
Reasoning with Expressive Description
Logics: Theory and Practice

Ian Horrocks

horrocks@cs.man.ac.uk

University of Manchester

Manchester, UK

Reasoning with Expressive DLs – p.1/39

Talk Outline

Introduction to Description Logics (DLs)

Reasoning techniques

Implementing DL systems

DL applications

Including demos (time permitting)

Reasoning with Expressive DLs – p.2/39

Talk Outline

Introduction to Description Logics (DLs)

Reasoning techniques

Implementing DL systems

DL applications

Including demos (time permitting)

Reasoning with Expressive DLs – p.2/39

Talk Outline

Introduction to Description Logics (DLs)

Reasoning techniques

Implementing DL systems

DL applications

Including demos (time permitting)

Reasoning with Expressive DLs – p.2/39

Talk Outline

Introduction to Description Logics (DLs)

Reasoning techniques

Implementing DL systems

DL applications

Including demos (time permitting)

Reasoning with Expressive DLs – p.2/39

Talk Outline

Introduction to Description Logics (DLs)

Reasoning techniques

Implementing DL systems

DL applications

Including demos (time permitting)

Reasoning with Expressive DLs – p.2/39

Talk Outline

Introduction to Description Logics (DLs)

Reasoning techniques

Implementing DL systems

DL applications

Including demos (time permitting)

Reasoning with Expressive DLs – p.2/39

Introduction to DLs

Reasoning with Expressive DLs – p.3/39

What are Description Logics?

A family of logic based Knowledge Representation formalisms

☞ Based on concepts (classes) and roles

• Concepts (classes) are interpreted as sets of objects

• Roles are interpreted as binary relations on objects

☞ Descendants of semantic networks, frame based systems
and KL-ONE

☞ Decidable fragments of FOL

• Many DLs are fragments of L2, C2 or the Guarded
Fragment

☞ Closely related to propositional modal logics

☞ Also known as terminological logics, concept languages, etc.

☞ Key features of DLs are

• Well defined semantics (they are logics)

• Provision of inference services

Reasoning with Expressive DLs – p.4/39

What are Description Logics?

A family of logic based Knowledge Representation formalisms

☞ Based on concepts (classes) and roles

• Concepts (classes) are interpreted as sets of objects

• Roles are interpreted as binary relations on objects

☞ Descendants of semantic networks, frame based systems
and KL-ONE

☞ Decidable fragments of FOL

• Many DLs are fragments of L2, C2 or the Guarded
Fragment

☞ Closely related to propositional modal logics

☞ Also known as terminological logics, concept languages, etc.

☞ Key features of DLs are

• Well defined semantics (they are logics)

• Provision of inference services

Reasoning with Expressive DLs – p.4/39

What are Description Logics?

A family of logic based Knowledge Representation formalisms

☞ Based on concepts (classes) and roles

• Concepts (classes) are interpreted as sets of objects

• Roles are interpreted as binary relations on objects

☞ Descendants of semantic networks, frame based systems
and KL-ONE

☞ Decidable fragments of FOL

• Many DLs are fragments of L2, C2 or the Guarded
Fragment

☞ Closely related to propositional modal logics

☞ Also known as terminological logics, concept languages, etc.

☞ Key features of DLs are

• Well defined semantics (they are logics)

• Provision of inference services

Reasoning with Expressive DLs – p.4/39

What are Description Logics?

A family of logic based Knowledge Representation formalisms

☞ Based on concepts (classes) and roles

• Concepts (classes) are interpreted as sets of objects

• Roles are interpreted as binary relations on objects

☞ Descendants of semantic networks, frame based systems
and KL-ONE

☞ Decidable fragments of FOL

• Many DLs are fragments of L2, C2 or the Guarded
Fragment

☞ Closely related to propositional modal logics

☞ Also known as terminological logics, concept languages, etc.

☞ Key features of DLs are

• Well defined semantics (they are logics)

• Provision of inference services

Reasoning with Expressive DLs – p.4/39

What are Description Logics?

A family of logic based Knowledge Representation formalisms

☞ Based on concepts (classes) and roles

• Concepts (classes) are interpreted as sets of objects

• Roles are interpreted as binary relations on objects

☞ Descendants of semantic networks, frame based systems
and KL-ONE

☞ Decidable fragments of FOL

• Many DLs are fragments of L2, C2 or the Guarded
Fragment

☞ Closely related to propositional modal logics

☞ Also known as terminological logics, concept languages, etc.

☞ Key features of DLs are

• Well defined semantics (they are logics)

• Provision of inference services

Reasoning with Expressive DLs – p.4/39

What are Description Logics?

A family of logic based Knowledge Representation formalisms

☞ Based on concepts (classes) and roles

• Concepts (classes) are interpreted as sets of objects

• Roles are interpreted as binary relations on objects

☞ Descendants of semantic networks, frame based systems
and KL-ONE

☞ Decidable fragments of FOL

• Many DLs are fragments of L2, C2 or the Guarded
Fragment

☞ Closely related to propositional modal logics

☞ Also known as terminological logics, concept languages, etc.

☞ Key features of DLs are

• Well defined semantics (they are logics)

• Provision of inference services

Reasoning with Expressive DLs – p.4/39

What are Description Logics?

A family of logic based Knowledge Representation formalisms

☞ Based on concepts (classes) and roles

• Concepts (classes) are interpreted as sets of objects

• Roles are interpreted as binary relations on objects

☞ Descendants of semantic networks, frame based systems
and KL-ONE

☞ Decidable fragments of FOL

• Many DLs are fragments of L2, C2 or the Guarded
Fragment

☞ Closely related to propositional modal logics

☞ Also known as terminological logics, concept languages, etc.

☞ Key features of DLs are

• Well defined semantics (they are logics)

• Provision of inference services

Reasoning with Expressive DLs – p.4/39

What are Description Logics?

A family of logic based Knowledge Representation formalisms

☞ Based on concepts (classes) and roles

• Concepts (classes) are interpreted as sets of objects

• Roles are interpreted as binary relations on objects

☞ Descendants of semantic networks, frame based systems
and KL-ONE

☞ Decidable fragments of FOL

• Many DLs are fragments of L2, C2 or the Guarded
Fragment

☞ Closely related to propositional modal logics

☞ Also known as terminological logics, concept languages, etc.

☞ Key features of DLs are

• Well defined semantics (they are logics)

• Provision of inference services

Reasoning with Expressive DLs – p.4/39

DL Applications

DLs have may applications including:

Terminological KR (including Ontologies)

☞ Medical terminology/controlled vocabulary (Galen)

☞ Bio-ontologies (Tambis, GO)

☞ Web based ontology languages (OIL, DAML+OIL)

Configuration

☞ Classic system used to configure telecom equipment

Database schema and query reasoning

☞ Schema design and query optimisation

☞ Interoperability and federation

☞ Query containment (w.r.t. schema)

Reasoning with Expressive DLs – p.5/39

DL Applications

DLs have may applications including:

Terminological KR (including Ontologies)

☞ Medical terminology/controlled vocabulary (Galen)

☞ Bio-ontologies (Tambis, GO)

☞ Web based ontology languages (OIL, DAML+OIL)

Configuration

☞ Classic system used to configure telecom equipment

Database schema and query reasoning

☞ Schema design and query optimisation

☞ Interoperability and federation

☞ Query containment (w.r.t. schema)

Reasoning with Expressive DLs – p.5/39

DL Applications

DLs have may applications including:

Terminological KR (including Ontologies)

☞ Medical terminology/controlled vocabulary (Galen)

☞ Bio-ontologies (Tambis, GO)

☞ Web based ontology languages (OIL, DAML+OIL)

Configuration

☞ Classic system used to configure telecom equipment

Database schema and query reasoning

☞ Schema design and query optimisation

☞ Interoperability and federation

☞ Query containment (w.r.t. schema)

Reasoning with Expressive DLs – p.5/39

DL Applications

DLs have may applications including:

Terminological KR (including Ontologies)

☞ Medical terminology/controlled vocabulary (Galen)

☞ Bio-ontologies (Tambis, GO)

☞ Web based ontology languages (OIL, DAML+OIL)

Configuration

☞ Classic system used to configure telecom equipment

Database schema and query reasoning

☞ Schema design and query optimisation

☞ Interoperability and federation

☞ Query containment (w.r.t. schema)

Reasoning with Expressive DLs – p.5/39

DL System Architecture

Tbox (schema)

Abox (data)

Knowledge Base

In
fe

re
n

ce
 S

ys
te

m

In
te

rf
ac

e

Man
.
= Human u Male

Happy-Father
.
= Man u ∃has-child.Female u . . .

...

...

John : Happy-Father

〈John, Mary〉 : has-child

Reasoning with Expressive DLs – p.6/39

DL Constructors

Particular DLs characterised by set of constructors provided for
building complex concepts and roles from simpler ones

☞ Usually include at least:

• Conjunction (u), disjunction (t), negation (¬)

• Restricted (guarded) forms of quantification (∃, ∀)

☞ This basic DL is known as ALC

For example, concept Happy Father in ALC:

Man u ∃has-child.Male
u ∃has-child.Female
u ∀has-child.(Doctor t Lawyer)

Reasoning with Expressive DLs – p.7/39

DL Constructors

Particular DLs characterised by set of constructors provided for
building complex concepts and roles from simpler ones

☞ Usually include at least:

• Conjunction (u), disjunction (t), negation (¬)

• Restricted (guarded) forms of quantification (∃, ∀)

☞ This basic DL is known as ALC

For example, concept Happy Father in ALC:

Man u ∃has-child.Male
u ∃has-child.Female
u ∀has-child.(Doctor t Lawyer)

Reasoning with Expressive DLs – p.7/39

DL Constructors

Particular DLs characterised by set of constructors provided for
building complex concepts and roles from simpler ones

☞ Usually include at least:

• Conjunction (u), disjunction (t), negation (¬)

• Restricted (guarded) forms of quantification (∃, ∀)

☞ This basic DL is known as ALC

For example, concept Happy Father in ALC:

Man u ∃has-child.Male
u ∃has-child.Female
u ∀has-child.(Doctor t Lawyer)

Reasoning with Expressive DLs – p.7/39

DL Constructors

Particular DLs characterised by set of constructors provided for
building complex concepts and roles from simpler ones

☞ Usually include at least:

• Conjunction (u), disjunction (t), negation (¬)

• Restricted (guarded) forms of quantification (∃, ∀)

☞ This basic DL is known as ALC

For example, concept Happy Father in ALC:

Man u ∃has-child.Male
u ∃has-child.Female
u ∀has-child.(Doctor t Lawyer)

Reasoning with Expressive DLs – p.7/39

DL Syntax and Semantics

Semantics given by interpretation I = (∆I , ·I)

Constructor Syntax Example Semantics

atomic concept A Human AI ⊆ ∆I

atomic role R has-child RI ⊆ ∆I × ∆I

and for C, D concepts and R a role name

conjunction C u D Human u Male CI ∩ DI

disjunction C t D Doctor t Lawyer CI ∪ DI

negation ¬C ¬Male ∆I \ C

exists restr. ∃R.C ∃has-child.Male {x | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}

value restr. ∀R.C ∀has-child.Doctor {x | ∀y.〈x, y〉 ∈ RI =⇒ y ∈ CI}

Reasoning with Expressive DLs – p.8/39

DL Syntax and Semantics

Semantics given by interpretation I = (∆I , ·I)

Constructor Syntax Example Semantics

atomic concept A Human AI ⊆ ∆I

atomic role R has-child RI ⊆ ∆I × ∆I

and for C, D concepts and R a role name

conjunction C u D Human u Male CI ∩ DI

disjunction C t D Doctor t Lawyer CI ∪ DI

negation ¬C ¬Male ∆I \ C

exists restr. ∃R.C ∃has-child.Male {x | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}

value restr. ∀R.C ∀has-child.Doctor {x | ∀y.〈x, y〉 ∈ RI =⇒ y ∈ CI}

Reasoning with Expressive DLs – p.8/39

Other DL Constructors

Many different DLs/DL constructors have been investigated, e.g.

Constructor Syntax Example Semantics

number restr. >nR >3 has-child {x | |{y.〈x, y〉 ∈ RI}| > n}

6nR 61 has-mother {x | |{y.〈x, y〉 ∈ RI}| 6 n}

inverse role R− has-child− {〈x, y〉 | 〈y, x〉 ∈ RI}

trans. role R∗ has-child∗ (RI)∗

concrete domain f1, . . . , fn.P earns spends < {x | P (fI

1
, . . . , fI

n
)}

...

Reasoning with Expressive DLs – p.9/39

Other DL Constructors

Many different DLs/DL constructors have been investigated, e.g.

Constructor Syntax Example Semantics

number restr. >nR >3 has-child {x | |{y.〈x, y〉 ∈ RI}| > n}

6nR 61 has-mother {x | |{y.〈x, y〉 ∈ RI}| 6 n}

inverse role R− has-child− {〈x, y〉 | 〈y, x〉 ∈ RI}

trans. role R∗ has-child∗ (RI)∗

concrete domain f1, . . . , fn.P earns spends < {x | P (fI

1
, . . . , fI

n
)}

...

Reasoning with Expressive DLs – p.9/39

DL Knowledge Base (Tbox)

Terminological part (Tbox) is set of axioms describing structure
of domain

Definition axioms introduce macros/names for concepts

A
.
= C, A v C

Father .
= Man u ∃has-child.Human

Human v Animal u Biped

Inclusion (GCI) axioms assert subsumption relations

C v D (note C
.
= D equivalent to C v D and D v C)

∃has-degree.Masters v ∃has-degree.Bachelors

An interpretation I satisfies

C
.
= D iff CI = DI C v D iff CI ⊆ DI

A Tbox T iff it satisfies every axiom in T (I |= T)

Reasoning with Expressive DLs – p.10/39

DL Knowledge Base (Tbox)

Terminological part (Tbox) is set of axioms describing structure
of domain

Definition axioms introduce macros/names for concepts

A
.
= C, A v C

Father .
= Man u ∃has-child.Human

Human v Animal u Biped

Inclusion (GCI) axioms assert subsumption relations

C v D (note C
.
= D equivalent to C v D and D v C)

∃has-degree.Masters v ∃has-degree.Bachelors

An interpretation I satisfies

C
.
= D iff CI = DI C v D iff CI ⊆ DI

A Tbox T iff it satisfies every axiom in T (I |= T)

Reasoning with Expressive DLs – p.10/39

DL Knowledge Base (Tbox)

Terminological part (Tbox) is set of axioms describing structure
of domain

Definition axioms introduce macros/names for concepts

A
.
= C, A v C

Father .
= Man u ∃has-child.Human

Human v Animal u Biped

Inclusion (GCI) axioms assert subsumption relations

C v D (note C
.
= D equivalent to C v D and D v C)

∃has-degree.Masters v ∃has-degree.Bachelors

An interpretation I satisfies

C
.
= D iff CI = DI C v D iff CI ⊆ DI

A Tbox T iff it satisfies every axiom in T (I |= T)

Reasoning with Expressive DLs – p.10/39

DL Knowledge Base (Tbox)

Terminological part (Tbox) is set of axioms describing structure
of domain

Definition axioms introduce macros/names for concepts

A
.
= C, A v C

Father .
= Man u ∃has-child.Human

Human v Animal u Biped

Inclusion (GCI) axioms assert subsumption relations

C v D (note C
.
= D equivalent to C v D and D v C)

∃has-degree.Masters v ∃has-degree.Bachelors

An interpretation I satisfies

C
.
= D iff CI = DI C v D iff CI ⊆ DI

A Tbox T iff it satisfies every axiom in T (I |= T)

Reasoning with Expressive DLs – p.10/39

DL Knowledge Base (Abox)

Assertional part (Abox) is set of axioms describing concrete
situation

Concept assertions

a : C

John : Man u ∃has-child.Female

Role assertions

〈a, b〉 : R

〈John, Mary〉 : has-child

An interpretation I satisfies

a : C iff aI ∈ CI 〈a, b〉 : R iff 〈aI , bI〉 ∈ RI

An Abox A iff it satisfies every axiom in A (I |= A)

A KB Σ = 〈T ,A〉 iff it satisfies both T and A (I |= Σ)

Reasoning with Expressive DLs – p.11/39

DL Knowledge Base (Abox)

Assertional part (Abox) is set of axioms describing concrete
situation

Concept assertions

a : C

John : Man u ∃has-child.Female

Role assertions

〈a, b〉 : R

〈John, Mary〉 : has-child

An interpretation I satisfies

a : C iff aI ∈ CI 〈a, b〉 : R iff 〈aI , bI〉 ∈ RI

An Abox A iff it satisfies every axiom in A (I |= A)

A KB Σ = 〈T ,A〉 iff it satisfies both T and A (I |= Σ)

Reasoning with Expressive DLs – p.11/39

DL Knowledge Base (Abox)

Assertional part (Abox) is set of axioms describing concrete
situation

Concept assertions

a : C

John : Man u ∃has-child.Female

Role assertions

〈a, b〉 : R

〈John, Mary〉 : has-child

An interpretation I satisfies

a : C iff aI ∈ CI 〈a, b〉 : R iff 〈aI , bI〉 ∈ RI

An Abox A iff it satisfies every axiom in A (I |= A)

A KB Σ = 〈T ,A〉 iff it satisfies both T and A (I |= Σ)

Reasoning with Expressive DLs – p.11/39

DL Knowledge Base (Abox)

Assertional part (Abox) is set of axioms describing concrete
situation

Concept assertions

a : C

John : Man u ∃has-child.Female

Role assertions

〈a, b〉 : R

〈John, Mary〉 : has-child

An interpretation I satisfies

a : C iff aI ∈ CI 〈a, b〉 : R iff 〈aI , bI〉 ∈ RI

An Abox A iff it satisfies every axiom in A (I |= A)

A KB Σ = 〈T ,A〉 iff it satisfies both T and A (I |= Σ)

Reasoning with Expressive DLs – p.11/39

Basic Inference Problems

Subsumption (structure knowledge, compute taxonomy)

C v D ? Is CI ⊆ DI in all interpretations?

