Logical Foundations for the Semantic Web

Reasoning with Expressive Description Logics: Theory and Practice

Ian Horrocks

horrocks@cs.man.ac.uk

University of Manchester Manchester, UK

Logical Foundations for the Semantic Web – p. 1/37

Talk Outline

Introduction to Description Logics

Introduction to Description Logics

The Semantic Web

Introduction to Description Logics The Semantic Web Web Ontology Languages

Introduction to Description Logics The Semantic Web Web Ontology Languages DAML+OIL and OWL Languages

Talk Outline

Introduction to Description Logics

The Semantic Web

Web Ontology Languages

DAML+OIL and OWL Languages

Reasoning with OWL

OilEd Demo

Talk Outline

Introduction to Description Logics

The Semantic Web

Web Ontology Languages

DAML+OIL and OWL Languages

Reasoning with OWL

OilEd Demo

Research Challenges

Introduction to Description Logics

What are Description Logics?

What are Description Logics?

A family of logic based Knowledge Representation formalisms

- Descendants of **semantic networks** and **KL-ONE**
- Describe domain in terms of concepts (classes), roles (relationships) and individuals

What are Description Logics?

A family of logic based Knowledge Representation formalisms

- Descendants of **semantic networks** and **KL-ONE**
- Describe domain in terms of concepts (classes), roles (relationships) and individuals
- Distinguished by:
 - Formal semantics (model theoretic)
 - Decidable fragments of FOL
 - Closely related to Propositional Modal & Dynamic Logics
 - Provision of inference services
 - Sound and complete decision procedures for key problems
 - Implemented systems (highly optimised)

Phase 1:

- Incomplete systems (Back, Classic, Loom, ...)
- Based on structural algorithms

Phase 1:

- Incomplete systems (Back, Classic, Loom, ...)
- Based on structural algorithms

Phase 2:

- Development of tableau algorithms and complexity results
- Tableau-based systems (Kris, Crack)
- Investigation of optimisation techniques

Phase 1:

- Incomplete systems (Back, Classic, Loom, ...)
- Based on structural algorithms

Phase 2:

- Development of tableau algorithms and complexity results
- Tableau-based systems (Kris, Crack)
- Investigation of optimisation techniques

Phase 3:

- Tableau algorithms for **very expressive** DLs
- Highly optimised tableau systems (FaCT, DLP, Racer)
- Relationship to modal logic and decidable fragments of FOL

Phase 4:

Phase 4:

Mature implementations

Phase 4:

- Mature implementations
- Mainstream applications and Tools
 - Databases
 - Consistency of conceptual schemata (EER, UML etc.)
 - Schema integration
 - Query subsumption (w.r.t. a conceptual schema)
 - Ontologies and **Semantic Web** (and **Grid**)
 - Ontology engineering (design, maintenance, integration)
 - Reasoning with ontology-based markup (meta-data)
 - Service description and discovery

Phase 4:

- Mature implementations
- Mainstream applications and Tools
 - Databases
 - Consistency of conceptual schemata (EER, UML etc.)
 - Schema integration
 - Query subsumption (w.r.t. a conceptual schema)
 - Ontologies and **Semantic Web** (and **Grid**)
 - Ontology engineering (design, maintenance, integration)
 - Reasoning with ontology-based markup (meta-data)
 - Service description and discovery
- Commercial implementations
 - Cerebra system from Network Inference Ltd

The Semantic Web

- Web made possible through established standards
 - **TCP/IP** for transporting bits down a wire
 - HTTP & HTML for transporting and rendering hyperlinked text

- Web made possible through established standards
 - **TCP/IP** for transporting bits down a wire
 - HTTP & HTML for transporting and rendering hyperlinked text
- Applications able to exploit this common infrastructure
 - Result is the WWW as we know it

- Web made possible through established standards
 - **TCP/IP** for transporting bits down a wire
 - HTTP & HTML for transporting and rendering hyperlinked text
- Applications able to exploit this common infrastructure
 - Result is the WWW as we know it
- Ist generation web mostly handwritten HTML pages

- Web made possible through established standards
 - **TCP/IP** for transporting bits down a wire
 - HTTP & HTML for transporting and rendering hyperlinked text
- Applications able to exploit this common infrastructure
 - Result is the WWW as we know it
- Ist generation web mostly handwritten HTML pages
- 2nd generation (current) web often machine generated/active

- Web made possible through established standards
 - **TCP/IP** for transporting bits down a wire
 - HTTP & HTML for transporting and rendering hyperlinked text
- Applications able to exploit this common infrastructure
 - Result is the WWW as we know it
- Ist generation web mostly handwritten HTML pages
- 2nd generation (current) web often machine generated/active
- Both intended for direct human processing/interaction

- Web made possible through established standards
 - **TCP/IP** for transporting bits down a wire
 - HTTP & HTML for transporting and rendering hyperlinked text
- Applications able to exploit this common infrastructure
 - Result is the WWW as we know it
- Ist generation web mostly handwritten HTML pages
- 2nd generation (current) web often machine generated/active
- Both intended for direct human processing/interaction
- In next generation web, resources should be more accessible to automated processes

- Web made possible through established standards
 - **TCP/IP** for transporting bits down a wire
 - HTTP & HTML for transporting and rendering hyperlinked text
- Applications able to exploit this common infrastructure
 - Result is the WWW as we know it
- Ist generation web mostly handwritten HTML pages
- 2nd generation (current) web often machine generated/active
- Both intended for direct human processing/interaction
- In next generation web, resources should be more accessible to automated processes
 - To be achieved via semantic markup
 - Metadata annotations that describe content/function

- Web made possible through established standards
 - **TCP/IP** for transporting bits down a wire
 - HTTP & HTML for transporting and rendering hyperlinked text
- Applications able to exploit this common infrastructure
 - Result is the WWW as we know it
- Ist generation web mostly handwritten HTML pages
- 2nd generation (current) web often machine generated/active
- Both intended for direct human processing/interaction
- In next generation web, resources should be more accessible to automated processes
 - To be achieved via **semantic markup**
 - Metadata annotations that describe content/function
- Coincides with Tim Berners-Lee's vision of a Semantic Web

