L3

i ¥

v
L
% ti'-'-

-+ Normalisation Example

CS2312

¥ Normalisation Example

i ¥

+ BEER_DATABASE

v
|
R

| BN |

hi Additional Notes: Warehouses are shared by breweries.

Each beer is unigue to the brewer. Each brewery is based in a city.

? Minimal Sets of Functional Dependencies

A set of functional dependencies F is minimal if:

1. Every dependency F has a single determined attribute
A

2. We cannot remove any dependency from F and still
L have a set of dependencies equivalent to F

3. We cannot replace and dependency X —» A in F with a
dependency A X, where A [0 X and still have a set of
dependencies that is equivalent to F

I.e. a canonical form with no redundancies
(beer, brewery, strength, city, region, warehouse, quantity)
beer— brewery

beer - strength

brewery - city

city - region

beer, warehouse, - quantity

.i#q:

-
»*

* * B

Relational Synthesis Algorithm into 3NF:
?(beer, brewery, strength, city, region, {warehouse,

gquantity})
lrl - setD:={R}; P. 426, P. 431
1. Find a minimal cover G for F
1- 1 2. For each determinant X of a functional dependency that appears in G
1 i create a relation schema { X 0 A1, X 0 A2...X 0 Am}in D
i ¥ where

X 5 Al X - Al, ... X - Alm are the only dependencies in G
with X as the determinant;
. Place any remaining (unplaced) attributes in a single relation to ensure
attribute preservation property so we don't lose anything.

. If none of the relations contains a key of R, create one more relation that
contains attributes that form a key for R.

w

i

» beer- brewery (beer, brewery, strength)
h}, * Dbeer- strength

brewery - city (brewery, city)

» City — region (city, region)

» beer, warehouse, - quantity (beer, warehouse, quantity)

Step-wise normalisation:
(beer, brewery, strength, city, region,
{warehouse, quantity})

beer- brewery, strength partial dependency

brewery - city transitive dependency
» City — region transitive dependency
» beer, warehouse, — quantity repeating group

, City, region, {warehouse, quantity})

(beer, warehouse, quantity)
beer, warehouse, - quantity

l (beer, brewery, strength, city,
* region)
beer - brewery, strength
transitive dependency brewery - city
transitive dependency city — region
(beer, brewery, strength, city, region)
» beer- brewery, strength
! » brewery - city transitive dependency
1 * city - region transitive dependency
51 * 2NF no partial dependencies

3NF/BCNF no transitive dependencies
(beer, brewery, strength, city, region)

Take the most indirect
(city, region) transitive dependencies

city — region (beer, brewery, strength, city)
beer - brewery, strength
brewery - city

(brewery, citV\

brewery - city
(beer, brewery, strength)
beer - brewery, strength

.i#q:

Using BNCF decomposition algorithm:
(beer, brewery, strength, city, region, warehouse,
quantity)

» beer - brewery, strength partial dependency
» brewery - city transitive dependency
* city - region transitive dependency

» beer, warehouse, - quantity

Directly to BCNF

take a violating dependency and form a relation from it.
First choose a direct transitive dependency and its closure

(beer, brewery, strength, city, region, warehouse,
guantity)

brewery - cit

(brewery, city, region)

brewery - city

city — region transitive dependency
(beer, brewery, strength, warehouse, quantity)
beer - brewery, strength partial dependency
beer, warehouse, - gquantity

Using BNCF decomposition algorithm:
(beer, brewery, strength, city, region, warehouse, quantity)

* beer - brewery, strength partial dependency

* brewery - city transitive dependency
* City — region transitive dependency
#» beer, warehouse, — quantity

take a violating dependency and form a relation from it.
. First the partial dependency and its closure

(beer, brewery, strength, city, region, warehouse, quantity)
beer - brewery, strength

(beer, brewery, strength, city, regi
beer - brewery, strength
brewery - city transitive dependency
city — region transitive dependency
normalise as before...
(beer, warehouse, quantity)
beer, warehouse, - quantity

