
•1

An Introduction to 
Description Logics

What Are Description Logics?
• A family of logic based Knowledge Representation formalisms

– Descendants of semantic networks and KL-ONE
– Describe domain in terms of concepts (classes), roles 

(relationships) and individuals
• Distinguished by:

– Formal semantics (typically model theoretic)
• Decidable fragments of FOL
• Closely related to Propositional Modal & Dynamic Logics

– Provision of inference services
• Sound and complete decision procedures for key problems
• Implemented systems (highly optimised)

DL Architecture

Knowledge Base

Tbox (schema)

Abox (data)

Man ≡ Human u Male

Happy-Father ≡ Man u ∃ has-child 
Female u …

John : Happy-Father

hJohn, Maryi : has-child In
fe

re
n

ce
 S

y
st

e
m

In
te

rf
a
ce

Short History of Description Logics
Phase 1:

– Incomplete systems (Back, Classic, Loom, . . . )
– Based on structural algorithms

Phase 2:
– Development of tableau algorithms and complexity results
– Tableau-based systems for Pspace logics (e.g., Kris, Crack)
– Investigation of optimisation techniques

Phase 3:
– Tableau algorithms for very expressive DLs
– Highly optimised tableau systems for ExpTime logics (e.g., FaCT, 

DLP, Racer)
– Relationship to modal logic and decidable fragments of FOL

Latest Developments
Phase 4:

– Mature implementations
– Mainstream applications and Tools

• Databases
– Consistency of conceptual schemata (EER, UML etc.)
– Schema integration
– Query subsumption (w.r.t. a conceptual schema)

• Ontologies and Semantic Web (and Grid)
– Ontology engineering (design, maintenance, integration)
– Reasoning with ontology-based markup (meta-data)
– Service description and discovery

– Commercial implementations
• Cerebra system from Network Inference Ltd

Description Logic Family
• DLs are a family of logic based KR formalisms
• Particular languages mainly characterised by:

– Set of constructors for building complex concepts and roles 
from simpler ones

– Set of axioms for asserting facts about concepts, roles and 
individuals

• ALC is the smallest DL that is propositionally closed
– Constructors include booleans (and, or, not), and
– Restrictions on role successors
– E.g., concept describing “happy fathers” could be written:

Man È ∃hasChild.Female È ∃hasChild.Male
È ∀hasChild.(Rich Ë Happy)



•2

DL Concept and Role Constructors
• Range of other constructors found in DLs, including:

– Number restrictions (cardinality constraints) on roles, e.g.,   
˘3 hasChild, ¯1 hasMother

– Qualified number restrictions, e.g., ˘2 hasChild.Female,           
¯1 hasParent.Male

– Nominals (singleton concepts), e.g., {Italy}
– Concrete domains (datatypes), e.g., hasAge.(˘21),                       

earns spends.<

– Inverse roles, e.g., hasChild- (hasParent)
– Transitive roles, e.g., hasChild* (descendant)
– Role composition, e.g., hasParent o hasBrother (uncle)

DL Knowledge Base
• DL Knowledge Base (KB) normally separated into 2 parts:

– TBox is a set of axioms describing structure of domain (i.e., a 
conceptual schema), e.g.:

• HappyFather ≡ Man È ∃hasChild.Female È …
• Elephant Ç Animal È Large È Grey
• transitive(ancestor)

– ABox is a set of axioms describing a concrete situation (data), 
e.g.:

• John:HappyFather
• <John,Mary>:hasChild

• Separation has no logical significance
– But may be conceptually and implementationally convenient

OWL as DL: Class Constructors

• XMLS datatypes as well as classes in ∀P.C and ∃P.C
– E.g., ∃hasAge.nonNegativeInteger

• Arbitrarily complex nesting of constructors
– E.g., Person u ∀hasChild.(Doctor t ∃hasChild.Doctor)

