An Introduction to
Description Logics

What Are Description Logics?

« A family of logic based Knowledge Representation formalisms
— Descendants of semantic networks and KL-ONE

— Describe domain in terms of concepts (classes), roles
(relationships) and individuals

« Distinguished by:
— Formal semantics (typically model theoretic)
« Decidable fragments of FOL
« Closely related to Propositional Modal & Dynamic Logics
— Provision of inference services
« Sound and complete decision procedures for key problems
« Implemented systems (highly optimised)

DL Architecture

Man = Human n Male

Happy-Father = Man N 3 has-child
Female N ...

John : Happy-Father
{John, Mary) : has-child

Short History of Description Logics

Phase 1:
— Incomplete systems (Back, Classic, Loom, . . .)
— Based on structural algorithms

Phase 2:
— Development of tableau algorithms and complexity results
— Tableau-based systems for Pspace logics (e.g., Kris, Crack)
— Investigation of optimisation techniques

Phase 3:

— Tableau algorithms for very expressive DLs

— Highly optimised tableau systems for ExpTime logics (e.g., FaCT,
DLP, Racer)

— Relationship to modal logic and decidable fragments of FOL

Latest Developments

Phase 4:
— Mature implementations
— Mainstream applications and Tools
+ Databases
— Consistency of conceptual schemata (EER, UML etc.)
— Schema integration
— Query subsumption (w.r.t. a conceptual schema)
« Ontologies and Semantic Web (and Grid)
— Ontology engineering (design, maintenance, integration)
— Reasoning with ontology-based markup (meta-data)
— Service description and discovery
— Commercial implementations
« Cerebra system from Network Inference Ltd

Description Logic Family

DLs are a family of logic based KR formalisms
Particular languages mainly characterised by:

— Set of constructors for building complex concepts and roles
from simpler ones

— Set of axioms for asserting facts about concepts, roles and
individuals

ALC is the smallest DL that is propositionally closed
— Constructors include booleans (and, or, not), and
— Restrictions on role successors
— E.g., concept describing “happy fathers” could be written:

Man m 3hasChild.Female m 3hasChild.Male
r VhasChild.(Rich L1 Happy)




DL Concept and Role Constructors

* Range of other constructors found in DLs, including:

— Number restrictions (cardinality constraints) on roles, e.g.,
>3 hasChild, <1 hasMother

— Qualified number restrictions, e.g., 2 hasChild.Female,
<1 hasParent.Male

— Nominals (singleton concepts), e.g., {Italy}

— Concrete domains (datatypes), e.g., hasAge.(>21),
earns spends.<

— Inverseroles, e.g., hasChild- (hasParent)
— Transitive roles, e.g., hasChild* (descendant)
— Role composition, e.g., hasParent o hasBrother (uncle)

DL Knowledge Base

+ DL Knowledge Base (KB) normally separated into 2 parts:
— TBox is a set of axioms describing structure of domain (i.e., a
conceptual schema), e.g.:
« HappyFather = Man 1 3hasChild.Femaler ...
« Elephant c Animal mLarge r Grey
« transitive(ancestor)

— ABox is a set of axioms describing a concrete situation (data),
eg.
« John:HappyFather
« <John,Mary>:hasChild

« Separation has no logical significance
— But may be conceptually and implementationally convenient

OWL as DL: Class Constructors

Constructor DL Syntax Example FOL Syntax
intersectionOf ¢y1M...NC, HumanmnMale Cr{) A A Cu(z)
unionOf CyU...uCp  DoctoruLawyer | Ci(z) V...V Cn(x)
complementOf -C -Male -C(x)

oneOf {zi}u...u{zn} {jonntu{mary} |z=xz1V...Vz=uz,
allvValuesFrom vP.C vhasChild.Doctor | vy.P{z.y) — C(y)
someValuesFrom JpP.C JhasChild.Lawyer | 3y.P{z,y) A C{y)
maxCardinality <nP <1lhasChild ISy P, y)
minCardinality znP =2hasChild Py P, y)

* XMLS datatypes as well as classes in YP.C and 3P.C
— E.g., 3hasAge.nonNegativelnteger

