tp1(µj) = tp1(µj′),

for all j, j′ (1 ≤ j < j′ ≤ M). We denote the number vj by σ[j], for all j
(1 ≤ j ≤M). A bounded structure A is said to realize a star-type σ if, for some
a ∈ A, stA[a] = σ.

Thus, stA[a] is a description of a’s ‘local environment’ in A. We remark that, if A

is not bounded, and a ∈ A, then the cardinalities |{b ∈ A \ {a} : tpA[a, b] = µj}|
may be infinite. For this reason, we restrict attention to bounded structures
when talking about star-types of elements.

Certain important characteristics of bounded structures depend only on the
star-types they realize.

Definition 7. Let 〈Σ, f̄〉 be a classified signature, with f̄ = (f1, . . . , fm), and
let σ be a star-type over 〈Σ, f̄〉. We say that σ is C-bounded, for C > 0, if for
all h (1 ≤ h ≤ m),

1 ≤
∑

{vj | 1 ≤ j ≤M and fh(x, y) ∈ µj} ≤ C.

Furthermore, we say that σ is chromatic if, for every 1-type π′ over Σ, the sum

c =
∑

{vj | 1 ≤ j ≤M∗ and tp2(µj) = π′}

satisfies c ≤ 1, and satisfies c = 0 if π′ = π.
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Lemma 6. Let A be a bounded structure interpreting a classified signature 〈Σ, f̄〉.
Then A is C-bounded if and only if every star-type realized in A is C-bounded.
Furthermore, A is chromatic if and only if every star-type realized in F is chro-
matic.

Proof. Immediate once the definitions are unravelled.

The important point about C-bounded star-types over a finite classified sig-
nature 〈Σ, f̄〉 is that there are only finitely many of them. Indeed, for a given
〈Σ, f̄〉, and given C, we may enumerate them in a standard way as

σ1, . . . , σN , (2)

just as we did with the 1-types and message-types (Table 1). Simple calculation
shows that N ≤ (C + 1)M , where M the number of message-types. It is easy to
see that N is in generally doubly-exponential in s = |Σ|; however, the results of
Section 3 will ensure that this is no problem. Beware that the listing (2) depends
on the bound C of the star-types in question: this parameter is left implicit to
reduce notational clutter.

Having obtained characterizations of ‘local environments’ in structures in-
terpreting a classified signatures, we turn our attention to larger-scale aspects
of those structures. We begin by considering the special role played by silent
2-types.

Definition 8. Let 〈Σ, f̄〉 be a classified signature. Define Π(2) to be the set of
unordered pairs of (not-necessarily distinct) 1-types over Σ:

Π(2) = {{π, π′} | π, π′ 1-types over Σ}.

We call an element of Π(2) a quiet pair (in A) if there exist distinct a, a′ ∈ A

with tpA[a] = π and tpA[a′] = π′, such that the 2-type tpA[a, a′] is silent.

Quiet pairs can always be found in structures with populous 1-types [5, Lemma 4]:

Lemma 7. Let A be a C-bounded structure interpreting a classified signature
〈Σ, f̄〉, and m = |f̄ |. Suppose that π and π′ are 1-types over Σ (not necessarily
distinct), both realized in A more than (mC + 1)2 times. Then {π, π′} is a quiet
pair.

For the purpose of determining satisfiability of C2-formulas, we can afford to
be somewhat relaxed about the silent 2-types any putative model realizes.

Definition 9. Let 〈Σ, f̄〉 be a classified signature, Π(2) the set of unordered
pairs of 1-types over Σ, and Ξ the set of silent 2-types over 〈Σ, f̄〉. A regulator
over 〈Σ, f̄〉 is a partial function θ :⊆ Π(2) → Ξ such that

{tp1(θ({π, π
′})), tp2(θ({π, π

′}))} = {π, π′},

for every {π, π′} ∈ dom(θ). Further, let A be a structure interpreting 〈Σ, f̄〉.
We say that θ is a regulator for A, if dom(θ) is the set of quiet pairs in A, and
for every {π, π′} in this set, and any pair of distinct a, a′ ∈ A with tpA[a] = π,
tpA[a′] = π′ and tpA[a, a′] silent, either tpA[a, a′] = θ({π, π′}) or tpA[a′, a] =
θ({π, π′}). Finally, we call A regular if it has a regulator.
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Roughly, a regular structure A is one in which, for any quiet pair {π, π′}, we can
identify a silent 2-type, θ({π, π′}), that relates—in one direction or the other—
all the pairs of distinct elements a and a′ having respective 1-types π and π′

such that tpA[a, a′] is silent.

