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Introduction to DLs
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What are Description Logics?

A family of logic based Knowledge Representation formalisms

☞ Based on concepts (classes) and roles

• Concepts (classes) are interpreted as sets of objects

• Roles are interpreted as binary relations on objects

☞ Descendants of semantic networks, frame based systems
and KL-ONE

☞ Decidable fragments of FOL

• Many DLs are fragments of L2, C2 or the Guarded
Fragment

☞ Closely related to propositional modal logics

☞ Also known as terminological logics, concept languages, etc.

☞ Key features of DLs are

• Well defined semantics (they are logics)

• Provision of inference services
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DL Applications

DLs have may applications including:

Terminological KR (including Ontologies)

☞ Medical terminology/controlled vocabulary (Galen)

☞ Bio-ontologies (Tambis, GO)

☞ Web based ontology languages (OIL, DAML+OIL)

Configuration

☞ Classic system used to configure telecom equipment

Database schema and query reasoning

☞ Schema design and query optimisation

☞ Interoperability and federation

☞ Query containment (w.r.t. schema)
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DL System Architecture

Tbox (schema)

Abox (data)

Knowledge Base

In
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Man
.
= Human u Male

Happy-Father
.
= Man u ∃has-child.Female u . . .

...

...

John : Happy-Father

〈John, Mary〉 : has-child
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DL Constructors

Particular DLs characterised by set of constructors provided for
building complex concepts and roles from simpler ones

☞ Usually include at least:

• Conjunction (u), disjunction (t), negation (¬)

• Restricted (guarded) forms of quantification (∃, ∀)

☞ This basic DL is known as ALC

For example, concept Happy Father in ALC:

Man u ∃has-child.Male
u ∃has-child.Female
u ∀has-child.(Doctor t Lawyer)

Reasoning with Expressive DLs – p.7/39



DL Constructors

Particular DLs characterised by set of constructors provided for
building complex concepts and roles from simpler ones

☞ Usually include at least:

• Conjunction (u), disjunction (t), negation (¬)

• Restricted (guarded) forms of quantification (∃, ∀)

☞ This basic DL is known as ALC

For example, concept Happy Father in ALC:

Man u ∃has-child.Male
u ∃has-child.Female
u ∀has-child.(Doctor t Lawyer)

Reasoning with Expressive DLs – p.7/39



DL Constructors

Particular DLs characterised by set of constructors provided for
building complex concepts and roles from simpler ones

☞ Usually include at least:

• Conjunction (u), disjunction (t), negation (¬)

• Restricted (guarded) forms of quantification (∃, ∀)

☞ This basic DL is known as ALC

For example, concept Happy Father in ALC:

Man u ∃has-child.Male
u ∃has-child.Female
u ∀has-child.(Doctor t Lawyer)

Reasoning with Expressive DLs – p.7/39



DL Constructors

Particular DLs characterised by set of constructors provided for
building complex concepts and roles from simpler ones

☞ Usually include at least:

• Conjunction (u), disjunction (t), negation (¬)

• Restricted (guarded) forms of quantification (∃, ∀)

☞ This basic DL is known as ALC

For example, concept Happy Father in ALC:

Man u ∃has-child.Male
u ∃has-child.Female
u ∀has-child.(Doctor t Lawyer)

Reasoning with Expressive DLs – p.7/39



DL Syntax and Semantics

Semantics given by interpretation I = (∆I , ·I)

Constructor Syntax Example Semantics

atomic concept A Human AI ⊆ ∆I

atomic role R has-child RI ⊆ ∆I × ∆I

and for C, D concepts and R a role name

conjunction C u D Human u Male CI ∩ DI

disjunction C t D Doctor t Lawyer CI ∪ DI

negation ¬C ¬Male ∆I \ C

exists restr. ∃R.C ∃has-child.Male {x | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}

value restr. ∀R.C ∀has-child.Doctor {x | ∀y.〈x, y〉 ∈ RI =⇒ y ∈ CI}
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Other DL Constructors

Many different DLs/DL constructors have been investigated, e.g.

