
Description Logic: Axioms and Rules

Ian Horrocks

horrocks@cs.man.ac.uk

University of Manchester

Manchester, UK

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.1/51

Talk Outline

Motivation: The Semantic Web and DAML+OIL

Description Logics and Reasoning
Reasoning techniques
Implementing DL systems

Axioms and Rules

Research Challenges

Summary

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.2/51

Talk Outline

Motivation: The Semantic Web and DAML+OIL

Description Logics and Reasoning
Reasoning techniques
Implementing DL systems

Axioms and Rules

Research Challenges

Summary

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.2/51

Talk Outline

Motivation: The Semantic Web and DAML+OIL

Description Logics and Reasoning
Reasoning techniques
Implementing DL systems

Axioms and Rules

Research Challenges

Summary

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.2/51

Talk Outline

Motivation: The Semantic Web and DAML+OIL

Description Logics and Reasoning
Reasoning techniques
Implementing DL systems

Axioms and Rules

Research Challenges

Summary

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.2/51

Talk Outline

Motivation: The Semantic Web and DAML+OIL

Description Logics and Reasoning
Reasoning techniques
Implementing DL systems

Axioms and Rules

Research Challenges

Summary

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.2/51

Talk Outline

Motivation: The Semantic Web and DAML+OIL

Description Logics and Reasoning
Reasoning techniques
Implementing DL systems

Axioms and Rules

Research Challenges

Summary

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.2/51

The Semantic Web and DAML+OIL

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.3/51

Semantic Web Ontology Languages

US DAML programme (in cooperation with W3C and a cast of thousands)
aim to develop so-called Semantic Web

☞ Most existing Web resources only human understandable
• Markup (HTML) provides rendering information
• Textual/graphical information for human consumption

☞ Semantic Web aims at machine understandability
• Semantic markup will be added to web resources
• Markup will use Ontologies for shared understanding

☞ Requirement for a suitable ontology language
• Compatible with existing Web standards (XML, RDF)
• Captures common KR idioms
• Formally specified and of “adequate expressive power”
• Can provide reasoning support

☞ DAML-ONT language developed to meet these requirements

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.4/51

Semantic Web Ontology Languages

US DAML programme (in cooperation with W3C and a cast of thousands)
aim to develop so-called Semantic Web

☞ Most existing Web resources only human understandable
• Markup (HTML) provides rendering information
• Textual/graphical information for human consumption

☞ Semantic Web aims at machine understandability
• Semantic markup will be added to web resources
• Markup will use Ontologies for shared understanding

☞ Requirement for a suitable ontology language
• Compatible with existing Web standards (XML, RDF)
• Captures common KR idioms
• Formally specified and of “adequate expressive power”
• Can provide reasoning support

☞ DAML-ONT language developed to meet these requirements

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.4/51

Semantic Web Ontology Languages

US DAML programme (in cooperation with W3C and a cast of thousands)
aim to develop so-called Semantic Web

☞ Most existing Web resources only human understandable
• Markup (HTML) provides rendering information
• Textual/graphical information for human consumption

☞ Semantic Web aims at machine understandability
• Semantic markup will be added to web resources
• Markup will use Ontologies for shared understanding

☞ Requirement for a suitable ontology language
• Compatible with existing Web standards (XML, RDF)
• Captures common KR idioms
• Formally specified and of “adequate expressive power”
• Can provide reasoning support

☞ DAML-ONT language developed to meet these requirements

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.4/51

Semantic Web Ontology Languages

US DAML programme (in cooperation with W3C and a cast of thousands)
aim to develop so-called Semantic Web

☞ Most existing Web resources only human understandable
• Markup (HTML) provides rendering information
• Textual/graphical information for human consumption

☞ Semantic Web aims at machine understandability
• Semantic markup will be added to web resources
• Markup will use Ontologies for shared understanding

☞ Requirement for a suitable ontology language
• Compatible with existing Web standards (XML, RDF)
• Captures common KR idioms
• Formally specified and of “adequate expressive power”
• Can provide reasoning support

☞ DAML-ONT language developed to meet these requirements

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.4/51

Semantic Web Ontology Languages

US DAML programme (in cooperation with W3C and a cast of thousands)
aim to develop so-called Semantic Web

☞ Most existing Web resources only human understandable
• Markup (HTML) provides rendering information
• Textual/graphical information for human consumption

☞ Semantic Web aims at machine understandability
• Semantic markup will be added to web resources
• Markup will use Ontologies for shared understanding

☞ Requirement for a suitable ontology language
• Compatible with existing Web standards (XML, RDF)
• Captures common KR idioms
• Formally specified and of “adequate expressive power”
• Can provide reasoning support

☞ DAML-ONT language developed to meet these requirements

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.4/51

OIL and DAML+OIL

Meanwhile, somewhere in darkest Europe. . .

☞ OIL language had been developed to meet similar requirements
• Extends existing Web standards (XML, RDF)
• Intuitive (frame) syntax plus high expressive power
• Well defined semantics via mapping to SHIQ DL
• Can use DL systems to reason with OIL ontologies

☞ Two efforts merged to produce single language, DAML+OIL

☞ Detailed specification agreed by Joint EU/US Committee on Agent
Markup Languages

☞ W3C Ontology Language WG has taken DAML+OIL as starting point

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.5/51

OIL and DAML+OIL

Meanwhile, somewhere in darkest Europe. . .

☞ OIL language had been developed to meet similar requirements

• Extends existing Web standards (XML, RDF)
• Intuitive (frame) syntax plus high expressive power
• Well defined semantics via mapping to SHIQ DL
• Can use DL systems to reason with OIL ontologies

☞ Two efforts merged to produce single language, DAML+OIL

☞ Detailed specification agreed by Joint EU/US Committee on Agent
Markup Languages

☞ W3C Ontology Language WG has taken DAML+OIL as starting point

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.5/51

OIL and DAML+OIL

Meanwhile, somewhere in darkest Europe. . .

☞ OIL language had been developed to meet similar requirements
• Extends existing Web standards (XML, RDF)
• Intuitive (frame) syntax plus high expressive power
• Well defined semantics via mapping to SHIQ DL
• Can use DL systems to reason with OIL ontologies

☞ Two efforts merged to produce single language, DAML+OIL

☞ Detailed specification agreed by Joint EU/US Committee on Agent
Markup Languages

☞ W3C Ontology Language WG has taken DAML+OIL as starting point

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.5/51

OIL and DAML+OIL

Meanwhile, somewhere in darkest Europe. . .

☞ OIL language had been developed to meet similar requirements
• Extends existing Web standards (XML, RDF)
• Intuitive (frame) syntax plus high expressive power
• Well defined semantics via mapping to SHIQ DL
• Can use DL systems to reason with OIL ontologies

☞ Two efforts merged to produce single language, DAML+OIL

☞ Detailed specification agreed by Joint EU/US Committee on Agent
Markup Languages

☞ W3C Ontology Language WG has taken DAML+OIL as starting point

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.5/51

OIL and DAML+OIL

Meanwhile, somewhere in darkest Europe. . .

☞ OIL language had been developed to meet similar requirements
• Extends existing Web standards (XML, RDF)
• Intuitive (frame) syntax plus high expressive power
• Well defined semantics via mapping to SHIQ DL
• Can use DL systems to reason with OIL ontologies

☞ Two efforts merged to produce single language, DAML+OIL

☞ Detailed specification agreed by Joint EU/US Committee on Agent
Markup Languages

☞ W3C Ontology Language WG has taken DAML+OIL as starting point

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.5/51

OIL and DAML+OIL

Meanwhile, somewhere in darkest Europe. . .

☞ OIL language had been developed to meet similar requirements
• Extends existing Web standards (XML, RDF)
• Intuitive (frame) syntax plus high expressive power
• Well defined semantics via mapping to SHIQ DL
• Can use DL systems to reason with OIL ontologies

☞ Two efforts merged to produce single language, DAML+OIL

☞ Detailed specification agreed by Joint EU/US Committee on Agent
Markup Languages

☞ W3C Ontology Language WG has taken DAML+OIL as starting point

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.5/51

DAML+OIL Language Overview

DAML+OIL is an ontology language

☞ Describes structure of the domain (i.e., a Tbox)
• RDF used to describe specific instances (i.e., an Abox)

☞ Structure described in terms of classes (concepts) and properties
(roles)

☞ Ontology consists of set of axioms
• E.g., asserting class subsumption/equivalence

☞ Classes can be names or expressions
• Various constructors provided for building class expressions

☞ Expressive power determined by
• Kinds of axiom supported
• Kinds of class (and property) constructor supported

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.6/51

DAML+OIL Language Overview

DAML+OIL is an ontology language

☞ Describes structure of the domain (i.e., a Tbox)
• RDF used to describe specific instances (i.e., an Abox)

☞ Structure described in terms of classes (concepts) and properties
(roles)

☞ Ontology consists of set of axioms
• E.g., asserting class subsumption/equivalence

☞ Classes can be names or expressions
• Various constructors provided for building class expressions

☞ Expressive power determined by
• Kinds of axiom supported
• Kinds of class (and property) constructor supported

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.6/51

DAML+OIL Language Overview

DAML+OIL is an ontology language

☞ Describes structure of the domain (i.e., a Tbox)
• RDF used to describe specific instances (i.e., an Abox)

☞ Structure described in terms of classes (concepts) and properties
(roles)

☞ Ontology consists of set of axioms
• E.g., asserting class subsumption/equivalence

☞ Classes can be names or expressions
• Various constructors provided for building class expressions

☞ Expressive power determined by
• Kinds of axiom supported
• Kinds of class (and property) constructor supported

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.6/51

DAML+OIL Language Overview

DAML+OIL is an ontology language

☞ Describes structure of the domain (i.e., a Tbox)
• RDF used to describe specific instances (i.e., an Abox)

☞ Structure described in terms of classes (concepts) and properties
(roles)

☞ Ontology consists of set of axioms
• E.g., asserting class subsumption/equivalence

☞ Classes can be names or expressions
• Various constructors provided for building class expressions

☞ Expressive power determined by
• Kinds of axiom supported
• Kinds of class (and property) constructor supported

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.6/51

DAML+OIL Language Overview

DAML+OIL is an ontology language

☞ Describes structure of the domain (i.e., a Tbox)
• RDF used to describe specific instances (i.e., an Abox)

☞ Structure described in terms of classes (concepts) and properties
(roles)

☞ Ontology consists of set of axioms
• E.g., asserting class subsumption/equivalence

☞ Classes can be names or expressions
• Various constructors provided for building class expressions

☞ Expressive power determined by
• Kinds of axiom supported
• Kinds of class (and property) constructor supported

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.6/51

DAML+OIL Language Overview

DAML+OIL is an ontology language

☞ Describes structure of the domain (i.e., a Tbox)
• RDF used to describe specific instances (i.e., an Abox)

☞ Structure described in terms of classes (concepts) and properties
(roles)

☞ Ontology consists of set of axioms
• E.g., asserting class subsumption/equivalence

☞ Classes can be names or expressions
• Various constructors provided for building class expressions

☞ Expressive power determined by
• Kinds of axiom supported
• Kinds of class (and property) constructor supported

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.6/51

DAML+OIL

☞ Is a Description Logic (but don’t tell anyone)

☞ More precisely, DAML+OIL is SHIQ
• Plus nominals
• Plus datatypes (simple concrete domains)
• With RDFS based syntax

☞ SHIQ/DAML+OIL was not built in a day (or even a year)
• SHIQ is based on 15+ years of DL research

☞ Can use DL reasoning with DAML+OIL
• Existing SHIQ implementations support (most of) DAML+OIL

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.7/51

DAML+OIL

☞ Is a Description Logic

(but don’t tell anyone)

☞ More precisely, DAML+OIL is SHIQ
• Plus nominals
• Plus datatypes (simple concrete domains)
• With RDFS based syntax

☞ SHIQ/DAML+OIL was not built in a day (or even a year)
• SHIQ is based on 15+ years of DL research

☞ Can use DL reasoning with DAML+OIL
• Existing SHIQ implementations support (most of) DAML+OIL

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.7/51

DAML+OIL

☞ Is a Description Logic (but don’t tell anyone)

☞ More precisely, DAML+OIL is SHIQ
• Plus nominals
• Plus datatypes (simple concrete domains)
• With RDFS based syntax

☞ SHIQ/DAML+OIL was not built in a day (or even a year)
• SHIQ is based on 15+ years of DL research

☞ Can use DL reasoning with DAML+OIL
• Existing SHIQ implementations support (most of) DAML+OIL

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.7/51

DAML+OIL

☞ Is a Description Logic (but don’t tell anyone)

☞ More precisely, DAML+OIL is SHIQ

• Plus nominals
• Plus datatypes (simple concrete domains)
• With RDFS based syntax

☞ SHIQ/DAML+OIL was not built in a day (or even a year)
• SHIQ is based on 15+ years of DL research

☞ Can use DL reasoning with DAML+OIL
• Existing SHIQ implementations support (most of) DAML+OIL

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.7/51

DAML+OIL

☞ Is a Description Logic (but don’t tell anyone)

☞ More precisely, DAML+OIL is SHIQ
• Plus nominals

• Plus datatypes (simple concrete domains)
• With RDFS based syntax

☞ SHIQ/DAML+OIL was not built in a day (or even a year)
• SHIQ is based on 15+ years of DL research

☞ Can use DL reasoning with DAML+OIL
• Existing SHIQ implementations support (most of) DAML+OIL

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.7/51

DAML+OIL

☞ Is a Description Logic (but don’t tell anyone)

☞ More precisely, DAML+OIL is SHIQ
• Plus nominals
• Plus datatypes (simple concrete domains)

• With RDFS based syntax

☞ SHIQ/DAML+OIL was not built in a day (or even a year)
• SHIQ is based on 15+ years of DL research

☞ Can use DL reasoning with DAML+OIL
• Existing SHIQ implementations support (most of) DAML+OIL

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.7/51

DAML+OIL

☞ Is a Description Logic (but don’t tell anyone)

☞ More precisely, DAML+OIL is SHIQ
• Plus nominals
• Plus datatypes (simple concrete domains)
• With RDFS based syntax

☞ SHIQ/DAML+OIL was not built in a day (or even a year)
• SHIQ is based on 15+ years of DL research

☞ Can use DL reasoning with DAML+OIL
• Existing SHIQ implementations support (most of) DAML+OIL

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.7/51

DAML+OIL

☞ Is a Description Logic (but don’t tell anyone)

☞ More precisely, DAML+OIL is SHIQ
• Plus nominals
• Plus datatypes (simple concrete domains)
• With RDFS based syntax

☞ SHIQ/DAML+OIL was not built in a day (or even a year)
• SHIQ is based on 15+ years of DL research

☞ Can use DL reasoning with DAML+OIL
• Existing SHIQ implementations support (most of) DAML+OIL

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.7/51

DAML+OIL

☞ Is a Description Logic (but don’t tell anyone)

☞ More precisely, DAML+OIL is SHIQ
• Plus nominals
• Plus datatypes (simple concrete domains)
• With RDFS based syntax

☞ SHIQ/DAML+OIL was not built in a day (or even a year)
• SHIQ is based on 15+ years of DL research

☞ Can use DL reasoning with DAML+OIL
• Existing SHIQ implementations support (most of) DAML+OIL

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.7/51

Why Reasoning Services?