Subsumption w.r.t. Tbox T

C vT D ? Is CI ⊆ DI in all models of T ?

Consistency

Is C consistent w.r.t. T ? Is there a model I of T s.t. CI 6= ∅?

KB Consistency

Is 〈T ,A〉 consistent? Is there a model I of 〈T ,A〉?

Problems are closely related:

C vT D iff C u ¬D is inconsistent w.r.t. T

C is consistent w.r.t. T iff C 6vT A u ¬A

Reasoning with Expressive DLs – p.12/39

Basic Inference Problems

Subsumption (structure knowledge, compute taxonomy)

C v D ? Is CI ⊆ DI in all interpretations?

Subsumption w.r.t. Tbox T

C vT D ? Is CI ⊆ DI in all models of T ?

Consistency

Is C consistent w.r.t. T ? Is there a model I of T s.t. CI 6= ∅?

KB Consistency

Is 〈T ,A〉 consistent? Is there a model I of 〈T ,A〉?

Problems are closely related:

C vT D iff C u ¬D is inconsistent w.r.t. T

C is consistent w.r.t. T iff C 6vT A u ¬A

Reasoning with Expressive DLs – p.12/39

Basic Inference Problems

Subsumption (structure knowledge, compute taxonomy)

C v D ? Is CI ⊆ DI in all interpretations?

Subsumption w.r.t. Tbox T

C vT D ? Is CI ⊆ DI in all models of T ?

Consistency

Is C consistent w.r.t. T ? Is there a model I of T s.t. CI 6= ∅?

KB Consistency

Is 〈T ,A〉 consistent? Is there a model I of 〈T ,A〉?

Problems are closely related:

C vT D iff C u ¬D is inconsistent w.r.t. T

C is consistent w.r.t. T iff C 6vT A u ¬A

Reasoning with Expressive DLs – p.12/39

Basic Inference Problems

Subsumption (structure knowledge, compute taxonomy)

C v D ? Is CI ⊆ DI in all interpretations?

Subsumption w.r.t. Tbox T

C vT D ? Is CI ⊆ DI in all models of T ?

Consistency

Is C consistent w.r.t. T ? Is there a model I of T s.t. CI 6= ∅?

KB Consistency

Is 〈T ,A〉 consistent? Is there a model I of 〈T ,A〉?

Problems are closely related:

C vT D iff C u ¬D is inconsistent w.r.t. T

C is consistent w.r.t. T iff C 6vT A u ¬A

Reasoning with Expressive DLs – p.12/39

Basic Inference Problems

Subsumption (structure knowledge, compute taxonomy)

C v D ? Is CI ⊆ DI in all interpretations?

Subsumption w.r.t. Tbox T

C vT D ? Is CI ⊆ DI in all models of T ?

Consistency

Is C consistent w.r.t. T ? Is there a model I of T s.t. CI 6= ∅?

KB Consistency

Is 〈T ,A〉 consistent? Is there a model I of 〈T ,A〉?

Problems are closely related:

C vT D iff C u ¬D is inconsistent w.r.t. T

C is consistent w.r.t. T iff C 6vT A u ¬A

Reasoning with Expressive DLs – p.12/39

Basic Inference Problems

Subsumption (structure knowledge, compute taxonomy)

C v D ? Is CI ⊆ DI in all interpretations?

Subsumption w.r.t. Tbox T

C vT D ? Is CI ⊆ DI in all models of T ?

Consistency

Is C consistent w.r.t. T ? Is there a model I of T s.t. CI 6= ∅?

KB Consistency

Is 〈T ,A〉 consistent? Is there a model I of 〈T ,A〉?

Problems are closely related:

C vT D iff C u ¬D is inconsistent w.r.t. T

C is consistent w.r.t. T iff C 6vT A u ¬A

Reasoning with Expressive DLs – p.12/39

Reasoning Techniques

Reasoning with Expressive DLs – p.13/39

Subsumption and Satisfiability

☞ Subsumption transformed into satisfiability

☞ Tableaux algorithm used to test satisfiability

• Try to build model of concept C

• Model represented by tree T

➙ Nodes in T correspond to individuals in model
➙ Nodes labeled with sets of subconcepts of C

➙ Edges labeled with role names in C

• Start from root node labeled {C}

• Apply expansion rules to node labels until
➙ Expansion completed (tree represents valid model)
➙ Contradictions prove there is no model

• Non-deterministic expansion −→ search (e.g., C t D)

• Blocking ensures termination (with expressive DLs)

Reasoning with Expressive DLs – p.14/39

Subsumption and Satisfiability

☞ Subsumption transformed into satisfiability

☞ Tableaux algorithm used to test satisfiability

• Try to build model of concept C

• Model represented by tree T

➙ Nodes in T correspond to individuals in model
➙ Nodes labeled with sets of subconcepts of C

➙ Edges labeled with role names in C

• Start from root node labeled {C}

• Apply expansion rules to node labels until
➙ Expansion completed (tree represents valid model)
➙ Contradictions prove there is no model

• Non-deterministic expansion −→ search (e.g., C t D)

• Blocking ensures termination (with expressive DLs)

Reasoning with Expressive DLs – p.14/39

Subsumption and Satisfiability

☞ Subsumption transformed into satisfiability

☞ Tableaux algorithm used to test satisfiability

• Try to build model of concept C

• Model represented by tree T

➙ Nodes in T correspond to individuals in model
➙ Nodes labeled with sets of subconcepts of C

➙ Edges labeled with role names in C

• Start from root node labeled {C}

• Apply expansion rules to node labels until
➙ Expansion completed (tree represents valid model)
➙ Contradictions prove there is no model

• Non-deterministic expansion −→ search (e.g., C t D)

• Blocking ensures termination (with expressive DLs)

Reasoning with Expressive DLs – p.14/39

Subsumption and Satisfiability

☞ Subsumption transformed into satisfiability

☞ Tableaux algorithm used to test satisfiability

• Try to build model of concept C

• Model represented by tree T

➙ Nodes in T correspond to individuals in model
➙ Nodes labeled with sets of subconcepts of C

➙ Edges labeled with role names in C

• Start from root node labeled {C}

• Apply expansion rules to node labels until
➙ Expansion completed (tree represents valid model)
➙ Contradictions prove there is no model

• Non-deterministic expansion −→ search (e.g., C t D)

• Blocking ensures termination (with expressive DLs)

Reasoning with Expressive DLs – p.14/39

Subsumption and Satisfiability

☞ Subsumption transformed into satisfiability

☞ Tableaux algorithm used to test satisfiability

• Try to build model of concept C

• Model represented by tree T

➙ Nodes in T correspond to individuals in model
➙ Nodes labeled with sets of subconcepts of C

➙ Edges labeled with role names in C

• Start from root node labeled {C}

• Apply expansion rules to node labels until
➙ Expansion completed (tree represents valid model)
➙ Contradictions prove there is no model

• Non-deterministic expansion −→ search (e.g., C t D)

• Blocking ensures termination (with expressive DLs)

Reasoning with Expressive DLs – p.14/39

Subsumption and Satisfiability

☞ Subsumption transformed into satisfiability

☞ Tableaux algorithm used to test satisfiability

• Try to build model of concept C

• Model represented by tree T

➙ Nodes in T correspond to individuals in model
➙ Nodes labeled with sets of subconcepts of C

➙ Edges labeled with role names in C

• Start from root node labeled {C}

• Apply expansion rules to node labels until
➙ Expansion completed (tree represents valid model)
➙ Contradictions prove there is no model

• Non-deterministic expansion −→ search (e.g., C t D)

• Blocking ensures termination (with expressive DLs)

Reasoning with Expressive DLs – p.14/39

Subsumption and Satisfiability

☞ Subsumption transformed into satisfiability

☞ Tableaux algorithm used to test satisfiability

• Try to build model of concept C

• Model represented by tree T

➙ Nodes in T correspond to individuals in model
➙ Nodes labeled with sets of subconcepts of C

➙ Edges labeled with role names in C

• Start from root node labeled {C}

• Apply expansion rules to node labels until
➙ Expansion completed (tree represents valid model)
➙ Contradictions prove there is no model

• Non-deterministic expansion −→ search (e.g., C t D)

• Blocking ensures termination (with expressive DLs)

Reasoning with Expressive DLs – p.14/39

Subsumption and Satisfiability

☞ Subsumption transformed into satisfiability

☞ Tableaux algorithm used to test satisfiability

• Try to build model of concept C

• Model represented by tree T

➙ Nodes in T correspond to individuals in model
➙ Nodes labeled with sets of subconcepts of C

➙ Edges labeled with role names in C

• Start from root node labeled {C}

• Apply expansion rules to node labels until
➙ Expansion completed (tree represents valid model)
➙ Contradictions prove there is no model

• Non-deterministic expansion −→ search (e.g., C t D)

• Blocking ensures termination (with expressive DLs)

Reasoning with Expressive DLs – p.14/39

Subsumption and Satisfiability

☞ Subsumption transformed into satisfiability

☞ Tableaux algorithm used to test satisfiability

• Try to build model of concept C

• Model represented by tree T

➙ Nodes in T correspond to individuals in model
➙ Nodes labeled with sets of subconcepts of C

➙ Edges labeled with role names in C

• Start from root node labeled {C}

• Apply expansion rules to node labels until
➙ Expansion completed (tree represents valid model)
➙ Contradictions prove there is no model

• Non-deterministic expansion −→ search (e.g., C t D)

• Blocking ensures termination (with expressive DLs)

Reasoning with Expressive DLs – p.14/39

Tableaux Expansion

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where
R is a transitive role

Reasoning with Expressive DLs – p.15/39

Tableaux Expansion

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where
R is a transitive role

w

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

Reasoning with Expressive DLs – p.15/39

Tableaux Expansion

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where
R is a transitive role

w

x

S

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

L(x) = {C, (¬C t ¬D)}

Reasoning with Expressive DLs – p.15/39

Tableaux Expansion

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where
R is a transitive role

w

x

S

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

L(x) = {C, (¬C t ¬D),¬C} clash

Reasoning with Expressive DLs – p.15/39

Tableaux Expansion

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where
R is a transitive role

w

xL(x) = {C, (¬C t ¬D),¬D}

S

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

Reasoning with Expressive DLs – p.15/39

Tableaux Expansion

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where
R is a transitive role

w

x y L(y) = {C,∃R.C,∀R.(∃R.C)}L(x) = {C, (¬C t ¬D),¬D}

RS

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

Reasoning with Expressive DLs – p.15/39

Tableaux Expansion

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where
R is a transitive role

w

x y L(y) = {C,∃R.C,∀R.(∃R.C)}L(x) = {C, (¬C t ¬D),¬D}

z L(z) = {C,∃R.C,∀R.(∃R.C)}

RS

R

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

blocked

Reasoning with Expressive DLs – p.15/39

Tableaux Expansion

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where
R is a transitive role

w

x y L(y) = {C,∃R.C,∀R.(∃R.C)}L(x) = {C, (¬C t ¬D),¬D}

z L(z) = {C,∃R.C,∀R.(∃R.C)}

RS

R

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

blocked

R

Reasoning with Expressive DLs – p.15/39

More Advanced Techniques

Satisfiability w.r.t. a Terminology

☞ For each GCI C v D ∈ T , add ¬C tD to every node label

More expressive DLs

☞ Basic technique can be extended to deal with
• Role inclusion axioms (role hierarchy)
• Number restrictions
• Inverse roles
• Concrete domains
• Aboxes
• etc.

☞ Extend expansion rules and use more sophisticated
blocking strategy

☞ Forest instead of Tree (for Aboxes)

Reasoning with Expressive DLs – p.16/39

More Advanced Techniques

Satisfiability w.r.t. a Terminology

☞ For each GCI C v D ∈ T , add ¬C tD to every node label

More expressive DLs

☞ Basic technique can be extended to deal with
• Role inclusion axioms (role hierarchy)
• Number restrictions
• Inverse roles
• Concrete domains
• Aboxes
• etc.

☞ Extend expansion rules and use more sophisticated
blocking strategy

☞ Forest instead of Tree (for Aboxes)

Reasoning with Expressive DLs – p.16/39

More Advanced Techniques

Satisfiability w.r.t. a Terminology

☞ For each GCI C v D ∈ T , add ¬C tD to every node label

More expressive DLs

☞ Basic technique can be extended to deal with
• Role inclusion axioms (role hierarchy)
• Number restrictions
• Inverse roles
• Concrete domains
• Aboxes
• etc.

☞ Extend expansion rules and use more sophisticated
blocking strategy

☞ Forest instead of Tree (for Aboxes)

Reasoning with Expressive DLs – p.16/39

More Advanced Techniques

Satisfiability w.r.t. a Terminology

☞ For each GCI C v D ∈ T , add ¬C tD to every node label

More expressive DLs

☞ Basic technique can be extended to deal with
• Role inclusion axioms (role hierarchy)
• Number restrictions
• Inverse roles
• Concrete domains
• Aboxes
• etc.

☞ Extend expansion rules and use more sophisticated
blocking strategy

☞ Forest instead of Tree (for Aboxes)

Reasoning with Expressive DLs – p.16/39

More Advanced Techniques

Satisfiability w.r.t. a Terminology

☞ For each GCI C v D ∈ T , add ¬C tD to every node label

More expressive DLs

☞ Basic technique can be extended to deal with
• Role inclusion axioms (role hierarchy)
• Number restrictions
• Inverse roles
• Concrete domains
• Aboxes
• etc.

☞ Extend expansion rules and use more sophisticated
blocking strategy

☞ Forest instead of Tree (for Aboxes)

Reasoning with Expressive DLs – p.16/39

More Advanced Techniques

Satisfiability w.r.t. a Terminology

☞ For each GCI C v D ∈ T , add ¬C tD to every node label

More expressive DLs

☞ Basic technique can be extended to deal with
• Role inclusion axioms (role hierarchy)
• Number restrictions
• Inverse roles
• Concrete domains
• Aboxes
• etc.

☞ Extend expansion rules and use more sophisticated
blocking strategy

☞ Forest instead of Tree (for Aboxes)

Reasoning with Expressive DLs – p.16/39

Implementing DL Systems

Reasoning with Expressive DLs – p.17/39

Naive Implementations

Problems include:

☞ Space usage

• Storage required for tableaux datastructures

• Rarely a serious problem in practice

☞ Time usage

• Search required due to non-deterministic expansion

• Serious problem in practice

• Mitigated by:
➙ Careful choice of algorithm
➙ Highly optimised implementation

Reasoning with Expressive DLs – p.18/39

Naive Implementations

Problems include:

☞ Space usage

• Storage required for tableaux datastructures

• Rarely a serious problem in practice

☞ Time usage

• Search required due to non-deterministic expansion

• Serious problem in practice

• Mitigated by:
➙ Careful choice of algorithm
➙ Highly optimised implementation

Reasoning with Expressive DLs – p.18/39

Naive Implementations

Problems include:

☞ Space usage

• Storage required for tableaux datastructures

• Rarely a serious problem in practice

☞ Time usage

• Search required due to non-deterministic expansion

• Serious problem in practice

• Mitigated by:
➙ Careful choice of algorithm
➙ Highly optimised implementation

Reasoning with Expressive DLs – p.18/39

Naive Implementations

Problems include:

☞ Space usage

• Storage required for tableaux datastructures

• Rarely a serious problem in practice

☞ Time usage

• Search required due to non-deterministic expansion

• Serious problem in practice

• Mitigated by:
➙ Careful choice of algorithm
➙ Highly optimised implementation

Reasoning with Expressive DLs – p.18/39

Naive Implementations

Problems include:

☞ Space usage

• Storage required for tableaux datastructures

• Rarely a serious problem in practice

☞ Time usage

• Search required due to non-deterministic expansion

• Serious problem in practice

• Mitigated by:
➙ Careful choice of algorithm
➙ Highly optimised implementation

Reasoning with Expressive DLs – p.18/39

Naive Implementations

Problems include:

☞ Space usage

• Storage required for tableaux datastructures

• Rarely a serious problem in practice

☞ Time usage

• Search required due to non-deterministic expansion

• Serious problem in practice

• Mitigated by:
➙ Careful choice of algorithm
➙ Highly optimised implementation

Reasoning with Expressive DLs – p.18/39

Naive Implementations

Problems include:

☞ Space usage

• Storage required for tableaux datastructures

• Rarely a serious problem in practice

☞ Time usage

• Search required due to non-deterministic expansion

• Serious problem in practice

• Mitigated by:
➙ Careful choice of algorithm
➙ Highly optimised implementation

Reasoning with Expressive DLs – p.18/39

Naive Implementations

Problems include:

☞ Space usage

• Storage required for tableaux datastructures

• Rarely a serious problem in practice

☞ Time usage

• Search required due to non-deterministic expansion

• Serious problem in practice

• Mitigated by:

➙ Careful choice of algorithm
➙ Highly optimised implementation

Reasoning with Expressive DLs – p.18/39

Naive Implementations

Problems include:

☞ Space usage

• Storage required for tableaux datastructures

• Rarely a serious problem in practice

☞ Time usage

• Search required due to non-deterministic expansion

• Serious problem in practice

• Mitigated by:
➙ Careful choice of algorithm

➙ Highly optimised implementation

Reasoning with Expressive DLs – p.18/39

Naive Implementations

Problems include:

