
Reasoning with DAML+OIL:
What can it do for YOU?

Ian Horrocks

horrocks@cs.man.ac.uk

University of Manchester

Manchester, UK

DAML PI meeting, Nashua, July 2001 – p.1/9



DAML+OIL Language Overview

DAML+OIL is an ontology language

☞ Describes structure of the domain (i.e., a schema)
• RDF used to describe specific instance of domain (data)

☞ Structure described in terms of classes and properties

☞ Ontology consists of set of axioms
• E.g., asserting class subsumption/equivalence

☞ Classes can be names or expressions
• Various constructors provided for building class expressions

☞ Expressive power determined by
• Kinds of axiom supported
• Kinds of class (and property) constructor supported

DAML PI meeting, Nashua, July 2001 – p.2/9



DAML+OIL Language Overview

DAML+OIL is an ontology language

☞ Describes structure of the domain (i.e., a schema)
• RDF used to describe specific instance of domain (data)

☞ Structure described in terms of classes and properties

☞ Ontology consists of set of axioms
• E.g., asserting class subsumption/equivalence

☞ Classes can be names or expressions
• Various constructors provided for building class expressions

☞ Expressive power determined by
• Kinds of axiom supported
• Kinds of class (and property) constructor supported

DAML PI meeting, Nashua, July 2001 – p.2/9



DAML+OIL Language Overview

DAML+OIL is an ontology language

☞ Describes structure of the domain (i.e., a schema)
• RDF used to describe specific instance of domain (data)

☞ Structure described in terms of classes and properties

☞ Ontology consists of set of axioms
• E.g., asserting class subsumption/equivalence

☞ Classes can be names or expressions
• Various constructors provided for building class expressions

☞ Expressive power determined by
• Kinds of axiom supported
• Kinds of class (and property) constructor supported

DAML PI meeting, Nashua, July 2001 – p.2/9



DAML+OIL Language Overview

DAML+OIL is an ontology language

☞ Describes structure of the domain (i.e., a schema)
• RDF used to describe specific instance of domain (data)

☞ Structure described in terms of classes and properties

☞ Ontology consists of set of axioms
• E.g., asserting class subsumption/equivalence

☞ Classes can be names or expressions
• Various constructors provided for building class expressions

☞ Expressive power determined by
• Kinds of axiom supported
• Kinds of class (and property) constructor supported

DAML PI meeting, Nashua, July 2001 – p.2/9



DAML+OIL Language Overview

DAML+OIL is an ontology language

☞ Describes structure of the domain (i.e., a schema)
• RDF used to describe specific instance of domain (data)

☞ Structure described in terms of classes and properties

☞ Ontology consists of set of axioms
• E.g., asserting class subsumption/equivalence

☞ Classes can be names or expressions
• Various constructors provided for building class expressions

☞ Expressive power determined by
• Kinds of axiom supported
• Kinds of class (and property) constructor supported

DAML PI meeting, Nashua, July 2001 – p.2/9



DAML+OIL Language Overview

DAML+OIL is an ontology language

☞ Describes structure of the domain (i.e., a schema)
• RDF used to describe specific instance of domain (data)

☞ Structure described in terms of classes and properties

☞ Ontology consists of set of axioms
• E.g., asserting class subsumption/equivalence

☞ Classes can be names or expressions
• Various constructors provided for building class expressions

☞ Expressive power determined by
• Kinds of axiom supported
• Kinds of class (and property) constructor supported

DAML PI meeting, Nashua, July 2001 – p.2/9



DAML+OIL Class Constructors

Constructor Abbreviation Example

intersectionOf C1 ∧ . . . ∧ Cn Human ∧ Male
unionOf C1 ∨ . . . ∨ Cn Doctor ∨ Lawyer
complementOf ¬C ¬Male
oneOf {x1 . . . xn} {john, mary}
toClass ∀P.C ∀hasChild.Doctor
hasClass ∃P.C ∃hasChild.Lawyer
hasValue ∃P.{x} ∃citizenOf.{USA}
minCardinalityQ >n P.C >2 hasChild.Lawyer
maxCardinalityQ 6n P.C 61 hasChild.Male
cardinalityQ =n P.C =1 hasParent.Female

☞ Arbitrarily complex nesting of constructors
• E.g., ∀hasChild.(Doctor ∨ ∃hasChild.Doctor)

