
Reasoning Procedures II

Reasoning Procedures II – p. 1/9



Non-Termination

☞ As already mentioned, for ALC with general axioms basic algorithm
is non-terminating

☞ E.g. if human v ∃has-mother.human ∈ T , then
¬human t ∃has-mother.human added to every node

Reasoning Procedures II – p. 2/9



Non-Termination

☞ As already mentioned, for ALC with general axioms basic algorithm
is non-terminating

☞ E.g. if human v ∃has-mother.human ∈ T , then
¬human t ∃has-mother.human added to every node

Reasoning Procedures II – p. 2/9



Non-Termination

☞ As already mentioned, for ALC with general axioms basic algorithm
is non-terminating

☞ E.g. if human v ∃has-mother.human ∈ T , then
¬human t ∃has-mother.human added to every node

w L(w) = {human}

Reasoning Procedures II – p. 2/9



Non-Termination

☞ As already mentioned, for ALC with general axioms basic algorithm
is non-terminating

☞ E.g. if human v ∃has-mother.human ∈ T , then
¬human t ∃has-mother.human added to every node

w L(w) = {human, (¬human t ∃has-mother.human)}

Reasoning Procedures II – p. 2/9



Non-Termination

☞ As already mentioned, for ALC with general axioms basic algorithm
is non-terminating

☞ E.g. if human v ∃has-mother.human ∈ T , then
¬human t ∃has-mother.human added to every node

L(w) = {human, (¬human t ∃has-mother.human),∃has-mother.human}w

Reasoning Procedures II – p. 2/9



Non-Termination

☞ As already mentioned, for ALC with general axioms basic algorithm
is non-terminating

☞ E.g. if human v ∃has-mother.human ∈ T , then
¬human t ∃has-mother.human added to every node

L(w) = {human, (¬human t ∃has-mother.human),∃has-mother.human}w

x

has-mother

L(x) = {human}

Reasoning Procedures II – p. 2/9



Non-Termination

☞ As already mentioned, for ALC with general axioms basic algorithm
is non-terminating

☞ E.g. if human v ∃has-mother.human ∈ T , then
¬human t ∃has-mother.human added to every node

L(w) = {human, (¬human t ∃has-mother.human),∃has-mother.human}w

x

has-mother

L(x) = {human, (¬human t ∃has-mother.human)}

Reasoning Procedures II – p. 2/9



Non-Termination

☞ As already mentioned, for ALC with general axioms basic algorithm
is non-terminating

☞ E.g. if human v ∃has-mother.human ∈ T , then
¬human t ∃has-mother.human added to every node

L(w) = {human, (¬human t ∃has-mother.human),∃has-mother.human}w

x L(x) = {human, (¬human t ∃has-mother.human), ∃has-mother.human}

has-mother

Reasoning Procedures II – p. 2/9



Non-Termination

☞ As already mentioned, for ALC with general axioms basic algorithm
is non-terminating

☞ E.g. if human v ∃has-mother.human ∈ T , then
¬human t ∃has-mother.human added to every node

L(w) = {human, (¬human t ∃has-mother.human),∃has-mother.human}w

y

has-mother

x L(x) = {human, (¬human t ∃has-mother.human), ∃has-mother.human}

has-mother

L(y) = {human, (¬human t ∃has-mother.human), ∃has-mother.human}

Reasoning Procedures II – p. 2/9



Blocking

☞ When creating new node, check ancestors for equal (superset) label

☞ If such a node is found, new node is blocked

Reasoning Procedures II – p. 3/9



Blocking

☞ When creating new node, check ancestors for equal (superset) label

☞ If such a node is found, new node is blocked

Reasoning Procedures II – p. 3/9



Blocking

☞ When creating new node, check ancestors for equal (superset) label

☞ If such a node is found, new node is blocked

L(w) = {human, (¬human t ∃has-mother.human),∃has-mother.human}w

x

has-mother

L(x) = {human, (¬human t ∃has-mother.human)}

Reasoning Procedures II – p. 3/9



Blocking

☞ When creating new node, check ancestors for equal (superset) label

☞ If such a node is found, new node is blocked

L(w) = {human, (¬human t ∃has-mother.human),∃has-mother.human}w

x

has-mother

L(x) = {human, (¬human t ∃has-mother.human)}

Blocked

Reasoning Procedures II – p. 3/9



Blocking

☞ When creating new node, check ancestors for equal (superset) label

☞ If such a node is found, new node is blocked

L(w) = {human, (¬human t ∃has-mother.human),∃has-mother.human}w

has-mother

block represents cyclical model

Reasoning Procedures II – p. 3/9



Blocking with More Expressive DLs

☞ Simple subset blocking may not work with more complex logics

☞ E.g., reasoning with inverse roles
• Expanding node label can affect predecessor
• Label of blocking node can affect predecessor
• E.g., testing C u ∃S.C w.r.t. Tbox

