### **DAML+OIL and Description Logic Reasoning**

#### Ian Horrocks

horrocks@cs.man.ac.uk

University of Manchester Manchester, UK

Reasoning with Expressive DLs - p.1/47





The Semantic Web and DAML+OIL

### **Talk Outline**

The Semantic Web and DAML+OIL Description Logics and Reasoning Reasoning techniques Implementing DL systems

# **Talk Outline**

The Semantic Web and DAML+OIL Description Logics and Reasoning Reasoning techniques Implementing DL systems Research Challenges

# **Talk Outline**

The Semantic Web and DAML+OIL Description Logics and Reasoning Reasoning techniques Implementing DL systems Research Challenges Summary

# The Semantic Web and DAML+OIL

- Most existing Web resources only human understandable
  - Markup (HTML) provides rendering information
  - Textual/graphical information for human consumption

- Most existing Web resources only human understandable
  - Markup (HTML) provides rendering information
  - Textual/graphical information for human consumption
- Semantic Web aims at machine understandability
  - Semantic markup will be added to web resources
  - Markup will use **Ontologies** for shared understanding

- Most existing Web resources only human understandable
  - Markup (HTML) provides rendering information
  - Textual/graphical information for human consumption
- Semantic Web aims at machine understandability
  - Semantic markup will be added to web resources
  - Markup will use **Ontologies** for shared understanding
- Requirement for a suitable ontology language
  - Compatible with existing Web standards (XML, RDF, RDFS)
  - Captures common KR idioms
  - Formally specified and of adequate expressive power
  - Can provide reasoning support

- Most existing Web resources only human understandable
  - Markup (HTML) provides rendering information
  - Textual/graphical information for human consumption
- Semantic Web aims at machine understandability
  - Semantic markup will be added to web resources
  - Markup will use **Ontologies** for shared understanding
- Requirement for a suitable ontology language
  - Compatible with existing Web standards (XML, RDF, RDFS)
  - Captures common KR idioms
  - Formally specified and of adequate expressive power
  - Can provide reasoning support
- DAML-ONT language developed to meet these requirements

- Extends existing Web standards (XML, RDF, RDFS)
- Intuitive (frame) syntax plus high expressive power
- Well defined semantics via mapping to SHIQ DL
- Can use DL systems to reason with OIL ontologies

- Extends existing Web standards (XML, RDF, RDFS)
- Intuitive (frame) syntax plus high expressive power
- Well defined semantics via mapping to SHIQ DL
- Can use DL systems to reason with OIL ontologies
- Two efforts merged to produce single language, **DAML+OIL**

- Extends existing Web standards (XML, RDF, RDFS)
- Intuitive (frame) syntax plus high expressive power
- Well defined semantics via mapping to SHIQ DL
- Can use DL systems to reason with OIL ontologies
- Two efforts merged to produce single language, **DAML+OIL**
- Detailed specification agreed by Joint EU/US Committee on Agent Markup Languages

- Extends existing Web standards (XML, RDF, RDFS)
- Intuitive (frame) syntax plus high expressive power
- Well defined semantics via mapping to SHIQ DL
- Can use DL systems to reason with OIL ontologies
- Two efforts merged to produce single language, **DAML+OIL**
- Detailed specification agreed by Joint EU/US Committee on Agent Markup Languages
- Proposed W3C Ontology Language WG will take DAML+OIL as starting point (?)

- Describes structure of the domain (i.e., a Tbox)
  - RDF used to describe specific **instances** (i.e., an Abox)

- Describes structure of the domain (i.e., a Tbox)
  - RDF used to describe specific **instances** (i.e., an Abox)
- Structure described in terms of classes (concepts) and properties (roles)

- Describes structure of the domain (i.e., a Tbox)
  - RDF used to describe specific **instances** (i.e., an Abox)
- Structure described in terms of classes (concepts) and properties (roles)
- Ontology consists of set of axioms
  - E.g., asserting class subsumption/equivalence

- Describes structure of the domain (i.e., a Tbox)
  - RDF used to describe specific **instances** (i.e., an Abox)
- Structure described in terms of classes (concepts) and properties (roles)
- Ontology consists of set of axioms
  - E.g., asserting class subsumption/equivalence
- Classes can be names or expressions
  - Various constructors provided for building class expressions

- Describes structure of the domain (i.e., a Tbox)
  - RDF used to describe specific **instances** (i.e., an Abox)
- Structure described in terms of classes (concepts) and properties (roles)
- Ontology consists of set of axioms
  - E.g., asserting class subsumption/equivalence
- Classes can be names or expressions
  - Various constructors provided for building class expressions
- Expressive power determined by
  - Kinds of axiom supported
  - Kinds of class (and property) constructor supported

### **DAML+OIL Overview: Class Constructors**

| Constructor     | DL Syntax                      | Example                      |
|-----------------|--------------------------------|------------------------------|
| intersectionOf  | $C_1 \sqcap \ldots \sqcap C_n$ | Human 🗆 Male                 |
| unionOf         | $C_1 \sqcup \ldots \sqcup C_n$ | Doctor ⊔ Lawyer              |
| complementOf    | $\neg C$                       | ¬Male                        |
| oneOf           | $\{x_1 \dots x_n\}$            | {john, mary}                 |
| toClass         | $\forall P.C$                  | ∀hasChild.Doctor             |
| hasClass        | $\exists P.C$                  | ∃hasChild.Lawyer             |
| hasValue        | $\exists P.\{x\}$              | ∃citizenOf.{USA}             |
| minCardinalityQ | $\geqslant nP.C$               | $\geqslant$ 2hasChild.Lawyer |
| maxCardinalityQ | $\leqslant nP.C$               | $\leq 1$ hasChild.Male       |
| cardinalityQ    | =n P.C                         | =1 has Parent. Female        |

### **DAML+OIL Overview: Class Constructors**

| Constructor     | DL Syntax                      | Example                      |
|-----------------|--------------------------------|------------------------------|
| intersectionOf  | $C_1 \sqcap \ldots \sqcap C_n$ | Human 🗆 Male                 |
| unionOf         | $C_1 \sqcup \ldots \sqcup C_n$ | Doctor ⊔ Lawyer              |
| complementOf    | $\neg C$                       | ¬Male                        |
| oneOf           | $\{x_1 \dots x_n\}$            | {john, mary}                 |
| toClass         | $\forall P.C$                  | ∀hasChild.Doctor             |
| hasClass        | $\exists P.C$                  | ∃hasChild.Lawyer             |
| hasValue        | $\exists P.\{x\}$              | ∃citizenOf.{USA}             |
| minCardinalityQ | $\geqslant nP.C$               | $\geqslant$ 2hasChild.Lawyer |
| maxCardinalityQ | $\leqslant nP.C$               | $\leq 1$ hasChild.Male       |
| cardinalityQ    | =n P.C                         | =1 has Parent. Female        |

#### XMLS datatypes as well as classes

### **DAML+OIL Overview: Class Constructors**

| Constructor     | DL Syntax                      | Example                      |
|-----------------|--------------------------------|------------------------------|
| intersectionOf  | $C_1 \sqcap \ldots \sqcap C_n$ | Human 🗆 Male                 |
| unionOf         | $C_1 \sqcup \ldots \sqcup C_n$ | Doctor ⊔ Lawyer              |
| complementOf    | $\neg C$                       | ¬Male                        |
| oneOf           | $\{x_1 \dots x_n\}$            | {john, mary}                 |
| toClass         | $\forall P.C$                  | ∀hasChild.Doctor             |
| hasClass        | $\exists P.C$                  | ∃hasChild.Lawyer             |
| hasValue        | $\exists P.\{x\}$              | ∃citizenOf.{USA}             |
| minCardinalityQ | $\geqslant nP.C$               | $\geqslant$ 2hasChild.Lawyer |
| maxCardinalityQ | $\leqslant nP.C$               | $\leq 1$ hasChild.Male       |
| cardinalityQ    | =n P.C                         | =1 has Parent. Female        |

- XMLS datatypes as well as classes
- Arbitrarily complex nesting of constructors
  - E.g., ∀hasChild.(Doctor ⊔ ∃hasChild.Doctor)

### **DAML+OIL Overview: Axioms**

| Axiom                   | DL Syntax                          | Example                                        |
|-------------------------|------------------------------------|------------------------------------------------|
| subClassOf              | $C_1 \sqsubseteq C_2$              | Human $\sqsubseteq$ Animal $\sqcap$ Biped      |
| sameClassAs             | $C_1 \doteq C_2$                   | Man ≐ Human ⊓ Male                             |
| subPropertyOf           | $P_1 \sqsubseteq P_2$              | hasDaughter $\sqsubseteq$ hasChild             |
| samePropertyAs          | $P_1 \doteq P_2$                   | $cost \doteq price$                            |
| sameIndividualAs        | $\{x_1\} \doteq \{x_2\}$           | ${President_{Bush}} \doteq {G_{W}_{Bush}}$     |
| disjointWith            | $C_1 \sqsubseteq \neg C_2$         | Male $\sqsubseteq \neg$ Female                 |
| differentIndividualFrom | $\{x_1\} \sqsubseteq \neg \{x_2\}$ | ${john} \sqsubseteq \neg {peter}$              |
| inverseOf               | $P_1 \doteq P_2^-$                 | hasChild $\doteq$ hasParent <sup>-</sup>       |
| transitiveProperty      | $P^+ \sqsubseteq P$                | ancestor $^+ \sqsubseteq$ ancestor             |
| uniqueProperty          | $\top \sqsubseteq \leqslant 1P$    | $\top \sqsubseteq \leqslant 1$ hasMother       |
| UnambiguousProperty     | $\top \sqsubseteq \leqslant 1P^-$  | $\top \sqsubseteq \leqslant 1$ is Mother Of $$ |

# **DAML+OIL Overview: Axioms**

| Axiom                   | DL Syntax                          | Example                                   |
|-------------------------|------------------------------------|-------------------------------------------|
| subClassOf              | $C_1 \sqsubseteq C_2$              | Human $\sqsubseteq$ Animal $\sqcap$ Biped |
| sameClassAs             | $C_1 \doteq C_2$                   | $Man \doteq Human \sqcap Male$            |
| subPropertyOf           | $P_1 \sqsubseteq P_2$              | hasDaughter $\sqsubseteq$ hasChild        |
| samePropertyAs          | $P_1 \doteq P_2$                   | $cost \doteq price$                       |
| sameIndividualAs        | $\{x_1\} \doteq \{x_2\}$           | ${President_Bush} \doteq {G_W_Bush}$      |
| disjointWith            | $C_1 \sqsubseteq \neg C_2$         | Male $\sqsubseteq \neg$ Female            |
| differentIndividualFrom | $\{x_1\} \sqsubseteq \neg \{x_2\}$ | ${john} \sqsubseteq \neg {peter}$         |
| inverseOf               | $P_1 \doteq P_2^-$                 | hasChild $\doteq$ hasParent <sup>-</sup>  |
| transitiveProperty      | $P^+ \sqsubseteq P$                | ancestor $^+ \sqsubseteq$ ancestor        |
| uniqueProperty          | $\top \sqsubseteq \leqslant 1P$    | $\top \sqsubseteq \leq 1$ hasMother       |
| UnambiguousProperty     | $\top \sqsubseteq \leqslant 1P^-$  | $\top \sqsubseteq \leq 1$ is Mother Of $$ |

