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Basic Inference Problems

☞ Subsumption — check knowledge is correct

• C vK D ? CI ⊆ DI in all models I of K

☞ Equivalence — check knowledge is minimally redundant

• C ≡K D ? CI = DI in all models I of K

☞ Consistency — check knowledge is meaningful

• C ≡ ⊥ CI 6= ∅ in some model I of K

☞ Instantiation — check if individual i instance of class C

• i ∈K C? i ∈ CI in all models I of K

☞ Problems all reducible to KB consistency (satisfiability):
• e.g., C vK D iff C u ¬D not consistent w.r.t. K

☞ KB consistency reducible to concept consistency via
internalisation
• For logics supporting, e.g., a transitive “top” role

Reasoning with Expressive Description Logics – p. 2/27



Basic Inference Problems

☞ Subsumption — check knowledge is correct

• C vK D ? CI ⊆ DI in all models I of K

☞ Equivalence — check knowledge is minimally redundant

• C ≡K D ? CI = DI in all models I of K

☞ Consistency — check knowledge is meaningful

• C ≡ ⊥ CI 6= ∅ in some model I of K

☞ Instantiation — check if individual i instance of class C

• i ∈K C? i ∈ CI in all models I of K

☞ Problems all reducible to KB consistency (satisfiability):
• e.g., C vK D iff C u ¬D not consistent w.r.t. K

☞ KB consistency reducible to concept consistency via
internalisation
• For logics supporting, e.g., a transitive “top” role

Reasoning with Expressive Description Logics – p. 2/27



Basic Inference Problems

☞ Subsumption — check knowledge is correct

• C vK D ? CI ⊆ DI in all models I of K

☞ Equivalence — check knowledge is minimally redundant

• C ≡K D ? CI = DI in all models I of K

☞ Consistency — check knowledge is meaningful

• C ≡ ⊥ CI 6= ∅ in some model I of K

☞ Instantiation — check if individual i instance of class C

• i ∈K C? i ∈ CI in all models I of K

☞ Problems all reducible to KB consistency (satisfiability):
• e.g., C vK D iff C u ¬D not consistent w.r.t. K

☞ KB consistency reducible to concept consistency via
internalisation
• For logics supporting, e.g., a transitive “top” role

Reasoning with Expressive Description Logics – p. 2/27



Basic Inference Problems

☞ Subsumption — check knowledge is correct

• C vK D ? CI ⊆ DI in all models I of K

☞ Equivalence — check knowledge is minimally redundant

• C ≡K D ? CI = DI in all models I of K

☞ Consistency — check knowledge is meaningful

• C ≡ ⊥ CI 6= ∅ in some model I of K

☞ Instantiation — check if individual i instance of class C

• i ∈K C? i ∈ CI in all models I of K

☞ Problems all reducible to KB consistency (satisfiability):
• e.g., C vK D iff C u ¬D not consistent w.r.t. K

☞ KB consistency reducible to concept consistency via
internalisation
• For logics supporting, e.g., a transitive “top” role

Reasoning with Expressive Description Logics – p. 2/27



Basic Inference Problems

☞ Subsumption — check knowledge is correct

• C vK D ? CI ⊆ DI in all models I of K

☞ Equivalence — check knowledge is minimally redundant

• C ≡K D ? CI = DI in all models I of K

☞ Consistency — check knowledge is meaningful

• C ≡ ⊥ CI 6= ∅ in some model I of K

☞ Instantiation — check if individual i instance of class C

• i ∈K C? i ∈ CI in all models I of K

☞ Problems all reducible to KB consistency (satisfiability):
• e.g., C vK D iff C u ¬D not consistent w.r.t. K

☞ KB consistency reducible to concept consistency via
internalisation
• For logics supporting, e.g., a transitive “top” role

Reasoning with Expressive Description Logics – p. 2/27



Basic Inference Problems

☞ Subsumption — check knowledge is correct

• C vK D ? CI ⊆ DI in all models I of K

☞ Equivalence — check knowledge is minimally redundant

• C ≡K D ? CI = DI in all models I of K

☞ Consistency — check knowledge is meaningful

• C ≡ ⊥ CI 6= ∅ in some model I of K

☞ Instantiation — check if individual i instance of class C

• i ∈K C? i ∈ CI in all models I of K

☞ Problems all reducible to KB consistency (satisfiability):
• e.g., C vK D iff C u ¬D not consistent w.r.t. K

☞ KB consistency reducible to concept consistency via
internalisation
• For logics supporting, e.g., a transitive “top” role