- Web made possible through established standards
 - **TCP/IP** for transporting bits down a wire
 - HTTP & HTML for transporting and rendering hyperlinked text
- Applications able to exploit this common infrastructure
 - Result is the WWW as we know it
- Ist generation web mostly handwritten HTML pages
- 2nd generation (current) web often machine generated/active
- Both intended for direct human processing/interaction
- In next generation web, resources should be more accessible to automated processes
 - To be achieved via semantic markup
 - Metadata annotations that describe content/function
- Coincides with Tim Berners-Lee's vision of a Semantic Web

Semantic markup must be **meaningful** to automated processes

- Semantic markup must be meaningful to automated processes
- Ontologies will play a key role
 - Source of **precisely defined** terms (vocabulary)
 - Can be **shared** across applications (and humans)

- Semantic markup must be **meaningful** to automated processes
- Ontologies will play a key role
 - Source of **precisely defined** terms (vocabulary)
 - Can be **shared** across applications (and humans)
- Ontology typically consists of:
 - Hierarchical description of important concepts in domain
 - Descriptions of **properties** of instances of each concept

- Semantic markup must be meaningful to automated processes
- Ontologies will play a key role
 - Source of **precisely defined** terms (vocabulary)
 - Can be **shared** across applications (and humans)
- Ontology typically consists of:
 - Hierarchical description of important concepts in domain
 - Descriptions of properties of instances of each concept
- Degree of formality can be quite variable (NL–logic)

- Semantic markup must be **meaningful** to automated processes
- Ontologies will play a key role
 - Source of **precisely defined** terms (vocabulary)
 - Can be **shared** across applications (and humans)
- Ontology typically consists of:
 - Hierarchical description of important concepts in domain
 - Descriptions of properties of instances of each concept
- Degree of formality can be quite variable (NL–logic)
- Increased formality and regularity facilitates machine understanding

- Semantic markup must be **meaningful** to automated processes
- Ontologies will play a key role
 - Source of **precisely defined** terms (vocabulary)
 - Can be **shared** across applications (and humans)
- Ontology typically consists of:
 - Hierarchical description of important concepts in domain
 - Descriptions of properties of instances of each concept
- Degree of formality can be quite variable (NL–logic)
- Increased formality and regularity facilitates machine understanding
- Ontologies can be used, e.g.:
 - To facilitate agent-agent communication in **e-commerce**
 - In semantic based **search**
 - To provide richer **service descriptions** that can be more flexibly interpreted by intelligent agents

Degr

Incre

Ontd

CPF

- Semantic markup must be meaningful to automated processes
- Ontologies will play a key role
 - Source of **precisely defined** terms (vocabulary)
 - Can be shared across applications (and humans)
- Ontology typically consists of:
 - scription of important **concepts** in domain properties of instances of each concept an be quite variable (NL–logic) ind regularity facilitates machine understanding sed, e.g.: ht-agent communication in **e-commerce** ed **search**

r service descriptions that can be more flexibly interpreted by intelligent agents

- Semantic markup must be **meaningful** to automated processes
- Ontologies will play a key role
 - Source of **precisely defined** terms (vocabulary)
 - Can be **shared** across applications (and humans)
- Ontology typically consists of:

interpreted by intelligent agents

- Semantic markup must be meaningful to automated processes
- Ontologies will play a key role
 - Source of **precisely defined** terms (vocabulary)
 - Can be shared across applications (and humans)
- Ontology typically consists of:

interpreted by intelligent agents

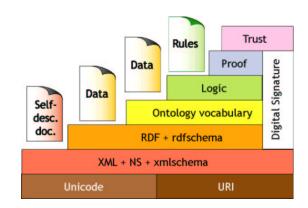
Web Ontology Languages

- Web languages already extended to facilitate content description
 - XML Schema (XMLS)
 - RDF and RDF Schema (RDFS)

- Web languages already extended to facilitate content description
 - XML Schema (XMLS)
 - RDF and RDF Schema (RDFS)
- RDFS recognisable as an ontology language
 - Classes and properties
 - Range and domain
 - Sub/super-classes (and properties)

- Web languages already extended to facilitate content description
 - XML Schema (XMLS)
 - RDF and RDF Schema (RDFS)
- RDFS recognisable as an ontology language
 - Classes and properties
 - Range and domain
 - Sub/super-classes (and properties)
- But RDFS not a suitable foundation for Semantic Web
 - **Too weak** to describe resources in sufficient detail

- Web languages already extended to facilitate content description
 - XML Schema (XMLS)
 - RDF and RDF Schema (RDFS)
- RDFS recognisable as an ontology language
 - Classes and properties
 - Range and domain
 - Sub/super-classes (and properties)
- But RDFS not a suitable foundation for Semantic Web
 - **Too weak** to describe resources in sufficient detail
- Requirements for web ontology language:
 - **Compatible** with existing Web standards (XML, RDF, RDFS)
 - **Easy to understand** and use (based on familiar KR idioms)
 - Formally specified and of "adequate" expressive power
 - Possible to provide **automated reasoning** support


- Two languages developed to satisfy above requirements
 - **OIL**: developed by group of (largely) European researchers
 - **DAML-ONT**: developed in DARPA DAML programme

- Two languages developed to satisfy above requirements
 - OIL: developed by group of (largely) European researchers
 - **DAML-ONT**: developed in DARPA DAML programme
- Efforts merged to produce DAML+OIL

- Two languages developed to satisfy above requirements
 - OIL: developed by group of (largely) European researchers
 - **DAML-ONT**: developed in DARPA DAML programme
- Efforts merged to produce DAML+OIL
- Submitted to W3C as basis for standardisation
 - WebOnt working group developing OWL language standard

- Two languages developed to satisfy above requirements
 - OIL: developed by group of (largely) European researchers
 - **DAML-ONT**: developed in DARPA DAML programme
- Efforts merged to produce DAML+OIL
- Submitted to W3C as basis for standardisation
 - WebOnt working group developing OWL language standard
- DAML+OIL/OWL "layered" on top of RDFS
 - RDFS based **syntax** and ontological primitives (subclass etc.)
 - Adds much richer set of primitives (transitivity, cardinality, ...)