Axioms (mostly) reducible to subClass/PropertyOf





Is a Description Logic



Is a Description Logic (but don't tell anyone)

- Is a Description Logic (but don't tell anyone)
- More precisely, DAML+OIL is SHIQ

- Is a Description Logic (but don't tell anyone)
- $\sim$  More precisely, DAML+OIL is SHIQ
  - Plus nominals

- Is a Description Logic (but don't tell anyone)
- $\sim$  More precisely, DAML+OIL is SHIQ
  - Plus nominals
  - Plus datatypes (simple concrete domains)

- Is a Description Logic (but don't tell anyone)
- $\sim$  More precisely, DAML+OIL is SHIQ
  - Plus nominals
  - Plus datatypes (simple concrete domains)
  - With RDFS based syntax

## DAML+OIL

- Is a Description Logic (but don't tell anyone)
- $\sim$  More precisely, DAML+OIL is SHIQ
  - Plus nominals
  - Plus datatypes (simple concrete domains)
  - With RDFS based syntax
- $\ll SHIQ/DAML+OIL$  was not built in a day (or even a year)
  - SHIQ is based on 15+ years of DL research

## DAML+OIL

- Is a Description Logic (but don't tell anyone)
- $\sim$  More precisely, DAML+OIL is SHIQ
  - Plus nominals
  - Plus datatypes (simple concrete domains)
  - With RDFS based syntax
- $\ll$  SHIQ/DAML+OIL was not built in a day (or even a year)
  - SHIQ is based on 15+ years of DL research
- Can use DL reasoning with DAML+OIL
  - Existing SHIQ implementations support (most of) DAML+OIL

Reasoning is important for:

Reasoning is important for:

- Ontology design
  - Check class consistency and (unexpected) implied relationships
  - Particularly important with large ontologies/multiple authors

Reasoning is important for:

#### Ontology design

- Check class consistency and (unexpected) implied relationships
- Particularly important with large ontologies/multiple authors
- Ontology integration
  - Assert inter-ontology relationships
  - Reasoner computes integrated class hierarchy/consistency

Reasoning is important for:

#### Ontology design

- Check class consistency and (unexpected) implied relationships
- Particularly important with large ontologies/multiple authors
- Ontology integration
  - Assert inter-ontology relationships
  - Reasoner computes integrated class hierarchy/consistency
- Ontology deployment
  - Determine if set of facts are consistent w.r.t. ontology
  - Determine if individuals are instances of ontology classes

Reasoning is important for:

#### Ontology design

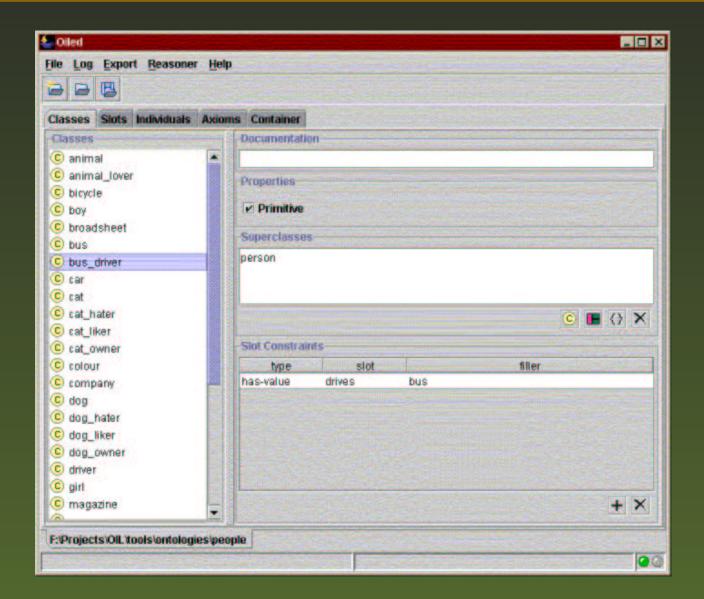
- Check class consistency and (unexpected) implied relationships
- Particularly important with large ontologies/multiple authors
- Ontology integration
  - Assert inter-ontology relationships
  - Reasoner computes integrated class hierarchy/consistency
- Ontology deployment
  - Determine if set of facts are consistent w.r.t. ontology
  - Determine if individuals are instances of ontology classes

"The Semantic Web needs a logic on top" (Henry Thompson)

Set of operators/axioms restricted so that reasoning is **decidable** Consistent with Semantic Web's **layered architecture** 

- Consistent with Semantic Web's layered architecture
  - XML provides syntax transport layer
  - RDF provides basic relational language
  - RDFS provides basic ontological primitives
  - DAML+OIL provides (decidable) logical layer
  - Further layers (e.g., rules) will extend DAML+OIL
    - Extensions will almost certainly be undecidable

- Consistent with Semantic Web's layered architecture
  - XML provides syntax transport layer
  - RDF provides basic relational language
  - RDFS provides basic ontological primitives
  - DAML+OIL provides (decidable) logical layer
  - Further layers (e.g., **rules**) will extend DAML+OIL
    - Extensions will almost certainly be undecidable
- Facilitates provision of reasoning services


- Consistent with Semantic Web's layered architecture
  - XML provides syntax transport layer
  - RDF provides basic relational language
  - RDFS provides basic ontological primitives
  - DAML+OIL provides (decidable) logical layer
  - Further layers (e.g., rules) will extend DAML+OIL
     Extensions will almost certainly be undecidable
- Facilitates provision of reasoning services
  - Known algorithms
  - Implemented systems
  - Evidence of empirical tractability

- Frame based interface (inspired by Protégé)
  - Classes defined by superclass(es) plus slot constraints

- Frame based interface (inspired by Protégé)
  - Classes defined by superclass(es) plus slot constraints
- Extended to clarify semantics and capture whole language
  - Primitive ( $\sqsubseteq$ ) and defined ( $\doteq$ ) classes
  - Explicit ∃ (hasClass), ∀ (toClass) and cardinality restrictions
  - Boolean connectives  $(\Box, \sqcup, \neg)$  and nesting
  - Transitive, symmetrical and functional properties
  - Disjointness, inclusion ( $\Box$ ) and equality ( $\doteq$ ) axioms
  - Fake individuals

- Frame based interface (inspired by Protégé)
  - Classes defined by superclass(es) plus slot constraints
- Extended to clarify semantics and capture whole language
  - Primitive ( $\sqsubseteq$ ) and defined ( $\doteq$ ) classes
  - Explicit ∃ (hasClass), ∀ (toClass) and cardinality restrictions
  - Boolean connectives  $(\Box, \sqcup, \neg)$  and nesting
  - Transitive, symmetrical and functional properties
  - Disjointness, inclusion ( $\sqsubseteq$ ) and equality ( $\doteq$ ) axioms
  - Fake individuals
- Reasoning support provided by FaCT system
  - Ontology translated into SHIQ DL
  - Communicates with FaCT via CORBA interface
  - Indicates inconsistencies and implicit subsumptions

#### OilEd



# **Description Logics and Reasoning**

- Based on concepts (classes) and roles
  - Concepts (classes) are interpreted as sets of objects
  - Roles are interpreted as binary relations on objects

- Based on concepts (classes) and roles
  - Concepts (classes) are interpreted as sets of objects
  - Roles are interpreted as binary relations on objects
- Descendants of semantic networks and KL-ONE

- Based on concepts (classes) and roles
  - Concepts (classes) are interpreted as sets of objects
  - Roles are interpreted as binary relations on objects
- Descendants of semantic networks and KL-ONE
- Decidable fragments of FOL
  - Many DLs are fragments of L2, C2 or the **Guarded Fragment**

- Based on concepts (classes) and roles
  - Concepts (classes) are interpreted as sets of objects
  - Roles are interpreted as binary relations on objects
- Descendants of semantic networks and KL-ONE
- Decidable fragments of FOL
  - Many DLs are fragments of L2, C2 or the **Guarded Fragment**
- Closely related to propositional modal logics

- Based on concepts (classes) and roles
  - Concepts (classes) are interpreted as sets of objects
  - Roles are interpreted as binary relations on objects
- Descendants of semantic networks and KL-ONE
- Decidable fragments of FOL
  - Many DLs are fragments of L2, C2 or the **Guarded Fragment**
- Closely related to propositional modal logics
- Also known as terminological logics, concept languages, etc.

- Based on concepts (classes) and roles
  - Concepts (classes) are interpreted as sets of objects
  - Roles are interpreted as binary relations on objects
- Descendants of semantic networks and KL-ONE
- Decidable fragments of FOL
  - Many DLs are fragments of L2, C2 or the **Guarded Fragment**
- Closely related to propositional modal logics
- Also known as terminological logics, concept languages, etc.
- Key features of DLs are
  - Well defined **semantics** (they are logics)
  - Provision of inference services

#### Phase 1:

- Incomplete systems (Back, Classic, Loom, ...)
- Based on structural algorithms

#### Phase 1:

- Incomplete systems (Back, Classic, Loom, ...)
- Based on structural algorithms
- Phase 2:
  - Development of tableau algorithms and complexity results
  - Tableau-based systems (Kris, Crack)
  - Investigation of optimisation techniques

#### Phase 1:

- Incomplete systems (Back, Classic, Loom, ...)
- Based on structural algorithms
- Phase 2:
  - Development of tableau algorithms and complexity results
  - Tableau-based systems (Kris, Crack)
  - Investigation of optimisation techniques

Phase 3:

- Tableau algorithms for very expressive DLs
- Highly optimised tableau systems (FaCT, DLP, Racer)
- Relationship to modal logic and decidable fragments of FOL

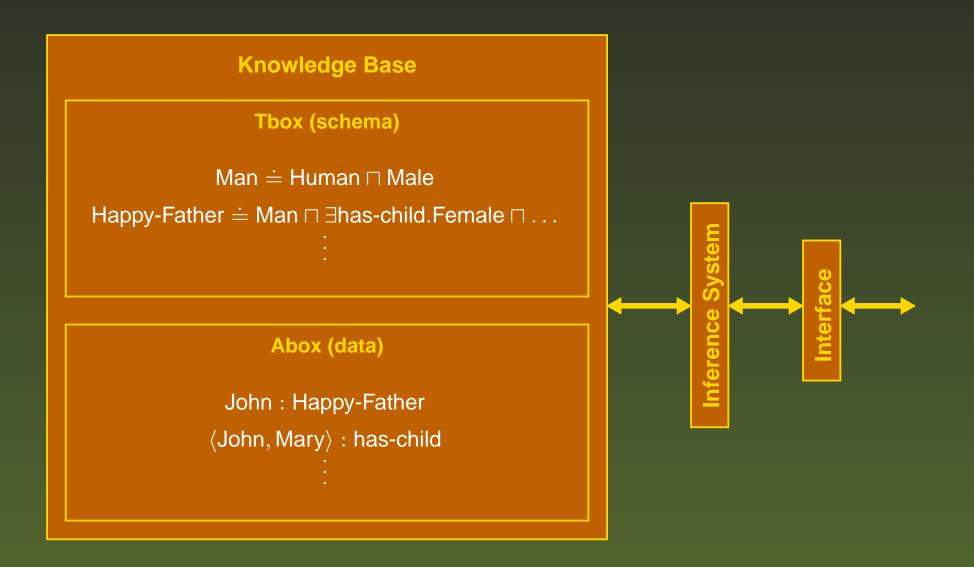
# **Latest Developments**

Phase 4:

Mature implementations

#### **Latest Developments**

#### Phase 4:


- Mature implementations
- Mainstream applications and Tools
  - Databases
    - Consistency of conceptual schemata
    - Schema integration
    - → Query subsumption (w.r.t. a conceptual schema)
  - Ontologies and Semantic Web
    - Design and Maintenance
    - Integration
    - Deployment

#### **Latest Developments**

#### Phase 4:

- Mature implementations
- Mainstream applications and Tools
  - Databases
    - Consistency of conceptual schemata
    - Schema integration
    - → Query subsumption (w.r.t. a conceptual schema)
  - Ontologies and Semantic Web
    - Design and Maintenance
    - Integration
    - Deployment
- Commercial implementations
  - Cerebra system from Network Inference Ltd

## **DL System Architecture**



#### **DL Constructors**

Particular DLs characterised by **set of constructors** provided for building complex concepts and roles from simpler ones

#### **DL Constructors**

Particular DLs characterised by **set of constructors** provided for building complex concepts and roles from simpler ones

- Usually include at least:
  - Conjunction ( $\Box$ ), disjunction ( $\sqcup$ ), negation ( $\neg$ )
  - Restricted (guarded) forms of quantification  $(\exists, \forall)$

### **DL Constructors**

Particular DLs characterised by **set of constructors** provided for building complex concepts and roles from simpler ones

- Usually include at least:
  - Conjunction ( $\Box$ ), disjunction ( $\sqcup$ ), negation ( $\neg$ )
  - Restricted (guarded) forms of quantification  $(\exists, \forall)$
- $<\!\!\!<\!\!\!<$  This basic DL is known as  $\mathcal{ALC}$

#### **DL Constructors**

Particular DLs characterised by **set of constructors** provided for building complex concepts and roles from simpler ones

- Usually include at least:
  - Conjunction ( $\Box$ ), disjunction ( $\sqcup$ ), negation ( $\neg$ )
  - Restricted (guarded) forms of quantification ( $\exists$ ,  $\forall$ )
- $\sim$  This basic DL is known as ALC

For example, concept Happy Father in ALC:

- Man  $\square$   $\exists$ has-child.Male
  - $\Box$   $\exists$ has-child.Female
  - $\sqcap$   $\forall$ has-child.(Doctor  $\sqcup$  Lawyer)

## **DL Syntax and Semantics**

Semantics given by interpretation  $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ 

Semantics given by interpretation  $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ 

| Constructor                                    | Syntax        | Example           | Semantics                                                                                       |  |
|------------------------------------------------|---------------|-------------------|-------------------------------------------------------------------------------------------------|--|
| atomic concept                                 | A             | Human             | $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$                                                |  |
| atomic role                                    | R             | has-child         | $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$                    |  |
| and for $C$ , $D$ concepts and $R$ a role name |               |                   |                                                                                                 |  |
| conjunction                                    | $C \sqcap D$  | Human ⊓ Male      | $C^{\mathcal{I}} \cap D^{\mathcal{I}}$                                                          |  |
| disjunction                                    | $C \sqcup D$  | Doctor ⊔ Lawyer   | $C^{\mathcal{I}} \cup D^{\mathcal{I}}$                                                          |  |
| negation                                       | $\neg C$      | ⊸Male             | $\Delta^{\mathcal{I}} \setminus C$                                                              |  |
| exists restr.                                  | $\exists R.C$ | ∃has-child.Male   | $\{x \mid \exists y. \langle x, y \rangle \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}}\}$    |  |
| value restr.                                   | $\forall R.C$ | ∀has-child.Doctor | $\{x \mid \forall y. \langle x, y \rangle \in R^{\mathcal{I}} \implies y \in C^{\mathcal{I}}\}$ |  |

### **Other DL Constructors**

Many different DLs/DL constructors have been investigated, e.g.

#### Many different DLs/DL constructors have been investigated, e.g.

| Constructor     | Syntax             | Example                  | Semantics                                                                |
|-----------------|--------------------|--------------------------|--------------------------------------------------------------------------|
| number restr.   | $\geqslant nR$     | ≥3 has-child             | $\{x \mid  \{y.\langle x, y\rangle \in R^{\mathcal{I}}\}  \geqslant n\}$ |
|                 | $\leqslant nR$     | $\leqslant$ 1 has-mother | $\{x \mid  \{y.\langle x,y\rangle \in R^{\mathcal{I}}\}  \leqslant n\}$  |
| inverse role    | $R^{-}$            | has-child $^-$           | $\{\langle x,y angle \mid \langle y,x angle \in R^{\mathcal{I}}\}$       |
| trans. role     | $R^*$              | has-child*               | $(R^{\mathcal{I}})^*$                                                    |
| concrete domain | $f_1,\ldots,f_n.P$ | earns spends <           | $\{x \mid P(f_1^{\mathcal{I}}, \dots, f_n^{\mathcal{I}})\}$              |
|                 | •                  | •                        |                                                                          |

Terminological part (Tbox) is set of axioms describing structure of domain

Terminological part (Tbox) is set of axioms describing structure of domain Definition axioms introduce macros/names for concepts  $A \doteq C, A \sqsubseteq C$ Father  $\doteq$  Man  $\sqcap \exists$ has-child.Human Human  $\sqsubseteq$  Animal  $\sqcap$  Biped

Terminological part (**Tbox**) is set of axioms describing **structure** of domain **Definition** axioms introduce macros/names for concepts  $A \doteq C, A \sqsubseteq C$ Father  $\doteq$  Man  $\sqcap$   $\exists$ has-child.Human Human  $\sqsubseteq$  Animal  $\sqcap$  Biped **Inclusion** (GCI) axioms assert subsumption relations  $C \sqsubseteq D$  (note  $C \doteq D$  equivalent to  $C \sqsubseteq D$  and  $D \sqsubseteq C$ )  $\exists$ has-degree.Masters  $\sqsubseteq \exists$ has-degree.Bachelors

Terminological part (Tbox) is set of axioms describing structure of domain Definition axioms introduce macros/names for concepts  $A \doteq C, A \sqsubseteq C$ Father  $\doteq$  Man  $\sqcap$   $\exists$ has-child.Human Human  $\sqsubseteq$  Animal  $\sqcap$  Biped Inclusion (GCI) axioms assert subsumption relations  $C \sqsubseteq D$  (note  $C \doteq D$  equivalent to  $C \sqsubseteq D$  and  $D \sqsubseteq C$ )  $\exists$ has-degree.Masters  $\sqsubseteq \exists$ has-degree.Bachelors

An interpretation  $\mathcal{I}$  satisfies

 $C \doteq D$  iff  $C^{\mathcal{I}} = D^{\mathcal{I}}$   $C \sqsubseteq D$  iff  $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ 

A **Theor**  $\mathcal{T}$  iff it satisfies every axiom in  $\mathcal{T}$  ( $\mathcal{I} \models \mathcal{T}$ )

Assertional part (Abox) is set of axioms describing concrete situation

#### Assertional part (Abox) is set of axioms describing concrete situation

#### **Concept assertions**

a: CJohn : Man  $\sqcap \exists$ has-child.Female

#### Assertional part (Abox) is set of axioms describing concrete situation

#### **Concept assertions**

a: CJohn : Man  $\sqcap \exists$ has-child.Female **Role assertions** 

 $\langle a,b
angle:R$  $\langle \mathsf{John},\mathsf{Mary}
angle:\mathsf{has-child}$ 

#### Assertional part (Abox) is set of axioms describing concrete situation

#### **Concept assertions**

a: CJohn : Man  $\sqcap \exists$ has-child.Female **Role assertions** 

> $\langle a,b
> angle:R$  $\langle \mathsf{John},\mathsf{Mary}
> angle:\mathsf{has-child}$

#### An interpretation $\mathcal{I}$ satisfies

 $a: C \quad \text{iff} \quad a^{\mathcal{I}} \in C^{\mathcal{I}} \qquad \langle a, b \rangle : R \quad \text{iff} \quad \langle a^{\mathcal{I}}, b^{\mathcal{I}} \rangle \in R^{\mathcal{I}}$ An Abox  $\mathcal{A}$  iff it satisfies every axiom in  $\mathcal{A}$  ( $\mathcal{I} \models \mathcal{A}$ ) A KB  $\Sigma = \langle \mathcal{T}, \mathcal{A} \rangle$  iff it satisfies both  $\mathcal{T}$  and  $\mathcal{A}$  ( $\mathcal{I} \models \Sigma$ )

## **Basic Inference Problems**

Subsumption w.r.t. Tbox  $\mathcal{T}$ 

 $C \sqsubseteq_{\mathcal{T}} D$ ? Is  $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$  in all models of  $\mathcal{T}$ ?

Subsumption w.r.t. Tbox  ${\mathcal T}$ 

 $C \sqsubseteq_{\mathcal{T}} D$ ? Is  $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$  in all models of  $\mathcal{T}$ ?

Consistency

Is C consistent w.r.t.  $\mathcal{T}$ ? Is there a model  $\mathcal{I}$  of  $\mathcal{T}$  s.t.  $C^{\mathcal{I}} \neq \emptyset$ ?

Subsumption w.r.t. Tbox  ${\mathcal T}$ 

 $C \sqsubseteq_{\mathcal{T}} D$ ? Is  $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$  in all models of  $\mathcal{T}$ ?

Consistency

Is C consistent w.r.t.  $\mathcal{T}$ ? Is there a model  $\mathcal{I}$  of  $\mathcal{T}$  s.t.  $C^{\mathcal{I}} \neq \emptyset$ ?

**KB Consistency** 

Is  $\langle \mathcal{T}, \mathcal{A} \rangle$  consistent? Is there a model  $\mathcal{I}$  of  $\langle \mathcal{T}, \mathcal{A} \rangle$ ?

Subsumption w.r.t. Tbox  $\ensuremath{\mathcal{T}}$ 

 $C \sqsubseteq_{\mathcal{T}} D$ ? Is  $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$  in all models of  $\mathcal{T}$ ?

Consistency

Is C consistent w.r.t.  $\mathcal{T}$ ? Is there a model  $\mathcal{I}$  of  $\mathcal{T}$  s.t.  $C^{\mathcal{I}} \neq \emptyset$ ?

#### **KB** Consistency

Is  $\langle \mathcal{T}, \mathcal{A} \rangle$  consistent? Is there a model  $\mathcal{I}$  of  $\langle \mathcal{T}, \mathcal{A} \rangle$ ?