Reasoning with Expressive Description Logics – p. 2/27



Basic Inference Problems

☞ Subsumption — check knowledge is correct

• C vK D ? CI ⊆ DI in all models I of K

☞ Equivalence — check knowledge is minimally redundant

• C ≡K D ? CI = DI in all models I of K

☞ Consistency — check knowledge is meaningful

• C ≡ ⊥ CI 6= ∅ in some model I of K

☞ Instantiation — check if individual i instance of class C

• i ∈K C? i ∈ CI in all models I of K

☞ Problems all reducible to KB consistency (satisfiability):
• e.g., C vK D iff C u ¬D not consistent w.r.t. K

☞ KB consistency reducible to concept consistency via
internalisation
• For logics supporting, e.g., a transitive “top” role

Reasoning with Expressive Description Logics – p. 2/27



Tableaux Algorithms — Basics

☞ Tableaux algorithms used to test satisfiability

☞ Try to build tree-like model I of input concept C

☞ Work on concepts in negation normal form
• Push in negation using de Morgan’s, ¬∃R.C  ∀R.¬C etc.

☞ Break down C syntactically, inferring constraints on elements of I

☞ Decomposition uses tableau rules corresponding to constructors in
logic (e.g., u, ∃)
• Some rules are nondeterministic (e.g., t, 6)
• In practice, this means search

☞ Stop when clash occurs or when no rules are applicable

☞ Blocking (cycle check) used to guarantee termination

☞ Return “C is consistent” iff C is consistent
• Tree model property
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Tableaux Algorithms — Details

☞ Work on tree T representing model I of concept C

• Nodes represent elements of ∆I ; labeled with subconcepts of C

• Edges represent role-successorships between elements of ∆I

☞ T initialised with single root node labeled {C}

☞ Tableau rules repeatedly applied to node labels
• Extend labels or extend/modify T structure
• Rules can be blocked, e.g, if predecessor has superset label
• Nondeterministic rules −→ search possible extensions

☞ T contains Clash if obvious contradiction in some node label
• E.g., {A,¬A} ⊆ L(x) for some concept A and node x

☞ T fully expanded if no rules are applicable

☞ C satisfiable iff fully expanded clash free T found
• Trivial correspondence between such a T and a model of C

Reasoning with Expressive Description Logics – p. 4/27



Tableaux Algorithms — Details

☞ Work on tree T representing model I of concept C

• Nodes represent elements of ∆I ; labeled with subconcepts of C

• Edges represent role-successorships between elements of ∆I

☞ T initialised with single root node labeled {C}

☞ Tableau rules repeatedly applied to node labels
• Extend labels or extend/modify T structure
• Rules can be blocked, e.g, if predecessor has superset label
• Nondeterministic rules −→ search possible extensions

☞ T contains Clash if obvious contradiction in some node label
• E.g., {A,¬A} ⊆ L(x) for some concept A and node x

☞ T fully expanded if no rules are applicable

☞ C satisfiable iff fully expanded clash free T found
• Trivial correspondence between such a T and a model of C

Reasoning with Expressive Description Logics – p. 4/27



Tableaux Algorithms — Details

☞ Work on tree T representing model I of concept C

• Nodes represent elements of ∆I ; labeled with subconcepts of C

• Edges represent role-successorships between elements of ∆I

☞ T initialised with single root node labeled {C}

☞ Tableau rules repeatedly applied to node labels
• Extend labels or extend/modify T structure
• Rules can be blocked, e.g, if predecessor has superset label
• Nondeterministic rules −→ search possible extensions

☞ T contains Clash if obvious contradiction in some node label
• E.g., {A,¬A} ⊆ L(x) for some concept A and node x

☞ T fully expanded if no rules are applicable

☞ C satisfiable iff fully expanded clash free T found
• Trivial correspondence between such a T and a model of C

Reasoning with Expressive Description Logics – p. 4/27



Tableaux Algorithms — Details

☞ Work on tree T representing model I of concept C

• Nodes represent elements of ∆I ; labeled with subconcepts of C

• Edges represent role-successorships between elements of ∆I

☞ T initialised with single root node labeled {C}

☞ Tableau rules repeatedly applied to node labels
• Extend labels or extend/modify T structure
• Rules can be blocked, e.g, if predecessor has superset label
• Nondeterministic rules −→ search possible extensions

☞ T contains Clash if obvious contradiction in some node label
• E.g., {A,¬A} ⊆ L(x) for some concept A and node x

☞ T fully expanded if no rules are applicable

☞ C satisfiable iff fully expanded clash free T found
• Trivial correspondence between such a T and a model of C