Reasoning is important for:

☞ Ontology design
• Check class consistency and (unexpected) implied relationships
• Particularly important with large ontologies/multiple authors

☞ Ontology integration
• Assert inter-ontology relationships
• Reasoner computes integrated class hierarchy/consistency

☞ Ontology deployment
• Determine if set of facts are consistent w.r.t. ontology
• Answer queries w.r.t. ontology, e.g., DQL

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.8/51

Why Reasoning Services?

Reasoning is important for:

☞ Ontology design
• Check class consistency and (unexpected) implied relationships
• Particularly important with large ontologies/multiple authors

☞ Ontology integration
• Assert inter-ontology relationships
• Reasoner computes integrated class hierarchy/consistency

☞ Ontology deployment
• Determine if set of facts are consistent w.r.t. ontology
• Answer queries w.r.t. ontology, e.g., DQL

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.8/51

Why Reasoning Services?

Reasoning is important for:

☞ Ontology design
• Check class consistency and (unexpected) implied relationships
• Particularly important with large ontologies/multiple authors

☞ Ontology integration
• Assert inter-ontology relationships
• Reasoner computes integrated class hierarchy/consistency

☞ Ontology deployment
• Determine if set of facts are consistent w.r.t. ontology
• Answer queries w.r.t. ontology, e.g., DQL

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.8/51

Why Reasoning Services?

Reasoning is important for:

☞ Ontology design
• Check class consistency and (unexpected) implied relationships
• Particularly important with large ontologies/multiple authors

☞ Ontology integration
• Assert inter-ontology relationships
• Reasoner computes integrated class hierarchy/consistency

☞ Ontology deployment
• Determine if set of facts are consistent w.r.t. ontology
• Answer queries w.r.t. ontology, e.g., DQL

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.8/51

Why Decidable Reasoning?

Set of operators/axioms restricted so that reasoning is decidable

☞ Consistent with Semantic Web’s layered architecture
• XML provides syntax transport layer
• RDF provides basic relational language
• RDFS provides basic ontological primitives
• DAML+OIL provides (decidable) logical layer
• Further layers (e.g., rules) will extend DAML+OIL

➙ Extensions will almost certainly be undecidable

☞ Facilitates provision of reasoning services
• Known algorithms
• Implemented systems
• Evidence of empirical tractability (for ontology reasoning)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.9/51

Why Decidable Reasoning?

Set of operators/axioms restricted so that reasoning is decidable

☞ Consistent with Semantic Web’s layered architecture

• XML provides syntax transport layer
• RDF provides basic relational language
• RDFS provides basic ontological primitives
• DAML+OIL provides (decidable) logical layer
• Further layers (e.g., rules) will extend DAML+OIL

➙ Extensions will almost certainly be undecidable

☞ Facilitates provision of reasoning services
• Known algorithms
• Implemented systems
• Evidence of empirical tractability (for ontology reasoning)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.9/51

Why Decidable Reasoning?

Set of operators/axioms restricted so that reasoning is decidable

☞ Consistent with Semantic Web’s layered architecture
• XML provides syntax transport layer
• RDF provides basic relational language
• RDFS provides basic ontological primitives
• DAML+OIL provides (decidable) logical layer
• Further layers (e.g., rules) will extend DAML+OIL

➙ Extensions will almost certainly be undecidable

☞ Facilitates provision of reasoning services
• Known algorithms
• Implemented systems
• Evidence of empirical tractability (for ontology reasoning)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.9/51

Why Decidable Reasoning?

Set of operators/axioms restricted so that reasoning is decidable

☞ Consistent with Semantic Web’s layered architecture
• XML provides syntax transport layer
• RDF provides basic relational language
• RDFS provides basic ontological primitives
• DAML+OIL provides (decidable) logical layer
• Further layers (e.g., rules) will extend DAML+OIL

➙ Extensions will almost certainly be undecidable

☞ Facilitates provision of reasoning services

• Known algorithms
• Implemented systems
• Evidence of empirical tractability (for ontology reasoning)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.9/51

Why Decidable Reasoning?

Set of operators/axioms restricted so that reasoning is decidable

☞ Consistent with Semantic Web’s layered architecture
• XML provides syntax transport layer
• RDF provides basic relational language
• RDFS provides basic ontological primitives
• DAML+OIL provides (decidable) logical layer
• Further layers (e.g., rules) will extend DAML+OIL

➙ Extensions will almost certainly be undecidable

☞ Facilitates provision of reasoning services
• Known algorithms
• Implemented systems
• Evidence of empirical tractability (for ontology reasoning)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.9/51

Reasoning Support for Ontology Design: OilEd

OilEd is a DAML+OIL ontology editor with DL reasoning support

☞ Frame based interface (inspired by Protégé)
• Classes defined by superclass(es) plus slot constraints

☞ Extended to clarify semantics and capture whole language

• Primitive (v) and defined (.
=) classes

• Explicit ∃ (hasClass), ∀ (toClass) and cardinality restrictions
• Boolean connectives (u, t, ¬) and nesting
• Transitive, symmetrical and functional properties
• Disjointness, inclusion (v) and equality (.

=) axioms
• Fake individuals

☞ Reasoning support provided by FaCT system
• Ontology translated into SHIQ DL
• Communicates with FaCT via CORBA interface
• Indicates inconsistencies and implicit subsumptions

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.10/51

Reasoning Support for Ontology Design: OilEd

OilEd is a DAML+OIL ontology editor with DL reasoning support

☞ Frame based interface (inspired by Protégé)
• Classes defined by superclass(es) plus slot constraints

☞ Extended to clarify semantics and capture whole language

• Primitive (v) and defined (.
=) classes

• Explicit ∃ (hasClass), ∀ (toClass) and cardinality restrictions
• Boolean connectives (u, t, ¬) and nesting
• Transitive, symmetrical and functional properties
• Disjointness, inclusion (v) and equality (.

=) axioms
• Fake individuals

☞ Reasoning support provided by FaCT system
• Ontology translated into SHIQ DL
• Communicates with FaCT via CORBA interface
• Indicates inconsistencies and implicit subsumptions

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.10/51

Reasoning Support for Ontology Design: OilEd

OilEd is a DAML+OIL ontology editor with DL reasoning support

☞ Frame based interface (inspired by Protégé)
• Classes defined by superclass(es) plus slot constraints

☞ Extended to clarify semantics and capture whole language

• Primitive (v) and defined (.
=) classes

• Explicit ∃ (hasClass), ∀ (toClass) and cardinality restrictions
• Boolean connectives (u, t, ¬) and nesting
• Transitive, symmetrical and functional properties
• Disjointness, inclusion (v) and equality (.

=) axioms
• Fake individuals

☞ Reasoning support provided by FaCT system
• Ontology translated into SHIQ DL
• Communicates with FaCT via CORBA interface
• Indicates inconsistencies and implicit subsumptions

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.10/51

Reasoning Support for Ontology Design: OilEd

OilEd is a DAML+OIL ontology editor with DL reasoning support

☞ Frame based interface (inspired by Protégé)
• Classes defined by superclass(es) plus slot constraints

☞ Extended to clarify semantics and capture whole language

• Primitive (v) and defined (.
=) classes

• Explicit ∃ (hasClass), ∀ (toClass) and cardinality restrictions
• Boolean connectives (u, t, ¬) and nesting
• Transitive, symmetrical and functional properties
• Disjointness, inclusion (v) and equality (.

=) axioms
• Fake individuals

☞ Reasoning support provided by FaCT system
• Ontology translated into SHIQ DL
• Communicates with FaCT via CORBA interface
• Indicates inconsistencies and implicit subsumptions

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.10/51

OilEd

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.11/51

Description Logics and Reasoning

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.12/51

What are Description Logics?

A family of logic based Knowledge Representation formalisms

☞ Based on concepts (classes) and roles
• Concepts (classes) are interpreted as sets of objects
• Roles are interpreted as binary relations on objects

☞ Descendants of semantic networks and KL-ONE

☞ Decidable fragments of FOL
• Many DLs are fragments of L2, C2 or the Guarded Fragment

☞ Closely related to propositional modal logics

☞ Also known as terminological logics, concept languages, etc.

☞ Key features of DLs are
• Well defined semantics (they are logics)
• Provision of inference services

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.13/51

What are Description Logics?

A family of logic based Knowledge Representation formalisms

☞ Based on concepts (classes) and roles
• Concepts (classes) are interpreted as sets of objects
• Roles are interpreted as binary relations on objects

☞ Descendants of semantic networks and KL-ONE

☞ Decidable fragments of FOL
• Many DLs are fragments of L2, C2 or the Guarded Fragment

☞ Closely related to propositional modal logics

☞ Also known as terminological logics, concept languages, etc.

☞ Key features of DLs are
• Well defined semantics (they are logics)
• Provision of inference services

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.13/51

What are Description Logics?

A family of logic based Knowledge Representation formalisms

☞ Based on concepts (classes) and roles
• Concepts (classes) are interpreted as sets of objects
• Roles are interpreted as binary relations on objects

☞ Descendants of semantic networks and KL-ONE

☞ Decidable fragments of FOL
• Many DLs are fragments of L2, C2 or the Guarded Fragment

☞ Closely related to propositional modal logics

☞ Also known as terminological logics, concept languages, etc.

☞ Key features of DLs are
• Well defined semantics (they are logics)
• Provision of inference services

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.13/51

What are Description Logics?

A family of logic based Knowledge Representation formalisms

☞ Based on concepts (classes) and roles
• Concepts (classes) are interpreted as sets of objects
• Roles are interpreted as binary relations on objects

☞ Descendants of semantic networks and KL-ONE

☞ Decidable fragments of FOL
• Many DLs are fragments of L2, C2 or the Guarded Fragment

☞ Closely related to propositional modal logics

☞ Also known as terminological logics, concept languages, etc.

☞ Key features of DLs are
• Well defined semantics (they are logics)
• Provision of inference services

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.13/51

What are Description Logics?

A family of logic based Knowledge Representation formalisms

☞ Based on concepts (classes) and roles
• Concepts (classes) are interpreted as sets of objects
• Roles are interpreted as binary relations on objects

☞ Descendants of semantic networks and KL-ONE

☞ Decidable fragments of FOL
• Many DLs are fragments of L2, C2 or the Guarded Fragment

☞ Closely related to propositional modal logics

☞ Also known as terminological logics, concept languages, etc.

☞ Key features of DLs are
• Well defined semantics (they are logics)
• Provision of inference services

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.13/51

What are Description Logics?

A family of logic based Knowledge Representation formalisms

☞ Based on concepts (classes) and roles
• Concepts (classes) are interpreted as sets of objects
• Roles are interpreted as binary relations on objects

☞ Descendants of semantic networks and KL-ONE

☞ Decidable fragments of FOL
• Many DLs are fragments of L2, C2 or the Guarded Fragment

☞ Closely related to propositional modal logics

☞ Also known as terminological logics, concept languages, etc.

☞ Key features of DLs are
• Well defined semantics (they are logics)
• Provision of inference services

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.13/51

What are Description Logics?

A family of logic based Knowledge Representation formalisms

☞ Based on concepts (classes) and roles
• Concepts (classes) are interpreted as sets of objects
• Roles are interpreted as binary relations on objects

☞ Descendants of semantic networks and KL-ONE

☞ Decidable fragments of FOL
• Many DLs are fragments of L2, C2 or the Guarded Fragment

☞ Closely related to propositional modal logics

☞ Also known as terminological logics, concept languages, etc.

☞ Key features of DLs are
• Well defined semantics (they are logics)
• Provision of inference services

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.13/51

What are Description Logics?

A family of logic based Knowledge Representation formalisms

☞ Based on concepts (classes) and roles
• Concepts (classes) are interpreted as sets of objects
• Roles are interpreted as binary relations on objects

☞ Descendants of semantic networks and KL-ONE

☞ Decidable fragments of FOL
• Many DLs are fragments of L2, C2 or the Guarded Fragment

☞ Closely related to propositional modal logics

☞ Also known as terminological logics, concept languages, etc.

☞ Key features of DLs are
• Well defined semantics (they are logics)
• Provision of inference services

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.13/51

DL System Architecture

Tbox (schema)

Abox (data)

Knowledge Base

In
fe

re
n

ce
 S

ys
te

m

In
te

rf
ac

e

Man
.
= Human u Male

Happy-Father
.
= Man u ∃has-child.Female u . . .

...

...