☞ Space usage

• Storage required for tableaux datastructures

• Rarely a serious problem in practice

☞ Time usage

• Search required due to non-deterministic expansion

• Serious problem in practice

• Mitigated by:
➙ Careful choice of algorithm
➙ Highly optimised implementation

Reasoning with Expressive DLs – p.18/39

Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure

• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions

• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings

• GCI axioms can be used to “encode” additional
operators/axioms

• Powerful technique, particularly when used with FL
closure

• Can encode cardinality constraints, inverse roles,
range/domain, . . .
➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms

• BUT even simple domain encoding is disastrous with
large numbers of roles

Reasoning with Expressive DLs – p.19/39

Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure

• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions

• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings

• GCI axioms can be used to “encode” additional
operators/axioms

• Powerful technique, particularly when used with FL
closure

• Can encode cardinality constraints, inverse roles,
range/domain, . . .
➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms

• BUT even simple domain encoding is disastrous with
large numbers of roles

Reasoning with Expressive DLs – p.19/39

Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure

• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions

• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings

• GCI axioms can be used to “encode” additional
operators/axioms

• Powerful technique, particularly when used with FL
closure

• Can encode cardinality constraints, inverse roles,
range/domain, . . .
➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms

• BUT even simple domain encoding is disastrous with
large numbers of roles

Reasoning with Expressive DLs – p.19/39

Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure

• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions

• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings

• GCI axioms can be used to “encode” additional
operators/axioms

• Powerful technique, particularly when used with FL
closure

• Can encode cardinality constraints, inverse roles,
range/domain, . . .
➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms

• BUT even simple domain encoding is disastrous with
large numbers of roles

Reasoning with Expressive DLs – p.19/39

Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure

• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions

• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings

• GCI axioms can be used to “encode” additional
operators/axioms

• Powerful technique, particularly when used with FL
closure

• Can encode cardinality constraints, inverse roles,
range/domain, . . .
➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms

• BUT even simple domain encoding is disastrous with
large numbers of roles

Reasoning with Expressive DLs – p.19/39

Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure

• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions

• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings

• GCI axioms can be used to “encode” additional
operators/axioms

• Powerful technique, particularly when used with FL
closure

• Can encode cardinality constraints, inverse roles,
range/domain, . . .
➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms

• BUT even simple domain encoding is disastrous with
large numbers of roles

Reasoning with Expressive DLs – p.19/39

Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure

• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions

• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings

• GCI axioms can be used to “encode” additional
operators/axioms

• Powerful technique, particularly when used with FL
closure

• Can encode cardinality constraints, inverse roles,
range/domain, . . .
➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms

• BUT even simple domain encoding is disastrous with
large numbers of roles

Reasoning with Expressive DLs – p.19/39

Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure

• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions

• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings

• GCI axioms can be used to “encode” additional
operators/axioms

• Powerful technique, particularly when used with FL
closure

• Can encode cardinality constraints, inverse roles,
range/domain, . . .
➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms

• BUT even simple domain encoding is disastrous with
large numbers of roles

Reasoning with Expressive DLs – p.19/39

Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure

• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions

• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings

• GCI axioms can be used to “encode” additional
operators/axioms

• Powerful technique, particularly when used with FL
closure

• Can encode cardinality constraints, inverse roles,
range/domain, . . .

➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms

• BUT even simple domain encoding is disastrous with
large numbers of roles

Reasoning with Expressive DLs – p.19/39

Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure

• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions

• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings

• GCI axioms can be used to “encode” additional
operators/axioms

• Powerful technique, particularly when used with FL
closure

• Can encode cardinality constraints, inverse roles,
range/domain, . . .
➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms

• BUT even simple domain encoding is disastrous with
large numbers of roles

Reasoning with Expressive DLs – p.19/39

Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure

• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions

• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings

• GCI axioms can be used to “encode” additional
operators/axioms

• Powerful technique, particularly when used with FL
closure

• Can encode cardinality constraints, inverse roles,
range/domain, . . .
➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms

• BUT even simple domain encoding is disastrous with
large numbers of roles

Reasoning with Expressive DLs – p.19/39

Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure

• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions

• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings

• GCI axioms can be used to “encode” additional
operators/axioms

• Powerful technique, particularly when used with FL
closure

• Can encode cardinality constraints, inverse roles,
range/domain, . . .
➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms

• BUT even simple domain encoding is disastrous with
large numbers of roles

Reasoning with Expressive DLs – p.19/39

Highly Optimised Implementation

Optimisation performed at 2 levels

☞ Computing classification (partial ordering) of concepts

• Objective is to minimise number of subsumption tests

• Can use standard order-theoretic techniques
➙ E.g., use enhanced traversal that exploits
information from previous tests

• Also use structural information from KB
➙ E.g., to select order in which to classify concepts

☞ Computing subsumption between concepts

• Objective is to minimise cost of single subsumption tests

• Small number of hard tests can dominate classification
time

• Recent DL research has addressed this problem (with
considerable success)

Reasoning with Expressive DLs – p.20/39

Highly Optimised Implementation

Optimisation performed at 2 levels

☞ Computing classification (partial ordering) of concepts

• Objective is to minimise number of subsumption tests

• Can use standard order-theoretic techniques
➙ E.g., use enhanced traversal that exploits
information from previous tests

• Also use structural information from KB
➙ E.g., to select order in which to classify concepts

☞ Computing subsumption between concepts

• Objective is to minimise cost of single subsumption tests

• Small number of hard tests can dominate classification
time

• Recent DL research has addressed this problem (with
considerable success)

Reasoning with Expressive DLs – p.20/39

Highly Optimised Implementation

Optimisation performed at 2 levels

☞ Computing classification (partial ordering) of concepts

• Objective is to minimise number of subsumption tests

• Can use standard order-theoretic techniques
➙ E.g., use enhanced traversal that exploits
information from previous tests

• Also use structural information from KB
➙ E.g., to select order in which to classify concepts

☞ Computing subsumption between concepts

• Objective is to minimise cost of single subsumption tests

• Small number of hard tests can dominate classification
time

• Recent DL research has addressed this problem (with
considerable success)

Reasoning with Expressive DLs – p.20/39

Highly Optimised Implementation

Optimisation performed at 2 levels

☞ Computing classification (partial ordering) of concepts

• Objective is to minimise number of subsumption tests

• Can use standard order-theoretic techniques

➙ E.g., use enhanced traversal that exploits
information from previous tests

• Also use structural information from KB
➙ E.g., to select order in which to classify concepts

☞ Computing subsumption between concepts

• Objective is to minimise cost of single subsumption tests

• Small number of hard tests can dominate classification
time

• Recent DL research has addressed this problem (with
considerable success)

Reasoning with Expressive DLs – p.20/39

Highly Optimised Implementation

Optimisation performed at 2 levels

☞ Computing classification (partial ordering) of concepts

• Objective is to minimise number of subsumption tests

• Can use standard order-theoretic techniques
➙ E.g., use enhanced traversal that exploits
information from previous tests

• Also use structural information from KB
➙ E.g., to select order in which to classify concepts

☞ Computing subsumption between concepts

• Objective is to minimise cost of single subsumption tests

• Small number of hard tests can dominate classification
time

• Recent DL research has addressed this problem (with
considerable success)

Reasoning with Expressive DLs – p.20/39

Highly Optimised Implementation

Optimisation performed at 2 levels

☞ Computing classification (partial ordering) of concepts

• Objective is to minimise number of subsumption tests

• Can use standard order-theoretic techniques
➙ E.g., use enhanced traversal that exploits
information from previous tests

• Also use structural information from KB

➙ E.g., to select order in which to classify concepts

☞ Computing subsumption between concepts

• Objective is to minimise cost of single subsumption tests

• Small number of hard tests can dominate classification
time

• Recent DL research has addressed this problem (with
considerable success)

Reasoning with Expressive DLs – p.20/39

Highly Optimised Implementation

Optimisation performed at 2 levels

☞ Computing classification (partial ordering) of concepts

• Objective is to minimise number of subsumption tests

• Can use standard order-theoretic techniques
➙ E.g., use enhanced traversal that exploits
information from previous tests

• Also use structural information from KB
➙ E.g., to select order in which to classify concepts

☞ Computing subsumption between concepts

• Objective is to minimise cost of single subsumption tests

• Small number of hard tests can dominate classification
time

• Recent DL research has addressed this problem (with
considerable success)

Reasoning with Expressive DLs – p.20/39

Highly Optimised Implementation

Optimisation performed at 2 levels

☞ Computing classification (partial ordering) of concepts

• Objective is to minimise number of subsumption tests

• Can use standard order-theoretic techniques
➙ E.g., use enhanced traversal that exploits
information from previous tests

• Also use structural information from KB
➙ E.g., to select order in which to classify concepts

☞ Computing subsumption between concepts

• Objective is to minimise cost of single subsumption tests

• Small number of hard tests can dominate classification
time

• Recent DL research has addressed this problem (with
considerable success)

Reasoning with Expressive DLs – p.20/39

Highly Optimised Implementation

Optimisation performed at 2 levels

☞ Computing classification (partial ordering) of concepts

• Objective is to minimise number of subsumption tests

• Can use standard order-theoretic techniques
➙ E.g., use enhanced traversal that exploits
information from previous tests

• Also use structural information from KB
➙ E.g., to select order in which to classify concepts

☞ Computing subsumption between concepts

• Objective is to minimise cost of single subsumption tests

• Small number of hard tests can dominate classification
time

• Recent DL research has addressed this problem (with
considerable success)

Reasoning with Expressive DLs – p.20/39

Highly Optimised Implementation

Optimisation performed at 2 levels

☞ Computing classification (partial ordering) of concepts

• Objective is to minimise number of subsumption tests

• Can use standard order-theoretic techniques
➙ E.g., use enhanced traversal that exploits
information from previous tests

• Also use structural information from KB
➙ E.g., to select order in which to classify concepts

☞ Computing subsumption between concepts

• Objective is to minimise cost of single subsumption tests

• Small number of hard tests can dominate classification
time

• Recent DL research has addressed this problem (with
considerable success)

Reasoning with Expressive DLs – p.20/39

Highly Optimised Implementation

Optimisation performed at 2 levels

☞ Computing classification (partial ordering) of concepts

• Objective is to minimise number of subsumption tests

• Can use standard order-theoretic techniques
➙ E.g., use enhanced traversal that exploits
information from previous tests

• Also use structural information from KB
➙ E.g., to select order in which to classify concepts

☞ Computing subsumption between concepts

• Objective is to minimise cost of single subsumption tests

• Small number of hard tests can dominate classification
time

• Recent DL research has addressed this problem (with
considerable success)

Reasoning with Expressive DLs – p.20/39

Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories

☞ Pre-processing optimisations

• Aim is to simplify KB and facilitate subsumption testing

• Largely algorithm independent

• Particularly important when KB contains GCI axioms

☞ Algorithmic optimisations

• Main aim is to reduce search space due to
non-determinism

• Integral part of implementation

• But often generally applicable to search based
algorithms

Reasoning with Expressive DLs – p.21/39

Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories

☞ Pre-processing optimisations

• Aim is to simplify KB and facilitate subsumption testing

• Largely algorithm independent

• Particularly important when KB contains GCI axioms

☞ Algorithmic optimisations

• Main aim is to reduce search space due to
non-determinism

• Integral part of implementation

• But often generally applicable to search based
algorithms

Reasoning with Expressive DLs – p.21/39

Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories

☞ Pre-processing optimisations

• Aim is to simplify KB and facilitate subsumption testing

• Largely algorithm independent

• Particularly important when KB contains GCI axioms

☞ Algorithmic optimisations

• Main aim is to reduce search space due to
non-determinism

• Integral part of implementation

• But often generally applicable to search based
algorithms

Reasoning with Expressive DLs – p.21/39

Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories

☞ Pre-processing optimisations

• Aim is to simplify KB and facilitate subsumption testing

• Largely algorithm independent

• Particularly important when KB contains GCI axioms

☞ Algorithmic optimisations

• Main aim is to reduce search space due to
non-determinism

• Integral part of implementation

• But often generally applicable to search based
algorithms

Reasoning with Expressive DLs – p.21/39

Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories

☞ Pre-processing optimisations

• Aim is to simplify KB and facilitate subsumption testing

• Largely algorithm independent

• Particularly important when KB contains GCI axioms

☞ Algorithmic optimisations

• Main aim is to reduce search space due to
non-determinism

• Integral part of implementation

• But often generally applicable to search based
algorithms

Reasoning with Expressive DLs – p.21/39

Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories

☞ Pre-processing optimisations

• Aim is to simplify KB and facilitate subsumption testing

• Largely algorithm independent

• Particularly important when KB contains GCI axioms

☞ Algorithmic optimisations

• Main aim is to reduce search space due to
non-determinism

• Integral part of implementation

• But often generally applicable to search based
algorithms

Reasoning with Expressive DLs – p.21/39

Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories

☞ Pre-processing optimisations

• Aim is to simplify KB and facilitate subsumption testing

• Largely algorithm independent

• Particularly important when KB contains GCI axioms

☞ Algorithmic optimisations

• Main aim is to reduce search space due to
non-determinism

• Integral part of implementation

• But often generally applicable to search based
algorithms

Reasoning with Expressive DLs – p.21/39

Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories

☞ Pre-processing optimisations

• Aim is to simplify KB and facilitate subsumption testing

• Largely algorithm independent

• Particularly important when KB contains GCI axioms

☞ Algorithmic optimisations

• Main aim is to reduce search space due to
non-determinism

• Integral part of implementation

• But often generally applicable to search based
algorithms

Reasoning with Expressive DLs – p.21/39

Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories

☞ Pre-processing optimisations

• Aim is to simplify KB and facilitate subsumption testing

• Largely algorithm independent

• Particularly important when KB contains GCI axioms

☞ Algorithmic optimisations

• Main aim is to reduce search space due to
non-determinism

• Integral part of implementation

• But often generally applicable to search based
algorithms

Reasoning with Expressive DLs – p.21/39

Pre-processing Optimisations

Useful techniques include

☞ Normalisation and simplification of concepts

• Refinement of technique first used in KRIS system

• Lexically normalise and simplify all concepts in KB

• Combine with lazy unfolding in tableaux algorithm

• Facilitates early detection of inconsistencies (clashes)

☞ Absorption (simplification) of general axioms

• Eliminate GCIs by absorbing into “definition” axioms

• Definition axioms efficiently dealt with by lazy
expansion

☞ Avoidance of potentially costly reasoning whenever possible

• Normalisation can discover “obvious” (un)satisfiability

• Structural analysis can discover “obvious” subsumption

Reasoning with Expressive DLs – p.22/39

Pre-processing Optimisations

Useful techniques include

☞ Normalisation and simplification of concepts

• Refinement of technique first used in KRIS system

• Lexically normalise and simplify all concepts in KB

• Combine with lazy unfolding in tableaux algorithm

• Facilitates early detection of inconsistencies (clashes)

☞ Absorption (simplification) of general axioms

• Eliminate GCIs by absorbing into “definition” axioms

• Definition axioms efficiently dealt with by lazy
expansion

☞ Avoidance of potentially costly reasoning whenever possible

• Normalisation can discover “obvious” (un)satisfiability

• Structural analysis can discover “obvious” subsumption

Reasoning with Expressive DLs – p.22/39

Pre-processing Optimisations

Useful techniques include

☞ Normalisation and simplification of concepts

• Refinement of technique first used in KRIS system

• Lexically normalise and simplify all concepts in KB

• Combine with lazy unfolding in tableaux algorithm

• Facilitates early detection of inconsistencies (clashes)

☞ Absorption (simplification) of general axioms

• Eliminate GCIs by absorbing into “definition” axioms

• Definition axioms efficiently dealt with by lazy
expansion

☞ Avoidance of potentially costly reasoning whenever possible

• Normalisation can discover “obvious” (un)satisfiability

• Structural analysis can discover “obvious” subsumption

Reasoning with Expressive DLs – p.22/39

Pre-processing Optimisations

Useful techniques include

☞ Normalisation and simplification of concepts

• Refinement of technique first used in KRIS system

• Lexically normalise and simplify all concepts in KB

• Combine with lazy unfolding in tableaux algorithm

• Facilitates early detection of inconsistencies (clashes)

☞ Absorption (simplification) of general axioms

• Eliminate GCIs by absorbing into “definition” axioms

• Definition axioms efficiently dealt with by lazy
expansion

☞ Avoidance of potentially costly reasoning whenever possible

• Normalisation can discover “obvious” (un)satisfiability

• Structural analysis can discover “obvious” subsumption

Reasoning with Expressive DLs – p.22/39

Pre-processing Optimisations

Useful techniques include

☞ Normalisation and simplification of concepts

• Refinement of technique first used in KRIS system

• Lexically normalise and simplify all concepts in KB

• Combine with lazy unfolding in tableaux algorithm

• Facilitates early detection of inconsistencies (clashes)

☞ Absorption (simplification) of general axioms

• Eliminate GCIs by absorbing into “definition” axioms

• Definition axioms efficiently dealt with by lazy
expansion

☞ Avoidance of potentially costly reasoning whenever possible

• Normalisation can discover “obvious” (un)satisfiability

• Structural analysis can discover “obvious” subsumption

Reasoning with Expressive DLs – p.22/39

Pre-processing Optimisations

Useful techniques include

☞ Normalisation and simplification of concepts

• Refinement of technique first used in KRIS system

• Lexically normalise and simplify all concepts in KB

• Combine with lazy unfolding in tableaux algorithm

• Facilitates early detection of inconsistencies (clashes)

