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The Semantic Web and DAML+OIL
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Semantic Web Ontology Languages

US DAML programme (in cooperation with W3C and a cast of thousands)
aim to develop so-called Semantic Web

☞ Most existing Web resources only human understandable
• Markup (HTML) provides rendering information
• Textual/graphical information for human consumption

☞ Semantic Web aims at machine understandability
• Semantic markup will be added to web resources
• Markup will use Ontologies for shared understanding

☞ Requirement for a suitable ontology language
• Compatible with existing Web standards (XML, RDF)
• Captures common KR idioms
• Formally specified and of “adequate expressive power”
• Can provide reasoning support

☞ DAML-ONT language developed to meet these requirements
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OIL and DAML+OIL

Meanwhile, somewhere in darkest Europe. . .

☞ OIL language had been developed to meet similar requirements
• Extends existing Web standards (XML, RDF)
• Intuitive (frame) syntax plus high expressive power
• Well defined semantics via mapping to SHIQ DL
• Can use DL systems to reason with OIL ontologies

☞ Two efforts merged to produce single language, DAML+OIL

☞ Detailed specification agreed by Joint EU/US Committee on Agent
Markup Languages

☞ W3C Ontology Language WG has taken DAML+OIL as starting point
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DAML+OIL Language Overview

DAML+OIL is an ontology language

☞ Describes structure of the domain (i.e., a Tbox)
• RDF used to describe specific instances (i.e., an Abox)

☞ Structure described in terms of classes (concepts) and properties
(roles)

☞ Ontology consists of set of axioms
• E.g., asserting class subsumption/equivalence

☞ Classes can be names or expressions
• Various constructors provided for building class expressions

☞ Expressive power determined by
• Kinds of axiom supported
• Kinds of class (and property) constructor supported
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DAML+OIL

☞ Is a Description Logic (but don’t tell anyone)

☞ More precisely, DAML+OIL is SHIQ
• Plus nominals
• Plus datatypes (simple concrete domains)
• With RDFS based syntax

☞ SHIQ/DAML+OIL was not built in a day (or even a year)
• SHIQ is based on 15+ years of DL research

☞ Can use DL reasoning with DAML+OIL
• Existing SHIQ implementations support (most of) DAML+OIL
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Why Reasoning Services?

Reasoning is important for:

☞ Ontology design
• Check class consistency and (unexpected) implied relationships
• Particularly important with large ontologies/multiple authors

☞ Ontology integration
• Assert inter-ontology relationships
• Reasoner computes integrated class hierarchy/consistency

☞ Ontology deployment
• Determine if set of facts are consistent w.r.t. ontology
• Answer queries w.r.t. ontology, e.g., DQL
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Why Decidable Reasoning?

Set of operators/axioms restricted so that reasoning is decidable

☞ Consistent with Semantic Web’s layered architecture
• XML provides syntax transport layer
• RDF provides basic relational language
• RDFS provides basic ontological primitives
• DAML+OIL provides (decidable) logical layer
• Further layers (e.g., rules) will extend DAML+OIL

➙ Extensions will almost certainly be undecidable

☞ Facilitates provision of reasoning services
• Known algorithms
• Implemented systems
• Evidence of empirical tractability (for ontology reasoning)
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Reasoning Support for Ontology Design: OilEd

OilEd is a DAML+OIL ontology editor with DL reasoning support

☞ Frame based interface (inspired by Protégé)
• Classes defined by superclass(es) plus slot constraints

☞ Extended to clarify semantics and capture whole language

• Primitive (v) and defined ( .
=) classes

• Explicit ∃ (hasClass), ∀ (toClass) and cardinality restrictions
• Boolean connectives (u, t, ¬) and nesting
• Transitive, symmetrical and functional properties
• Disjointness, inclusion (v) and equality ( .

=) axioms
• Fake individuals

☞ Reasoning support provided by FaCT system
• Ontology translated into SHIQ DL
• Communicates with FaCT via CORBA interface
• Indicates inconsistencies and implicit subsumptions
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OilEd
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Description Logics and Reasoning
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What are Description Logics?

A family of logic based Knowledge Representation formalisms

☞ Based on concepts (classes) and roles
• Concepts (classes) are interpreted as sets of objects
• Roles are interpreted as binary relations on objects

☞ Descendants of semantic networks and KL-ONE

☞ Decidable fragments of FOL
• Many DLs are fragments of L2, C2 or the Guarded Fragment

☞ Closely related to propositional modal logics

☞ Also known as terminological logics, concept languages, etc.