Constructor Syntax Example Semantics

number restr. >nR >3 has-child {x | |{y.〈x, y〉 ∈ RI}| > n}

6nR 61 has-mother {x | |{y.〈x, y〉 ∈ RI}| 6 n}

inverse role R− has-child− {〈x, y〉 | 〈y, x〉 ∈ RI}

trans. role R∗ has-child∗ (RI)∗

concrete domain f1, . . . , fn.P earns spends < {x | P (fI

1
, . . . , fI

n
)}

...
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DL Knowledge Base (Tbox)

Terminological part (Tbox) is set of axioms describing structure
of domain

Definition axioms introduce macros/names for concepts

A
.
= C, A v C

Father .
= Man u ∃has-child.Human

Human v Animal u Biped

Inclusion (GCI) axioms assert subsumption relations

C v D (note C
.
= D equivalent to C v D and D v C)

∃has-degree.Masters v ∃has-degree.Bachelors

An interpretation I satisfies

C
.
= D iff CI = DI C v D iff CI ⊆ DI

A Tbox T iff it satisfies every axiom in T (I |= T )
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DL Knowledge Base (Abox)

Assertional part (Abox) is set of axioms describing concrete
situation

Concept assertions

a : C

John : Man u ∃has-child.Female

Role assertions

〈a, b〉 : R

〈John, Mary〉 : has-child

An interpretation I satisfies

a : C iff aI ∈ CI 〈a, b〉 : R iff 〈aI , bI〉 ∈ RI

An Abox A iff it satisfies every axiom in A (I |= A)

A KB Σ = 〈T ,A〉 iff it satisfies both T and A (I |= Σ)
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Basic Inference Problems

Subsumption (structure knowledge, compute taxonomy)

C v D ? Is CI ⊆ DI in all interpretations?

Subsumption w.r.t. Tbox T

C vT D ? Is CI ⊆ DI in all models of T ?

Consistency

Is C consistent w.r.t. T ? Is there a model I of T s.t. CI 6= ∅?

KB Consistency

Is 〈T ,A〉 consistent? Is there a model I of 〈T ,A〉?

Problems are closely related:

C vT D iff C u ¬D is inconsistent w.r.t. T

C is consistent w.r.t. T iff C 6vT A u ¬A
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Reasoning Techniques
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Subsumption and Satisfiability

☞ Subsumption transformed into satisfiability

☞ Tableaux algorithm used to test satisfiability

• Try to build model of concept C

• Model represented by tree T

➙ Nodes in T correspond to individuals in model
➙ Nodes labeled with sets of subconcepts of C

➙ Edges labeled with role names in C

• Start from root node labeled {C}

• Apply expansion rules to node labels until
➙ Expansion completed (tree represents valid model)
➙ Contradictions prove there is no model

• Non-deterministic expansion −→ search (e.g., C t D)

• Blocking ensures termination (with expressive DLs)
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Tableaux Expansion

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where
R is a transitive role
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More Advanced Techniques

Satisfiability w.r.t. a Terminology

☞ For each GCI C v D ∈ T , add ¬C tD to every node label

More expressive DLs

☞ Basic technique can be extended to deal with
• Role inclusion axioms (role hierarchy)
• Number restrictions
• Inverse roles
• Concrete domains
• Aboxes
• etc.

☞ Extend expansion rules and use more sophisticated
blocking strategy

☞ Forest instead of Tree (for Aboxes)
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Implementing DL Systems
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Naive Implementations

Problems include:

☞ Space usage

• Storage required for tableaux datastructures

• Rarely a serious problem in practice

☞ Time usage

• Search required due to non-deterministic expansion

• Serious problem in practice

• Mitigated by:
➙ Careful choice of algorithm
➙ Highly optimised implementation
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Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure

• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions

• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings

• GCI axioms can be used to “encode” additional
operators/axioms

• Powerful technique, particularly when used with FL
closure

• Can encode cardinality constraints, inverse roles,
range/domain, . . .
➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms

• BUT even simple domain encoding is disastrous with
large numbers of roles
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Highly Optimised Implementation