☞ Absorption (simplification) of general axioms

• Eliminate GCIs by absorbing into “definition” axioms

• Definition axioms efficiently dealt with by lazy
expansion

☞ Avoidance of potentially costly reasoning whenever possible

• Normalisation can discover “obvious” (un)satisfiability

• Structural analysis can discover “obvious” subsumption

Reasoning with Expressive DLs – p.22/39

Pre-processing Optimisations

Useful techniques include

☞ Normalisation and simplification of concepts

• Refinement of technique first used in KRIS system

• Lexically normalise and simplify all concepts in KB

• Combine with lazy unfolding in tableaux algorithm

• Facilitates early detection of inconsistencies (clashes)

☞ Absorption (simplification) of general axioms

• Eliminate GCIs by absorbing into “definition” axioms

• Definition axioms efficiently dealt with by lazy
expansion

☞ Avoidance of potentially costly reasoning whenever possible

• Normalisation can discover “obvious” (un)satisfiability

• Structural analysis can discover “obvious” subsumption

Reasoning with Expressive DLs – p.22/39

Pre-processing Optimisations

Useful techniques include

☞ Normalisation and simplification of concepts

• Refinement of technique first used in KRIS system

• Lexically normalise and simplify all concepts in KB

• Combine with lazy unfolding in tableaux algorithm

• Facilitates early detection of inconsistencies (clashes)

☞ Absorption (simplification) of general axioms

• Eliminate GCIs by absorbing into “definition” axioms

• Definition axioms efficiently dealt with by lazy
expansion

☞ Avoidance of potentially costly reasoning whenever possible

• Normalisation can discover “obvious” (un)satisfiability

• Structural analysis can discover “obvious” subsumption

Reasoning with Expressive DLs – p.22/39

Pre-processing Optimisations

Useful techniques include

☞ Normalisation and simplification of concepts

• Refinement of technique first used in KRIS system

• Lexically normalise and simplify all concepts in KB

• Combine with lazy unfolding in tableaux algorithm

• Facilitates early detection of inconsistencies (clashes)

☞ Absorption (simplification) of general axioms

• Eliminate GCIs by absorbing into “definition” axioms

• Definition axioms efficiently dealt with by lazy expansion

☞ Avoidance of potentially costly reasoning whenever possible

• Normalisation can discover “obvious” (un)satisfiability

• Structural analysis can discover “obvious” subsumption

Reasoning with Expressive DLs – p.22/39

Pre-processing Optimisations

Useful techniques include

☞ Normalisation and simplification of concepts

• Refinement of technique first used in KRIS system

• Lexically normalise and simplify all concepts in KB

• Combine with lazy unfolding in tableaux algorithm

• Facilitates early detection of inconsistencies (clashes)

☞ Absorption (simplification) of general axioms

• Eliminate GCIs by absorbing into “definition” axioms

• Definition axioms efficiently dealt with by lazy expansion

☞ Avoidance of potentially costly reasoning whenever possible

• Normalisation can discover “obvious” (un)satisfiability

• Structural analysis can discover “obvious” subsumption

Reasoning with Expressive DLs – p.22/39

Pre-processing Optimisations

Useful techniques include

☞ Normalisation and simplification of concepts

• Refinement of technique first used in KRIS system

• Lexically normalise and simplify all concepts in KB

• Combine with lazy unfolding in tableaux algorithm

• Facilitates early detection of inconsistencies (clashes)

☞ Absorption (simplification) of general axioms

• Eliminate GCIs by absorbing into “definition” axioms

• Definition axioms efficiently dealt with by lazy expansion

☞ Avoidance of potentially costly reasoning whenever possible

• Normalisation can discover “obvious” (un)satisfiability

• Structural analysis can discover “obvious” subsumption

Reasoning with Expressive DLs – p.22/39

Pre-processing Optimisations

Useful techniques include

☞ Normalisation and simplification of concepts

• Refinement of technique first used in KRIS system

• Lexically normalise and simplify all concepts in KB

• Combine with lazy unfolding in tableaux algorithm

• Facilitates early detection of inconsistencies (clashes)

☞ Absorption (simplification) of general axioms

• Eliminate GCIs by absorbing into “definition” axioms

• Definition axioms efficiently dealt with by lazy expansion

☞ Avoidance of potentially costly reasoning whenever possible

• Normalisation can discover “obvious” (un)satisfiability

• Structural analysis can discover “obvious” subsumption

Reasoning with Expressive DLs – p.22/39

Normalisation and Simplification

☞ Normalise concepts to standard form, e.g.:

• ∃R.C −→ ¬∀R.¬C

• C t D −→ ¬(¬C u ¬D)

☞ Simplify concepts, e.g.:

• (D u C) u (A u D) −→ A u C u D

• ∀R.> −→ >

• . . . u C u . . . u ¬C u . . . −→ ⊥

☞ Lazily unfold concepts in tableaux algorithm

• Use names/pointers to refer to complex concepts

• Only add structure as required by progress of algorithm

• Detect clashes between lexically equivalent concepts

E.g.:

{HappyFather,¬HappyFather} −→ clash

{∀has-child.(Doctor t Lawyer), ∃has-child.(¬Doctor u ¬Lawyer)} −→ search

Reasoning with Expressive DLs – p.23/39

Normalisation and Simplification

☞ Normalise concepts to standard form, e.g.:

• ∃R.C −→ ¬∀R.¬C

• C t D −→ ¬(¬C u ¬D)

☞ Simplify concepts, e.g.:

• (D u C) u (A u D) −→ A u C u D

• ∀R.> −→ >

• . . . u C u . . . u ¬C u . . . −→ ⊥

☞ Lazily unfold concepts in tableaux algorithm

• Use names/pointers to refer to complex concepts

• Only add structure as required by progress of algorithm

• Detect clashes between lexically equivalent concepts

E.g.:

{HappyFather,¬HappyFather} −→ clash

{∀has-child.(Doctor t Lawyer), ∃has-child.(¬Doctor u ¬Lawyer)} −→ search

Reasoning with Expressive DLs – p.23/39

Normalisation and Simplification

☞ Normalise concepts to standard form, e.g.:

• ∃R.C −→ ¬∀R.¬C

• C t D −→ ¬(¬C u ¬D)

☞ Simplify concepts, e.g.:

• (D u C) u (A u D) −→ A u C u D

• ∀R.> −→ >

• . . . u C u . . . u ¬C u . . . −→ ⊥

☞ Lazily unfold concepts in tableaux algorithm

• Use names/pointers to refer to complex concepts

• Only add structure as required by progress of algorithm

• Detect clashes between lexically equivalent concepts

E.g.:

{HappyFather,¬HappyFather} −→ clash

{∀has-child.(Doctor t Lawyer), ∃has-child.(¬Doctor u ¬Lawyer)} −→ search

Reasoning with Expressive DLs – p.23/39

Normalisation and Simplification

☞ Normalise concepts to standard form, e.g.:

• ∃R.C −→ ¬∀R.¬C

• C t D −→ ¬(¬C u ¬D)

☞ Simplify concepts, e.g.:

• (D u C) u (A u D) −→ A u C u D

• ∀R.> −→ >

• . . . u C u . . . u ¬C u . . . −→ ⊥

☞ Lazily unfold concepts in tableaux algorithm

• Use names/pointers to refer to complex concepts

• Only add structure as required by progress of algorithm

• Detect clashes between lexically equivalent concepts

E.g.:

{HappyFather,¬HappyFather} −→ clash

{∀has-child.(Doctor t Lawyer), ∃has-child.(¬Doctor u ¬Lawyer)} −→ search

Reasoning with Expressive DLs – p.23/39

Normalisation and Simplification

☞ Normalise concepts to standard form, e.g.:

• ∃R.C −→ ¬∀R.¬C

• C t D −→ ¬(¬C u ¬D)

☞ Simplify concepts, e.g.:

• (D u C) u (A u D) −→ A u C u D

• ∀R.> −→ >

• . . . u C u . . . u ¬C u . . . −→ ⊥

☞ Lazily unfold concepts in tableaux algorithm

• Use names/pointers to refer to complex concepts

• Only add structure as required by progress of algorithm

• Detect clashes between lexically equivalent concepts

E.g.:

{HappyFather,¬HappyFather} −→ clash

{∀has-child.(Doctor t Lawyer), ∃has-child.(¬Doctor u ¬Lawyer)} −→ search

Reasoning with Expressive DLs – p.23/39

Normalisation and Simplification

☞ Normalise concepts to standard form, e.g.:

• ∃R.C −→ ¬∀R.¬C

• C t D −→ ¬(¬C u ¬D)

☞ Simplify concepts, e.g.:

• (D u C) u (A u D) −→ A u C u D

• ∀R.> −→ >

• . . . u C u . . . u ¬C u . . . −→ ⊥

☞ Lazily unfold concepts in tableaux algorithm

• Use names/pointers to refer to complex concepts

• Only add structure as required by progress of algorithm

• Detect clashes between lexically equivalent concepts

E.g.:

{HappyFather,¬HappyFather} −→ clash

{∀has-child.(Doctor t Lawyer), ∃has-child.(¬Doctor u ¬Lawyer)} −→ search

Reasoning with Expressive DLs – p.23/39

Normalisation and Simplification

☞ Normalise concepts to standard form, e.g.:

• ∃R.C −→ ¬∀R.¬C

• C t D −→ ¬(¬C u ¬D)

☞ Simplify concepts, e.g.:

• (D u C) u (A u D) −→ A u C u D

• ∀R.> −→ >

• . . . u C u . . . u ¬C u . . . −→ ⊥

☞ Lazily unfold concepts in tableaux algorithm

• Use names/pointers to refer to complex concepts

• Only add structure as required by progress of algorithm

• Detect clashes between lexically equivalent concepts

E.g.:

{HappyFather,¬HappyFather} −→ clash

{∀has-child.(Doctor t Lawyer), ∃has-child.(¬Doctor u ¬Lawyer)} −→ search

Reasoning with Expressive DLs – p.23/39

Normalisation and Simplification

☞ Normalise concepts to standard form, e.g.:

• ∃R.C −→ ¬∀R.¬C

• C t D −→ ¬(¬C u ¬D)

☞ Simplify concepts, e.g.:

• (D u C) u (A u D) −→ A u C u D

• ∀R.> −→ >

• . . . u C u . . . u ¬C u . . . −→ ⊥

☞ Lazily unfold concepts in tableaux algorithm

• Use names/pointers to refer to complex concepts

• Only add structure as required by progress of algorithm

• Detect clashes between lexically equivalent concepts

E.g.:

{HappyFather,¬HappyFather} −→ clash

{∀has-child.(Doctor t Lawyer), ∃has-child.(¬Doctor u ¬Lawyer)} −→ search

Reasoning with Expressive DLs – p.23/39

Normalisation and Simplification

☞ Normalise concepts to standard form, e.g.:

• ∃R.C −→ ¬∀R.¬C

• C t D −→ ¬(¬C u ¬D)

☞ Simplify concepts, e.g.:

• (D u C) u (A u D) −→ A u C u D

• ∀R.> −→ >

• . . . u C u . . . u ¬C u . . . −→ ⊥

☞ Lazily unfold concepts in tableaux algorithm

• Use names/pointers to refer to complex concepts

• Only add structure as required by progress of algorithm

• Detect clashes between lexically equivalent concepts

E.g.:

{HappyFather,¬HappyFather} −→ clash

{∀has-child.(Doctor t Lawyer), ∃has-child.(¬Doctor u ¬Lawyer)} −→ search

Reasoning with Expressive DLs – p.23/39

Normalisation and Simplification

☞ Normalise concepts to standard form, e.g.:

• ∃R.C −→ ¬∀R.¬C

• C t D −→ ¬(¬C u ¬D)

☞ Simplify concepts, e.g.:

• (D u C) u (A u D) −→ A u C u D

• ∀R.> −→ >

• . . . u C u . . . u ¬C u . . . −→ ⊥

☞ Lazily unfold concepts in tableaux algorithm

• Use names/pointers to refer to complex concepts

• Only add structure as required by progress of algorithm

• Detect clashes between lexically equivalent concepts

E.g.:

{HappyFather,¬HappyFather} −→ clash

{∀has-child.(Doctor t Lawyer), ∃has-child.(¬Doctor u ¬Lawyer)} −→ search

Reasoning with Expressive DLs – p.23/39

Normalisation and Simplification

☞ Normalise concepts to standard form, e.g.:

• ∃R.C −→ ¬∀R.¬C

• C t D −→ ¬(¬C u ¬D)

☞ Simplify concepts, e.g.:

• (D u C) u (A u D) −→ A u C u D

• ∀R.> −→ >

• . . . u C u . . . u ¬C u . . . −→ ⊥

☞ Lazily unfold concepts in tableaux algorithm

• Use names/pointers to refer to complex concepts

• Only add structure as required by progress of algorithm

• Detect clashes between lexically equivalent concepts

E.g.:

{HappyFather,¬HappyFather} −→ clash

{∀has-child.(Doctor t Lawyer), ∃has-child.(¬Doctor u ¬Lawyer)} −→ search

Reasoning with Expressive DLs – p.23/39

Normalisation and Simplification

☞ Normalise concepts to standard form, e.g.:

• ∃R.C −→ ¬∀R.¬C

• C t D −→ ¬(¬C u ¬D)

☞ Simplify concepts, e.g.:

• (D u C) u (A u D) −→ A u C u D

• ∀R.> −→ >

• . . . u C u . . . u ¬C u . . . −→ ⊥

☞ Lazily unfold concepts in tableaux algorithm

• Use names/pointers to refer to complex concepts

• Only add structure as required by progress of algorithm

• Detect clashes between lexically equivalent concepts

E.g.:

{HappyFather,¬HappyFather} −→ clash

{∀has-child.(Doctor t Lawyer), ∃has-child.(¬Doctor u ¬Lawyer)} −→ search

Reasoning with Expressive DLs – p.23/39

Normalisation and Simplification

☞ Normalise concepts to standard form, e.g.:

• ∃R.C −→ ¬∀R.¬C

• C t D −→ ¬(¬C u ¬D)

☞ Simplify concepts, e.g.:

• (D u C) u (A u D) −→ A u C u D

• ∀R.> −→ >

• . . . u C u . . . u ¬C u . . . −→ ⊥

☞ Lazily unfold concepts in tableaux algorithm

• Use names/pointers to refer to complex concepts

• Only add structure as required by progress of algorithm

• Detect clashes between lexically equivalent concepts

E.g.:

{HappyFather,¬HappyFather} −→ clash

{∀has-child.(Doctor t Lawyer), ∃has-child.(¬Doctor u ¬Lawyer)} −→ search
Reasoning with Expressive DLs – p.23/39

Absorption I

☞ Reasoning w.r.t. set of GCI axioms can be very costly

• GCI C v D adds D t ¬C to every node label

• Expansion of disjunctions leads to search

• With 10 axioms and 10 nodes search space already 2100

• GALEN (medical terminology) KB contains hundreds of
axioms

☞ Reasoning w.r.t. “primitive definition” axioms is relatively
efficient

• For CN v D, add D only to node labels containing CN
• For CN w D, add ¬D only to node labels containing ¬CN

• Can expand definitions lazily
➙ Only add definitions after other local (propositional)
expansion

➙ Only add definitions one step at a time

Reasoning with Expressive DLs – p.24/39

Absorption I

☞ Reasoning w.r.t. set of GCI axioms can be very costly

• GCI C v D adds D t ¬C to every node label

• Expansion of disjunctions leads to search

• With 10 axioms and 10 nodes search space already 2100

• GALEN (medical terminology) KB contains hundreds of
axioms

☞ Reasoning w.r.t. “primitive definition” axioms is relatively
efficient

• For CN v D, add D only to node labels containing CN
• For CN w D, add ¬D only to node labels containing ¬CN

• Can expand definitions lazily
➙ Only add definitions after other local (propositional)
expansion

➙ Only add definitions one step at a time

Reasoning with Expressive DLs – p.24/39

Absorption I

☞ Reasoning w.r.t. set of GCI axioms can be very costly

• GCI C v D adds D t ¬C to every node label

• Expansion of disjunctions leads to search

• With 10 axioms and 10 nodes search space already 2100

• GALEN (medical terminology) KB contains hundreds of
axioms

☞ Reasoning w.r.t. “primitive definition” axioms is relatively
efficient

• For CN v D, add D only to node labels containing CN
• For CN w D, add ¬D only to node labels containing ¬CN

• Can expand definitions lazily
➙ Only add definitions after other local (propositional)
expansion

➙ Only add definitions one step at a time

Reasoning with Expressive DLs – p.24/39

Absorption I

☞ Reasoning w.r.t. set of GCI axioms can be very costly

• GCI C v D adds D t ¬C to every node label

• Expansion of disjunctions leads to search

• With 10 axioms and 10 nodes search space already 2100

• GALEN (medical terminology) KB contains hundreds of
axioms

☞ Reasoning w.r.t. “primitive definition” axioms is relatively
efficient

• For CN v D, add D only to node labels containing CN
• For CN w D, add ¬D only to node labels containing ¬CN

• Can expand definitions lazily
➙ Only add definitions after other local (propositional)
expansion

➙ Only add definitions one step at a time

Reasoning with Expressive DLs – p.24/39

Absorption I

☞ Reasoning w.r.t. set of GCI axioms can be very costly

• GCI C v D adds D t ¬C to every node label

• Expansion of disjunctions leads to search

• With 10 axioms and 10 nodes search space already 2100

• GALEN (medical terminology) KB contains hundreds of
axioms

☞ Reasoning w.r.t. “primitive definition” axioms is relatively
efficient

• For CN v D, add D only to node labels containing CN
• For CN w D, add ¬D only to node labels containing ¬CN

• Can expand definitions lazily
➙ Only add definitions after other local (propositional)
expansion