☞ XMLS datatypes as well as classes

DAML PI meeting, Nashua, July 2001 – p.3/9



DAML+OIL Class Constructors

Constructor Abbreviation Example

intersectionOf C1 ∧ . . . ∧ Cn Human ∧ Male
unionOf C1 ∨ . . . ∨ Cn Doctor ∨ Lawyer
complementOf ¬C ¬Male
oneOf {x1 . . . xn} {john, mary}
toClass ∀P.C ∀hasChild.Doctor
hasClass ∃P.C ∃hasChild.Lawyer
hasValue ∃P.{x} ∃citizenOf.{USA}
minCardinalityQ >n P.C >2 hasChild.Lawyer
maxCardinalityQ 6n P.C 61 hasChild.Male
cardinalityQ =n P.C =1 hasParent.Female

☞ Arbitrarily complex nesting of constructors
• E.g., ∀hasChild.(Doctor ∨ ∃hasChild.Doctor)

☞ XMLS datatypes as well as classes

DAML PI meeting, Nashua, July 2001 – p.3/9



DAML+OIL Class Constructors

Constructor Abbreviation Example

intersectionOf C1 ∧ . . . ∧ Cn Human ∧ Male
unionOf C1 ∨ . . . ∨ Cn Doctor ∨ Lawyer
complementOf ¬C ¬Male
oneOf {x1 . . . xn} {john, mary}
toClass ∀P.C ∀hasChild.Doctor
hasClass ∃P.C ∃hasChild.Lawyer
hasValue ∃P.{x} ∃citizenOf.{USA}
minCardinalityQ >n P.C >2 hasChild.Lawyer
maxCardinalityQ 6n P.C 61 hasChild.Male
cardinalityQ =n P.C =1 hasParent.Female

☞ Arbitrarily complex nesting of constructors
• E.g., ∀hasChild.(Doctor ∨ ∃hasChild.Doctor)

☞ XMLS datatypes as well as classes
DAML PI meeting, Nashua, July 2001 – p.3/9



DAML+OIL Axioms

Axiom Abbreviation Example

subClassOf C1 v C2 Human v Animal ∧ Biped
sameClassAs C1

.
= C2 Man .

= Human ∧ Male
subPropertyOf P1 v P2 hasDaughter v hasChild
samePropertyAs P1

.
= P2 cost .

= price
sameIndividualAs x1

.
= x2 President_Bush .

= G_W_Bush
disjointWith C1 v ¬C2 Male v ¬Female
differentIndividualFrom {x1} v ¬{x2} {john} v ¬{peter}
inverseOf P1

.
= P−

2 hasChild .
= hasParent−

transitiveProperty P+ v P ancestor+ v ancestor
uniqueProperty Thing v 61P Thing v 61hasMother
UnambiguousProperty Thing v 61P− Thing v 61isMotherOf−

☞ Axioms (mostly) reducible to subClass/PropertyOf

DAML PI meeting, Nashua, July 2001 – p.4/9



DAML+OIL Axioms

Axiom Abbreviation Example

subClassOf C1 v C2 Human v Animal ∧ Biped
sameClassAs C1

.
= C2 Man .

= Human ∧ Male
subPropertyOf P1 v P2 hasDaughter v hasChild
samePropertyAs P1

.
= P2 cost .

= price
sameIndividualAs x1

.
= x2 President_Bush .

= G_W_Bush
disjointWith C1 v ¬C2 Male v ¬Female
differentIndividualFrom {x1} v ¬{x2} {john} v ¬{peter}
inverseOf P1

.
= P−

2 hasChild .
= hasParent−

transitiveProperty P+ v P ancestor+ v ancestor
uniqueProperty Thing v 61P Thing v 61hasMother
UnambiguousProperty Thing v 61P− Thing v 61isMotherOf−

☞ Axioms (mostly) reducible to subClass/PropertyOf

DAML PI meeting, Nashua, July 2001 – p.4/9



Decidable Reasoning

Set of operators/axioms restricted so that reasoning is decidable

☞ Significant point on tractability -v- expressiveness scale

☞ Consistent with Semantic Web’s layered architecture
• XML provides syntax transport layer
• RDF provides basic ontological primitives
• DAML+OIL provides (decidable) logical layer
• Further layers (e.g., rules) will extend DAML+OIL