Problems are **closely related**:

 $C \sqsubseteq_{\mathcal{T}} D$ iff $C \sqcap \neg D$  is inconsistent w.r.t.  $\mathcal{T}$ C is consistent w.r.t.  $\mathcal{T}$ iff $C \not\sqsubseteq_{\mathcal{T}} A \sqcap \neg A$ 

# **Reasoning Techniques**

Subsumption transformed into satisfiability

Subsumption transformed into satisfiability Tableaux algorithm used to test satisfiability

Subsumption transformed into satisfiability

Tableaux algorithm used to test satisfiability

 $\sim$  Try to build **model** (witness) of concept *C* 

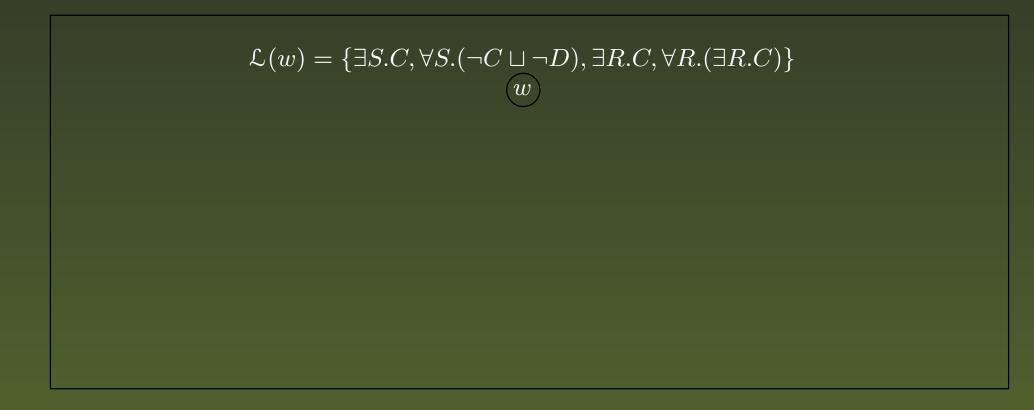
#### Subsumption transformed into satisfiability

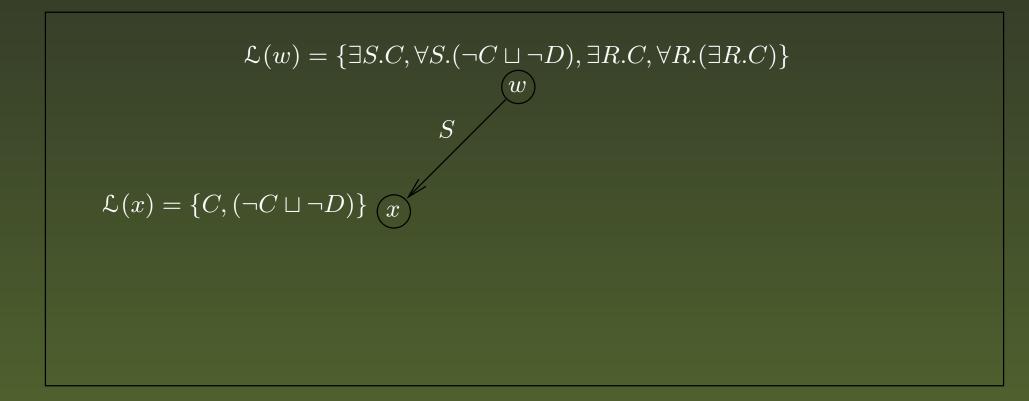
- $\sim$  Try to build **model** (witness) of concept *C*
- Model represented by tree T
  - Nodes in T correspond to individuals in model
  - Nodes labeled with sets of subconcepts of C
  - Edges labeled with role names in C

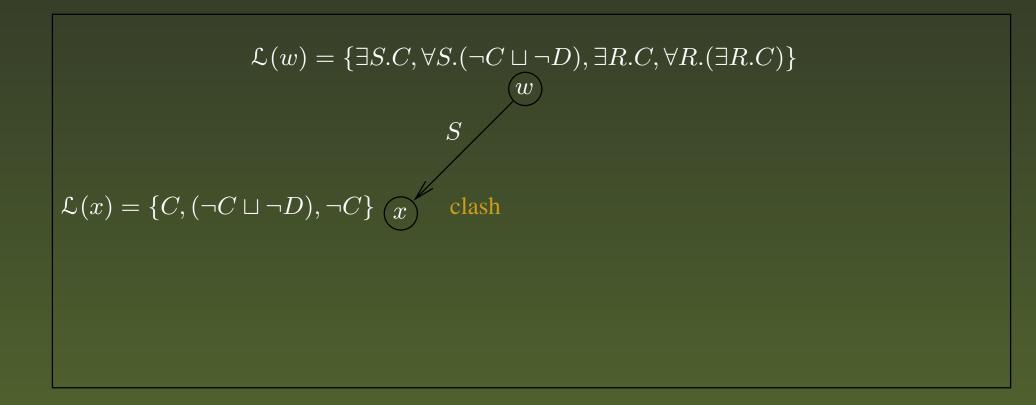
#### Subsumption transformed into satisfiability

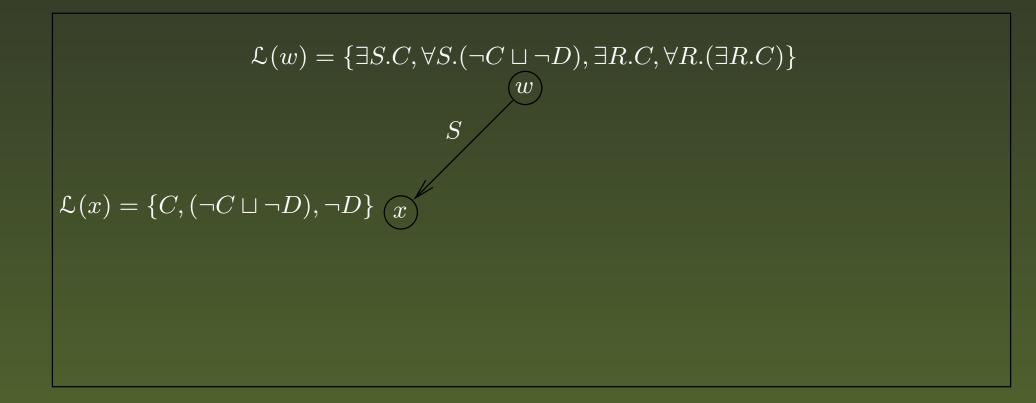
- $\sim$  Try to build **model** (witness) of concept *C*
- Model represented by tree T
  - Nodes in T correspond to individuals in model
  - Nodes labeled with sets of subconcepts of C
  - Edges labeled with role names in C
- $\Leftrightarrow$  Start from root node labeled  $\{C\}$

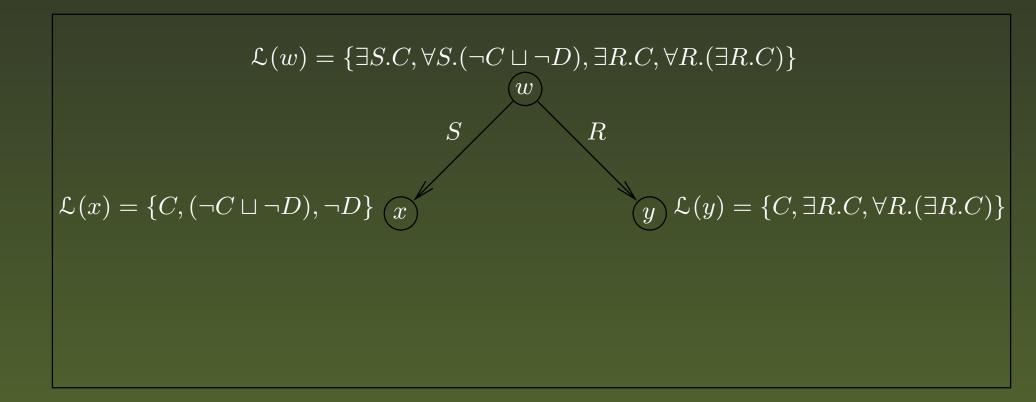
#### Subsumption transformed into satisfiability


- $\sim$  Try to build **model** (witness) of concept C
- $\sim$  Model represented by tree T
  - Nodes in T correspond to individuals in model
  - Nodes labeled with sets of subconcepts of C
  - Edges labeled with role names in C
- $\Leftrightarrow$  Start from root node labeled  $\{C\}$
- Apply expansion rules to node labels until
  - Rules correspond with language constructs
  - Expansion completed (tree represents valid model)
  - Contradictions prove there is no model

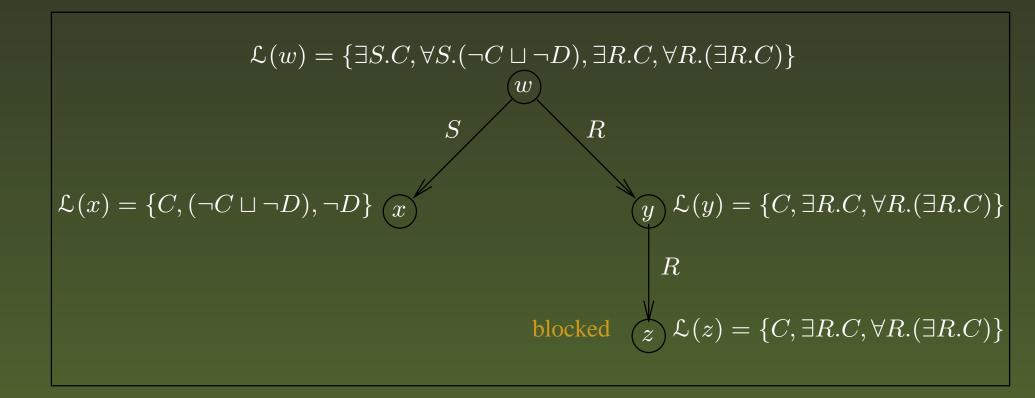

#### Subsumption transformed into satisfiability


- $\sim$  Try to build **model** (witness) of concept *C*
- $\sim$  Model represented by tree T
  - Nodes in T correspond to individuals in model
  - Nodes labeled with sets of subconcepts of C
  - Edges labeled with role names in C
- $\sim$  Start from root node labeled  $\{C\}$
- Apply expansion rules to node labels until
  - Rules correspond with language constructs
  - Expansion completed (tree represents valid model)
  - Contradictions prove there is no model
- $\sim$  Non-deterministic expansion  $\rightarrow$  search (e.g.,  $C \sqcup D$ )

