Ian Horrocks and Ulrike Sattler Computer Science Department, University of Manchester, UK

Extending SHIQ with expressive means for the propagation of properties along roles, involving surprising (un)decidability results

Acapulco, August, 2003

\mathcal{SHIQ} is a Description Logic which

- ✓ is underlying ontologies languages OIL, DAML+OIL, and OWL
- \checkmark is implemented in the successful DL reasoner FaCT, who
- \checkmark behaves well despite reasoning in \mathcal{SHIQ} being $\mathrm{ExpTime}\text{-complete}$
- \checkmark extends \mathcal{ALC} (or multi modal ${\rm K})$ with
 - -general TBoxes (sets of GCIs of the form $C \sqsubseteq D$)
 - -number restrictions (e.g. (\geq 4 hasComp.Wheel) or (\leq 4 hasComp.Wheel))
 - -transitive roles (e.g. hasPart, hasAncestor)
 - inverse roles (e.g. both hasPart and hasPart)
 - -role inclusions (set of axioms of the form $r \sqsubseteq s$, e.g. hasDaughter \sqsubseteq hasChild)

Tableau algorithm for SHIQ [HorrocksS_Tobies-LPAR99, HorrocksS_ECAI2002]

- decides satisfiability and subsumption of SHIQ-concepts w.r.t. TBoxes
- is implemented in the DL reasoner FaCT [Horrocks-KR98]
- tries to generate a model of input concept C w.r.t. TBox \mathcal{T} by
- breaking down C and T syntactically, thus inferring contraints on such a model
- uses a special cycle detection mechanism to ensure termination whose careful design is crucial for correctness of algorithm and performance of its implementation

More precisely:the tableau algorithm works on a tree, whosenodes correspond to objectsedges edges indicate "direct" role-successorship, whereimplied edges (transitivity!) have to be added in the model construction

Example: rules that are applied to the tree include

- if $C \sqcap D \in \mathcal{L}(x)$, then add C and D to $\mathcal{L}(x)$
- ullet if $\exists r.C \in \mathcal{L}(x)$, then create a new r-successor y of x with $\mathcal{L}(y) = \{C\}$
- if $\forall r.C \in \mathcal{L}(x)$ and y is an r-neighbour of x, then
 - add C to $\mathcal{L}(y)$ and
 - if r is transitive, then add $\forall r.C$ to $\mathcal{L}(y)$ and
 - if r has a transitive sub-role s, then add $\forall s.C$ to $\mathcal{L}(y)$

Expressible in \mathcal{SHIQ} :

faultiness propagates from a component to its aggregate Device \sqsubseteq (Faulty $\Rightarrow \forall hasComp^-.Faulty)$

colours propagate from a segment to its aggregate Thing \sqsubseteq (Green $\Rightarrow \forall hasSegment^{-}.Green) \sqcap (Red \Rightarrow \forall hasSegment^{-}.Red) \sqcap \ldots$

Not expressible in \mathcal{SHIQ} or other implemented DL

w various questionable work-arounds:

ownership propagates from an aggregate to its parts, e.g. the owner of the car is also the owner of the car's parts

localisation propagates from a division to its aggregate , e.g. $^{\circ}$ a trauma located in a part of a body structure is a trauma of the body structure

```
Solution:extend SHIQ with role inclusion axioms (RIAs) of the formr \circ s \sqsubseteq t, e.g.owns \circ has-part \sqsubseteq owns,hasLocation \circ divisionOf \sqsubseteq hasLocation
```

Result:known from Grammar Logic [Baldoni1998]: \mathcal{SHIQ} (or even \mathcal{ALC}) with such an extension becomes undecidable

Next Solution: investigate motivating examples more closely,

- \blacksquare axioms of the form $r \circ s \sqsubseteq s$ or $s \circ r \sqsubseteq s$ suffice for propagation
- undecidability result from [Baldoni1998] not applicable

Next Result:SHIQ with such an extension is still undecidableproof by reduction of the Domino Problem

An Undecidable Problem: the Domino Problem

University of Manchester

General idea: describe staircases – easy, possible in \mathcal{SHIQ}

General idea:describe staircases – easy, possible in \mathcal{SHIQ} use RIAs to merge staircases into grid

General idea:describe staircases – easy, possible in \mathcal{SHIQ} use RIAs to merge staircases into grid