Optimisation performed at 2 levels

☞ Computing classification (partial ordering) of concepts

• Objective is to minimise number of subsumption tests

• Can use standard order-theoretic techniques
➙ E.g., use enhanced traversal that exploits
information from previous tests

• Also use structural information from KB
➙ E.g., to select order in which to classify concepts

☞ Computing subsumption between concepts

• Objective is to minimise cost of single subsumption tests

• Small number of hard tests can dominate classification
time

• Recent DL research has addressed this problem (with
considerable success)
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Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories

☞ Pre-processing optimisations

• Aim is to simplify KB and facilitate subsumption testing

• Largely algorithm independent

• Particularly important when KB contains GCI axioms

☞ Algorithmic optimisations

• Main aim is to reduce search space due to
non-determinism

• Integral part of implementation

• But often generally applicable to search based
algorithms
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Pre-processing Optimisations

Useful techniques include

☞ Normalisation and simplification of concepts

• Refinement of technique first used in KRIS system

• Lexically normalise and simplify all concepts in KB

• Combine with lazy unfolding in tableaux algorithm

• Facilitates early detection of inconsistencies (clashes)

☞ Absorption (simplification) of general axioms

• Eliminate GCIs by absorbing into “definition” axioms

• Definition axioms efficiently dealt with by lazy
expansion

☞ Avoidance of potentially costly reasoning whenever possible

• Normalisation can discover “obvious” (un)satisfiability

• Structural analysis can discover “obvious” subsumption
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Normalisation and Simplification

☞ Normalise concepts to standard form, e.g.:

• ∃R.C −→ ¬∀R.¬C

• C t D −→ ¬(¬C u ¬D)

☞ Simplify concepts, e.g.:

• (D u C) u (A u D) −→ A u C u D

• ∀R.> −→ >

• . . . u C u . . . u ¬C u . . . −→ ⊥

☞ Lazily unfold concepts in tableaux algorithm

• Use names/pointers to refer to complex concepts

• Only add structure as required by progress of algorithm

• Detect clashes between lexically equivalent concepts

E.g.:

{HappyFather,¬HappyFather} −→ clash

{∀has-child.(Doctor t Lawyer), ∃has-child.(¬Doctor u ¬Lawyer)} −→ search
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Absorption I

☞ Reasoning w.r.t. set of GCI axioms can be very costly

• GCI C v D adds D t ¬C to every node label

• Expansion of disjunctions leads to search

• With 10 axioms and 10 nodes search space already 2100

• GALEN (medical terminology) KB contains hundreds of
axioms

☞ Reasoning w.r.t. “primitive definition” axioms is relatively
efficient

• For CN v D, add D only to node labels containing CN
• For CN w D, add ¬D only to node labels containing ¬CN

• Can expand definitions lazily
➙ Only add definitions after other local (propositional)
expansion

➙ Only add definitions one step at a time
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Absorption II

☞ Transform GCIs into primitive definitions, e.g.

• CN u C v D −→ CN v D t ¬C

• CN t C w D −→ CN w D u ¬C

☞ Absorb into existing primitive definitions, e.g.

• CN v A, CN v D t ¬C −→ CN v A u (D t ¬C)

• CN w A, CN w D u ¬C −→ CN w A t (D u ¬C)

☞ Use lazy expansion technique with primitive definitions

• Disjunctions only added to “relevant” node labels

☞ Performance improvements often too large to measure

• At least four orders of magnitude with GALEN KB

Reasoning with Expressive DLs – p.25/39



Absorption II

☞ Transform GCIs into primitive definitions, e.g.

• CN u C v D −→ CN v D t ¬C

• CN t C w D −→ CN w D u ¬C

☞ Absorb into existing primitive definitions, e.g.

• CN v A, CN v D t ¬C −→ CN v A u (D t ¬C)

• CN w A, CN w D u ¬C −→ CN w A t (D u ¬C)

☞ Use lazy expansion technique with primitive definitions

• Disjunctions only added to “relevant” node labels

☞ Performance improvements often too large to measure

• At least four orders of magnitude with GALEN KB

Reasoning with Expressive DLs – p.25/39



Absorption II

☞ Transform GCIs into primitive definitions, e.g.