John : Happy-Father

〈John, Mary〉 : has-child

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.14/51

DL Constructors

Particular DLs characterised by set of constructors provided for building
complex concepts and roles from simpler ones

☞ Usually include at least:
• Conjunction (u), disjunction (t), negation (¬)
• Restricted (guarded) forms of quantification (∃, ∀)

☞ This basic DL is known as ALC

For example, concept Happy Father in ALC:

Man u ∃has-child.Male
u ∃has-child.Female
u ∀has-child.(Doctor t Lawyer)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.15/51

DL Constructors

Particular DLs characterised by set of constructors provided for building
complex concepts and roles from simpler ones

☞ Usually include at least:
• Conjunction (u), disjunction (t), negation (¬)
• Restricted (guarded) forms of quantification (∃, ∀)

☞ This basic DL is known as ALC

For example, concept Happy Father in ALC:

Man u ∃has-child.Male
u ∃has-child.Female
u ∀has-child.(Doctor t Lawyer)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.15/51

DL Constructors

Particular DLs characterised by set of constructors provided for building
complex concepts and roles from simpler ones

☞ Usually include at least:
• Conjunction (u), disjunction (t), negation (¬)
• Restricted (guarded) forms of quantification (∃, ∀)

☞ This basic DL is known as ALC

For example, concept Happy Father in ALC:

Man u ∃has-child.Male
u ∃has-child.Female
u ∀has-child.(Doctor t Lawyer)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.15/51

DL Constructors

Particular DLs characterised by set of constructors provided for building
complex concepts and roles from simpler ones

☞ Usually include at least:
• Conjunction (u), disjunction (t), negation (¬)
• Restricted (guarded) forms of quantification (∃, ∀)

☞ This basic DL is known as ALC

For example, concept Happy Father in ALC:

Man u ∃has-child.Male
u ∃has-child.Female
u ∀has-child.(Doctor t Lawyer)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.15/51

DL Syntax and Semantics

Semantics given by interpretation I = (∆I , ·I)

Constructor Syntax Example Semantics

atomic concept A Human AI ⊆ ∆I

atomic role R has-child RI ⊆ ∆I × ∆I

and for C, D concepts and R a role name

conjunction C u D Human u Male CI ∩ DI

disjunction C t D Doctor t Lawyer CI ∪ DI

negation ¬C ¬Male ∆I \ C

exists restr. ∃R.C ∃has-child.Male {x | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}

value restr. ∀R.C ∀has-child.Doctor {x | ∀y.〈x, y〉 ∈ RI =⇒ y ∈ CI}

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.16/51

DL Syntax and Semantics

Semantics given by interpretation I = (∆I , ·I)

Constructor Syntax Example Semantics

atomic concept A Human AI ⊆ ∆I

atomic role R has-child RI ⊆ ∆I × ∆I

and for C, D concepts and R a role name

conjunction C u D Human u Male CI ∩ DI

disjunction C t D Doctor t Lawyer CI ∪ DI

negation ¬C ¬Male ∆I \ C

exists restr. ∃R.C ∃has-child.Male {x | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}

value restr. ∀R.C ∀has-child.Doctor {x | ∀y.〈x, y〉 ∈ RI =⇒ y ∈ CI}

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.16/51

Other DL Constructors

Many different DLs/DL constructors have been investigated, e.g.

Constructor Syntax Example Semantics

qualified num >nR.C >3 child. female {x | |{y.(〈x, y〉 ∈ RI ∧ y ∈ CI)}| > n}

restrictions 6nR.C 61 parent female {x | |{y.(〈x, y〉 ∈ RI ∧ y ∈ CI)}| 6 n}

inverse role R− has-child− {〈x, y〉 | 〈y, x〉 ∈ RI}

trans role (+)R (+)has-ancestor RI = (RI)+

SHIQ

nominals {x} {Italy} {xI}

conc. domain f1, . . . , fn.P earns spends < {x | P (fI

1 , . . . , fI
n

)}

SHOIQ(Dn)

...

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.17/51

Other DL Constructors

Many different DLs/DL constructors have been investigated, e.g.

Constructor Syntax Example Semantics

qualified num >nR.C >3 child. female {x | |{y.(〈x, y〉 ∈ RI ∧ y ∈ CI)}| > n}

restrictions 6nR.C 61 parent female {x | |{y.(〈x, y〉 ∈ RI ∧ y ∈ CI)}| 6 n}

inverse role R− has-child− {〈x, y〉 | 〈y, x〉 ∈ RI}

trans role (+)R (+)has-ancestor RI = (RI)+

SHIQ

nominals {x} {Italy} {xI}

conc. domain f1, . . . , fn.P earns spends < {x | P (fI

1 , . . . , fI
n

)}

SHOIQ(Dn)

...

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.17/51

DL Knowledge Base (Tbox)

Terminological part (Tbox) is set of axioms describing structure of domain

Definition axioms introduce macros/names for concepts
A

.
= C, A v C

Father .
= Man u ∃has-child.Human

Human v Animal u Biped

Inclusion (GCI) axioms assert subsumption relations
C v D (note C

.
= D equivalent to C v D and D v C)

∃has-degree.Masters v ∃has-degree.Bachelors

An interpretation I satisfies
C

.
= D iff CI = DI C v D iff CI ⊆ DI

A Tbox T iff it satisfies every axiom in T (I |= T)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.18/51

DL Knowledge Base (Tbox)

Terminological part (Tbox) is set of axioms describing structure of domain

Definition axioms introduce macros/names for concepts
A

.
= C, A v C

Father .
= Man u ∃has-child.Human

Human v Animal u Biped

Inclusion (GCI) axioms assert subsumption relations
C v D (note C

.
= D equivalent to C v D and D v C)

∃has-degree.Masters v ∃has-degree.Bachelors

An interpretation I satisfies
C

.
= D iff CI = DI C v D iff CI ⊆ DI

A Tbox T iff it satisfies every axiom in T (I |= T)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.18/51

DL Knowledge Base (Tbox)

Terminological part (Tbox) is set of axioms describing structure of domain

Definition axioms introduce macros/names for concepts
A

.
= C, A v C

Father .
= Man u ∃has-child.Human

Human v Animal u Biped

Inclusion (GCI) axioms assert subsumption relations
C v D (note C

.
= D equivalent to C v D and D v C)

∃has-degree.Masters v ∃has-degree.Bachelors

An interpretation I satisfies
C

.
= D iff CI = DI C v D iff CI ⊆ DI

A Tbox T iff it satisfies every axiom in T (I |= T)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.18/51

DL Knowledge Base (Tbox)

Terminological part (Tbox) is set of axioms describing structure of domain

Definition axioms introduce macros/names for concepts
A

.
= C, A v C

Father .
= Man u ∃has-child.Human

Human v Animal u Biped

Inclusion (GCI) axioms assert subsumption relations
C v D (note C

.
= D equivalent to C v D and D v C)

∃has-degree.Masters v ∃has-degree.Bachelors

An interpretation I satisfies
C

.
= D iff CI = DI C v D iff CI ⊆ DI

A Tbox T iff it satisfies every axiom in T (I |= T)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.18/51

DL Knowledge Base (Abox)

Assertional part (Abox) is set of axioms describing concrete situation

Concept assertions
a : C

John : Man u ∃has-child.Female

Role assertions
〈a, b〉 : R

〈John, Mary〉 : has-child

An interpretation I satisfies
a : C iff aI ∈ CI 〈a, b〉 : R iff 〈aI , bI〉 ∈ RI

An Abox A iff it satisfies every axiom in A (I |= A)
A KB Σ = 〈T ,A〉 iff it satisfies both T and A (I |= Σ)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.19/51

DL Knowledge Base (Abox)

Assertional part (Abox) is set of axioms describing concrete situation

Concept assertions
a : C

John : Man u ∃has-child.Female

Role assertions
〈a, b〉 : R

〈John, Mary〉 : has-child

An interpretation I satisfies
a : C iff aI ∈ CI 〈a, b〉 : R iff 〈aI , bI〉 ∈ RI

An Abox A iff it satisfies every axiom in A (I |= A)
A KB Σ = 〈T ,A〉 iff it satisfies both T and A (I |= Σ)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.19/51

DL Knowledge Base (Abox)

Assertional part (Abox) is set of axioms describing concrete situation

Concept assertions
a : C

John : Man u ∃has-child.Female

Role assertions
〈a, b〉 : R

〈John, Mary〉 : has-child

An interpretation I satisfies
a : C iff aI ∈ CI 〈a, b〉 : R iff 〈aI , bI〉 ∈ RI

An Abox A iff it satisfies every axiom in A (I |= A)
A KB Σ = 〈T ,A〉 iff it satisfies both T and A (I |= Σ)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.19/51

DL Knowledge Base (Abox)

Assertional part (Abox) is set of axioms describing concrete situation

Concept assertions
a : C

John : Man u ∃has-child.Female

Role assertions
〈a, b〉 : R

〈John, Mary〉 : has-child

An interpretation I satisfies
a : C iff aI ∈ CI 〈a, b〉 : R iff 〈aI , bI〉 ∈ RI

An Abox A iff it satisfies every axiom in A (I |= A)
A KB Σ = 〈T ,A〉 iff it satisfies both T and A (I |= Σ)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.19/51

Why Tbox and Abox?

☞ Restricted use of individuals maintains (kind of) tree model property
• Arbitrary but finite directed graph connecting named individuals
• Named individuals roots of (possibly) infinite trees of

anonymous individuals
• Lower complexity class (ExpTime for SHIQ)
• Easier to design and optimise (tableaux) algorithms

☞ Existentially defined classes (nominals) destroy this property
• Trees can “loop back” to named individuals
• Higher complexity class (NExpTime for SHIQ)
• No known tableaux algorithm for SHIQ + nominals

☞ Note that with nominals, Abox becomes syntactic sugar
• a : C equiv. to {a} v C

• 〈a, b〉 : R equiv. to {a} v ∃R.{b}

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.20/51

Why Tbox and Abox?

☞ Restricted use of individuals maintains (kind of) tree model property
• Arbitrary but finite directed graph connecting named individuals
• Named individuals roots of (possibly) infinite trees of

anonymous individuals
• Lower complexity class (ExpTime for SHIQ)
• Easier to design and optimise (tableaux) algorithms

☞ Existentially defined classes (nominals) destroy this property
• Trees can “loop back” to named individuals
• Higher complexity class (NExpTime for SHIQ)
• No known tableaux algorithm for SHIQ + nominals

☞ Note that with nominals, Abox becomes syntactic sugar
• a : C equiv. to {a} v C

• 〈a, b〉 : R equiv. to {a} v ∃R.{b}

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.20/51

Why Tbox and Abox?

☞ Restricted use of individuals maintains (kind of) tree model property
• Arbitrary but finite directed graph connecting named individuals
• Named individuals roots of (possibly) infinite trees of

anonymous individuals
• Lower complexity class (ExpTime for SHIQ)
• Easier to design and optimise (tableaux) algorithms

☞ Existentially defined classes (nominals) destroy this property
• Trees can “loop back” to named individuals
• Higher complexity class (NExpTime for SHIQ)
• No known tableaux algorithm for SHIQ + nominals

☞ Note that with nominals, Abox becomes syntactic sugar
• a : C equiv. to {a} v C

• 〈a, b〉 : R equiv. to {a} v ∃R.{b}

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.20/51

Basic Inference Problems

Subsumption (structure knowledge, compute taxonomy)

C v D ? Is CI ⊆ DI in all interpretations?

Subsumption w.r.t. Tbox T
C vT D ? Is CI ⊆ DI in all models of T ?

Consistency
Is C consistent w.r.t. T ? Is there a model I of T s.t. CI 6= ∅?

KB Consistency
Is 〈T ,A〉 consistent? Is there a model I of 〈T ,A〉?

Problems are closely related:

C vT D iff C u ¬D is inconsistent w.r.t. T
C is consistent w.r.t. T iff C 6vT A u ¬A

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.21/51

Basic Inference Problems

Subsumption (structure knowledge, compute taxonomy)

C v D ? Is CI ⊆ DI in all interpretations?

Subsumption w.r.t. Tbox T
C vT D ? Is CI ⊆ DI in all models of T ?

Consistency
Is C consistent w.r.t. T ? Is there a model I of T s.t. CI 6= ∅?

KB Consistency
Is 〈T ,A〉 consistent? Is there a model I of 〈T ,A〉?

Problems are closely related:

C vT D iff C u ¬D is inconsistent w.r.t. T
C is consistent w.r.t. T iff C 6vT A u ¬A

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.21/51

Basic Inference Problems

Subsumption (structure knowledge, compute taxonomy)

C v D ? Is CI ⊆ DI in all interpretations?

Subsumption w.r.t. Tbox T
C vT D ? Is CI ⊆ DI in all models of T ?

Consistency
Is C consistent w.r.t. T ? Is there a model I of T s.t. CI 6= ∅?

KB Consistency
Is 〈T ,A〉 consistent? Is there a model I of 〈T ,A〉?

Problems are closely related:

C vT D iff C u ¬D is inconsistent w.r.t. T
C is consistent w.r.t. T iff C 6vT A u ¬A

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.21/51

Basic Inference Problems

Subsumption (structure knowledge, compute taxonomy)

C v D ? Is CI ⊆ DI in all interpretations?

Subsumption w.r.t. Tbox T
C vT D ? Is CI ⊆ DI in all models of T ?

Consistency
Is C consistent w.r.t. T ? Is there a model I of T s.t. CI 6= ∅?

KB Consistency
Is 〈T ,A〉 consistent? Is there a model I of 〈T ,A〉?

Problems are closely related:

C vT D iff C u ¬D is inconsistent w.r.t. T
C is consistent w.r.t. T iff C 6vT A u ¬A

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.21/51

Basic Inference Problems

Subsumption (structure knowledge, compute taxonomy)

C v D ? Is CI ⊆ DI in all interpretations?

Subsumption w.r.t. Tbox T
C vT D ? Is CI ⊆ DI in all models of T ?

Consistency
Is C consistent w.r.t. T ? Is there a model I of T s.t. CI 6= ∅?

KB Consistency
Is 〈T ,A〉 consistent? Is there a model I of 〈T ,A〉?

Problems are closely related:

C vT D iff C u ¬D is inconsistent w.r.t. T
C is consistent w.r.t. T iff C 6vT A u ¬A

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.21/51

Basic Inference Problems

Subsumption (structure knowledge, compute taxonomy)

C v D ? Is CI ⊆ DI in all interpretations?

Subsumption w.r.t. Tbox T
C vT D ? Is CI ⊆ DI in all models of T ?

Consistency
Is C consistent w.r.t. T ? Is there a model I of T s.t. CI 6= ∅?

KB Consistency
Is 〈T ,A〉 consistent? Is there a model I of 〈T ,A〉?