☞ Key features of DLs are
• Well defined semantics (they are logics)
• Provision of inference services
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DL System Architecture

Tbox (schema)

Abox (data)

Knowledge Base

In
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Man
.
= Human u Male

Happy-Father
.
= Man u ∃has-child.Female u . . .

...

...

John : Happy-Father

〈John, Mary〉 : has-child
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DL Constructors

Particular DLs characterised by set of constructors provided for building
complex concepts and roles from simpler ones

☞ Usually include at least:
• Conjunction (u), disjunction (t), negation (¬)
• Restricted (guarded) forms of quantification (∃, ∀)

☞ This basic DL is known as ALC

For example, concept Happy Father in ALC:

Man u ∃has-child.Male
u ∃has-child.Female
u ∀has-child.(Doctor t Lawyer)
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DL Syntax and Semantics

Semantics given by interpretation I = (∆I , ·I)

Constructor Syntax Example Semantics

atomic concept A Human AI ⊆ ∆I

atomic role R has-child RI ⊆ ∆I × ∆I

and for C, D concepts and R a role name

conjunction C u D Human u Male CI ∩ DI

disjunction C t D Doctor t Lawyer CI ∪ DI

negation ¬C ¬Male ∆I \ C

exists restr. ∃R.C ∃has-child.Male {x | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}

value restr. ∀R.C ∀has-child.Doctor {x | ∀y.〈x, y〉 ∈ RI =⇒ y ∈ CI}
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Other DL Constructors

Many different DLs/DL constructors have been investigated, e.g.

Constructor Syntax Example Semantics

qualified num >nR.C >3 child. female {x | |{y.(〈x, y〉 ∈ RI ∧ y ∈ CI)}| > n}

restrictions 6nR.C 61 parent female {x | |{y.(〈x, y〉 ∈ RI ∧ y ∈ CI)}| 6 n}

inverse role R− has-child− {〈x, y〉 | 〈y, x〉 ∈ RI}

trans role (+)R (+)has-ancestor RI = (RI)+

SHIQ

nominals {x} {Italy} {xI}

conc. domain f1, . . . , fn.P earns spends < {x | P (fI

1 , . . . , fI
n

)}

SHOIQ(Dn)

...
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DL Knowledge Base (Tbox)

Terminological part (Tbox) is set of axioms describing structure of domain

Definition axioms introduce macros/names for concepts
A

.
= C, A v C

Father .
= Man u ∃has-child.Human

Human v Animal u Biped

Inclusion (GCI) axioms assert subsumption relations
C v D (note C

.
= D equivalent to C v D and D v C)

∃has-degree.Masters v ∃has-degree.Bachelors

An interpretation I satisfies
C

.
= D iff CI = DI C v D iff CI ⊆ DI

A Tbox T iff it satisfies every axiom in T (I |= T )
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DL Knowledge Base (Abox)

Assertional part (Abox) is set of axioms describing concrete situation

Concept assertions
a : C

John : Man u ∃has-child.Female

Role assertions
〈a, b〉 : R

〈John, Mary〉 : has-child

An interpretation I satisfies
a : C iff aI ∈ CI 〈a, b〉 : R iff 〈aI , bI〉 ∈ RI

An Abox A iff it satisfies every axiom in A (I |= A)
A KB Σ = 〈T ,A〉 iff it satisfies both T and A (I |= Σ)
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Why Tbox and Abox?

☞ Restricted use of individuals maintains (kind of) tree model property
• Arbitrary but finite directed graph connecting named individuals
• Named individuals roots of (possibly) infinite trees of

anonymous individuals
• Lower complexity class (ExpTime for SHIQ)
• Easier to design and optimise (tableaux) algorithms

☞ Existentially defined classes (nominals) destroy this property
• Trees can “loop back” to named individuals
• Higher complexity class (NExpTime for SHIQ)
• No known tableaux algorithm for SHIQ + nominals

☞ Note that with nominals, Abox becomes syntactic sugar
• a : C equiv. to {a} v C

• 〈a, b〉 : R equiv. to {a} v ∃R.{b}
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Basic Inference Problems

Subsumption (structure knowledge, compute taxonomy)

C v D ? Is CI ⊆ DI in all interpretations?

Subsumption w.r.t. Tbox T
C vT D ? Is CI ⊆ DI in all models of T ?

Consistency
Is C consistent w.r.t. T ? Is there a model I of T s.t. CI 6= ∅?

KB Consistency
Is 〈T ,A〉 consistent? Is there a model I of 〈T ,A〉?