RDFS Syntax

<owl:Class>
<owl:intersectionOf rdf:parseType=" collection">
<owl:Class rdf:about="#Person"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasChild"/>
<owl:toClass>
<owl:unionOf rdf:parseType=" collection">
<owl:Class rdf:about="#Doctor"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasChild"/>
<owl:hasClass rdf:resource="#Doctor"/>

</owl:Restriction>
</owl:unionOf>

</owl:toClass>
</owl:Restriction>

</owl:intersectionOf>
</owl:Class>

E.g., Person u ∀hasChild.(Doctor t ∃hasChild.Doctor):

OWL as DL: Axioms

• Axioms (mostly) reducible to inclusion (v)
– C ≡ D iff both C v D and D v C

• Obvious FOL equivalences
– E.g., C ≡ D ¤ ∀x.C(x)j D(x), C v D  ¤ ∀x.C(x)f D(x)

XML Schema Datatypes in OWL

• OWL supports XML Schema primitive datatypes
– E.g., integer, real, string, … 

• Strict separation between “object” classes and datatypes
– Disjoint interpretation domain ∆D for datatypes

• For a datavalue d, dI ⊆ ∆D
• And ∆D ∩ ∆I = ∅

– Disjoint “object” and datatype properties
• For a datatype propterty P, PI ⊆ ∆I × ∆D
• For object property S and datatype property P,  SI ∩ PI = ∅

• Equivalent to the “(Dn)” in SHOIN(Dn)



•3

Why Separate Classes and Datatypes?
• Philosophical reasons:

– Datatypes structured by built-in predicates
– Not appropriate to form new datatypes using ontology 

language
• Practical reasons:

– Ontology language remains simple and compact
– Semantic integrity of ontology language not compromised
– Implementability not compromised — can use hybrid reasoner

• Only need sound and complete decision procedure for: 
dI

1 ∩… ∩ dI
n,   where d is a (possibly negated) datatype

OWL DL Semantics
• Mapping OWL to equivalent DL (SHOIN(Dn)):

– Facilitates provision of reasoning services (using DL systems)
– Provides well defined semantics

• DL semantics defined by interpretations: I = (∆I, ·I), where
– ∆I is the domain (a non-empty set) 
– ·I is an interpretation function that maps:

• Concept (class) name A → subset AI of ∆I

• Role (property) name R → binary relation RI over ∆I

• Individual name i → iI element of ∆I

DL Semantics
• Interpretation function ·I extends to concept expressions in 

the obvious way, i.e.:

Interpretation Example
∆ = {v, w, x, y, z}
AI = {v, w, x}
BI = {x, y}
RI = {(v, w), (v, x), (y, x), (x, z)}

• ¬ B =
• A u B =
• ¬ A t B =
• ∃ R B =
• ∀ R B =
• ∃ R (∃ R A) = 
• ∃ R ¬ (A t B) =
• 6 1 R A =
• > 1 R A =

AI

v

x

y
z

w

BI

DL Knowledge Bases (Ontologies)
• An OWL ontology maps to a DL Knowledge Base K = hT , Ai

– T  (Tbox) is a set of axioms of the form:
• C v D (concept inclusion)
• C ≡ D (concept equivalence)
• R v S (role inclusion)
• R ≡ S (role equivalence)
• R+ v R (role transitivity)

– A  (Abox) is a set of axioms of the form 
• x ∈ D (concept instantiation)
• hx,yi ∈ R (role instantiation)

• Two sorts of Tbox axioms often distinguished
– “Definitions”

• C v D or C ≡ D where C is a concept name
– General Concept Inclusion axioms (GCIs)

• C v D where C in an arbitrary concept

Knowledge Base Semantics
• An interpretation I satisfies (models) an axiom A (I ² A):

– I ² C v D iff CI ⊆ DI

– I ² C ≡ D iff CI = DI

– I ² R v S iff RI ⊆ SI

– I ² R ≡ S iff RI = SI

– I ² R+ v R iff (RI)+ ⊆ RI

– I ² x ∈ D iff xI ∈ DI

– I ² hx,yi ∈ R iff (xI,yI) ∈ RI

• I satisfies a Tbox T (I ² T ) iff I satisfies every axiom A in T
• I satisfies an Abox A (I ² A) iff I satisfies every axiom A in A
• I satisfies an KB K (I ² K) iff I satisfies both T  and A