➙ Only add definitions one step at a time

Reasoning with Expressive DLs – p.24/39

Absorption I

☞ Reasoning w.r.t. set of GCI axioms can be very costly

• GCI C v D adds D t ¬C to every node label

• Expansion of disjunctions leads to search

• With 10 axioms and 10 nodes search space already 2100

• GALEN (medical terminology) KB contains hundreds of
axioms

☞ Reasoning w.r.t. “primitive definition” axioms is relatively
efficient

• For CN v D, add D only to node labels containing CN
• For CN w D, add ¬D only to node labels containing ¬CN

• Can expand definitions lazily
➙ Only add definitions after other local (propositional)
expansion

➙ Only add definitions one step at a time

Reasoning with Expressive DLs – p.24/39

Absorption I

☞ Reasoning w.r.t. set of GCI axioms can be very costly

• GCI C v D adds D t ¬C to every node label

• Expansion of disjunctions leads to search

• With 10 axioms and 10 nodes search space already 2100

• GALEN (medical terminology) KB contains hundreds of
axioms

☞ Reasoning w.r.t. “primitive definition” axioms is relatively
efficient

• For CN v D, add D only to node labels containing CN
• For CN w D, add ¬D only to node labels containing ¬CN

• Can expand definitions lazily
➙ Only add definitions after other local (propositional)
expansion

➙ Only add definitions one step at a time

Reasoning with Expressive DLs – p.24/39

Absorption I

☞ Reasoning w.r.t. set of GCI axioms can be very costly

• GCI C v D adds D t ¬C to every node label

• Expansion of disjunctions leads to search

• With 10 axioms and 10 nodes search space already 2100

• GALEN (medical terminology) KB contains hundreds of
axioms

☞ Reasoning w.r.t. “primitive definition” axioms is relatively
efficient

• For CN v D, add D only to node labels containing CN

• For CN w D, add ¬D only to node labels containing ¬CN

• Can expand definitions lazily
➙ Only add definitions after other local (propositional)
expansion

➙ Only add definitions one step at a time

Reasoning with Expressive DLs – p.24/39

Absorption I

☞ Reasoning w.r.t. set of GCI axioms can be very costly

• GCI C v D adds D t ¬C to every node label

• Expansion of disjunctions leads to search

• With 10 axioms and 10 nodes search space already 2100

• GALEN (medical terminology) KB contains hundreds of
axioms

☞ Reasoning w.r.t. “primitive definition” axioms is relatively
efficient

• For CN v D, add D only to node labels containing CN
• For CN w D, add ¬D only to node labels containing ¬CN

• Can expand definitions lazily
➙ Only add definitions after other local (propositional)
expansion

➙ Only add definitions one step at a time

Reasoning with Expressive DLs – p.24/39

Absorption I

☞ Reasoning w.r.t. set of GCI axioms can be very costly

• GCI C v D adds D t ¬C to every node label

• Expansion of disjunctions leads to search

• With 10 axioms and 10 nodes search space already 2100

• GALEN (medical terminology) KB contains hundreds of
axioms

☞ Reasoning w.r.t. “primitive definition” axioms is relatively
efficient

• For CN v D, add D only to node labels containing CN
• For CN w D, add ¬D only to node labels containing ¬CN
• Can expand definitions lazily

➙ Only add definitions after other local (propositional)
expansion

➙ Only add definitions one step at a time

Reasoning with Expressive DLs – p.24/39

Absorption I

☞ Reasoning w.r.t. set of GCI axioms can be very costly

• GCI C v D adds D t ¬C to every node label

• Expansion of disjunctions leads to search

• With 10 axioms and 10 nodes search space already 2100

• GALEN (medical terminology) KB contains hundreds of
axioms

☞ Reasoning w.r.t. “primitive definition” axioms is relatively
efficient

• For CN v D, add D only to node labels containing CN
• For CN w D, add ¬D only to node labels containing ¬CN
• Can expand definitions lazily

➙ Only add definitions after other local (propositional)
expansion

➙ Only add definitions one step at a time

Reasoning with Expressive DLs – p.24/39

Absorption I

☞ Reasoning w.r.t. set of GCI axioms can be very costly

• GCI C v D adds D t ¬C to every node label

• Expansion of disjunctions leads to search

• With 10 axioms and 10 nodes search space already 2100

• GALEN (medical terminology) KB contains hundreds of
axioms

☞ Reasoning w.r.t. “primitive definition” axioms is relatively
efficient

• For CN v D, add D only to node labels containing CN
• For CN w D, add ¬D only to node labels containing ¬CN
• Can expand definitions lazily

➙ Only add definitions after other local (propositional)
expansion

➙ Only add definitions one step at a time

Reasoning with Expressive DLs – p.24/39

Absorption II

☞ Transform GCIs into primitive definitions, e.g.

• CN u C v D −→ CN v D t ¬C

• CN t C w D −→ CN w D u ¬C

☞ Absorb into existing primitive definitions, e.g.

• CN v A, CN v D t ¬C −→ CN v A u (D t ¬C)

• CN w A, CN w D u ¬C −→ CN w A t (D u ¬C)

☞ Use lazy expansion technique with primitive definitions

• Disjunctions only added to “relevant” node labels

☞ Performance improvements often too large to measure

• At least four orders of magnitude with GALEN KB

Reasoning with Expressive DLs – p.25/39

Absorption II

☞ Transform GCIs into primitive definitions, e.g.

• CN u C v D −→ CN v D t ¬C

• CN t C w D −→ CN w D u ¬C

☞ Absorb into existing primitive definitions, e.g.

• CN v A, CN v D t ¬C −→ CN v A u (D t ¬C)

• CN w A, CN w D u ¬C −→ CN w A t (D u ¬C)

☞ Use lazy expansion technique with primitive definitions

• Disjunctions only added to “relevant” node labels

☞ Performance improvements often too large to measure

• At least four orders of magnitude with GALEN KB

Reasoning with Expressive DLs – p.25/39

Absorption II

☞ Transform GCIs into primitive definitions, e.g.

• CN u C v D −→ CN v D t ¬C

• CN t C w D −→ CN w D u ¬C

☞ Absorb into existing primitive definitions, e.g.

• CN v A, CN v D t ¬C −→ CN v A u (D t ¬C)

• CN w A, CN w D u ¬C −→ CN w A t (D u ¬C)

☞ Use lazy expansion technique with primitive definitions

• Disjunctions only added to “relevant” node labels

☞ Performance improvements often too large to measure

• At least four orders of magnitude with GALEN KB

Reasoning with Expressive DLs – p.25/39

Absorption II

☞ Transform GCIs into primitive definitions, e.g.

• CN u C v D −→ CN v D t ¬C

• CN t C w D −→ CN w D u ¬C

☞ Absorb into existing primitive definitions, e.g.

• CN v A, CN v D t ¬C −→ CN v A u (D t ¬C)

• CN w A, CN w D u ¬C −→ CN w A t (D u ¬C)

☞ Use lazy expansion technique with primitive definitions

• Disjunctions only added to “relevant” node labels

☞ Performance improvements often too large to measure

• At least four orders of magnitude with GALEN KB

Reasoning with Expressive DLs – p.25/39

Absorption II

☞ Transform GCIs into primitive definitions, e.g.

• CN u C v D −→ CN v D t ¬C

• CN t C w D −→ CN w D u ¬C

☞ Absorb into existing primitive definitions, e.g.

• CN v A, CN v D t ¬C −→ CN v A u (D t ¬C)

• CN w A, CN w D u ¬C −→ CN w A t (D u ¬C)

☞ Use lazy expansion technique with primitive definitions

• Disjunctions only added to “relevant” node labels

☞ Performance improvements often too large to measure

• At least four orders of magnitude with GALEN KB

Reasoning with Expressive DLs – p.25/39

Absorption II

☞ Transform GCIs into primitive definitions, e.g.

• CN u C v D −→ CN v D t ¬C

• CN t C w D −→ CN w D u ¬C

☞ Absorb into existing primitive definitions, e.g.

• CN v A, CN v D t ¬C −→ CN v A u (D t ¬C)

• CN w A, CN w D u ¬C −→ CN w A t (D u ¬C)

☞ Use lazy expansion technique with primitive definitions

• Disjunctions only added to “relevant” node labels

☞ Performance improvements often too large to measure

• At least four orders of magnitude with GALEN KB

Reasoning with Expressive DLs – p.25/39

Absorption II

☞ Transform GCIs into primitive definitions, e.g.

• CN u C v D −→ CN v D t ¬C

• CN t C w D −→ CN w D u ¬C

☞ Absorb into existing primitive definitions, e.g.

• CN v A, CN v D t ¬C −→ CN v A u (D t ¬C)

• CN w A, CN w D u ¬C −→ CN w A t (D u ¬C)

☞ Use lazy expansion technique with primitive definitions

• Disjunctions only added to “relevant” node labels

☞ Performance improvements often too large to measure

• At least four orders of magnitude with GALEN KB

Reasoning with Expressive DLs – p.25/39

Absorption II

☞ Transform GCIs into primitive definitions, e.g.

• CN u C v D −→ CN v D t ¬C

• CN t C w D −→ CN w D u ¬C

☞ Absorb into existing primitive definitions, e.g.

• CN v A, CN v D t ¬C −→ CN v A u (D t ¬C)

• CN w A, CN w D u ¬C −→ CN w A t (D u ¬C)

☞ Use lazy expansion technique with primitive definitions

• Disjunctions only added to “relevant” node labels

☞ Performance improvements often too large to measure

• At least four orders of magnitude with GALEN KB

Reasoning with Expressive DLs – p.25/39

Absorption II

☞ Transform GCIs into primitive definitions, e.g.

• CN u C v D −→ CN v D t ¬C

• CN t C w D −→ CN w D u ¬C

☞ Absorb into existing primitive definitions, e.g.

• CN v A, CN v D t ¬C −→ CN v A u (D t ¬C)

• CN w A, CN w D u ¬C −→ CN w A t (D u ¬C)

☞ Use lazy expansion technique with primitive definitions

• Disjunctions only added to “relevant” node labels

☞ Performance improvements often too large to measure

• At least four orders of magnitude with GALEN KB

Reasoning with Expressive DLs – p.25/39

Absorption II

☞ Transform GCIs into primitive definitions, e.g.

• CN u C v D −→ CN v D t ¬C

• CN t C w D −→ CN w D u ¬C

☞ Absorb into existing primitive definitions, e.g.

• CN v A, CN v D t ¬C −→ CN v A u (D t ¬C)

• CN w A, CN w D u ¬C −→ CN w A t (D u ¬C)

☞ Use lazy expansion technique with primitive definitions

• Disjunctions only added to “relevant” node labels

☞ Performance improvements often too large to measure

• At least four orders of magnitude with GALEN KB

Reasoning with Expressive DLs – p.25/39

Absorption II

☞ Transform GCIs into primitive definitions, e.g.

• CN u C v D −→ CN v D t ¬C

• CN t C w D −→ CN w D u ¬C

☞ Absorb into existing primitive definitions, e.g.

• CN v A, CN v D t ¬C −→ CN v A u (D t ¬C)

• CN w A, CN w D u ¬C −→ CN w A t (D u ¬C)

☞ Use lazy expansion technique with primitive definitions

• Disjunctions only added to “relevant” node labels

☞ Performance improvements often too large to measure

• At least four orders of magnitude with GALEN KB

Reasoning with Expressive DLs – p.25/39

Algorithmic Optimisations

Useful techniques include

☞ Avoiding redundancy in search branches

• Davis-Putnam style semantic branching search

• Syntactic branching with no-good list

☞ Dependency directed backtracking

• Backjumping

• Dynamic backtracking

☞ Caching

• Cache partial models

• Cache satisfiability status (of labels)

☞ Heuristic ordering of propositional and modal expansion

• Min/maximise constrainedness (e.g., MOMS)

• Maximise backtracking (e.g., oldest first)

Reasoning with Expressive DLs – p.26/39

Algorithmic Optimisations

Useful techniques include

☞ Avoiding redundancy in search branches

• Davis-Putnam style semantic branching search

• Syntactic branching with no-good list

☞ Dependency directed backtracking

• Backjumping

• Dynamic backtracking

☞ Caching

• Cache partial models

• Cache satisfiability status (of labels)

☞ Heuristic ordering of propositional and modal expansion

• Min/maximise constrainedness (e.g., MOMS)

• Maximise backtracking (e.g., oldest first)

Reasoning with Expressive DLs – p.26/39

Algorithmic Optimisations

Useful techniques include

☞ Avoiding redundancy in search branches

• Davis-Putnam style semantic branching search

• Syntactic branching with no-good list

☞ Dependency directed backtracking

• Backjumping

• Dynamic backtracking

☞ Caching

• Cache partial models

• Cache satisfiability status (of labels)

☞ Heuristic ordering of propositional and modal expansion

• Min/maximise constrainedness (e.g., MOMS)

• Maximise backtracking (e.g., oldest first)

Reasoning with Expressive DLs – p.26/39

Algorithmic Optimisations

Useful techniques include

☞ Avoiding redundancy in search branches

• Davis-Putnam style semantic branching search

• Syntactic branching with no-good list

☞ Dependency directed backtracking

• Backjumping

• Dynamic backtracking

☞ Caching

• Cache partial models

• Cache satisfiability status (of labels)

☞ Heuristic ordering of propositional and modal expansion

• Min/maximise constrainedness (e.g., MOMS)

• Maximise backtracking (e.g., oldest first)

Reasoning with Expressive DLs – p.26/39

Algorithmic Optimisations

Useful techniques include

☞ Avoiding redundancy in search branches

• Davis-Putnam style semantic branching search

• Syntactic branching with no-good list

☞ Dependency directed backtracking

• Backjumping

• Dynamic backtracking

☞ Caching

• Cache partial models

• Cache satisfiability status (of labels)

☞ Heuristic ordering of propositional and modal expansion

• Min/maximise constrainedness (e.g., MOMS)

• Maximise backtracking (e.g., oldest first)

Reasoning with Expressive DLs – p.26/39

Algorithmic Optimisations

Useful techniques include

☞ Avoiding redundancy in search branches

• Davis-Putnam style semantic branching search

• Syntactic branching with no-good list

☞ Dependency directed backtracking

• Backjumping

• Dynamic backtracking

☞ Caching

• Cache partial models

• Cache satisfiability status (of labels)

☞ Heuristic ordering of propositional and modal expansion

• Min/maximise constrainedness (e.g., MOMS)

• Maximise backtracking (e.g., oldest first)

Reasoning with Expressive DLs – p.26/39

Algorithmic Optimisations

Useful techniques include

☞ Avoiding redundancy in search branches

• Davis-Putnam style semantic branching search

• Syntactic branching with no-good list

☞ Dependency directed backtracking

• Backjumping

• Dynamic backtracking

☞ Caching

• Cache partial models

• Cache satisfiability status (of labels)

☞ Heuristic ordering of propositional and modal expansion

• Min/maximise constrainedness (e.g., MOMS)

• Maximise backtracking (e.g., oldest first)

Reasoning with Expressive DLs – p.26/39

Algorithmic Optimisations

Useful techniques include

☞ Avoiding redundancy in search branches

• Davis-Putnam style semantic branching search

• Syntactic branching with no-good list

☞ Dependency directed backtracking

• Backjumping

• Dynamic backtracking

☞ Caching

• Cache partial models

• Cache satisfiability status (of labels)

☞ Heuristic ordering of propositional and modal expansion

• Min/maximise constrainedness (e.g., MOMS)

• Maximise backtracking (e.g., oldest first)

Reasoning with Expressive DLs – p.26/39

Algorithmic Optimisations

Useful techniques include

☞ Avoiding redundancy in search branches

• Davis-Putnam style semantic branching search

• Syntactic branching with no-good list

☞ Dependency directed backtracking

• Backjumping

• Dynamic backtracking

☞ Caching

• Cache partial models

• Cache satisfiability status (of labels)

☞ Heuristic ordering of propositional and modal expansion

• Min/maximise constrainedness (e.g., MOMS)

• Maximise backtracking (e.g., oldest first)

Reasoning with Expressive DLs – p.26/39

Algorithmic Optimisations

Useful techniques include

☞ Avoiding redundancy in search branches

• Davis-Putnam style semantic branching search

• Syntactic branching with no-good list

☞ Dependency directed backtracking

• Backjumping

• Dynamic backtracking

☞ Caching

• Cache partial models

• Cache satisfiability status (of labels)

☞ Heuristic ordering of propositional and modal expansion

• Min/maximise constrainedness (e.g., MOMS)

• Maximise backtracking (e.g., oldest first)

Reasoning with Expressive DLs – p.26/39

Algorithmic Optimisations

Useful techniques include

☞ Avoiding redundancy in search branches

• Davis-Putnam style semantic branching search

• Syntactic branching with no-good list

☞ Dependency directed backtracking

• Backjumping

• Dynamic backtracking

☞ Caching

• Cache partial models

• Cache satisfiability status (of labels)

☞ Heuristic ordering of propositional and modal expansion

• Min/maximise constrainedness (e.g., MOMS)

• Maximise backtracking (e.g., oldest first)

Reasoning with Expressive DLs – p.26/39

Algorithmic Optimisations

Useful techniques include

☞ Avoiding redundancy in search branches

• Davis-Putnam style semantic branching search

• Syntactic branching with no-good list

☞ Dependency directed backtracking

• Backjumping

• Dynamic backtracking

☞ Caching

• Cache partial models

• Cache satisfiability status (of labels)

☞ Heuristic ordering of propositional and modal expansion

• Min/maximise constrainedness (e.g., MOMS)

• Maximise backtracking (e.g., oldest first)

Reasoning with Expressive DLs – p.26/39

Algorithmic Optimisations

Useful techniques include

☞ Avoiding redundancy in search branches

• Davis-Putnam style semantic branching search

• Syntactic branching with no-good list

☞ Dependency directed backtracking

• Backjumping

• Dynamic backtracking

☞ Caching

• Cache partial models

• Cache satisfiability status (of labels)

