
DAML+OIL: an Ontology
Language for the Semantic Web

DAML+OIL Design Objectives
� Well designed

� Intuitive to (human) users
� Adequate expressive power
� Support machine understanding/reasoning

� Well defined
� Clearly specified syntax (obviously)
� Formal semantics (equally important)

� Extend existing web standards
� DAML+OIL is built on top of RDF(S)

Why Build on RDF
�Provides basic ontological primitives

� Classes and relations (properties)
� Class (and property) hierarchy

�Can exploit existing RDF infrastructure
�Provides mechanism for using ontologies

� RDF triples assert facts about resources
� Use vocabulary from DAML+OIL ontologies

The Cake!

DAML+OIL

HTML

XHTML

XML

SMIL RDF(S)

DC PICS

Why RDF Is Not Enough
� Expressive inadequacy

� Only range/domain constraints (on properties)
� No properties of properties (unique, transitive,

inverse etc.)
� No equivalence, disjointness, coverings etc.
� No necessary and sufficient conditions (for class

membership)
� Poorly (un) defined semantics

How DAML+OIL Builds ON RDFS (1)

�Extends expressive power
� Constraints (restrictions) on properties of

classes (existential/universal/cardinality)
� Boolean combinations of classes and

restrictions
� Equivalence, disjointness, coverings
� Necessary and sufficient conditions
� Constraints on properties

How DAML+OIL Builds ON RDFS (2)

�Provides well defined semantics
� Meaning of DAML+OIL statements is

formally specified
� Both model theoretic and axiomatic

specifations provided
� Allows for machine understanding and

automated reasoning

DAML+OIL ↔ RDF

�DAML+OIL ontology is a set of RDF
statements

�DAML+OIL defines semantics for
certain statements

�Does NOT restrict what can be said
� Ontology can include arbitrary RDF

�But no semantics for non-DAML+OIL
statements

Well Designed(?)
� Intuitive to (human) users

� Supports common ontological idioms
� Adequate expressive power

� Extends RDF in several directions
� Support for machine understanding/reasoning

� Designed to be “implementable”
� No features for which it is difficult or impossible to

define clear semantics (e.g., defaults)
� Decidable and (empirically) tractable reasoning

Why Automated Reasoning?
� Semantic web requires machine

understanding (of resource descriptions)
� Reasoning is integral to understanding

� Supports design and use of ontologies
� Checking class consistency (e.g., Skyscraper)
� Checking/deriving subClassOf hierarchy
� Particularly useful when ontologies are large, multi-

authored and rapidly evolving
� Also useful when integrating/sharing ontologies

� Does not tell us how to deal with inconsistencies
� But we should be able to determine when they exist

Extending DAML+OIL
� Work in progress on Datatypes

� Plan to support (some of) XMLS datatypes
� Datatypes will be disjoint from “abstract” classes

and only accessible via properties
� Maintains “implementability” of language

� Further extensions in new language layers
� E.g., DAML-RULES
� Layers will use DAML+OIL as it uses RDF

New Language Layers

DAML+OIL

HTML

XHTML

XML

SMIL RDF(S)

DC PICS

DAML-???

DAML+OIL Infrastructure
� Can exploit existing RDF tools/services
� Ontology editors being built/adapted

� OilEd (Manchester)
� Protégé (Stanford)
� OntoEdit (Karlsruhe)

� Ontology integration tools being built/adapted
� Chimera (Stanford)

� Reasoning services
� DL derived reasoners, e.g., FaCT (used by OilEd)
� Rule based reasoners, e.g. SiLri (Karlsruhe)

� Markup tools
� Additional tools/infrastructure urgently required

DAML+OIL Summary
�Ontology language for Semantic Web
�Extends RDF

� More expressive power
� Well defined semantics

� Implementable
� Decidable and tractable reasoning
� Cost is some restriction on expressive power

�Extensible
� Cost may be loss of (some of) above properties