« Arbitrarily complex nesting of constructors
— E.g., Person M VhasChild.(Doctor LI 3hasChild.Doctor)

RDFS Syntax

E.g., Person nYhasChild.(Doctor U 3hasChild.Doctor):

<owl:Class>
<owl:intersectionOf rdf:parseType=" collection">
<owl:Class rdf:about="#Person"/>
<owl :Restriction>
<owl :onProperty rdf:resource="#hasChild"/>
<owl:toClass>
<owl:unionOf rdf:parseType=" collection™>
<owl:Class rdf:about="#Doctor"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasChild"/>
<owl:hasClass rdf:resource="#Doctor"/>
</owl:Restriction>
</owl unionOf>
</owl:toClass>
</owl :Restriction>
</owl:intersectionOf>
</owl:Class>

OWL as DL: Axioms

Axiom DL Syntax | Example

subClassOf 1Ty Human C Animal 1 Biped
equivalentClass 1 =Cy Man = Human n Male
disjointWith C1C-Cy Male C -Female
samelndividualAs {1} = {xp} | {President Bush} = {G W Bush}
differentFrom {1} C ={xs} | {John} C ~{peter}
subPropertyOf PCPh hasDaughter C hasChild
equivalentProperty =P cost = price

inverseQf Pi=pPy hasChild = hasParent™
transitiveProperty pt CP ancestor C ancestor
functionalProperty TCL1P T C £1hasMother
inverseFunctionalProperty | T CE<1P~ | TC £1hasSSN™

* Axioms (mostly) reducible to inclusion (C)
u F=a iff both FEGandGLCEF
+ Obvious FOL equivalences
- Eg.F=G & V{FH{,—GH{, FCLG & V{FH{,—G+H,

XML Schema Datatypes in OWL

* OWL supports XML Schema primitive datatypes
— E.g., integer, real, string, ...
« Strict separation between “object” classes and datatypes
— Disjoint interpretation domain A, for datatypes
» For adatavalue g, g’ C A,
« And A, NAT=§
— Disjoint “object” and datatype properties
« For adatatype propterty 8, 87 C A7 x A,
« For object property vand datatype property 8, vV nsZ=§
< Equivalent to the "« " in SHOIN®G ,




Why Separate Classes and Datatypes?

< Philosophical reasons:
— Datatypes structured by built-in predicates
— Not appropriate to form new datatypes using ontology
language
« Practical reasons:
— Ontology language remains simple and compact
— Semantic integrity of ontology language not compromised
— Implementability not compromised — can use hybrid reasoner
« Only need sound and complete decision procedure for:
ghN..Ng., wheregis a(possibly negated) datatype

OWL DL Semantics

+ Mapping OWL to equivalent DL (SHOTN+G ,):
— Facilitates provision of reasoning services (using DL systems)
— Provides well defined semantics
« DL semantics defined by interpretations: Z @+A%/-Z,/where
— A? is the domain (a non-empty set)
— I is an interpretation function that maps:
» Concept (class) name A — subset AZ of AZ
* Role (property) name R — binary relation R over A?
« Individual name i — i’ element of A?

DL Semantics

< Interpretation function £ extends to concept expressions in
the obvious way, i.e.:

(¢nD) =cInp?

(cupyf =ctup?

(-C)F = nf\ ot

{z}t = {27}

GR.CY = {z| Fy{z,y) € RZ Ay e CT}
(VR.CY = {z | vy.(z,y) € RT = y € C7T}
(<nRY. = {z | #{y | (z,y) € R} <n}
GnR) = {z | #{y | (x,y) € R} > n}

Interpretation Example

A={v,w,Xx,y, z}

Al={v,w, x}

BI={x,y}

RE={(v, w), (v, X), (¥, ), (x, 2)}

. -B=

. AMB=

© =AUB=

. 3RB=

. VRB=

. 3dR@EARA)=
« 3R-(AUB)=
. <1RA=

. >1RA=

DL Knowledge Bases (Ontologies)