- Two languages developed to satisfy above requirements
 - OIL: developed by group of (largely) European researchers
 - **DAML-ONT**: developed in DARPA DAML programme
- Efforts merged to produce DAML+OIL
- Submitted to W3C as basis for standardisation
 - WebOnt working group developing OWL language standard
- DAML+OIL/OWL "layered" on top of RDFS
 - RDFS based syntax and ontological primitives (subclass etc.)
 - Adds much richer set of primitives (transitivity, cardinality, ...)

- Two languages developed to satisfy above requirements
 - OIL: developed by group of (largely) European researchers
 - **DAML-ONT**: developed in DARPA DAML programme
- Efforts merged to produce DAML+OIL
- Submitted to W3C as basis for standardisation
 - WebOnt working group developing OWL language standard
- DAML+OIL/OWL "layered" on top of RDFS
 - RDFS based **syntax** and ontological primitives (subclass etc.)
 - Adds much richer set of primitives (transitivity, cardinality, ...)
- Describes structure of domain in terms of Classes and Properties
 - Ontology is set of **axioms** describing classes and properties
 - E.g., Person subclass of Animal whose parents are all Persons

- Two languages developed to satisfy above requirements
 - OIL: developed by group of (largely) European researchers
 - **DAML-ONT**: developed in DARPA DAML programme
- Efforts merged to produce DAML+OIL
- Submitted to W3C as basis for standardisation
 - WebOnt working group developing OWL language standard
- DAML+OIL/OWL "layered" on top of RDFS
 - RDFS based **syntax** and ontological primitives (subclass etc.)
 - Adds much richer set of primitives (transitivity, cardinality, ...)
- Describes structure of domain in terms of Classes and Properties
 - Ontology is set of **axioms** describing classes and properties
 - E.g., Person subclass of Animal whose parents are all Persons
- Uses RDF for class/property membership assertions (ground facts)
 - E.g., john instance of Person; (john, mary) instance of parent

OWL Language

- Three species of OWL
 - OWL full is union of OWL syntax and RDF
 - OWL DL restricted to FOL fragment (\approx DAML+OIL)
 - OWL Lite is "easier to implement" subset of OWL DL

- Three species of OWL
 - OWL full is union of OWL syntax and RDF
 - OWL DL restricted to FOL fragment (\approx DAML+OIL)
 - OWL Lite is "easier to implement" subset of OWL DL
- Semantic layering
 - OWL $DL \equiv OWL$ full within DL fragment
 - DL semantics officially definitive

- Three species of OWL
 - OWL full is union of OWL syntax and RDF
 - OWL DL restricted to FOL fragment (\approx DAML+OIL)
 - OWL Lite is "easier to implement" subset of OWL DL
- Semantic layering
 - OWL $DL \equiv OWL$ full within DL fragment
 - DL semantics officially definitive
- $<\!\!\! < \!\!\! < \!\!\! < \!\!\! < \!\!\!$ OWL DL based on \mathcal{SHIQ} Description Logic

- Three species of OWL
 - OWL full is union of OWL syntax and RDF
 - OWL DL restricted to FOL fragment (\approx DAML+OIL)
 - OWL Lite is "easier to implement" subset of OWL DL
- Semantic layering
 - OWL $DL \equiv OWL$ full within DL fragment
 - DL semantics officially definitive
- \sim OWL DL based on \mathcal{SHIQ} Description Logic
- Benefits from many years of DL research
 - Well defined semantics
 - Formal properties well understood (complexity, decidability)
 - Known reasoning algorithms
 - Implemented systems (highly optimised)

OWL Class Constructors

Constructor	DL Syntax	Example	(Modal Syntax)
intersectionOf	$C_1 \sqcap \ldots \sqcap C_n$	Human ⊓ Male	$C_1 \wedge \ldots \wedge C_n$
unionOf	$C_1 \sqcup \ldots \sqcup C_n$	Doctor 🗆 Lawyer	$C_1 \lor \ldots \lor C_n$
complementOf	$\neg C$	¬Male	$\neg C$
oneOf	$\{x_1 \dots x_n\}$	{john, mary}	$x_1 \lor \ldots \lor x_n$
allValuesFrom	$\forall P.C$	∀hasChild.Doctor	[P]C
someValuesFrom	$\exists P.C$	∃hasChild.Lawyer	$\langle P \rangle C$
maxCardinality	$\leqslant nP$	≼1hasChild	$[P]_{n+1}$
minCardinality	$\geqslant nP$	$\geqslant 2$ hasChild	$\langle P \rangle_n$

OWL Class Constructors

Constructor	DL Syntax	Example	(Modal Syntax)
intersectionOf	$C_1 \sqcap \ldots \sqcap C_n$	Human ⊓ Male	$C_1 \wedge \ldots \wedge C_n$
unionOf	$C_1 \sqcup \ldots \sqcup C_n$	Doctor ⊔ Lawyer	$C_1 \lor \ldots \lor C_n$
complementOf	$\neg C$	¬Male	$\neg C$
oneOf	$\{x_1 \dots x_n\}$	{john, mary}	$x_1 \lor \ldots \lor x_n$
allValuesFrom	$\forall P.C$	∀hasChild.Doctor	[P]C
someValuesFrom	$\exists P.C$	∃hasChild.Lawyer	$\langle P \rangle C$
maxCardinality	$\leqslant nP$	≼1hasChild	$[P]_{n+1}$
minCardinality	$\geqslant nP$	$\geqslant 2$ hasChild	$\langle P \rangle_n$

- \implies XMLS datatypes as well as classes in $\forall P.C$ and $\exists P.C$
 - E.g., ∃hasAge.nonNegativeInteger

OWL Class Constructors

Constructor	DL Syntax	Example	(Modal Syntax)
intersectionOf	$C_1 \sqcap \ldots \sqcap C_n$	Human ⊓ Male	$C_1 \wedge \ldots \wedge C_n$
unionOf	$C_1 \sqcup \ldots \sqcup C_n$	Doctor ⊔ Lawyer	$C_1 \lor \ldots \lor C_n$
complementOf	$\neg C$	¬Male	$\neg C$
oneOf	$\{x_1 \dots x_n\}$	{john, mary}	$x_1 \lor \ldots \lor x_n$
allValuesFrom	$\forall P.C$	∀hasChild.Doctor	[P]C
someValuesFrom	$\exists P.C$	∃hasChild.Lawyer	$\langle P \rangle C$
maxCardinality	$\leqslant nP$	≼1hasChild	$[P]_{n+1}$
minCardinality	$\geqslant nP$	\geqslant 2hasChild	$\langle P \rangle_n$

