Two-variable first-order logic on ordered structures

Thomas Zeume
Ruhr University Bochum
Part I: Introduction
How to organize grandma’s 80th birthday... (1/2)

- Planning of grandma’s 80th birthday dinner
- Guests from subfamilies: Red, Yellow and Blue

Banquet

Thomas Zeume

Two-variable first-order logic on ordered structures
How to organize grandma’s 80th birthday... (1/2)

- Planning of grandma’s 80th birthday dinner
- Guests from subfamilies: Red, Yellow and Blue

Conditions on banquet placement

- Mixing of subfamilies

Banquet
How to organize grandma’s 80th birthday... (1/2)

- Planning of grandma’s 80th birthday dinner
- Guests from subfamilies: Red, Yellow and Blue

Conditions on banquet placement

- **Mixing of subfamilies**
 - The blue and yellow subfamilies do not like each other

- **Youth protection**
 - Ages: 80, 79, 80, 78, 10, 10

Thomas Zeume

Two-variable first-order logic on ordered structures
How to organize grandma’s 80th birthday...

- Planning of grandma’s 80th birthday dinner
- Guests from subfamilies: Red, Yellow and Blue

Conditions on banquet placement

- **Mixing of subfamilies**
 - Red (r) and Red (r) are not mixed.
 - Blue (b) and Blue (b) are not mixed.
 - Yellow (y) and Yellow (y) are not mixed.

- **Youth protection**
 - No one under 80 is mixed with someone over 80.
 - No one under 10 is mixed with someone over 10.

- The blue and yellow subfamilies do not like each other.
How to organize grandma’s 80th birthday... (2/2)

- **Question:** Can we find a guest list such that there is a placement that makes all persons happy?

- What if conditions get more complex?
How to organize grandma’s 80th birthday... (2/2)

• Question: Can we find a guest list such that there is a placement that makes all persons happy?

What if conditions get more complex?

Guest list problem

• Given:

- A set of placement conditions

• Question: Is there a guest list such that there is a placement making all guests happy?

• Meta-Problem: How to apply for research funding for solving grandma’s problems?

Logic to the rescue!
Question: Can we find a guest list such that there is a placement that makes all persons happy?

<table>
<thead>
<tr>
<th>10 b</th>
<th>12 r</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 r</td>
<td>12 r</td>
</tr>
<tr>
<td>40 b</td>
<td>25 b</td>
</tr>
<tr>
<td>40 r</td>
<td>43 b</td>
</tr>
<tr>
<td>65 y</td>
<td>77 r</td>
</tr>
<tr>
<td>80 r</td>
<td>78 y</td>
</tr>
<tr>
<td>80 b</td>
<td>80 r</td>
</tr>
</tbody>
</table>

What if conditions get more complex?
How to organize grandma’s 80th birthday... (2/2)

• Question: Can we find a guest list such that there is a placement that makes all persons happy?

Guest list problem

• Given: A set of placement conditions
• Question: Is there a guest list such that there is a placement making all guests happy?

What if conditions get more complex?
• **Question:** Can we find a guest list such that there is a placement that makes all persons happy?

Guest list problem

- **Given:** A set of placement conditions
- **Question:** Is there a guest list such that there is a placement making all guests happy?

- **Meta-Problem:** How to apply for research funding for solving grandma’s problems?

● What if conditions get more complex?
How to organize grandma’s 80th birthday... (2/2)

- **Question:** Can we find a guest list such that there is a placement that makes all persons happy?

Guest list problem

- **Given:** A set of placement conditions
- **Question:** Is there a guest list such that there is a placement making all guests happy?

- **Meta-Problem:** How to apply for research funding for solving grandma’s problems?
 - Logic to the rescue!

Thomas Zeume

Two-variable first-order logic on ordered structures
A simple model: Ordered structures

Banquets as structures

Ordered structures for us:
- Orders
- possibly successor relations
- Additional uninterpreted relations
- Orders: linear orders and/or preorders
- Basic variants in 2-dimensions:
 - $\leq_2 \preceq_2 \preceq_1 \leq_1$
- $(\leq_1; \preceq_2)$-structures can be seen as ordered data strings [Bouyer et al. '03]

Question: How to model conditions?
- First try: First-order logic
 - Problem: Too strong
- Second try: Two-variable fragment of first-order logic
A simple model: Ordered structures

Banquets as structures

Ordered structures for us:

- Orders
- Possibly successor relations
- Additional uninterpreted relations

Orders:
- Linear orders and/or preorders

Basic variants in 2-dimensions:

- (≤₁, ≺₂)
 - Structures can be seen as (or-)ordered data strings [Bouyer et al. ’03]

Question: How to model conditions?

First try:
- First-order logic
 - Problem: Too strong

Second try:
- Two-variable fragment of first-order logic
A simple model: Ordered structures

Banquets as structures

Orders:
- linear orders
- preorders

Basic variants in 2-dimensions:

\((\leq_1; \prec_2)\) - structures can be seen as ordered data strings [Bouyer et al. '03]

Question: How to model conditions?

First try: First-order logic

Problem: Too strong

Second try: Two-variable fragment of first-order logic
A simple model: Ordered structures

Banquets as structures

- Ordered structures for us:
 - Orders + possibly successor relations
 - Additional uninterpreted relations
 - Orders: **linear orders** and/or **preorders**

Two-variable first-order logic on ordered structures
A simple model: Ordered structures

Banquets as structures

Ordered structures for us:
- Orders + possibly successor relations
- Additional uninterpreted relations
- Orders: linear orders and/or preorders

Basic variants in 2-dimensions:

orders: (≤₁, ≤₂) and (≤₂, ≤₁)

Question: How to model conditions?
First try: First-order logic
Problem: Too strong
Second try: Two-variable fragment of first-order logic

Thomas Zeume
Two-variable first-order logic on ordered structures
A simple model: Ordered structures

Banquets as structures

<table>
<thead>
<tr>
<th>80</th>
<th>80</th>
<th>65</th>
<th>40</th>
<th>40</th>
<th>17</th>
<th>10</th>
</tr>
</thead>
</table>

Ordered structures for us:
- Orders + possibly successor relations
- Additional uninterpreted relations

Orders: **linear orders** and/or **preorders**

Basic variants in 2-dimensions:

- \(\leq_2 \)
- \(\prec_2 \)

\((\leq_1; \prec_2)\)-structures can be seen as (ordered) data strings [Bouyer et al. '03]

Question: How to model conditions?
- First try: First-order logic
- Problem: Too strong
- Second try: Two-variable fragment of first-order logic

Thomas Zeume

Two-variable first-order logic on ordered structures
A simple model: Ordered structures

- Ordered structures for us:
 - Orders + possibly successor relations
 - Additional uninterpreted relations
- Orders: linear orders and/or preorders

- Basic variants in 2-dimensions:

- $(\leq_1; \prec_2)$-structures can be seen as (ordered) data strings [Bouyer et al. '03]

- Question: How to model conditions?
A simple model: Ordered structures

Banquets as structures

80 80 65 40 40 17 10
80 78 77 43 25 12 12

Ordered structures for us:
- Orders + possibly successor relations
- Additional uninterpreted relations
- Orders: linear orders and/or preorders

Basic variants in 2-dimensions:

(≤₂; <₂)-structures can be seen as (ordered) data strings [Bouyer et al. '03]

Question: How to model conditions?
- First try: First-order logic
A simple model: Ordered structures

Banquets as structures

80 80 65 40 40 17 10

80 78 77 43 25 12 12

Ordered structures for us:
• Orders + possibly successor relations
• Additional uninterpreted relations
• Orders: linear orders and/or preorders

Basic variants in 2-dimensions:
• \(\leq_2 \)
• \(\prec_2 \)
• \(\leq_1 \)
• \(\prec_1 \)

\((\leq_1; \prec_2)\)-structures can be seen as (ordered) data strings \([\text{Bouyer et al. '03}]\)

Question: How to model conditions?
• First try: First-order logic
⇒ Problem: Too strong
A simple model: Ordered structures

- Ordered structures for us:
 - Orders + possibly successor relations
 - Additional uninterpreted relations
- Orders: linear orders and/or preorders

- Basic variants in 2-dimensions:
 - \((\leq_1; \prec_2)\)-structures can be seen as (ordered) data strings \cite{BouyerEtAl2003}

- Question: How to model conditions?
 - First try: First-order logic
 - Problem: Too strong
 - Second try: Two-variable fragment of first-order logic
Two-variable first-order logic

- **Two-variable first-order logic (FO2):**
 First-order logic restricted to two variables x and y (that can be reused)

Example

- "From all red nodes one can reach a blue node in three steps":
 $$\forall x \exists y \exists x \exists y \ldots$$

- FO2 cannot express
 - A structure has at least three elements
 - A binary relation is transitive
 - Proof: via Ehrenfeucht-Fra"ıssé games with two pebbles
 - FO2 with a linear order $<$ is more expressive
 - "An ordered structure has at least three elements":
 $$\exists x \exists y (x < y \land \exists x (y < x))$$
Two-variable first-order logic