• CN u C v D −→ CN v D t ¬C

• CN t C w D −→ CN w D u ¬C

☞ Absorb into existing primitive definitions, e.g.

• CN v A, CN v D t ¬C −→ CN v A u (D t ¬C)

• CN w A, CN w D u ¬C −→ CN w A t (D u ¬C)

☞ Use lazy expansion technique with primitive definitions

• Disjunctions only added to “relevant” node labels

☞ Performance improvements often too large to measure

• At least four orders of magnitude with GALEN KB

Reasoning with Expressive DLs – p.25/39



Absorption II

☞ Transform GCIs into primitive definitions, e.g.

• CN u C v D −→ CN v D t ¬C

• CN t C w D −→ CN w D u ¬C

☞ Absorb into existing primitive definitions, e.g.

• CN v A, CN v D t ¬C −→ CN v A u (D t ¬C)

• CN w A, CN w D u ¬C −→ CN w A t (D u ¬C)

☞ Use lazy expansion technique with primitive definitions

• Disjunctions only added to “relevant” node labels

☞ Performance improvements often too large to measure

• At least four orders of magnitude with GALEN KB

Reasoning with Expressive DLs – p.25/39



Absorption II

☞ Transform GCIs into primitive definitions, e.g.

• CN u C v D −→ CN v D t ¬C

• CN t C w D −→ CN w D u ¬C

☞ Absorb into existing primitive definitions, e.g.

• CN v A, CN v D t ¬C −→ CN v A u (D t ¬C)

• CN w A, CN w D u ¬C −→ CN w A t (D u ¬C)

☞ Use lazy expansion technique with primitive definitions

• Disjunctions only added to “relevant” node labels

☞ Performance improvements often too large to measure

• At least four orders of magnitude with GALEN KB

Reasoning with Expressive DLs – p.25/39



Absorption II

☞ Transform GCIs into primitive definitions, e.g.

• CN u C v D −→ CN v D t ¬C

• CN t C w D −→ CN w D u ¬C

☞ Absorb into existing primitive definitions, e.g.

• CN v A, CN v D t ¬C −→ CN v A u (D t ¬C)

• CN w A, CN w D u ¬C −→ CN w A t (D u ¬C)

☞ Use lazy expansion technique with primitive definitions

• Disjunctions only added to “relevant” node labels

☞ Performance improvements often too large to measure

• At least four orders of magnitude with GALEN KB

Reasoning with Expressive DLs – p.25/39



Absorption II

☞ Transform GCIs into primitive definitions, e.g.

• CN u C v D −→ CN v D t ¬C

• CN t C w D −→ CN w D u ¬C

☞ Absorb into existing primitive definitions, e.g.

• CN v A, CN v D t ¬C −→ CN v A u (D t ¬C)

• CN w A, CN w D u ¬C −→ CN w A t (D u ¬C)

☞ Use lazy expansion technique with primitive definitions

• Disjunctions only added to “relevant” node labels

☞ Performance improvements often too large to measure

• At least four orders of magnitude with GALEN KB

Reasoning with Expressive DLs – p.25/39



Absorption II

☞ Transform GCIs into primitive definitions, e.g.

• CN u C v D −→ CN v D t ¬C

• CN t C w D −→ CN w D u ¬C

☞ Absorb into existing primitive definitions, e.g.

• CN v A, CN v D t ¬C −→ CN v A u (D t ¬C)

• CN w A, CN w D u ¬C −→ CN w A t (D u ¬C)

☞ Use lazy expansion technique with primitive definitions

• Disjunctions only added to “relevant” node labels

☞ Performance improvements often too large to measure

• At least four orders of magnitude with GALEN KB

Reasoning with Expressive DLs – p.25/39



Absorption II

☞ Transform GCIs into primitive definitions, e.g.

• CN u C v D −→ CN v D t ¬C

• CN t C w D −→ CN w D u ¬C

☞ Absorb into existing primitive definitions, e.g.