☞ Facilitates provision of reasoning services
• Known algorithms
• Implemented systems
• Evidence of empirical tractability

DAML PI meeting, Nashua, July 2001 – p.5/9



Decidable Reasoning

Set of operators/axioms restricted so that reasoning is decidable

☞ Significant point on tractability -v- expressiveness scale

☞ Consistent with Semantic Web’s layered architecture
• XML provides syntax transport layer
• RDF provides basic ontological primitives
• DAML+OIL provides (decidable) logical layer
• Further layers (e.g., rules) will extend DAML+OIL

☞ Facilitates provision of reasoning services
• Known algorithms
• Implemented systems
• Evidence of empirical tractability

DAML PI meeting, Nashua, July 2001 – p.5/9



Decidable Reasoning

Set of operators/axioms restricted so that reasoning is decidable

☞ Significant point on tractability -v- expressiveness scale

☞ Consistent with Semantic Web’s layered architecture
• XML provides syntax transport layer
• RDF provides basic ontological primitives
• DAML+OIL provides (decidable) logical layer
• Further layers (e.g., rules) will extend DAML+OIL

☞ Facilitates provision of reasoning services
• Known algorithms
• Implemented systems
• Evidence of empirical tractability

DAML PI meeting, Nashua, July 2001 – p.5/9



Decidable Reasoning

Set of operators/axioms restricted so that reasoning is decidable

☞ Significant point on tractability -v- expressiveness scale

☞ Consistent with Semantic Web’s layered architecture
• XML provides syntax transport layer
• RDF provides basic ontological primitives
• DAML+OIL provides (decidable) logical layer
• Further layers (e.g., rules) will extend DAML+OIL

☞ Facilitates provision of reasoning services
• Known algorithms
• Implemented systems
• Evidence of empirical tractability

DAML PI meeting, Nashua, July 2001 – p.5/9



Why Reasoning Services?

Reasoning is important for:

☞ Ontology design
• Check class consistency and (unexpected) implied relationships
• Particularly important with large ontologies/multiple authors

☞ Ontology integration
• Assert inter-ontology relationships
• Reasoner computes integrated class hierarchy/consistency

☞ Ontology deployment
• Determine if set of facts are consistent w.r.t. ontology
• Determine if individuals are instances of ontology classes
• No point in having semantics unless exploited by “agents”

“The Semantic Web needs a logic on top” (Henry Thompson)

DAML PI meeting, Nashua, July 2001 – p.6/9



Why Reasoning Services?

Reasoning is important for:

☞ Ontology design
• Check class consistency and (unexpected) implied relationships
• Particularly important with large ontologies/multiple authors

☞ Ontology integration
• Assert inter-ontology relationships
• Reasoner computes integrated class hierarchy/consistency

☞ Ontology deployment
• Determine if set of facts are consistent w.r.t. ontology
• Determine if individuals are instances of ontology classes
• No point in having semantics unless exploited by “agents”

“The Semantic Web needs a logic on top” (Henry Thompson)

DAML PI meeting, Nashua, July 2001 – p.6/9



Why Reasoning Services?

Reasoning is important for:

☞ Ontology design
• Check class consistency and (unexpected) implied relationships
• Particularly important with large ontologies/multiple authors

☞ Ontology integration
• Assert inter-ontology relationships
• Reasoner computes integrated class hierarchy/consistency

☞ Ontology deployment
• Determine if set of facts are consistent w.r.t. ontology
• Determine if individuals are instances of ontology classes
• No point in having semantics unless exploited by “agents”

“The Semantic Web needs a logic on top” (Henry Thompson)

DAML PI meeting, Nashua, July 2001 – p.6/9



Why Reasoning Services?

Reasoning is important for:

☞ Ontology design
• Check class consistency and (unexpected) implied relationships
• Particularly important with large ontologies/multiple authors

☞ Ontology integration
• Assert inter-ontology relationships
• Reasoner computes integrated class hierarchy/consistency

☞ Ontology deployment
• Determine if set of facts are consistent w.r.t. ontology
• Determine if individuals are instances of ontology classes
• No point in having semantics unless exploited by “agents”

“The Semantic Web needs a logic on top” (Henry Thompson)

DAML PI meeting, Nashua, July 2001 – p.6/9



Why Reasoning Services?