- **Two-variable first-order logic (FO²):**
 First-order logic restricted to two variables \(x\) and \(y\) (that can be reused)

Example
- “From all red nodes one can reach a blue node in three steps”:
Two-variable first-order logic

- **Two-variable first-order logic (FO²):**
 First-order logic restricted to two variables \(x\) and \(y\) (that can be reused)

Example

- “From all red nodes one can reach a blue node in three steps”:

\[
\forall x \exists y \exists x \exists y \\
\exists x \exists y (x < y \land \exists x (y < x))
\]
Two-variable first-order logic

- **Two-variable first-order logic (\(\text{FO}^2\)):** First-order logic restricted to two variables \(x\) and \(y\) (that can be reused)

Example

- “From all red nodes one can reach a blue node in three steps”:

\[
\forall x \quad \exists y \quad \exists x \quad \exists y \quad \bullet
\]

\[\exists x \quad \exists y \quad (x < y \land \exists x) \quad (y < x)\]
Two-variable first-order logic

- **Two-variable first-order logic (FO2):**

 First-order logic restricted to two variables x and y (that can be reused)

Example

- “From all red nodes one can reach a blue node in three steps”:

 \[
 \forall x \exists y \exists x \exists y \left(R(x) \rightarrow \exists y (E(x, y) \wedge \exists x (E(x, y) \wedge \exists y (E(x, y) \wedge B(y)))) \right)
 \]

- FO2 cannot express

 - A structure has at least three elements
 - A binary relation is transitive

- Proof: via Ehrenfeucht–Fraïssé games with two pebbles

- FO2 with a linear order $<$ is more expressive

- “An ordered structure has at least three elements”:

 \[
 \exists x \exists y (x < y \wedge \exists x (y < x))
 \]
Two-variable first-order logic

- **Two-variable first-order logic (FO²):** First-order logic restricted to two variables x and y (that can be reused)

Example

- "From all red nodes one can reach a blue node in three steps":

\[
\forall x \exists y \exists x \exists y (R(x) \rightarrow \exists y (E(x,y) \land \exists x (E(x,y) \land B(y))))
\]

FO² cannot express
- A structure has at least three elements
- A binary relation is transitive

Proof: via Ehrenfeucht–Fraïssé games with two pebbles

FO² with a linear order $<$ is more expressive

"An ordered structure has at least three elements":

\[
\exists x \exists y (x < y \land \exists x (y < x))
\]
Two-variable first-order logic (FO²):

First-order logic restricted to two variables x and y (that can be reused)

Example

“From all red nodes one can reach a blue node in three steps”:

As formula:

$$\forall x \exists y \exists x \exists y (R(x) \rightarrow \exists y (E(x, y) \land \exists x (E(x, y) \land \exists y (E(x, y) \land B(y))))$$

• FO² cannot express
 • A structure has at least three elements
 • A binary relation is transitive

Proof: via Ehrenfeucht–Fraïssé games with two pebbles

• FO² with a linear order $<$ is more expressive

“An ordered structure has at least three elements”:

$$\exists x \exists y (x < y \land \exists x (y < x))$$
Two-variable first-order logic

- **Two-variable first-order logic (FO²):**
 First-order logic restricted to two variables x and y (that can be reused)

Example

- “From all red nodes one can reach a blue node in three steps”:

 $\forall x \exists y \exists x \exists y \exists y$
 $\exists y (E(x, y) \land \exists x (E(x, y) \land B(y))))$

- As formula:

 $\forall x (R(x) \rightarrow \exists y (E(x, y) \land \exists x (E(x, y) \land B(y))))$
Two-variable first-order logic

- **Two-variable first-order logic (FO\(^2\)):**
 First-order logic restricted to two variables \(x\) and \(y\) (that can be reused)

Example

- “From all red nodes one can reach a blue node in three steps”:

 \[
 \forall x \exists y \exists x \exists y (E(x, y) \land E(x, y) \land E(x, y) \land B(y))
 \]

- **As formula:**

 \[
 \forall x (R(x) \rightarrow \exists y (E(x, y) \land \exists x (E(x, y) \land \exists y (E(x, y) \land B(y)))))
 \]

- **FO\(^2\) cannot express**
 - A structure has at least three elements
 - A binary relation is transitive
Two-variable first-order logic

- **Two-variable first-order logic (FO^2):** First-order logic restricted to two variables x and y (that can be reused)

Example
- “From all red nodes one can reach a blue node in three steps”:

 ![Diagram](image)

 - As formula:
 \[
 \forall x \left(R(x) \rightarrow \exists y \left(E(x, y) \land \exists x \left(E(x, y) \land \exists y \left(E(x, y) \land B(y) \right) \right) \right) \right)
 \]

FO2 cannot express
- A structure has at least three elements
- A binary relation is transitive
- Proof: via Ehrenfeucht-Fraïssé games with two pebbles

Two-variable first-order logic on ordered structures
Two-variable first-order logic

- **Two-variable first-order logic (FO²):**
 - First-order logic restricted to two variables x and y (that can be reused)

Example

- “From all red nodes one can reach a blue node in three steps”:

$$\forall x \exists y \exists x \exists y (\exists x)$$

- As formula:

$$\forall x \left(R(x) \rightarrow \exists y \left(E(x, y) \wedge \exists y \left(E(x, y) \wedge B(y) \right) \right) \right)$$

- **FO² cannot express**
 - A structure has at least three elements
 - A binary relation is transitive
 - Proof: via Ehrenfeucht-Fraïssé games with two pebbles

- **FO² with a linear order $<$ is more expressive**
 - “An ordered structure has at least three elements”:

$$\exists x \exists y \left(x < y \wedge \exists x (y < x) \right)$$
Part II:

Satisfiability of \mathbf{FO}^2
on ordered structures
Satisfiability of two-variable logic

Theorem 1 [Grädel, Kolaitis, Vardi '97]

(Finite) Satisfiability of FO^2 on general structures is NEXPTIME-complete.
Satisfiability of two-variable logic

Theorem 1
[Grädel, Kolaitis, Vardi '97]
(Finite) Satisfiability of FO^2 on general structures is NEXPTIME-complete

Question: Is this the end of the story?
Satisfiability of two-variable logic

Theorem 1 [Grädel, Kolaitis, Vardi '97]

(Finite) Satisfiability of FO^2 on general structures is NEXPTIME-complete

- **Question:** Is this the end of the story?

 - *No!* Decidable satisfiability of FO^2 on *general structures* does not transfer to *restricted structures*

Thomas Zeume

Two-variable first-order logic on ordered structures
Satisfiability of two-variable logic

Theorem 1 [Grädel, Kolaitis, Vardi '97]

(Finite) Satisfiability of FO^2 on general structures is NEXPTIME-complete

- **Question:** Is this the end of the story?
 - **No!** Decidable satisfiability of FO^2 on **general structures** does not transfer to **restricted structures**
 - **The crux in our case:** Transitivity cannot be axiomatized in FO^2
Theorem 1 [Grädel, Kolaitis, Vardi '97]

(Finite) Satisfiability of FO^2 on general structures is $\mathsf{NEXPTIME}$-complete

• **Question:** Is this the end of the story?

 ➔ **No!** Decidable satisfiability of FO^2

 on **general structures** does not transfer to **restricted structures**

 ➔ **The crux in our case:** Transitivity cannot be axiomatized in FO^2

• This lead to an extensive study of the satisfiability problem for special structures

Satisfiability of two-variable logic
Theorem 1 [Grädel, Kolaitis, Vardi '97]

(Finite) Satisfiability of \mathbf{FO}^2 on general structures is NEXPTIME-complete

- **Question:** Is this the end of the story?
 - **No!** Decidable satisfiability of \mathbf{FO}^2 on general structures does not transfer to restricted structures
 - **The crux in our case:** Transitivity cannot be axiomatized in \mathbf{FO}^2

- This lead to an extensive study of the satisfiability problem for special structures

Theorem 2: [Kieronski, Otto '05]

\mathbf{FO}^2 with equivalence relations

(Finite) Satisfiability of \mathbf{FO}^2 on structures

- with two equivalence relations: decidable
- with three equivalence relations: undecidable

Theorem 3: [Kieronski '11]

\mathbf{FO}^2 with linear orders

(Finite) Satisfiability of \mathbf{FO}^2 on structures

- with two linear orders: decidable
- with three linear orders: undecidable

[Schwentick, Z. '10; Torunczyk, Z. '20]
Satisfiability of two-variable logic

Theorem 1
[Grädel, Kolaitis, Vardi '97]
(Finite) Satisfiability of FO^2 on general structures is NEXPTIME-complete

- **Question:** Is this the end of the story?
 → No! Decidable satisfiability of FO^2 on general structures does not transfer to restricted structures
 → The crux in our case: Transitivity cannot be axiomatized in FO^2

- This lead to an extensive study of the satisfiability problem for special structures