T = {> v ∀R−.(∀S−.¬C),> v ∃R.C}

Reasoning Procedures II – p. 4/9



Blocking with More Expressive DLs

☞ Simple subset blocking may not work with more complex logics

☞ E.g., reasoning with inverse roles

• Expanding node label can affect predecessor
• Label of blocking node can affect predecessor
• E.g., testing C u ∃S.C w.r.t. Tbox

T = {> v ∀R−.(∀S−.¬C),> v ∃R.C}

Reasoning Procedures II – p. 4/9



Blocking with More Expressive DLs

☞ Simple subset blocking may not work with more complex logics

☞ E.g., reasoning with inverse roles
• Expanding node label can affect predecessor

• Label of blocking node can affect predecessor
• E.g., testing C u ∃S.C w.r.t. Tbox

T = {> v ∀R−.(∀S−.¬C),> v ∃R.C}

Reasoning Procedures II – p. 4/9



Blocking with More Expressive DLs

☞ Simple subset blocking may not work with more complex logics

☞ E.g., reasoning with inverse roles
• Expanding node label can affect predecessor
• Label of blocking node can affect predecessor

• E.g., testing C u ∃S.C w.r.t. Tbox

T = {> v ∀R−.(∀S−.¬C),> v ∃R.C}

Reasoning Procedures II – p. 4/9



Blocking with More Expressive DLs

☞ Simple subset blocking may not work with more complex logics

☞ E.g., reasoning with inverse roles
• Expanding node label can affect predecessor
• Label of blocking node can affect predecessor
• E.g., testing C u ∃S.C w.r.t. Tbox

T = {> v ∀R−.(∀S−.¬C),> v ∃R.C}

Reasoning Procedures II – p. 4/9



Blocking with More Expressive DLs

☞ Simple subset blocking may not work with more complex logics

☞ E.g., reasoning with inverse roles
• Expanding node label can affect predecessor
• Label of blocking node can affect predecessor
• E.g., testing C u ∃S.C w.r.t. Tbox

T = {> v ∀R−.(∀S−.¬C),> v ∃R.C}

w
L(w) = {C,∃S.C}

Reasoning Procedures II – p. 4/9



Blocking with More Expressive DLs

☞ Simple subset blocking may not work with more complex logics

☞ E.g., reasoning with inverse roles
• Expanding node label can affect predecessor
• Label of blocking node can affect predecessor
• E.g., testing C u ∃S.C w.r.t. Tbox

T = {> v ∀R−.(∀S−.¬C),> v ∃R.C}

w
L(w) = {C,∃S.C,∀R−.(∀S−.¬C),

∃R.C}

Reasoning Procedures II – p. 4/9



Blocking with More Expressive DLs

☞ Simple subset blocking may not work with more complex logics

☞ E.g., reasoning with inverse roles
• Expanding node label can affect predecessor
• Label of blocking node can affect predecessor
• E.g., testing C u ∃S.C w.r.t. Tbox

T = {> v ∀R−.(∀S−.¬C),> v ∃R.C}

w

x

S

L(x) = {C,∀R−.(∀S−.¬C),

L(w) = {C,∃S.C,∀R−.(∀S−.¬C),

∃R.C}

∃R.C}

Reasoning Procedures II – p. 4/9



Blocking with More Expressive DLs

☞ Simple subset blocking may not work with more complex logics

☞ E.g., reasoning with inverse roles
• Expanding node label can affect predecessor
• Label of blocking node can affect predecessor
• E.g., testing C u ∃S.C w.r.t. Tbox