- \implies XMLS datatypes as well as classes in $\forall P.C$ and $\exists P.C$
 - E.g., ∃hasAge.nonNegativeInteger
- Arbitrarily complex **nesting** of constructors
 - E.g., Person □ ∀hasChild.(Doctor ⊔ ∃hasChild.Doctor)

```
RDFS Syntax
 <owl:Class>
   <owl:intersectionOf rdf:parseType="collection">
     <owl:Class rdf:about="#Person"/>
     <owl:Restriction>
       <owl:onProperty rdf:resource="#hasChild"/>
       <owl:toClass>
         <owl:unionOf rdf:parseType="collection">
           <owl:Class rdf:about="#Doctor"/>
           <owl:Restriction>
             <owl:onProperty rdf:resource="#hasChild"/>
             <owl:hasClass rdf:resource="#Doctor"/>
           </owl:Restriction>
         </owl:unionOf>
       </owl:toClass>
     </owl:Restriction>
   </owl:intersectionOf>
 </owl:Class>
```

OWL DL Semantics

OWL DL Semantics

Semantics defined by interpretations: $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$

- concepts \longrightarrow subsets of $\Delta^{\mathcal{I}}$
- roles \longrightarrow binary relations over $\Delta^{\mathcal{I}}$ (subsets of $\Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$)
- individuals \longrightarrow elements of $\Delta^{\mathcal{I}}$

OWL DL Semantics

Semantics defined by interpretations: $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$

- concepts \longrightarrow subsets of $\Delta^{\mathcal{I}}$
- roles \longrightarrow binary relations over $\Delta^{\mathcal{I}}$ (subsets of $\Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$)
- individuals \longrightarrow elements of $\Delta^{\mathcal{I}}$
- Interpretation function $\cdot^{\mathcal{I}}$ extended to concept expressions
 - $(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}} \quad (C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}} \quad (\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$

•
$$\{x_n, \dots, x_n\}^{\mathcal{I}} = \{x_n^{\mathcal{I}}, \dots, x_n^{\mathcal{I}}\}$$

•
$$(\exists R.C)^{\mathcal{I}} = \{x \mid \exists y. \langle x, y \rangle \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}}\}$$

- $(\forall R.C)^{\mathcal{I}} = \{x \mid \forall y.(x,y) \in R^{\mathcal{I}} \Rightarrow y \in C^{\mathcal{I}}\}$
- $(\leqslant nR)^{\mathcal{I}} = \{x \mid \#\{y \mid \langle x, y \rangle \in R^{\mathcal{I}}\} \leqslant n\}$
- $(\geq nR)^{\mathcal{I}} = \{x \mid \#\{y \mid \langle x, y \rangle \in R^{\mathcal{I}}\} \geq n\}$

OWL Axioms

		Evenue
Axiom	DL Syntax	Example
subClassOf	$C_1 \sqsubseteq C_2$	Human 드 Animal 🗆 Biped
equivalentClass	$C_1 \equiv C_2$	$Man \equiv Human \sqcap Male$
disjointWith	$C_1 \sqsubseteq \neg C_2$	Male $\sqsubseteq \neg$ Female
sameIndividualAs	$\{x_1\} \equiv \{x_2\}$	$\{President_Bush\} \equiv \{G_W_Bush\}$
differentFrom	$\{x_1\} \sqsubseteq \neg \{x_2\}$	${john} \sqsubseteq \neg {peter}$
subPropertyOf	$P_1 \sqsubseteq P_2$	hasDaughter 드 hasChild
equivalentProperty	$P_1 \equiv P_2$	$cost \equiv price$
inverseOf	$P_1 \equiv P_2^-$	hasChild \equiv hasParent ⁻
transitiveProperty	$P^+ \sqsubseteq P$	ancestor $^+ \sqsubseteq$ ancestor
functionalProperty	$\top \sqsubseteq \leqslant 1P$	$\top \sqsubseteq \leqslant 1$ hasMother
inverseFunctionalProperty	$\top \sqsubseteq \leqslant 1P^-$	$\top \sqsubseteq \leqslant 1$ hasSSN ⁻

OWL Axioms

DL Syntax	Example
$C_1 \sqsubseteq C_2$	Human ⊑ Animal ⊓ Biped
$C_1 \equiv C_2$	$Man \equiv Human \sqcap Male$
$C_1 \sqsubseteq \neg C_2$	$Male \sqsubseteq \neg Female$
$\{x_1\} \equiv \{x_2\}$	$\{President_Bush\} \equiv \{G_W_Bush\}$
$\left\{ x_1 \right\} \sqsubseteq \neg \{x_2\}$	${john} \sqsubseteq \neg {peter}$
$P_1 \sqsubseteq P_2$	hasDaughter 드 hasChild
$P_1 \equiv P_2$	$cost \equiv price$
$P_1 \equiv P_2^-$	hasChild \equiv hasParent ⁻
$P^+ \sqsubseteq P$	ancestor ⁺ \sqsubseteq ancestor
$\top \sqsubseteq \leqslant 1P$	$\top \sqsubseteq \leqslant 1$ hasMother
$\top \sqsubseteq \leqslant 1P^{-}$	$\top \sqsubseteq \leqslant 1$ hasSSN ⁻
	$C_{1} \sqsubseteq C_{2}$ $C_{1} \equiv C_{2}$ $C_{1} \sqsubseteq \neg C_{2}$ $\{x_{1}\} \equiv \{x_{2}\}$ $\{x_{1}\} \sqsubseteq \neg \{x_{2}\}$ $P_{1} \sqsubseteq P_{2}$ $P_{1} \equiv P_{2}$ $P_{1} \equiv P_{2}^{-}$ $P^{+} \sqsubseteq P$ $\top \sqsubseteq \leqslant 1P$