Reasoning is important for:

☞ Ontology design
• Check class consistency and (unexpected) implied relationships
• Particularly important with large ontologies/multiple authors

☞ Ontology integration
• Assert inter-ontology relationships
• Reasoner computes integrated class hierarchy/consistency

☞ Ontology deployment
• Determine if set of facts are consistent w.r.t. ontology
• Determine if individuals are instances of ontology classes
• No point in having semantics unless exploited by “agents”

“The Semantic Web needs a logic on top” (Henry Thompson)

DAML PI meeting, Nashua, July 2001 – p.6/9



OilEd

OilEd is a DAML+OIL ontology editor with reasoning support

☞ Frame based interface (inspired by Protegé)

☞ Extended to clarify semantics and capture whole language
• Explicit ∃ (hasClass) or ∀ (toClass) restrictions
• Boolean connectives (∧, ∨, ¬) and nesting
• Transitive and unique (functional) properties

☞ Reasoning support provided by FaCT system
• Ontology translated into SHIQ DL
• Communicates with FaCT via CORBA interface
• Indicates inconsistencies and implicit subsumptions
• Can add axioms to make implicit subsumptions explicit

DAML PI meeting, Nashua, July 2001 – p.7/9



OilEd

OilEd is a DAML+OIL ontology editor with reasoning support

☞ Frame based interface (inspired by Protegé)

☞ Extended to clarify semantics and capture whole language
• Explicit ∃ (hasClass) or ∀ (toClass) restrictions
• Boolean connectives (∧, ∨, ¬) and nesting
• Transitive and unique (functional) properties

☞ Reasoning support provided by FaCT system
• Ontology translated into SHIQ DL
• Communicates with FaCT via CORBA interface
• Indicates inconsistencies and implicit subsumptions
• Can add axioms to make implicit subsumptions explicit

DAML PI meeting, Nashua, July 2001 – p.7/9



OilEd

OilEd is a DAML+OIL ontology editor with reasoning support

☞ Frame based interface (inspired by Protegé)

☞ Extended to clarify semantics and capture whole language
• Explicit ∃ (hasClass) or ∀ (toClass) restrictions
• Boolean connectives (∧, ∨, ¬) and nesting
• Transitive and unique (functional) properties

☞ Reasoning support provided by FaCT system
• Ontology translated into SHIQ DL
• Communicates with FaCT via CORBA interface
• Indicates inconsistencies and implicit subsumptions
• Can add axioms to make implicit subsumptions explicit

DAML PI meeting, Nashua, July 2001 – p.7/9



OilEd

OilEd is a DAML+OIL ontology editor with reasoning support

☞ Frame based interface (inspired by Protegé)

☞ Extended to clarify semantics and capture whole language
• Explicit ∃ (hasClass) or ∀ (toClass) restrictions
• Boolean connectives (∧, ∨, ¬) and nesting
• Transitive and unique (functional) properties

☞ Reasoning support provided by FaCT system
• Ontology translated into SHIQ DL
• Communicates with FaCT via CORBA interface
• Indicates inconsistencies and implicit subsumptions
• Can add axioms to make implicit subsumptions explicit

DAML PI meeting, Nashua, July 2001 – p.7/9



Reasoning Examples — what you CAN do

E.g., DAML+OIL medical terminology ontology

☞ Transitive roles capture partonomy, causality, etc.
Smoking v ∃causes.Cancer plus Cancer v ∃causes.Death

⇒ Smoking v ∃causes.Death

☞ Multiple equality/inclusion axioms
Stomach-Ulcer .

= Ulcer ∧ ∃hasLocation.Stomach plus
Stomach-Ulcer v ∃hasLocation.Lining-Of-Stomach
⇒ Ulcer ∧ ∃hasLocation.Stomach v OrganLiningLesion

☞ Inverse roles capture e.g. causes/causedBy relationship
Death ∧ ∃causedBy.Smoking v PrematureDeath

⇒ Smoking v ∃causes.PrematureDeath

☞ Cardinality restrictions add consistency constraints
BloodPressure v ∃hasValue.(High ∨ Low) ∧ 61hasValue plus

High v ¬Low ⇒ HighLowBloodPressure v ⊥

DAML PI meeting, Nashua, July 2001 – p.8/9



Reasoning Examples — what you CAN do

E.g., DAML+OIL medical terminology ontology

☞ Transitive roles capture partonomy, causality, etc.