T = {> v ∀R−.(∀S−.¬C),> v ∃R.C}

w

x

S

L(x) = {C,∀R−.(∀S−.¬C),

L(w) = {C,∃S.C,∀R−.(∀S−.¬C),

∃R.C}

∃R.C}

Blocked

Reasoning Procedures II – p. 4/9



Blocking with More Expressive DLs

☞ Simple subset blocking may not work with more complex logics

☞ E.g., reasoning with inverse roles
• Expanding node label can affect predecessor
• Label of blocking node can affect predecessor
• E.g., testing C u ∃S.C w.r.t. Tbox

T = {> v ∀R−.(∀S−.¬C),> v ∃R.C}

w

x

S

y

R

L(x) = {C,∀R−.(∀S−.¬C),
L(y) = {C, ∀R−.(∀S−.¬C),

L(w) = {C,∃S.C,∀R−.(∀S−.¬C),

∃R.C}
∃R.C}

∃R.C}

Blocked

Reasoning Procedures II – p. 4/9



Blocking with More Expressive DLs

☞ Simple subset blocking may not work with more complex logics

☞ E.g., reasoning with inverse roles
• Expanding node label can affect predecessor
• Label of blocking node can affect predecessor
• E.g., testing C u ∃S.C w.r.t. Tbox

T = {> v ∀R−.(∀S−.¬C),> v ∃R.C}

w

x

S

y

R

L(x) = {C,∀R−.(∀S−.¬C),
L(y) = {C, ∀R−.(∀S−.¬C),

L(w) = {C,∃S.C,∀R−.(∀S−.¬C),

∃R.C}
∃R.C}

∃R.C}

Blocked
Blocked

Reasoning Procedures II – p. 4/9



Blocking with More Expressive DLs

☞ Simple subset blocking may not work with more complex logics

☞ E.g., reasoning with inverse roles
• Expanding node label can affect predecessor
• Label of blocking node can affect predecessor
• E.g., testing C u ∃S.C w.r.t. Tbox

T = {> v ∀R−.(∀S−.¬C),> v ∃R.C}

w

SR

L(w) = {C,∃S.C,∀R−.(∀S−.¬C),

∃R.C}

cyclical model?

Reasoning Procedures II – p. 4/9



Blocking with More Expressive DLs

☞ Simple subset blocking may not work with more complex logics

☞ E.g., reasoning with inverse roles
• Expanding node label can affect predecessor
• Label of blocking node can affect predecessor
• E.g., testing C u ∃S.C w.r.t. Tbox

T = {> v ∀R−.(∀S−.¬C),> v ∃R.C}

cyclical model?

w
∃R.C}

L(w) = {C,∃S.C, ∀R−.(∀S−.¬C),

R− S

Reasoning Procedures II – p. 4/9



Blocking with More Expressive DLs

☞ Simple subset blocking may not work with more complex logics

☞ E.g., reasoning with inverse roles
• Expanding node label can affect predecessor
• Label of blocking node can affect predecessor
• E.g., testing C u ∃S.C w.r.t. Tbox

T = {> v ∀R−.(∀S−.¬C),> v ∃R.C}

cyclical model?

w

R S

L(w) = {C,∃S.C,∀R−.(∀S−.¬C),

∃R.C, ∀S−.¬C}

Reasoning Procedures II – p. 4/9



Blocking with More Expressive DLs

☞ Simple subset blocking may not work with more complex logics

☞ E.g., reasoning with inverse roles
• Expanding node label can affect predecessor
• Label of blocking node can affect predecessor
• E.g., testing C u ∃S.C w.r.t. Tbox

T = {> v ∀R−.(∀S−.¬C),> v ∃R.C}

cyclical model?

w
∃R.C, ∀S−.¬C}

R S−

L(w) = {C,∃S.C,∀R−.(∀S−.¬C),

Reasoning Procedures II – p. 4/9



Blocking with More Expressive DLs

☞ Simple subset blocking may not work with more complex logics

☞ E.g., reasoning with inverse roles
• Expanding node label can affect predecessor
• Label of blocking node can affect predecessor
• E.g., testing C u ∃S.C w.r.t. Tbox

T = {> v ∀R−.(∀S−.¬C),> v ∃R.C}

cyclical model?

w

Clash

L(w) = {C,∃S.C,∀R−.(∀S−.¬C),

R S

∃R.C,∀S−.¬C,¬C}

Reasoning Procedures II – p. 4/9



Dynamic Blocking

☞ Solution (for inverse roles) is dynamic blocking

• Blocks can be established broken and re-established
• Continue to expand ∀R.C terms in blocked nodes
• Check that cycles satisfy ∀R.C concepts