Problems are closely related:

C vT D iff C u ¬D is inconsistent w.r.t. T
C is consistent w.r.t. T iff C 6vT A u ¬A

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.21/51

Reasoning Techniques

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.22/51

Subsumption and Satisfiability

Subsumption transformed into satisfiability
Tableaux algorithm used to test satisfiability

☞ Try to build model (witness) of concept C

☞ Model represented by tree T

• Nodes in T correspond to individuals in model
• Nodes labeled with sets of subconcepts of C

• Edges labeled with role names in C

☞ Start from root node labeled {C}

☞ Apply expansion rules to node labels until
• Rules correspond with language constructs
• Expansion completed (tree represents valid model)
• Contradictions prove there is no model

☞ Non-deterministic expansion −→ search (e.g., C tD)

☞ Blocking ensures termination (with expressive DLs)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.23/51

Subsumption and Satisfiability

Subsumption transformed into satisfiability

Tableaux algorithm used to test satisfiability

☞ Try to build model (witness) of concept C

☞ Model represented by tree T

• Nodes in T correspond to individuals in model
• Nodes labeled with sets of subconcepts of C

• Edges labeled with role names in C

☞ Start from root node labeled {C}

☞ Apply expansion rules to node labels until
• Rules correspond with language constructs
• Expansion completed (tree represents valid model)
• Contradictions prove there is no model

☞ Non-deterministic expansion −→ search (e.g., C tD)

☞ Blocking ensures termination (with expressive DLs)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.23/51

Subsumption and Satisfiability

Subsumption transformed into satisfiability
Tableaux algorithm used to test satisfiability

☞ Try to build model (witness) of concept C

☞ Model represented by tree T

• Nodes in T correspond to individuals in model
• Nodes labeled with sets of subconcepts of C

• Edges labeled with role names in C

☞ Start from root node labeled {C}

☞ Apply expansion rules to node labels until
• Rules correspond with language constructs
• Expansion completed (tree represents valid model)
• Contradictions prove there is no model

☞ Non-deterministic expansion −→ search (e.g., C tD)

☞ Blocking ensures termination (with expressive DLs)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.23/51

Subsumption and Satisfiability

Subsumption transformed into satisfiability
Tableaux algorithm used to test satisfiability

☞ Try to build model (witness) of concept C

☞ Model represented by tree T

• Nodes in T correspond to individuals in model
• Nodes labeled with sets of subconcepts of C

• Edges labeled with role names in C

☞ Start from root node labeled {C}

☞ Apply expansion rules to node labels until
• Rules correspond with language constructs
• Expansion completed (tree represents valid model)
• Contradictions prove there is no model

☞ Non-deterministic expansion −→ search (e.g., C tD)

☞ Blocking ensures termination (with expressive DLs)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.23/51

Subsumption and Satisfiability

Subsumption transformed into satisfiability
Tableaux algorithm used to test satisfiability

☞ Try to build model (witness) of concept C

☞ Model represented by tree T

• Nodes in T correspond to individuals in model
• Nodes labeled with sets of subconcepts of C

• Edges labeled with role names in C

☞ Start from root node labeled {C}

☞ Apply expansion rules to node labels until
• Rules correspond with language constructs
• Expansion completed (tree represents valid model)
• Contradictions prove there is no model

☞ Non-deterministic expansion −→ search (e.g., C tD)

☞ Blocking ensures termination (with expressive DLs)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.23/51

Subsumption and Satisfiability

Subsumption transformed into satisfiability
Tableaux algorithm used to test satisfiability

☞ Try to build model (witness) of concept C

☞ Model represented by tree T

• Nodes in T correspond to individuals in model
• Nodes labeled with sets of subconcepts of C

• Edges labeled with role names in C

☞ Start from root node labeled {C}

☞ Apply expansion rules to node labels until
• Rules correspond with language constructs
• Expansion completed (tree represents valid model)
• Contradictions prove there is no model

☞ Non-deterministic expansion −→ search (e.g., C tD)

☞ Blocking ensures termination (with expressive DLs)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.23/51

Subsumption and Satisfiability

Subsumption transformed into satisfiability
Tableaux algorithm used to test satisfiability

☞ Try to build model (witness) of concept C

☞ Model represented by tree T

• Nodes in T correspond to individuals in model
• Nodes labeled with sets of subconcepts of C

• Edges labeled with role names in C

☞ Start from root node labeled {C}

☞ Apply expansion rules to node labels until
• Rules correspond with language constructs
• Expansion completed (tree represents valid model)
• Contradictions prove there is no model

☞ Non-deterministic expansion −→ search (e.g., C tD)

☞ Blocking ensures termination (with expressive DLs)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.23/51

Subsumption and Satisfiability

Subsumption transformed into satisfiability
Tableaux algorithm used to test satisfiability

☞ Try to build model (witness) of concept C

☞ Model represented by tree T

• Nodes in T correspond to individuals in model
• Nodes labeled with sets of subconcepts of C

• Edges labeled with role names in C

☞ Start from root node labeled {C}

☞ Apply expansion rules to node labels until
• Rules correspond with language constructs
• Expansion completed (tree represents valid model)
• Contradictions prove there is no model

☞ Non-deterministic expansion −→ search (e.g., C tD)

☞ Blocking ensures termination (with expressive DLs)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.23/51

Subsumption and Satisfiability

Subsumption transformed into satisfiability
Tableaux algorithm used to test satisfiability

☞ Try to build model (witness) of concept C

☞ Model represented by tree T

• Nodes in T correspond to individuals in model
• Nodes labeled with sets of subconcepts of C

• Edges labeled with role names in C

☞ Start from root node labeled {C}

☞ Apply expansion rules to node labels until
• Rules correspond with language constructs
• Expansion completed (tree represents valid model)
• Contradictions prove there is no model

☞ Non-deterministic expansion −→ search (e.g., C tD)

☞ Blocking ensures termination (with expressive DLs)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.23/51

Tableaux Expansion

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

Concept is satisfiable: w is a witness

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.24/51

Tableaux Expansion

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

Concept is satisfiable: w is a witness

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.24/51

Tableaux Expansion

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x

S

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

L(x) = {C, (¬C t ¬D)}

Concept is satisfiable: w is a witness

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.24/51

Tableaux Expansion

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x

S

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

L(x) = {C, (¬C t ¬D),¬C} clash

Concept is satisfiable: w is a witness

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.24/51

Tableaux Expansion

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

xL(x) = {C, (¬C t ¬D),¬D}

S

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

Concept is satisfiable: w is a witness

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.24/51

Tableaux Expansion

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C,∃R.C,∀R.(∃R.C)}L(x) = {C, (¬C t ¬D),¬D}

RS

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

Concept is satisfiable: w is a witness

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.24/51

Tableaux Expansion

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C,∃R.C,∀R.(∃R.C)}L(x) = {C, (¬C t ¬D),¬D}

z L(z) = {C,∃R.C,∀R.(∃R.C)}

RS

R

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

blocked

Concept is satisfiable: w is a witness

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.24/51

Tableaux Expansion

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C,∃R.C,∀R.(∃R.C)}L(x) = {C, (¬C t ¬D),¬D}

z L(z) = {C,∃R.C,∀R.(∃R.C)}

RS

R

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

blocked

R

Concept is satisfiable: w is a witness

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.24/51

More Advanced Techniques

Satisfiability w.r.t. a Terminology
☞ For each GCI C v D ∈ T , add ¬C tD to every node label

More expressive DLs
☞ Basic technique can be extended to deal with
• Role inclusion axioms (role hierarchy)
• Number restrictions
• Inverse roles
• Concrete domains
• Aboxes
• etc.

☞ Extend expansion rules and use more sophisticated blocking
strategy

☞ Forest instead of Tree (for Aboxes)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.25/51

More Advanced Techniques

Satisfiability w.r.t. a Terminology
☞ For each GCI C v D ∈ T , add ¬C tD to every node label

More expressive DLs
☞ Basic technique can be extended to deal with
• Role inclusion axioms (role hierarchy)
• Number restrictions
• Inverse roles
• Concrete domains
• Aboxes
• etc.

☞ Extend expansion rules and use more sophisticated blocking
strategy

☞ Forest instead of Tree (for Aboxes)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.25/51

More Advanced Techniques

Satisfiability w.r.t. a Terminology
☞ For each GCI C v D ∈ T , add ¬C tD to every node label

More expressive DLs

☞ Basic technique can be extended to deal with
• Role inclusion axioms (role hierarchy)
• Number restrictions
• Inverse roles
• Concrete domains
• Aboxes
• etc.

☞ Extend expansion rules and use more sophisticated blocking
strategy

☞ Forest instead of Tree (for Aboxes)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.25/51

More Advanced Techniques

Satisfiability w.r.t. a Terminology
☞ For each GCI C v D ∈ T , add ¬C tD to every node label

More expressive DLs
☞ Basic technique can be extended to deal with
• Role inclusion axioms (role hierarchy)
• Number restrictions
• Inverse roles
• Concrete domains
• Aboxes
• etc.

☞ Extend expansion rules and use more sophisticated blocking
strategy

☞ Forest instead of Tree (for Aboxes)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.25/51

More Advanced Techniques

Satisfiability w.r.t. a Terminology
☞ For each GCI C v D ∈ T , add ¬C tD to every node label

More expressive DLs
☞ Basic technique can be extended to deal with
• Role inclusion axioms (role hierarchy)
• Number restrictions
• Inverse roles
• Concrete domains
• Aboxes
• etc.

☞ Extend expansion rules and use more sophisticated blocking
strategy

☞ Forest instead of Tree (for Aboxes)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.25/51

More Advanced Techniques

Satisfiability w.r.t. a Terminology
☞ For each GCI C v D ∈ T , add ¬C tD to every node label

More expressive DLs
☞ Basic technique can be extended to deal with
• Role inclusion axioms (role hierarchy)
• Number restrictions
• Inverse roles
• Concrete domains
• Aboxes
• etc.

☞ Extend expansion rules and use more sophisticated blocking
strategy

☞ Forest instead of Tree (for Aboxes)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.25/51

Implementing DL Systems

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.26/51

Naive Implementations

Problems include:

☞ Space usage
• Storage required for tableaux datastructures
• Rarely a serious problem in practice
• But problems can arise with inverse roles and cyclical KBs

☞ Time usage
• Search required due to non-deterministic expansion
• Serious problem in practice
• Mitigated by:

➙ Careful choice of algorithm
➙ Highly optimised implementation

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.27/51

Naive Implementations

Problems include:

☞ Space usage

• Storage required for tableaux datastructures
• Rarely a serious problem in practice
• But problems can arise with inverse roles and cyclical KBs

☞ Time usage
• Search required due to non-deterministic expansion
• Serious problem in practice
• Mitigated by:

➙ Careful choice of algorithm
➙ Highly optimised implementation

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.27/51

Naive Implementations

Problems include:

☞ Space usage
• Storage required for tableaux datastructures

• Rarely a serious problem in practice
• But problems can arise with inverse roles and cyclical KBs

☞ Time usage
• Search required due to non-deterministic expansion
• Serious problem in practice
• Mitigated by:

➙ Careful choice of algorithm
➙ Highly optimised implementation

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.27/51

Naive Implementations

Problems include:

☞ Space usage
• Storage required for tableaux datastructures
• Rarely a serious problem in practice

• But problems can arise with inverse roles and cyclical KBs

☞ Time usage
• Search required due to non-deterministic expansion
• Serious problem in practice
• Mitigated by:

➙ Careful choice of algorithm
➙ Highly optimised implementation

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.27/51

Naive Implementations

Problems include:

☞ Space usage
• Storage required for tableaux datastructures
• Rarely a serious problem in practice
• But problems can arise with inverse roles and cyclical KBs

☞ Time usage
• Search required due to non-deterministic expansion
• Serious problem in practice
• Mitigated by:

➙ Careful choice of algorithm
➙ Highly optimised implementation

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.27/51

Naive Implementations

Problems include:

☞ Space usage
• Storage required for tableaux datastructures
• Rarely a serious problem in practice
• But problems can arise with inverse roles and cyclical KBs

☞ Time usage

• Search required due to non-deterministic expansion
• Serious problem in practice
• Mitigated by:

➙ Careful choice of algorithm
➙ Highly optimised implementation

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.27/51

Naive Implementations

Problems include:

☞ Space usage
• Storage required for tableaux datastructures
• Rarely a serious problem in practice
• But problems can arise with inverse roles and cyclical KBs

☞ Time usage
• Search required due to non-deterministic expansion

• Serious problem in practice
• Mitigated by:

➙ Careful choice of algorithm
➙ Highly optimised implementation

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.27/51

Naive Implementations

Problems include:

☞ Space usage
• Storage required for tableaux datastructures
• Rarely a serious problem in practice
• But problems can arise with inverse roles and cyclical KBs

☞ Time usage
• Search required due to non-deterministic expansion
• Serious problem in practice

• Mitigated by:
➙ Careful choice of algorithm
➙ Highly optimised implementation

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.27/51

Naive Implementations

Problems include:

☞ Space usage
• Storage required for tableaux datastructures
• Rarely a serious problem in practice
• But problems can arise with inverse roles and cyclical KBs

☞ Time usage
• Search required due to non-deterministic expansion
• Serious problem in practice
• Mitigated by:

➙ Careful choice of algorithm
➙ Highly optimised implementation

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.27/51

Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure
• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions
• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings
• GCI axioms can be used to “encode” additional

operators/axioms
• Powerful technique, particularly when used with FL closure
• Can encode cardinality constraints, inverse roles, range/domain,

. . .
➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms
• BUT even simple domain encoding is disastrous with large

numbers of roles

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.28/51

Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure

• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions
• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings
• GCI axioms can be used to “encode” additional

operators/axioms
• Powerful technique, particularly when used with FL closure
• Can encode cardinality constraints, inverse roles, range/domain,

. . .
➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms
• BUT even simple domain encoding is disastrous with large

numbers of roles

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.28/51

Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure
• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions
• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings
• GCI axioms can be used to “encode” additional

operators/axioms
• Powerful technique, particularly when used with FL closure
• Can encode cardinality constraints, inverse roles, range/domain,

. . .
➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms
• BUT even simple domain encoding is disastrous with large

numbers of roles

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.28/51

Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure
• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions

• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings
• GCI axioms can be used to “encode” additional

operators/axioms
• Powerful technique, particularly when used with FL closure
• Can encode cardinality constraints, inverse roles, range/domain,

. . .
➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms
• BUT even simple domain encoding is disastrous with large

numbers of roles

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.28/51

Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure
• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions
• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings
• GCI axioms can be used to “encode” additional

operators/axioms
• Powerful technique, particularly when used with FL closure
• Can encode cardinality constraints, inverse roles, range/domain,

. . .
➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms
• BUT even simple domain encoding is disastrous with large

numbers of roles

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.28/51

Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure
• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions
• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings

• GCI axioms can be used to “encode” additional
operators/axioms

• Powerful technique, particularly when used with FL closure
• Can encode cardinality constraints, inverse roles, range/domain,

. . .
➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms
• BUT even simple domain encoding is disastrous with large

numbers of roles

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.28/51

Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure
• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions
• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings
• GCI axioms can be used to “encode” additional

operators/axioms

• Powerful technique, particularly when used with FL closure
• Can encode cardinality constraints, inverse roles, range/domain,

. . .
➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms
• BUT even simple domain encoding is disastrous with large

numbers of roles

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.28/51

Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure
• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions
• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings
• GCI axioms can be used to “encode” additional

operators/axioms
• Powerful technique, particularly when used with FL closure

• Can encode cardinality constraints, inverse roles, range/domain,
. . .
➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms
• BUT even simple domain encoding is disastrous with large

numbers of roles

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.28/51

Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure
• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions
• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings
• GCI axioms can be used to “encode” additional

operators/axioms
• Powerful technique, particularly when used with FL closure
• Can encode cardinality constraints, inverse roles, range/domain,

. . .

➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms
• BUT even simple domain encoding is disastrous with large

numbers of roles

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.28/51

Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure
• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions
• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings
• GCI axioms can be used to “encode” additional

operators/axioms
• Powerful technique, particularly when used with FL closure
• Can encode cardinality constraints, inverse roles, range/domain,

. . .
➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms
• BUT even simple domain encoding is disastrous with large

numbers of roles

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.28/51

Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure
• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions
• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings
• GCI axioms can be used to “encode” additional

operators/axioms
• Powerful technique, particularly when used with FL closure
• Can encode cardinality constraints, inverse roles, range/domain,

. . .
➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms

• BUT even simple domain encoding is disastrous with large
numbers of roles

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.28/51

Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure
• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions
• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings
• GCI axioms can be used to “encode” additional

operators/axioms
• Powerful technique, particularly when used with FL closure
• Can encode cardinality constraints, inverse roles, range/domain,

. . .
➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms
• BUT even simple domain encoding is disastrous with large

numbers of roles

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.28/51

Highly Optimised Implementation

Modern systems include MANY optimisations, e.g.:

☞ Optimised classification
• Use enhanced traversal (exploit information from previous tests)

• Use structural information to select classification order

☞ Optimised subsumption testing
• Normalisation and simplification of concepts
• Absorption (simplification) of general axioms
• Davis-Putnam style semantic branching search
• Dependency directed backtracking
• Caching
• Heuristic ordering of propositional and modal expansion

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.29/51

Highly Optimised Implementation

Modern systems include MANY optimisations, e.g.:

☞ Optimised classification
• Use enhanced traversal (exploit information from previous tests)
• Use structural information to select classification order

☞ Optimised subsumption testing
• Normalisation and simplification of concepts
• Absorption (simplification) of general axioms
• Davis-Putnam style semantic branching search
• Dependency directed backtracking
• Caching
• Heuristic ordering of propositional and modal expansion

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.29/51

Highly Optimised Implementation

Modern systems include MANY optimisations, e.g.:

☞ Optimised classification
• Use enhanced traversal (exploit information from previous tests)
• Use structural information to select classification order

☞ Optimised subsumption testing

• Normalisation and simplification of concepts
• Absorption (simplification) of general axioms
• Davis-Putnam style semantic branching search
• Dependency directed backtracking
• Caching
• Heuristic ordering of propositional and modal expansion

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.29/51

Highly Optimised Implementation

Modern systems include MANY optimisations, e.g.:

☞ Optimised classification
• Use enhanced traversal (exploit information from previous tests)
• Use structural information to select classification order

☞ Optimised subsumption testing
• Normalisation and simplification of concepts

• Absorption (simplification) of general axioms
• Davis-Putnam style semantic branching search
• Dependency directed backtracking
• Caching
• Heuristic ordering of propositional and modal expansion

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.29/51

Highly Optimised Implementation

Modern systems include MANY optimisations, e.g.:

☞ Optimised classification
• Use enhanced traversal (exploit information from previous tests)
• Use structural information to select classification order

☞ Optimised subsumption testing
• Normalisation and simplification of concepts
• Absorption (simplification) of general axioms

• Davis-Putnam style semantic branching search
• Dependency directed backtracking
• Caching
• Heuristic ordering of propositional and modal expansion

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.29/51

Highly Optimised Implementation

Modern systems include MANY optimisations, e.g.:

☞ Optimised classification
• Use enhanced traversal (exploit information from previous tests)
• Use structural information to select classification order

☞ Optimised subsumption testing
• Normalisation and simplification of concepts
• Absorption (simplification) of general axioms
• Davis-Putnam style semantic branching search

• Dependency directed backtracking
• Caching
• Heuristic ordering of propositional and modal expansion

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.29/51

Highly Optimised Implementation

Modern systems include MANY optimisations, e.g.:

☞ Optimised classification
• Use enhanced traversal (exploit information from previous tests)
• Use structural information to select classification order

☞ Optimised subsumption testing
• Normalisation and simplification of concepts
• Absorption (simplification) of general axioms
• Davis-Putnam style semantic branching search
• Dependency directed backtracking

• Caching
• Heuristic ordering of propositional and modal expansion

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.29/51

Highly Optimised Implementation

Modern systems include MANY optimisations, e.g.:

☞ Optimised classification
• Use enhanced traversal (exploit information from previous tests)
• Use structural information to select classification order

☞ Optimised subsumption testing
• Normalisation and simplification of concepts
• Absorption (simplification) of general axioms
• Davis-Putnam style semantic branching search
• Dependency directed backtracking
• Caching

• Heuristic ordering of propositional and modal expansion

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.29/51

Highly Optimised Implementation

Modern systems include MANY optimisations, e.g.:

☞ Optimised classification
• Use enhanced traversal (exploit information from previous tests)
• Use structural information to select classification order

☞ Optimised subsumption testing
• Normalisation and simplification of concepts
• Absorption (simplification) of general axioms
• Davis-Putnam style semantic branching search
• Dependency directed backtracking
• Caching
• Heuristic ordering of propositional and modal expansion

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.29/51

Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping
• Tag concepts introduced at branch points (e.g., when

expanding disjunctions)
• Expansion rules combine and propagate tags
• On discovering a clash, identify most recently introduced

concepts involved
• Jump back to relevant branch points without exploring

alternative branches
• Effect is to prune away part of the search space

☞ Highly effective — essential for usable system
• E.g., GALEN KB, 30s (with) −→ months++ (without)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.30/51

Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping
• Tag concepts introduced at branch points (e.g., when

expanding disjunctions)
• Expansion rules combine and propagate tags
• On discovering a clash, identify most recently introduced

concepts involved
• Jump back to relevant branch points without exploring

alternative branches
• Effect is to prune away part of the search space

☞ Highly effective — essential for usable system
• E.g., GALEN KB, 30s (with) −→ months++ (without)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.30/51

Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping

• Tag concepts introduced at branch points (e.g., when
expanding disjunctions)

• Expansion rules combine and propagate tags
• On discovering a clash, identify most recently introduced

concepts involved
• Jump back to relevant branch points without exploring

alternative branches
• Effect is to prune away part of the search space

☞ Highly effective — essential for usable system
• E.g., GALEN KB, 30s (with) −→ months++ (without)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.30/51

Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping
• Tag concepts introduced at branch points (e.g., when

expanding disjunctions)

• Expansion rules combine and propagate tags
• On discovering a clash, identify most recently introduced

concepts involved
• Jump back to relevant branch points without exploring

alternative branches
• Effect is to prune away part of the search space

☞ Highly effective — essential for usable system
• E.g., GALEN KB, 30s (with) −→ months++ (without)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.30/51

Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping
• Tag concepts introduced at branch points (e.g., when

expanding disjunctions)
• Expansion rules combine and propagate tags

• On discovering a clash, identify most recently introduced
concepts involved

• Jump back to relevant branch points without exploring
alternative branches

• Effect is to prune away part of the search space

☞ Highly effective — essential for usable system
• E.g., GALEN KB, 30s (with) −→ months++ (without)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.30/51

Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping
• Tag concepts introduced at branch points (e.g., when

expanding disjunctions)
• Expansion rules combine and propagate tags
• On discovering a clash, identify most recently introduced

concepts involved

• Jump back to relevant branch points without exploring
alternative branches

• Effect is to prune away part of the search space

☞ Highly effective — essential for usable system
• E.g., GALEN KB, 30s (with) −→ months++ (without)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.30/51

Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping
• Tag concepts introduced at branch points (e.g., when

expanding disjunctions)
• Expansion rules combine and propagate tags
• On discovering a clash, identify most recently introduced

concepts involved
• Jump back to relevant branch points without exploring

alternative branches

• Effect is to prune away part of the search space

☞ Highly effective — essential for usable system
• E.g., GALEN KB, 30s (with) −→ months++ (without)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.30/51

Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping
• Tag concepts introduced at branch points (e.g., when

expanding disjunctions)
• Expansion rules combine and propagate tags
• On discovering a clash, identify most recently introduced

concepts involved
• Jump back to relevant branch points without exploring

alternative branches
• Effect is to prune away part of the search space

☞ Highly effective — essential for usable system
• E.g., GALEN KB, 30s (with) −→ months++ (without)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.30/51

Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping
• Tag concepts introduced at branch points (e.g., when

expanding disjunctions)
• Expansion rules combine and propagate tags
• On discovering a clash, identify most recently introduced

concepts involved
• Jump back to relevant branch points without exploring

alternative branches
• Effect is to prune away part of the search space

☞ Highly effective — essential for usable system
• E.g., GALEN KB, 30s (with) −→ months++ (without)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.30/51

Backjumping

E.g., if ∃R.¬A u ∀R.(A uB) u (C1 tD1) u . . . u (Cn tDn) ⊆ L(x)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.31/51

Backjumping

E.g., if ∃R.¬A u ∀R.(A uB) u (C1 tD1) u . . . u (Cn tDn) ⊆ L(x)

x

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.31/51

Backjumping

E.g., if ∃R.¬A u ∀R.(A uB) u (C1 tD1) u . . . u (Cn tDn) ⊆ L(x)

t

L(x) ∪ {C1}

x

x

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.31/51

Backjumping

E.g., if ∃R.¬A u ∀R.(A uB) u (C1 tD1) u . . . u (Cn tDn) ⊆ L(x)

t

L(x) ∪ {C1}

x

x

x

t

L(x) ∪ {Cn-1}

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.31/51

Backjumping

E.g., if ∃R.¬A u ∀R.(A uB) u (C1 tD1) u . . . u (Cn tDn) ⊆ L(x)

t

L(x) ∪ {C1}

L(x) ∪ {Cn}

x

x

x

x
t

t

L(x) ∪ {Cn-1}

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.31/51

Backjumping

E.g., if ∃R.¬A u ∀R.(A uB) u (C1 tD1) u . . . u (Cn tDn) ⊆ L(x)

clash

t

R

L(x) ∪ {C1}

L(x) ∪ {Cn}

L(y) = {(A u B),¬A, A, B}

x

x

x

y

x
t

t

L(x) ∪ {Cn-1}

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.31/51

Backjumping

E.g., if ∃R.¬A u ∀R.(A uB) u (C1 tD1) u . . . u (Cn tDn) ⊆ L(x)

clashclash

t

R

L(x) ∪ {C1}

L(x) ∪ {Cn}

L(y) = {(A u B),¬A, A, B}

x

x

x

y

x

x L(x) ∪ {¬Cn, Dn}

y L(y) = {(A u B),¬A, A, B}

R

t

t

t

L(x) ∪ {Cn-1}

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.31/51

Backjumping

E.g., if ∃R.¬A u ∀R.(A uB) u (C1 tD1) u . . . u (Cn tDn) ⊆ L(x)

clashclash

t

t

t

R

L(x) ∪ {C1} L(x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

L(x) ∪ {Cn}

L(y) = {(A u B),¬A, A, B}

x

x

x

y

x

x L(x) ∪ {¬Cn, Dn}

y L(y) = {(A u B),¬A, A, B}

R

t

t

t

L(x) ∪ {Cn-1}

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.31/51

Backjumping

E.g., if ∃R.¬A u ∀R.(A uB) u (C1 tD1) u . . . u (Cn tDn) ⊆ L(x)

PruningBackjump

clashclash . . .

t

t

t

R

L(x) ∪ {C1} L(x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

L(x) ∪ {Cn}

L(y) = {(A u B),¬A, A, B}

x

x

x

y

x

x L(x) ∪ {¬Cn, Dn}

y L(y) = {(A u B),¬A, A, B}

R

t

t

t

L(x) ∪ {Cn-1}

. . .