Lemma 8. Let ϕ be any formula of the form (1) over a signature Σ, let f̄ =
(f1, . . . , fm), and suppose A is a structure over the classified signature 〈Σ, f̄〉
such that A |= ϕ. Then there exists a regular structure B over 〈Σ, f̄〉 with the
same domain, such that B |= ϕ. Moreover if A is chromatic (Z-differentiated,
for some Z > 0), then so is B.

Proof. Consider any quiet pair {π, π′} in A, and pick distinct b, b′ such that
tpA[b] = π and tpA[b′] = π′, with ξ = tpA[b, b′] silent. Suppose now that
there exist distinct a, a′ ∈ A such that tpA[a] = π and tpA[a′] = π′, but
tpA[a, a′] 6= ξ and tpA[a′, a] 6= ξ. Let us alter A to obtain a model A

′ (say)
by setting tpA

′

[a, a′] = tpA[b, b′]; evidently, A
′ |= ϕ. Carrying out this transfor-

mation uniformly yields the required model B.

With the above apparatus at our disposal, we are in a position to characterize
entire structures in terms of the patterns of local configurations they exhibit.

Definition 10. Let 〈Σ, f̄〉 be a classified signature, C a positive integer, and
σ1, . . . , σN the standard enumeration of C-bounded star-types over 〈Σ, f̄〉. A
frame is a quintuple F = 〈Σ, f̄ , C,K, θ〉, where K is a non-empty subset of
{1, . . . , N}, and θ is a regulator over 〈Σ, f̄〉. We call F chromatic if every σk

(k ∈ K) is chromatic. Further, let A be a bounded structure interpreting 〈Σ, f̄〉.
We say that F describes A just in case {σk | k ∈ K} is exactly the set of
star-types realized in A, and θ is a regulator for A.

Lemma 9. Let A be a C-bounded regular structure over a classified signature
〈Σ, f̄〉. Then A is described by a frame of the form F = 〈Σ, f̄ , C,K, θ〉. Further,
if A is chromatic, then so is F .

Proof. Lemma 6.

Let ϕ be a formula of the form (1). If F describes A, then F contains all the
information needed to determine whether A |= ϕ:

Definition 11. Let ϕ be any formula of the form (1) over a signature Σ, let
f̄ = (f1, . . . , fm), and let F = 〈Σ, f̄ , C,K, θ〉 be a frame, where C ≥ Ch for all
h (1 ≤ h ≤ m). We write F |= ϕ if the following conditions are satisfied:

1. for all k ∈ K and all j (1 ≤ j ≤ M), if σk[j] > 0 then |=
∧

µj → α(x, y) ∧
α(y, x);

2. for all k ∈ K and all h (1 ≤ h ≤ m), the sum of all the σk[j] (1 ≤ j ≤ M)
such that fh(x, y) ∈ µj equals Ch.

3. for all {π, π′} ∈ dom(θ), |=
∧

θ(π, π′) → α(x, y) ∧ α(y, x).
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Lemma 10. Let ϕ, F be as in Definition 11, and suppose A is a bounded struc-
ture over 〈Σ, f̄〉 such that F describes A. Then A |= ϕ if and only if F |= ϕ.

Proof. Immediate once the definitions are unravelled.

Lemma 9 tells us that every bounded regular structure is described by some
frame. However not every frame describes a structure; and it is important for us
to define a class of frames which do. The following notation will prove useful to
this end.

