


Conceptual design & Data model requirements Data model requirements Conceptual design Expressive Complete Simple understanding of . Minimal database structure, small number of basic concepts that are distinct semantics, constraints, relationships etc and non-overlapping in meaning DBMS independent Diagrammatic Stable description Formal Database users and • accurate & unambiguous application users views; CONFLICTING REQUIREMENTS aids their understanding Communication with

Transaction Design

- Known transactions (applications) that will run on the
- Database schema must include all information required by transactions
- Relative importance of transactions and expected rates of invocation important for performance tuning

Identify input/output & functional behaviour: 3 categories

- Retrieval
 - display/reports insert new data/modify old Update
- Mixed
- Transactions can be used to encapsulate integrity constraints

Transaction Design

- * High level process specification technique data flow diagrams, process modelling etc
- Detailed design using programming techniques for loops, if statements etc
- Detailed design using set database operations
- * Eight basic operations for updates on EER schema
 - insert entity, modify, delete entity
 - · add, modify, remove relationship
 - · add and remove from class
 - add and remove class

Transaction environment Pre-defined canned transactions A free-for-all using SQL directly Chiefly On-Line Transaction Processing (OLTP) Chiefly Management Information System (MIS) Multi-user or single-user number of concurrent users—peaks, worst case,

* number of concurrent users—peaks, worst case
and average
 potential conflicts—locking, timestamps
 distributed transactions

0 ,
 as updates made in transactions
 batch run transaction

Integrity Checks

	ON-LINE	
DECISION SUPPOR	TRANSACTION PROCESSING	
• Inquiry & Analysis	Real time Transactions	
Retrieval Intensive	Update Intensive	
Ad Hoc Queries	Pre-Defined Transactions	
Unpredictable Que Complexity	ery Transaction Throughput	
Complexity	Data Integrity	
	High Availability	

Who is Using the Database?

- Users & Ease of Use
 - Who is the target enduser for queries and/or update transactions
- User Interfaces
 - graphical
 - forms-basedSQL
 - reports generated
 - menu-based
- Task analysis
- Work flows
- Views

Interfaces

- people
- software
- other databases
- hardware
- organisational processes

Housekeeping

- Backup & Archiving
 - * on-line or off-line backups
 - * size of backups
 - * incremental vs dump
 - archiving strategy
- Security
 - passwords
 - permissions
 - views

Operational Considerations

Scope

- complete flexibility with 'bells and whistles'
- kernel activities

Model choice

 hierarchical / network / relational / object-oriented /object-relational

Software/Hardware

- Which database management system ?
- Configuration: e.g Unix server and PC front-ends?

Choice of DBMS

Costs

- Software acquisition cost
- 2. Maintenance cost
- 3. Hardware acquisition cost
- 4. Database creation & conversion cost
- 5. Personnel cost
- 6. Training cost
- 7. Operating costs

- Data model depends on:
 - The structure and use of the data
 - Familiarity of the system
 - Available vendor services
 - communication software
 - data entry software
 - design and monitoring tools etc

Storage: Size and Volatility of data

- number of records (tuples)
- · record (tuple) size
- growth potential
- volatility (growth/shrinkage)
- temporary space requirements

create table year
(yearno number(1) primary key,
yeartutorid number(4), yeartut_uk unique exceptions into bad_tutors using index not null constraint tut_fk foreign key (yeartutorid) references staff(staffid)) tablespace cags_course storage (initial 6144 next **6144** minextents 1 maxextents 5 pctincrease 5

pctfree 20);

Performance

- Query Profile
 - frequency of certain queries
 - hit rate on relations
 - · certain relations used together
 - · selection attributes
- Update Profile
 - · dynamic or static
 - hit rate of certain updates
 - · predictable-pre-fetch strategies

APPLICATION SPECIFIC must know about queries, transactions & applications

- analysing DB queries and transactions
- analysing expected frequency of invocation of queries and transactions
- analysing time constraints of queries and transactions
- analysing expected frequency of update operations

Performance Measures

- * Response time: how long will a query/update take?
 - on average
 - at peak times: worst case
- Transaction throughput: how many transactions can be processed per second/millisecond
 - on average
 - at peak times: worst case
- * How long will a report on the whole database take?
- Data take-on
- Analytical & experimental approaches

Benchmarks

- 1. Industry standard
 - external view of product:
 - samples performance on specific (simple) application;
 - · meant for comparison across vendors
- 2. Vendor
 - identifying performance improvements
 - · evolve with product
 - guide to development efforts & sales support
- 3. Customer-application
 - for important performance critical applications
 - vendors provided with benchmark by customer
 - · high cost for customer
 - often rely on industry-standard measure

Industry Standard Benchmarks

"significant disk input/output, moderate system and application execution time, and transaction integrity"

The Transaction Processing Performance Council (TPC)

- Debit/Credit Banking Application Performance Metrics:
- Throughput transactions per second (tps)
- Response time of transaction (transaction elapse time)
 Cost metric \$/tps
- OLTP multiple on-line terminal sessions—transaction arrival distribution. Wait time between requests is 'think time'

- "a wide range of functions. provided over small to large databases"
- Not update-intensive
- · Ad hoc queries
- Flexibility of query specification

Wisconsin

Designed to produce predictable results

Performance Metrics:

- · Response time of query (query elapse time)
- CPU & I/O utilisation
- Set Query
- average query throughput per minute & cost metric