Smoking v ∃causes.Cancer plus Cancer v ∃causes.Death
⇒ Smoking v ∃causes.Death

☞ Multiple equality/inclusion axioms
Stomach-Ulcer .

= Ulcer ∧ ∃hasLocation.Stomach plus
Stomach-Ulcer v ∃hasLocation.Lining-Of-Stomach
⇒ Ulcer ∧ ∃hasLocation.Stomach v OrganLiningLesion

☞ Inverse roles capture e.g. causes/causedBy relationship
Death ∧ ∃causedBy.Smoking v PrematureDeath

⇒ Smoking v ∃causes.PrematureDeath

☞ Cardinality restrictions add consistency constraints
BloodPressure v ∃hasValue.(High ∨ Low) ∧ 61hasValue plus

High v ¬Low ⇒ HighLowBloodPressure v ⊥

DAML PI meeting, Nashua, July 2001 – p.8/9



Reasoning Examples — what you CAN do

E.g., DAML+OIL medical terminology ontology

☞ Transitive roles capture partonomy, causality, etc.
Smoking v ∃causes.Cancer plus Cancer v ∃causes.Death

⇒ Smoking v ∃causes.Death

☞ Multiple equality/inclusion axioms
Stomach-Ulcer .

= Ulcer ∧ ∃hasLocation.Stomach plus
Stomach-Ulcer v ∃hasLocation.Lining-Of-Stomach
⇒ Ulcer ∧ ∃hasLocation.Stomach v OrganLiningLesion

☞ Inverse roles capture e.g. causes/causedBy relationship
Death ∧ ∃causedBy.Smoking v PrematureDeath

⇒ Smoking v ∃causes.PrematureDeath

☞ Cardinality restrictions add consistency constraints
BloodPressure v ∃hasValue.(High ∨ Low) ∧ 61hasValue plus

High v ¬Low ⇒ HighLowBloodPressure v ⊥

DAML PI meeting, Nashua, July 2001 – p.8/9



Reasoning Examples — what you CAN do

E.g., DAML+OIL medical terminology ontology

☞ Transitive roles capture partonomy, causality, etc.
Smoking v ∃causes.Cancer plus Cancer v ∃causes.Death

⇒ Smoking v ∃causes.Death

☞ Multiple equality/inclusion axioms

Stomach-Ulcer .
= Ulcer ∧ ∃hasLocation.Stomach plus

Stomach-Ulcer v ∃hasLocation.Lining-Of-Stomach
⇒ Ulcer ∧ ∃hasLocation.Stomach v OrganLiningLesion

☞ Inverse roles capture e.g. causes/causedBy relationship
Death ∧ ∃causedBy.Smoking v PrematureDeath

⇒ Smoking v ∃causes.PrematureDeath

☞ Cardinality restrictions add consistency constraints
BloodPressure v ∃hasValue.(High ∨ Low) ∧ 61hasValue plus

High v ¬Low ⇒ HighLowBloodPressure v ⊥

DAML PI meeting, Nashua, July 2001 – p.8/9



Reasoning Examples — what you CAN do

E.g., DAML+OIL medical terminology ontology

☞ Transitive roles capture partonomy, causality, etc.
Smoking v ∃causes.Cancer plus Cancer v ∃causes.Death

⇒ Smoking v ∃causes.Death

☞ Multiple equality/inclusion axioms
Stomach-Ulcer .

= Ulcer ∧ ∃hasLocation.Stomach plus
Stomach-Ulcer v ∃hasLocation.Lining-Of-Stomach
⇒ Ulcer ∧ ∃hasLocation.Stomach v OrganLiningLesion

☞ Inverse roles capture e.g. causes/causedBy relationship
Death ∧ ∃causedBy.Smoking v PrematureDeath

⇒ Smoking v ∃causes.PrematureDeath

☞ Cardinality restrictions add consistency constraints
BloodPressure v ∃hasValue.(High ∨ Low) ∧ 61hasValue plus

High v ¬Low ⇒ HighLowBloodPressure v ⊥

DAML PI meeting, Nashua, July 2001 – p.8/9



Reasoning Examples — what you CAN do

E.g., DAML+OIL medical terminology ontology

☞ Transitive roles capture partonomy, causality, etc.
Smoking v ∃causes.Cancer plus Cancer v ∃causes.Death

⇒ Smoking v ∃causes.Death

☞ Multiple equality/inclusion axioms
Stomach-Ulcer .