Notation 4 Let 〈Σ, f̄〉 be a classified signature and C > 0. With reference to the
standard enumerations of Table 1, and, for integers i, k in the ranges 1 ≤ i ≤ L,
1 ≤ k ≤ N , we write:

oik =

{

1 if for some j (1 ≤ j ≤M), σk[j] > 0 and tp1(µj) = πi

0 otherwise;

pik =

{

1 if, for all j (1 ≤ j ≤M), tp2(µj) = πi implies σk[j] = 0

0 otherwise;

rik =
∑

j∈J

σk[j], where J = {j |M∗ + 1 ≤ j ≤M and tp2(µj) = πi};

sik =
∑

j∈J

σk[j], where J = {j | 1 ≤ j ≤M and tp2(µj) = πi}.

In addition, for integers i, j in the ranges 1 ≤ i ≤ L, 1 ≤ j ≤M∗, we write:

qjk = σk[j].

To understand the meanings of these constants, suppose A is a C-bounded struc-
ture interpreting 〈Σ, f̄〉. Then, for all i, j and k in the appropriate ranges:

1. oik = 1 just in case every element with star-type σk has 1-type πi;
2. pik = 1 just in case no element with star-type σk sends a message to any

element having 1-type πi;
3. qjk counts how many messages of (invertible) type µj any element having

star-type σk sends;
4. rik is the total number of elements having 1-type πi to which any element

having star-type σk sends a non-invertible message; and
5. sik is the total number of elements having 1-type πi to which any element

having star-type σk sends a message.

The following notion now gives us a way of providing a ‘statistical summary’
of structures. Recall the extended natural numbers introduced in Notation 2.
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Definition 12. Let 〈Σ, f̄〉 be a classified signature, C a positive integer, and A

a C-bounded structure interpreting 〈Σ, f̄〉. Let σ1, . . . , σN be the standard enu-
meration of the C-bounded star-types. The C-histogram of A is the N -tuple
HistC(A) = (w1, . . . , wN ) of elements of N

∗, where, for all k (1 ≤ k ≤ N),

wk = |{a ∈ A : stA[a] = σk}|.

The following notation will be useful when talking about (putative) his-
tograms of structures.

Notation 5 Fix some frame F (and hence the associated constants of Nota-
tion 4), and let w1, . . . , wN be variables. We employ the letters ui (1 ≤ i ≤ L),
vj (1 ≤ j ≤M∗) and xii′ (1 ≤ i ≤ L, 1 ≤ i′ ≤ L) as shorthand for the following
expressions:

ui =
∑

1≤k≤N

oikwk vj =
∑

1≤k≤N

qjkwk xii′ =
∑

1≤k≤N

oikpi′kwk.

To understand the meanings of these expressions, suppose first that A is a
bounded, regular structure, described by F = 〈Σ, f̄ , C,K, θ〉, and that HistC(A) =
(w1, . . . , wN ). Then

1. ui is the number of elements a ∈ A such that tpA[a] = πi;
2. vj is the number of pairs 〈a, b〉 ∈ A2 such that a 6= b and tpA[a, b] = µj ;
3. xii′ is the number of elements a ∈ A such that tpA[a] = πi and a does not

send a message to any element having 1-type πi′ .

We can now give our long-awaited criterion for a frame to describe a structure.

Definition 13. Let F = 〈Σ, f̄ , C,K, θ〉 be a frame, Z a positive integer, m =
|f̄ |, and L, M∗, M , N the constants defined in Notation 4. A Z-solution of F is
an N -tuple w̄ = (w1, . . . , wN ) of elements of N

∗ such that, for all k (1 ≤ k ≤ N),
wk > 0 if and only if k ∈ K, and such that the following conditions are satisfied
for all i (1 ≤ i ≤ L), all i′ (1 ≤ i′ ≤ L), and all j (1 ≤ j ≤M∗):

(C1) vj = vj′ , where j′ is such that µ−1
j = µj′ ;

(C2) if ui = 0, then
∑

{wk | sik > 0} = 0; if ui = 1, then
∑

{wk | sik > 1} = 0;

(C3) ui ≤ 1 or ui > Z;

(C4) if ui ≤ 1, then for all positive integers D ≤ mC, we have either xi′i ≥ D

or
∑

{wk | oik = 1 and ri′k ≥ D} = 0;

(C5) if {πi, πi′} 6∈ dom(θ), then either ui ≤ 1 or ui′ ≤ 1;

(C6) if {πi, πi′} 6∈ dom(θ), then for all positive integers D ≤ mC, we have
either xi′,i ≤ D or

∑

{wk | oik = 1 and ri′k ≤ D} = 0.
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We say that w̄ is finite if each of its elements is in N. If F has a (finite) Z-
solution, we say that F is (finitely) Z-solvable.