Theorem 2:
[Kieroński, Otto '05]
FO^2 with equivalence relations
(Finite) Satisfiability of FO^2 on structures
- with two equivalence relations: decidable
- with three equivalence relations: undecidable

Theorem 3:
FO^2 with linear orders
(Finite) Satisfiability of FO^2 on structures
- with two linear orders: decidable
 [Schwentick, Z. '10; Torunczyk, Z. '20]
- with three linear orders: undecidable
 [Kieronski '11]

Thomas Zeume
Two-variable first-order logic on ordered structures
Satisfiability of FO^2 on ordered structures

Finite Satisfiability:

<table>
<thead>
<tr>
<th></th>
<th>S_2</th>
<th>$S_2, <_2$</th>
<th>$<_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_2</td>
<td>decidable</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Charatonik, Witkowski '13] [Manuel '10]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S_2, <_2$</td>
<td>decidable</td>
<td>undecidable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Z., Harwath '16] [Manuel, Z. '16]</td>
<td>[Manuel '10]</td>
<td></td>
</tr>
<tr>
<td>$<_2$</td>
<td>decidable</td>
<td>decidable</td>
<td>decidable</td>
</tr>
<tr>
<td></td>
<td>[Z., Harwath '16] [Manuel, Z. '13]</td>
<td>[Z., Harwath '16] [Schwentick, Z. '10]</td>
<td>[Z., Harwath '16] [Schwentick, Z. '10]</td>
</tr>
</tbody>
</table>

General Satisfiability: $\text{satisfiability of } \text{FO}^2(<_1, <_2)$ is decidable [Torunczyk, Z. '20]
Satisfiability of FO^2 on ordered structures

Finite Satisfiability:

<table>
<thead>
<tr>
<th></th>
<th>S_2</th>
<th>$S_2, <_2$</th>
<th>$<_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_2</td>
<td>decidable</td>
<td>[Charatonik, Witkowski '13] [Manuel '10]</td>
<td>[Z., Harwath '16] [Manuel, Z. '16]</td>
</tr>
<tr>
<td>$S_2, <_2$</td>
<td>decidable</td>
<td>undecidable</td>
<td>[Manuel '10]</td>
</tr>
<tr>
<td>$<_2$</td>
<td>decidable</td>
<td>decidable</td>
<td>decidable</td>
</tr>
<tr>
<td></td>
<td>[Z., Harwath '16] [Manuel, Z. '13]</td>
<td>[Z., Harwath '16] [Schwentick, Z. '10]</td>
<td>[Z., Harwath '16] [Schwentick, Z. '10]</td>
</tr>
</tbody>
</table>

General Satisfiability:

Satisfiability of $\text{FO}^2(<_1, <_2)$ is decidable

[Torunczyk, Z. '20]
Proof techniques: A toy example

<table>
<thead>
<tr>
<th>Theorem 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finite satisfiability of $\text{FO}^2(S, <)$ is in NEXPTIME</td>
</tr>
</tbody>
</table>

Proof

- Given a $\text{FO}^2(S, <)$-formula
Theorem 4

Finite satisfiability of \(\text{FO}^2(S, <) \) is in \(\text{NEXPTIME} \)

Proof

- Given a \(\text{FO}^2(S, <) \)-formula
- **Step 1:** Translation into exponentially many simple constraints
Theorem 4
Finite satisfiability of $\text{FO}^2(S, <)$ is in NEXPTIME

Proof
- Given a $\text{FO}^2(S, <)$-formula

- **Step 1**: Translation into exponentially many simple constraints
 - Two types of constraints:
 - $\forall \exists$: For every \bullet-point there is a \bullet-point in direction d connected via a yellow edge
 - $\forall \forall$: There is no \bullet-point in direction d of a \bullet-point connected via a yellow edge
Proof techniques: A toy example

Theorem 4

Finite satisfiability of \(\text{FO}^2(S, <) \) is in \(\text{NEXPTIME} \)

Proof

- Given a \(\text{FO}^2(S, <) \)-formula

- **Step 1:** Translation into exponentially many simple constraints

- Two types of constraints:
 - \(\forall \exists \): For every \(\bullet \)-point there is a \(\bullet \)-point in direction \(d \) connected via a yellow edge
 - \(\forall \forall \): There is no \(\bullet \)-point in direction \(d \) of a \(\bullet \)-point connected via a yellow edge

- Directions: \(d \in \{ \rightarrow, \leftrightarrow, \leftarrow, \rightarrow \} \)
Proof techniques: A toy example

Theorem 4

Finite satisfiability of $\text{FO}^2(S, <)$ is in NEXPTIME

Proof

- Given a $\text{FO}^2(S, <)$-formula

- **Step 1:** Translation into exponentially many simple constraints
 - Two types of constraints:
 - $\forall \exists$: For every blue point there is a red point in direction d connected via a yellow edge
 - $\forall \forall$: There is no blue point in direction d of a red point connected via a yellow edge
 - Directions: $d \in \{S, \rightarrow, S, \leftrightarrow\}$

- **Step 2:** If there is a model, then there is a small model
Theorem 4

Finite satisfiability of $\mathbf{FO}^2(S, <)$ is in NEXPTIME

Proof

- Given a $\mathbf{FO}^2(S, <)$-formula

Step 1: Translation into exponentially many simple constraints

- Two types of constraints:
 - $\forall \exists$: For every blue point there is a red point in direction d connected via a yellow edge
 - $\forall \forall$: There is no blue point in direction d of a red point connected via a yellow edge

- Directions: $d \in \{\rightarrow, \rightarrow, \leftarrow, \leftarrow\}$

Step 2: If there is a model, then there is a small model

Example

- $\forall \exists : \bullet \rightarrow \circ$
- $\forall \forall : \bullet \leftarrow \circ$
Proof techniques: A toy example

Theorem 4

Finite satisfiability of $\text{FO}^2(S, <)$ is in \text{NEXPTIME}

Proof

- Given a $\text{FO}^2(S, <)$-formula
- **Step 1:** Translation into exponentially many simple constraints
 - Two types of constraints:
 - $\forall \exists$: For every blue point there is a red point in direction d connected via a yellow edge
 - $\forall \forall$: There is no blue point in direction d of a red point connected via a yellow edge
 - directions: $d \in \{\rightarrow, \to, \leftarrow, \leftrightarrow\}$
- **Step 2:** If there is a model, then there is a small model

Example

- $\forall \exists \rightarrow$
- $\forall \exists \leftarrow$

Goal: Small model in two steps
Proof techniques: A toy example

Theorem 4

Finite satisfiability of $\text{FO}^2(S, <)$ is in NEXPTIME

Proof

- **Given a $\text{FO}^2(S, <)$-formula**

 Step 1: Translation into exponentially many simple constraints
 - Two types of constraints:
 - $\forall\exists$: For every \bullet-point there is a \circ-point in direction d connected via a yellow edge
 - $\forall\forall$: There is no \bullet-point in direction d of a \circ-point connected via a yellow edge
 - directions: $d \in \{\rightarrow, \rightarrow, \leftarrow, \leftarrow\}$

- **Step 2:** If there is a model, then there is a small model

Example

- $\forall\exists\circ : \bullet \rightarrow \circ$
- $\forall\forall\bullet : \bullet \leftarrow \circ$

Goal: Small model in two steps
- Rewire witnesses
Proof techniques: A toy example

Theorem 4
Finite satisfiability of $\text{FO}^2(S, <)$ is in NEXPTIME

Proof
- Given a $\text{FO}^2(S, <)$-formula

Step 1: Translation into exponentially many simple constraints
- Two types of constraints:
 - $\forall \exists$: For every blue point there is a red point in direction d connected via a yellow edge
 - $\forall \exists$: There is no blue point in direction d of a red point connected via a yellow edge
- Directions: $d \in \{S, \rightarrow, S, \leftarrow\}$

Step 2: If there is a model, then there is a small model

Example
- $\forall \exists \circ \rightarrow \bullet$
- $\forall \exists \circ \leftarrow \bullet$

Goal: Small model in two steps
- Rewire witnesses

Thomas Zeume
Two-variable first-order logic on ordered structures
Proof techniques: A toy example

Theorem 4

Finite satisfiability of $\text{FO}^2(S, <)$ is in \text{NEXPTIME}

Proof

- **Given a $\text{FO}^2(S, <)$-formula**
- **Step 1:** Translation into exponentially many simple constraints
 - Two types of constraints:
 - $\forall \exists$: For every blue-point there is a red-point in direction d connected via a yellow edge
 - $\forall \forall$: There is no blue-point in direction d of a red-point connected via a yellow edge
 - directions: $d \in \{\rightarrow, \leftarrow, \leftarrow, \rightarrow\}$
- **Step 2:** If there is a model, then there is a small model
 - Example
 - $\forall \exists$:
 - $\forall \forall$:

Goal: Small model in two steps

- Rewire witnesses
- Shrink the model using pumping
Proof methods: Reductions, small models, and automata

- **Undecidability**
 via reductions from PCP, 2-counter machines,…
Proof methods: Reductions, small models, and automata