• CN v A, CN v D t ¬C −→ CN v A u (D t ¬C)

• CN w A, CN w D u ¬C −→ CN w A t (D u ¬C)

☞ Use lazy expansion technique with primitive definitions

• Disjunctions only added to “relevant” node labels

☞ Performance improvements often too large to measure

• At least four orders of magnitude with GALEN KB

Reasoning with Expressive DLs – p.25/39



Absorption II

☞ Transform GCIs into primitive definitions, e.g.

• CN u C v D −→ CN v D t ¬C

• CN t C w D −→ CN w D u ¬C

☞ Absorb into existing primitive definitions, e.g.

• CN v A, CN v D t ¬C −→ CN v A u (D t ¬C)

• CN w A, CN w D u ¬C −→ CN w A t (D u ¬C)

☞ Use lazy expansion technique with primitive definitions

• Disjunctions only added to “relevant” node labels

☞ Performance improvements often too large to measure

• At least four orders of magnitude with GALEN KB

Reasoning with Expressive DLs – p.25/39



Absorption II

☞ Transform GCIs into primitive definitions, e.g.

• CN u C v D −→ CN v D t ¬C

• CN t C w D −→ CN w D u ¬C

☞ Absorb into existing primitive definitions, e.g.

• CN v A, CN v D t ¬C −→ CN v A u (D t ¬C)

• CN w A, CN w D u ¬C −→ CN w A t (D u ¬C)

☞ Use lazy expansion technique with primitive definitions

• Disjunctions only added to “relevant” node labels

☞ Performance improvements often too large to measure

• At least four orders of magnitude with GALEN KB

Reasoning with Expressive DLs – p.25/39



Algorithmic Optimisations

Useful techniques include

☞ Avoiding redundancy in search branches

• Davis-Putnam style semantic branching search

• Syntactic branching with no-good list

☞ Dependency directed backtracking

• Backjumping

• Dynamic backtracking

☞ Caching

• Cache partial models

• Cache satisfiability status (of labels)

☞ Heuristic ordering of propositional and modal expansion

• Min/maximise constrainedness (e.g., MOMS)

• Maximise backtracking (e.g., oldest first)
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Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping

• Tag concepts introduced at branch points (e.g., when
expanding disjunctions)

• Expansion rules combine and propagate tags

• On discovering a clash, identify most recently
introduced concepts involved

• Jump back to relevant branch points without
exploring alternative branches

• Effect is to prune away part of the search space

• Performance improvements with GALEN KB again too
large to measure
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Backjumping

E.g., if ∃R.¬A u ∀R.(A u B) u (C1 t D1) u . . . u (Cn t Dn) ⊆ L(x)
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Backjumping
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Backjumping

E.g., if ∃R.¬A u ∀R.(A u B) u (C1 t D1) u . . . u (Cn t Dn) ⊆ L(x)
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Caching

☞ Cache the satisfiability status of a node label

• Identical node labels often recur during expansion

• Avoid re-solving problems by caching satisfiability status
➙ When L(x) initialised, look in cache
➙ Use result, or add status once it has been computed

• Can use sub/super set caching to deal with similar labels

• Care required when used with blocking or inverse roles

• Significant performance gains with some kinds of
problem

☞ Cache (partial) models of concepts

• Use to detect “obvious” non-subsumption

• C 6v D if C u ¬D is satisfiable

• C u ¬D satisfiable if models of C and ¬D can be merged

• If not, continue with standard subsumption test

• Can use same technique in sub-problems

Reasoning with Expressive DLs – p.29/39



Caching

☞ Cache the satisfiability status of a node label

• Identical node labels often recur during expansion

• Avoid re-solving problems by caching satisfiability status
➙ When L(x) initialised, look in cache
➙ Use result, or add status once it has been computed

• Can use sub/super set caching to deal with similar labels

• Care required when used with blocking or inverse roles

• Significant performance gains with some kinds of
problem

☞ Cache (partial) models of concepts

• Use to detect “obvious” non-subsumption

• C 6v D if C u ¬D is satisfiable

• C u ¬D satisfiable if models of C and ¬D can be merged

• If not, continue with standard subsumption test

• Can use same technique in sub-problems

Reasoning with Expressive DLs – p.29/39



Caching

☞ Cache the satisfiability status of a node label

• Identical node labels often recur during expansion

• Avoid re-solving problems by caching satisfiability status
➙ When L(x) initialised, look in cache
➙ Use result, or add status once it has been computed