OWL Axioms

Axiom	DL Syntax	Example
subClassOf	$C_1 \sqsubseteq C_2$	Human ⊑ Animal ⊓ Biped
equivalentClass	$C_1 \equiv C_2$	$Man \equiv Human \sqcap Male$
disjointWith	$C_1 \sqsubseteq \neg C_2$	$Male \sqsubseteq \neg Female$
sameIndividualAs	$\{x_1\} \equiv \{x_2\}$	$\{President_Bush\} \equiv \{G_W_Bush\}$
differentFrom	$\{x_1\} \sqsubseteq \neg \{x_2\}$	${john} \sqsubseteq \neg {peter}$
subPropertyOf	$P_1 \sqsubseteq P_2$	hasDaughter \sqsubseteq hasChild
equivalentProperty	$P_1 \equiv P_2$	$cost \equiv price$
inverseOf	$P_1 \equiv P_2^-$	hasChild \equiv hasParent ⁻
transitiveProperty	$P^+ \sqsubseteq P$	ancestor $^+ \sqsubseteq$ ancestor
functionalProperty	$\top \sqsubseteq \leqslant 1P$	$\top \sqsubseteq \leqslant 1$ hasMother
inverseFunctionalProperty	$\top \sqsubseteq \leqslant 1P^-$	$\top \sqsubseteq \leqslant 1$ hasSSN ⁻
	1	

 $\$ \mathcal{I} satisfies ontology \mathcal{O} (is a **model** of \mathcal{O}) iff satisfies every axiom in \mathcal{O}

XML Datatypes in OWL

OWL supports XML Schema primitive datatypes

- OWL supports XML Schema primitive datatypes
- Clean separation between "object" classes and datatypes
 - Disjoint interpretation domain: $d^{\mathcal{I}} \subseteq \Delta_{\mathbf{D}}$, and $\Delta_{\mathbf{D}} \cap \Delta^{\mathcal{I}} = \emptyset$
 - Disjoint datatype properties: $P_{\mathbf{D}}^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta_{\mathbf{D}}$

- OWL supports XML Schema primitive datatypes
- Clean **separation** between "object" classes and datatypes
 - Disjoint interpretation domain: $d^{\mathcal{I}} \subseteq \Delta_{\mathbf{D}}$, and $\Delta_{\mathbf{D}} \cap \Delta^{\mathcal{I}} = \emptyset$
 - Disjoint datatype properties: $P_{\mathbf{D}}^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta_{\mathbf{D}}$
- Philosophical reasons:
 - Datatypes structured by **built-in predicates**
 - Not appropriate to form new datatypes using ontology language

- OWL supports XML Schema primitive datatypes
- Clean **separation** between "object" classes and datatypes
 - Disjoint interpretation domain: $d^{\mathcal{I}} \subseteq \Delta_{\mathbf{D}}$, and $\Delta_{\mathbf{D}} \cap \Delta^{\mathcal{I}} = \emptyset$
 - Disjoint datatype properties: $P_{\mathbf{D}}^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta_{\mathbf{D}}$
- Philosophical reasons:
 - Datatypes structured by **built-in predicates**
 - Not appropriate to form new datatypes using ontology language
- Practical reasons:
 - Ontology language remains **simple and compact**
 - Semantic integrity of ontology language not compromised
 - Implementability not compromised can use hybrid reasoner
 - Only need sound and complete decision procedure for $d_1^{\mathcal{I}} \cap \ldots \cap d_n^{\mathcal{I}}$, where d_i is a (possibly negated) datatype

Reasoning with OWL DL

Why do we want it?

- Why do we want it?
 - Semantic Web aims at "machine understanding"
 - Understanding closely related to reasoning

- Why do we want it?
 - Semantic Web aims at "machine understanding"
 - Understanding closely related to reasoning
- What can we do with it?

- Why do we want it?
 - Semantic Web aims at "machine understanding"
 - Understanding closely related to reasoning
- What can we do with it?
 - **Design and maintenance** of ontologies
 - Check class consistency and compute class hierarchy
 - Particularly important with large ontologies/multiple authors

- Why do we want it?
 - Semantic Web aims at "machine understanding"
 - Understanding closely related to reasoning
- What can we do with it?
 - **Design and maintenance** of ontologies
 - Check class consistency and compute class hierarchy
 - Particularly important with large ontologies/multiple authors
 - Integration of ontologies
 - Assert inter-ontology relationships
 - Reasoner computes integrated class hierarchy/consistency

- Why do we want it?
 - Semantic Web aims at "machine understanding"
 - Understanding closely related to reasoning
- What can we do with it?
 - **Design and maintenance** of ontologies
 - Check class consistency and compute class hierarchy
 - Particularly important with large ontologies/multiple authors
 - Integration of ontologies
 - Assert inter-ontology relationships
 - Reasoner computes integrated class hierarchy/consistency
 - Querying class and instance data w.r.t. ontologies
 - Determine if set of facts are consistent w.r.t. ontologies
 - Determine if individuals are instances of ontology classes
 - Retrieve individuals/tuples satisfying a query expression
 - Check if one class subsumes (is more general than) another w.r.t. ontology
 - . . .

OWL DL constructors/axioms restricted so reasoning is decidable

- OWL DL constructors/axioms restricted so reasoning is decidable
- Consistent with Semantic Web's layered architecture
 - XML provides syntax transport layer
 - RDF(S) provides basic **relational language** and simple ontological primitives
 - OWL DL provides powerful but still decidable ontology language
 - Further layers may (will) extend OWL
 - Will almost certainly be undecidable

- OWL DL constructors/axioms restricted so reasoning is decidable
- Consistent with Semantic Web's layered architecture
 - XML provides syntax transport layer
 - RDF(S) provides basic **relational language** and simple ontological primitives
 - OWL DL provides powerful but still decidable ontology language
 - Further layers may (will) extend OWL
 - Will almost certainly be undecidable
- Facilitates provision of reasoning services
 - Known "practical" algorithms
 - Several implemented systems
 - Evidence of empirical tractability

- OWL DL constructors/axioms restricted so reasoning is decidable
- Consistent with Semantic Web's layered architecture
 - XML provides syntax transport layer
 - RDF(S) provides basic **relational language** and simple ontological primitives
 - OWL DL provides powerful but still decidable ontology language
 - Further layers may (will) extend OWL
 - Will almost certainly be undecidable
- Facilitates provision of reasoning services
 - Known "practical" algorithms
 - Several implemented systems
 - Evidence of **empirical tractability**
- Understanding dependent on reliable & consistent reasoning