- **Undecidability**
 via reductions from PCP, 2-counter machines,…
- **Decidability** via
 - Small models
Proof methods: Reductions, small models, and automata

- **Undecidability** via reductions from PCP, 2-counter machines,…

- **Decidability** via

 - Small models
 - Automata
Proof methods: Reductions, small models, and automata

- **Undecidability** via reductions from PCP, 2-counter machines, ...
- **Decidability** via

![Diagram](image_url)
Proof methods: Reductions, small models, and automata

- **Undecidability**
 via reductions from PCP, 2-counter machines,…

- **Decidability** via

 ![Diagram with Small models and Automata]

- **Now**: A glimpse at the proofs for decidability of

 - finite satisfiability of $\text{FO}^2(<_1, <_2)$ via small models
 - (general) satisfiability of $\text{FO}^2(<_1, <_2)$ via automata
Interlude: Simplified signatures for FO(\(<1, <2\))

- **Observation 1:** Signatures can be restricted to symbols of arity \(\leq 2\)
Interlude: Simplified signatures for $\text{FO}(\prec_1, \prec_2)$

- **Observation 1:** Signatures can be restricted to symbols of arity ≤ 2
- **Observation 2:** Sometimes even restriction to arity ≤ 1 is possible, for non-special symbols!
Interlude: Simplified signatures for FO(\lt_1, \lt_2)

- **Observation 1**: Signatures can be restricted to symbols of arity ≤ 2
- **Observation 2**: Sometimes even restriction to arity ≤ 1 is possible, for non-special symbols!

Example: Cloning

- Making a copy of an element:
Interlude: Simplified signatures for FO($<_1, <_2$)

- **Observation 1:** Signatures can be restricted to symbols of arity ≤ 2
- **Observation 2:** Sometimes even restriction to arity ≤ 1 is possible, for non-special symbols!

Example: Cloning
- Making a copy of an element:
Interlude: Simplified signatures for FO(\(<_1, <_2\))

- **Observation 1:** Signatures can be restricted to symbols of arity \(\leq 2\)
- **Observation 2:** Sometimes even restriction to arity \(\leq 1\) is possible, for non-special symbols!

Example: Cloning

- Making a copy of an element:

 \[
 <_1 \quad <_2
 \]

 \[
 a \quad a'
 \]

- Satisfiability translates:
 - \(\forall\forall\)-constraints:
 - \(\forall\exists\)-constraints:
Interlude: Simplified signatures for FO(\(<_1, <_2\))

- **Observation 1:** Signatures can be restricted to symbols of arity \(\leq 2\)
- **Observation 2:** Sometimes even restriction to arity \(\leq 1\) is possible, for non-special symbols!

Example: Cloning

- Making a copy of an element:

\[
\begin{align*}
\langle 2 \rangle & \quad \langle 2 \rangle \\
\langle 1 \rangle & \quad \langle 1 \rangle
\end{align*}
\]

\[
\begin{array}{c}
\bullet a \\
\bullet a'
\end{array}
\]

- Satisfiability translates:
 - \(\forall\forall\)-constraints: ✓
 - \(\forall\exists\)-constraints:
Interlude: Simplified signatures for FO(<1, <2>)

- **Observation 1:** Signatures can be restricted to symbols of arity ≤ 2
- **Observation 2:** Sometimes even restriction to arity ≤ 1 is possible, for non-special symbols!

Example: Cloning

- Making a copy of an element:

![Diagram showing cloning](image)

- Satisfiability translates:
 - ∀∀-constraints: √
 - ∀∃-constraints: √
Interlude: Simplified signatures for $\text{FO}(<_1, <_2)$

- **Observation 1**: Signatures can be restricted to symbols of arity ≤ 2
- **Observation 2**: Sometimes even restriction to arity ≤ 1 is possible, for non-special symbols!

Example: Cloning
- Making a copy of an element:
 - $<_1$ $<_2$

- Satisfiability translates:
 - $\forall \forall$-constraints: ✓
 - $\forall \exists$-constraints: ✓

Lemma 5 [Pratt-Hartmann ’18; Torunczyk, Z. ’22]
- Suppose \mathcal{K} is a class of structures with signature Δ

- Suppose \mathcal{K} is a class of structures with signature Δ

- Suppose \mathcal{K} is a class of structures with signature Δ

- Suppose \mathcal{K} is a class of structures with signature Δ

- Suppose \mathcal{K} is a class of structures with signature Δ

- Suppose \mathcal{K} is a class of structures with signature Δ

- Suppose \mathcal{K} is a class of structures with signature Δ

- Suppose \mathcal{K} is a class of structures with signature Δ

- Suppose \mathcal{K} is a class of structures with signature Δ

- Suppose \mathcal{K} is a class of structures with signature Δ

- Suppose \mathcal{K} is a class of structures with signature Δ

- Suppose \mathcal{K} is a class of structures with signature Δ

- Suppose \mathcal{K} is a class of structures with signature Δ

- Suppose \mathcal{K} is a class of structures with signature Δ

- Suppose \mathcal{K} is a class of structures with signature Δ

- Suppose \mathcal{K} is a class of structures with signature Δ

- Suppose \mathcal{K} is a class of structures with signature Δ

- Suppose \mathcal{K} is a class of structures with signature Δ

- Suppose \mathcal{K} is a class of structures with signature Δ

- Suppose \mathcal{K} is a class of structures with signature Δ

- Suppose \mathcal{K} is a class of structures with signature Δ

- Suppose \mathcal{K} is a class of structures with signature Δ
Interlude: Simplified signatures for FO$(\langle 1, \langle 2 \rangle)$

- **Observation 1**: Signatures can be restricted to symbols of arity ≤ 2
- **Observation 2**: Sometimes even restriction to arity ≤ 1 is possible, for non-special symbols!

Example: Cloning

- Making a copy of an element:

 \[
 \begin{align*}
 \langle 2 \rangle
 &\quad
 \begin{array}{c}
 \begin{array}{c}
 \langle 1 \rangle
 \end{array}
 \end{array}
 \\
 \langle 2 \rangle
 &\quad
 \begin{array}{c}
 \begin{array}{c}
 \langle 1 \rangle
 \end{array}
 \end{array}
 \\
 a
 &\quad
 a'
 \\
 \end{align*}
 \]

- Satisfiability translates:
 - $\forall\forall$-constraints: ✓
 - $\forall\exists$-constraints: ✓

Lemma 5 [Pratt-Hartmann '18; Torunczyk, Z. '22]

- Suppose \mathcal{K} is a class of structures with signature Δ
- If \mathcal{K} allows “cloning”, then

Two-variable first-order logic on ordered structures
Interlude: Simplified signatures for $\text{FO}(\prec_1, \prec_2)$

- **Observation 1**: Signatures can be restricted to symbols of arity ≤ 2
- **Observation 2**: Sometimes even restriction to arity ≤ 1 is possible, for non-special symbols!

Example: Cloning

- Making a copy of an element:

 \[
 \begin{array}{c}
 \prec_2 \\
 \downarrow \\
 \prec_1 \\
 \end{array}
 \quad
 \begin{array}{c}
 \prec_2 \\
 \downarrow \\
 \prec_1 \\
 \end{array}
 \]

 \[
 \begin{array}{c}
 a \\
 \end{array}
 \quad
 \begin{array}{c}
 a' \\
 \end{array}
 \]

- Satisfiability translates:
 - $\forall\forall$-constraints: ✓
 - $\forall\exists$-constraints: ✓

Lemma 5 [Pratt-Hartmann ’18; Torunczyk, Z. ’22]

- Suppose \mathcal{K} is a class of structures with signature Δ
- If \mathcal{K} allows “cloning”, then
 - from an $\text{FO}^2(\mathcal{K})$ formula over $\Delta \cup \Theta$
Interlude: Simplified signatures for $\text{FO}(\prec_1, \prec_2)$

- **Observation 1**: Signatures can be restricted to symbols of arity ≤ 2
- **Observation 2**: Sometimes even restriction to arity ≤ 1 is possible, for non-special symbols!

Example: Cloning

- Making a copy of an element:
 - \prec_2
 - \prec_1

- Satisfiability translates:
 - $\forall \forall$-constraints: ✓
 - $\forall \exists$-constraints: ✓

Lemma 5 [Pratt-Hartmann '18; Torunczyk, Z. '22]

- Suppose \mathcal{K} is a class of structures with signature Δ
- If \mathcal{K} allows “cloning”, then
 - from an $\text{FO}^2(\mathcal{K})$ formula over $\Delta \uplus \Theta$
 - an equisatisfiable $\text{FO}^2(\mathcal{K})$ formula over signature $\Delta \uplus \Theta'$ can be constructed with unary Θ'

Two-variable first-order logic on ordered structures
Interlude: Simplified signatures for \(\text{FO}(\prec_1, \prec_2) \)

- **Observation 1**: Signatures can be restricted to symbols of arity \(\leq 2 \)
- **Observation 2**: Sometimes even restriction to arity \(\leq 1 \) is possible, for non-special symbols!