= Ulcer ∧ ∃hasLocation.Stomach plus
Stomach-Ulcer v ∃hasLocation.Lining-Of-Stomach
⇒ Ulcer ∧ ∃hasLocation.Stomach v OrganLiningLesion

☞ Inverse roles capture e.g. causes/causedBy relationship

Death ∧ ∃causedBy.Smoking v PrematureDeath
⇒ Smoking v ∃causes.PrematureDeath

☞ Cardinality restrictions add consistency constraints
BloodPressure v ∃hasValue.(High ∨ Low) ∧ 61hasValue plus

High v ¬Low ⇒ HighLowBloodPressure v ⊥

DAML PI meeting, Nashua, July 2001 – p.8/9



Reasoning Examples — what you CAN do

E.g., DAML+OIL medical terminology ontology

☞ Transitive roles capture partonomy, causality, etc.
Smoking v ∃causes.Cancer plus Cancer v ∃causes.Death

⇒ Smoking v ∃causes.Death

☞ Multiple equality/inclusion axioms
Stomach-Ulcer .

= Ulcer ∧ ∃hasLocation.Stomach plus
Stomach-Ulcer v ∃hasLocation.Lining-Of-Stomach
⇒ Ulcer ∧ ∃hasLocation.Stomach v OrganLiningLesion

☞ Inverse roles capture e.g. causes/causedBy relationship
Death ∧ ∃causedBy.Smoking v PrematureDeath

⇒ Smoking v ∃causes.PrematureDeath

☞ Cardinality restrictions add consistency constraints
BloodPressure v ∃hasValue.(High ∨ Low) ∧ 61hasValue plus

High v ¬Low ⇒ HighLowBloodPressure v ⊥

DAML PI meeting, Nashua, July 2001 – p.8/9



Reasoning Examples — what you CAN do

E.g., DAML+OIL medical terminology ontology

☞ Transitive roles capture partonomy, causality, etc.
Smoking v ∃causes.Cancer plus Cancer v ∃causes.Death

⇒ Smoking v ∃causes.Death

☞ Multiple equality/inclusion axioms
Stomach-Ulcer .

= Ulcer ∧ ∃hasLocation.Stomach plus
Stomach-Ulcer v ∃hasLocation.Lining-Of-Stomach
⇒ Ulcer ∧ ∃hasLocation.Stomach v OrganLiningLesion

☞ Inverse roles capture e.g. causes/causedBy relationship
Death ∧ ∃causedBy.Smoking v PrematureDeath

⇒ Smoking v ∃causes.PrematureDeath

☞ Cardinality restrictions add consistency constraints

BloodPressure v ∃hasValue.(High ∨ Low) ∧ 61hasValue plus
High v ¬Low ⇒ HighLowBloodPressure v ⊥

DAML PI meeting, Nashua, July 2001 – p.8/9



Reasoning Examples — what you CAN do

E.g., DAML+OIL medical terminology ontology

☞ Transitive roles capture partonomy, causality, etc.
Smoking v ∃causes.Cancer plus Cancer v ∃causes.Death

⇒ Smoking v ∃causes.Death

☞ Multiple equality/inclusion axioms
Stomach-Ulcer .

= Ulcer ∧ ∃hasLocation.Stomach plus
Stomach-Ulcer v ∃hasLocation.Lining-Of-Stomach
⇒ Ulcer ∧ ∃hasLocation.Stomach v OrganLiningLesion

☞ Inverse roles capture e.g. causes/causedBy relationship
Death ∧ ∃causedBy.Smoking v PrematureDeath

⇒ Smoking v ∃causes.PrematureDeath

☞ Cardinality restrictions add consistency constraints
BloodPressure v ∃hasValue.(High ∨ Low) ∧ 61hasValue plus

High v ¬Low ⇒ HighLowBloodPressure v ⊥

DAML PI meeting, Nashua, July 2001 – p.8/9



Reasoning Examples — what you CAN’T do

Where to begin!