Consistency — check if knowledge is meaningful

- Is ${\mathcal O}$ consistent? There exists some model ${\mathcal I}$ of ${\mathcal O}$
- Is C consistent? $C^{\mathcal{I}} \neq \emptyset$ in some model \mathcal{I} of \mathcal{O}

Consistency — check if knowledge is meaningful

- Is \mathcal{O} consistent? There exists some model \mathcal{I} of \mathcal{O}
- Is C consistent? $C^{\mathcal{I}} \neq \emptyset$ in some model \mathcal{I} of \mathcal{O}
- Subsumption structure knowledge, compute taxonomy
 - $C \sqsubseteq_{\mathcal{O}} D$? $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in all models \mathcal{I} of \mathcal{O}

- Consistency check if knowledge is meaningful
 - Is \mathcal{O} consistent? There exists some model \mathcal{I} of \mathcal{O}
 - Is C consistent? $C^{\mathcal{I}} \neq \emptyset$ in some model \mathcal{I} of \mathcal{O}
- Subsumption structure knowledge, compute taxonomy
 - $C \sqsubseteq_{\mathcal{O}} D$? $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in all models \mathcal{I} of \mathcal{O}
- **Equivalence** check if two classes denote same set of instances
 - $C \equiv_{\mathcal{O}} D$? $C^{\mathcal{I}} = D^{\mathcal{I}}$ in all models \mathcal{I} of \mathcal{O}

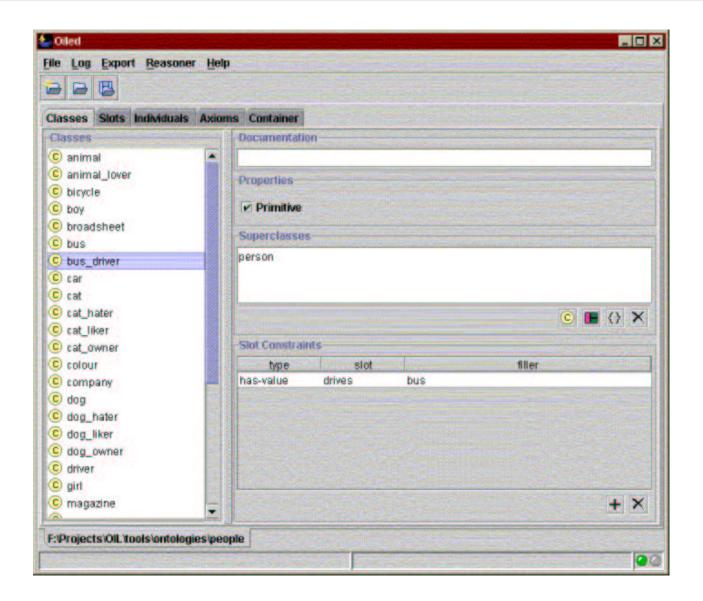
- Consistency check if knowledge is meaningful
 - Is \mathcal{O} consistent? There exists some model \mathcal{I} of \mathcal{O}
 - Is C consistent? $C^{\mathcal{I}} \neq \emptyset$ in some model \mathcal{I} of \mathcal{O}
- Subsumption structure knowledge, compute taxonomy
 - $C \sqsubseteq_{\mathcal{O}} D$? $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in all models \mathcal{I} of \mathcal{O}
- **Equivalence** check if two classes denote same set of instances
 - $C \equiv_{\mathcal{O}} D$? $C^{\mathcal{I}} = D^{\mathcal{I}}$ in all models \mathcal{I} of \mathcal{O}
- \sim Instantiation check if individual *i* instance of class *C*
 - $i \in_{\mathcal{O}} C$? $i \in C^{\mathcal{I}}$ in all models \mathcal{I} of \mathcal{O}

Consistency — check if knowledge is meaningful

- Is \mathcal{O} consistent? There exists some model \mathcal{I} of \mathcal{O}
- Is C consistent? $C^{\mathcal{I}} \neq \emptyset$ in some model \mathcal{I} of \mathcal{O}
- Subsumption structure knowledge, compute taxonomy
 - $C \sqsubseteq_{\mathcal{O}} D$? $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in all models \mathcal{I} of \mathcal{O}

Equivalence — check if two classes denote same set of instances

- $C \equiv_{\mathcal{O}} D$? $C^{\mathcal{I}} = D^{\mathcal{I}}$ in all models \mathcal{I} of \mathcal{O}
- \sim Instantiation check if individual *i* instance of class *C*
 - $i \in_{\mathcal{O}} C$? $i \in C^{\mathcal{I}}$ in all models \mathcal{I} of \mathcal{O}
- \sim **Retrieval** retrieve set of individuals that instantiate C
 - set of i s.t. $i \in C^{\mathcal{I}}$ in all models \mathcal{I} of \mathcal{O}


Consistency — check if knowledge is meaningful

- Is \mathcal{O} consistent? There exists some model \mathcal{I} of \mathcal{O}
- Is C consistent? $C^{\mathcal{I}} \neq \emptyset$ in some model \mathcal{I} of \mathcal{O}
- Subsumption structure knowledge, compute taxonomy
 - $C \sqsubseteq_{\mathcal{O}} D$? $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in all models \mathcal{I} of \mathcal{O}

Equivalence — check if two classes denote same set of instances

- $C \equiv_{\mathcal{O}} D$? $C^{\mathcal{I}} = D^{\mathcal{I}}$ in all models \mathcal{I} of \mathcal{O}
- \sim Instantiation check if individual *i* instance of class *C*
 - $i \in_{\mathcal{O}} C$? $i \in C^{\mathcal{I}}$ in all models \mathcal{I} of \mathcal{O}
- \sim **Retrieval** retrieve set of individuals that instantiate C
 - set of i s.t. $i \in C^{\mathcal{I}}$ in all models \mathcal{I} of \mathcal{O}
- Problems all reducible to consistency (satisfiability):
 - $C \sqsubseteq_{\mathcal{O}} D$ iff $C \sqcap \neg D$ not consistent w.r.t. \mathcal{O}
 - $i \in_{\mathcal{O}} C$ iff $\mathcal{O} \cup \{i \in \neg C\}$ is **not** consistent