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.31/51

Axioms and Rules

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.32/51

KR Rules (Horn Clauses)

☞ Rules (at least KR rules) can be seen as a form of axiom, e.g.:

p(x)← q(x) ∧ w(x) ≡ p v q u w

p(x)← q(x) ∧ r(x, y) ∧ w(y) ≡ p v q u ∃r.w

☞ Distinguished variables have implicit ∀, others have implicit ∃, i.e.:

p(x)← q(x) ∧ r(x, y) ≡ ∀x(p(x)← (∃y(q(x) ∧ r(x, y))))

☞ Closed world doesn’t make sense in ontologies
• Don’t want to infer Person v American just because only have

information about Americans

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.33/51

KR Rules (Horn Clauses)

☞ Rules (at least KR rules) can be seen as a form of axiom, e.g.:

p(x)← q(x) ∧ w(x) ≡ p v q u w

p(x)← q(x) ∧ r(x, y) ∧ w(y) ≡ p v q u ∃r.w

☞ Distinguished variables have implicit ∀, others have implicit ∃, i.e.:

p(x)← q(x) ∧ r(x, y) ≡ ∀x(p(x)← (∃y(q(x) ∧ r(x, y))))

☞ Closed world doesn’t make sense in ontologies
• Don’t want to infer Person v American just because only have

information about Americans

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.33/51

KR Rules (Horn Clauses)

☞ Rules (at least KR rules) can be seen as a form of axiom, e.g.:

p(x)← q(x) ∧ w(x) ≡ p v q u w

p(x)← q(x) ∧ r(x, y) ∧ w(y) ≡ p v q u ∃r.w

☞ Distinguished variables have implicit ∀, others have implicit ∃, i.e.:

p(x)← q(x) ∧ r(x, y) ≡ ∀x(p(x)← (∃y(q(x) ∧ r(x, y))))

☞ Closed world doesn’t make sense in ontologies
• Don’t want to infer Person v American just because only have

information about Americans

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.33/51

More Complex Examples

☞ E.g., the “discount” example:

discount(x, 7%) ← customer(x) ∧ category(x, y)

∧ premium(y) ∧ buys(x, z) ∧ product(z)

∧ category(z, w) ∧ luxury(w)

can be written in DL as:

∃discount.7% v customer u ∃category.premium

u ∃buys.(product u ∃category.luxury)

☞ May not capture intended semantics
• Should be able to fix this by modeling transactions instead of

customers

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.34/51

More Complex Examples

☞ E.g., the “discount” example:

discount(x, 7%) ← customer(x) ∧ category(x, y)

∧ premium(y) ∧ buys(x, z) ∧ product(z)

∧ category(z, w) ∧ luxury(w)

can be written in DL as:

∃discount.7% v customer u ∃category.premium

u ∃buys.(product u ∃category.luxury)

☞ May not capture intended semantics
• Should be able to fix this by modeling transactions instead of

customers

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.34/51

Query Rules

☞ Query rules have a completely different semantics

(x)← q(x) ∧ r(x, y)

says answer = {x|KB |= ∃y(q(x) ∧ r(x, y))}

☞ Can also reduce this to a standard DL retrieval Query:

retrieve instances of (p ∧ ∃r.q)

says answer = {x|KB |= ∃y(q(x) ∧ r(x, y))}

☞ Applications can implement many “rule-like” features using queries

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.35/51

Query Rules

☞ Query rules have a completely different semantics

(x)← q(x) ∧ r(x, y)

says answer = {x|KB |= ∃y(q(x) ∧ r(x, y))}

☞ Can also reduce this to a standard DL retrieval Query:

retrieve instances of (p ∧ ∃r.q)

says answer = {x|KB |= ∃y(q(x) ∧ r(x, y))}

☞ Applications can implement many “rule-like” features using queries

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.35/51

Query Rules

☞ Query rules have a completely different semantics

(x)← q(x) ∧ r(x, y)

says answer = {x|KB |= ∃y(q(x) ∧ r(x, y))}

☞ Can also reduce this to a standard DL retrieval Query:

retrieve instances of (p ∧ ∃r.q)

says answer = {x|KB |= ∃y(q(x) ∧ r(x, y))}

☞ Applications can implement many “rule-like” features using queries

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.35/51

What (horn) Rules Can’t Capture?

Horn rules with no extensions (probably) can’t capture:

☞ Negation

☞ Disjunction (?)

☞ ∀ in body of rule

☞ ∃ in head of rule

☞ Counting/cardinality constraints

. . . ?

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.36/51

What (horn) Rules Can’t Capture?

Horn rules with no extensions (probably) can’t capture:

☞ Negation

☞ Disjunction (?)

☞ ∀ in body of rule

☞ ∃ in head of rule

☞ Counting/cardinality constraints

. . . ?

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.36/51

What (horn) Rules Can’t Capture?

Horn rules with no extensions (probably) can’t capture:

☞ Negation

☞ Disjunction (?)

☞ ∀ in body of rule

☞ ∃ in head of rule

☞ Counting/cardinality constraints

. . . ?

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.36/51

What (horn) Rules Can’t Capture?

Horn rules with no extensions (probably) can’t capture:

☞ Negation

☞ Disjunction (?)

☞ ∀ in body of rule

☞ ∃ in head of rule

☞ Counting/cardinality constraints

. . . ?

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.36/51

What (horn) Rules Can’t Capture?

Horn rules with no extensions (probably) can’t capture:

☞ Negation

☞ Disjunction (?)

☞ ∀ in body of rule

☞ ∃ in head of rule

☞ Counting/cardinality constraints

. . . ?

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.36/51

What (horn) Rules Can’t Capture?

Horn rules with no extensions (probably) can’t capture:

☞ Negation

☞ Disjunction (?)

☞ ∀ in body of rule

☞ ∃ in head of rule

☞ Counting/cardinality constraints

. . . ?

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.36/51

What (standard) DLs Can’t Capture

☞ nary predicates (n > 2)
• but DLR is an nary DL used in DB applications

☞ Rules that break tree model property, e.g.,

uncle(x, z) ← parent(x, y) ∧ brother(y, z)

• but some (otherwise weak) DLs have function chain
equivalence, i.e.,

f1 ◦ . . . ◦ fn ≡ f ′

1 ◦ . . . ◦ f ′

m

☞ Can’t combine with expressive DLs (and still stay decidable)
• adding these constructs to SHIQ leads to undecidability

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.37/51

What (standard) DLs Can’t Capture

☞ nary predicates (n > 2)
• but DLR is an nary DL used in DB applications

☞ Rules that break tree model property, e.g.,

uncle(x, z) ← parent(x, y) ∧ brother(y, z)

• but some (otherwise weak) DLs have function chain
equivalence, i.e.,

f1 ◦ . . . ◦ fn ≡ f ′

1 ◦ . . . ◦ f ′

m

☞ Can’t combine with expressive DLs (and still stay decidable)
• adding these constructs to SHIQ leads to undecidability

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.37/51

What (standard) DLs Can’t Capture

☞ nary predicates (n > 2)
• but DLR is an nary DL used in DB applications

☞ Rules that break tree model property, e.g.,

uncle(x, z) ← parent(x, y) ∧ brother(y, z)

• but some (otherwise weak) DLs have function chain
equivalence, i.e.,

f1 ◦ . . . ◦ fn ≡ f ′

1 ◦ . . . ◦ f ′

m

☞ Can’t combine with expressive DLs (and still stay decidable)
• adding these constructs to SHIQ leads to undecidability

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.37/51

Intersection of Rules and DLs

☞ Can express horn clauses with:
• conjunction in head (≡ multiple rules)
• ∀ in head
• ∃ in body
• only unary or binary predicates
• “inverse” roles/predicates

☞ Result is a strange and asymmetrical DL

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.38/51

Intersection of Rules and DLs

☞ Can express horn clauses with:
• conjunction in head (≡ multiple rules)
• ∀ in head
• ∃ in body
• only unary or binary predicates
• “inverse” roles/predicates

☞ Result is a strange and asymmetrical DL

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.38/51

Other Approaches

☞ Can layer rules on top of DL
• rule predicates can be DL classes or roles
• several examples have been implemented
• best known is Carin system from Levy & Rousset
• undecidable unless DL is very weak (Carin uses Classic)

☞ Some existing work on language fusions and hybrid reasoners

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.39/51

Other Approaches

☞ Can layer rules on top of DL
• rule predicates can be DL classes or roles
• several examples have been implemented
• best known is Carin system from Levy & Rousset
• undecidable unless DL is very weak (Carin uses Classic)

☞ Some existing work on language fusions and hybrid reasoners

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.39/51

Research Challenges

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.40/51

Research Challenges

☞ Increased expressive power
• Datatypes
• Nominals
• Extensions to DAML+OIL

☞ Performance
• Inverse roles and qualified number restrictions
• Very large KBs
• Reasoning with individuals

☞ Tools and Infrastructure
• Support for large scale ontological engineering and deployment

☞ New reasoning tasks
• Querying
• Lcs/matching
• . . .

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.41/51

Research Challenges

☞ Increased expressive power
• Datatypes
• Nominals
• Extensions to DAML+OIL

☞ Performance
• Inverse roles and qualified number restrictions
• Very large KBs
• Reasoning with individuals

☞ Tools and Infrastructure
• Support for large scale ontological engineering and deployment

☞ New reasoning tasks
• Querying
• Lcs/matching
• . . .

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.41/51

Research Challenges

☞ Increased expressive power
• Datatypes
• Nominals
• Extensions to DAML+OIL

☞ Performance
• Inverse roles and qualified number restrictions
• Very large KBs
• Reasoning with individuals

☞ Tools and Infrastructure
• Support for large scale ontological engineering and deployment

☞ New reasoning tasks
• Querying
• Lcs/matching
• . . .

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.41/51

Research Challenges

☞ Increased expressive power
• Datatypes
• Nominals
• Extensions to DAML+OIL

☞ Performance
• Inverse roles and qualified number restrictions
• Very large KBs
• Reasoning with individuals

☞ Tools and Infrastructure
• Support for large scale ontological engineering and deployment

☞ New reasoning tasks
• Querying
• Lcs/matching
• . . .

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.41/51

Increased Expressive Power: Datatypes

DAML+OIL extends SHIQ with datatypes and nominals

Datatypes

☞ DAML+OIL has simple form of datatypes
• Unary predicates plus disjoint abstract/datatype domains

☞ Theoretically not particularly challenging
• Existing work on concrete domains [Baader & Hanschke, Lutz]
• Algorithm already known for SHOQ(D) [Horrocks & Sattler]

☞ May be practically challenging
• All XMLS datatypes supported

☞ Already seeing some (limited) implementations
• E.g., Cerebra system (Network Inference)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.42/51

Increased Expressive Power: Datatypes

DAML+OIL extends SHIQ with datatypes and nominals

Datatypes

☞ DAML+OIL has simple form of datatypes
• Unary predicates plus disjoint abstract/datatype domains

☞ Theoretically not particularly challenging
• Existing work on concrete domains [Baader & Hanschke, Lutz]
• Algorithm already known for SHOQ(D) [Horrocks & Sattler]

☞ May be practically challenging
• All XMLS datatypes supported

☞ Already seeing some (limited) implementations
• E.g., Cerebra system (Network Inference)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.42/51

Increased Expressive Power: Datatypes

DAML+OIL extends SHIQ with datatypes and nominals

Datatypes

☞ DAML+OIL has simple form of datatypes
• Unary predicates plus disjoint abstract/datatype domains

☞ Theoretically not particularly challenging
• Existing work on concrete domains [Baader & Hanschke, Lutz]
• Algorithm already known for SHOQ(D) [Horrocks & Sattler]

☞ May be practically challenging
• All XMLS datatypes supported

☞ Already seeing some (limited) implementations
• E.g., Cerebra system (Network Inference)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.42/51

Increased Expressive Power: Datatypes

DAML+OIL extends SHIQ with datatypes and nominals

Datatypes

☞ DAML+OIL has simple form of datatypes
• Unary predicates plus disjoint abstract/datatype domains

☞ Theoretically not particularly challenging
• Existing work on concrete domains [Baader & Hanschke, Lutz]
• Algorithm already known for SHOQ(D) [Horrocks & Sattler]

☞ May be practically challenging
• All XMLS datatypes supported

☞ Already seeing some (limited) implementations
• E.g., Cerebra system (Network Inference)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.42/51

Increased Expressive Power: Datatypes

DAML+OIL extends SHIQ with datatypes and nominals

Datatypes

☞ DAML+OIL has simple form of datatypes
• Unary predicates plus disjoint abstract/datatype domains

☞ Theoretically not particularly challenging
• Existing work on concrete domains [Baader & Hanschke, Lutz]
• Algorithm already known for SHOQ(D) [Horrocks & Sattler]

☞ May be practically challenging
• All XMLS datatypes supported

☞ Already seeing some (limited) implementations
• E.g., Cerebra system (Network Inference)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.42/51

Increased Expressive Power: Datatypes

DAML+OIL extends SHIQ with datatypes and nominals

Datatypes

☞ DAML+OIL has simple form of datatypes
• Unary predicates plus disjoint abstract/datatype domains

☞ Theoretically not particularly challenging
• Existing work on concrete domains [Baader & Hanschke, Lutz]
• Algorithm already known for SHOQ(D) [Horrocks & Sattler]

☞ May be practically challenging
• All XMLS datatypes supported

☞ Already seeing some (limited) implementations
• E.g., Cerebra system (Network Inference)

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.42/51

Increased Expressive Power: Nominals

Nominals

☞ DAML+OIL has oneOf constructor
• Extensionally defined concepts, e.g., {Mary}I = {MaryI}

• Equivalent to nominals in modal logic

☞ Theoretically very challenging
• Resulting logic has known high complexity (NExpTime)
• No known “practical” algorithm
• Not obvious how to extend tableaux techniques in this direction

➙ Loss of tree model property
➙ Spy-points: > v ∃R.{Spy}

➙ Finite domains: {Spy} v 6nR−

☞ Relatively straightforward (in theory) without inverse roles
• Algorithm for SHOQ(D) deals with nominals
• Practical implementation still to be demonstrated

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.43/51

Increased Expressive Power: Nominals

Nominals

☞ DAML+OIL has oneOf constructor
• Extensionally defined concepts, e.g., {Mary}I = {MaryI}

• Equivalent to nominals in modal logic

☞ Theoretically very challenging
• Resulting logic has known high complexity (NExpTime)
• No known “practical” algorithm
• Not obvious how to extend tableaux techniques in this direction

➙ Loss of tree model property
➙ Spy-points: > v ∃R.{Spy}

➙ Finite domains: {Spy} v 6nR−

☞ Relatively straightforward (in theory) without inverse roles
• Algorithm for SHOQ(D) deals with nominals
• Practical implementation still to be demonstrated

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.43/51

Increased Expressive Power: Nominals

Nominals

☞ DAML+OIL has oneOf constructor
• Extensionally defined concepts, e.g., {Mary}I = {MaryI}

• Equivalent to nominals in modal logic

☞ Theoretically very challenging

• Resulting logic has known high complexity (NExpTime)
• No known “practical” algorithm
• Not obvious how to extend tableaux techniques in this direction

➙ Loss of tree model property
➙ Spy-points: > v ∃R.{Spy}

➙ Finite domains: {Spy} v 6nR−

☞ Relatively straightforward (in theory) without inverse roles
• Algorithm for SHOQ(D) deals with nominals
• Practical implementation still to be demonstrated

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.43/51

Increased Expressive Power: Nominals

Nominals

☞ DAML+OIL has oneOf constructor
• Extensionally defined concepts, e.g., {Mary}I = {MaryI}

• Equivalent to nominals in modal logic

☞ Theoretically very challenging
• Resulting logic has known high complexity (NExpTime)

• No known “practical” algorithm
• Not obvious how to extend tableaux techniques in this direction

➙ Loss of tree model property
➙ Spy-points: > v ∃R.{Spy}

➙ Finite domains: {Spy} v 6nR−

☞ Relatively straightforward (in theory) without inverse roles
• Algorithm for SHOQ(D) deals with nominals
• Practical implementation still to be demonstrated

