OIL: an Ontology Language for the Semantic Web

Ian Horrocks¹, Stefan Decker², Dieter Fensel³, Frank van Harmelen^{3,4}, Sergey Melnik², Michel Klein³, Jeen Broekstra⁴ and others too numerous to mention

- ¹ University of Manchester, UK
- ² AIFB, University of Karlsruhe, Germany
- ³ Vrije Universiteit Amsterdam, Holland
 - ⁴ Aldministrator Nederland B.V.

Requirements for an Ontology Language

- Well designed
 - Intuitive to human users
 - Adequate expressive power
- Well defined
 - Clearly specified syntax (obviously)
 - Formal semantics (equally important)
 - Adequate expressive power
- Compatible with existing (web) standards

Standards for Ontology Languages

- Proposals already exist for W3C standard schema languages
 - XMLS (XML Schema)
 - → RDFS (RDF Schema)
- Both have been touted as (standard) web ontology languages
- However, both suffer from
 - Expressive inadequacy lack of basic modelling primitives
 - Poorly (un) defined semantics

Proposed Common Core: OIL

- Simple and intuitive Frame Language syntax
 - Many users are frightened by logic-based syntax (I know I am!)
 - Rich range of modelling primitives
 - Can still function as a basic frame language
 - Facilitates construction/adaption of tools
- Semantics defined by mapping to expressive Description Logic
 - → Well defined formal properties (decidability, complexity)
 - Enriched expressive power (boolean connectives, etc.)
 - Can provide reasoning services to support ontology design
- Compatibility provided by layering on top of RDFS
 - Class hierarchy etc. accessible to any RDFS-aware agent

Frames + DL + WWW \Rightarrow OIL

Why Reasoning Support?

- Reasoning support is key feature of OIL
- Reasoning is important

 - for large ontologies
 - with multiple authors
 - for integrating and sharing ontologies
- Because it allows
 - Establishing inter-ontology relationships
 - Checking for consistency
 - Checking for (unexpected) implied relationships

"The Semantic Web needs a logic on top" (Henry Thompson)

OIL Language Overview

OIL restricts frame languages:

- No defaults
- Limited axioms/rules
- Ontology only (limited form of individuals)

Main reasons for this:

- Reasoning support
- Semantics

OIL extends frame languages:

- Defined classes (necessary and sufficient conditions)
- Enhanced slot constraints
 - Restriction to class as well as value
 - Existential and universal restrictions
 - Cardinality constraints with optional class qualifier
 - Boolean expressions as well as class names
 - Sub-slots as well as sub-classes
 - Properties on slots (transitive, symmetrical)
 - Inverse slots
 - •
- Concrete data types
 - Integers and strings, with min, max, ranges etc.
- Additional kinds of axiom
 - Disjointness, disjoint-coverings, equivalence etc.

OIL by Example

```
slot-def part-of
                                      % part-of is a slot
                                      % sub-slot of structural-relation
  subslot-of structural-relation
                                      % inverse is has-part
  inverse has-part
  properties transitive
                                      % it is transitive
                                      % herbivore exactly defined as:
class-def defined herbivore
  subclass-of animal
                                      % sub-class of animal
                                      % that eats
  slot-constraint eats
                                      % only plants
    value-type plant OR
                                      % or parts of
       slot-constraint part-of
         has-value plant
                                      % plants
    min-cardinality 2 vegetable
                                      % and \geq2 types of vegetable
disjoint herbivore carnivore
                                      % herbivore and carnivore disjoint
```

Semantics via translation to SHIQ DL:

```
OIL
                                         Equivalent SHIQ
slot-def part-of
  subslot-of structural-relation
                                         % part-of \sqsubseteq structural-relation
                                         % has-part \doteq part-of
  inverse has-part
  properties transitive
                                         \% part-of \in \mathbf{R}_+
                                         % herbivore \doteq
class-def defined herbivore
                                         % animal □
  subclass-of animal
  slot-constraint eats
                                         % ∀eats.(plant ⊔
     value-type plant OR
       slot-constraint part-of
          has-value plant
                                         % ∃part-of.plant) □
     min-cardinality 2 vegetable
                                         \% \geqslant 2.eats vegetable
disjoint herbivore carnivore
                                         % herbivore □ ¬carnivore
```

How to Put Ontologies on the Web

Compatibility via RDFS delivery syntax:

```
<rdf:Property rdf:ID="has-part">
  <rdfs:subPropertyOf rdf:resource="#structural-relation"/>
  <oil:inverseRelationOf rdf:resource="#is-part-of"/>
</rdf:Property>
<rdfs:Class rdf:ID="herbivore">
  <rdf:type rdf:resource="http://www.ontoknowledge.org/oil/rdfs-schema/#Defi
  <rdfs:subClassOf rdf:resource="#animal"/>
  <oil:hasSlotConstraint>
    <oil:valueType>
      <oil:hasProperty rdf:resource="#eats"/>
      <oil:hasClass>
        <oil:OR>
          <oil:hasOperand rdf:resource="#plant"/>
          <oil:hasOperand>
            <oil:has-value>
              <oil:hasProperty rdf:resource="#is-part-of"/>
              <oil:hasClass rdf:resource="#plant"/>
            </oil:has-value>
          </oil:hasOperand>
```

Extensible OIL

One of the key ideas behind OIL:

Don't make the core language too large

- Core language should contain only "consensus" primitives
- Additional expressive power provided by language extensions
- These could include:
 - Rules
 - Additional algebraic properties on slots
 - Limited second order features
 - → Modules, import, etc.

· . . .

Extensions will (hopefully) have similar relationship with OIL core that OIL has with RDFS:

- Build on top of OIL core
- Use RDFS and OIL core modelling primitives wherever possible
- Maximise backward compatibility with RDFS and OIL core

DAML and **OIL**

- US DAML initiative also developing RDFS based ontology language
- Similar constructs to OIL but different RDFS encoding
- Joint US/EU Committee on Agent Markup Languages now established
 - ? Ultimate aim is OIL/DAML based W3C standard?

OIL Infrastructure

- Reasoning services provided by CORBA FaCT system
 - Currently via OIL ↔ FaCT translators (XSL)
 - **→** CORBA OIL coming soon
- Frame ontology editors being built/adapted to OIL
 - Protege editor (Stanford)
 - OntoEdit (Karlsruhe)
 - OilEd (Manchester)
- Additional infrastructure urgently required

OntoWeb Thematic Network

- EU Proposal to fund Semantic Web "network of excellence"
- 55 members from industry and academia in Europe and around the world (including US and Japan)
- key objectives

 - Represent and co-ordinate ontology-related research
 - Disseminate information, research and application results
 - Represent EU ontology community and co-operating with related initiatives like DAML in the US
 - Cooperate with language and content standardisation efforts
- http://www.ontoweb.org/

See: http://www.cs.man.ac.uk/~horrocks/Luxembourg.html for notes on EU funding for Semantic Web

WonderWeb Research Project

- EU Proposal to fund Semantic Web infrastructure research
- © 6 partners from Europe and US
 - University of Manchester, UK (coordinator)
 - Vrije Universiteit Amsterdam, Netherlands
 - **LADSEB-CNR**, Italy
 - University of Karlsruhe, Germany
 - InfoLab, Stanford University, USA
 - Interprice Technologies GmbH, Germany
- key objectives
 - Ontology languages and standardisation
 - Integration/reconciliation techniques for migration and sharing
 - Foundational ontologies for range of application domains
 - Technical infrastructure and tools for development and deployment
- http://www.cs.man.ac.uk/~horrocks/WonderWeb/