General idea: describe staircases – easy, possible in SHIQuse RIAs to merge staircases into grid

Source of complexity of RIAs: inverse roles and cycles in set of RIAs

Third solution:dissallow cycles, i.e., \mathcal{RIQ} is the extensions of \mathcal{SHIQ} with
finite, cycle-free set of RIAs \mathcal{R} , where

In \mathcal{RIQ} , each RIA can be of the form $r_1 \cdots r_\ell s \sqsubseteq s$ or $sr_1 \cdots r_\ell \sqsubseteq s$ or $ss \sqsubseteq s$

Acyclicity is not a serious restriction: (1)

motivating examples still expressible
some ontology experts thinks that cycles indicate modelling flaws

Tableau algorihm for \mathcal{RIQ} similar to the one for \mathcal{SHIQ} , but

- $\blacksquare \mathcal{R}$ is made explicit in a finite automaton A_r for each role r
- \blacksquare concepts $\forall r.C$ in node labels are replaced with $\forall A_r.C$
- \blacksquare automata A_r are then used to
 - 1. remember roles paths along which $\forall r.C$ was "pushed":

if y is an s-neighbour of x and $\forall A.C \in \mathcal{L}(x)$, then add $\forall A'.C$ to $\mathcal{L}(y)$, where A' is the result of A reading s obtained by switching initial states

2. decide whether to add C to $\mathcal{L}(y)$

if $\forall A.C \in \mathcal{L}(y)$ and A is in a final state, then add C to $\mathcal{L}(y)$ Construction of A_r : working up the cycle-free (!) uses relation, for each role r,

1. construct automaton A^1_r for $ext{expr}(s_1,\ldots,s_n) \cup r$

Construction of A_r : working up the cycle-free (!) uses relation, for each role r,

- 1. construct automaton A^1_r for $\operatorname{regexp}(\mathsf{s}_1,\ldots,\mathsf{s}_\mathsf{n})\cup r$
- 2. add a disjoint copy of A_s for each $\bullet \xrightarrow{s} \bullet$ in A_r^1
- 3. add ε -transition from $\bullet \xrightarrow{s} \bullet$ to init (A_s)
- 4. add ε -transitions from final (A_s) to $\bullet \xrightarrow{s} \bullet$

 \blacksquare automaton A_r for r — whose size is possibly exponential in \mathcal{R} : unfolding

Construction of A_r : working up the cycle-free (!) uses relation, for each role r,

- 1. construct automaton A^1_r for $\operatorname{regexp}(\mathsf{s}_1,\ldots,\mathsf{s}_\mathsf{n})\cup r$
- 2. add a disjoint copy of A_s for each $\bullet \xrightarrow{s} \bullet$ in A_r^1
- 3. add ε -transition from $\bullet \xrightarrow{s} \bullet$ to $init(A_s)$
- 4. add ε -transitions from final (A_s) to $\bullet \xrightarrow{s} \bullet$

 \blacksquare automaton A_r for r — whose size is possibly exponential in \mathcal{R} : unfolding

FaCT was extended to \mathcal{RIQ} :

• each A_r is transformed into minimal DFA using AT&T FSM LibraryTM [MoPR98]

- "only" pre-processing
- yields fewer node labels in tableau algorithm \Rightarrow smaller search space
- first tests on Galen medical terminology KB (2,740 named concepts, 413 roles, 26 transitive ones) is promising:
 - the (pre-)processing of RIAs takes some time: +100%
 - $-\,{\rm but}$ satisfiability algorithm shows similar performance: only +3%
 - system can draw useful, additional inferences: e.g., w.r.t. the RIA

hasLocation o divisionOf \sqsubseteq hasLocation, the concept

Fracture □ ∃hasLocation.(Neck □ ∃isDivisionOf.Femur)

is indeed subsumed by

Fracture \square \exists hasLocation.Femur

Extending successful \mathcal{SHIQ} with a saught-after constructor for propagation

Results:

- 1. a naive such extension leads to undecidability
- 2. a semi-naive such extension still leads to undecidability
- 3. a careful such extension, \mathcal{RIQ} , yields a DL with
 - elegant tableau algorithm
 - \bullet behaviour similar to the one for \mathcal{SHIQ}
 - being able to draw useful, additional inferences

Open questions:

- 1. is exponential blow-up avoidable?
- 2. how does implementation of \mathcal{RIQ} behave on other knowledge bases?