Example: Cloning
- Making a copy of an element:

 - Satisfiability translates:
 - \(\forall \forall \)-constraints: ✓
 - \(\forall \exists \)-constraints: ✓

Lemma 5 [Pratt-Hartmann '18; Torunczyk, Z. '22]
- Suppose \(\mathcal{K} \) is a class of structures with signature \(\Delta \)
- If \(\mathcal{K} \) allows “cloning”, then
 - from an \(\text{FO}^2(\mathcal{K}) \) formula over \(\Delta \cup \Theta \)
 - an equisatisfiable \(\text{FO}^2(\mathcal{K}) \) formula over signature \(\Delta \cup \Theta' \) can be constructed with unary \(\Theta' \)
- For us: \(\Delta = \{ \prec_1, \prec_2 \} \)
Interlude: Simplified signatures for $\text{FO}(\langle 1, 2 \rangle)$

- **Observation 1:** Signatures can be restricted to symbols of arity ≤ 2
- **Observation 2:** Sometimes even restriction to arity ≤ 1 is possible, for non-special symbols!

Example: Cloning
- Making a copy of an element:

- Satisfiability translates:
 - $\forall\forall$-constraints: ✓
 - $\forall\exists$-constraints: ✓

Lemma 5 [Pratt-Hartmann ’18; Torunczyk, Z. ’22]

- Suppose \mathcal{K} is a class of structures with signature Δ
- If \mathcal{K} allows “cloning”, then
 - from an $\text{FO}^2(\mathcal{K})$ formula over $\Delta \cup \Theta$
 - an equisatisfiable $\text{FO}^2(\mathcal{K})$ formula over signature $\Delta \cup \Theta'$ can be constructed with unary Θ'

- For us: $\Delta = \{ \langle 1, 2 \rangle \}$
- **Consequence:** Studying satisfiability of $\text{FO}^2(\langle 1, 2 \rangle)$ over unary signatures (apart from $\langle 1 \rangle$ and $\langle 2 \rangle$) suffices
Part Ila:

Decidability via small models
Theorem 6

Finite satisfiability of $\mathsf{FO}^2(<_1,<_2)$ is decidable

[Schwentick, Z. ’10]
Theorem 6
[Schwentick, Z. ’10]
Finite satisfiability of $\text{FO}^2(<_1,<_2)$ is is **decidable**

Proof idea
- **Step 1:** Translate FO^2-formulas into $\forall\exists$- and $\forall\forall$-constraints
Theorem 6 [Schwentick, Z. ’10]

Finite satisfiability of $\text{FO}^2(<_1,<_2)$ is decidable

Proof idea

- **Step 1:** Translate FO^2-formulas into $\forall\exists$- and $\forall\forall$-constraints

\[
\forall \exists \Omega A : \quad \downarrow
\]
Theorem 6
[Schwentick, Z. ’10]

Finite satisfiability of $\text{FO}^2(<_1, <_2)$ is decidable

Proof idea

- **Step 1:** Translate FO^2-formulas into $\forall \exists$- and $\forall \forall$-constraints

![Diagram](attachment:image.png)
Theorem 6 [Schwentick, Z. ’10]

Finite satisfiability of $\text{FO}^2(\prec_1, \prec_2)$ is decidable.

Proof idea

- **Step 1:** Translate FO^2-formulas into $\forall\exists$- and $\forall\forall$-constraints.

Example

[Diagram showing the translation process and an example structure]
Theorem 6 [Schwentick, Z. ’10]

Finite satisfiability of $\text{FO}^2(<_1, <_2)$ is decidable

Proof idea

- **Step 1:** Translate FO^2-formulas into $\forall\exists$- and $\forall\forall$-constraints

Example

- **Step 2:** Show that if there is a model, then there is a small model
Theorem 6 [Schwentick, Z. ’10]

Finite satisfiability of $\text{FO}^2(<_1,<_2)$ is decidable

Proof idea

- Step 1: Translate FO^2-formulas into $\forall\exists$- and $\forall\forall$-constraints

Example

- Step 2: Show that
 If there is a model, then there is a small model
Theorem 6
[Schwentick, Z. ’10]

Finite satisfiability of $\mathsf{FO}^2(<_1, <_2)$ is decidable

Proof idea

- **Step 1:** Translate FO^2-formulas into $\forall \exists$- and $\forall \forall$-constraints

$$\forall \exists \forall : \quad \neg \forall \forall :$$

Example

- **Step 2:** Show that
 If there is a model, then there is a small model
Example (simplified)

- The profile of an element uses the following elements:
 - \(u \)
 - For every unary type:
 - the left and right most occurrences above \(u \)
 - the left and right most occurrences below \(u \)
 - The witnesses of those elements
- The profile is the sequence of those elements ordered by their x-coordinate.
\(\text{FO}^2 \) with two linear orders: Finite satisfiability (2/3)

Example (simplified)

- The **profile** of an element \(u \) uses the following elements:
 - \(u \),
 - For every unary type:
 - the \(3|\Gamma| + 1 \) left and right most occurrences above \(u \)
 - the \(3|\Gamma| + 1 \) left and right most occurrences below \(u \)
 - The witnesses of those elements
The profile of an element u uses the following elements:

- u,
- For every unary type:
 - the $3|\Gamma| + 1$ left and right most occurrences above u
 - the $3|\Gamma| + 1$ left and right most occurrences below u
- The witnesses of those elements
The **profile** of an element u uses the following elements:
- u,
- For every unary type:
 - the $3|\Gamma| + 1$ left and right most occurrences above u
 - the $3|\Gamma| + 1$ left and right most occurrences below u
- The witnesses of those elements
- The profile is the sequence of those elements ordered by their x-coordinate
The profile of an element u uses the following elements:

- u,
- For every unary type:
 - the $3|\Gamma| + 1$ left and right most occurrences above u
 - the $3|\Gamma| + 1$ left and right most occurrences below u
- The witnesses of those elements

The profile is the sequence of those elements ordered by their x-coordinate

$(\circ, \uparrow)(\circ, \downarrow)(\circ, \downarrow)(\circ, \uparrow)(\circ, \downarrow)(\circ, \uparrow)(\circ, \uparrow)(\circ, \uparrow)$
A pumping argument:

If two elements \(u \) and \(v \) do have the same profile...
FO^2 with two linear orders: Finite satisfiability (3/3)

Example (simplified)

- A pumping argument:
 - If two elements u and v do have the same profile...
FO² with two linear orders: Finite satisfiability (3/3)

Example (simplified)

- **A pumping argument:**
 - If two elements u and v do have the same profile...
 - ...then everything between them can be removed
 - possibly some elements have to be shifted horizontally afterwards
 - possibly some witnesses have to be rewired
Example (simplified)

- A pumping argument:
 - If two elements u and v do have the same profile...
 - ...then everything between them can be removed
 - possibly some elements have to be shifted horizontally afterwards
 - possibly some witnesses have to be rewired
 - The obtained structure is again a model
\(\textbf{FO}^2 \text{ with two linear orders: Finite satisfiability} \ (3/3) \)

Example (simplified)

- A **pumping argument**:
 - If two elements \(u \) and \(v \) do have the same profile...
 - ...then everything between them can be removed
 - possibly some elements have to be shifted horizontally afterwards
 - possibly some witnesses have to be rewired
 - The obtained structure is again a model

\[\Rightarrow \text{If there is a model, then there is a model with “few” elements} \]
Part IIb:

Decidability via automata
Theorem 7 [Torunczyk, Z. ’20]

Satisfiability of $\text{FO}^2(\prec_1, \prec_2)$ is decidable
Theorem 7 \[\text{[Torunczyk, Z. '20]}\]

Satisfiability of $\text{FO}^2(<_1, <_2)$ is decidable

Proof

- **Key idea 1:** Use register automata
Theorem 7 [Torunczyk, Z. '20]
Satisfiability of $\mathbf{FO}^2(\prec_1, \prec_2)$ is decidable

Proof
• Key idea 1: Use register automata

• Register automata:
 • Reads data words over $\Sigma \times D$
 • Finite state automata + registers
 • Transitions depend on
 • label and data value at current position
 • current state and register contents
FO2 with two linear orders: General satisfiability

Theorem 7 [Torunczyk, Z. ’20]

Satisfiability of $\text{FO}^2(<_1, <_2)$ is decidable

Proof

- Key idea 1: Use register automata

- Register automata:
 - Reads data words over $\Sigma \times D$
 - Finite state automata + registers
 - Transitions depend on
 - label and data value at current position
 - current state and register contents

Example

- $(<_1, <_2)$-structure:
Theorem 7 [Torunczyk, Z. ’20]

Satisfiability of $\text{FO}^2(<_1, <_2)$ is decidable

Proof

- **Key idea 1:** Use register automata
- **Register automata:**
 - Reads data words over $\Sigma \times D$
 - Finite state automata + registers
 - Transitions depend on
 - label and data value at current position
 - current state and register contents