Problems are closely related:

C vT D iff C u ¬D is inconsistent w.r.t. T
C is consistent w.r.t. T iff C 6vT A u ¬A
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Reasoning Techniques
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Subsumption and Satisfiability

Subsumption transformed into satisfiability
Tableaux algorithm used to test satisfiability

☞ Try to build model (witness) of concept C

☞ Model represented by tree T

• Nodes in T correspond to individuals in model
• Nodes labeled with sets of subconcepts of C

• Edges labeled with role names in C

☞ Start from root node labeled {C}

☞ Apply expansion rules to node labels until
• Rules correspond with language constructs
• Expansion completed (tree represents valid model)
• Contradictions prove there is no model

☞ Non-deterministic expansion −→ search (e.g., C tD)

☞ Blocking ensures termination (with expressive DLs)
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Tableaux Expansion

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

Concept is satisfiable: w is a witness
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More Advanced Techniques

Satisfiability w.r.t. a Terminology
☞ For each GCI C v D ∈ T , add ¬C tD to every node label

More expressive DLs
☞ Basic technique can be extended to deal with
• Role inclusion axioms (role hierarchy)
• Number restrictions
• Inverse roles
• Concrete domains
• Aboxes
• etc.

☞ Extend expansion rules and use more sophisticated blocking
strategy

☞ Forest instead of Tree (for Aboxes)
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Implementing DL Systems
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Naive Implementations

Problems include:

☞ Space usage
• Storage required for tableaux datastructures
• Rarely a serious problem in practice
• But problems can arise with inverse roles and cyclical KBs

☞ Time usage
• Search required due to non-deterministic expansion
• Serious problem in practice
• Mitigated by:

➙ Careful choice of algorithm
➙ Highly optimised implementation
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Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure
• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions
• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings
• GCI axioms can be used to “encode” additional

operators/axioms
• Powerful technique, particularly when used with FL closure
• Can encode cardinality constraints, inverse roles, range/domain,

. . .
➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms
• BUT even simple domain encoding is disastrous with large

numbers of roles
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Highly Optimised Implementation

Modern systems include MANY optimisations, e.g.:

☞ Optimised classification
• Use enhanced traversal (exploit information from previous tests)

• Use structural information to select classification order

☞ Optimised subsumption testing
• Normalisation and simplification of concepts
• Absorption (simplification) of general axioms
• Davis-Putnam style semantic branching search
• Dependency directed backtracking
• Caching
• Heuristic ordering of propositional and modal expansion
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Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping
• Tag concepts introduced at branch points (e.g., when

expanding disjunctions)
• Expansion rules combine and propagate tags
• On discovering a clash, identify most recently introduced

concepts involved
• Jump back to relevant branch points without exploring

alternative branches
• Effect is to prune away part of the search space

☞ Highly effective — essential for usable system
• E.g., GALEN KB, 30s (with) −→ months++ (without)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.30/51



Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping
• Tag concepts introduced at branch points (e.g., when

expanding disjunctions)
• Expansion rules combine and propagate tags
• On discovering a clash, identify most recently introduced

concepts involved
• Jump back to relevant branch points without exploring

alternative branches
• Effect is to prune away part of the search space

☞ Highly effective — essential for usable system
• E.g., GALEN KB, 30s (with) −→ months++ (without)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.30/51



Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping

• Tag concepts introduced at branch points (e.g., when
expanding disjunctions)

• Expansion rules combine and propagate tags
• On discovering a clash, identify most recently introduced

concepts involved
• Jump back to relevant branch points without exploring

alternative branches
• Effect is to prune away part of the search space

☞ Highly effective — essential for usable system
• E.g., GALEN KB, 30s (with) −→ months++ (without)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.30/51



Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping
• Tag concepts introduced at branch points (e.g., when

expanding disjunctions)

• Expansion rules combine and propagate tags
• On discovering a clash, identify most recently introduced

concepts involved
• Jump back to relevant branch points without exploring

alternative branches
• Effect is to prune away part of the search space

☞ Highly effective — essential for usable system
• E.g., GALEN KB, 30s (with) −→ months++ (without)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.30/51



Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping
• Tag concepts introduced at branch points (e.g., when

expanding disjunctions)
• Expansion rules combine and propagate tags

• On discovering a clash, identify most recently introduced
concepts involved

• Jump back to relevant branch points without exploring
alternative branches

• Effect is to prune away part of the search space

☞ Highly effective — essential for usable system
• E.g., GALEN KB, 30s (with) −→ months++ (without)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.30/51



Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping
• Tag concepts introduced at branch points (e.g., when

expanding disjunctions)
• Expansion rules combine and propagate tags
• On discovering a clash, identify most recently introduced

concepts involved

• Jump back to relevant branch points without exploring
alternative branches

• Effect is to prune away part of the search space

☞ Highly effective — essential for usable system
• E.g., GALEN KB, 30s (with) −→ months++ (without)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.30/51



Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping
• Tag concepts introduced at branch points (e.g., when

expanding disjunctions)
• Expansion rules combine and propagate tags
• On discovering a clash, identify most recently introduced

concepts involved
• Jump back to relevant branch points without exploring

alternative branches

• Effect is to prune away part of the search space

☞ Highly effective — essential for usable system
• E.g., GALEN KB, 30s (with) −→ months++ (without)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.30/51



Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping
• Tag concepts introduced at branch points (e.g., when

expanding disjunctions)
• Expansion rules combine and propagate tags
• On discovering a clash, identify most recently introduced

concepts involved
• Jump back to relevant branch points without exploring

alternative branches
• Effect is to prune away part of the search space

☞ Highly effective — essential for usable system
• E.g., GALEN KB, 30s (with) −→ months++ (without)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.30/51



Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping
• Tag concepts introduced at branch points (e.g., when

expanding disjunctions)
• Expansion rules combine and propagate tags
• On discovering a clash, identify most recently introduced

concepts involved
• Jump back to relevant branch points without exploring

alternative branches
• Effect is to prune away part of the search space

☞ Highly effective — essential for usable system
• E.g., GALEN KB, 30s (with) −→ months++ (without)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.30/51



Backjumping

E.g., if ∃R.¬A u ∀R.(A uB) u (C1 tD1) u . . . u (Cn tDn) ⊆ L(x)
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Axioms and Rules
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KR Rules (Horn Clauses)

☞ Rules (at least KR rules) can be seen as a form of axiom, e.g.:

p(x)← q(x) ∧ w(x) ≡ p v q u w

p(x)← q(x) ∧ r(x, y) ∧ w(y) ≡ p v q u ∃r.w

☞ Distinguished variables have implicit ∀, others have implicit ∃, i.e.:

p(x)← q(x) ∧ r(x, y) ≡ ∀x(p(x)← (∃y(q(x) ∧ r(x, y))))

☞ Closed world doesn’t make sense in ontologies
• Don’t want to infer Person v American just because only have

information about Americans
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More Complex Examples

☞ E.g., the “discount” example:

discount(x, 7%) ← customer(x) ∧ category(x, y)

∧ premium(y) ∧ buys(x, z) ∧ product(z)

∧ category(z, w) ∧ luxury(w)

can be written in DL as:

∃discount.7% v customer u ∃category.premium

u ∃buys.(product u ∃category.luxury)

☞ May not capture intended semantics
• Should be able to fix this by modeling transactions instead of

customers
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Query Rules

☞ Query rules have a completely different semantics

(x)← q(x) ∧ r(x, y)

says answer = {x|KB |= ∃y(q(x) ∧ r(x, y))}

☞ Can also reduce this to a standard DL retrieval Query:

retrieve instances of (p ∧ ∃r.q)

says answer = {x|KB |= ∃y(q(x) ∧ r(x, y))}

☞ Applications can implement many “rule-like” features using queries
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What (horn) Rules Can’t Capture?

Horn rules with no extensions (probably) can’t capture:

☞ Negation

☞ Disjunction (?)

☞ ∀ in body of rule

☞ ∃ in head of rule

☞ Counting/cardinality constraints

. . . ?
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What (standard) DLs Can’t Capture

☞ nary predicates (n > 2)
• but DLR is an nary DL used in DB applications

☞ Rules that break tree model property, e.g.,

uncle(x, z) ← parent(x, y) ∧ brother(y, z)

• but some (otherwise weak) DLs have function chain
equivalence, i.e.,

f1 ◦ . . . ◦ fn ≡ f ′

1 ◦ . . . ◦ f ′

m

☞ Can’t combine with expressive DLs (and still stay decidable)
• adding these constructs to SHIQ leads to undecidability
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Intersection of Rules and DLs

☞ Can express horn clauses with:
• conjunction in head (≡ multiple rules)
• ∀ in head
• ∃ in body
• only unary or binary predicates
• “inverse” roles/predicates

☞ Result is a strange and asymmetrical DL
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Other Approaches

☞ Can layer rules on top of DL
• rule predicates can be DL classes or roles
• several examples have been implemented
• best known is Carin system from Levy & Rousset
• undecidable unless DL is very weak (Carin uses Classic)

☞ Some existing work on language fusions and hybrid reasoners
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Research Challenges
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Research Challenges

☞ Increased expressive power
• Datatypes
• Nominals
• Extensions to DAML+OIL

☞ Performance
• Inverse roles and qualified number restrictions
• Very large KBs
• Reasoning with individuals