Reasoning Procedures II – p. 5/9



Dynamic Blocking

☞ Solution (for inverse roles) is dynamic blocking
• Blocks can be established broken and re-established

• Continue to expand ∀R.C terms in blocked nodes
• Check that cycles satisfy ∀R.C concepts

Reasoning Procedures II – p. 5/9



Dynamic Blocking

☞ Solution (for inverse roles) is dynamic blocking
• Blocks can be established broken and re-established
• Continue to expand ∀R.C terms in blocked nodes

• Check that cycles satisfy ∀R.C concepts

Reasoning Procedures II – p. 5/9



Dynamic Blocking

☞ Solution (for inverse roles) is dynamic blocking
• Blocks can be established broken and re-established
• Continue to expand ∀R.C terms in blocked nodes
• Check that cycles satisfy ∀R.C concepts

Reasoning Procedures II – p. 5/9



Dynamic Blocking

☞ Solution (for inverse roles) is dynamic blocking
• Blocks can be established broken and re-established
• Continue to expand ∀R.C terms in blocked nodes
• Check that cycles satisfy ∀R.C concepts

w
L(w) = {C,∃S.C}

Reasoning Procedures II – p. 5/9



Dynamic Blocking

☞ Solution (for inverse roles) is dynamic blocking
• Blocks can be established broken and re-established
• Continue to expand ∀R.C terms in blocked nodes
• Check that cycles satisfy ∀R.C concepts

w
L(w) = {C,∃S.C,∀R−.(∀S−.¬C),

∃R.C}

Reasoning Procedures II – p. 5/9



Dynamic Blocking

☞ Solution (for inverse roles) is dynamic blocking
• Blocks can be established broken and re-established
• Continue to expand ∀R.C terms in blocked nodes
• Check that cycles satisfy ∀R.C concepts

w

x

S

L(x) = {C,∀R−.(∀S−.¬C),

L(w) = {C,∃S.C,∀R−.(∀S−.¬C),

∃R.C}

∃R.C}

Reasoning Procedures II – p. 5/9



Dynamic Blocking

☞ Solution (for inverse roles) is dynamic blocking
• Blocks can be established broken and re-established
• Continue to expand ∀R.C terms in blocked nodes
• Check that cycles satisfy ∀R.C concepts

w

x

S

L(x) = {C,∀R−.(∀S−.¬C),

L(w) = {C,∃S.C,∀R−.(∀S−.¬C),

∃R.C}

∃R.C}

Blocked

Reasoning Procedures II – p. 5/9



Dynamic Blocking

☞ Solution (for inverse roles) is dynamic blocking
• Blocks can be established broken and re-established
• Continue to expand ∀R.C terms in blocked nodes
• Check that cycles satisfy ∀R.C concepts

w

x

S

y

R

L(x) = {C,∀R−.(∀S−.¬C),
L(y) = {C, ∀R−.(∀S−.¬C),

L(w) = {C,∃S.C,∀R−.(∀S−.¬C),

∃R.C}
∃R.C}

∃R.C}

Blocked

Reasoning Procedures II – p. 5/9



Dynamic Blocking

☞ Solution (for inverse roles) is dynamic blocking
• Blocks can be established broken and re-established
• Continue to expand ∀R.C terms in blocked nodes
• Check that cycles satisfy ∀R.C concepts

w

x

S

y

R

L(x) = {C,∀R−.(∀S−.¬C),

L(w) = {C,∃S.C,∀R−.(∀S−.¬C),

∃R.C}
∃R.C}

L(y) = {C, ∀R−.(∀S−.¬C),

Blocked

∃R.C, ∀S−.¬C}

Reasoning Procedures II – p. 5/9



Dynamic Blocking

☞ Solution (for inverse roles) is dynamic blocking
• Blocks can be established broken and re-established
• Continue to expand ∀R.C terms in blocked nodes
• Check that cycles satisfy ∀R.C concepts