Reasoning Support for Ontology Design: OilEd

Description Logic Reasoning

DL reasoning based on tableaux algorithms

- DL reasoning based on tableaux algorithms
- \sim Naive implementation \longrightarrow effective non-termination

- DL reasoning based on tableaux algorithms
- \sim Naive implementation \rightarrow effective non-termination
- Modern systems include MANY optimisations

- DL reasoning based on tableaux algorithms
- \sim Naive implementation \rightarrow effective non-termination
- Modern systems include MANY optimisations
- Optimised classification (compute partial ordering)
 - Use enhanced traversal (exploit information from previous tests)
 - Use structural information to select classification order

- DL reasoning based on tableaux algorithms
- \sim Naive implementation \rightarrow effective non-termination
- Modern systems include MANY optimisations
- Optimised classification (compute partial ordering)
 - Use enhanced traversal (exploit information from previous tests)
 - Use structural information to select classification order
- Optimised subsumption testing (search for models)
 - Normalisation and simplification of concepts
 - Absorption (simplification) of general axioms
 - Davis-Putnam style semantic branching search
 - Dependency directed backtracking
 - Caching of satisfiability results and (partial) models
 - Heuristic ordering of propositional and modal expansion
 - ...

Research and Implementation Challenges

Challenges

Increased expressive power

- Existing DL systems implement (at most) SHIQ
- OWL extends \mathcal{SHIQ} with datatypes and nominals

Challenges

Increased expressive power

- Existing DL systems implement (at most) SHIQ
- OWL extends SHIQ with datatypes and nominals
- Scalability
 - Very large KBs
 - Reasoning with (very large numbers of) individuals

Challenges

Increased expressive power

- Existing DL systems implement (at most) SHIQ
- OWL extends SHIQ with datatypes and nominals
- Scalability
 - Very large KBs
 - Reasoning with (very large numbers of) individuals
- Other reasoning tasks
 - Querying
 - Matching
 - Least common subsumer
 - ...

Challenges

Increased expressive power

- Existing DL systems implement (at most) SHIQ
- OWL extends SHIQ with datatypes and nominals
- Scalability
 - Very large KBs
 - Reasoning with (very large numbers of) individuals

Other reasoning tasks

- Querying
- Matching
- Least common subsumer
- ...

Tools and Infrastructure

• Support for large scale ontological engineering and deployment

OWL has simple form of datatypes

• Unary predicates plus disjoint object-class/datatype domains

- OWL has simple form of datatypes
 - Unary predicates plus disjoint object-class/datatype domains
- Well understood theoretically
 - Existing work on concrete domains [Baader & Hanschke, Lutz]
 - Algorithm already known for SHOQ(D) [Horrocks & Sattler]
 - Can use **hybrid reasoning** (DL reasoner + datatype "oracle")

- OWL has simple form of datatypes
 - Unary predicates plus disjoint object-class/datatype domains
- Well understood theoretically
 - Existing work on **concrete domains** [Baader & Hanschke, Lutz]
 - Algorithm already known for $\mathcal{SHOQ}(\mathbf{D})$ [Horrocks & Sattler]
 - Can use **hybrid reasoning** (DL reasoner + datatype "oracle")
- May be **practically** challenging
 - Large number of XMLS datatypes may be supported

- OWL has simple form of datatypes
 - Unary predicates plus disjoint object-class/datatype domains
- Well understood theoretically
 - Existing work on concrete domains [Baader & Hanschke, Lutz]
 - Algorithm already known for $\mathcal{SHOQ}(\mathbf{D})$ [Horrocks & Sattler]
 - Can use hybrid reasoning (DL reasoner + datatype "oracle")
- May be **practically** challenging
 - Large number of XMLS datatypes may be supported
- Already seeing some (partial) implementations
 - Cerebra system (Network Inference), Racer system (Hamburg)

OWL oneOf constructor equivalent to hybrid logic nominals

• Extensionally defined concepts, e.g., $EU \equiv \{France, Italy, \ldots\}$

- OWL oneOf constructor equivalent to hybrid logic nominals
 - Extensionally defined concepts, e.g., $EU \equiv \{France, Italy, \ldots\}$
- Theoretically very challenging
 - Resulting logic has known **high complexity** (NExpTime)
 - No known "practical" algorithm
 - Not obvious how to extend tableaux techniques in this direction
 - Loss of tree model property
 - Spy-points: $\top \sqsubseteq \exists R. \{Spy\}$
 - Finite domains: $\{Spy\} \sqsubseteq \leqslant nR^-$

- OWL oneOf constructor equivalent to hybrid logic nominals
 - Extensionally defined concepts, e.g., $EU \equiv \{France, Italy, \ldots\}$
- Theoretically very challenging
 - Resulting logic has known **high complexity** (NExpTime)
 - No known "practical" algorithm
 - Not obvious how to extend tableaux techniques in this direction
 - Loss of tree model property
 - Spy-points: $\top \sqsubseteq \exists R. \{Spy\}$
 - Finite domains: $\{Spy\} \sqsubseteq \leqslant nR^-$
 - ?? automata based algorithms ??

- OWL oneOf constructor equivalent to hybrid logic nominals
 - Extensionally defined concepts, e.g., $EU \equiv \{France, Italy, \ldots\}$
- Theoretically very challenging
 - Resulting logic has known **high complexity** (NExpTime)
 - No known "practical" algorithm
 - Not obvious how to extend tableaux techniques in this direction
 - Loss of tree model property
 - Spy-points: $\top \sqsubseteq \exists R.\{Spy\}$
 - Finite domains: $\{Spy\} \sqsubseteq \leqslant nR^-$
 - ?? automata based algorithms ??
- Standard solution is weaker semantics for nominals
 - Treat nominals as (disjoint) primitive classes
 - Loose some inferential power, e.g., w.r.t. max cardinality

Reasoning hard — even without nominals (i.e., SHIQ)

- Reasoning hard even without nominals (i.e., SHIQ)
- Web ontologies may grow very large

- Reasoning hard even without nominals (i.e., SHIQ)
- Web ontologies may grow very large
- Good **empirical evidence** of scalability/tractability for DL systems
 - E.g., 5,000 (complex) classes 100,000+ (simple) classes