•4

Multiple Models -v- Single Model
• DL KB doesn’t define a single model, it is a set of 

constraints that define a set of possible models
– No constraints (empty KB) means any model is possible
– More constraints means fewer models
– Too many constraints may mean no possible model 

(inconsistent KB)
• In contrast, DBs (and frame/rule KR systems) make 

assumptions such that DB/KB defines a single model
– Unique name assumption

• Different names always interpreted as different individuals
– Closed world assumption

• Domain consists only of individuals named in the DB/KB
– Minimal models

• Extensions are as small as possible

Example of Multiple Models
KB = {}

KB = {a:C, b:D, c:C, d:E}

KB = {a:C, b:D, c:C, d:E, b:C}

KB = {a:C, b:D, c:C, d:E, b:C
D v C}

KB = {a:C, b:D, c:C, d:E, b:C
D v C, E v C}

KB = {a:C, b:D, c:C, d:E, b:C
D v C, E v C, d:¬ C}

I1:
∆ = {v, w, x, y, z}
CI = {v, w, y}
DI = {x, y}   EI = {z}
aI = v     bI = x
cI = w     dI = y

I3:
∆ = {v, w, x, y, z}
CI = {v, w, y}
DI = {x, y}   EI = {z}
aI = v     bI = y
cI = w     dI = z

I2:
∆ = {v, w, x, y, z}
CI = {v, w, y}
DI = {x, y}   EI = {z}
aI = v     bI = x
cI = w     dI = z

I4:
∆ = {v, w, x, y, z}
CI = {v, w, x, y}
DI = {x, y}   EI = {z}
aI = v     bI = x
cI = y     dI = y

Example of Single Model
KB = {}

KB = {a:C, b:D, c:C, d:E}

KB = {a:C, b:D, c:C, d:E, b:C}

KB = {a:C, b:D, c:C, d:E, b:C
E v C}

I:
∆ = {}

I:
∆ = {a, b, c, d}
CI = {a, b, c}
DI = {b}   EI = {d}
aI = a      bI = b
cI = c      dI = d

I:
∆ = {a, b, c, d}
CI = {a, c}
DI = {b}   EI = {d}
aI = a      bI = b
cI = c      dI = d

I:
∆ = {a, b, c, d}
CI = {a, b, c, d}
DI = {b}   EI = {d}
aI = a      bI = b
cI = c      dI = d

Inference Tasks
• Knowledge is correct (captures intuitions)

– C subsumes D w.r.t. K iff for every model I of K, CI ⊆ DI

• Knowledge is minimally redundant (no unintended synonyms)
– C is equivallent to D w.r.t. K iff for every model I of K, CI = DI

• Knowledge is meaningful (classes can have instances)
– C is satisfiable w.r.t. K iff there exists some model I of K s.t. CI ≠ ∅

• Querying knowledge
– x is an instance of C w.r.t. K iff for every model I of K, xI ∈ CI

– hx,yi is an instance of R w.r.t. K iff for, every model I of K, (xI,yI) ∈ RI

• Knowledge base consistency
– A KB K is consistent iff there exists some model I of K

Single Model -v- Multiple Model
Multiple models:
• Expressively powerful

– Boolean connectives, 
including ¬ and t

• Can capture incomplete 
information

– E.g., using t and ∃
• Monotonic

– Adding information 
preserves truth

• Reasoning (e.g., querying) is 
hard/slow

• Queries may give counter-
intuitive results in some 
cases

Single model:
• Expressively weaker (in most 

respects)
– No negation or disjunction

• Can’t capture incomplete 
information

• Nonmonotonic
– Adding information does not 

preserve truth
• Reasoning (e.g., querying) is 

easy/fast
• Queries may give counter-

intuitive results in some 
cases


