Reasoning with Expressive Description Logics: Theory and Practice

Ian Horrocks

horrocks@cs.man.ac.uk

University of Manchester Manchester, UK

Talk Outline

Introduction to Description Logics (DLs)
Reasoning techniques
Implementing DL systems
DL applications
Including demos (time permitting)

Introduction to DLs

What are Description Logics?

- Based on concepts (classes) and roles
 - Concepts (classes) are interpreted as sets of objects
 - Roles are interpreted as binary relations on objects
- Descendants of semantic networks, frame based systems and KL-ONE
- Decidable fragments of FOL
 - Many DLs are fragments of L2, C2 or the Guarded Fragment
- Closely related to propositional modal logics
- Also known as terminological logics, concept languages, etc.
- Key features of DLs are
 - Well defined semantics (they are logics)
 - Provision of inference services

DL Applications

DLs have may applications including:

Terminological KR (including **Ontologies**)

- Medical terminology/controled vocabulary (Galen)
- Bio-ontologies (Tambis, GO)
- Web based ontology languages (OIL, DAML+OIL)

Configuration

Classic system used to configure telecom equipment

Database schema and query reasoning

- Schema design and query optimisation
- Interoperability and federation
- Query containment (w.r.t. schema)

DL System Architecture

DL Constructors

Particular DLs characterised by **set of constructors** provided for building complex concepts and roles from simpler ones

- Usually include at least:
 - Conjunction (□), disjunction (□), negation (¬)
 - Restricted (guarded) forms of quantification (∃, ∀)
- This basic DL is known as ALC

DL Syntax and Semantics

Semantics given by interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$

Constructor	Syntax	Example	Semantics	
atomic concept	A	Human	$A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$	
atomic role	R	has-child	$R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$	
and for C , D concepts and R a role name				
conjunction	$C\sqcap D$	Human ⊓ Male	$C^{\mathcal{I}} \cap D^{\mathcal{I}}$	
disjunction	$C \sqcup D$	Doctor ⊔ Lawyer	$C^{\mathcal{I}} \cup D^{\mathcal{I}}$	
negation	$\neg C$	¬Male	$\Delta^{\mathcal{I}} \setminus C$	
exists restr.	$\exists R.C$	∃has-child.Male	$\{x \mid \exists y. \langle x, y \rangle \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}}\}$	
value restr.	$\forall R.C$	∀has-child.Doctor	$ \{x \mid \forall y. \langle x, y \rangle \in R^{\mathcal{I}} \implies y \in C^{\mathcal{I}} \} $	

Other DL Constructors

Many different DLs/DL constructors have been investigated, e.g.

Constructor	Syntax	Example	Semantics
number restr.	$\geqslant nR$	≽3 has-child	$\{x \mid \{y.\langle x, y\rangle \in R^{\mathcal{I}}\} \geqslant n\}$
	$\leq nR$	\leqslant 1 has-mother	$\{x \mid \{y.\langle x,y\rangle \in R^{\mathcal{I}}\} \leqslant n\}$
inverse role	R^{-}	has-child ⁻	$\{\langle x, y \rangle \mid \langle y, x \rangle \in R^{\mathcal{I}}\}$
trans. role	R^*	has-child*	$(R^{\mathcal{I}})^*$
concrete domain	$f_1,\ldots,f_n.P$	earns spends <	$\{x \mid P(f_1^{\mathcal{I}}, \dots, f_n^{\mathcal{I}})\}$

:

DL Knowledge Base (Tbox)

Terminological part (Tbox) is set of axioms describing structure of domain

Definition axioms introduce macros/names for concepts

$$A \doteq C$$
, $A \sqsubseteq C$

Father = Man □ ∃has-child.Human

Human

☐ Animal
☐ Biped

Inclusion (GCI) axioms assert subsumption relations

 $C \sqsubseteq D$ (note $C \doteq D$ equivalent to $C \doteq D$ and $D \doteq C$)

∃has-degree.Masters ⊑ ∃has-degree.Bachelors

DL Knowledge Base (Abox)

Assertional part (Abox) is set of axioms describing concrete situation

Concept assertions

a:C

John : Man □ ∃has-child.Female

Role assertions

 $\langle a, b \rangle : R$

⟨John, Mary⟩: has-child

Basic Inference Problems

Subsumption (structure knowledge, compute taxonomy)

 $C \sqsubseteq D$? Is $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in all interpretations?

Subsumption w.r.t. Tbox T

 $C \sqsubseteq_{\mathcal{T}} D$? Is $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in all models of \mathcal{T} ?

Consistency

Is C consistent w.r.t. \mathcal{T} ? Is there a model \mathcal{I} of \mathcal{T} s.t. $C^{\mathcal{I}} \neq \emptyset$?

