An Introduction to Description Logics

What Are Description Logics?

- · A family of logic based Knowledge Representation formalisms
 - Descendants of semantic networks and KL-ONE
 - Describe domain in terms of concepts (classes), roles (relationships) and individuals
- Distinguished by:
 - Formal semantics (typically model theoretic)
 - · Decidable fragments of FOL
 - Closely related to Propositional Modal & Dynamic Logics
 - Provision of inference services
 - Sound and complete decision procedures for key problems
 - Implemented systems (highly optimised)

Short History of Description Logics

Phase 1:

- Incomplete systems (Back, Classic, Loom, . . .)
- Based on structural algorithms

Phase 2:

- Development of tableau algorithms and complexity results
- Tableau-based systems for **Pspace** logics (e.g., Kris, Crack)
- Investigation of optimisation techniques

Phase 3:

- Tableau algorithms for very expressive DLs
- Highly optimised tableau systems for ExpTime logics (e.g., FaCT, DLP, Racer)
- Relationship to modal logic and decidable fragments of FOL

Latest Developments

Phase 4:

- Mature implementations
- Mainstream applications and Tools
 - Databases
 - Consistency of conceptual schemata (EER, UML etc.)
 - Schema integration
 - Query subsumption (w.r.t. a conceptual schema)
 - Ontologies and Semantic Web (and Grid)
 - Ontology engineering (design, maintenance, integration)
 - Reasoning with ontology-based markup (meta-data)
 - Service description and discovery
- Commercial implementations
- Cerebra system from Network Inference Ltd

Description Logic Family

- DLs are a family of logic based KR formalisms
- Particular languages mainly characterised by:
 - Set of constructors for building complex concepts and roles from simpler ones
 - Set of axioms for asserting facts about concepts, roles and individuals
- ALC is the smallest DL that is propositionally closed
 Constructors include booleans (and, or, not), and
 - Constructors include booleans (and, or,
 Restrictions on role successors
 - E.g., concept describing "happy fathers" could be written:

Man □ ∃hasChild.Female □ ∃hasChild.Male □ ∀hasChild.(Rich ⊔ Happy)

DL Concept and Role Constructors

- Range of other constructors found in DLs, including:
 - Number restrictions (cardinality constraints) on roles, e.g., >3 hasChild, <1 hasMother
 - Qualified number restrictions, e.g., >2 hasChild.Female, <1 hasParent.Male
 - Nominals (singleton concepts), e.g., {Italy}
 - Concrete domains (datatypes), e.g., hasAge.(>21), earns spends.<
 - Inverse roles, e.g., hasChild (hasParent)
 - Transitive roles, e.g., hasChild* (descendant)
 - Role composition, e.g., hasParent o hasBrother (uncle)

DL Knowledge Base

- DL Knowledge Base (KB) normally separated into 2 parts:
 - TBox is a set of axioms describing structure of domain (i.e., a conceptual schema), e.g.:
 - HappyFather = Man □ ∃hasChild.Female □ ...
 - Elephant <u>□</u> Animal □ Large □ Grey
 - · transitive(ancestor)
 - ABox is a set of axioms describing a concrete situation (data), e.g.:
 - · John:HappyFather
 - · <John,Mary>:hasChild
- Separation has no logical significance
 - But may be conceptually and implementationally convenient

OWL as DL: Class Constructors

Constructor	DL Syntax	Example	FOL Syntax
intersectionOf	$C_1 \sqcap \ldots \sqcap C_n$	Human □ Male	$C_1(x) \wedge \ldots \wedge C_n(x)$
unionOf	$C_1 \sqcup \ldots \sqcup C_n$	Doctor ⊔ Lawyer	$C_1(x) \vee \ldots \vee C_n(x)$
complementOf	$\neg C$	−Male	$\neg C(x)$
oneOf	$\{x_1\} \sqcup \ldots \sqcup \{x_n\}$	{john} ⊔ {mary}	$x = x_1 \lor \ldots \lor x = x_n$
allValuesFrom	$\forall P.C$	∀hasChild.Doctor	$\forall y.P(x,y) \rightarrow C(y)$
someValuesFrom	$\exists P.C$	∃hasChild.Lawyer	$\exists y. P(x, y) \land C(y)$
maxCardinality	$\leq nP$	≤1hasChild	$\exists^{\leq n} y. P(x, y)$
minCardinality	$\geqslant nP$	≥2hasChild	$\exists^{\geqslant n} y. P(x, y)$