w

x

S

y

R

L(x) = {C,∀R−.(∀S−.¬C),
L(y) = {C, ∀R−.(∀S−.¬C),

L(w) = {C,∃S.C,∀R−.(∀S−.¬C),

∃R.C}

∃R.C,∀S−.¬C}

∃R.C}

Reasoning Procedures II – p. 5/9



Dynamic Blocking

☞ Solution (for inverse roles) is dynamic blocking
• Blocks can be established broken and re-established
• Continue to expand ∀R.C terms in blocked nodes
• Check that cycles satisfy ∀R.C concepts

z

w

x

S

R

y

R

L(x) = {C,∀R−.(∀S−.¬C),

L(z) = {C, ∀R−.(∀S−.¬C),

∃R.C}

L(y) = {C, ∀R−.(∀S−.¬C),

L(w) = {C,∃S.C,∀R−.(∀S−.¬C),

∃R.C}

∃R.C,∀S−.¬C}

∃R.C}

Reasoning Procedures II – p. 5/9



Dynamic Blocking

☞ Solution (for inverse roles) is dynamic blocking
• Blocks can be established broken and re-established
• Continue to expand ∀R.C terms in blocked nodes
• Check that cycles satisfy ∀R.C concepts

z

w

x

S

R

y

R

L(x) = {C,∀R−.(∀S−.¬C),

∃R.C, ∀S−.¬C}

L(z) = {C, ∀R−.(∀S−.¬C),

∃R.C}

L(y) = {C, ∀R−.(∀S−.¬C),

L(w) = {C,∃S.C,∀R−.(∀S−.¬C),

∃R.C}

∃R.C,∀S−.¬C}

Reasoning Procedures II – p. 5/9



Dynamic Blocking

☞ Solution (for inverse roles) is dynamic blocking
• Blocks can be established broken and re-established
• Continue to expand ∀R.C terms in blocked nodes
• Check that cycles satisfy ∀R.C concepts

z

w

x

S

R

y

R

∃R.C,∀S−.¬C,¬C}

L(x) = {C,∀R−.(∀S−.¬C),

∃R.C,∀S−.¬C}

L(z) = {C, ∀R−.(∀S−.¬C),

∃R.C}

L(y) = {C, ∀R−.(∀S−.¬C),

L(w) = {C,∃S.C,∀R−.(∀S−.¬C),

∃R.C}

Clash

Reasoning Procedures II – p. 5/9



Non-finite Models

☞ With number restrictions some satisfiable concepts have only
non-finite models

☞ E.g., testing ¬C w.r.t. T = {> v ∃R.C,> v 61R−}

Reasoning Procedures II – p. 6/9



Non-finite Models

☞ With number restrictions some satisfiable concepts have only
non-finite models

☞ E.g., testing ¬C w.r.t. T = {> v ∃R.C,> v 61R−}

Reasoning Procedures II – p. 6/9



Non-finite Models

☞ With number restrictions some satisfiable concepts have only
non-finite models

☞ E.g., testing ¬C w.r.t. T = {> v ∃R.C,> v 61R−}

w L(w) = {¬C}

Reasoning Procedures II – p. 6/9



Non-finite Models

☞ With number restrictions some satisfiable concepts have only
non-finite models

☞ E.g., testing ¬C w.r.t. T = {> v ∃R.C,> v 61R−}

w L(w) = {¬C, ∃R.C, 61R−}

Reasoning Procedures II – p. 6/9



Non-finite Models

☞ With number restrictions some satisfiable concepts have only
non-finite models

☞ E.g., testing ¬C w.r.t. T = {> v ∃R.C,> v 61R−}

w

x

R

L(w) = {¬C, ∃R.C, 61R−}

L(x) = {C}

Reasoning Procedures II – p. 6/9



Non-finite Models

☞ With number restrictions some satisfiable concepts have only
non-finite models

☞ E.g., testing ¬C w.r.t. T = {> v ∃R.C,> v 61R−}

w

x

R

L(w) = {¬C, ∃R.C, 61R−}

L(x) = {C,∃R.C, 61R−}

Reasoning Procedures II – p. 6/9



Non-finite Models

☞ With number restrictions some satisfiable concepts have only
non-finite models

☞ E.g., testing ¬C w.r.t. T = {> v ∃R.C,> v 61R−}

w

y

x

R

R

L(w) = {¬C, ∃R.C, 61R−}

L(x) = {C,∃R.C, 61R−}

L(y) = {C,∃R.C, 61R−}

Reasoning Procedures II – p. 6/9



Non-finite Models

☞ With number restrictions some satisfiable concepts have only
non-finite models

☞ E.g., testing ¬C w.r.t. T = {> v ∃R.C,> v 61R−}

Blocked

w

y

x

R

R

L(w) = {¬C, ∃R.C, 61R−}

L(x) = {C,∃R.C, 61R−}

L(y) = {C,∃R.C, 61R−}

Reasoning Procedures II – p. 6/9



Non-finite Models

☞ With number restrictions some satisfiable concepts have only
non-finite models

☞ E.g., testing ¬C w.r.t. T = {> v ∃R.C,> v 61R−}

Blocked

Cyclical model?