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.43/51

Increased Expressive Power: Nominals

Nominals

☞ DAML+OIL has oneOf constructor
• Extensionally defined concepts, e.g., {Mary}I = {MaryI}

• Equivalent to nominals in modal logic

☞ Theoretically very challenging
• Resulting logic has known high complexity (NExpTime)
• No known “practical” algorithm

• Not obvious how to extend tableaux techniques in this direction
➙ Loss of tree model property
➙ Spy-points: > v ∃R.{Spy}

➙ Finite domains: {Spy} v 6nR−

☞ Relatively straightforward (in theory) without inverse roles
• Algorithm for SHOQ(D) deals with nominals
• Practical implementation still to be demonstrated

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.43/51

Increased Expressive Power: Nominals

Nominals

☞ DAML+OIL has oneOf constructor
• Extensionally defined concepts, e.g., {Mary}I = {MaryI}

• Equivalent to nominals in modal logic

☞ Theoretically very challenging
• Resulting logic has known high complexity (NExpTime)
• No known “practical” algorithm
• Not obvious how to extend tableaux techniques in this direction

➙ Loss of tree model property
➙ Spy-points: > v ∃R.{Spy}

➙ Finite domains: {Spy} v 6nR−

☞ Relatively straightforward (in theory) without inverse roles
• Algorithm for SHOQ(D) deals with nominals
• Practical implementation still to be demonstrated

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.43/51

Increased Expressive Power: Nominals

Nominals

☞ DAML+OIL has oneOf constructor
• Extensionally defined concepts, e.g., {Mary}I = {MaryI}

• Equivalent to nominals in modal logic

☞ Theoretically very challenging
• Resulting logic has known high complexity (NExpTime)
• No known “practical” algorithm
• Not obvious how to extend tableaux techniques in this direction

➙ Loss of tree model property
➙ Spy-points: > v ∃R.{Spy}

➙ Finite domains: {Spy} v 6nR−

☞ Relatively straightforward (in theory) without inverse roles
• Algorithm for SHOQ(D) deals with nominals
• Practical implementation still to be demonstrated

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.43/51

Increased Expressive Power: Extensions

☞ DAML+OIL not expressive enough for all applications

☞ Extensions wish list includes:
• Complex roles/role inclusions, e.g., parent ◦ brother ≡ uncle
• Rules and/or query languages
• Temporal and spatial reasoning
• Defaults
• . . .

☞ Extended language sure to be undecidable

☞ How can extensions best be integrated with DAML+OIL?

☞ How can reasoners be developed/adapted for extended languages?

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.44/51

Increased Expressive Power: Extensions

☞ DAML+OIL not expressive enough for all applications

☞ Extensions wish list includes:
• Complex roles/role inclusions, e.g., parent ◦ brother ≡ uncle
• Rules and/or query languages
• Temporal and spatial reasoning
• Defaults
• . . .

☞ Extended language sure to be undecidable

☞ How can extensions best be integrated with DAML+OIL?

☞ How can reasoners be developed/adapted for extended languages?

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.44/51

Increased Expressive Power: Extensions

☞ DAML+OIL not expressive enough for all applications

☞ Extensions wish list includes:
• Complex roles/role inclusions, e.g., parent ◦ brother ≡ uncle
• Rules and/or query languages
• Temporal and spatial reasoning
• Defaults
• . . .

☞ Extended language sure to be undecidable

☞ How can extensions best be integrated with DAML+OIL?

☞ How can reasoners be developed/adapted for extended languages?

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.44/51

Increased Expressive Power: Extensions

☞ DAML+OIL not expressive enough for all applications

☞ Extensions wish list includes:
• Complex roles/role inclusions, e.g., parent ◦ brother ≡ uncle
• Rules and/or query languages
• Temporal and spatial reasoning
• Defaults
• . . .

☞ Extended language sure to be undecidable

☞ How can extensions best be integrated with DAML+OIL?

☞ How can reasoners be developed/adapted for extended languages?

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.44/51

Increased Expressive Power: Extensions

☞ DAML+OIL not expressive enough for all applications

☞ Extensions wish list includes:
• Complex roles/role inclusions, e.g., parent ◦ brother ≡ uncle
• Rules and/or query languages
• Temporal and spatial reasoning
• Defaults
• . . .

☞ Extended language sure to be undecidable

☞ How can extensions best be integrated with DAML+OIL?

☞ How can reasoners be developed/adapted for extended languages?

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.44/51

Performance Problems

☞ Evidence of empirical tractability mostly w.r.t. SHF— problems
can arise when systems extended to SHIQ

☞ Important optimisations no longer (fully) work
• E.g., problems with caching as cached models can affect parent

☞ Qualified number restrictions can also cause problems
• Even relatively small numbers can mean significant

non-determinism

☞ Reasoning with very large KBs/ontologies
• Web ontologies can be expected to grow very large

☞ Reasoning with individuals (Abox)
• Deployment of web ontologies will mean reasoning with

(possibly very large numbers of) individuals
• Standard Abox techniques may not be able to cope

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.45/51

Performance Problems

☞ Evidence of empirical tractability mostly w.r.t. SHF— problems
can arise when systems extended to SHIQ

☞ Important optimisations no longer (fully) work
• E.g., problems with caching as cached models can affect parent

☞ Qualified number restrictions can also cause problems
• Even relatively small numbers can mean significant

non-determinism

☞ Reasoning with very large KBs/ontologies
• Web ontologies can be expected to grow very large

☞ Reasoning with individuals (Abox)
• Deployment of web ontologies will mean reasoning with

(possibly very large numbers of) individuals
• Standard Abox techniques may not be able to cope

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.45/51

Performance Problems

☞ Evidence of empirical tractability mostly w.r.t. SHF— problems
can arise when systems extended to SHIQ

☞ Important optimisations no longer (fully) work
• E.g., problems with caching as cached models can affect parent

☞ Qualified number restrictions can also cause problems
• Even relatively small numbers can mean significant

non-determinism

☞ Reasoning with very large KBs/ontologies
• Web ontologies can be expected to grow very large

☞ Reasoning with individuals (Abox)
• Deployment of web ontologies will mean reasoning with

(possibly very large numbers of) individuals
• Standard Abox techniques may not be able to cope

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.45/51

Performance Problems

☞ Evidence of empirical tractability mostly w.r.t. SHF— problems
can arise when systems extended to SHIQ

☞ Important optimisations no longer (fully) work
• E.g., problems with caching as cached models can affect parent

☞ Qualified number restrictions can also cause problems
• Even relatively small numbers can mean significant

non-determinism

☞ Reasoning with very large KBs/ontologies
• Web ontologies can be expected to grow very large

☞ Reasoning with individuals (Abox)
• Deployment of web ontologies will mean reasoning with

(possibly very large numbers of) individuals
• Standard Abox techniques may not be able to cope

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.45/51

Performance Problems

☞ Evidence of empirical tractability mostly w.r.t. SHF— problems
can arise when systems extended to SHIQ

☞ Important optimisations no longer (fully) work
• E.g., problems with caching as cached models can affect parent

☞ Qualified number restrictions can also cause problems
• Even relatively small numbers can mean significant

non-determinism

☞ Reasoning with very large KBs/ontologies
• Web ontologies can be expected to grow very large

☞ Reasoning with individuals (Abox)
• Deployment of web ontologies will mean reasoning with

(possibly very large numbers of) individuals
• Standard Abox techniques may not be able to cope

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.45/51

Performance Solutions (Maybe)

☞ Excessive memory usage
• Problem exacerbated by over-cautious double blocking condition

(e.g., root node can never block)
• Promising results from more precise blocking condition [Sattler

& Horrocks]

☞ Qualified number restrictions
• Problem exacerbated by naive expansion rules
• Promising results from optimised expansion using Algebraic

Methods [Haarslev & Möller]

☞ Caching and merging
• Can still work in some situations (work in progress)

☞ Reasoning with very large KBs
• DL systems shown to work with ≈100k concept KB [Haarslev &

Möller]
• But KB only exploited small part of DL language

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.46/51

Performance Solutions (Maybe)

☞ Excessive memory usage

• Problem exacerbated by over-cautious double blocking condition
(e.g., root node can never block)

• Promising results from more precise blocking condition [Sattler
& Horrocks]

☞ Qualified number restrictions
• Problem exacerbated by naive expansion rules
• Promising results from optimised expansion using Algebraic

Methods [Haarslev & Möller]

☞ Caching and merging
• Can still work in some situations (work in progress)

☞ Reasoning with very large KBs
• DL systems shown to work with ≈100k concept KB [Haarslev &

Möller]
• But KB only exploited small part of DL language

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.46/51

Performance Solutions (Maybe)

☞ Excessive memory usage
• Problem exacerbated by over-cautious double blocking condition

(e.g., root node can never block)
• Promising results from more precise blocking condition [Sattler

& Horrocks]

☞ Qualified number restrictions
• Problem exacerbated by naive expansion rules
• Promising results from optimised expansion using Algebraic

Methods [Haarslev & Möller]

☞ Caching and merging
• Can still work in some situations (work in progress)

☞ Reasoning with very large KBs
• DL systems shown to work with ≈100k concept KB [Haarslev &

Möller]
• But KB only exploited small part of DL language

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.46/51

Performance Solutions (Maybe)

☞ Excessive memory usage
• Problem exacerbated by over-cautious double blocking condition

(e.g., root node can never block)
• Promising results from more precise blocking condition [Sattler

& Horrocks]

☞ Qualified number restrictions

• Problem exacerbated by naive expansion rules
• Promising results from optimised expansion using Algebraic

Methods [Haarslev & Möller]

☞ Caching and merging
• Can still work in some situations (work in progress)

☞ Reasoning with very large KBs
• DL systems shown to work with ≈100k concept KB [Haarslev &

Möller]
• But KB only exploited small part of DL language

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.46/51

Performance Solutions (Maybe)

☞ Excessive memory usage
• Problem exacerbated by over-cautious double blocking condition

(e.g., root node can never block)
• Promising results from more precise blocking condition [Sattler

& Horrocks]

☞ Qualified number restrictions
• Problem exacerbated by naive expansion rules
• Promising results from optimised expansion using Algebraic

Methods [Haarslev & Möller]

☞ Caching and merging
• Can still work in some situations (work in progress)

☞ Reasoning with very large KBs
• DL systems shown to work with ≈100k concept KB [Haarslev &

Möller]
• But KB only exploited small part of DL language

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.46/51

Performance Solutions (Maybe)

☞ Excessive memory usage
• Problem exacerbated by over-cautious double blocking condition

(e.g., root node can never block)
• Promising results from more precise blocking condition [Sattler

& Horrocks]

☞ Qualified number restrictions
• Problem exacerbated by naive expansion rules
• Promising results from optimised expansion using Algebraic

Methods [Haarslev & Möller]

☞ Caching and merging

• Can still work in some situations (work in progress)

☞ Reasoning with very large KBs
• DL systems shown to work with ≈100k concept KB [Haarslev &

Möller]
• But KB only exploited small part of DL language

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.46/51

Performance Solutions (Maybe)

☞ Excessive memory usage
• Problem exacerbated by over-cautious double blocking condition

(e.g., root node can never block)
• Promising results from more precise blocking condition [Sattler

& Horrocks]

☞ Qualified number restrictions
• Problem exacerbated by naive expansion rules
• Promising results from optimised expansion using Algebraic

Methods [Haarslev & Möller]

☞ Caching and merging
• Can still work in some situations (work in progress)

☞ Reasoning with very large KBs
• DL systems shown to work with ≈100k concept KB [Haarslev &

Möller]
• But KB only exploited small part of DL language

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.46/51

Performance Solutions (Maybe)

☞ Excessive memory usage
• Problem exacerbated by over-cautious double blocking condition

(e.g., root node can never block)
• Promising results from more precise blocking condition [Sattler

& Horrocks]

☞ Qualified number restrictions
• Problem exacerbated by naive expansion rules
• Promising results from optimised expansion using Algebraic

Methods [Haarslev & Möller]

☞ Caching and merging
• Can still work in some situations (work in progress)

☞ Reasoning with very large KBs

• DL systems shown to work with ≈100k concept KB [Haarslev &
Möller]

• But KB only exploited small part of DL language

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.46/51

Performance Solutions (Maybe)

☞ Excessive memory usage
• Problem exacerbated by over-cautious double blocking condition

(e.g., root node can never block)
• Promising results from more precise blocking condition [Sattler

& Horrocks]

☞ Qualified number restrictions
• Problem exacerbated by naive expansion rules
• Promising results from optimised expansion using Algebraic

Methods [Haarslev & Möller]

☞ Caching and merging
• Can still work in some situations (work in progress)

☞ Reasoning with very large KBs
• DL systems shown to work with ≈100k concept KB [Haarslev &

Möller]
• But KB only exploited small part of DL language

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.46/51

Tools and Infrastructure

Tools and infrastructure required in order support use of DAML+OIL

☞ Ontology design and maintenance
• Several editors available, e.g, OilEd (Manchester), OntoEdit

(Karlsruhe), Protégé (Stanford)
• Need integrated environments including modularity, versioning,

visualisation, explanation, high-level languages, . . .

☞ Ontology Integration
• Some tools available, e.g., Chimera (Stanford)
• Need integrated environments . . .
• Can learn from DB integration work [Lenzerini, Calvanese et al]

☞ Reasoning engines
• Several DL systems available
• Need for improved usability/connectivity
• DIG group recently formed for this purpose (and others)

☞ . . .

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.47/51

Tools and Infrastructure

Tools and infrastructure required in order support use of DAML+OIL

☞ Ontology design and maintenance

• Several editors available, e.g, OilEd (Manchester), OntoEdit
(Karlsruhe), Protégé (Stanford)

• Need integrated environments including modularity, versioning,
visualisation, explanation, high-level languages, . . .

☞ Ontology Integration
• Some tools available, e.g., Chimera (Stanford)
• Need integrated environments . . .
• Can learn from DB integration work [Lenzerini, Calvanese et al]

☞ Reasoning engines
• Several DL systems available
• Need for improved usability/connectivity
• DIG group recently formed for this purpose (and others)

☞ . . .