Reasoning with Expressive Description Logics – p. 4/27



Tableaux Algorithms — Details

☞ Work on tree T representing model I of concept C

• Nodes represent elements of ∆I ; labeled with subconcepts of C

• Edges represent role-successorships between elements of ∆I

☞ T initialised with single root node labeled {C}

☞ Tableau rules repeatedly applied to node labels
• Extend labels or extend/modify T structure
• Rules can be blocked, e.g, if predecessor has superset label
• Nondeterministic rules −→ search possible extensions

☞ T contains Clash if obvious contradiction in some node label
• E.g., {A,¬A} ⊆ L(x) for some concept A and node x

☞ T fully expanded if no rules are applicable

☞ C satisfiable iff fully expanded clash free T found
• Trivial correspondence between such a T and a model of C

Reasoning with Expressive Description Logics – p. 4/27



Tableaux Algorithms — Details

☞ Work on tree T representing model I of concept C

• Nodes represent elements of ∆I ; labeled with subconcepts of C

• Edges represent role-successorships between elements of ∆I

☞ T initialised with single root node labeled {C}

☞ Tableau rules repeatedly applied to node labels
• Extend labels or extend/modify T structure
• Rules can be blocked, e.g, if predecessor has superset label
• Nondeterministic rules −→ search possible extensions

☞ T contains Clash if obvious contradiction in some node label
• E.g., {A,¬A} ⊆ L(x) for some concept A and node x

☞ T fully expanded if no rules are applicable

☞ C satisfiable iff fully expanded clash free T found
• Trivial correspondence between such a T and a model of C

Reasoning with Expressive Description Logics – p. 4/27



Tableaux Algorithms — Details

☞ Work on tree T representing model I of concept C

• Nodes represent elements of ∆I ; labeled with subconcepts of C

• Edges represent role-successorships between elements of ∆I

☞ T initialised with single root node labeled {C}

☞ Tableau rules repeatedly applied to node labels
• Extend labels or extend/modify T structure
• Rules can be blocked, e.g, if predecessor has superset label
• Nondeterministic rules −→ search possible extensions

☞ T contains Clash if obvious contradiction in some node label
• E.g., {A,¬A} ⊆ L(x) for some concept A and node x

☞ T fully expanded if no rules are applicable

☞ C satisfiable iff fully expanded clash free T found
• Trivial correspondence between such a T and a model of C

Reasoning with Expressive Description Logics – p. 4/27



Tableaux Rules for ALC

→u

x {∃R.C, . . .} x

{C}

{∃R.C, . . .}
R

y

x

R

y {C, . . .}y

R

x {∀R.C, . . .}

{. . .}

{∀R.C, . . .}

→∃

→∀

→t

for C ∈ {C1, C2}

x {C1 u C2, C, . . .}

x {C1 u C2, C1, C2, . . .}

x {C1 t C2, . . .}

x {C1 u C2, . . .}
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Tableaux Rules for ALC
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Tableaux Rule for Transitive Roles

x

R

yy

R

x {∀R.C, . . .}

{. . .}

{∀R.C, . . .}

{∀R.C, . . .}

→∀+

Where R is a transitive role (i.e., (RI)+ = RI)

☞ No longer naturally terminating (e.g., if C = ∃R.>)

☞ Need blocking
• Simple blocking suffices for ALC plus transitive roles
• I.e., do not expand node label if ancestor has superset label
• More expressive logics (e.g., with inverse roles) need more

sophisticated blocking strategies
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Where R is a transitive role (i.e., (RI)+ = RI)

☞ No longer naturally terminating (e.g., if C = ∃R.>)

☞ Need blocking
• Simple blocking suffices for ALC plus transitive roles
• I.e., do not expand node label if ancestor has superset label
• More expressive logics (e.g., with inverse roles) need more

sophisticated blocking strategies
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Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

Concept is satisfiable: T corresponds to model
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More Advanced Techniques

Satisfiability w.r.t. a Terminology
☞ For each axiom C v D ∈ T , add ¬C t D to every node label

More expressive DLs
☞ Basic technique can be extended to deal with

• Role inclusion axioms (role hierarchy)
• Number restrictions
• Inverse roles
• Concrete domains and datatypes
• Aboxes
• etc.