☞ Heuristic ordering of propositional and modal expansion

• Min/maximise constrainedness (e.g., MOMS)

• Maximise backtracking (e.g., oldest first)

Reasoning with Expressive DLs – p.26/39

Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping

• Tag concepts introduced at branch points (e.g., when
expanding disjunctions)

• Expansion rules combine and propagate tags

• On discovering a clash, identify most recently
introduced concepts involved

• Jump back to relevant branch points without
exploring alternative branches

• Effect is to prune away part of the search space

• Performance improvements with GALEN KB again too
large to measure

Reasoning with Expressive DLs – p.27/39

Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping

• Tag concepts introduced at branch points (e.g., when
expanding disjunctions)

• Expansion rules combine and propagate tags

• On discovering a clash, identify most recently
introduced concepts involved

• Jump back to relevant branch points without
exploring alternative branches

• Effect is to prune away part of the search space

• Performance improvements with GALEN KB again too
large to measure

Reasoning with Expressive DLs – p.27/39

Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping

• Tag concepts introduced at branch points (e.g., when
expanding disjunctions)

• Expansion rules combine and propagate tags

• On discovering a clash, identify most recently
introduced concepts involved

• Jump back to relevant branch points without
exploring alternative branches

• Effect is to prune away part of the search space

• Performance improvements with GALEN KB again too
large to measure

Reasoning with Expressive DLs – p.27/39

Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping

• Tag concepts introduced at branch points (e.g., when
expanding disjunctions)

• Expansion rules combine and propagate tags

• On discovering a clash, identify most recently
introduced concepts involved

• Jump back to relevant branch points without
exploring alternative branches

• Effect is to prune away part of the search space

• Performance improvements with GALEN KB again too
large to measure

Reasoning with Expressive DLs – p.27/39

Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping

• Tag concepts introduced at branch points (e.g., when
expanding disjunctions)

• Expansion rules combine and propagate tags

• On discovering a clash, identify most recently
introduced concepts involved

• Jump back to relevant branch points without
exploring alternative branches

• Effect is to prune away part of the search space

• Performance improvements with GALEN KB again too
large to measure

Reasoning with Expressive DLs – p.27/39

Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping

• Tag concepts introduced at branch points (e.g., when
expanding disjunctions)

• Expansion rules combine and propagate tags

• On discovering a clash, identify most recently
introduced concepts involved

• Jump back to relevant branch points without
exploring alternative branches

• Effect is to prune away part of the search space

• Performance improvements with GALEN KB again too
large to measure

Reasoning with Expressive DLs – p.27/39

Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping

• Tag concepts introduced at branch points (e.g., when
expanding disjunctions)

• Expansion rules combine and propagate tags

• On discovering a clash, identify most recently
introduced concepts involved

• Jump back to relevant branch points without
exploring alternative branches

• Effect is to prune away part of the search space

• Performance improvements with GALEN KB again too
large to measure

Reasoning with Expressive DLs – p.27/39

Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping

• Tag concepts introduced at branch points (e.g., when
expanding disjunctions)

• Expansion rules combine and propagate tags

• On discovering a clash, identify most recently
introduced concepts involved

• Jump back to relevant branch points without
exploring alternative branches

• Effect is to prune away part of the search space

• Performance improvements with GALEN KB again too
large to measure

Reasoning with Expressive DLs – p.27/39

Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping

• Tag concepts introduced at branch points (e.g., when
expanding disjunctions)

• Expansion rules combine and propagate tags

• On discovering a clash, identify most recently
introduced concepts involved

• Jump back to relevant branch points without
exploring alternative branches

• Effect is to prune away part of the search space

• Performance improvements with GALEN KB again too
large to measure

Reasoning with Expressive DLs – p.27/39

Backjumping

E.g., if ∃R.¬A u ∀R.(A u B) u (C1 t D1) u . . . u (Cn t Dn) ⊆ L(x)

Reasoning with Expressive DLs – p.28/39

Backjumping

E.g., if ∃R.¬A u ∀R.(A u B) u (C1 t D1) u . . . u (Cn t Dn) ⊆ L(x)

x

Reasoning with Expressive DLs – p.28/39

Backjumping

E.g., if ∃R.¬A u ∀R.(A u B) u (C1 t D1) u . . . u (Cn t Dn) ⊆ L(x)

t

L(x) ∪ {C1}

x

x

Reasoning with Expressive DLs – p.28/39

Backjumping

E.g., if ∃R.¬A u ∀R.(A u B) u (C1 t D1) u . . . u (Cn t Dn) ⊆ L(x)

t

L(x) ∪ {C1}

x

x

x

t

L(x) ∪ {Cn-1}

Reasoning with Expressive DLs – p.28/39

Backjumping

E.g., if ∃R.¬A u ∀R.(A u B) u (C1 t D1) u . . . u (Cn t Dn) ⊆ L(x)

t

L(x) ∪ {C1}

L(x) ∪ {Cn}

x

x

x

x
t

t

L(x) ∪ {Cn-1}

Reasoning with Expressive DLs – p.28/39

Backjumping

E.g., if ∃R.¬A u ∀R.(A u B) u (C1 t D1) u . . . u (Cn t Dn) ⊆ L(x)

clash

t

R

L(x) ∪ {C1}

L(x) ∪ {Cn}

L(y) = {(A u B),¬A, A, B}

x

x

x

y

x
t

t

L(x) ∪ {Cn-1}

Reasoning with Expressive DLs – p.28/39

Backjumping

E.g., if ∃R.¬A u ∀R.(A u B) u (C1 t D1) u . . . u (Cn t Dn) ⊆ L(x)

clashclash

t

R

L(x) ∪ {C1}

L(x) ∪ {Cn}

L(y) = {(A u B),¬A, A, B}

x

x

x

y

x

x L(x) ∪ {¬Cn, Dn}

y L(y) = {(A u B),¬A, A, B}

R

t

t

t

L(x) ∪ {Cn-1}

Reasoning with Expressive DLs – p.28/39

Backjumping

E.g., if ∃R.¬A u ∀R.(A u B) u (C1 t D1) u . . . u (Cn t Dn) ⊆ L(x)

clashclash

t

t

t

R

L(x) ∪ {C1} L(x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

L(x) ∪ {Cn}

L(y) = {(A u B),¬A, A, B}

x

x

x

y

x

x L(x) ∪ {¬Cn, Dn}

y L(y) = {(A u B),¬A, A, B}

R

t

t

t

L(x) ∪ {Cn-1}

Reasoning with Expressive DLs – p.28/39

Backjumping

E.g., if ∃R.¬A u ∀R.(A u B) u (C1 t D1) u . . . u (Cn t Dn) ⊆ L(x)

PruningBackjump

clashclash . . .

t

t

t

R

L(x) ∪ {C1} L(x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

L(x) ∪ {Cn}

L(y) = {(A u B),¬A, A, B}

x

x

x

y

x

x L(x) ∪ {¬Cn, Dn}

y L(y) = {(A u B),¬A, A, B}

R

t

t

t

L(x) ∪ {Cn-1}

. . .

Reasoning with Expressive DLs – p.28/39

Caching

☞ Cache the satisfiability status of a node label

• Identical node labels often recur during expansion

• Avoid re-solving problems by caching satisfiability status
➙ When L(x) initialised, look in cache
➙ Use result, or add status once it has been computed

• Can use sub/super set caching to deal with similar labels

• Care required when used with blocking or inverse roles

• Significant performance gains with some kinds of
problem

☞ Cache (partial) models of concepts

• Use to detect “obvious” non-subsumption

• C 6v D if C u ¬D is satisfiable

• C u ¬D satisfiable if models of C and ¬D can be merged

• If not, continue with standard subsumption test

• Can use same technique in sub-problems

Reasoning with Expressive DLs – p.29/39

Caching

☞ Cache the satisfiability status of a node label

• Identical node labels often recur during expansion

• Avoid re-solving problems by caching satisfiability status
➙ When L(x) initialised, look in cache
➙ Use result, or add status once it has been computed

• Can use sub/super set caching to deal with similar labels

• Care required when used with blocking or inverse roles

• Significant performance gains with some kinds of
problem

☞ Cache (partial) models of concepts

• Use to detect “obvious” non-subsumption

• C 6v D if C u ¬D is satisfiable

• C u ¬D satisfiable if models of C and ¬D can be merged

• If not, continue with standard subsumption test

• Can use same technique in sub-problems

Reasoning with Expressive DLs – p.29/39

Caching

☞ Cache the satisfiability status of a node label

• Identical node labels often recur during expansion

• Avoid re-solving problems by caching satisfiability status
➙ When L(x) initialised, look in cache
➙ Use result, or add status once it has been computed

• Can use sub/super set caching to deal with similar labels

• Care required when used with blocking or inverse roles

• Significant performance gains with some kinds of
problem

☞ Cache (partial) models of concepts

• Use to detect “obvious” non-subsumption

• C 6v D if C u ¬D is satisfiable

• C u ¬D satisfiable if models of C and ¬D can be merged

• If not, continue with standard subsumption test

• Can use same technique in sub-problems

Reasoning with Expressive DLs – p.29/39

Caching

☞ Cache the satisfiability status of a node label

• Identical node labels often recur during expansion

• Avoid re-solving problems by caching satisfiability status

➙ When L(x) initialised, look in cache
➙ Use result, or add status once it has been computed

• Can use sub/super set caching to deal with similar labels

• Care required when used with blocking or inverse roles

• Significant performance gains with some kinds of
problem

☞ Cache (partial) models of concepts

• Use to detect “obvious” non-subsumption

• C 6v D if C u ¬D is satisfiable

• C u ¬D satisfiable if models of C and ¬D can be merged

• If not, continue with standard subsumption test

• Can use same technique in sub-problems

Reasoning with Expressive DLs – p.29/39

Caching

☞ Cache the satisfiability status of a node label

• Identical node labels often recur during expansion

• Avoid re-solving problems by caching satisfiability status
➙ When L(x) initialised, look in cache

➙ Use result, or add status once it has been computed

• Can use sub/super set caching to deal with similar labels

• Care required when used with blocking or inverse roles

• Significant performance gains with some kinds of
problem

☞ Cache (partial) models of concepts

• Use to detect “obvious” non-subsumption

• C 6v D if C u ¬D is satisfiable

• C u ¬D satisfiable if models of C and ¬D can be merged

• If not, continue with standard subsumption test

• Can use same technique in sub-problems

Reasoning with Expressive DLs – p.29/39

Caching

☞ Cache the satisfiability status of a node label

• Identical node labels often recur during expansion

• Avoid re-solving problems by caching satisfiability status
➙ When L(x) initialised, look in cache
➙ Use result, or add status once it has been computed

• Can use sub/super set caching to deal with similar labels

• Care required when used with blocking or inverse roles

• Significant performance gains with some kinds of
problem

☞ Cache (partial) models of concepts

• Use to detect “obvious” non-subsumption

• C 6v D if C u ¬D is satisfiable

• C u ¬D satisfiable if models of C and ¬D can be merged

• If not, continue with standard subsumption test

• Can use same technique in sub-problems

Reasoning with Expressive DLs – p.29/39

Caching

☞ Cache the satisfiability status of a node label

• Identical node labels often recur during expansion

• Avoid re-solving problems by caching satisfiability status
➙ When L(x) initialised, look in cache
➙ Use result, or add status once it has been computed

• Can use sub/super set caching to deal with similar labels

• Care required when used with blocking or inverse roles

• Significant performance gains with some kinds of
problem

☞ Cache (partial) models of concepts

• Use to detect “obvious” non-subsumption

• C 6v D if C u ¬D is satisfiable

• C u ¬D satisfiable if models of C and ¬D can be merged

• If not, continue with standard subsumption test

• Can use same technique in sub-problems

Reasoning with Expressive DLs – p.29/39

Caching

☞ Cache the satisfiability status of a node label

• Identical node labels often recur during expansion

• Avoid re-solving problems by caching satisfiability status
➙ When L(x) initialised, look in cache
➙ Use result, or add status once it has been computed

• Can use sub/super set caching to deal with similar labels

• Care required when used with blocking or inverse roles

• Significant performance gains with some kinds of
problem

☞ Cache (partial) models of concepts

• Use to detect “obvious” non-subsumption

• C 6v D if C u ¬D is satisfiable

• C u ¬D satisfiable if models of C and ¬D can be merged

• If not, continue with standard subsumption test

• Can use same technique in sub-problems

Reasoning with Expressive DLs – p.29/39

Caching

☞ Cache the satisfiability status of a node label

• Identical node labels often recur during expansion

• Avoid re-solving problems by caching satisfiability status
➙ When L(x) initialised, look in cache
➙ Use result, or add status once it has been computed

• Can use sub/super set caching to deal with similar labels

• Care required when used with blocking or inverse roles

• Significant performance gains with some kinds of
problem

☞ Cache (partial) models of concepts

• Use to detect “obvious” non-subsumption

• C 6v D if C u ¬D is satisfiable

• C u ¬D satisfiable if models of C and ¬D can be merged

• If not, continue with standard subsumption test

• Can use same technique in sub-problems

Reasoning with Expressive DLs – p.29/39

Caching

☞ Cache the satisfiability status of a node label

• Identical node labels often recur during expansion

• Avoid re-solving problems by caching satisfiability status
➙ When L(x) initialised, look in cache
➙ Use result, or add status once it has been computed

• Can use sub/super set caching to deal with similar labels

• Care required when used with blocking or inverse roles

• Significant performance gains with some kinds of
problem

☞ Cache (partial) models of concepts

• Use to detect “obvious” non-subsumption

• C 6v D if C u ¬D is satisfiable

• C u ¬D satisfiable if models of C and ¬D can be merged

• If not, continue with standard subsumption test

• Can use same technique in sub-problems

Reasoning with Expressive DLs – p.29/39

Caching

☞ Cache the satisfiability status of a node label

• Identical node labels often recur during expansion

• Avoid re-solving problems by caching satisfiability status
➙ When L(x) initialised, look in cache
➙ Use result, or add status once it has been computed

• Can use sub/super set caching to deal with similar labels

• Care required when used with blocking or inverse roles

• Significant performance gains with some kinds of
problem

☞ Cache (partial) models of concepts

• Use to detect “obvious” non-subsumption

• C 6v D if C u ¬D is satisfiable

• C u ¬D satisfiable if models of C and ¬D can be merged

• If not, continue with standard subsumption test

• Can use same technique in sub-problems

Reasoning with Expressive DLs – p.29/39

Caching

☞ Cache the satisfiability status of a node label

• Identical node labels often recur during expansion

• Avoid re-solving problems by caching satisfiability status
➙ When L(x) initialised, look in cache
➙ Use result, or add status once it has been computed

• Can use sub/super set caching to deal with similar labels

• Care required when used with blocking or inverse roles

• Significant performance gains with some kinds of
problem

☞ Cache (partial) models of concepts

• Use to detect “obvious” non-subsumption

• C 6v D if C u ¬D is satisfiable

• C u ¬D satisfiable if models of C and ¬D can be merged

• If not, continue with standard subsumption test

• Can use same technique in sub-problems

Reasoning with Expressive DLs – p.29/39

Caching

☞ Cache the satisfiability status of a node label

• Identical node labels often recur during expansion

• Avoid re-solving problems by caching satisfiability status
➙ When L(x) initialised, look in cache
➙ Use result, or add status once it has been computed

• Can use sub/super set caching to deal with similar labels

• Care required when used with blocking or inverse roles

• Significant performance gains with some kinds of
problem

☞ Cache (partial) models of concepts

• Use to detect “obvious” non-subsumption

• C 6v D if C u ¬D is satisfiable

• C u ¬D satisfiable if models of C and ¬D can be merged

• If not, continue with standard subsumption test

• Can use same technique in sub-problems

Reasoning with Expressive DLs – p.29/39

Caching

☞ Cache the satisfiability status of a node label

• Identical node labels often recur during expansion

• Avoid re-solving problems by caching satisfiability status
➙ When L(x) initialised, look in cache
➙ Use result, or add status once it has been computed

• Can use sub/super set caching to deal with similar labels

• Care required when used with blocking or inverse roles

• Significant performance gains with some kinds of
problem

☞ Cache (partial) models of concepts

• Use to detect “obvious” non-subsumption

• C 6v D if C u ¬D is satisfiable

• C u ¬D satisfiable if models of C and ¬D can be merged

• If not, continue with standard subsumption test

• Can use same technique in sub-problems

Reasoning with Expressive DLs – p.29/39

Caching

☞ Cache the satisfiability status of a node label

• Identical node labels often recur during expansion

• Avoid re-solving problems by caching satisfiability status
➙ When L(x) initialised, look in cache
➙ Use result, or add status once it has been computed

• Can use sub/super set caching to deal with similar labels

• Care required when used with blocking or inverse roles

• Significant performance gains with some kinds of
problem

☞ Cache (partial) models of concepts

• Use to detect “obvious” non-subsumption

• C 6v D if C u ¬D is satisfiable

• C u ¬D satisfiable if models of C and ¬D can be merged

• If not, continue with standard subsumption test

• Can use same technique in sub-problems

Reasoning with Expressive DLs – p.29/39

DL applications

Reasoning with Expressive DLs – p.30/39

Terminological KR and Ontologies

Initial motivation for work on FaCT system was Galen project

☞ General requirement for medical terminologies

☞ Static lists/taxonomies difficult to build and maintain

• Need to be very large and highly interconnected

• Inevitably contain many errors and omissions

☞ Galen project aims to replace static hierarchy with DL

• Describe concepts (e.g., spiral fracture of left femur)

• Use DL classifier to build taxonomy

☞ Needed expressive DL and efficient reasoning

• Descriptions use transitive roles, inverses, GCIs etc.