KB Consistency

Is $\langle \mathcal{T}, \mathcal{A} \rangle$ consistent? Is there a model \mathcal{I} of $\langle \mathcal{T}, \mathcal{A} \rangle$?

Reasoning Techniques

Subsumption and Satisfiability

- Subsumption transformed into satisfiability
- Tableaux algorithm used to test satisfiability
 - Try to build model of concept C
 - Model represented by tree T
 - Nodes in T correspond to individuals in model
 - → Nodes labeled with sets of subconcepts of C
 - → Edges labeled with role names in C
 - Start from root node labeled {*C*}
 - Apply expansion rules to node labels until
 - Expansion completed (tree represents valid model)
 - Contradictions prove there is no model
 - Non-deterministic expansion \longrightarrow search (e.g., $C \sqcup D$)
 - Blocking ensures termination (with expressive DLs)

Tableaux Expansion

Test satisfiability of $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C) \}$ where R is a **transitive** role

$$\mathcal{L}(w) = \{\exists S.C, \forall S.(\neg C \sqcup \neg D), \exists R.C, \forall R.(\exists R.C)\}$$

$$\mathcal{L}(x) = \{C, (\neg C \sqcup \neg D), \neg D\}$$

$$R$$

$$\downarrow y \mathcal{L}(y) = \{C, \exists R.C, \forall R.(\exists R.C)\}$$

$$\downarrow R$$

$$\downarrow k$$

$$\downarrow$$

More Advanced Techniques

Satisfiability w.r.t. a Terminology

For each GCI $C \sqsubseteq D \in \mathcal{T}$, add $\neg C \sqcup D$ to every node label

More expressive DLs

- Basic technique can be extended to deal with
 - Role inclusion axioms (role hierarchy)
 - Number restrictions
 - Inverse roles
 - Concrete domains
 - Aboxes
- Extend expansion rules and use more sophisticated blocking strategy
- Forest instead of Tree (for Aboxes)

Implementing DL Systems

Naive Implementations

Problems include:

- Space usage
 - Storage required for tableaux datastructures
 - Rarely a serious problem in practice
- Time usage
 - Search required due to non-deterministic expansion
 - Serious problem in practice
 - Mitigated by:
 - Careful choice of algorithm
 - → Highly optimised implementation

Careful Choice of Algorithm

- Transitive roles instead of transitive closure
 - Deterministic expansion of $\exists R.C$, even when $R \in \mathbf{R}_+$
 - (Relatively) simple blocking conditions
 - Cycles always represent (part of) valid cyclical models
- Direct algorithm/implementation instead of encodings
 - GCI axioms can be used to "encode" additional operators/axioms
 - Powerful technique, particularly when used with FL closure
 - Can encode cardinality constraints, inverse roles, range/domain, . . .
 - → E.g., (domain R.C) $\equiv \exists R. \top \sqsubseteq C$
 - (FL) encodings introduce (large numbers of) axioms
 - BUT even simple domain encoding is disastrous with large numbers of roles

Highly Optimised Implementation

Optimisation performed at 2 levels

- Computing classification (partial ordering) of concepts
 - Objective is to minimise number of subsumption tests
 - Can use standard order-theoretic techniques
 - → E.g., use enhanced traversal that exploits information from previous tests
 - Also use structural information from KB
 - → E.g., to select order in which to classify concepts
- Computing subsumption between concepts
 - Objective is to minimise cost of single subsumption tests
 - Small number of hard tests can dominate classification time
 - Recent DL research has addressed this problem (with considerable success)

Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories

- Pre-processing optimisations
 - Aim is to simplify KB and facilitate subsumption testing
 - Largely algorithm independent
 - Particularly important when KB contains GCI axioms
- Algorithmic optimisations
 - Main aim is to reduce search space due to non-determinism
 - Integral part of implementation
 - But often generally applicable to search based algorithms

Pre-processing Optimisations

Useful techniques include

- Normalisation and simplification of concepts
 - Refinement of technique first used in \mathcal{KRIS} system
 - Lexically normalise and simplify all concepts in KB
 - Combine with lazy unfolding in tableaux algorithm
 - Facilitates early detection of inconsistencies (clashes)
- Absorption (simplification) of general axioms
 - Eliminate GCIs by absorbing into "definition" axioms
 - Definition axioms efficiently dealt with by lazy expansion
- Avoidance of potentially costly reasoning whenever possible
 - Normalisation can discover "obvious" (un)satisfiability
 - Structural analysis can discover "obvious" subsumption