Remark 4. Noting that the constants ri′k in Definition 13 are bounded by mC,
we see that conditions (C4) and (C6) may be more simply formulated as the
collections of conditions

(C4∗) if oik = 1 and ui ≤ 1, then ri′k ≤ xi′i;

(C6∗) if {πi, πi′} 6∈ dom(θ) and oik = 1, then ri′k ≥ xi′i,

respectively, for all i (1 ≤ i ≤ L), i′ (1 ≤ i′ ≤ L) and k (1 ≤ k ≤ N). The reason
for the rather awkward formulation adopted above will emerge presently.

The two main lemmas of this section may now be stated. They tell us that,
for sufficiently large Z, we may treat (finitely) Z-solvable, chromatic frames as
substitutes for (finite) bounded, Z-differentiated chromatic structures.

Lemma 11. Let F = 〈Σ, f̄ , C,K, θ〉 be a frame, m = |f̄ |, and Z ≥ (mC + 1)2

be an integer. If A is a (finite) bounded, Z-differentiated, structure described by
F , then HistC(A) is a (finite) Z-solution for F .

Proof (Sketch). See [5, Lemma 13] for full details. It is a routine matter to
check the conditions (C1)–(C6). Observe that condition (C3) is immediate
from the assumption that A is Z-differentiated. We note in addition that the
same assumption may be used in conjunction with Lemma 7 (of this paper)
to show that condition (C5) obtains. For suppose {πi, πi′} 6∈ dom(θ). Since F
describes A, {πi, πi′} cannot be a quiet pair; hence either ui ≤ Z or ui′ ≤ Z;
whence ui ≤ 1 or ui′ ≤ 1.

Lemma 12. Let F = 〈Σ, f̄ , C,K, θ〉 be a chromatic frame, m = |f̄ |, and Z ≥
3mC be an integer. If F has a (finite) Z-solution, then there exists a (finite)
bounded structure A such that F describes A.

Proof (Sketch). See [5, Lemma 14] for full details. For every k ∈ K, let Ak be a
set of cardinality wk, and let A be the disjoint union of the Ak. We imagine Ak

as a set of elements having star-type σk, and show that, under the conditions
(C1)–(C6), these star-type instances can be assembled into a well-defined model
A with domain A. The construction depends crucially on the assumptions that
the frame F is chromatic, and that condition (C3) obtains.

The next lemma tells us that, if Z-solvability is what interests us, we may restrict
attention to small frames:

Lemma 13. Let Z be a positive integer, F ′ = 〈Σ, f̄ , C,K ′, θ〉 a (finitely) Z-
solvable frame, m = |f̄ | and s = |Σ|. Then there exists a non-empty K ⊆ K ′

such that the frame F = 〈Σ, f̄ , C,K, θ〉 is also (finitely) Z-solvable, and |K| ≤
p(mC)2p(s), where p is a fixed polynomial.
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Proof. There are fixed polynomials p′, q′ such that p′(mC)2q′(s) bounds the
number of equations (C1)–(C6) in Definition 13. (Note that this claim would
in general be false if we had replaced (C4) and (C6) by their simpler variants,
(C4∗) and (C6∗).) By Lemmas 2 and 3, there is a polynomial p such that F
has a (finite) solution w1, . . . , wN with at most p(mC)2p(s) non-zero values (but
not none). Now let K = {k ∈ K ′|wk 6= 0}.