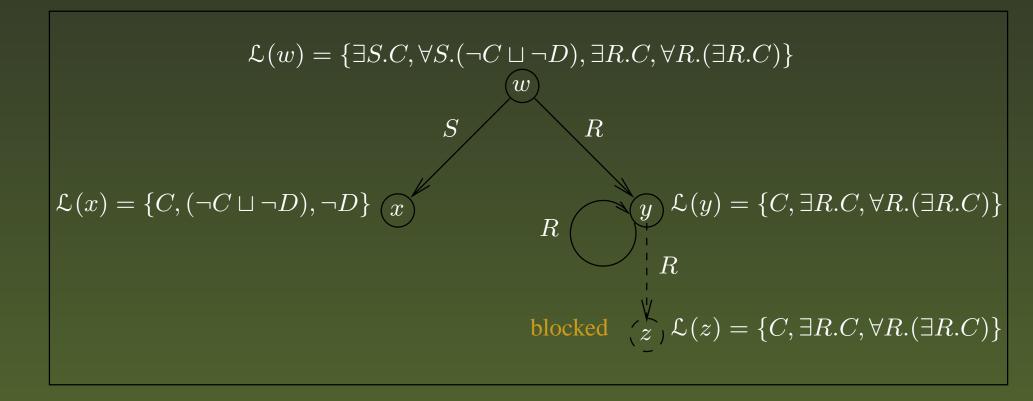

#### Subsumption transformed into satisfiability


- $\sim$  Try to build **model** (witness) of concept C
- $\sim$  Model represented by tree T
  - Nodes in T correspond to individuals in model
  - Nodes labeled with sets of subconcepts of C
  - Edges labeled with role names in C
- $\sim$  Start from root node labeled  $\{C\}$
- Apply expansion rules to node labels until
  - Rules correspond with language constructs
  - Expansion completed (tree represents valid model)
  - Contradictions prove there is no model
- $\sim$  Non-deterministic expansion  $\rightarrow$  search (e.g.,  $C \sqcup D$ )
- Blocking ensures termination (with expressive DLs)










Test satisfiability of  $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C)\}$  where *R* is a transitive role



Test satisfiability of  $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C)\}$  where *R* is a transitive role



#### Concept is satisfiable: *w* is a witness

Satisfiability w.r.t. a Terminology

For each GCI  $C \sqsubseteq D \in \mathcal{T}$ , add  $\neg C \sqcup D$  to every node label

Satisfiability w.r.t. a Terminology  $\$  For each GCI  $C \sqsubseteq D \in \mathcal{T}$ , add  $\neg C \sqcup D$  to every node label More expressive DLs

#### Satisfiability w.r.t. a Terminology

For each GCI  $C \sqsubseteq D \in \mathcal{T}$ , add  $\neg C \sqcup D$  to every node label

#### **More expressive DLs**

- Basic technique can be extended to deal with
  - Role inclusion axioms (role hierarchy)
  - Number restrictions
  - Inverse roles
  - Concrete domains
  - Aboxes
  - etc.

#### Satisfiability w.r.t. a Terminology

For each GCI  $C \sqsubseteq D \in \mathcal{T}$ , add  $\neg C \sqcup D$  to every node label

#### **More expressive DLs**

- Basic technique can be extended to deal with
  - Role inclusion axioms (role hierarchy)
  - Number restrictions
  - Inverse roles
  - Concrete domains
  - Aboxes
  - etc.
- Extend expansion rules and use more sophisticated blocking strategy

#### Satisfiability w.r.t. a Terminology

For each GCI  $C \sqsubseteq D \in \mathcal{T}$ , add  $\neg C \sqcup D$  to every node label

#### **More expressive DLs**

- Basic technique can be extended to deal with
  - Role inclusion axioms (role hierarchy)
  - Number restrictions
  - Inverse roles
  - Concrete domains
  - Aboxes
  - etc.
- Extend expansion rules and use more sophisticated blocking strategy
- Forest instead of Tree (for Aboxes)

# Implementing DL Systems

#### **Problems** include:

Space usage

- Space usage
  - Storage required for tableaux datastructures

- Space usage
  - Storage required for tableaux datastructures
  - Rarely a serious problem in practice

- Space usage
  - Storage required for tableaux datastructures
  - Rarely a serious problem in practice
  - But problems can arise with inverse roles and cyclical KBs

- Space usage
  - Storage required for tableaux datastructures
  - Rarely a serious problem in practice
  - But problems can arise with inverse roles and cyclical KBs
- Time usage

- Space usage
  - Storage required for tableaux datastructures
  - Rarely a serious problem in practice
  - But problems can arise with inverse roles and cyclical KBs
- Time usage
  - Search required due to non-deterministic expansion

- Space usage
  - Storage required for tableaux datastructures
  - Rarely a serious problem in practice
  - But problems can arise with inverse roles and cyclical KBs
- Time usage
  - Search required due to non-deterministic expansion
  - Serious problem in practice

- Space usage
  - Storage required for tableaux datastructures
  - Rarely a serious problem in practice
  - But problems can arise with inverse roles and cyclical KBs
- Time usage
  - Search required due to non-deterministic expansion
  - Serious problem in practice
  - Mitigated by:
    - Careful choice of algorithm
    - Highly optimised implementation

Transitive roles instead of transitive closure

• Deterministic expansion of  $\exists R.C$ , even when  $R \in \mathbf{R}_+$ 

- Deterministic expansion of  $\exists R.C$ , even when  $R \in \mathbf{R}_+$
- (Relatively) simple blocking conditions

- Deterministic expansion of  $\exists R.C$ , even when  $R \in \mathbf{R}_+$
- (Relatively) simple blocking conditions
- Cycles always represent (part of) valid cyclical models

- Deterministic expansion of  $\exists R.C$ , even when  $R \in \mathbf{R}_+$
- (Relatively) simple blocking conditions
- Cycles always represent (part of) valid cyclical models
- Direct algorithm/implementation instead of encodings

- Transitive roles instead of transitive closure
  - Deterministic expansion of  $\exists R.C$ , even when  $R \in \mathbf{R}_+$
  - (Relatively) simple blocking conditions
  - Cycles always represent (part of) valid cyclical models
- Direct algorithm/implementation instead of encodings
  - GCI axioms can be used to "encode" additional operators/axioms

- Transitive roles instead of transitive closure
  - Deterministic expansion of  $\exists R.C$ , even when  $R \in \mathbf{R}_+$
  - (Relatively) simple blocking conditions
  - Cycles always represent (part of) valid cyclical models
- Direct algorithm/implementation instead of encodings
  - GCI axioms can be used to "encode" additional operators/axioms
  - Powerful technique, particularly when used with FL closure

- Transitive roles instead of transitive closure
  - Deterministic expansion of  $\exists R.C$ , even when  $R \in \mathbf{R}_+$
  - (Relatively) simple blocking conditions
  - Cycles always represent (part of) valid cyclical models
- Direct algorithm/implementation instead of encodings
  - GCI axioms can be used to "encode" additional operators/axioms
  - Powerful technique, particularly when used with FL closure
  - Can encode cardinality constraints, inverse roles, range/domain,
     ...

. . .

- Transitive roles instead of transitive closure
  - Deterministic expansion of  $\exists R.C$ , even when  $R \in \mathbf{R}_+$
  - (Relatively) simple blocking conditions
  - Cycles always represent (part of) valid cyclical models
- Direct algorithm/implementation instead of encodings
  - GCI axioms can be used to "encode" additional operators/axioms
  - Powerful technique, particularly when used with FL closure
  - Can encode cardinality constraints, inverse roles, range/domain,

→ E.g., (domain R.C)  $\equiv \exists R.\top \sqsubseteq C$ 

. . .

- Transitive roles instead of transitive closure
  - Deterministic expansion of  $\exists R.C$ , even when  $R \in \mathbf{R}_+$
  - (Relatively) simple blocking conditions
  - Cycles always represent (part of) valid cyclical models
- Direct algorithm/implementation instead of encodings
  - GCI axioms can be used to "encode" additional operators/axioms
  - Powerful technique, particularly when used with FL closure
  - Can encode cardinality constraints, inverse roles, range/domain,

→ E.g., (domain R.C)  $\equiv \exists R.\top \sqsubseteq C$ 

• (FL) encodings introduce (large numbers of) axioms

- Transitive roles instead of transitive closure
  - Deterministic expansion of  $\exists R.C$ , even when  $R \in \mathbf{R}_+$
  - (Relatively) simple blocking conditions
  - Cycles always represent (part of) valid cyclical models
- Direct algorithm/implementation instead of encodings
  - GCI axioms can be used to "encode" additional operators/axioms
  - Powerful technique, particularly when used with FL closure
  - Can encode cardinality constraints, inverse roles, range/domain,
     ...
    - → E.g., (domain R.C)  $\equiv \exists R.\top \sqsubseteq C$
  - (FL) encodings introduce (large numbers of) axioms
  - BUT even simple domain encoding is disastrous with large numbers of roles

- Optimised classification
  - Use enhanced traversal (exploit information from previous tests)
  - Use structural information to select classification order

- Optimised classification
  - Use enhanced traversal (exploit information from previous tests)
  - Use structural information to select classification order
- Optimised subsumption testing

- Optimised classification
  - Use enhanced traversal (exploit information from previous tests)
  - Use structural information to select classification order
- Optimised subsumption testing
  - Normalisation and simplification of concepts

- Optimised classification
  - Use enhanced traversal (exploit information from previous tests)
  - Use structural information to select classification order
- Optimised subsumption testing
  - Normalisation and simplification of concepts
  - Absorption (simplification) of general axioms

- Optimised classification
  - Use enhanced traversal (exploit information from previous tests)
  - Use structural information to select classification order
- Optimised subsumption testing
  - Normalisation and simplification of concepts
  - Absorption (simplification) of general axioms
  - Davis-Putnam style semantic branching search

# **Highly Optimised Implementation**

Modern systems include MANY optimisations, e.g.:

- Optimised classification
  - Use enhanced traversal (exploit information from previous tests)
  - Use structural information to select classification order
- Optimised subsumption testing
  - Normalisation and simplification of concepts
  - Absorption (simplification) of general axioms
  - Davis-Putnam style semantic branching search
  - Dependency directed backtracking

# **Highly Optimised Implementation**

Modern systems include MANY optimisations, e.g.:

- Optimised classification
  - Use enhanced traversal (exploit information from previous tests)
  - Use structural information to select classification order
- Optimised subsumption testing
  - Normalisation and simplification of concepts
  - Absorption (simplification) of general axioms
  - Davis-Putnam style semantic branching search
  - Dependency directed backtracking
  - Caching

# **Highly Optimised Implementation**

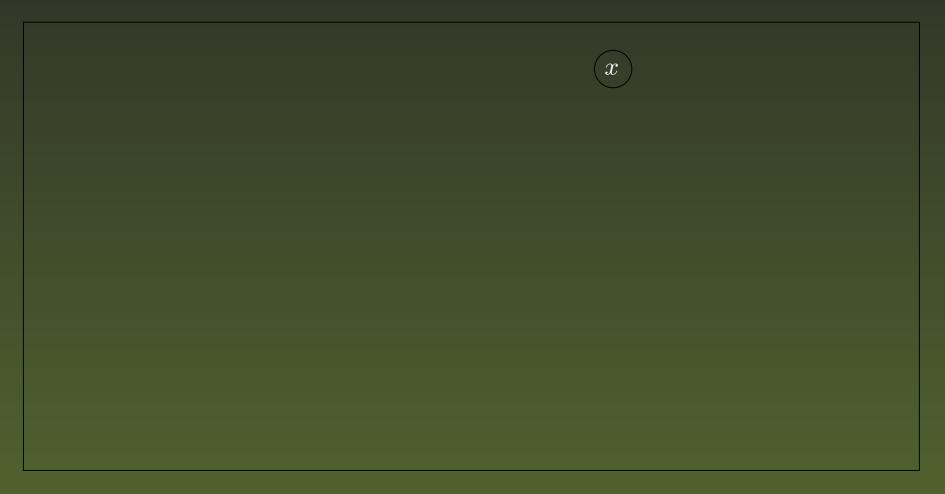
Modern systems include MANY optimisations, e.g.:

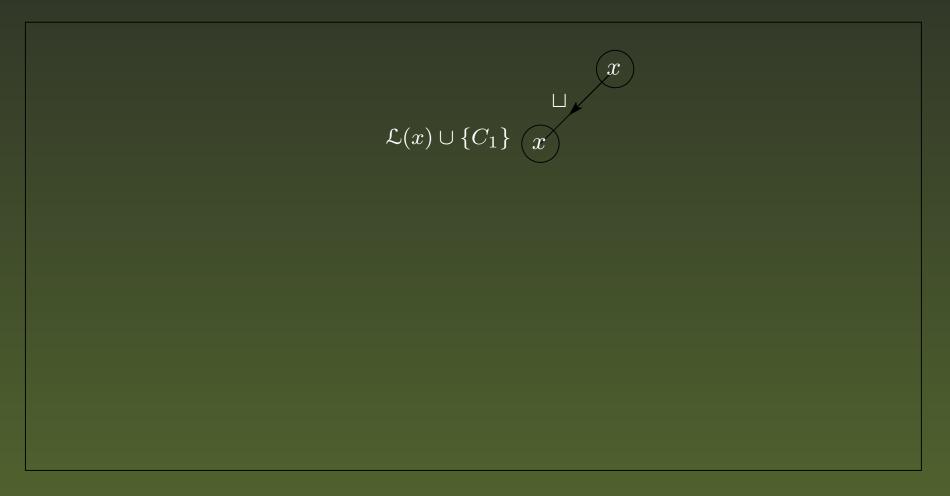
- Optimised classification
  - Use enhanced traversal (exploit information from previous tests)
  - Use structural information to select classification order
- Optimised subsumption testing
  - Normalisation and simplification of concepts
  - Absorption (simplification) of general axioms
  - Davis-Putnam style semantic branching search
  - Dependency directed backtracking
  - Caching
  - Heuristic ordering of propositional and modal expansion

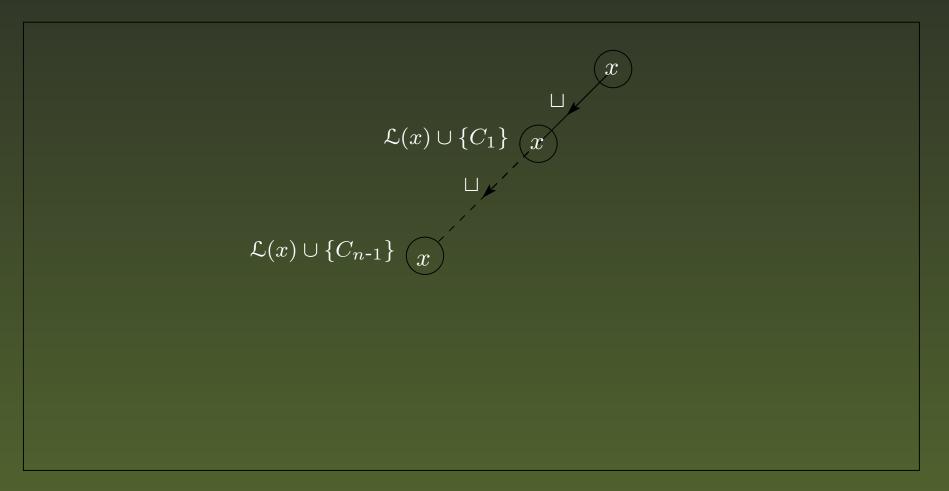
Allows rapid recovery from bad branching choices

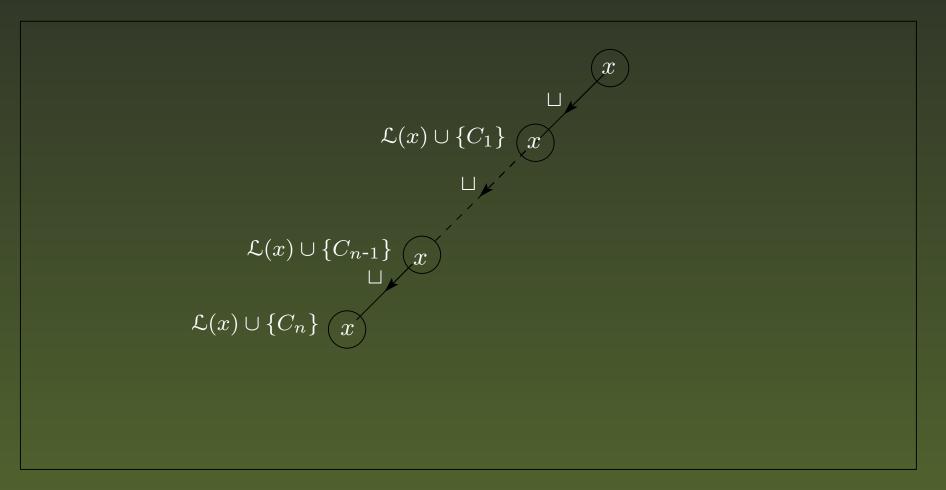
- Allows rapid recovery from bad branching choices
- Most commonly used technique is backjumping

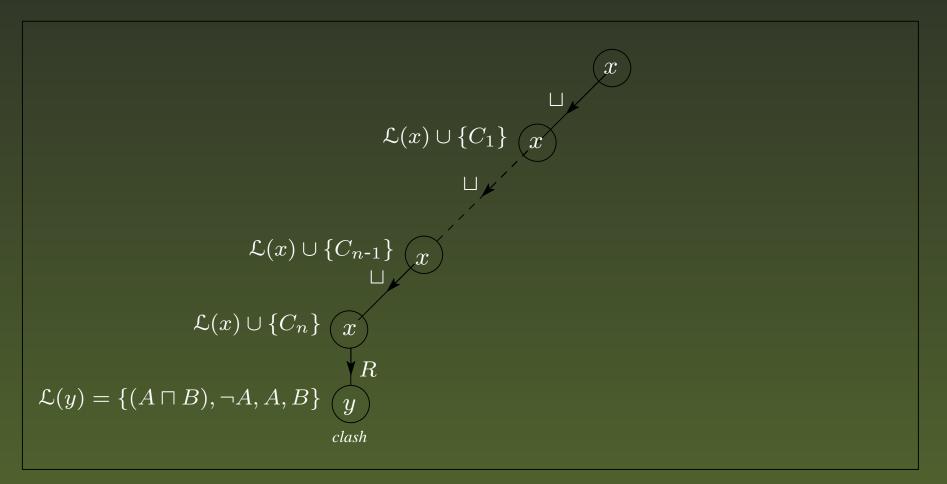
- Allows rapid recovery from bad branching choices
- Most commonly used technique is backjumping
  - Tag concepts introduced at **branch points** (e.g., when expanding disjunctions)

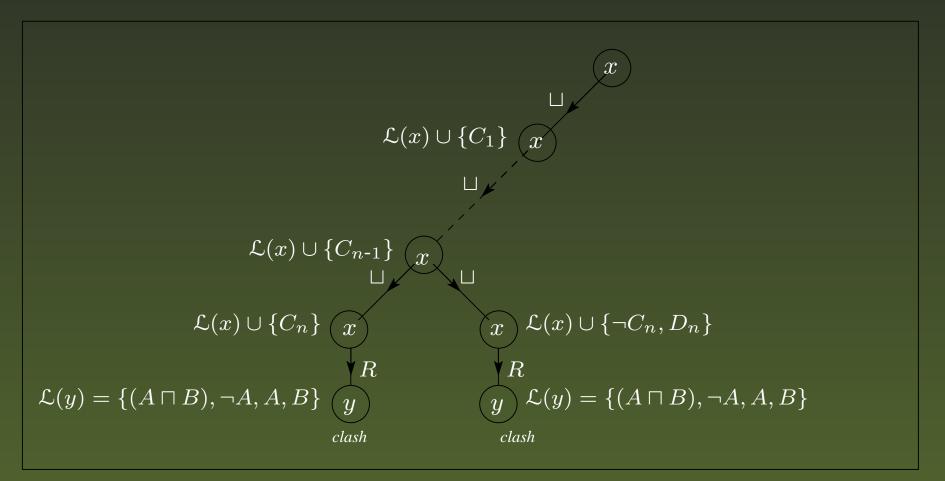

- Allows rapid recovery from bad branching choices
- Most commonly used technique is backjumping
  - Tag concepts introduced at **branch points** (e.g., when expanding disjunctions)
  - Expansion rules combine and propagate tags

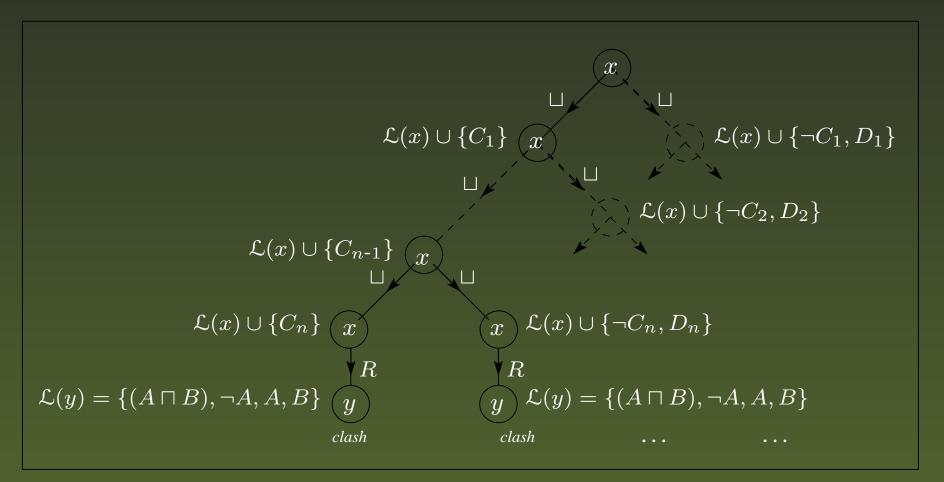

- Allows rapid recovery from bad branching choices
- Most commonly used technique is backjumping
  - Tag concepts introduced at **branch points** (e.g., when expanding disjunctions)
  - Expansion rules combine and propagate tags
  - On discovering a clash, identify most recently introduced concepts involved