☞ Tools and Infrastructure
• Support for large scale ontological engineering and deployment

☞ New reasoning tasks
• Querying
• Lcs/matching
• . . .
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Increased Expressive Power: Datatypes

DAML+OIL extends SHIQ with datatypes and nominals

Datatypes

☞ DAML+OIL has simple form of datatypes
• Unary predicates plus disjoint abstract/datatype domains

☞ Theoretically not particularly challenging
• Existing work on concrete domains [Baader & Hanschke, Lutz]
• Algorithm already known for SHOQ(D) [Horrocks & Sattler]

☞ May be practically challenging
• All XMLS datatypes supported

☞ Already seeing some (limited) implementations
• E.g., Cerebra system (Network Inference)
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Increased Expressive Power: Nominals

Nominals

☞ DAML+OIL has oneOf constructor
• Extensionally defined concepts, e.g., {Mary}I = {MaryI}

• Equivalent to nominals in modal logic

☞ Theoretically very challenging
• Resulting logic has known high complexity (NExpTime)
• No known “practical” algorithm
• Not obvious how to extend tableaux techniques in this direction

➙ Loss of tree model property
➙ Spy-points: > v ∃R.{Spy}

➙ Finite domains: {Spy} v 6nR−

☞ Relatively straightforward (in theory) without inverse roles
• Algorithm for SHOQ(D) deals with nominals
• Practical implementation still to be demonstrated
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Increased Expressive Power: Extensions

☞ DAML+OIL not expressive enough for all applications

☞ Extensions wish list includes:
• Complex roles/role inclusions, e.g., parent ◦ brother ≡ uncle
• Rules and/or query languages
• Temporal and spatial reasoning
• Defaults
• . . .

☞ Extended language sure to be undecidable

☞ How can extensions best be integrated with DAML+OIL?

☞ How can reasoners be developed/adapted for extended languages?
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Performance Problems

☞ Evidence of empirical tractability mostly w.r.t. SHF— problems
can arise when systems extended to SHIQ

☞ Important optimisations no longer (fully) work
• E.g., problems with caching as cached models can affect parent

☞ Qualified number restrictions can also cause problems
• Even relatively small numbers can mean significant

non-determinism

☞ Reasoning with very large KBs/ontologies
• Web ontologies can be expected to grow very large

☞ Reasoning with individuals (Abox)
• Deployment of web ontologies will mean reasoning with

(possibly very large numbers of) individuals
• Standard Abox techniques may not be able to cope
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Performance Solutions (Maybe)

☞ Excessive memory usage
• Problem exacerbated by over-cautious double blocking condition

(e.g., root node can never block)
• Promising results from more precise blocking condition [Sattler

& Horrocks]

☞ Qualified number restrictions
• Problem exacerbated by naive expansion rules
• Promising results from optimised expansion using Algebraic

Methods [Haarslev & Möller]

☞ Caching and merging
• Can still work in some situations (work in progress)

☞ Reasoning with very large KBs
• DL systems shown to work with ≈100k concept KB [Haarslev &

Möller]
• But KB only exploited small part of DL language
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Tools and Infrastructure

Tools and infrastructure required in order support use of DAML+OIL

☞ Ontology design and maintenance
• Several editors available, e.g, OilEd (Manchester), OntoEdit

(Karlsruhe), Protégé (Stanford)
• Need integrated environments including modularity, versioning,

visualisation, explanation, high-level languages, . . .

☞ Ontology Integration
• Some tools available, e.g., Chimera (Stanford)
• Need integrated environments . . .
• Can learn from DB integration work [Lenzerini, Calvanese et al]

☞ Reasoning engines
• Several DL systems available
• Need for improved usability/connectivity
• DIG group recently formed for this purpose (and others)

☞ . . .
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Summary

☞ Ontologies will play key role in Semantic Web

☞ DAML+OIL is web ontology language based on Description Logic

☞ Ontology design, integration and deployment supported by
reasoning

☞ DLs are logic based KR formalisms with emphasis on reasoning

☞ DL systems provide efficient reasoning services
• Careful choice of logic/algorithm
• Highly optimised implementation

☞ Still many challenges for DL and Semantic Web research
• Expressive power (integration with Rule language)
• Performance
• Tools and infrastructure
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Resources

Slides from this talk

www.cs.man.ac.uk/~horrocks/Slides/dagstuhl070202.pdf

FaCT system

www.cs.man.ac.uk/fact

OIL

www.ontoknowledge.org/oil/

DAML+OIL

www.daml.org/language/

OilEd

img.cs.man.ac.uk/oil

I.COM

www.cs.man.ac.uk/~franconi/icom/
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