Example

- $(<_1, <_2)$-structure:
 - As a data word:

```
  y y b r y r r
  5 6 3 7 1 4 2
```
FO² with two linear orders: General satisfiability

Theorem 7 [Torunczyk, Z. ’20]

Satisfiability of $\text{FO}^2(<_1, <_2)$ is decidable

Proof

- **Key idea 1:** Use register automata

- **Register automata:**
 - Reads data words over $\Sigma \times \mathcal{D}$
 - Finite state automata + registers
 - Transitions depend on
 - label and data value at current position
 - current state and register contents

- For checking $\forall\exists$-/$\forall\forall$-constraints:
 Guess/verify maxima and minima of past and future values

Example

- $(<_1, <_2)$-structure:

- As a data word:

<table>
<thead>
<tr>
<th>y</th>
<th>y</th>
<th>b</th>
<th>r</th>
<th>y</th>
<th>r</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>
Theorem 7 [Torunczyk, Z. ’20]
Satisfiability of $\mathsf{FO}^2(\prec_1, \prec_2)$ is decidable

Proof

- **Key idea 1**: Use register automata

- **Register automata:**
 - Reads data words over $\Sigma \times D$
 - Finite state automata + registers
 - Transitions depend on
 - label and data value at current position
 - current state and register contents

- For checking $\exists/\forall\forall$-constraints:
 - Guess/verify maxima and minima of past and future values

Example

- (\prec_1, \prec_2)-structure:
 - As a data word:
 - $y \ y \ b \ r \ y \ r \ r$
 - $5 \ 6 \ 3 \ 7 \ 1 \ 4 \ 2$

- Checking a constraint $\forall\exists$:
 - Guess and verify the maximal value for \bullet-positions in the future
 - Check consistency at \bullet-positions

Thomas Zeume

Two-variable first-order logic on ordered structures
Theorem 7 [Torunczyk, Z. ’20]

Satisfiability of $\text{FO}^2(<_1, <_2)$ is decidable

Proof

• Key idea 1: Use register automata

• Register automata:
 • Reads data words over $\Sigma \times D$
 • Finite state automata + registers
 • Transitions depend on
 • label and data value at current position
 • current state and register contents

• For checking $\forall \exists$/\(\forall \forall\)-constraints:
 Guess/verify maxima and minima of past and future values

Example

• $(<_1, <_2)$-structure:

• As a data word:
 \[
 \begin{array}{cccccccc}
 y & y & b & r & y & r & r & r \\
 5 & 6 & 3 & 7 & 1 & 4 & 2 \\
 \end{array}
 \]

• Checking a constraint $\forall \exists \forall$:
 • Guess and verify the maximal value for \bullet-positions in the future
 • Check consistency at \circ-positions

Input:

\[
\begin{array}{cccccccc}
 y & y & b & r & y & r & r & r \\
 5 & 6 & 3 & 7 & 1 & 4 & 2 \\
\end{array}
\]
Theorem 7 [Torunczyk, Z. ’20]

Satisfiability of $\mathbf{FO}^2(<_1, <_2)$ is decidable

Proof

- **Key idea 1:** Use register automata

- **Register automata:**
 - Reads data words over $\Sigma \times \Delta$
 - Finite state automata + registers
 - Transitions depend on
 - label and data value at current position
 - current state and register contents

- For checking $\forall \exists-/\forall \forall$-constraints:
 Guess/verify maxima and minima of past and future values

Example

- $(<_1, <_2)$-structure:
- As a data word:
 $y \ y \ b \ r \ y \ r \ r \ 5 \ 6 \ 3 \ 7 \ 1 \ 4 \ 2$

- Checking a constraint $\forall \exists \bigtriangleup$:
 - Guess and verify the maximal value for \bullet-positions in the future
 - Check consistency at \bigtriangleup-positions

Input:

<table>
<thead>
<tr>
<th></th>
<th>y</th>
<th>y</th>
<th>y</th>
<th>b</th>
<th>r</th>
<th>r</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{max,r,\rightarrow}$</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>
Theorem 7 [Torunczyk, Z. '20]
Satisfiability of $\mathsf{FO}^2(<_1, <_2)$ is decidable

Proof

• **Key idea 1:** Use register automata

• **Register automata:**
 • Reads **data words** over $\Sigma \times D$
 • Finite state automata + registers
 • Transitions depend on
 • label and data value at current position
 • current state and register contents

• For checking $\forall\exists$-/ $\forall\forall$-constraints:
 Guess/verify maxima and minima of past and future values

Example

• $(<_1, <_2)$-structure:

• As a data word:
 $y \ y \ b \ r \ y \ r \ r$
 $5 \ 6 \ 3 \ 7 \ 1 \ 4 \ 2$

• Checking a constraint $\forall\exists$:
 • Guess and verify the maximal value for \bigcirc-positions in the future
 • Check consistency at \square-positions

Input:

\[
\begin{array}{cccccccc}
\text{y} & \text{y} & \text{b} & \text{r} & \text{y} & \text{r} & \text{r} \\
5 & 6 & 3 & 7 & 1 & 4 & 2 \\
\end{array}
\]

\[
R_{\max,r} \rightarrow 7
\]
Theorem 7 [Torunczyk, Z. ’20]

Satisfiability of $\textbf{FO}^2(\prec_1, \prec_2)$ is decidable

Proof

- **Key idea 1:** Use register automata

Register automata:
- Reads **data words** over $\Sigma \times D$
- Finite state automata + registers
- Transitions depend on
 - label and data value at current position
 - current state and register contents

- For checking $\forall \exists$-/$\forall \forall$-constraints: Guess/verify maxima and minima of past and future values

Example

- (\prec_1, \prec_2)-structure:
 - As a data word:
 - $y \ y \ b \ r \ y \ r \ r$
 - $5 \ 6 \ 3 \ 7 \ 1 \ 4 \ 2$

- Checking a constraint $\forall \exists$:
 - Guess and verify the maximal value for \bullet-positions in the future
 - Check consistency at \circ-positions

Input:

<table>
<thead>
<tr>
<th></th>
<th>y</th>
<th>y</th>
<th>b</th>
<th>r</th>
<th>y</th>
<th>r</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

$R_{\text{max}, r} \rightarrow 7$ 7

Thomas Zeume Two-variable first-order logic on ordered structures
FO² with two linear orders: General satisfiability

Theorem 7 [Torunczyk, Z. ’20]

Satisfiability of $\mathbf{FO}^2(<_1, <_2)$ is decidable

Proof

- **Key idea 1:** Use register automata

- **Register automata:**
 - Reads **data words** over $\Sigma \times D$
 - Finite state automata + registers
 - Transitions depend on
 - label and data value at current position
 - current state and register contents

- For checking $\forall \exists-/\forall \forall$-constraints:
 - Guess/verify maxima and minima of past and future values

Example

- $(<_1, <_2)$-structure:
 - As a data word:
 - $y \ y \ b \ r \ y \ r \ r$
 - $5 \ 6 \ 3 \ 7 \ 1 \ 4 \ 2$
 - Checking a constraint $\forall \exists$:
 - Guess and verify the maximal value for \bigcirc-positions in the future
 - Check consistency at \bullet-positions

- Input:
 - $y \ y \ b \ r \ y \ r \ r$
 - $5 \ 6 \ 3 \ 7 \ 1 \ 4 \ 2$

- $R_{\text{max},r} \rightarrow$
 - $7 \ 7 \ 7$
FO² with two linear orders: General satisfiability

Theorem 7 [Torunczyk, Z. ’20]

Satisfiability of $\text{FO}^2(<_1,<_2)$ is decidable

Proof

- **Key idea 1:** Use register automata

- **Register automata:**
 - Reads **data words** over $\Sigma \times D$
 - Finite state automata + registers
 - Transitions depend on
 - label and data value at current position
 - current state and register contents

- For checking $\forall \exists$-/ $\forall \forall$-constraints:
 - Guess/verify maxima and minima of past and future values

Example

- **$\langle <_1,<_2 \rangle$-structure:**
 - As a data word:
 - y y b r y r r
 - 5 6 3 7 1 4 2

- Checking a constraint $\forall \exists$:
 - Guess and verify the maximal value for \bullet-positions in the future
 - Check consistency at \circ-positions

Input:

<table>
<thead>
<tr>
<th>y y b r y r r</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 6 3 7 1 4 2</td>
</tr>
</tbody>
</table>

$R_{\max,r, \rightarrow}$

| 7 7 7 4 |
Theorem 7 [Torunczyk, Z. '20]
Satisfiability of $\text{FO}^2(\prec_1, \prec_2)$ is decidable

Proof

- **Key idea 1:** Use register automata
- **Register automata:**
 - Reads *data words* over $\Sigma \times \mathcal{D}$
 - Finite state automata + registers
 - Transitions depend on
 - label and data value at current position
 - current state and register contents
- For checking $\forall \exists$-/\$\forall \forall$-constraints: Guess/verify maxima and minima of past and future values

