
• •

• •1

Ontology Languages
for the

Semantic Web

Ontology Languages
• Wide variety of languages for “Explicit Specification”

– Graphical notations
• Semantic networks

• •

• •2

Ontology Languages
• Wide variety of languages for “Explicit Specification”

– Graphical notations
• Topic Maps

Ontology Languages
• Wide variety of languages for “Explicit Specification”

– Graphical notations
• UML

• •

• •3

Ontology Languages
• Wide variety of languages for “Explicit Specification”

– Graphical notations
• RDF

Ontology Languages
• Wide variety of languages for “Explicit Specification”

– Logic based
• Description Logics (e.g., OIL, DAML+OIL, OWL)
• Rules (e.g., RuleML, LP/Prolog)
• First Order Logic (e.g., KIF)

• •

• •4

Ontology Languages
• Wide variety of languages for

“Explicit Specification”
– Logic based

• Conceptual graphs

Ontology Languages
• Wide variety of languages for “Explicit Specification”

– Logic based
• Conceptual graphs
• (Syntactically) higher order logics (e.g., LBase)
• Non-classical logics (e.g., Flogic, Non-Mon, modalities)

– Bayesian/probabilistic/fuzzy

• Degree of formality varies widely
– Increased formality makes languages more amenable to

machine processing (e.g., automated reasoning)

• •

• •5

• Objects/Instances/Individuals
– Elements of the domain of discourse
– Equivalent to constants in FOL

• Types/Classes/Concepts
– Sets of objects sharing certain characteristics
– Equivalent to unary predicates in FOL

• Relations/Properties/Roles
– Sets of pairs (tuples) of objects
– Equivalent to binary predicates in FOL

• Such languages are/can be:
– Well understood
– Formally specified
– (Relatively) easy to use
– Amenable to machine processing

Many languages use “object oriented” model based on:

Web “Schema” Languages
• Existing Web languages extended to facilitate content

description
– XML → XML Schema (XMLS)
– RDF → RDF Schema (RDFS)

• XMLS not an ontology language
– Changes format of DTDs (document schemas) to be XML
– Adds an extensible type hierarchy

• Integers, Strings, etc.
• Can define sub-types, e.g., positive integers

• RDFS is recognisable as an ontology language
– Classes and properties
– Sub/super-classes (and properties)
– Range and domain (of properties)

• •

• •6

RDF and RDFS
• RDF stands for Resource Description Framework
• It is a W3C candidate recommendation

(http://www.w3.org/RDF)
• RDF is graphical formalism (+ XML syntax + semantics)

– for representing metadata
– for describing the semantics of information in a machine-

accessible way
• RDFS extends RDF with “schema vocabulary”, e.g.:

– Class, Property
– type, subClassOf, subPropertyOf
– range, domain

The RDF Data Model
• Statements are <subject, predicate, object> triples:

Ian Uli
hasColleague

• Can be represented using XML serialisation, e.g.:
<Ian,hasColleague,Uli>

• Statements describe properties of resources
• A resource is a URI representing a (class of) object(s):

– a document, a picture, a paragraph on the Web;
– http://www.cs.man.ac.uk/index.html
– a book in the library, a real person (?)
– isbn://5031-4444-3333
– …

• Properties themselves are also resources (URIs)

• •

• •7

URIs
• URI = Uniform Resource Identifier
• "The generic set of all names/addresses that are short

strings that refer to resources“
• URIs may or may not be dereferencable

– URLs (Uniform Resource Locators) are a particular type of
URI, used for resources that can be accessed on the WWW
(e.g., web pages)

• In RDF, URIs typically look like “normal” URLs, often with
fragment identifiers to point at specific parts of a
document:
– http://www.somedomain.com/some/path/to/file#fragmentID

Linking Statements
• The subject of one statement can be the object of another
• Such collections of statements form a directed, labeled

graph

• Note that the object of a triple can also be a “literal” (a
string)

Ian Uli
hasColleague

Carole http://www.cs.mam.ac.uk/~sattler

hasColleague
hasHomePage

• •

• •8

RDF Syntax
• RDF has an XML syntax that has a specific meaning:
• Every Description element describes a resource
• Every attribute or nested element inside a Description is a property

of that Resource with an associated object resource
• Resources are referred to using URIs

<Description about="some.uri/person/ian_horrocks">
 <hasColleague resource="some.uri/person/uli_sattler"/>
</Description>
<Description about="some.uri/person/uli_sattler">
 <hasHomePage>http://www.cs.mam.ac.uk/~sattler</hasHomePage>
</Description>
<Description about="some.uri/person/carole_goble">
 <hasColleague resource="some.uri/person/uli_sattler"/>
</Description>