• Even prototype KB is very large (≈3,000 concepts)

• Existing (incomplete) classifier took ≈24 hours to
classify KB

• FaCT system (sound and complete) takes ≈60s

Reasoning with Expressive DLs – p.31/39

Terminological KR and Ontologies

Initial motivation for work on FaCT system was Galen project

☞ General requirement for medical terminologies

☞ Static lists/taxonomies difficult to build and maintain

• Need to be very large and highly interconnected

• Inevitably contain many errors and omissions

☞ Galen project aims to replace static hierarchy with DL

• Describe concepts (e.g., spiral fracture of left femur)

• Use DL classifier to build taxonomy

☞ Needed expressive DL and efficient reasoning

• Descriptions use transitive roles, inverses, GCIs etc.

• Even prototype KB is very large (≈3,000 concepts)

• Existing (incomplete) classifier took ≈24 hours to
classify KB

• FaCT system (sound and complete) takes ≈60s

Reasoning with Expressive DLs – p.31/39

Terminological KR and Ontologies

Initial motivation for work on FaCT system was Galen project

☞ General requirement for medical terminologies

☞ Static lists/taxonomies difficult to build and maintain

• Need to be very large and highly interconnected

• Inevitably contain many errors and omissions

☞ Galen project aims to replace static hierarchy with DL

• Describe concepts (e.g., spiral fracture of left femur)

• Use DL classifier to build taxonomy

☞ Needed expressive DL and efficient reasoning

• Descriptions use transitive roles, inverses, GCIs etc.

• Even prototype KB is very large (≈3,000 concepts)

• Existing (incomplete) classifier took ≈24 hours to
classify KB

• FaCT system (sound and complete) takes ≈60s

Reasoning with Expressive DLs – p.31/39

Terminological KR and Ontologies

Initial motivation for work on FaCT system was Galen project

☞ General requirement for medical terminologies

☞ Static lists/taxonomies difficult to build and maintain

• Need to be very large and highly interconnected

• Inevitably contain many errors and omissions

☞ Galen project aims to replace static hierarchy with DL

• Describe concepts (e.g., spiral fracture of left femur)

• Use DL classifier to build taxonomy

☞ Needed expressive DL and efficient reasoning

• Descriptions use transitive roles, inverses, GCIs etc.

• Even prototype KB is very large (≈3,000 concepts)

• Existing (incomplete) classifier took ≈24 hours to
classify KB

• FaCT system (sound and complete) takes ≈60s

Reasoning with Expressive DLs – p.31/39

Terminological KR and Ontologies

Initial motivation for work on FaCT system was Galen project

☞ General requirement for medical terminologies

☞ Static lists/taxonomies difficult to build and maintain

• Need to be very large and highly interconnected

• Inevitably contain many errors and omissions

☞ Galen project aims to replace static hierarchy with DL

• Describe concepts (e.g., spiral fracture of left femur)

• Use DL classifier to build taxonomy

☞ Needed expressive DL and efficient reasoning

• Descriptions use transitive roles, inverses, GCIs etc.

• Even prototype KB is very large (≈3,000 concepts)

• Existing (incomplete) classifier took ≈24 hours to
classify KB

• FaCT system (sound and complete) takes ≈60s

Reasoning with Expressive DLs – p.31/39

Terminological KR and Ontologies

Initial motivation for work on FaCT system was Galen project

☞ General requirement for medical terminologies

☞ Static lists/taxonomies difficult to build and maintain

• Need to be very large and highly interconnected

• Inevitably contain many errors and omissions

☞ Galen project aims to replace static hierarchy with DL

• Describe concepts (e.g., spiral fracture of left femur)

• Use DL classifier to build taxonomy

☞ Needed expressive DL and efficient reasoning

• Descriptions use transitive roles, inverses, GCIs etc.

• Even prototype KB is very large (≈3,000 concepts)

• Existing (incomplete) classifier took ≈24 hours to
classify KB

• FaCT system (sound and complete) takes ≈60s

Reasoning with Expressive DLs – p.31/39

The Semantic Web

US DAML programme aims to develop so-called Semantic Web

☞ Most existing Web resources only human understandable

• Markup (HTML) provides rendering information

• Textual/graphical information for human consumption

☞ Semantic Web aims at machine understandability

• Semantic markup will be added to web resources

• Markup will use Ontologies for shared understanding

• Requirement for DAML ontology language

• Should extend existing Web standards (XML, RDF,
RDFS)

Reasoning with Expressive DLs – p.32/39

The Semantic Web

US DAML programme aims to develop so-called Semantic Web

☞ Most existing Web resources only human understandable

• Markup (HTML) provides rendering information

• Textual/graphical information for human consumption

☞ Semantic Web aims at machine understandability

• Semantic markup will be added to web resources

• Markup will use Ontologies for shared understanding

• Requirement for DAML ontology language

• Should extend existing Web standards (XML, RDF,
RDFS)

Reasoning with Expressive DLs – p.32/39

The Semantic Web

US DAML programme aims to develop so-called Semantic Web

☞ Most existing Web resources only human understandable

• Markup (HTML) provides rendering information

• Textual/graphical information for human consumption

☞ Semantic Web aims at machine understandability

• Semantic markup will be added to web resources

• Markup will use Ontologies for shared understanding

• Requirement for DAML ontology language

• Should extend existing Web standards (XML, RDF,
RDFS)

Reasoning with Expressive DLs – p.32/39

The Semantic Web

US DAML programme aims to develop so-called Semantic Web

☞ Most existing Web resources only human understandable

• Markup (HTML) provides rendering information

• Textual/graphical information for human consumption

☞ Semantic Web aims at machine understandability

• Semantic markup will be added to web resources

• Markup will use Ontologies for shared understanding

• Requirement for DAML ontology language

• Should extend existing Web standards (XML, RDF,
RDFS)

Reasoning with Expressive DLs – p.32/39

The Semantic Web

US DAML programme aims to develop so-called Semantic Web

☞ Most existing Web resources only human understandable

• Markup (HTML) provides rendering information

• Textual/graphical information for human consumption

☞ Semantic Web aims at machine understandability

• Semantic markup will be added to web resources

• Markup will use Ontologies for shared understanding

• Requirement for DAML ontology language

• Should extend existing Web standards (XML, RDF,
RDFS)

Reasoning with Expressive DLs – p.32/39

The Semantic Web

US DAML programme aims to develop so-called Semantic Web

☞ Most existing Web resources only human understandable

• Markup (HTML) provides rendering information

• Textual/graphical information for human consumption

☞ Semantic Web aims at machine understandability

• Semantic markup will be added to web resources

• Markup will use Ontologies for shared understanding

• Requirement for DAML ontology language

• Should extend existing Web standards (XML, RDF,
RDFS)

Reasoning with Expressive DLs – p.32/39

The Semantic Web

US DAML programme aims to develop so-called Semantic Web

☞ Most existing Web resources only human understandable

• Markup (HTML) provides rendering information

• Textual/graphical information for human consumption

☞ Semantic Web aims at machine understandability

• Semantic markup will be added to web resources

• Markup will use Ontologies for shared understanding

• Requirement for DAML ontology language

• Should extend existing Web standards (XML, RDF,
RDFS)

Reasoning with Expressive DLs – p.32/39

The Semantic Web

US DAML programme aims to develop so-called Semantic Web

☞ Most existing Web resources only human understandable

• Markup (HTML) provides rendering information

• Textual/graphical information for human consumption

☞ Semantic Web aims at machine understandability

• Semantic markup will be added to web resources

• Markup will use Ontologies for shared understanding

• Requirement for DAML ontology language

• Should extend existing Web standards (XML, RDF,
RDFS)

Reasoning with Expressive DLs – p.32/39

The Semantic Web

US DAML programme aims to develop so-called Semantic Web

☞ Most existing Web resources only human understandable

• Markup (HTML) provides rendering information

• Textual/graphical information for human consumption

☞ Semantic Web aims at machine understandability

• Semantic markup will be added to web resources

• Markup will use Ontologies for shared understanding

• Requirement for DAML ontology language

• Should extend existing Web standards (XML, RDF,
RDFS)

Reasoning with Expressive DLs – p.32/39

The Semantic Web

US DAML programme aims to develop so-called Semantic Web

☞ Most existing Web resources only human understandable

• Markup (HTML) provides rendering information

• Textual/graphical information for human consumption

☞ Semantic Web aims at machine understandability

• Semantic markup will be added to web resources

• Markup will use Ontologies for shared understanding

• Requirement for DAML ontology language

• Should extend existing Web standards (XML, RDF,
RDFS)

Reasoning with Expressive DLs – p.32/39

OIL and DAML+OIL

OIL language already developed to meet similar requirements

☞ Intuitive (frame) syntax plus high expressive power

☞ Well defined semantics via mapping to SHIQ DL

☞ Can use FaCT system to reason with OIL ontologies

☞ Extends existing Web standards (XML, RDF, RDFS)

Two efforts merged to produce single language, DAML+OIL

☞ Effectively a DL with RDFS based syntax

☞ Can use DL reasoning with DAML+OIL

☞ E.g., OilEd ontology editor

• Frame based interface (e.g., Protegé, OntoEdit)

• Extended to capture whole of OIL/DAML+OIL languages

• Reasoning support from FaCT (via CORBA interface)

Reasoning with Expressive DLs – p.33/39

OIL and DAML+OIL

OIL language already developed to meet similar requirements

☞ Intuitive (frame) syntax plus high expressive power

☞ Well defined semantics via mapping to SHIQ DL

☞ Can use FaCT system to reason with OIL ontologies

☞ Extends existing Web standards (XML, RDF, RDFS)

Two efforts merged to produce single language, DAML+OIL

☞ Effectively a DL with RDFS based syntax

☞ Can use DL reasoning with DAML+OIL

☞ E.g., OilEd ontology editor

• Frame based interface (e.g., Protegé, OntoEdit)

• Extended to capture whole of OIL/DAML+OIL languages

• Reasoning support from FaCT (via CORBA interface)

Reasoning with Expressive DLs – p.33/39

OIL and DAML+OIL

OIL language already developed to meet similar requirements

☞ Intuitive (frame) syntax plus high expressive power

☞ Well defined semantics via mapping to SHIQ DL

☞ Can use FaCT system to reason with OIL ontologies

☞ Extends existing Web standards (XML, RDF, RDFS)

Two efforts merged to produce single language, DAML+OIL

☞ Effectively a DL with RDFS based syntax

☞ Can use DL reasoning with DAML+OIL

☞ E.g., OilEd ontology editor

• Frame based interface (e.g., Protegé, OntoEdit)

• Extended to capture whole of OIL/DAML+OIL languages

• Reasoning support from FaCT (via CORBA interface)

Reasoning with Expressive DLs – p.33/39

OIL and DAML+OIL

OIL language already developed to meet similar requirements

☞ Intuitive (frame) syntax plus high expressive power

☞ Well defined semantics via mapping to SHIQ DL

☞ Can use FaCT system to reason with OIL ontologies

☞ Extends existing Web standards (XML, RDF, RDFS)

Two efforts merged to produce single language, DAML+OIL

☞ Effectively a DL with RDFS based syntax

☞ Can use DL reasoning with DAML+OIL

☞ E.g., OilEd ontology editor

• Frame based interface (e.g., Protegé, OntoEdit)

• Extended to capture whole of OIL/DAML+OIL languages

• Reasoning support from FaCT (via CORBA interface)

Reasoning with Expressive DLs – p.33/39

OIL and DAML+OIL

OIL language already developed to meet similar requirements

☞ Intuitive (frame) syntax plus high expressive power

☞ Well defined semantics via mapping to SHIQ DL

☞ Can use FaCT system to reason with OIL ontologies

☞ Extends existing Web standards (XML, RDF, RDFS)

Two efforts merged to produce single language, DAML+OIL

☞ Effectively a DL with RDFS based syntax

☞ Can use DL reasoning with DAML+OIL

☞ E.g., OilEd ontology editor

• Frame based interface (e.g., Protegé, OntoEdit)

• Extended to capture whole of OIL/DAML+OIL languages

• Reasoning support from FaCT (via CORBA interface)

Reasoning with Expressive DLs – p.33/39

OIL and DAML+OIL

OIL language already developed to meet similar requirements

☞ Intuitive (frame) syntax plus high expressive power

☞ Well defined semantics via mapping to SHIQ DL

☞ Can use FaCT system to reason with OIL ontologies

☞ Extends existing Web standards (XML, RDF, RDFS)

Two efforts merged to produce single language, DAML+OIL

☞ Effectively a DL with RDFS based syntax

☞ Can use DL reasoning with DAML+OIL

☞ E.g., OilEd ontology editor

• Frame based interface (e.g., Protegé, OntoEdit)

• Extended to capture whole of OIL/DAML+OIL languages

• Reasoning support from FaCT (via CORBA interface)

Reasoning with Expressive DLs – p.33/39

OIL and DAML+OIL

OIL language already developed to meet similar requirements

☞ Intuitive (frame) syntax plus high expressive power

☞ Well defined semantics via mapping to SHIQ DL

☞ Can use FaCT system to reason with OIL ontologies

☞ Extends existing Web standards (XML, RDF, RDFS)

Two efforts merged to produce single language, DAML+OIL

☞ Effectively a DL with RDFS based syntax

☞ Can use DL reasoning with DAML+OIL

☞ E.g., OilEd ontology editor

• Frame based interface (e.g., Protegé, OntoEdit)

• Extended to capture whole of OIL/DAML+OIL languages

• Reasoning support from FaCT (via CORBA interface)

Reasoning with Expressive DLs – p.33/39

OIL and DAML+OIL

OIL language already developed to meet similar requirements

☞ Intuitive (frame) syntax plus high expressive power

☞ Well defined semantics via mapping to SHIQ DL

☞ Can use FaCT system to reason with OIL ontologies

☞ Extends existing Web standards (XML, RDF, RDFS)

Two efforts merged to produce single language, DAML+OIL

☞ Effectively a DL with RDFS based syntax

☞ Can use DL reasoning with DAML+OIL

☞ E.g., OilEd ontology editor

• Frame based interface (e.g., Protegé, OntoEdit)

• Extended to capture whole of OIL/DAML+OIL languages

• Reasoning support from FaCT (via CORBA interface)

Reasoning with Expressive DLs – p.33/39

OIL and DAML+OIL

OIL language already developed to meet similar requirements

☞ Intuitive (frame) syntax plus high expressive power

☞ Well defined semantics via mapping to SHIQ DL

☞ Can use FaCT system to reason with OIL ontologies

☞ Extends existing Web standards (XML, RDF, RDFS)

Two efforts merged to produce single language, DAML+OIL

☞ Effectively a DL with RDFS based syntax

☞ Can use DL reasoning with DAML+OIL

☞ E.g., OilEd ontology editor

• Frame based interface (e.g., Protegé, OntoEdit)

• Extended to capture whole of OIL/DAML+OIL languages

• Reasoning support from FaCT (via CORBA interface)

Reasoning with Expressive DLs – p.33/39

OIL and DAML+OIL

OIL language already developed to meet similar requirements

☞ Intuitive (frame) syntax plus high expressive power

☞ Well defined semantics via mapping to SHIQ DL

☞ Can use FaCT system to reason with OIL ontologies

☞ Extends existing Web standards (XML, RDF, RDFS)

Two efforts merged to produce single language, DAML+OIL

☞ Effectively a DL with RDFS based syntax

☞ Can use DL reasoning with DAML+OIL

☞ E.g., OilEd ontology editor

• Frame based interface (e.g., Protegé, OntoEdit)

• Extended to capture whole of OIL/DAML+OIL languages

• Reasoning support from FaCT (via CORBA interface)

Reasoning with Expressive DLs – p.33/39

OilEd

E.g., DAML+OIL medical terminology ontology

☞ Transitive roles capture transitive partonomy, causality, etc.

Smoking v ∃causes.Cancer plus Cancer v ∃causes.Death
⇒ Cancer v FatalThing

☞ GCIs represent additional non-definitional knowledge

Stomach-Ulcer .
= Ulcer u ∃hasLocation.Stomach plus

Stomach-Ulcer v ∃hasLocation.Lining-Of-Stomach
⇒ Ulcer u ∃hasLocation.Stomach v OrganLiningLesion

☞ Inverse roles capture e.g. causes/causedBy relationship

Death u ∃causedBy.Smoking v PrematureDeath
⇒ Smoking v CauseOfPrematureDeath

☞ Cardinality restrictions add consistency constraints

BloodPressure v ∃hasValue.(High t Low) u 61hasValue plus
High v ¬Low ⇒ HighLowBloodPressure v ⊥

Reasoning with Expressive DLs – p.34/39

OilEd

E.g., DAML+OIL medical terminology ontology

☞ Transitive roles capture transitive partonomy, causality, etc.

Smoking v ∃causes.Cancer plus Cancer v ∃causes.Death
⇒ Cancer v FatalThing

☞ GCIs represent additional non-definitional knowledge

Stomach-Ulcer .
= Ulcer u ∃hasLocation.Stomach plus

Stomach-Ulcer v ∃hasLocation.Lining-Of-Stomach
⇒ Ulcer u ∃hasLocation.Stomach v OrganLiningLesion

☞ Inverse roles capture e.g. causes/causedBy relationship

Death u ∃causedBy.Smoking v PrematureDeath
⇒ Smoking v CauseOfPrematureDeath

☞ Cardinality restrictions add consistency constraints

BloodPressure v ∃hasValue.(High t Low) u 61hasValue plus
High v ¬Low ⇒ HighLowBloodPressure v ⊥

Reasoning with Expressive DLs – p.34/39

OilEd

E.g., DAML+OIL medical terminology ontology

☞ Transitive roles capture transitive partonomy, causality, etc.