w

y

x

R

R

L(w) = {¬C, ∃R.C, 61R−}

L(x) = {C,∃R.C, 61R−}

L(y) = {C,∃R.C, 61R−}

Reasoning Procedures II – p. 6/9



Non-finite Models

☞ With number restrictions some satisfiable concepts have only
non-finite models

☞ E.g., testing ¬C w.r.t. T = {> v ∃R.C,> v 61R−}

w

x

R

L(w) = {¬C, ∃R.C, 61R−}

Cyclical model?

R

L(x) = {C,∃R.C, 61R−}

Reasoning Procedures II – p. 6/9



Non-finite Models

☞ With number restrictions some satisfiable concepts have only
non-finite models

☞ E.g., testing ¬C w.r.t. T = {> v ∃R.C,> v 61R−}

w

x

R−

R−

L(w) = {¬C, ∃R.C, 61R−}

Cyclical model?

L(x) = {C,∃R.C, 61R−}

⇒ w = x

Reasoning Procedures II – p. 6/9



Non-finite Models

☞ With number restrictions some satisfiable concepts have only
non-finite models

☞ E.g., testing ¬C w.r.t. T = {> v ∃R.C,> v 61R−}

w

Cyclical model?

L(w) = {¬C, ∃R.C, 61R−, C}

R Clash

Reasoning Procedures II – p. 6/9



Non-finite Models

☞ With number restrictions some satisfiable concepts have only
non-finite models

☞ E.g., testing ¬C w.r.t. T = {> v ∃R.C,> v 61R−}

w

y

x

R

R

L(w) = {¬C, ∃R.C, 61R−}

L(x) = {C,∃R.C, 61R−}

L(y) = {C,∃R.C, 61R−}

R

model must be non-finite

Reasoning Procedures II – p. 6/9



Inadequacy of Dynamic Blocking

☞ With non-finite models, even dynamic blocking not enough

☞ E.g., testing ¬C w.r.t. T = {> v ∃R.(C u ∃R−.¬C),> v 61R−}

Reasoning Procedures II – p. 7/9



Inadequacy of Dynamic Blocking

☞ With non-finite models, even dynamic blocking not enough

☞ E.g., testing ¬C w.r.t. T = {> v ∃R.(C u ∃R−.¬C),> v 61R−}

Reasoning Procedures II – p. 7/9



Inadequacy of Dynamic Blocking

☞ With non-finite models, even dynamic blocking not enough

☞ E.g., testing ¬C w.r.t. T = {> v ∃R.(C u ∃R−.¬C),> v 61R−}

w L(w) = {¬C}

Reasoning Procedures II – p. 7/9



Inadequacy of Dynamic Blocking

☞ With non-finite models, even dynamic blocking not enough

☞ E.g., testing ¬C w.r.t. T = {> v ∃R.(C u ∃R−.¬C),> v 61R−}

w L(w) = {¬C,∃R.(C u ∃R−.¬C), 61R−}

Reasoning Procedures II – p. 7/9



Inadequacy of Dynamic Blocking

☞ With non-finite models, even dynamic blocking not enough

☞ E.g., testing ¬C w.r.t. T = {> v ∃R.(C u ∃R−.¬C),> v 61R−}

w

x

R

L(w) = {¬C,∃R.(C u ∃R−.¬C), 61R−}

L(x) = {(C u ∃R−.¬C)}

Reasoning Procedures II – p. 7/9



Inadequacy of Dynamic Blocking

☞ With non-finite models, even dynamic blocking not enough

☞ E.g., testing ¬C w.r.t. T = {> v ∃R.(C u ∃R−.¬C),> v 61R−}

w

x

R

L(w) = {¬C,∃R.(C u ∃R−.¬C), 61R−}

L(x) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C,∃R−.¬C}

Reasoning Procedures II – p. 7/9



Inadequacy of Dynamic Blocking

☞ With non-finite models, even dynamic blocking not enough

☞ E.g., testing ¬C w.r.t. T = {> v ∃R.(C u ∃R−.¬C),> v 61R−}

w

y

x

R

R

L(w) = {¬C,∃R.(C u ∃R−.¬C), 61R−}

L(x) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C,∃R−.¬C}

L(y) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C, ∃R−.¬C}

Reasoning Procedures II – p. 7/9



Inadequacy of Dynamic Blocking

☞ With non-finite models, even dynamic blocking not enough