- XMLS datatypes as well as classes in ∀P.C and ∃P.C
- E.g., ∃hasAge.nonNegativeInteger
 Arbitrarily complex nesting of constructors
- E.g., Person □ ∀hasChild.(Doctor ⊔ ∃hasChild.Doctor)

RDFS Syntax

E.g., Person $\sqcap \forall hasChild.(Doctor \sqcup \exists hasChild.Doctor):$

```
<owl:Class>
  <owl:intersectionOf rdf:parseType=" collection">
    <owl:Class rdf:about="#Person"/>
        <owl:Restriction>
            www.restriction>
<owl:onProperty rdf:resource="#hasChild"/>
<owl:toClass>
<owl:tunionof rdf:parseType=" collection">
<owl:Class rdf:about="#Doctor"/>
<owl:Restriction>
                     <owl:nebriorroperty rdf:resource="#hasChild"/>
<owl:hasClass rdf:resource="#Doctor"/>
</owl:Restriction>
                 </owl:unionOf>
            </owl:toClass>
   </owl:Restriction>
</owl:intersectionOf>
```

OWL as DL: Axioms

Axiom	DL Syntax	Example			
subClassOf	$C_1 \sqsubseteq C_2$	Human ⊑ Animal ⊓ Biped			
equivalentClass	$C_1 \equiv C_2$	Man ≡ Human □ Male			
disjointWith	$C_1 \sqsubseteq \neg C_2$	Male ⊑ ¬Female			
sameIndividualAs	$\{x_1\} \equiv \{x_2\}$	{President Bush} ≡ {G W Bush}			
differentFrom	$\{x_1\} \sqsubseteq \neg \{x_2\}$	{john} ⊑ ¬{peter}			
subPropertyOf	$P_1 \sqsubseteq P_2$	hasDaughter ⊑ hasChild			
equivalentProperty	$P_1 \equiv P_2$	cost ≡ price			
inverseOf	$P_1 \equiv P_2^-$	hasChild ≡ hasParent ⁻			
transitiveProperty	$P^+ \sqsubseteq \bar{P}$	ancestor ⁺ ⊑ ancestor			
functionalProperty	T ⊑ ≤1P	⊤ ⊑ ≤1hasMother			
inverseFunctionalProperty	T ⊑ ≤1 <i>P</i> −	T ⊑ ≼1hasSSN-			
Axioms (mostly) reducible to inclusion (□)					

- μ F \equiv G iff both F \sqsubseteq G and G \sqsubseteq F
- **Obvious FOL equivalences**
 - $E.g., \, \mathbf{F} \equiv \mathbf{G} \, \Leftrightarrow \, \forall \, \{\mathbf{F} + \{\ , \, \leftrightarrow \, \mathbf{G} + \{\ , \quad \, \mathbf{F} \sqsubseteq \mathbf{G} \, \Leftrightarrow \, \forall \, \{\mathbf{F} + \{\ , \, \rightarrow \, \mathbf{G} + \{\ , \quad \, \mathbf{$

XML Schema Datatypes in OWL

- OWL supports XML Schema primitive datatypes
 - E.g., integer, real, string, .
- Strict separation between "object" classes and datatypes
 - Disjoint interpretation domain $\Delta_{\!\mbox{\scriptsize g}}$ for datatypes
 - For a datavalue g, g^T ⊆ Δ_g
 - And $\Delta_G \cap \Delta^T = \emptyset$
 - Disjoint "object" and datatype properties
 - For a datatype propterty S, $S^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta_{G}$
 - For object property v and datatype property v, v
- Equivalent to the "+G_q," in SHOIN+G_q,

Why Separate Classes and Datatypes?