Example

- (\prec_1, \prec_2)-structure:
 - As a data word:
 - $y \ y \ b \ r \ y \ r \ r$
 - $5 \ 6 \ 3 \ 7 \ 1 \ 4 \ 2$
 - Checking a constraint $\forall \exists$:
 - Guess and verify the maximal value for \bullet-positions in the future
 - Check consistency at \circ-positions

Input:

<table>
<thead>
<tr>
<th>$\mathcal{R}_{\max,r}$</th>
<th>7</th>
<th>7</th>
<th>7</th>
<th>4</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y \ y \ b \ r \ y \ r \ r$</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>
Theorem 7 [Torunczyk, Z. ’20]

Satisfiability of $\text{FO}^2(\prec_1, \prec_2)$ is decidable

Proof

• Key idea 1: Use register automata

• Register automata:
 • Reads data words over $\Sigma \times \mathcal{D}$
 • Finite state automata + registers
 • Transitions depend on
 • label and data value at current position
 • current state and register contents

• For checking $\forall \exists$-/ $\forall \forall$-constraints:
 Guess/verify maxima and minima of past and future values

Example

• (\prec_1, \prec_2)-structure:

 <\ 2

 \begin{center}
 \begin{tikzpicture}
 \draw[->] (0,0) -- (2,0);
 \draw[->] (0,0) -- (0,2);
 \end{tikzpicture}
 \end{center}

• As a data word:

 \begin{center}
 y \hspace{0.5em} y \hspace{0.5em} b \hspace{0.5em} r \hspace{0.5em} y \hspace{0.5em} r \hspace{0.5em} r \hspace{0.5em} 5 \hspace{0.5em} 6 \hspace{0.5em} 3 \hspace{0.5em} 7 \hspace{0.5em} 1 \hspace{0.5em} 4 \hspace{0.5em} 2
 \end{center}

• Checking a constraint $\forall \exists$:

 • Guess and verify the maximal value for \bullet-positions in the future
 • Check consistency at \circ-positions

Input:

\begin{center}
\begin{array}{cccccccc}
 \ & \ & \ & \ & \ & \ & \ & \ \\
 y & y & b & r & y & r & r & \\
 5 & 6 & 3 & 7 & 1 & 4 & 2 & \\
\end{array}
\end{center}

$R_{\text{max},r,\rightarrow}$

\begin{center}
\begin{array}{cccccccc}
 \ & \ & \ & \ & \ & \ & \ & \ \\
 7 & 7 & 7 & 4 & 4 & 2 & \ \\
\end{array}
\end{center}
Theorem 7 [Torunczyk, Z. '20]

Satisfiability of $\mathbf{FO}^2(\prec_1, \prec_2)$ is decidable

Proof

• **Key idea 1:** Use register automata

• **Register automata:**
 • Reads **data words** over $\Sigma \times \mathcal{D}$
 • Finite state automata + registers
 • Transitions depend on
 • label and data value at current position
 • current state and register contents

• For checking $\forall\exists$/-$\forall\forall$-constraints:
 Guess/verify maxima and minima of past and future values

Example

• (\prec_1, \prec_2)-structure:

 \[
 \begin{array}{c}
 2 \\
 1
 \end{array}
 \]

• As a data word:

 \[
 y \quad y \quad b \quad r \quad y \quad r \quad r \\
 5 \quad 6 \quad 3 \quad 7 \quad 1 \quad 4 \quad 2
 \]

• Checking a constraint $\forall \exists$:

 • Guess and verify the maximal value for \bullet-positions in the future
 • Check consistency at \circ-positions

Input:

<table>
<thead>
<tr>
<th></th>
<th>y</th>
<th>y</th>
<th>b</th>
<th>r</th>
<th>y</th>
<th>r</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

$R_{\max,r} \rightarrow$

| | 7 | 7 | 7 | 4 | 4 | 2 | 2 |
FO² with two linear orders: General satisfiability

<table>
<thead>
<tr>
<th>Theorem 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Torunczyk, Z. '20]</td>
</tr>
<tr>
<td>Satisfiability of $\text{FO}^2(<_1, <_2)$ is decidable</td>
</tr>
</tbody>
</table>

Proof (continued)

- **Key idea 1:** Use register automata
\(\text{FO}^2 \) with two linear orders: General satisfiability

<table>
<thead>
<tr>
<th>Theorem 7</th>
<th>[\text{Torunczyk, Z. '20}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satisfiability of (\text{FO}^2(<_1, <_2)) is decidable</td>
<td></td>
</tr>
</tbody>
</table>

Proof (continued)

- **Key idea 1:** Use register automata
- **Problem:** In infinite words, a maximum/minimum may not exist

- **Key idea 2:** Extend register automata by infima- and suprema-conditions
 - **Problem:** Satisfying structures may not be encodable as words
 - E.g. because elements are "dense" wrt. \(<_1 \)

- **Key idea 3:** Use register automata on data trees
Theorem 7 [Torunczyk, Z. '20]

Satisfiability of $\text{FO}^2(<_1, <_2)$ is decidable

Proof (continued)

- **Key idea 1:** Use register automata

- **Problem:** In infinite words, a maximum/minimum may not exist

- **Key idea 2:** Extend register automata by infima- and suprema-conditions
Theorem 7 [Torunczyk, Z. ’20]

Satisfiability of $\text{FO}^2(<_1,<_2)$ is decidable

Proof (continued)

- **Key idea 1:** Use register automata

- **Problem:** In infinite words, a maximum/minimum may not exist

- **Key idea 2:** Extend register automata by infima- and suprema-conditions

- **Problem:** Satisfying structures may not be encodable as words
 - E.g. because elements are “dense” wrt. $<_1$
FO^2 with two linear orders: General satisfiability

Theorem 7
[Torunczyk, Z. '20]
Satisfiability of $\text{FO}^2(\prec_1, \prec_2)$ is decidable

Proof (continued)

- **Key idea 1:** Use register automata

- **Problem:** In infinite words, a maximum/minimum may not exist

- **Key idea 2:** Extend register automata by infima- and suprema-conditions

- **Problem:** Satisfying structures may not be encodable as words
 ➞ E.g. because elements are “dense” wrt. \prec_1

- **Key idea 3:** Use register automata on data trees
Part III:

Perspectives and summary
Perspective: From linear orders to preorders

• We have seen: (Finite) satisfiability of $\mathbf{FO}^2(<_1,<_2)$ is decidable
Perspective: From linear orders to preorders

- **We have seen:** (Finite) satisfiability of FO²(<₁, <₂) is decidable
- **Question:** What about preorders <₁ and <₂?
- **Preorder:** Equivalence relation whose equivalence classes are ordered
Perspective: From linear orders to preorders

- **We have seen:** (Finite) satisfiability of $\mathbf{FO}^2(\prec_1, \prec_2)$ is decidable

- **Question:** What about preorders \prec_1 and \prec_2?

- **Preorder:** Equivalence relation whose equivalence classes are ordered

- **Observation:** (Finite) satisfiability of $\mathbf{FO}^2(\prec, \prec)$ is decidable
 - Same proof techniques...
Perspective: From linear orders to preorders

- **We have seen:** (Finite) satisfiability of $\text{FO}^2(\prec_1, \prec_2)$ is decidable

- **Question:** What about preorders \prec_1 and \prec_2?

- **Observation:** (Finite) satisfiability of $\text{FO}^2(\prec, \bowtie)$ is decidable
 → Same proof techniques...

Theorem 8 [Schwentick, Z. ’10]

- Finite satisfiability of $\text{FO}^2(\prec_1, \bowtie_2)$ is **undecidable**
Perspective: From linear orders to preorders

- We have seen: (Finite) satisfiability of $\text{FO}^2(<_1, <_2)$ is decidable
- Question: What about preorders $<_1$ and $<_2$?
- Preorder: Equivalence relation whose equivalence classes are ordered

- Observation: (Finite) satisfiability of $\text{FO}^2(<, \prec)$ is decidable
 ➔ Same proof techniques...

Theorem 8 [Schwentick, Z. ’10]
- Finite satisfiability of $\text{FO}^2(<_1, \prec_2)$ is undecidable

Proof sketch
- Idea: Reduction from PCP
Perspective: From linear orders to preorders

- **We have seen:** (Finite) satisfiability of $\text{FO}^2(<_1, <_2)$ is decidable
- **Question:** What about preorders $<_1$ and $<_2$?
- **Observation:** (Finite) satisfiability of $\text{FO}^2(<, \prec)$ is decidable
 - Same proof techniques…

Theorem 8 [Schwentick, Z. ’10]

- Finite satisfiability of $\text{FO}^2(<_1, \prec_2)$ is **undecidable**

Proof sketch

- **Idea:** Reduction from PCP
- **Example instance:**
 - $u = ab|cdef|g$
 - $v = a|bcd|efg$
Perspective: From linear orders to preorders

- **We have seen:** (Finite) satisfiability of $\text{FO}^2(<_1, <_2)$ is decidable

- **Question:** What about preorders \prec_1 and \prec_2?