Normalisation and Simplification

- Normalise concepts to standard form, e.g.:
 - $\exists R.C \longrightarrow \neg \forall R.\neg C$
 - $\bullet \quad C \sqcup D \longrightarrow \neg(\neg C \sqcap \neg D)$
- Simplify concepts, e.g.:
 - $\bullet \quad (D \sqcap C) \sqcap (A \sqcap D) \longrightarrow A \sqcap C \sqcap D$
 - $\forall R. \top \longrightarrow \top$
 - $\dots \sqcap C \sqcap \dots \sqcap \neg C \sqcap \dots \longrightarrow \bot$
- Lazily unfold concepts in tableaux algorithm
 - Use names/pointers to refer to complex concepts
 - Only add structure as required by progress of algorithm
 - Detect clashes between lexically equivalent concepts

Absorption I

- Reasoning w.r.t. set of GCI axioms can be very costly
 - GCI $C \sqsubseteq D$ adds $D \sqcup \neg C$ to every node label
 - Expansion of disjunctions leads to search
 - With 10 axioms and 10 nodes search space already 2^{100}
 - GALEN (medical terminology) KB contains thousands of axioms
- Reasoning w.r.t. "primitive definition" axioms is relatively efficient
 - For $CN \sqsubseteq D$, add D only to node labels containing CN
 - For CN $\supseteq D$, add $\neg D$ only to node labels containing \neg CN
 - Can expand definitions lazily
 - Only add definitions after other local (propositional) expansion
 - Only add definitions one step at a time

Absorption II

- Transform GCIs into primitive definitions, e.g.
 - $\mathsf{CN} \sqcap C \sqsubseteq D \longrightarrow \mathsf{CN} \sqsubseteq D \sqcup \neg C$
 - $CN \sqcup C \supset D \longrightarrow CN \supset D \cap \neg C$
- Absorb into existing primitive definitions, e.g.
 - $\mathsf{CN} \sqsubseteq A$, $\mathsf{CN} \sqsubseteq D \sqcup \neg C \longrightarrow \mathsf{CN} \sqsubseteq A \sqcap (D \sqcup \neg C)$
 - $CN \supseteq A$, $CN \supseteq D \sqcap \neg C \longrightarrow CN \supseteq A \sqcup (D \sqcap \neg C)$
- Use lazy expansion technique with primitive definitions
 - Disjunctions only added to "relevant" node labels
- Performance improvements often too large to measure
 - At least four orders of magnitude with GALEN KB

Algorithmic Optimisations

Useful techniques include

- Avoiding redundancy in search branches
 - Davis-Putnam style semantic branching search
 - Syntactic branching with no-good list
- Dependency directed backtracking
 - Backjumping
 - Dynamic backtracking
- Caching
 - Cache partial models
 - Cache satisfiability status (of labels)
- Heuristic ordering of propositional and modal expansion
 - Min/maximise constrainedness (e.g., MOMS)
 - Maximise backtracking (e.g., oldest first)

Dependency Directed Backtracking

- Allows rapid recovery from bad branching choices
- Most commonly used technique is backjumping
 - Tag concepts introduced at branch points (e.g., when expanding disjunctions)
 - Expansion rules combine and propagate tags
 - On discovering a clash, identify most recently introduced concepts involved
 - Jump back to relevant branch points without exploring alternative branches
 - Effect is to prune away part of the search space
 - Performance improvements with GALEN KB again too large to measure

Backjumping

E.g., if $\exists R. \neg A \sqcap \forall R. (A \sqcap B) \sqcap (C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcup D_n) \subseteq \mathcal{L}(x)$

Caching

- Cache the satisfiability status of a node label
 - Identical node labels often recur during expansion
 - Avoid re-solving problems by caching satisfiability status
 - \rightarrow When $\mathcal{L}(x)$ initialised, look in cache
 - Use result, or add status once it has been computed
 - Can use sub/super set caching to deal with similar labels
 - Care required when used with blocking or inverse roles
 - Significant performance gains with some kinds of problem
- Cache (partial) models of concepts
 - Use to detect "obvious" non-subsumption
 - $C \not\sqsubseteq D$ if $C \sqcap \neg D$ is satisfiable
 - $C \sqcap \neg D$ satisfiable if models of C and $\neg D$ can be merged
 - If not, continue with standard subsumption test
 - Can use same technique in sub-problems

DL applications

Terminological KR and Ontologies

- General requirement for medical terminologies
- Static lists/taxonomies difficult to build and maintain
 - Need to be very large and highly interconnected
 - Inevitably contain many errors and omissions
- Galen project replaced static hierarchy with DL
 - Describe concepts (e.g., spiral fracture of left femur)
 - Use DL classifier to build taxonomy
- Needed expressive DL and efficient reasoning
 - Descriptions used transitive roles, inverses, GCIs etc.
 - Even prototype KB was very large (≈3,000 concepts)
 - Existing (incomplete) classifier took \approx 24 hours to classify KB
 - FaCT system (sound and complete) takes ≈60s

