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Non-Termination

☞ As already mentioned, for ALC with general axioms basic algorithm
is non-terminating

☞ E.g. if human v ∃has-mother.human ∈ T , then
¬human t ∃has-mother.human added to every node
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Blocking

☞ When creating new node, check ancestors for equal (superset) label

☞ If such a node is found, new node is blocked
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Blocking

☞ When creating new node, check ancestors for equal (superset) label

☞ If such a node is found, new node is blocked

L(w) = {human, (¬human t ∃has-mother.human),∃has-mother.human}w

has-mother

block represents cyclical model
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Blocking with More Expressive DLs

☞ Simple subset blocking may not work with more complex logics

☞ E.g., reasoning with inverse roles
• Expanding node label can affect predecessor
• Label of blocking node can affect predecessor
• E.g., testing C u ∃S.C w.r.t. Tbox

T = {> v ∀R−.(∀S−.¬C),> v ∃R.C}
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Blocking with More Expressive DLs

☞ Simple subset blocking may not work with more complex logics

☞ E.g., reasoning with inverse roles
• Expanding node label can affect predecessor
• Label of blocking node can affect predecessor
• E.g., testing C u ∃S.C w.r.t. Tbox

T = {> v ∀R−.(∀S−.¬C),> v ∃R.C}
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Dynamic Blocking

☞ Solution (for inverse roles) is dynamic blocking

• Blocks can be established broken and re-established
• Continue to expand ∀R.C terms in blocked nodes
• Check that cycles satisfy ∀R.C concepts
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Dynamic Blocking
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Non-finite Models

☞ With number restrictions some satisfiable concepts have only
non-finite models

☞ E.g., testing ¬C w.r.t. T = {> v ∃R.C,> v 61R−}
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Non-finite Models
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Non-finite Models

☞ With number restrictions some satisfiable concepts have only
non-finite models

☞ E.g., testing ¬C w.r.t. T = {> v ∃R.C,> v 61R−}
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Inadequacy of Dynamic Blocking

☞ With non-finite models, even dynamic blocking not enough

☞ E.g., testing ¬C w.r.t. T = {> v ∃R.(C u ∃R−.¬C),> v 61R−}
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Inadequacy of Dynamic Blocking

☞ With non-finite models, even dynamic blocking not enough

☞ E.g., testing ¬C w.r.t. T = {> v ∃R.(C u ∃R−.¬C),> v 61R−}
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L(w) = {¬C,∃R.(C u ∃R−.¬C), 61R−}

L(x) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C,∃R−.¬C}

Blocked

L(y) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C, ∃R−.¬C}

But ∃R−.¬C ∈ L(y) not satisfied

Inconsistency due to 61R− ∈ L(y) and C ∈ L(x)
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Double Blocking I

☞ Problem due to ∃R−.¬C term only satisfied in predecessor of
blocking node

w

x

R

L(w) = {¬C,∃R.(C u ∃R−.¬C), 61R−}

L(x) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C, ∃R−.¬C}

☞ Solution is Double Blocking (pairwise blocking)
• Predecessors of blocked and blocking nodes also considered
• In particular, ∃R.C terms satisfied in predecessor of blocking

node must also be satisfied in predecessor of blocked node
¬C ∈ L(w)
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Double Blocking II

☞ Due to pairwise condition, block no longer holds

☞ Expansion continues and contradiction discovered

w

y

x

R

R

L(w) = {¬C,∃R.(C u ∃R−.¬C), 61R−}

L(x) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C, ∃R−.¬C}

Blocked

L(y) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C, ∃R−.¬C}

Reasoning Procedures II – p. 9/9



Double Blocking II

☞ Due to pairwise condition, block no longer holds

☞ Expansion continues and contradiction discovered

w

y

x

R

R

L(w) = {¬C,∃R.(C u ∃R−.¬C), 61R−}

L(x) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C,∃R−.¬C}

L(y) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C, ∃R−.¬C}

Reasoning Procedures II – p. 9/9



Double Blocking II

☞ Due to pairwise condition, block no longer holds

☞ Expansion continues and contradiction discovered

w

y

x

R

R

L(w) = {¬C,∃R.(C u ∃R−.¬C), 61R−}

L(x) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C,∃R−.¬C}

L(y) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C, ∃R−.¬C}

z L(z) = {¬C}

R−

Reasoning Procedures II – p. 9/9



Double Blocking II
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☞ Expansion continues and contradiction discovered
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L(y) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C, ∃R−.¬C}

z L(z) = {¬C}

R−

⇒ z = x
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Double Blocking II

☞ Due to pairwise condition, block no longer holds

☞ Expansion continues and contradiction discovered

w

y

x

R

R

L(w) = {¬C,∃R.(C u ∃R−.¬C), 61R−}

L(x) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C,∃R−.¬C,¬C}

L(y) = {(C u ∃R−.¬C),∃R.(C u ∃R−.¬C), 61R−, C, ∃R−.¬C}

Clash
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