☞ E.g., testing ¬C w.r.t. T = {> v ∃R.(C u ∃R−.¬C),> v 61R−}

Blocked

w

y

x

R

R

L(w) = {¬C,∃R.(C u ∃R−.¬C), 61R−}

L(x) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C,∃R−.¬C}

L(y) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C, ∃R−.¬C}

Reasoning Procedures II – p. 7/9



Inadequacy of Dynamic Blocking

☞ With non-finite models, even dynamic blocking not enough

☞ E.g., testing ¬C w.r.t. T = {> v ∃R.(C u ∃R−.¬C),> v 61R−}

w

y

x

R

R

L(w) = {¬C,∃R.(C u ∃R−.¬C), 61R−}

L(x) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C,∃R−.¬C}

Blocked

L(y) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C, ∃R−.¬C}

But ∃R−.¬C ∈ L(y) not satisfied

Reasoning Procedures II – p. 7/9



Inadequacy of Dynamic Blocking

☞ With non-finite models, even dynamic blocking not enough

☞ E.g., testing ¬C w.r.t. T = {> v ∃R.(C u ∃R−.¬C),> v 61R−}

w

y

x

R

R−

L(w) = {¬C,∃R.(C u ∃R−.¬C), 61R−}

L(x) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C,∃R−.¬C}

Blocked

L(y) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C, ∃R−.¬C}

But ∃R−.¬C ∈ L(y) not satisfied

Inconsistency due to 61R− ∈ L(y) and C ∈ L(x)

Reasoning Procedures II – p. 7/9



Double Blocking I

☞ Problem due to ∃R−.¬C term only satisfied in predecessor of
blocking node

w

x

R

L(w) = {¬C,∃R.(C u ∃R−.¬C), 61R−}

L(x) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C, ∃R−.¬C}

☞ Solution is Double Blocking (pairwise blocking)
• Predecessors of blocked and blocking nodes also considered
• In particular, ∃R.C terms satisfied in predecessor of blocking

node must also be satisfied in predecessor of blocked node
¬C ∈ L(w)

Reasoning Procedures II – p. 8/9



Double Blocking I

☞ Problem due to ∃R−.¬C term only satisfied in predecessor of
blocking node

w

x

R

L(w) = {¬C,∃R.(C u ∃R−.¬C), 61R−}

L(x) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C, ∃R−.¬C}

☞ Solution is Double Blocking (pairwise blocking)

• Predecessors of blocked and blocking nodes also considered
• In particular, ∃R.C terms satisfied in predecessor of blocking

node must also be satisfied in predecessor of blocked node
¬C ∈ L(w)

Reasoning Procedures II – p. 8/9



Double Blocking I

☞ Problem due to ∃R−.¬C term only satisfied in predecessor of
blocking node

w

x

R

L(w) = {¬C,∃R.(C u ∃R−.¬C), 61R−}

L(x) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C, ∃R−.¬C}

☞ Solution is Double Blocking (pairwise blocking)
• Predecessors of blocked and blocking nodes also considered

• In particular, ∃R.C terms satisfied in predecessor of blocking
node must also be satisfied in predecessor of blocked node
¬C ∈ L(w)

Reasoning Procedures II – p. 8/9



Double Blocking I

☞ Problem due to ∃R−.¬C term only satisfied in predecessor of
blocking node

w

x

R

L(w) = {¬C,∃R.(C u ∃R−.¬C), 61R−}

L(x) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C, ∃R−.¬C}

☞ Solution is Double Blocking (pairwise blocking)
• Predecessors of blocked and blocking nodes also considered
• In particular, ∃R.C terms satisfied in predecessor of blocking

node must also be satisfied in predecessor of blocked node
¬C ∈ L(w)