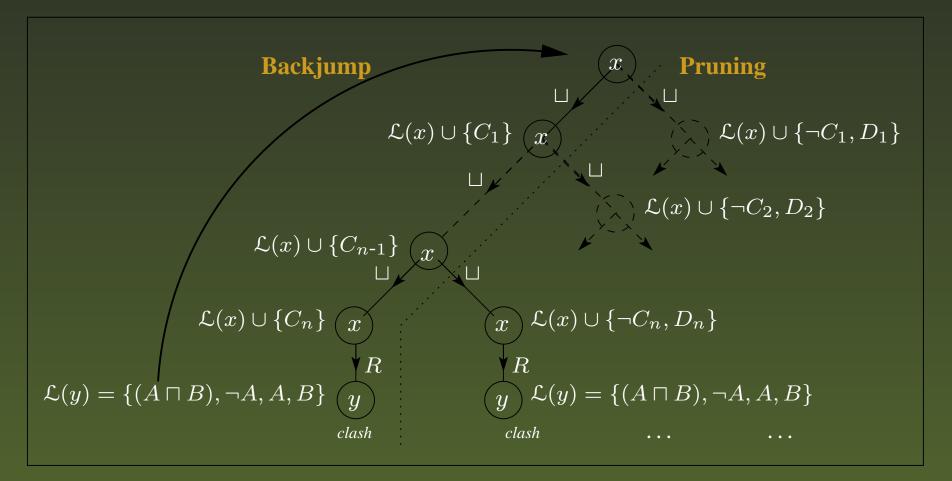

- Allows rapid recovery from bad branching choices
- Most commonly used technique is backjumping
  - Tag concepts introduced at **branch points** (e.g., when expanding disjunctions)
  - Expansion rules combine and propagate tags
  - On discovering a clash, identify most recently introduced concepts involved
  - Jump back to relevant branch points without exploring alternative branches


- Allows rapid recovery from bad branching choices
- Most commonly used technique is backjumping
  - Tag concepts introduced at **branch points** (e.g., when expanding disjunctions)
  - Expansion rules combine and propagate tags
  - On discovering a clash, identify most recently introduced concepts involved
  - Jump back to relevant branch points without exploring alternative branches
  - Effect is to **prune** away part of the search space


- Allows rapid recovery from bad branching choices
- Most commonly used technique is backjumping
  - Tag concepts introduced at branch points (e.g., when expanding disjunctions)
  - Expansion rules combine and propagate tags
  - On discovering a clash, identify most recently introduced concepts involved
  - Jump back to relevant branch points without exploring alternative branches
  - Effect is to **prune** away part of the search space
- Highly effective essential for usable system
  - E.g., GALEN KB, 30s (with)  $\longrightarrow$  months++ (without)














- Datatypes
- Nominals
- Extensions to DAML+OIL

- Datatypes
- Nominals
- Extensions to DAML+OIL
- Performance
  - Inverse roles and qualified number restrictions
  - Very large KBs
  - Reasoning with individuals

- Datatypes
- Nominals
- Extensions to DAML+OIL
- Performance
  - Inverse roles and qualified number restrictions
  - Very large KBs
  - Reasoning with individuals
- Tools and Infrastructure
  - Support for large scale ontological engineering and deployment

- Datatypes
- Nominals
- Extensions to DAML+OIL
- Performance
  - Inverse roles and qualified number restrictions
  - Very large KBs
  - Reasoning with individuals
- Tools and Infrastructure
  - Support for large scale ontological engineering and deployment
- New reasoning tasks
  - Querying
  - Lcs/matching
  - Sanctioning
  - • •

DAML+OIL extends SHIQ with datatypes and nominals

DAML+OIL extends SHIQ with datatypes and nominals

DAML+OIL extends SHIQ with datatypes and nominals

- DAML+OIL has simple form of datatypes
  - Unary predicates plus disjoint abstract/datatype domains

DAML+OIL extends SHIQ with datatypes and nominals

- DAML+OIL has simple form of datatypes
  - Unary predicates plus disjoint abstract/datatype domains
- Theoretically not particularly challenging
  - Existing work on concrete domains [Baader & Hanschke, Lutz]
  - Algorithm already known for  $\mathcal{SHOQ}(\mathbf{D})$  [Horrocks & Sattler]

DAML+OIL extends SHIQ with datatypes and nominals

- DAML+OIL has simple form of datatypes
  - Unary predicates plus disjoint abstract/datatype domains
- Theoretically not particularly challenging
  - Existing work on concrete domains [Baader & Hanschke, Lutz]
  - Algorithm already known for  $\mathcal{SHOQ}(\mathbf{D})$  [Horrocks & Sattler]
- May be practically challenging
  - All XMLS datatypes supported

DAML+OIL extends SHIQ with datatypes and nominals

- DAML+OIL has simple form of datatypes
  - Unary predicates plus disjoint abstract/datatype domains
- Theoretically not particularly challenging
  - Existing work on concrete domains [Baader & Hanschke, Lutz]
  - Algorithm already known for  $\mathcal{SHOQ}(\mathbf{D})$  [Horrocks & Sattler]
- May be practically challenging
  - All XMLS datatypes supported
- Already seeing some (limited) implementations
  - E.g., Cerebra system (Network Inference)

- DAML+OIL has oneOf constructor
  - Extensionally defined concepts, e.g.,  $\{Mary\}^{\mathcal{I}} = \{Mary\}$
  - Equivalent to nominals in modal logic

- DAML+OIL has oneOf constructor
  - Extensionally defined concepts, e.g.,  $\{Mary\}^{\mathcal{I}} = \{Mary\}$
  - Equivalent to nominals in modal logic
- Theoretically very challenging

- DAML+OIL has oneOf constructor
  - Extensionally defined concepts, e.g.,  $\{Mary\}^{\mathcal{I}} = \{Mary\}$
  - Equivalent to nominals in modal logic
- Theoretically very challenging
  - Resulting logic has known high complexity (NExpTime)

## **Increased Expressive Power: Nominals**

#### Nominals

- DAML+OIL has oneOf constructor
  - Extensionally defined concepts, e.g.,  $\{Mary\}^{\mathcal{I}} = \{Mary\}$
  - Equivalent to nominals in modal logic
- Theoretically very challenging
  - Resulting logic has known high complexity (NExpTime)
  - No known "practical" algorithm

## **Increased Expressive Power: Nominals**

#### Nominals

- DAML+OIL has oneOf constructor
  - Extensionally defined concepts, e.g.,  $\{Mary\}^{\mathcal{I}} = \{Mary\}$
  - Equivalent to nominals in modal logic
- Theoretically very challenging
  - Resulting logic has known high complexity (NExpTime)
  - No known "practical" algorithm
  - Not obvious how to extend tableax techniques in this direction
    - Loss of tree model property
    - → Spy-points:  $\top \sqsubseteq \exists R.\{Spy\}$
    - → Finite domains:  $\{Spy\} \sqsubseteq \leqslant nR^-$

## **Increased Expressive Power: Nominals**

#### Nominals

- DAML+OIL has oneOf constructor
  - Extensionally defined concepts, e.g.,  $\{Mary\}^{\mathcal{I}} = \{Mary\}$
  - Equivalent to nominals in modal logic
- Theoretically very challenging
  - Resulting logic has known high complexity (NExpTime)
  - No known "practical" algorithm
  - Not obvious how to extend tableax techniques in this direction
    - Loss of tree model property
    - → Spy-points:  $\top \sqsubseteq \exists R.\{Spy\}$
    - → Finite domains:  $\{Spy\} \sqsubseteq \leqslant nR^-$
- Relatively straightforward (in theory) without inverse roles
  - Algorithm for  $\mathcal{SHOQ}(\mathbf{D})$  deals with nominals
  - Practical implementation still to be demonstrated

DAML+OIL not expressive enough for all applications

- DAML+OIL not expressive enough for all applications
- Extensions wish list includes:
  - Feature chain (path) agreement, e.g., output of component of composite process equals input of subsequent process
  - Complex roles/role inclusions, e.g., a city located in part of a country is located in that country
  - Rules—proposal(s) already exist for "datalog/LP style rules"
  - Temporal and spatial reasoning

• • • •

- DAML+OIL not expressive enough for all applications
- Extensions wish list includes:
  - Feature chain (path) agreement, e.g., output of component of composite process equals input of subsequent process
  - Complex roles/role inclusions, e.g., a city located in part of a country is located in that country
  - Rules—proposal(s) already exist for "datalog/LP style rules"
  - Temporal and spatial reasoning

• • • •

May be impossible/undesirable to resist such extensions

- DAML+OIL not expressive enough for all applications
- Extensions wish list includes:
  - Feature chain (path) agreement, e.g., output of component of composite process equals input of subsequent process
  - Complex roles/role inclusions, e.g., a city located in part of a country is located in that country
  - Rules—proposal(s) already exist for "datalog/LP style rules"
  - Temporal and spatial reasoning

• ...

- May be impossible/undesirable to resist such extensions
- Extended language sure to be undecidable

- DAML+OIL not expressive enough for all applications
- Extensions wish list includes:
  - Feature chain (path) agreement, e.g., output of component of composite process equals input of subsequent process
  - Complex roles/role inclusions, e.g., a city located in part of a country is located in that country
  - Rules—proposal(s) already exist for "datalog/LP style rules"
  - Temporal and spatial reasoning
  - . . .
- May be impossible/undesirable to resist such extensions
- Extended language sure to be undecidable
- How can extensions best be integrated with DAML+OIL?

- DAML+OIL not expressive enough for all applications
- Extensions wish list includes:
  - Feature chain (path) agreement, e.g., output of component of composite process equals input of subsequent process
  - Complex roles/role inclusions, e.g., a city located in part of a country is located in that country
  - Rules—proposal(s) already exist for "datalog/LP style rules"
  - Temporal and spatial reasoning
  - • •
- May be impossible/undesirable to resist such extensions
- Extended language sure to be undecidable
- How can extensions best be integrated with DAML+OIL?
- How can reasoners be developed/adapted for extended languages
  - Some existing work on language fusions and hybrid reasoners

Evidence of empirical tractability mostly w.r.t. SHF— problems can arise when systems extended to SHIQ

- Evidence of empirical tractability mostly w.r.t. SHF— problems can arise when systems extended to SHIQ
- Important optimisations no longer (fully) work
  - E.g., problems with caching as cached models can affect parent

- Evidence of empirical tractability mostly w.r.t. SHF— problems can arise when systems extended to SHIQ
- Important optimisations no longer (fully) work
  - E.g., problems with caching as cached models can affect parent
- Qualified number restrictions can also cause problems
  - Even relatively small numbers can mean significant non-determinism

- Evidence of empirical tractability mostly w.r.t. SHF— problems can arise when systems extended to SHIQ
- Important optimisations no longer (fully) work
  - E.g., problems with caching as cached models can affect parent
- Qualified number restrictions can also cause problems
  - Even relatively small numbers can mean significant non-determinism
- Reasoning with very large KBs/ontologies
  - Web ontologies can be expected to grow very large

- Evidence of empirical tractability mostly w.r.t. SHF— problems can arise when systems extended to SHIQ
- Important optimisations no longer (fully) work
  - E.g., problems with caching as cached models can affect parent
- Qualified number restrictions can also cause problems
  - Even relatively small numbers can mean significant non-determinism
- Reasoning with very large KBs/ontologies
  - Web ontologies can be expected to grow very large
- Reasoning with individuals (Abox)
  - Deployment of web ontologies will mean reasoning with (possibly very large numbers of) individuals
  - Unlikely that standard Abox techniques will be able to cope



- Problem exacerbated by over-cautious double blocking condition (e.g., root node can never block)
- Promising results from more precise blocking condition [Sattler & Horrocks]