It is well known that the problem of determining whether a system E of
linear inequalities has a solution over N is NPTime-complete [1], and similarly
for solutions over N

∗. Indeed, if E has a solution over N, then it has a solution
whose size (measured in terms of the number of bits required) is bounded by a
polynomial function of the total number of bits used to encode E .

Theorem 1. The problems Sat-C2 and Fin-Sat-C2 are in NExpTime.

Proof. Let a C2-formula ψ be given. By Lemma 1, we may compute a formula ϕ of
the form (1) in polynomial time, such that ϕ and ψ are satisfiable over the same
domains of size greater than C = max({Ch|1 ≤ h ≤ m}). Let Z = (mC + 1)2:
note that Z ≥ (mC)2 + 1, and also Z ≥ 3mC. Let Σ be the signature of ϕ
together with 2dlog(Z)e new unary predicates, and let f̄ = (f1, . . . , fm). Thus
〈Σ, f̄〉 is a classified signature. Write s = |Σ|.

We claim that ϕ is (finitely) satisfiable if and only if there exists a chromatic
(finitely) Z-solvable frame F = 〈Σ, f̄ , C,K, θ〉 such that |K| ≤ p(mC)2p(s) and
F |= ϕ, where p is some fixed polynomial, independent of ϕ. Suppose first that ϕ
has a (finite) model A

′. Evidently, A
′ is C-bounded. By Lemmas 4, 5 and 8, ϕ has

a (finite) C-bounded, chromatic, Z-differentiated, regular model A over 〈Σ, f̄〉.
By Lemma 9, there exists a chromatic frame F = 〈Σ, f̄ , C,K, θ〉 describing A; by
Lemma 10, F |= ϕ; and by Lemma 11, F has a (finite) Z-solution. Taking p to be
the fixed polynomial of Lemma 13, we may assume without loss of generality that
|K| ≤ p(mC)2p(s). Conversely, suppose that F = 〈Σ, f̄ ,K,C, θ〉 is a chromatic
frame such that F |= ϕ, and F has a (finite) Z-solution. By Lemma 12, there
exists a (finite) structure A such that F describes A, and by Lemma 10, A |= ϕ.

Consider the following non-deterministic procedure, where q1, q2 and q3 are
fixed polynomials, and n = ‖ϕ‖.

1. Guess a chromatic frame F = 〈Σ, f̄ , C,K, θ〉 with |K| ≤ 2q1(n) and check
that F |= ϕ;

2. Guess a system of at most 2q2(n) linear inequalities E (propositionally)
entailing the conditions (C1)–(C6) for F to have a Z-solution.

3. Guess a tuple w̄ of elements of N
∗ whose size (number of bits) is bounded

by 2q3(n).
4. If w̄ is a solution for E , succeed; else fail.

For all polynomials q1, q2 and q3, this procedure runs in time bounded by an
exponential function of ‖ϕ‖. But the claim of the previous paragraph shows that,
for suitable q1, q2 and q3, it has a successfully terminating run if and only ϕ is
satisfiable. This proves that Sat-C2 is in NExpTime. To do the same for Fin-
Sat-C2, we simply modify line 3 to insist that w̄ be a tuple of natural numbers.
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It is well known that the satisfiability (= finite satisfiability) problem for the
two-variable fragment of first-order logic without counting quantifiers is already
NExpTime-hard. Thus, the NExpTime bound of Theorem 1 is tight.

Corollary 1. Let ϕ be a formula of C2. If ϕ is finitely satisfiable, then it is
satisfiable in a structure of size bounded by a doubly exponential function of
‖ϕ‖.

Proof. In the proof of Theorem 1, if the system E of equations in line 3 of the
procedure has a solution over N, then it has a solution every element of which
has size (number of bits) bounded by a polynomial function of ‖E‖, and hence
by a singly exponential function of ‖ϕ‖.

It was shown in [3] that there exists a sequence {ϕn} of finitely satisfiable C2-
formulas where ‖ϕn‖ is bounded above by a polynomial function of n, but the
size of the smallest model of ϕn is bounded below by 22n

. Thus, the doubly-
exponential bound of Corollary 1 is tight.
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