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.47/51

Tools and Infrastructure

Tools and infrastructure required in order support use of DAML+OIL

☞ Ontology design and maintenance
• Several editors available, e.g, OilEd (Manchester), OntoEdit

(Karlsruhe), Protégé (Stanford)

• Need integrated environments including modularity, versioning,
visualisation, explanation, high-level languages, . . .

☞ Ontology Integration
• Some tools available, e.g., Chimera (Stanford)
• Need integrated environments . . .
• Can learn from DB integration work [Lenzerini, Calvanese et al]

☞ Reasoning engines
• Several DL systems available
• Need for improved usability/connectivity
• DIG group recently formed for this purpose (and others)

☞ . . .

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.47/51

Tools and Infrastructure

Tools and infrastructure required in order support use of DAML+OIL

☞ Ontology design and maintenance
• Several editors available, e.g, OilEd (Manchester), OntoEdit

(Karlsruhe), Protégé (Stanford)
• Need integrated environments including modularity, versioning,

visualisation, explanation, high-level languages, . . .

☞ Ontology Integration
• Some tools available, e.g., Chimera (Stanford)
• Need integrated environments . . .
• Can learn from DB integration work [Lenzerini, Calvanese et al]

☞ Reasoning engines
• Several DL systems available
• Need for improved usability/connectivity
• DIG group recently formed for this purpose (and others)

☞ . . .

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.47/51

Tools and Infrastructure

Tools and infrastructure required in order support use of DAML+OIL

☞ Ontology design and maintenance
• Several editors available, e.g, OilEd (Manchester), OntoEdit

(Karlsruhe), Protégé (Stanford)
• Need integrated environments including modularity, versioning,

visualisation, explanation, high-level languages, . . .

☞ Ontology Integration

• Some tools available, e.g., Chimera (Stanford)
• Need integrated environments . . .
• Can learn from DB integration work [Lenzerini, Calvanese et al]

☞ Reasoning engines
• Several DL systems available
• Need for improved usability/connectivity
• DIG group recently formed for this purpose (and others)

☞ . . .

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.47/51

Tools and Infrastructure

Tools and infrastructure required in order support use of DAML+OIL

☞ Ontology design and maintenance
• Several editors available, e.g, OilEd (Manchester), OntoEdit

(Karlsruhe), Protégé (Stanford)
• Need integrated environments including modularity, versioning,

visualisation, explanation, high-level languages, . . .

☞ Ontology Integration
• Some tools available, e.g., Chimera (Stanford)

• Need integrated environments . . .
• Can learn from DB integration work [Lenzerini, Calvanese et al]

☞ Reasoning engines
• Several DL systems available
• Need for improved usability/connectivity
• DIG group recently formed for this purpose (and others)

☞ . . .

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.47/51

Tools and Infrastructure

Tools and infrastructure required in order support use of DAML+OIL

☞ Ontology design and maintenance
• Several editors available, e.g, OilEd (Manchester), OntoEdit

(Karlsruhe), Protégé (Stanford)
• Need integrated environments including modularity, versioning,

visualisation, explanation, high-level languages, . . .

☞ Ontology Integration
• Some tools available, e.g., Chimera (Stanford)
• Need integrated environments . . .

• Can learn from DB integration work [Lenzerini, Calvanese et al]

☞ Reasoning engines
• Several DL systems available
• Need for improved usability/connectivity
• DIG group recently formed for this purpose (and others)

☞ . . .

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.47/51

Tools and Infrastructure

Tools and infrastructure required in order support use of DAML+OIL

☞ Ontology design and maintenance
• Several editors available, e.g, OilEd (Manchester), OntoEdit

(Karlsruhe), Protégé (Stanford)
• Need integrated environments including modularity, versioning,

visualisation, explanation, high-level languages, . . .

☞ Ontology Integration
• Some tools available, e.g., Chimera (Stanford)
• Need integrated environments . . .
• Can learn from DB integration work [Lenzerini, Calvanese et al]

☞ Reasoning engines
• Several DL systems available
• Need for improved usability/connectivity
• DIG group recently formed for this purpose (and others)

☞ . . .

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.47/51

Tools and Infrastructure

Tools and infrastructure required in order support use of DAML+OIL

☞ Ontology design and maintenance
• Several editors available, e.g, OilEd (Manchester), OntoEdit

(Karlsruhe), Protégé (Stanford)
• Need integrated environments including modularity, versioning,

visualisation, explanation, high-level languages, . . .

☞ Ontology Integration
• Some tools available, e.g., Chimera (Stanford)
• Need integrated environments . . .
• Can learn from DB integration work [Lenzerini, Calvanese et al]

☞ Reasoning engines

• Several DL systems available
• Need for improved usability/connectivity
• DIG group recently formed for this purpose (and others)

☞ . . .

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.47/51

Tools and Infrastructure

Tools and infrastructure required in order support use of DAML+OIL

☞ Ontology design and maintenance
• Several editors available, e.g, OilEd (Manchester), OntoEdit

(Karlsruhe), Protégé (Stanford)
• Need integrated environments including modularity, versioning,

visualisation, explanation, high-level languages, . . .

☞ Ontology Integration
• Some tools available, e.g., Chimera (Stanford)
• Need integrated environments . . .
• Can learn from DB integration work [Lenzerini, Calvanese et al]

☞ Reasoning engines
• Several DL systems available

• Need for improved usability/connectivity
• DIG group recently formed for this purpose (and others)

☞ . . .

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.47/51

Tools and Infrastructure

Tools and infrastructure required in order support use of DAML+OIL

☞ Ontology design and maintenance
• Several editors available, e.g, OilEd (Manchester), OntoEdit

(Karlsruhe), Protégé (Stanford)
• Need integrated environments including modularity, versioning,

visualisation, explanation, high-level languages, . . .

☞ Ontology Integration
• Some tools available, e.g., Chimera (Stanford)
• Need integrated environments . . .
• Can learn from DB integration work [Lenzerini, Calvanese et al]

☞ Reasoning engines
• Several DL systems available
• Need for improved usability/connectivity

• DIG group recently formed for this purpose (and others)

☞ . . .

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.47/51

Tools and Infrastructure

Tools and infrastructure required in order support use of DAML+OIL

☞ Ontology design and maintenance
• Several editors available, e.g, OilEd (Manchester), OntoEdit

(Karlsruhe), Protégé (Stanford)
• Need integrated environments including modularity, versioning,

visualisation, explanation, high-level languages, . . .

☞ Ontology Integration
• Some tools available, e.g., Chimera (Stanford)
• Need integrated environments . . .
• Can learn from DB integration work [Lenzerini, Calvanese et al]

☞ Reasoning engines
• Several DL systems available
• Need for improved usability/connectivity
• DIG group recently formed for this purpose (and others)

☞ . . .

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.47/51

Tools and Infrastructure

Tools and infrastructure required in order support use of DAML+OIL

☞ Ontology design and maintenance
• Several editors available, e.g, OilEd (Manchester), OntoEdit

(Karlsruhe), Protégé (Stanford)
• Need integrated environments including modularity, versioning,

visualisation, explanation, high-level languages, . . .

☞ Ontology Integration
• Some tools available, e.g., Chimera (Stanford)
• Need integrated environments . . .
• Can learn from DB integration work [Lenzerini, Calvanese et al]

☞ Reasoning engines
• Several DL systems available
• Need for improved usability/connectivity
• DIG group recently formed for this purpose (and others)

☞ . . .
Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.47/51

Summary

☞ Ontologies will play key role in Semantic Web

☞ DAML+OIL is web ontology language based on Description Logic

☞ Ontology design, integration and deployment supported by
reasoning

☞ DLs are logic based KR formalisms with emphasis on reasoning

☞ DL systems provide efficient reasoning services
• Careful choice of logic/algorithm
• Highly optimised implementation

☞ Still many challenges for DL and Semantic Web research
• Expressive power (integration with Rule language)
• Performance
• Tools and infrastructure

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.48/51

Summary

☞ Ontologies will play key role in Semantic Web

☞ DAML+OIL is web ontology language based on Description Logic

☞ Ontology design, integration and deployment supported by
reasoning

☞ DLs are logic based KR formalisms with emphasis on reasoning

☞ DL systems provide efficient reasoning services
• Careful choice of logic/algorithm
• Highly optimised implementation

☞ Still many challenges for DL and Semantic Web research
• Expressive power (integration with Rule language)
• Performance
• Tools and infrastructure

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.48/51

Summary

☞ Ontologies will play key role in Semantic Web

☞ DAML+OIL is web ontology language based on Description Logic

☞ Ontology design, integration and deployment supported by
reasoning

☞ DLs are logic based KR formalisms with emphasis on reasoning

☞ DL systems provide efficient reasoning services
• Careful choice of logic/algorithm
• Highly optimised implementation

☞ Still many challenges for DL and Semantic Web research
• Expressive power (integration with Rule language)
• Performance
• Tools and infrastructure

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.48/51

Summary

☞ Ontologies will play key role in Semantic Web

☞ DAML+OIL is web ontology language based on Description Logic

☞ Ontology design, integration and deployment supported by
reasoning

☞ DLs are logic based KR formalisms with emphasis on reasoning

☞ DL systems provide efficient reasoning services
• Careful choice of logic/algorithm
• Highly optimised implementation

☞ Still many challenges for DL and Semantic Web research
• Expressive power (integration with Rule language)
• Performance
• Tools and infrastructure

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.48/51

Summary

☞ Ontologies will play key role in Semantic Web

☞ DAML+OIL is web ontology language based on Description Logic

☞ Ontology design, integration and deployment supported by
reasoning

☞ DLs are logic based KR formalisms with emphasis on reasoning

☞ DL systems provide efficient reasoning services
• Careful choice of logic/algorithm
• Highly optimised implementation

☞ Still many challenges for DL and Semantic Web research
• Expressive power (integration with Rule language)
• Performance
• Tools and infrastructure

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.48/51

Summary

☞ Ontologies will play key role in Semantic Web

☞ DAML+OIL is web ontology language based on Description Logic

☞ Ontology design, integration and deployment supported by
reasoning

☞ DLs are logic based KR formalisms with emphasis on reasoning

☞ DL systems provide efficient reasoning services
• Careful choice of logic/algorithm
• Highly optimised implementation

☞ Still many challenges for DL and Semantic Web research
• Expressive power (integration with Rule language)
• Performance
• Tools and infrastructure

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.48/51

Resources

Slides from this talk

www.cs.man.ac.uk/~horrocks/Slides/dagstuhl070202.pdf

FaCT system

www.cs.man.ac.uk/fact

OIL

www.ontoknowledge.org/oil/

DAML+OIL

www.daml.org/language/

OilEd

img.cs.man.ac.uk/oil

I.COM

www.cs.man.ac.uk/~franconi/icom/

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.49/51

www.cs.man.ac.uk/~horrocks/Slides/dagstuhl070202.pdf
www.cs.man.ac.uk/fact
www.ontoknowledge.org/oil/
www.daml.org/language/
img.cs.man.ac.uk/oil
www.cs.man.ac.uk/~franconi/icom/

Select Bibliography

F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.-J. Profitlich. An
empirical analysis of optimization techniques for terminological
representation systems or: Making KRIS get a move on. In B. Nebel,
C. Rich, and W. Swartout, editors, Proc. of KR’92, pages 270–281.
Morgan Kaufmann, 1992.

F. Giunchiglia and R. Sebastiani. A SAT-based decision procedure for
ALC. In Proc. of KR’96, pages 304–314. Morgan Kaufmann, 1996.

V. Haarslev and R. Möller. High performance reasoning with very large
knowledge bases: A practical case study. In Proc. of IJCAI 2001 (to
appear).

B. Hollunder and W. Nutt. Subsumption algorithms for concept languages.
In Proc. of ECAI’90, pages 348–353. John Wiley & Sons Ltd., 1990.

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.50/51

Select Bibliography

I. Horrocks. Optimising Tableaux Decision Procedures for Description
Logics. PhD thesis, University of Manchester, 1997.

I. Horrocks and P. F. Patel-Schneider. Comparing subsumption
optimizations. In Proc. of DL’98, pages 90–94. CEUR, 1998.

I. Horrocks and P. F. Patel-Schneider. Optimising description logic
subsumption. Journal of Logic and Computation, 9(3):267–293, 1999.

I. Horrocks and S. Tobies. Reasoning with axioms: Theory and practice. In
Proc. of KR’00 pages 285–296. Morgan Kaufmann, 2000.

E. Franconi and G. Ng. The i.com tool for intelligent conceptual modelling.
In Proc. of (KRDB’00), August 2000.

D. Fensel, F. van Harmelen, I. Horrocks, D. McGuinness, and P. F.
Patel-Schneider. OIL: An ontology infrastructure for the semantic web.
IEEE Intelligent Systems, 16(2):38–45, 2001.

A. Levy and M.-C. Rousset". CARIN: A Representation Language
Combining Horn Rules and Description Logics In Proc. of (ECAI’96), 1996.

Dagstuhl “Rule Markup Techniques”, 7th Feb 2002 – p.51/51

	Talk Outline
	The Semantic Web and DAML+OIL
	Semantic Web Ontology Languages
	OIL and DAML+OIL
	DAML+OIL Language Overview
	DAML+OIL
	Why Reasoning Services?
	Why Decidable Reasoning?
	Reasoning Support for Ontology Design: OilEd
	OilEd
	Description Logics and Reasoning
	What are Description Logics?
	DL System Architecture
	DL Constructors
	DL Syntax and Semantics
	Other DL Constructors
	DL Knowledge Base (Tbox)
	DL Knowledge Base (Abox)
	Why Tbox and Abox?
	Basic Inference Problems
	Reasoning Techniques
	Subsumption and Satisfiability
	Tableaux Expansion
	More Advanced Techniques
	Implementing DL Systems
	Naive Implementations
	Careful Choice of Algorithm
	Highly Optimised Implementation
	Dependency Directed Backtracking
	Backjumping
	Axioms and Rules
	KR Rules (Horn Clauses)
	More Complex Examples
	Query Rules
	What (horn)
Rules Can't Capture?
	What (standard)
DLs Can't Capture
	Intersection of Rules and DLs
	Other Approaches
	Research Challenges
	Research Challenges
	Increased Expressive Power: Datatypes
	Increased Expressive Power: Nominals
	Increased Expressive Power: Extensions
	Performance Problems
	Performance Solutions (Maybe)
	Tools and Infrastructure
	Summary
	Resources
	Select Bibliography
	Select Bibliography