• Can use sub/super set caching to deal with similar labels

• Care required when used with blocking or inverse roles

• Significant performance gains with some kinds of
problem

☞ Cache (partial) models of concepts

• Use to detect “obvious” non-subsumption

• C 6v D if C u ¬D is satisfiable

• C u ¬D satisfiable if models of C and ¬D can be merged

• If not, continue with standard subsumption test

• Can use same technique in sub-problems
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DL applications
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Terminological KR and Ontologies

Initial motivation for work on FaCT system was Galen project

☞ General requirement for medical terminologies

☞ Static lists/taxonomies difficult to build and maintain

• Need to be very large and highly interconnected

• Inevitably contain many errors and omissions

☞ Galen project aims to replace static hierarchy with DL

• Describe concepts (e.g., spiral fracture of left femur)

• Use DL classifier to build taxonomy

☞ Needed expressive DL and efficient reasoning

• Descriptions use transitive roles, inverses, GCIs etc.

• Even prototype KB is very large (≈3,000 concepts)

• Existing (incomplete) classifier took ≈24 hours to
classify KB

• FaCT system (sound and complete) takes ≈60s
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The Semantic Web

US DAML programme aims to develop so-called Semantic Web

☞ Most existing Web resources only human understandable

• Markup (HTML) provides rendering information

• Textual/graphical information for human consumption

☞ Semantic Web aims at machine understandability

• Semantic markup will be added to web resources

• Markup will use Ontologies for shared understanding

• Requirement for DAML ontology language

• Should extend existing Web standards (XML, RDF,
RDFS)
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OIL and DAML+OIL

OIL language already developed to meet similar requirements

☞ Intuitive (frame) syntax plus high expressive power

☞ Well defined semantics via mapping to SHIQ DL

☞ Can use FaCT system to reason with OIL ontologies

☞ Extends existing Web standards (XML, RDF, RDFS)

Two efforts merged to produce single language, DAML+OIL

☞ Effectively a DL with RDFS based syntax

☞ Can use DL reasoning with DAML+OIL

☞ E.g., OilEd ontology editor

• Frame based interface (e.g., Protegé, OntoEdit)

• Extended to capture whole of OIL/DAML+OIL languages

• Reasoning support from FaCT (via CORBA interface)
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OilEd

E.g., DAML+OIL medical terminology ontology

☞ Transitive roles capture transitive partonomy, causality, etc.

Smoking v ∃causes.Cancer plus Cancer v ∃causes.Death
⇒ Cancer v FatalThing

☞ GCIs represent additional non-definitional knowledge

Stomach-Ulcer .
= Ulcer u ∃hasLocation.Stomach plus

Stomach-Ulcer v ∃hasLocation.Lining-Of-Stomach
⇒ Ulcer u ∃hasLocation.Stomach v OrganLiningLesion

☞ Inverse roles capture e.g. causes/causedBy relationship

Death u ∃causedBy.Smoking v PrematureDeath
⇒ Smoking v CauseOfPrematureDeath

☞ Cardinality restrictions add consistency constraints

BloodPressure v ∃hasValue.(High t Low) u 61hasValue plus
High v ¬Low ⇒ HighLowBloodPressure v ⊥
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Database Schema and Query Reasoning

☞ DLR (n-ary DL) can capture semantics of many
datamodelling methodologies (e.g., EER)

☞ Satisfiability preserving mapping to SHIQ allows use of DL
reasoners (e.g., FaCT, RACER)

☞ DL Abox can also capture semantics of conjunctive queries

• Can reason about query containment w.r.t. schema

☞ DL reasoning can be used to support, e.g.