- Problem exacerbated by over-cautious double blocking condition (e.g., root node can never block)
- Promising results from more precise blocking condition [Sattler & Horrocks]
- Qualified number restrictions

- Problem exacerbated by over-cautious double blocking condition (e.g., root node can never block)
- Promising results from more precise blocking condition [Sattler & Horrocks]
- Qualified number restrictions
  - Problem exacerbated by naive expansion rules
  - Promising results from optimised expansion using Algebraic Methods [Haarslev & Möller]

- Problem exacerbated by over-cautious double blocking condition (e.g., root node can never block)
- Promising results from more precise blocking condition [Sattler & Horrocks]
- Qualified number restrictions
  - Problem exacerbated by naive expansion rules
  - Promising results from optimised expansion using Algebraic Methods [Haarslev & Möller]
- Caching and merging

- Problem exacerbated by over-cautious double blocking condition (e.g., root node can never block)
- Promising results from more precise blocking condition [Sattler & Horrocks]
- Qualified number restrictions
  - Problem exacerbated by naive expansion rules
  - Promising results from optimised expansion using Algebraic Methods [Haarslev & Möller]
- Caching and merging
  - Can still work in some situations (work in progress)

- Problem exacerbated by over-cautious double blocking condition (e.g., root node can never block)
- Promising results from more precise blocking condition [Sattler & Horrocks]
- Qualified number restrictions
  - Problem exacerbated by naive expansion rules
  - Promising results from optimised expansion using Algebraic Methods [Haarslev & Möller]
- Caching and merging
  - Can still work in some situations (work in progress)
- Reasoning with very large KBs

- Problem exacerbated by over-cautious double blocking condition (e.g., root node can never block)
- Promising results from more precise blocking condition [Sattler & Horrocks]
- Qualified number restrictions
  - Problem exacerbated by naive expansion rules
  - Promising results from optimised expansion using Algebraic Methods [Haarslev & Möller]
- Caching and merging
  - Can still work in some situations (work in progress)
- Reasoning with very large KBs
  - DL systems shown to work with  ${\approx}100k$  concept KB [Haarslev & Möller]
  - But KB only exploited small part of DL language

Tools and infrastructure required in order support use of DAML+OIL

Ontology design and maintenance

- Ontology design and maintenance
  - Several editors available, e.g, OilEd (Manchester), OntoEdit (Karlsruhe), Protégé (Stanford)

- Ontology design and maintenance
  - Several editors available, e.g, OilEd (Manchester), OntoEdit (Karlsruhe), Protégé (Stanford)
  - Need integrated **environments** including modularity, versioning, visualisation, explanation, high-level languages, ...

- Ontology design and maintenance
  - Several editors available, e.g, OilEd (Manchester), OntoEdit (Karlsruhe), Protégé (Stanford)
  - Need integrated **environments** including modularity, versioning, visualisation, explanation, high-level languages, ...
- Ontology Integration

- Ontology design and maintenance
  - Several editors available, e.g, OilEd (Manchester), OntoEdit (Karlsruhe), Protégé (Stanford)
  - Need integrated **environments** including modularity, versioning, visualisation, explanation, high-level languages, ...
- Ontology Integration
  - Some tools available, e.g., Chimera (Stanford)

- Ontology design and maintenance
  - Several editors available, e.g, OilEd (Manchester), OntoEdit (Karlsruhe), Protégé (Stanford)
  - Need integrated environments including modularity, versioning, visualisation, explanation, high-level languages, ...
- Ontology Integration
  - Some tools available, e.g., Chimera (Stanford)
  - Need integrated environments ...

- Ontology design and maintenance
  - Several editors available, e.g, OilEd (Manchester), OntoEdit (Karlsruhe), Protégé (Stanford)
  - Need integrated **environments** including modularity, versioning, visualisation, explanation, high-level languages, ...
- Ontology Integration
  - Some tools available, e.g., Chimera (Stanford)
  - Need integrated environments ...
  - Can learn from DB integration work [Lenzerini, Calvanese et al]

- Ontology design and maintenance
  - Several editors available, e.g, OilEd (Manchester), OntoEdit (Karlsruhe), Protégé (Stanford)
  - Need integrated environments including modularity, versioning, visualisation, explanation, high-level languages, ...
- Ontology Integration
  - Some tools available, e.g., Chimera (Stanford)
  - Need integrated environments ...
  - Can learn from DB integration work [Lenzerini, Calvanese et al]
- Reasoning engines

- Ontology design and maintenance
  - Several editors available, e.g, OilEd (Manchester), OntoEdit (Karlsruhe), Protégé (Stanford)
  - Need integrated **environments** including modularity, versioning, visualisation, explanation, high-level languages, ...
- Ontology Integration
  - Some tools available, e.g., Chimera (Stanford)
  - Need integrated environments ...
  - Can learn from DB integration work [Lenzerini, Calvanese et al]
- Reasoning engines
  - Several DL systems available

- Ontology design and maintenance
  - Several editors available, e.g, OilEd (Manchester), OntoEdit (Karlsruhe), Protégé (Stanford)
  - Need integrated **environments** including modularity, versioning, visualisation, explanation, high-level languages, ...
- Ontology Integration
  - Some tools available, e.g., Chimera (Stanford)
  - Need integrated environments ...
  - Can learn from DB integration work [Lenzerini, Calvanese et al]
- Reasoning engines
  - Several DL systems available
  - Need for improved usability/connectivity

- Ontology design and maintenance
  - Several editors available, e.g, OilEd (Manchester), OntoEdit (Karlsruhe), Protégé (Stanford)
  - Need integrated **environments** including modularity, versioning, visualisation, explanation, high-level languages, ...
- Ontology Integration
  - Some tools available, e.g., Chimera (Stanford)
  - Need integrated environments ...
  - Can learn from DB integration work [Lenzerini, Calvanese et al]
- Reasoning engines
  - Several DL systems available
  - Need for improved usability/connectivity

# New Reasoning Tasks



#### Querying

• Retrieval (instances of a concept) and realisation (most specific class of instance) wont be sufficient

- Retrieval (instances of a concept) and realisation (most specific class of instance) wont be sufficient
- Minimum requirement will be conjunctive query style language [Tessaris & Horrocks]

- Retrieval (instances of a concept) and realisation (most specific class of instance) wont be sufficient
- Minimum requirement will be conjunctive query style language [Tessaris & Horrocks]
- May also need to answer "what can I say about x?" style of query [Bechhofer & Horrocks]

- Retrieval (instances of a concept) and realisation (most specific class of instance) wont be sufficient
- Minimum requirement will be conjunctive query style language [Tessaris & Horrocks]
- May also need to answer "what can I say about x?" style of query [Bechhofer & Horrocks]
- Explanation (e.g., to support ontology design) [McGuinness, Borgida et al]

- Retrieval (instances of a concept) and realisation (most specific class of instance) wont be sufficient
- Minimum requirement will be conjunctive query style language [Tessaris & Horrocks]
- May also need to answer "what can I say about x?" style of query [Bechhofer & Horrocks]
- Explanation (e.g., to support ontology design) [McGuinness, Borgida et al]
- Least common subsumer and/or matching (e.g., to support ontology integration and "bottom up" design) [Baader, Küsters & Molitor]

- Retrieval (instances of a concept) and realisation (most specific class of instance) wont be sufficient
- Minimum requirement will be conjunctive query style language [Tessaris & Horrocks]
- May also need to answer "what can I say about x?" style of query [Bechhofer & Horrocks]
- Explanation (e.g., to support ontology design) [McGuinness, Borgida et al]
- Least common subsumer and/or matching (e.g., to support ontology integration and "bottom up" design) [Baader, Küsters & Molitor]





Ontologies will play key role in Semantic Web

- Ontologies will play key role in Semantic Web
- DAML+OIL is web ontology language based on Description Logic

- Ontologies will play key role in Semantic Web
- DAML+OIL is web ontology language based on Description Logic
- Ontology design, integration and deployment supported by reasoning

- Ontologies will play key role in Semantic Web
- DAML+OIL is web ontology language based on Description Logic
- Ontology design, integration and deployment supported by reasoning
- DLs are logic based KR formalisms with emphasis on reasoning

- Ontologies will play key role in Semantic Web
- DAML+OIL is web ontology language based on Description Logic
- Ontology design, integration and deployment supported by reasoning
- DLs are logic based KR formalisms with emphasis on reasoning
- DL systems provide efficient reasoning services
  - Careful choice of logic/algorithm
  - Highly optimised implementation

- Ontologies will play key role in Semantic Web
- DAML+OIL is web ontology language based on Description Logic
- Ontology design, integration and deployment supported by reasoning
- DLs are logic based KR formalisms with emphasis on reasoning
- DL systems provide efficient reasoning services
  - Careful choice of logic/algorithm
  - Highly optimised implementation
- Still many challenges for DL and Semantic Web research
  - Expressive power
  - Performance
  - Tools and infrastructure
  - New reasoning tasks

### Resources

#### Slides from this talk

```
www.cs.man.ac.uk/~horrocks/Slides/hp-labs.pdf
```

FaCT system

```
www.cs.man.ac.uk/fact
```

### OIL

```
www.ontoknowledge.org/oil/
```

### DAML+OIL

www.daml.org/language/

#### OilEd

img.cs.man.ac.uk/oil

#### I.COM

```
www.cs.man.ac.uk/~franconi/icom/
```

F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.-J. Profitlich. An empirical analysis of optimization techniques for terminological representation systems or: Making KRIS get a move on. In B. Nebel, C. Rich, and W. Swartout, editors, *Proc. of KR'92*, pages 270–281. Morgan Kaufmann, 1992.

F. Giunchiglia and R. Sebastiani. A SAT-based decision procedure for *ALC*. In *Proc. of KR'96*, pages 304–314. Morgan Kaufmann, 1996.

V. Haarslev and R. Möller. High performance reasoning with very large knowledge bases: A practical case study. In *Proc. of IJCAI 2001* (to appear).

B. Hollunder and W. Nutt. Subsumption algorithms for concept languages. In *Proc. of ECAI'90*, pages 348–353. John Wiley & Sons Ltd., 1990. I. Horrocks. Optimising Tableaux Decision Procedures for Description Logics. PhD thesis, University of Manchester, 1997.

I. Horrocks and P. F. Patel-Schneider. Comparing subsumption optimizations. In *Proc. of DL'98*, pages 90–94. CEUR, 1998.

I. Horrocks and P. F. Patel-Schneider. Optimising description logic subsumption. *Journal of Logic and Computation*, 9(3):267–293, 1999.

I. Horrocks and S. Tobies. Reasoning with axioms: Theory and practice. In *Proc. of KR'00* pages 285–296. Morgan Kaufmann, 2000.

E. Franconi and G. Ng. The i.com tool for intelligent conceptual modelling. In *Proc. of (KRDB'00)*, August 2000.

D. Fensel, F. van Harmelen, I. Horrocks, D. McGuinness, and P. F. Patel-Schneider. OIL: An ontology infrastructure for the semantic web. *IEEE Intelligent Systems*, 16(2):38–45, 2001.