☞ Robust decidability largely due to tree model property
• For any consistent class there exists a tree (like) model

☞ No property constructors, e.g.:
• parent ◦ brother v uncle

• ancestor .
= parent+

☞ No variables, e.g.:
• Ulcer ∧ ∃hasLocation.?x v ∃hasLocation.(∃LiningOf.?x)

☞ Only have unary and binary predicates
• Can’t express (directly) P (x, y, z)

Language extensions may remove some of above limitations

☞ But there is no such thing as a free lunch

DAML PI meeting, Nashua, July 2001 – p.9/9



Reasoning Examples — what you CAN’T do

Where to begin!

☞ Robust decidability largely due to tree model property
• For any consistent class there exists a tree (like) model

☞ No property constructors, e.g.:
• parent ◦ brother v uncle

• ancestor .
= parent+

☞ No variables, e.g.:
• Ulcer ∧ ∃hasLocation.?x v ∃hasLocation.(∃LiningOf.?x)

☞ Only have unary and binary predicates
• Can’t express (directly) P (x, y, z)

Language extensions may remove some of above limitations

☞ But there is no such thing as a free lunch

DAML PI meeting, Nashua, July 2001 – p.9/9



Reasoning Examples — what you CAN’T do

Where to begin!

☞ Robust decidability largely due to tree model property
• For any consistent class there exists a tree (like) model

☞ No property constructors, e.g.:
• parent ◦ brother v uncle

• ancestor .
= parent+

☞ No variables, e.g.:
• Ulcer ∧ ∃hasLocation.?x v ∃hasLocation.(∃LiningOf.?x)

☞ Only have unary and binary predicates
• Can’t express (directly) P (x, y, z)

Language extensions may remove some of above limitations

☞ But there is no such thing as a free lunch

DAML PI meeting, Nashua, July 2001 – p.9/9



Reasoning Examples — what you CAN’T do

Where to begin!

☞ Robust decidability largely due to tree model property
• For any consistent class there exists a tree (like) model

☞ No property constructors, e.g.:
• parent ◦ brother v uncle

• ancestor .
= parent+

☞ No variables, e.g.:
• Ulcer ∧ ∃hasLocation.?x v ∃hasLocation.(∃LiningOf.?x)

☞ Only have unary and binary predicates
• Can’t express (directly) P (x, y, z)

Language extensions may remove some of above limitations

☞ But there is no such thing as a free lunch

DAML PI meeting, Nashua, July 2001 – p.9/9



Reasoning Examples — what you CAN’T do

Where to begin!

☞ Robust decidability largely due to tree model property
• For any consistent class there exists a tree (like) model

☞ No property constructors, e.g.:
• parent ◦ brother v uncle

• ancestor .
= parent+

☞ No variables, e.g.:
• Ulcer ∧ ∃hasLocation.?x v ∃hasLocation.(∃LiningOf.?x)

☞ Only have unary and binary predicates
• Can’t express (directly) P (x, y, z)

Language extensions may remove some of above limitations

☞ But there is no such thing as a free lunch

DAML PI meeting, Nashua, July 2001 – p.9/9



Reasoning Examples — what you CAN’T do

Where to begin!

☞ Robust decidability largely due to tree model property
• For any consistent class there exists a tree (like) model

☞ No property constructors, e.g.:
• parent ◦ brother v uncle

• ancestor .
= parent+

☞ No variables, e.g.:
• Ulcer ∧ ∃hasLocation.?x v ∃hasLocation.(∃LiningOf.?x)

☞ Only have unary and binary predicates
• Can’t express (directly) P (x, y, z)

Language extensions may remove some of above limitations

☞ But there is no such thing as a free lunch

DAML PI meeting, Nashua, July 2001 – p.9/9



Reasoning Examples — what you CAN’T do

Where to begin!

☞ Robust decidability largely due to tree model property
• For any consistent class there exists a tree (like) model

☞ No property constructors, e.g.:
• parent ◦ brother v uncle

• ancestor .
= parent+

☞ No variables, e.g.:
• Ulcer ∧ ∃hasLocation.?x v ∃hasLocation.(∃LiningOf.?x)

☞ Only have unary and binary predicates
• Can’t express (directly) P (x, y, z)

Language extensions may remove some of above limitations

☞ But there is no such thing as a free lunch

DAML PI meeting, Nashua, July 2001 – p.9/9


	DAML+OIL Language Overview
	DAML+OIL Class Constructors
	DAML+OIL Axioms
	Decidable Reasoning
	Why Reasoning Services?
	OilEd
	Reasoning Examples --- what you CAN do
	Reasoning Examples --- what you CAN'T do