- Reasoning hard even without nominals (i.e., SHIQ)
- Web ontologies may grow very large
- Good **empirical evidence** of scalability/tractability for DL systems
 - E.g., 5,000 (complex) classes 100,000+ (simple) classes
- rightarrow But evidence mostly w.r.t. \mathcal{SHF} (no inverse)

- Reasoning hard even without nominals (i.e., SHIQ)
- Web ontologies may grow very large
- Good **empirical evidence** of scalability/tractability for DL systems
 - E.g., 5,000 (complex) classes 100,000+ (simple) classes
- rightarrow But evidence mostly w.r.t. SHF (no inverse)
- ${\ensuremath{\sc v}}$ Problems can arise when ${\ensuremath{\mathcal{SHF}}}$ extended to ${\ensuremath{\mathcal{SHIQ}}}$
 - Important optimisations no longer (fully) work

- Reasoning hard even without nominals (i.e., SHIQ)
- Web ontologies may grow very large
- Good **empirical evidence** of scalability/tractability for DL systems
 - E.g., 5,000 (complex) classes 100,000+ (simple) classes
- rightarrow But evidence mostly w.r.t. SHF (no inverse)
- ${\ensuremath{\it \ensuremath{\it \ensuremath{\it e}}}\xspace$ Problems can arise when ${\ensuremath{\cal SHF}}$ extended to ${\ensuremath{\cal SHIQ}}$
 - Important optimisations no longer (fully) work
- Reasoning with individuals
 - **Deployment** of web ontologies will mean reasoning with (possibly very large numbers of) individuals/tuples
 - Unlikely that standard **Abox** techniques will be able to cope

Querying

- Retrieval and instantiation wont be sufficient
- Minimum requirement will be **DB style query language**
- May also need "what can I say about x?" style of query

Querying

- Retrieval and instantiation wont be sufficient
- Minimum requirement will be **DB style query language**
- May also need "what can I say about x?" style of query

Explanation

- To support ontology design
- Justifications and proofs (e.g., of query results)

Querying

- Retrieval and instantiation wont be sufficient
- Minimum requirement will be **DB style query language**
- May also need "what can I say about x?" style of query

Explanation

- To support ontology design
- Justifications and proofs (e.g., of query results)
- "Non-Standard Inferences", e.g., LCS, matching
 - To support ontology integration
 - To support "bottom up" design of ontologies

Semantic Web aims to make web resources accessible to automated processes

- Semantic Web aims to make web resources accessible to automated processes
- Ontologies will play key role by providing vocabulary for semantic markup

- Semantic Web aims to make web resources accessible to automated processes
- Ontologies will play key role by providing vocabulary for semantic markup
- OWL is an ontology language designed for the web
 - Exploits existing standards: XML, RDF(S)
 - Adds KR idioms from object oriented and frame systems
 - Formal rigor of a logic
 - Facilitates provision of reasoning support

- Semantic Web aims to make web resources accessible to automated processes
- Ontologies will play key role by providing vocabulary for semantic markup
- OWL is an ontology language designed for the web
 - Exploits existing standards: XML, RDF(S)
 - Adds KR idioms from object oriented and frame systems
 - Formal rigor of a logic
 - Facilitates provision of reasoning support
- Challenges remain
 - Reasoning with nominals
 - (Convincing) demonstration(s) of scalability
 - New reasoning tasks

Members of the OIL, DAML+OIL and OWL development teams, in particular Dieter Fensel and Frank van Harmelen (Amsterdam) and Peter Patel-Schneider (Bell Labs)

- Members of the OIL, DAML+OIL and OWL development teams, in particular Dieter Fensel and Frank van Harmelen (Amsterdam) and Peter Patel-Schneider (Bell Labs)
- Franz Baader, Uli Sattler and Stefan Tobies (Dresden)

- Members of the OIL, DAML+OIL and OWL development teams, in particular Dieter Fensel and Frank van Harmelen (Amsterdam) and Peter Patel-Schneider (Bell Labs)
- Franz Baader, Uli Sattler and Stefan Tobies (Dresden)
- Members of the Information Management, Medical Informatics and Formal Methods Groups at the University of Manchester

Resources

Slides from this talk

```
http://www.cs.man.ac.uk/~horrocks/Slides/glasgow03.pdf
FaCT system (open source)
 http://www.cs.man.ac.uk/FaCT/
OilEd (open source)
 http://oiled.man.ac.uk/
DAML+OIL
 http://www.w3c.org/Submission/2001/12/
W3C Web-Ontology (WebOnt) working group (OWL)
 http://www.w3.org/2001/sw/WebOnt/
Description Logic Handbook
```

Cambridge University Press

Select Bibliography

I. Horrocks. DAML+OIL: a reason-able web ontology language. In *Proc. of EDBT 2002*, number 2287 in Lecture Notes in Computer Science, pages 2–13. Springer-Verlag, Mar. 2002.

I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. Reviewing the design of DAML+OIL: An ontology language for the semantic web. In *Proc. of AAAI 2002*, 2002. To appear.

I. Horrocks and S. Tessaris. Querying the semantic web: a formal approach. In I. Horrocks and J. Hendler, editors, *Proc. of the 2002 International Semantic Web Conference (ISWC 2002)*, number 2342 in Lecture Notes in Computer Science. Springer-Verlag, 2002.

C. Lutz. *The Complexity of Reasoning with Concrete Domains*. PhD thesis, Teaching and Research Area for Theoretical Computer Science, RWTH Aachen, 2001.

I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ(D) description logic. In B. Nebel, editor, *Proc. of IJCAI-01*, pages 199–204. Morgan Kaufmann, 2001.

F. Baader, S. Brandt, and R. Küsters. Matching under side conditions in description logics. In B. Nebel, editor, *Proc. of IJCAI-01*, pages 213–218, Seattle, Washington, 2001. Morgan Kaufmann.

A. Borgida, E. Franconi, and I. Horrocks. Explaining *ALC* subsumption. In *Proc. of ECAI 2000*, pages 209–213. IOS Press, 2000.

D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. A principled approach to data integration and reconciliation in data warehousing. In *Proceedings of the International Workshop on Design and Management of Data Warehouses (DWDM'99)*, 1999.