RDF Schema (RDFS)
• RDF gives a formalism for meta data annotation, and a way

to write it down in XML, but it does not give any special
meaning to vocabulary such as subClassOf or type
– Interpretation is an arbitrary binary relation
– I.e., <Person,subClassOf,Animal> has no special meaning

• RDF Schema defines “schema vocabulary” that supports
definition of ontologies
– gives “extra meaning” to particular RDF predicates and

resources (such as subClasOf)
– this “extra meaning”, or semantics, specifies how a term

should be interpreted

• •

• •9

RDFS Examples
• RDF Schema terms (just a few examples):

– Class
– Property
– type
– subClassOf
– range
– domain

• These terms are the RDF Schema building blocks
(constructors) used to create vocabularies:
<Person,type,Class>
<hasColleague,type,Property>
<Professor,subClassOf,Person>
<Carole,type,Professor>
<hasColleague,range,Person>
<hasColleague,domain,Person>

RDF/RDFS “Liberality”
• No distinction between classes and instances (individuals)

<Species,type,Class>
<Lion,type,Species>
<Leo,type,Lion>

• Properties can themselves have properties
<hasDaughter,subPropertyOf,hasChild>
<hasDaughter,type,familyProperty>

• No distinction between language constructors and
ontology vocabulary, so constructors can be applied to
themselves/each other
<type,range,Class>
<Property,type,Class>
<type,subPropertyOf,subClassOf>

• •

• •10

RDF/RDFS Semantics
• RDF has “Non-standard” semantics in order to deal with this
• Semantics given by RDF Model Theory (MT)

Aside: Semantics and Model Theories

• Ontology/KR languages aim to model (part of) world
• Terms in language correspond to entities in world
• Meaning given by, e.g.:

– Mapping to another formalism, such as FOL, with own well
defined semantics

– or a bespoke Model Theory (MT)
• MT defines relationship between syntax and interpretations

– Can be many interpretations (models) of one piece of syntax
– Models supposed to be analogue of (part of) world

• E.g., elements of model correspond to objects in world
– Formal relationship between syntax and models

• Structure of models reflect relationships specified in syntax
– Inference (e.g., subsumption) defined in terms of MT

• E.g., T ² A v B iff in every model of T, ext(A) µ ext(B)

• •

• •11

Aside: Set Based Model Theory

• Many logics (including standard First Order Logic) use a
model theory based on Zermelo-Frankel set theory

• The domain of discourse (i.e., the part of the world being
modelled) is represented as a set (often refered as Δ)

• Objects in the world are interpreted as elements of Δ
– Classes/concepts (unary predicates) are subsets of Δ
– Properties/roles (binary predicates) are subsets of Δ £ Δ (i.e., Δ2)
– Ternary predicates are subsets of Δ3 etc.

• The sub-class relationship between classes can be
interpreted as set inclusion

• Doesn’t work for RDF, because in RDF a class (set) can be a
member (element) of another class (set)
– In Z-F set theory, elements of classes are atomic (no structure)

Aside: Set Based Model Theory Example

World Interpretation

Daisy isA Cow

Cow kindOf Animal

Mary isA Person

Person kindOf Animal

Z123ABC isA Car

Δ

{ha,bi,…} µ Δ £ Δ

a

b

Model

Mary drives Z123ABC

• •

• •12

Aside: Set Based Model Theory Example

• Formally, the vocabulary is the set of names we use in our
model of (part of) the world
– {Daisy, Cow, Animal, Mary, Person, Z123ABC, Car, drives, …}

• An interpretation I is a tuple h Δ, ·I i
– Δ is the domain (a set)
– ·I is a mapping that maps

• Names of objects to elements of Δ
• Names of unary predicates (classes/concepts) to subsets

of Δ
• Names of binary predicates (properties/roles) to subsets of
Δ £ Δ

• And so on for higher arity predicates (if any)

• RDF has “Non-standard” semantics in order to deal with this
• Semantics given by RDF Model Theory (MT)
• In RDF MT, an interpretation I of a vocabulary V consists of:

– IR, a non-empty set of resources (corresponds to Δ)
– IS, a mapping from V into IR (corresponds to ·I)
– IP, a distinguished subset of IR (the properties)

• A vocabulary element v 2 V is a property iff IS(v) 2 IP
– IEXT, a mapping from IP into the powerset of IR£IR