- **Preorder:** Equivalence relation whose equivalence classes are ordered

- **Observation:** (Finite) satisfiability of $\text{FO}^2(<, \prec)$ is decidable
 - Same proof techniques...

Theorem 8 [Schwentick, Z. ’10]

- Finite satisfiability of $\text{FO}^2(\prec_1, \prec_2)$ is **undecidable**

Proof sketch

- **Idea:** Reduction from PCP

- **Example instance:**
 - $u = ab|cdef|g$
 - $v = a|bcd|efg$

Example instance:

```
  u = ab|cdef|g
  v = a|bcd|efg
```

Example instance:

```
  a a b
  b c c d d e f
  e f g g
```
Perspective: From linear orders to preorders

- We have seen: (Finite) satisfiability of $\text{FO}^2(\prec_1, \prec_2)$ is decidable
- Question: What about preorders \prec_1 and \prec_2?
- Preorder: Equivalence relation whose equivalence classes are ordered
- Observation: (Finite) satisfiability of $\text{FO}^2(\prec, \prec)$ is decidable
 - Same proof techniques...

Theorem 8 [Schwentick, Z. ’10]
- Finite satisfiability of $\text{FO}^2(\prec_1, \prec_2)$ is undecidable

Proof sketch
- Idea: Reduction from PCP
- Example instance:
 - $u = ab|cdef|g$
 - $v = a|bcd|efg$
 - Positions from substring pairs with same index: equivalent wrt. \prec_2 (rows)
 - Corresponding positions: equivalent wrt. \prec_1 (columns)
Perspective: Many linear orders, many successors

- Two linear orders, two successors:

 \[
 \begin{array}{ccc}
 S_2 & S_1 & <_1 \\
 \text{decidable} & [\text{Charatonik, Witkowski '13}]
 & [\text{Manuel '10}] \\
 \text{decidable} & [\text{Z., Harwath '16}]
 & [\text{Manuel, Z. '16}] \\
 \text{decidable} & [\text{Z., Harwath '16}]
 & [\text{Z., Harwath '16}]
 \\
 \text{undecidable} & [\text{Manuel '10}]& [\text{Schwentick, Z. '10}] \\
 \end{array}
 \]

Theorem 9: \(\text{FO}_2 \) with linear orders

- (Finite) Satisfiability of \(\text{FO}_2 \):
 - with two linear orders: decidable
 - [Schwentick, Z. '10; Torunczyk, Z. '20]
 - with three linear orders: undecidable
 - [Kieronski '11]

Open question

- Is finite satisfiability of \(\text{FO}_2 \) with \(k \) successors decidable for all \(k \)?
- Equivalent: Is finite satisfiability of \(\text{FO}_2 \) with \(k \) permutations with one cycle each decidable for all \(k \)?
- Decidable: Finite satisfiability of \(\text{FO}_2 \) with \(k \) permutations (with arbitrary many cycles)
Perspective: Many linear orders, many successors

- **Two linear orders, two successors:**

<table>
<thead>
<tr>
<th>S_2</th>
<th>$S_2, <_2$</th>
<th>$<_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>decidable</td>
<td>undecidable</td>
<td>decidable</td>
</tr>
<tr>
<td>[Charatonik, Witkowski '13] [Manuel '10]</td>
<td>[Manuel '10]</td>
<td>[Z., Harwath '16] [Manuel, Z. '16] [Z., Harwath '16] [Schwentick, Z. '10]</td>
</tr>
</tbody>
</table>

- **Question:** What happens for
 - many linear orders?
 - many successors?
Perspective: Many linear orders, many successors

- Two linear orders, two successors:
 - S_2: decidable
 - [Charatonik, Witkowski '13]
 - [Manuel '10]
 - $S_2, <_2$: decidable
 - [Z., Harwath '16]
 - [Manuel, Z. '16]

- Three linear orders, one successor:
 - $<_2$: decidable
 - [Z., Harwath '16]
 - [Manuel, Z. '13]
 - [Z., Harwath '16]
 - [Schwentick, Z. '10]

- Three linear orders, one successor:
 - S_1: decidable
 - [Z., Harwath '16]
 - [Manuel, Z. '13]
 - $S_1, <_1$: decidable
 - [Z., Harwath '16]
 - [Schwentick, Z. '10]
 - $<_1$: decidable
 - [Z., Harwath '16]
 - [Schwentick, Z. '10]

Theorem 9: FO^2 with linear orders

(Finite) Satisfiability of FO^2

- with two linear orders: decidable
 - [Schwentick, Z. '10; Torunczyk, Z. '20]
- with three linear orders: undecidable
 - [Kieronski '11]

Question: What happens for
- many linear orders?
- many successors?
Perspective: Many linear orders, many successors

- Two linear orders, two successors:
 - S_2 decidable
 - [Charatonik, Witkowski '13]
 - [Manuel '10]
 - S_2, \prec_2 decidable
 - [Z., Harwath '16]
 - [Manuel, Z. '16]
 - [Manuel '10]
 - \prec_2 decidable
 - [Z., Harwath '16]
 - [Manuel, Z. '13]
 - [Schwentick, Z. '10]

- Question: What happens for
 - many linear orders?
 - many successors?

Theorem 9: FO^2 with linear orders

(Finite) Satisfiability of FO^2

- with two linear orders: decidable
 - [Schwentick, Z. '10; Torunczyk, Z. '20]
- with three linear orders: undecidable
 - [Kieronski '11]

Open question

- Is finite satisfiability of FO^2 with k successors decidable for all k?
Perspective: Many linear orders, many successors

- Two linear orders, two successors:

 \[
 S_2 \quad \text{decidable} \quad \text{Charatonik, Witkowski '13} \quad \text{Manuel '10}
 \]

 \[
 S_2, <_2 \quad \text{decidable} \quad \text{undecidable} \quad \text{Z., Harwath '16} \quad \text{Manuel '10} \quad \text{Manuel, Z. '16}
 \]

 \[
 <_2 \quad \text{decidable} \quad \text{decidable} \quad \text{decidable} \quad \text{Z., Harwath '16} \quad \text{Manuel, Z. '13} \quad \text{Z., Harwath '16} \quad \text{Schwentick, Z. '10} \quad \text{Schwentick, Z. '10}
 \]

 \[
 S_1 \quad S_1, <_1 \quad <_1
 \]

 \[
 S_1 \quad S_1, <_1 \quad <_1
 \]

- Question: What happens for
 - many linear orders?
 - many successors?

Theorem 9: \(\text{FO}^2 \) with linear orders

(Finite) Satisfiability of \(\text{FO}^2 \)

- with two linear orders: \text{decidable} [Schwentick, Z. '10; Torunczyk, Z. '20]

- with three linear orders: \text{undecidable} [Kieronski '11]

Open question

- Is finite satisfiability of \(\text{FO}^2 \) with \(k \) successors decidable for all \(k \)?

- Equivalent: Is finite satisfiability of \(\text{FO}^2 \) with \(k \) permutations with one cycle each decidable for all \(k \)?
Perspective: Many linear orders, many successors

- Two linear orders, two successors:

<table>
<thead>
<tr>
<th>S₂</th>
<th>S₂, <₂</th>
<th><₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>decidable</td>
<td>decidable</td>
<td>decidable</td>
</tr>
<tr>
<td>[Charatonik, Witkowski '13]</td>
<td>[Manuel '10]</td>
<td>[Z., Harwath '16]</td>
</tr>
</tbody>
</table>

- Open question

 - Is finite satisfiability of FO² with k successors decidable for all k?

 - Equivalent: Is finite satisfiability of FO² with k permutations with one cycle each decidable for all k?

 - Decidable: Finite satisfiability of FO² with k permutations (with arbitrary many cycles)

Theorem 9: FO² with linear orders

(Finite) Satisfiability of FO²

- with two linear orders: decidable
 [Schwentick, Z. '10; Torunczyk, Z. '20]
- with three linear orders: undecidable
 [Kieronski '11]

Question: What happens for
- many linear orders?
- many successors?
Summary

Finite Satisfiability:

- \(S_2 \)
 - Decidable
 - \([\text{Charatonik, Witkowski '13}, \text{Manuel '10}]\)

- \(S_2, \prec \)
 - Decidable
 - \([\text{Z., Harwath '16}, \text{Manuel, Z. '16}]\)
 - Undecidable
 - \([\text{Manuel '10}]\)

- \(\prec \)
 - Decidable
 - \([\text{Z., Harwath '16}, \text{Manuel, Z. '13}]\)
 - Decidable
 - \([\text{Z., Harwath '16}, \text{Schwentick, Z. '10}]\)

General Satisfiability:

- \(FO^2(\prec_1, \prec_2) \) is decidable
 - \([\text{Torunczyk, Z. '20}]\)

Approaches for decidability:
- Small model approach
- Automata-based approach

Approach for undecidability: Reductions

Open question
- Is finite satisfiability of \(FO^2 \) with \(k \) successors decidable for all \(k \)?

Thank You!