The Semantic Web

- Most existing Web resources only human understandable
 - Markup (HTML) provides rendering information
 - Textual/graphical information for human consumption
 - Semantic Web aims at machine understandability
 - → Semantic markup will be added to web resources
 - Markup will use Ontologies for shared understanding
 - Requirement for DAML ontology language
 - Should extend existing Web standards (XML, RDF, RDFS)

OIL and DAML+OIL

- Intuitive (frame) syntax plus high expressive power
- ightharpoonup Well defined semantics via mapping to SHIQ DL
- Can use FaCT system to reason with OIL ontologies
- Extends existing Web standards (XML, RDF, RDFS)
- Effectively a DL with RDFS based syntax
- Can use DL reasoning with DAML+OIL
- E.g., OilEd ontology editor
 - Frame based interface (e.g., Protegé, OntoEdit)
 - Extended to capture whole of OIL/DAML+OIL languages
 - Reasoning support from FaCT (via CORBA interface)

OilEd

E.g., DAML+OIL medical terminology ontology

- Transitive roles capture transitive partonomy, causality, etc.
 Smoking
 ☐ ∃causes.Cancer plus Cancer
 ☐ ∃causes.Death
 Cancer
 ☐ FatalThing
- ✓ Inverse roles capture e.g. cases/causedBy relationship
 Death □ ∃causedBy.Smoking □ PrematureDeath
 ⇒ Smoking □ CauseOfPrematureDeath
- Cardinality restrictions add consistency constraints
 BloodPressure

 ∃hasValue.(High
 Low)

 ≤1hasValue plus
 High

 ¬Low

 HighLowBloodPressure

 ⊥

Database Schema and Query Reasoning

- \mathcal{DLR} (n-ary DL) can capture semantics of many datamodelling methodologies (e.g., EER)
- Satisfiability preserving mapping to SHIQ allows use of DL reasoners (e.g., FaCT, RACER)
- DL Abox can also capture semantics of conjunctive queries
 - Can reason about query containment w.r.t. schema
- DL reasoning can be used to support, e.g.
 - Schema design and integration
 - Query optimisation
 - Interoperability and federation
- E.g., I.COM Intelligent Conceptual Modelling tool (Enrico Franconi)
 - Uses FaCT system to provide reasoning support for EER

Summary

- DLs are logic based KR formalisms
- DL systems provide efficient inference services
 - Careful choice of logic/algorithm
 - Highly optimised implementation
- Have proved effective in a range of applications
 - Terminologies/Ontologies
 - Databases
- Have been influential in development of Semantic Web
 - Web standard ontology language will be DL based

Resources

```
Slides from this talk
 www.cs.man.ac.uk/~horrocks/Slides/leipzig-jun-01.pdf
FaCT system
 www.cs.man.ac.uk/fact
OIL
 www.ontoknowledge.org/oil/
DAML+OIL
 www.daml.org/language/
OilEd
 img.cs.man.ac.uk/oil
I.COM
 www.cs.man.ac.uk/~franconi/icom/
```

Select Bibliography

- F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.-J. Profitlich. An empirical analysis of optimization techniques for terminological representation systems or: Making KRIS get a move on. In B. Nebel, C. Rich, and W. Swartout, editors, *Proc. of KR'92*, pages 270–281. Morgan Kaufmann, 1992.
- F. Giunchiglia and R. Sebastiani. A SAT-based decision procedure for \mathcal{ALC} . In *Proc. of KR'96*, pages 304–314. Morgan Kaufmann, 1996.
- V. Haarslev and R. Möller. High performance reasoning with very large knowledge bases: A practical case study. In *Proc. of IJCAI* 2001 (to appear).
- B. Hollunder and W. Nutt. Subsumption algorithms for concept languages. In *Proc. of ECAI'90*, pages 348–353. John Wiley & Sons Ltd., 1990.

Select Bibliography

- I. Horrocks. Optimising Tableaux Decision Procedures for Description Logics. PhD thesis, University of Manchester, 1997.
- I. Horrocks and P. F. Patel-Schneider. Comparing subsumption optimizations. In *Proc. of DL'98*, pages 90–94. CEUR, 1998.
- I. Horrocks and P. F. Patel-Schneider. Optimising description logic subsumption. *Journal of Logic and Computation*, 9(3):267–293, 1999.
- I. Horrocks and S. Tobies. Reasoning with axioms: Theory and practice. In *Proc. of KR'00* pages 285–296. Morgan Kaufmann, 2000.
- E. Franconi and G. Ng. The i.com tool for intelligent conceptual modelling. In *Proc. of (KRDB'00)*, August 2000.
- D. Fensel, F. van Harmelen, I. Horrocks, D. McGuinness, and P. F. Patel-Schneider. OIL: An ontology infrastructure for the semantic web. *IEEE Intelligent Systems*, 16(2):38–45, 2001.