• I.e., property elements mapped to subsets of IR£IR
– IL, a mapping from typed literals into IR

RDF Semantics

• •

• •13

Example RDF Simple Interpretation

• RDF Imposes semantic conditions on interpretations, e.g.:
– x is in IP if and only if <x, IS(rdf:Property)> is in IEXT(I(rdf:type))

• All RDF interpretations must satisfy certain axiomatic triples,
e.g.:
– rdf:type rdf:type rdf:Property
– rdf:subject rdf:type rdf:Property
– rdf:predicate rdf:type rdf:Property
– rdf:object rdf:type rdf:Property
– rdf:first rdf:type rdf:Property
– rdf:rest rdf:type rdf:Property
– rdf:value rdf:type rdf:Property
– …

RDF Semantic Conditions

• •

• •14

Example RDF Interpretation

• RDFS simply adds semantic conditions and axiomatic triples
that give meaning to schema vocabulary

• Class interpretation ICEXT simply induced by rdf:type, i.e.:
– x is in ICEXT(y) if and only if <x,y> is in IEXT(IS(rdf:type))

• Other semantic conditions include:
– If <x,y> is in IEXT(IS(rdfs:domain)) and <u,v> is in IEXT(x) then u

is in ICEXT(y)
– If <x,y> is in IEXT(IS(rdfs:subClassOf)) then x and y are in IC and

ICEXT(x) is a subset of ICEXT(y)
– IEXT(IS(rdfs:subClassOf)) is transitive and reflexive on IC

• Axiomatic triples include:
– rdf:type rdfs:domain rdfs:Resource
– rdfs:domain rdfs:domain rdf:Property

RDFS Semantics

• •

• •15

RDFS Interpretation Example
• If RDFS graph includes triples

<Species,type,Class>
<Lion,type,Species>
<Leo,type,Lion>
<Lion,subClassOf,Mamal>
<Mamal,subClassOf,Animal>

• Interpretation conditions imply existence of triples
<Lion,subClassOf,Animal>
<Leo,type,Mamal>
<Leo,type,Animal>

…

Problems with RDFS
• RDFS too weak to describe resources in sufficient detail

– No localised range and domain constraints
• Can’t say that the range of hasChild is person when

applied to persons and elephant when applied to elephants
– No existence/cardinality constraints

• Can’t say that all instances of person have a mother that is
also a person, or that persons have exactly 2 parents

– No transitive, inverse or symmetrical properties
• Can’t say that isPartOf is a transitive property, that hasPart

is the inverse of isPartOf or that touches is symmetrical
– …

• Difficult to provide reasoning support
– No “native” reasoners for non-standard semantics
– May be possible to reason via FO axiomatisation

• •

• •16

Web Ontology Language Requirements

Desirable features identified for Web Ontology Language:

• Extends existing Web standards
– Such as XML, RDF, RDFS

• Easy to understand and use
– Should be based on familiar KR idioms

• Formally specified
• Of “adequate” expressive power
• Possible to provide automated reasoning support

From RDF to OWL
• Two languages developed to satisfy above requirements

– OIL: developed by group of (largely) European researchers (several
from EU OntoKnowledge project)

– DAML-ONT: developed by group of (largely) US researchers (in
DARPA DAML programme)

• Efforts merged to produce DAML+OIL
– Development was carried out by “Joint EU/US Committee on Agent

Markup Languages”
– Extends (“DL subset” of) RDF

• DAML+OIL submitted to W3C as basis for standardisation
– Web-Ontology (WebOnt) Working Group formed
– WebOnt group developed OWL language based on DAML+OIL
– OWL language now a W3C Recommendation (i.e., a standard like

HTML and XML)

• •

• •17

OWL Language
• Three species of OWL

– OWL full is union of OWL syntax and RDF
– OWL DL restricted to FOL fragment (¼ DAML+OIL)
– OWL Lite is “easier to implement” subset of OWL DL

• Semantic layering
– OWL DL ¼ OWL full within DL fragment
– DL semantics officially definitive

• OWL DL based on SHIQ Description Logic
– In fact it is equivalent to SHOIN(Dn) DL

• OWL DL Benefits from many years of DL research
– Well defined semantics
– Formal properties well understood (complexity, decidability)
– Known reasoning algorithms
– Implemented systems (highly optimised)

(In)famous “Layer Cake”

≈ Data Exchange

≈ Semantics+reasoning

≈ Relational Data
?

?

???

???

???

• Relationship between layers is not clear
• OWL DL extends “DL subset” of RDF

