DAML+OIL: an Ontology Language for the Semantic Web
DAML+OIL Design Objectives

- **Well designed**
 - Intuitive to (human) users
 - Adequate expressive power
 - Support machine understanding/reasoning

- **Well defined**
 - Clearly specified syntax (obviously)
 - Formal semantics (equally important)

- **Extend** existing web standards
 - DAML+OIL is built on top of RDF(S)
Why Build on RDF

- Provides basic ontological primitives
 - Classes and relations (properties)
 - Class (and property) hierarchy
- Can exploit existing RDF infrastructure
- Provides mechanism for using ontologies
 - RDF triples assert facts about resources
 - Use vocabulary from DAML+OIL ontologies
The Cake!

DAML+OIL

HTML

XHTML

SMIL

RDF(S)

DC

PICS

XML
Why RDF Is Not Enough

- Expressive inadequacy
 - Only range/domain constraints (on properties)
 - No properties of properties (unique, transitive, inverse etc.)
 - No equivalence, disjointness, coverings etc.
 - No necessary and sufficient conditions (for class membership)
- Poorly (un) defined semantics
How DAML+OIL Builds ON RDFS (1)

- Extends expressive power
 - Constraints (restrictions) on properties of classes (existential/universal/cardinality)
 - Boolean combinations of classes and restrictions
 - Equivalence, disjointness, coverings
 - Necessary and sufficient conditions
 - Constraints on properties
How DAML+OIL Builds ON RDFS (2)

- Provides well defined semantics
 - Meaning of DAML+OIL statements is formally specified
 - Both model theoretic and axiomatic specifications provided
 - Allows for machine understanding and automated reasoning
DAML+OIL ↔ RDF

- DAML+OIL ontology is a set of RDF statements
- DAML+OIL defines semantics for certain statements
- Does **NOT** restrict what can be said
 - Ontology can include arbitrary RDF
- But no semantics for non-DAML+OIL statements
Well Designed(?)

- Intuitive to (human) users
 - Supports common ontological idioms
- Adequate expressive power
 - Extends RDF in several directions
- Support for machine understanding/reasoning
 - Designed to be “implementable”
 - No features for which it is difficult or impossible to define clear semantics (e.g., defaults)
 - Decidable and (empirically) tractable reasoning
Why Automated Reasoning?

- Semantic web requires machine understanding (of resource descriptions)
 - Reasoning is integral to understanding

- Supports design and use of ontologies
 - Checking class consistency (e.g., Skyscraper)
 - Checking/deriving subClassOf hierarchy
 - Particularly useful when ontologies are large, multi-authored and rapidly evolving
 - Also useful when integrating/sharing ontologies

- Does not tell us how to deal with inconsistencies
 - But we should be able to determine when they exist
Extending DAML+OIL

- Work in progress on Datatypes
 - Plan to support (some of) XMLS datatypes
 - Datatypes will be disjoint from “abstract” classes and only accessible via properties
 - Maintains “implementability” of language

- Further extensions in new language layers
 - E.g., DAML-RULES
 - Layers will use DAML+OIL as it uses RDF
New Language Layers

DAML-???

DAML+OIL

DC

PICS

XHTML

SMIL

RDF(S)

HTML

XML
DAML+OIL Infrastructure

- Can exploit existing RDF tools/services
- Ontology editors being built/adapted
 - OilEd (Manchester)
 - Protégé (Stanford)
 - OntoEdit (Karlsruhe)
- Ontology integration tools being built/adapted
 - Chimera (Stanford)
- Reasoning services
 - DL derived reasoners, e.g., FaCT (used by OilEd)
 - Rule based reasoners, e.g. SiLri (Karlsruhe)
- Markup tools
- Additional tools/infrastructure urgently required
DAML+OIL Summary

- Ontology language for Semantic Web
- Extends RDF
 - More expressive power
 - Well defined semantics
- Implementable
 - Decidable and tractable reasoning
 - Cost is some restriction on expressive power
- Extensible
 - Cost may be loss of (some of) above properties