- Philosophical reasons:
 - Datatypes structured by built-in predicates
 - Not appropriate to form new datatypes using ontology language
- · Practical reasons:
 - Ontology language remains simple and compact
 - Semantic integrity of ontology language not compromised
 - Implementability not compromised can use hybrid reasoner
 - Only need sound and complete decision procedure for: $g_{q_1}^{\mathbb{Z}}\cap\ldots\cap g_{q_r}^{\mathbb{Z}}\quad\text{where g is a (possibly negated) datatype}$

OWL DL Semantics

- Mapping OWL to equivalent DL (SHOIN-G_g):
 - Facilitates provision of reasoning services (using DL systems)
 - Provides well defined semantics
- DL semantics defined by interpretations: I @ ♣I /.I ,/where
 - $\Delta^{\mathcal{I}}$ is the domain (a non-empty set)
 - \cdot ^I is an interpretation function that maps:
 - Concept (class) name A → subset A^T of Δ^T
 - Role (property) name $R\to \text{binary relation } R^{\mathcal{I}} \text{ over } \Delta^{\mathcal{I}}$
 - Individual name $i \to i^{\mathcal{I}}$ element of $\Delta^{\mathcal{I}}$

DL Semantics

- Interpretation function $\cdot^{\!\scriptscriptstyle T}$ extends to concept expressions in the obvious way, i.e.:

$$\begin{split} (C \sqcap D)^{\mathcal{I}} &= C^{\mathcal{I}} \cap D^{\mathcal{I}} \\ (C \sqcup D)^{\mathcal{I}} &= C^{\mathcal{I}} \cup D^{\mathcal{I}} \\ (\neg C)^{\mathcal{I}} &= \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}} \\ \{x\}^{\mathcal{I}} &= \{x^{\mathcal{I}}\} \\ (\exists R.C)^{\mathcal{I}} &= \{x \mid \exists y. \langle x,y \rangle \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}}\} \\ (\forall R.C)^{\mathcal{I}} &= \{x \mid \forall y. (x,y) \in R^{\mathcal{I}} \Rightarrow y \in C^{\mathcal{I}}\} \\ (\leqslant nR)^{\mathcal{I}} &= \{x \mid \#\{y \mid \langle x,y \rangle \in R^{\mathcal{I}}\} \leqslant n\} \\ (\geqslant nR)^{\mathcal{I}} &= \{x \mid \#\{y \mid \langle x,y \rangle \in R^{\mathcal{I}}\} \geqslant n\} \end{split}$$

Interpretation Example Δ = {v, w, x, y, z} A'z = {v, w, x} B'z = {x, y} R'z = {v, w, (v, x), (y, x), (x, z)} □ B = □ A □

DL Knowledge Bases (Ontologies)

- An OWL ontology maps to a DL Knowledge Base $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$
 - T (Tbox) is a set of axioms of the form:
 - C ⊑ D (concept inclusion)
 - $C \equiv D$ (concept equivalence)
 - $R \sqsubseteq S$ (role inclusion)
 - R = S (role equivalence)
 - $R^+ \sqsubseteq R$ (role transitivity)
 - A (Abox) is a set of axioms of the form
 x ∈ D (concept instantiation)
 - $\langle x,y \rangle \in \mathbb{R}$ (role instantiation)
- Two sorts of Tbox axioms often distinguished
 - "Definitions"
 - $C \sqsubseteq D$ or $C \equiv D$ where C is a concept name
 - General Concept Inclusion axioms (GCIs)
 - $C \sqsubseteq D$ where C in an arbitrary concept

Knowledge Base Semantics

- An interpretation I satisfies (models) an axiom A (I ⊨ A):
- $\mathcal{I} \models C \sqsubseteq D \text{ iff } C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\mathcal{I} \models \mathbf{C} \equiv \mathbf{D} \text{ iff } \mathbf{C}^{\mathcal{I}} = \mathbf{D}^{\mathcal{I}}$
- $\mathcal{I} \vDash R \sqsubseteq S \text{ iff } R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$
- $$\begin{split} & \mathcal{I} \models \mathbf{R} \equiv \mathbf{S} \text{ iff } \mathbf{R}^{\mathcal{I}} = \mathbf{S}^{\mathcal{I}} \\ & \mathcal{I} \models \mathbf{R}^{+} \sqsubseteq \mathbf{R} \text{ iff } (\mathbf{R}^{\mathcal{I}})^{+} \subseteq \mathbf{R}^{\mathcal{I}} \end{split}$$
- $-\mathcal{I} \models \mathbf{x} \in \mathbf{D} \text{ iff } \mathbf{x}^{\mathcal{I}} \in \mathbf{D}^{\mathcal{I}}$
- $\mathcal{I} \models \langle \mathbf{x}, \mathbf{y} \rangle \in \mathbf{R} \text{ iff } (\mathbf{x}^{\mathcal{I}}, \mathbf{y}^{\mathcal{I}}) \in \mathbf{R}^{\mathcal{I}}$
- \mathcal{I} satisfies a Tbox \mathcal{T} ($\mathcal{I} \models \mathcal{T}$) iff \mathcal{I} satisfies every axiom A in \mathcal{T}
- \mathcal{I} satisfies an Abox \mathcal{A} ($\mathcal{I} \models \mathcal{A}$) iff \mathcal{I} satisfies every axiom A in \mathcal{A}
- $\mathcal I$ satisfies an KB $\mathcal K$ ($\mathcal I$ \models $\mathcal K$) iff $\mathcal I$ satisfies both $\mathcal T$ and $\mathcal A$