Reasoning Procedures II – p. 8/9



Double Blocking II

☞ Due to pairwise condition, block no longer holds

☞ Expansion continues and contradiction discovered

w

y

x

R

R

L(w) = {¬C,∃R.(C u ∃R−.¬C), 61R−}

L(x) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C, ∃R−.¬C}

Blocked

L(y) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C, ∃R−.¬C}

Reasoning Procedures II – p. 9/9



Double Blocking II

☞ Due to pairwise condition, block no longer holds

☞ Expansion continues and contradiction discovered

w

y

x

R

R

L(w) = {¬C,∃R.(C u ∃R−.¬C), 61R−}

L(x) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C,∃R−.¬C}

L(y) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C, ∃R−.¬C}

Reasoning Procedures II – p. 9/9



Double Blocking II

☞ Due to pairwise condition, block no longer holds

☞ Expansion continues and contradiction discovered

w

y

x

R

R

L(w) = {¬C,∃R.(C u ∃R−.¬C), 61R−}

L(x) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C,∃R−.¬C}

L(y) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C, ∃R−.¬C}

z L(z) = {¬C}

R−

Reasoning Procedures II – p. 9/9



Double Blocking II

☞ Due to pairwise condition, block no longer holds

☞ Expansion continues and contradiction discovered

w

y

x

R

R−

L(w) = {¬C,∃R.(C u ∃R−.¬C), 61R−}

L(x) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C,∃R−.¬C}

L(y) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C, ∃R−.¬C}

z L(z) = {¬C}

R−

⇒ z = x

Reasoning Procedures II – p. 9/9



Double Blocking II

☞ Due to pairwise condition, block no longer holds

☞ Expansion continues and contradiction discovered

w

y

x

R

R

L(w) = {¬C,∃R.(C u ∃R−.¬C), 61R−}

L(x) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C,∃R−.¬C,¬C}

L(y) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C, ∃R−.¬C}

Clash

Reasoning Procedures II – p. 9/9


	Reasoning Procedures II
	Non-Termination
	Non-Termination
	Non-Termination
	Non-Termination
	Non-Termination
	Non-Termination
	Non-Termination
	Non-Termination
	Non-Termination

	Blocking
	Blocking
	Blocking
	Blocking
	Blocking

	Blocking with More Expressive DLs
	Blocking with More Expressive DLs
	Blocking with More Expressive DLs
	Blocking with More Expressive DLs
	Blocking with More Expressive DLs
	Blocking with More Expressive DLs
	Blocking with More Expressive DLs
	Blocking with More Expressive DLs
	Blocking with More Expressive DLs
	Blocking with More Expressive DLs
	Blocking with More Expressive DLs
	Blocking with More Expressive DLs
	Blocking with More Expressive DLs
	Blocking with More Expressive DLs
	Blocking with More Expressive DLs
	Blocking with More Expressive DLs

	Dynamic Blocking
	Dynamic Blocking
	Dynamic Blocking
	Dynamic Blocking
	Dynamic Blocking
	Dynamic Blocking
	Dynamic Blocking
	Dynamic Blocking
	Dynamic Blocking
	Dynamic Blocking
	Dynamic Blocking
	Dynamic Blocking
	Dynamic Blocking
	Dynamic Blocking

	Non-finite Models
	Non-finite Models
	Non-finite Models
	Non-finite Models
	Non-finite Models
	Non-finite Models
	Non-finite Models
	Non-finite Models
	Non-finite Models
	Non-finite Models
	Non-finite Models
	Non-finite Models
	Non-finite Models

	Inadequacy of Dynamic Blocking
	Inadequacy of Dynamic Blocking
	Inadequacy of Dynamic Blocking
	Inadequacy of Dynamic Blocking
	Inadequacy of Dynamic Blocking
	Inadequacy of Dynamic Blocking
	Inadequacy of Dynamic Blocking
	Inadequacy of Dynamic Blocking
	Inadequacy of Dynamic Blocking
	Inadequacy of Dynamic Blocking

	Double Blocking I
	Double Blocking I
	Double Blocking I
	Double Blocking I

	Double Blocking II
	Double Blocking II
	Double Blocking II
	Double Blocking II
	Double Blocking II