Smoking v ∃causes.Cancer plus Cancer v ∃causes.Death
⇒ Cancer v FatalThing

☞ GCIs represent additional non-definitional knowledge

Stomach-Ulcer .
= Ulcer u ∃hasLocation.Stomach plus

Stomach-Ulcer v ∃hasLocation.Lining-Of-Stomach
⇒ Ulcer u ∃hasLocation.Stomach v OrganLiningLesion

☞ Inverse roles capture e.g. causes/causedBy relationship

Death u ∃causedBy.Smoking v PrematureDeath
⇒ Smoking v CauseOfPrematureDeath

☞ Cardinality restrictions add consistency constraints

BloodPressure v ∃hasValue.(High t Low) u 61hasValue plus
High v ¬Low ⇒ HighLowBloodPressure v ⊥

Reasoning with Expressive DLs – p.34/39

OilEd

E.g., DAML+OIL medical terminology ontology

☞ Transitive roles capture transitive partonomy, causality, etc.

Smoking v ∃causes.Cancer plus Cancer v ∃causes.Death
⇒ Cancer v FatalThing

☞ GCIs represent additional non-definitional knowledge

Stomach-Ulcer .
= Ulcer u ∃hasLocation.Stomach plus

Stomach-Ulcer v ∃hasLocation.Lining-Of-Stomach
⇒ Ulcer u ∃hasLocation.Stomach v OrganLiningLesion

☞ Inverse roles capture e.g. causes/causedBy relationship

Death u ∃causedBy.Smoking v PrematureDeath
⇒ Smoking v CauseOfPrematureDeath

☞ Cardinality restrictions add consistency constraints

BloodPressure v ∃hasValue.(High t Low) u 61hasValue plus
High v ¬Low ⇒ HighLowBloodPressure v ⊥

Reasoning with Expressive DLs – p.34/39

OilEd

E.g., DAML+OIL medical terminology ontology

☞ Transitive roles capture transitive partonomy, causality, etc.

Smoking v ∃causes.Cancer plus Cancer v ∃causes.Death
⇒ Cancer v FatalThing

☞ GCIs represent additional non-definitional knowledge

Stomach-Ulcer .
= Ulcer u ∃hasLocation.Stomach plus

Stomach-Ulcer v ∃hasLocation.Lining-Of-Stomach
⇒ Ulcer u ∃hasLocation.Stomach v OrganLiningLesion

☞ Inverse roles capture e.g. causes/causedBy relationship

Death u ∃causedBy.Smoking v PrematureDeath
⇒ Smoking v CauseOfPrematureDeath

☞ Cardinality restrictions add consistency constraints

BloodPressure v ∃hasValue.(High t Low) u 61hasValue plus
High v ¬Low ⇒ HighLowBloodPressure v ⊥

Reasoning with Expressive DLs – p.34/39

OilEd

E.g., DAML+OIL medical terminology ontology

☞ Transitive roles capture transitive partonomy, causality, etc.

Smoking v ∃causes.Cancer plus Cancer v ∃causes.Death
⇒ Cancer v FatalThing

☞ GCIs represent additional non-definitional knowledge

Stomach-Ulcer .
= Ulcer u ∃hasLocation.Stomach plus

Stomach-Ulcer v ∃hasLocation.Lining-Of-Stomach
⇒ Ulcer u ∃hasLocation.Stomach v OrganLiningLesion

☞ Inverse roles capture e.g. causes/causedBy relationship

Death u ∃causedBy.Smoking v PrematureDeath
⇒ Smoking v CauseOfPrematureDeath

☞ Cardinality restrictions add consistency constraints

BloodPressure v ∃hasValue.(High t Low) u 61hasValue plus
High v ¬Low ⇒ HighLowBloodPressure v ⊥

Reasoning with Expressive DLs – p.34/39

OilEd

E.g., DAML+OIL medical terminology ontology

☞ Transitive roles capture transitive partonomy, causality, etc.

Smoking v ∃causes.Cancer plus Cancer v ∃causes.Death
⇒ Cancer v FatalThing

☞ GCIs represent additional non-definitional knowledge

Stomach-Ulcer .
= Ulcer u ∃hasLocation.Stomach plus

Stomach-Ulcer v ∃hasLocation.Lining-Of-Stomach
⇒ Ulcer u ∃hasLocation.Stomach v OrganLiningLesion

☞ Inverse roles capture e.g. causes/causedBy relationship

Death u ∃causedBy.Smoking v PrematureDeath
⇒ Smoking v CauseOfPrematureDeath

☞ Cardinality restrictions add consistency constraints

BloodPressure v ∃hasValue.(High t Low) u 61hasValue plus
High v ¬Low ⇒ HighLowBloodPressure v ⊥

Reasoning with Expressive DLs – p.34/39

OilEd

E.g., DAML+OIL medical terminology ontology

☞ Transitive roles capture transitive partonomy, causality, etc.

Smoking v ∃causes.Cancer plus Cancer v ∃causes.Death
⇒ Cancer v FatalThing

☞ GCIs represent additional non-definitional knowledge

Stomach-Ulcer .
= Ulcer u ∃hasLocation.Stomach plus

Stomach-Ulcer v ∃hasLocation.Lining-Of-Stomach
⇒ Ulcer u ∃hasLocation.Stomach v OrganLiningLesion

☞ Inverse roles capture e.g. causes/causedBy relationship

Death u ∃causedBy.Smoking v PrematureDeath
⇒ Smoking v CauseOfPrematureDeath

☞ Cardinality restrictions add consistency constraints

BloodPressure v ∃hasValue.(High t Low) u 61hasValue plus
High v ¬Low ⇒ HighLowBloodPressure v ⊥

Reasoning with Expressive DLs – p.34/39

OilEd

E.g., DAML+OIL medical terminology ontology

☞ Transitive roles capture transitive partonomy, causality, etc.

Smoking v ∃causes.Cancer plus Cancer v ∃causes.Death
⇒ Cancer v FatalThing

☞ GCIs represent additional non-definitional knowledge

Stomach-Ulcer .
= Ulcer u ∃hasLocation.Stomach plus

Stomach-Ulcer v ∃hasLocation.Lining-Of-Stomach
⇒ Ulcer u ∃hasLocation.Stomach v OrganLiningLesion

☞ Inverse roles capture e.g. causes/causedBy relationship

Death u ∃causedBy.Smoking v PrematureDeath
⇒ Smoking v CauseOfPrematureDeath

☞ Cardinality restrictions add consistency constraints

BloodPressure v ∃hasValue.(High t Low) u 61hasValue plus
High v ¬Low ⇒ HighLowBloodPressure v ⊥

Reasoning with Expressive DLs – p.34/39

Database Schema and Query Reasoning

☞ DLR (n-ary DL) can capture semantics of many
datamodelling methodologies (e.g., EER)

☞ Satisfiability preserving mapping to SHIQ allows use of DL
reasoners (e.g., FaCT, RACER)

☞ DL Abox can also capture semantics of conjunctive queries

• Can reason about query containment w.r.t. schema

☞ DL reasoning can be used to support, e.g.

• Schema design and integration

• Query optimisation

• Interoperability and federation

☞ E.g., I.COM Intelligent Conceptual Modelling tool (Enrico
Franconi)

• Uses FaCT system to provide reasoning support for EER

Reasoning with Expressive DLs – p.35/39

Database Schema and Query Reasoning

☞ DLR (n-ary DL) can capture semantics of many
datamodelling methodologies (e.g., EER)

☞ Satisfiability preserving mapping to SHIQ allows use of DL
reasoners (e.g., FaCT, RACER)

☞ DL Abox can also capture semantics of conjunctive queries

• Can reason about query containment w.r.t. schema

☞ DL reasoning can be used to support, e.g.

• Schema design and integration

• Query optimisation

• Interoperability and federation

☞ E.g., I.COM Intelligent Conceptual Modelling tool (Enrico
Franconi)

• Uses FaCT system to provide reasoning support for EER

Reasoning with Expressive DLs – p.35/39

Database Schema and Query Reasoning

☞ DLR (n-ary DL) can capture semantics of many
datamodelling methodologies (e.g., EER)

☞ Satisfiability preserving mapping to SHIQ allows use of DL
reasoners (e.g., FaCT, RACER)

☞ DL Abox can also capture semantics of conjunctive queries

• Can reason about query containment w.r.t. schema

☞ DL reasoning can be used to support, e.g.

• Schema design and integration

• Query optimisation

• Interoperability and federation

☞ E.g., I.COM Intelligent Conceptual Modelling tool (Enrico
Franconi)

• Uses FaCT system to provide reasoning support for EER

Reasoning with Expressive DLs – p.35/39

Database Schema and Query Reasoning

☞ DLR (n-ary DL) can capture semantics of many
datamodelling methodologies (e.g., EER)

☞ Satisfiability preserving mapping to SHIQ allows use of DL
reasoners (e.g., FaCT, RACER)

☞ DL Abox can also capture semantics of conjunctive queries

• Can reason about query containment w.r.t. schema

☞ DL reasoning can be used to support, e.g.

• Schema design and integration

• Query optimisation

• Interoperability and federation

☞ E.g., I.COM Intelligent Conceptual Modelling tool (Enrico
Franconi)

• Uses FaCT system to provide reasoning support for EER

Reasoning with Expressive DLs – p.35/39

Database Schema and Query Reasoning

☞ DLR (n-ary DL) can capture semantics of many
datamodelling methodologies (e.g., EER)

☞ Satisfiability preserving mapping to SHIQ allows use of DL
reasoners (e.g., FaCT, RACER)

☞ DL Abox can also capture semantics of conjunctive queries

• Can reason about query containment w.r.t. schema

☞ DL reasoning can be used to support, e.g.

• Schema design and integration

• Query optimisation

• Interoperability and federation

☞ E.g., I.COM Intelligent Conceptual Modelling tool (Enrico
Franconi)

• Uses FaCT system to provide reasoning support for EER

Reasoning with Expressive DLs – p.35/39

Database Schema and Query Reasoning

☞ DLR (n-ary DL) can capture semantics of many
datamodelling methodologies (e.g., EER)

☞ Satisfiability preserving mapping to SHIQ allows use of DL
reasoners (e.g., FaCT, RACER)

☞ DL Abox can also capture semantics of conjunctive queries

• Can reason about query containment w.r.t. schema

☞ DL reasoning can be used to support, e.g.

• Schema design and integration

• Query optimisation

• Interoperability and federation

☞ E.g., I.COM Intelligent Conceptual Modelling tool (Enrico
Franconi)

• Uses FaCT system to provide reasoning support for EER

Reasoning with Expressive DLs – p.35/39

Summary

☞ DLs are logic based KR formalisms

☞ DL systems provide efficient inference services

• Careful choice of logic/algorithm

• Highly optimised implementation

☞ DLs have proved effective in a range of applications

• Terminologies/Ontologies

• Databases

☞ DLs have been influential in development of Semantic Web

• Web standard ontology language will be DL based

Reasoning with Expressive DLs – p.36/39

Summary

☞ DLs are logic based KR formalisms

☞ DL systems provide efficient inference services

• Careful choice of logic/algorithm

• Highly optimised implementation

☞ DLs have proved effective in a range of applications

• Terminologies/Ontologies

• Databases

☞ DLs have been influential in development of Semantic Web

• Web standard ontology language will be DL based

Reasoning with Expressive DLs – p.36/39

Summary

☞ DLs are logic based KR formalisms

☞ DL systems provide efficient inference services

• Careful choice of logic/algorithm

• Highly optimised implementation

☞ DLs have proved effective in a range of applications

• Terminologies/Ontologies

• Databases

☞ DLs have been influential in development of Semantic Web

• Web standard ontology language will be DL based

Reasoning with Expressive DLs – p.36/39

Summary

☞ DLs are logic based KR formalisms

☞ DL systems provide efficient inference services

• Careful choice of logic/algorithm

• Highly optimised implementation

☞ DLs have proved effective in a range of applications

• Terminologies/Ontologies

• Databases

☞ DLs have been influential in development of Semantic Web

• Web standard ontology language will be DL based

Reasoning with Expressive DLs – p.36/39

Summary

☞ DLs are logic based KR formalisms

☞ DL systems provide efficient inference services

• Careful choice of logic/algorithm

• Highly optimised implementation

☞ DLs have proved effective in a range of applications

• Terminologies/Ontologies

• Databases

☞ DLs have been influential in development of Semantic Web

• Web standard ontology language will be DL based

Reasoning with Expressive DLs – p.36/39

Summary

☞ DLs are logic based KR formalisms

☞ DL systems provide efficient inference services

• Careful choice of logic/algorithm

• Highly optimised implementation

☞ DLs have proved effective in a range of applications

• Terminologies/Ontologies

• Databases

☞ DLs have been influential in development of Semantic Web

• Web standard ontology language will be DL based

Reasoning with Expressive DLs – p.36/39

Summary

☞ DLs are logic based KR formalisms

☞ DL systems provide efficient inference services

• Careful choice of logic/algorithm

• Highly optimised implementation

☞ DLs have proved effective in a range of applications

• Terminologies/Ontologies

• Databases

☞ DLs have been influential in development of Semantic Web

• Web standard ontology language will be DL based

Reasoning with Expressive DLs – p.36/39

Summary

☞ DLs are logic based KR formalisms

☞ DL systems provide efficient inference services

• Careful choice of logic/algorithm

• Highly optimised implementation

☞ DLs have proved effective in a range of applications

• Terminologies/Ontologies

• Databases

☞ DLs have been influential in development of Semantic Web

• Web standard ontology language will be DL based

Reasoning with Expressive DLs – p.36/39

Summary

☞ DLs are logic based KR formalisms

☞ DL systems provide efficient inference services

• Careful choice of logic/algorithm

• Highly optimised implementation

☞ DLs have proved effective in a range of applications

• Terminologies/Ontologies

• Databases

☞ DLs have been influential in development of Semantic Web

• Web standard ontology language will be DL based

Reasoning with Expressive DLs – p.36/39

Summary

☞ DLs are logic based KR formalisms

☞ DL systems provide efficient inference services

• Careful choice of logic/algorithm

• Highly optimised implementation

☞ DLs have proved effective in a range of applications

• Terminologies/Ontologies

• Databases

☞ DLs have been influential in development of Semantic Web

• Web standard ontology language will be DL based

Reasoning with Expressive DLs – p.36/39

Resources

Slides from this talk

www.cs.man.ac.uk/~horrocks/Slides/leipzig-jun-01.pdf

FaCT system

www.cs.man.ac.uk/fact

OIL

www.ontoknowledge.org/oil/

DAML+OIL

www.daml.org/language/

OilEd

img.cs.man.ac.uk/oil

I.COM

www.cs.man.ac.uk/~franconi/icom/

Reasoning with Expressive DLs – p.37/39

www.cs.man.ac.uk/~horrocks/Slides/leipzig-jun-01.pdf
www.cs.man.ac.uk/fact
www.ontoknowledge.org/oil/
www.daml.org/language/
img.cs.man.ac.uk/oil
www.cs.man.ac.uk/~franconi/icom/

Select Bibliography

F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.-J. Profitlich.
An empirical analysis of optimization techniques for
terminological representation systems or: Making KRIS get a
move on. In B. Nebel, C. Rich, and W. Swartout, editors, Proc. of
KR’92, pages 270–281. Morgan Kaufmann, 1992.

F. Giunchiglia and R. Sebastiani. A SAT-based decision procedure
for ALC. In Proc. of KR’96, pages 304–314. Morgan Kaufmann,
1996.

V. Haarslev and R. Möller. High performance reasoning with very
large knowledge bases: A practical case study. In Proc. of IJCAI
2001 (to appear).

B. Hollunder and W. Nutt. Subsumption algorithms for concept
languages. In Proc. of ECAI’90, pages 348–353. John Wiley &
Sons Ltd., 1990.

Reasoning with Expressive DLs – p.38/39

Select Bibliography

I. Horrocks. Optimising Tableaux Decision Procedures for
Description Logics. PhD thesis, University of Manchester, 1997.

I. Horrocks and P. F. Patel-Schneider. Comparing subsumption
optimizations. In Proc. of DL’98, pages 90–94. CEUR, 1998.

I. Horrocks and P. F. Patel-Schneider. Optimising description logic
subsumption. Journal of Logic and Computation, 9(3):267–293,
1999.

I. Horrocks and S. Tobies. Reasoning with axioms: Theory and
practice. In Proc. of KR’00 pages 285–296. Morgan Kaufmann,
2000.

E. Franconi and G. Ng. The i.com tool for intelligent conceptual
modelling. In Proc. of (KRDB’00), August 2000.

D. Fensel, F. van Harmelen, I. Horrocks, D. McGuinness, and P. F.
Patel-Schneider. OIL: An ontology infrastructure for the semantic
web. IEEE Intelligent Systems, 16(2):38–45, 2001.

Reasoning with Expressive DLs – p.39/39

	Talk Outline
	Introduction to DLs
	What are Description Logics?
	DL Applications
	DL System Architecture
	DL Constructors
	DL Syntax and Semantics
	Other DL Constructors
	DL Knowledge Base (Tbox)
	DL Knowledge Base (Abox)
	Basic Inference Problems
	Reasoning Techniques
	Subsumption and Satisfiability
	Tableaux Expansion
	More Advanced Techniques
	Implementing DL Systems
	Naive Implementations
	Careful Choice of Algorithm
	Highly Optimised Implementation
	Optimising Subsumption Testing
	Pre-processing Optimisations
	Normalisation and Simplification
	Absorption I
	Absorption II
	Algorithmic Optimisations
	Dependency Directed Backtracking
	Backjumping
	Caching
	DL applications
	Terminological KR and Ontologies
	The Semantic Web
	OIL and DAML+OIL
	OilEd
	Database Schema and Query Reasoning
	Summary
	Resources
	Select Bibliography
	Select Bibliography