• Schema design and integration

• Query optimisation

• Interoperability and federation

☞ E.g., I.COM Intelligent Conceptual Modelling tool (Enrico
Franconi)

• Uses FaCT system to provide reasoning support for EER

Reasoning with Expressive DLs – p.35/39



Database Schema and Query Reasoning

☞ DLR (n-ary DL) can capture semantics of many
datamodelling methodologies (e.g., EER)

☞ Satisfiability preserving mapping to SHIQ allows use of DL
reasoners (e.g., FaCT, RACER)

☞ DL Abox can also capture semantics of conjunctive queries

• Can reason about query containment w.r.t. schema

☞ DL reasoning can be used to support, e.g.

• Schema design and integration

• Query optimisation

• Interoperability and federation

☞ E.g., I.COM Intelligent Conceptual Modelling tool (Enrico
Franconi)

• Uses FaCT system to provide reasoning support for EER

Reasoning with Expressive DLs – p.35/39



Database Schema and Query Reasoning

☞ DLR (n-ary DL) can capture semantics of many
datamodelling methodologies (e.g., EER)

☞ Satisfiability preserving mapping to SHIQ allows use of DL
reasoners (e.g., FaCT, RACER)

☞ DL Abox can also capture semantics of conjunctive queries

• Can reason about query containment w.r.t. schema

☞ DL reasoning can be used to support, e.g.

• Schema design and integration

• Query optimisation

• Interoperability and federation

☞ E.g., I.COM Intelligent Conceptual Modelling tool (Enrico
Franconi)

• Uses FaCT system to provide reasoning support for EER

Reasoning with Expressive DLs – p.35/39



Database Schema and Query Reasoning

☞ DLR (n-ary DL) can capture semantics of many
datamodelling methodologies (e.g., EER)

☞ Satisfiability preserving mapping to SHIQ allows use of DL
reasoners (e.g., FaCT, RACER)

☞ DL Abox can also capture semantics of conjunctive queries

• Can reason about query containment w.r.t. schema

☞ DL reasoning can be used to support, e.g.

• Schema design and integration

• Query optimisation

• Interoperability and federation

☞ E.g., I.COM Intelligent Conceptual Modelling tool (Enrico
Franconi)

• Uses FaCT system to provide reasoning support for EER

Reasoning with Expressive DLs – p.35/39



Database Schema and Query Reasoning

☞ DLR (n-ary DL) can capture semantics of many
datamodelling methodologies (e.g., EER)

☞ Satisfiability preserving mapping to SHIQ allows use of DL
reasoners (e.g., FaCT, RACER)

☞ DL Abox can also capture semantics of conjunctive queries

• Can reason about query containment w.r.t. schema

☞ DL reasoning can be used to support, e.g.

• Schema design and integration

• Query optimisation

• Interoperability and federation

☞ E.g., I.COM Intelligent Conceptual Modelling tool (Enrico
Franconi)

• Uses FaCT system to provide reasoning support for EER

Reasoning with Expressive DLs – p.35/39



Database Schema and Query Reasoning

☞ DLR (n-ary DL) can capture semantics of many
datamodelling methodologies (e.g., EER)

☞ Satisfiability preserving mapping to SHIQ allows use of DL
reasoners (e.g., FaCT, RACER)

☞ DL Abox can also capture semantics of conjunctive queries

• Can reason about query containment w.r.t. schema

☞ DL reasoning can be used to support, e.g.

• Schema design and integration

• Query optimisation

• Interoperability and federation

☞ E.g., I.COM Intelligent Conceptual Modelling tool (Enrico
Franconi)

• Uses FaCT system to provide reasoning support for EER

Reasoning with Expressive DLs – p.35/39



Summary

☞ DLs are logic based KR formalisms

☞ DL systems provide efficient inference services

• Careful choice of logic/algorithm

• Highly optimised implementation

☞ DLs have proved effective in a range of applications

• Terminologies/Ontologies

• Databases

☞ DLs have been influential in development of Semantic Web

• Web standard ontology language will be DL based
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Resources

Slides from this talk

www.cs.man.ac.uk/~horrocks/Slides/leipzig-jun-01.pdf

FaCT system

www.cs.man.ac.uk/fact

OIL

www.ontoknowledge.org/oil/

DAML+OIL

www.daml.org/language/

OilEd

img.cs.man.ac.uk/oil

I.COM

www.cs.man.ac.uk/~franconi/icom/
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