The Semantic Web: Ontologies and OWL

Ian Horrocks and Alan Rector

Introduction to the Semantic Web

History of the Semantic Web

- Web was "invented" by Tim Berners-Lee (amongst others), a physicist working at CERN
- TBL’s original vision of the Web was much more ambitious than the reality of the existing (syntactic) Web:
 "... a goal of the Web was that, if the interaction between person and hypertext could be so intuitive that the machine-readable information space gave an accurate representation of the state of people’s thoughts, interactions, and work patterns, then machine analysis could become a very powerful management tool, seeing patterns in our work and facilitating our working together through the typical problems which beset the management of large organizations.
- TBL (and others) have since been working towards realising this vision, which has become known as the Semantic Web
 - E.g., article in May 2001 issue of Scientific American...

Scientific American, May 2001:

Beware of the Hype

- Hype seems to suggest that Semantic Web means: "semantics + web = AI"
 - "A new form of Web content that is meaningful to computers will unleash a revolution of new abilities"
- More realistic to think of it as meaning: "semantics + web + AI = more useful web"
 - Realising the complete “vision” is too hard for now (probably)
 - But we can make a start by adding semantic annotation to web resources

Images from Christine Thompson and David Booth

Where we are Today: the Syntactic Web

[Hendler & Miller 02]
The Syntactic Web is...

- A hypermedia, a digital library
 - A library of documents called (web pages) interconnected by a
 hypermedia of links
- A database, an application platform
 - A common portal to applications accessible through web pages, and
 presenting their results as web pages
- A platform for multimedia
 - BBC Radio 4 anywhere in the world! Terminator 3 trailers!
- A naming scheme
 - Unique identity for those documents

A place where computers do the presentation (easy) and people do the linking and interpreting (hard).

Why not get computers to do more of the hard work?

Hard Work using the Syntactic Web...

Find images of Peter Patel-Schneider, Frank van Harmelen and Alan Rector...

Impossible (?) using the Syntactic Web...

- Complex queries involving background knowledge
 - Find information about "animals that use sonar but are not either bats or dolphins"; e.g., Barn Owl
- Locating information in databases
 - Travel enquiries
 - Prices of goods
 - Results of human genome experiments
- Finding and using web services
 - Visualise surface interactions between two proteins
- Delegating complex tasks to web "agents"
 - Book me a holiday next weekend somewhere warm, not too far away, and where they speak French or English

What is the Problem?

- Consider a typical web page:
 - Markup consists of:
 - rendering information (e.g., font size and colour)
 - Hyper-links to related content
 - Semantic content is accessible to humans but not (easily) to computers...

What information can we see...

WWW2002
The eleventh international world wide web conference
Sheraton waikiki hotel
Honolulu, hawaii, USA
7-11 may 2002
1 location 5 days learn interact
Registered participants coming from
australia, canada, chile denmark, france, germany, ghana, hong kong, india, ireland, italy, japan, malta, new zealand, the netherlands, norway, singapore, switzerland, the united kingdom, the united states, vietnam, zaire
Register now
On the 7th May Honolulu will provide the backdrop of the eleventh international world wide web conference. This prestigious event...
Speakers confirmed
Tim berners-lee
Tim is the well known inventor of the Web, ...
Ian Foster
Ian is the pioneer of the Grid, the next generation internet ...

What information can a machine see...
Solution: XML markup with “meaningful” tags?

But What About...

Need to Add “Semantics”

Machine sees...

Ontology: Origins and History

Ontology in Linguistics

• External agreement on meaning of annotations
 – E.g., Dublin Core
 – Agree on the meaning of a set of annotation tags
 – Problems with this approach
 – Inflexible
 – Limited number of things can be expressed
• Use Ontologies to specify meaning of annotations
 – Ontologies provide a vocabulary of terms
 – New terms can be formed by combining existing ones
 – Meaning (semantics) of such terms is formally specified
 – Can also specify relationships between terms in multiple ontologies

Ontology in Philosophy

a philosophical discipline—a branch of philosophy that deals with the nature and the organisation of reality

• Science of Being (Aristotle, Metaphysics, IV, 1)
• Tries to answer the questions:
 What characterizes being?
 Eventually, what is being?

Ontology: Origins and History

Ontology in Linguistics

Concept

Form

Referent

“Tank”

[Ogden, Richards, 1923]
An ontology is an engineering artifact: – It is constituted by a specific vocabulary used to describe a certain reality, plus – a set of explicit assumptions regarding the intended meaning of the vocabulary.

Thus, an ontology describes a formal specification of a certain domain: – Shared understanding of a domain of interest – Formal and machine manipulable model of a domain of interest

“An explicit specification of a conceptualisation” [Gruber93]

Ontologies typically have two distinct components:

• Names for important concepts in the domain
 – Elephant is a concept whose members are a kind of animal
 – Herbivore is a concept whose members are exactly those animals who eat only plants or parts of plants
 – Adult_Elephant is a concept whose members are exactly those elephants whose age is greater than 20 years

• Background knowledge/constraints on the domain
 – Adult_Elephants weigh at least 2,000 kg
 – All Elephants are either African_Elephants or Indian_Elephants
 – No individual can be both a Herbivore and a Carnivore

A Semantic Web — First Steps

Make web resources more accessible to automated processes

• Extend existing rendering markup with semantic markup
 – Metadata annotations that describe content/function of web accessible resources

• Use Ontologies to provide vocabulary for annotations
 – “Formal specification” is accessible to machines

• A prerequisite is a standard web ontology language
 – Need to agree common syntax before we can share semantics
 – Syntactic web based on standards such as HTTP and HTML

Ontology Design and Deployment

• Given key role of ontologies in the Semantic Web, it will be essential to provide tools and services to help users:
 – Design and maintain high quality ontologies, e.g.:
 • Meaningful — all named classes can have instances
 • Correct — captured intuitions of domain experts
 • Minimally redundant — no unintended synonyms
 • Richly axiomatised — (sufficiently) detailed descriptions
 – Store (large numbers) of instances of ontology classes, e.g.:
 • Annotations from web pages
 – Answer queries over ontology classes and instances, e.g.:
 • Find more general/specific classes
 • Retrieve annotations/pages matching a given description
 – Integrate and align multiple ontologies