« An OWL ontology maps to a DL Knowledge Base K = (T, A)
— T (Tbox) is a set of axioms of the form:
*« CLC D (conceptinclusion)
* C=D (concept equivalence)
« RCS (roleinclusion)
*« R=S (role equivalence)
« R*CR (role transitivity)
— A (Abox) is a set of axioms of the form
« x €D (concept instantiation)
* (x,y) €R (role instantiation)
« Two sorts of Tbhox axioms often distinguished
— “Definitions”
« CEDor C=Dwhere Cis aconcept name
— General Concept Inclusion axioms (GCls)
*« CEDwhere Cin an arbitrary concept

Knowledge Base Semantics

* Aninterpretation Z satisfies (models) an axiom A (ZF A):

- IECCDIffCICD?

- IEC=Diff C*=D?

— IFERLCSIiffRTC ST

— IER=SIiffR7=87

- TER+CRIiff R)* CR?

- IExeDiffx* € D?

- IE (xy) eRiff xZy?) €eRT
« ZIsatisfies a Thox T (ZE T) iff T satisfies every axiom A in T
« ZIsatisfies an Abox A (T A) iff Z satisfies every axiom A in A
« ZIsatisfies an KB K (ZF K) iff Z satisfies both 7 and A




Multiple Models -v- Single Model

+ DL KB doesn't define a single model, it is a set of
constraints that define a set of possible models
— No constraints (empty KB) means any model is possible
— More constraints means fewer models
— Too many constraints may mean no possible model

(inconsistent KB)

« In contrast, DBs (and frame/rule KR systems) make
assumptions such that DB/KB defines a single model
— Unique name assumption
« Different names always interpreted as different individuals
— Closed world assumption
« Domain consists only of individuals named in the DB/KB

— Minimal models

« Extensions are as small as possible

Example of Multiple Models
KB ={}
KB ={a:C, b:D, c:C, d:E}
KB ={a:C, b:D, ¢:C, d:E, b:C}
KB ={a:C, b:D, c:C, d:E, b:C
DEC}

A={v,w, Xy,
Cr={v.w,y

KB ={a:C, b:D, c:C, d:E, b:C
DEC,ECC}

KB ={a:C, b:D, c:C, d:E, b:C
DCC,ECC,dinC}

Example of Single Model

KB ={}
KB ={a:C, b:D, c:C, d:E}
KB ={a:C, b:D, c:C, d:E, b:C}

KB ={a:C, b:D, c:C, d:E, b:C
ELCC}

I

A={}

A

A={a, b, c,d}
Cl={a, b, c}

DI={b} El={d}
al=a bl=b
cf=c df=d

I
A={a, b, c,d}
Cl={a, c}

DI={b} El={d}
al=a bi=b
cf=¢c df=d

T
A={a, b,c,d}
CI={a, b, c,d}

Df={b} Ef={d}
al=a bi=b
cf=c df=d

Inference Tasks

* Knowledge is correct (captures intuitions)
— Csubsumes D w.r.t. K iff for every model Z of K, CZ C D*

* Knowledge is minimally redundant (no unintended synonyms)
— Cis equivallent to D w.r.t. K iff for every model Z of X, CZ=D?

* Knowledge is meaningful (classes can have instances)
— Cis satisfiable w.r.t. K iff there exists some model Zof Ks.t. CT= @

* Querying knowledge
— xis an instance of Cw.r.t. K iff for every model Z of K, xZ € C?
- {xy)is an instance of Rw.r.t. K iff for, every model Z of K, (xL,y?) € RT

* Knowledge base consistency
— A KB K is consistent iff there exists some model Zof K

Single Model -v- Multiple Model

Multiple models:
« Expressively powerful
— Boolean connectives,
including ~and U
« Can capture incomplete
information
— E.g.,usinguand 3
« Monotonic
— Adding information
preserves truth

« Reasoning (e.g., querying) is

hard/slow

+ Queries may give counter-

intuitive results in some
cases

Single model:

« Expressively weaker (in most

respects)

— No negation or disjunction
« Can’t capture incomplete

information
+ Nonmonotonic

— Adding information does not
preserve truth

« Reasoning (e.g., querying) is

easyl/fast

* Queries may give counter-
intuitive results in some

cases