Multiple Models -v- Single Model

- DL KB doesn't define a single model, it is a set of constraints that define a set of possible models
 - No constraints (empty KB) means any model is possible
 - More constraints means fewer models
 - Too many constraints may mean no possible model (inconsistent KB)
- In contrast, DBs (and frame/rule KR systems) make assumptions such that DB/KB defines a single model
 - Unique name assumption
 - · Different names always interpreted as different individuals
 - Closed world assumption
 - . Domain consists only of individuals named in the DB/KB
 - Minimal models
 - · Extensions are as small as possible

Example of Single Model

KB = {}	I :	I :
	$\Delta = \{\}$	$\Delta = \{a, b, c, d\}$
$KB = \{a:C, b:D, c:C, d:E\}$		$C^{I} = \{a, c\}$
KB = {a:C, b:D, c:C, d:E, b:C}		$D^I = \{b\}$ $E^I = \{d\}$ $a^I = a$ $b^I = b$
		$c^I = c$ $d^I = d$
$KB = \{a:C, b:D, c:C, d:E, b:C$		
E ⊑ C}	I :	I :
	$\Delta = \{a, b, c, d\}$	$\Delta = \{a, b, c, d\}$
	$C^I = \{a, b, c\}$	$C^{I} = \{a, b, c, d\}$
	$D^I=\{b\} E^I=\{d\}$	$D^{I} = \{b\} E^{I} = \{d\}$
	$a^I = a$ $b^I = b$	$a^I = a$ $b^I = b$
	$c^I = c$ $d^I = d$	$c_I = c$ $d_I = d$

Inference Tasks

- Knowledge is correct (captures intuitions)
- C subsumes D w.r.t. $\mathcal K$ iff for every model $\mathcal I$ of $\mathcal K$, $C^{\mathcal I}\subseteq D^{\mathcal I}$
- Knowledge is minimally redundant (no unintended synonyms) C is equivallent to D w.r.t. \mathcal{K} iff for every model \mathcal{I} of \mathcal{K} , $C^z = D^z$
- Knowledge is meaningful (classes can have instances)
 - C is satisfiable w.r.t. K iff there exists some model \mathcal{I} of K s.t. $C^{\mathcal{I}} \neq \emptyset$
- Querying knowledge
 - $\ \, \textbf{x} \text{ is an instance of } C \text{ w.r.t. } \mathcal{K} \text{ iff for } \textbf{every model } \mathcal{I} \text{ of } \mathcal{K} \text{, } \textbf{x}^{\mathcal{I}} \in C^{\mathcal{I}}$
 - $\langle x,y \rangle$ is an instance of $\mathbb R$ w.r.t. $\mathcal K$ iff for, every model $\mathcal I$ of $\mathcal K$, $(x^\mathcal I,y^\mathcal I) \in \mathbb R^\mathcal I$
- Knowledge base consistency
 - A KB $\mathcal K$ is consistent iff there exists some model $\mathcal I$ of $\mathcal K$

Single Model -v- Multiple Model

Multiple models:

- Expressively powerful
- Boolean connectives, including ¬ and □
- Can capture incomplete information
 - E.g., using ⊔ and ∃
- Monotonic
 - Adding information preserves truth
- Reasoning (e.g., querying) is hard/slow
- Queries may give counterintuitive results in some cases

Single model

- Expressively weaker (in most respects)
 - No negation or disjunction
- Can't capture incomplete information
- Nonmonotonic
- Adding information does not preserve truth
 Reasoning (e.g., querying) is
- easy/fast
- Queries may give counterintuitive results in some cases