☞ Extend expansion rules and use more sophisticated blocking
strategy

☞ Forest instead of Tree (for Aboxes)
• Root nodes correspond to individuals in Abox
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Implementing DL Systems
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Naive Implementations

Problems include:

☞ Space usage
• Storage required for tableaux datastructures
• Rarely a serious problem in practice
• But problems can arise with inverse roles and cyclical KBs

☞ Time usage
• Search required due to non-deterministic expansion
• Serious problem in practice
• Mitigated by:

– Careful choice of algorithm
– Highly optimised implementation
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Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure
• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions
• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings
• GCI axioms can be used to “encode” additional

operators/axioms
• Powerful technique, particularly when used with FL closure
• Can encode cardinality constraints, inverse roles, range/domain,

. . .
– E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms
• BUT even simple domain encoding is disastrous with large

numbers of roles
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Highly Optimised Implementation

☞ Naive implementation −→ effective non-termination

☞ Modern systems include MANY optimisations

☞ Optimised classification (compute partial ordering)
• Use enhanced traversal (exploit information from previous tests)
• Use structural information to select classification order

☞ Optimised subsumption testing (search for models)
• Normalisation and simplification of concepts
• Absorption (rewriting) of general axioms
• Davis-Putnam style semantic branching search
• Dependency directed backtracking
• Caching of satisfiability results and (partial) models
• Heuristic ordering of propositional and modal expansion
• . . .
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Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping
• Tag concepts introduced at branch points (e.g., when

expanding disjunctions)
• Expansion rules combine and propagate tags
• On discovering a clash, identify most recently introduced

concepts involved
• Jump back to relevant branch points without exploring

alternative branches
• Effect is to prune away part of the search space

☞ Highly effective — essential for usable system
• E.g., GALEN KB, 30s (with) −→ months++ (without)
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Backjumping

E.g., if ∃R.¬A u ∀R.(A u B) u (C1 t D1) u . . . u (Cn t Dn) ⊆ L(x)
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Backjumping
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Backjumping

E.g., if ∃R.¬A u ∀R.(A u B) u (C1 t D1) u . . . u (Cn t Dn) ⊆ L(x)
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Research Challenges
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Challenges

☞ Increased expressive power
• Existing DL systems implement (at most) SHIQ

• OWL extends SHIQ with datatypes and nominals

☞ Scalability
• Very large KBs
• Reasoning with (very large numbers of) individuals

☞ Other reasoning tasks
• Querying
• Matching
• Least common subsumer
• . . .

☞ Tools and Infrastructure
• Support for large scale ontological engineering and deployment
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Increased Expressive Power: Datatypes

☞ OWL has simple form of datatypes
• Unary predicates plus disjoint object-class/datatype domains

☞ Well understood theoretically
• Existing work on concrete domains [Baader & Hanschke, Lutz]
• Algorithm already known for SHOQ(D) [Horrocks & Sattler]
• Can use hybrid reasoning (DL reasoner + datatype “oracle”)

☞ May be practically challenging
• All XMLS datatypes supported (?)

☞ Already seeing some (partial) implementations
• Cerebra system (Network Inference), Racer system (Hamburg)
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Increased Expressive Power: Nominals

☞ OWL oneOf constructor equivalent to hybrid logic nominals
• Extensionally defined concepts, e.g., EU ≡ {France, Italy, . . .}

☞ Theoretically very challenging
• Resulting logic has known high complexity (NExpTime)
• No known “practical” algorithm
• Not obvious how to extend tableaux techniques in this direction

– Loss of tree model property
– Spy-points: > v ∃R.{Spy}

– Finite domains: {Spy} v 6nR−

☞ Standard solution is weaker semantics for nominals
• Treat nominals as (disjoint) primitive classes
• Loss of completeness/soundness
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Increased Expressive Power: Extensions

☞ OWL not expressive enough for all applications

☞ Extensions wish list includes:
• Feature chain (path) agreement, e.g., output of component of

composite process equals input of subsequent process
• Complex roles/role inclusions, e.g., a city located in part of a

country is located in that country
• Rules—proposal(s) already exist for “datalog/LP style rules”
• Temporal and spatial reasoning
• . . .

☞ May be impossible/undesirable to resist such extensions

☞ Extended language sure to be undecidable

☞ How can extensions best be integrated with OWL?

☞ How can reasoners be developed/adapted for extended languages
• Some existing work on language fusions and hybrid reasoners
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Scalability

☞ Reasoning hard (ExpTime) even without nominals (i.e., SHIQ)

☞ Web ontologies may grow very large

☞ Good empirical evidence of scalability/tractability for DL systems
• E.g., 5,000 (complex) classes; 100,000+ (simple) classes

☞ But evidence mostly w.r.t. SHF (no inverse)

☞ Problems can arise when SHF extended to SHIQ

• Important optimisations no longer (fully) work

☞ Reasoning with individuals
• Deployment of web ontologies will mean reasoning with

(possibly very large numbers of) individuals/tuples
• Unlikely that standard Abox techniques will be able to cope
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Performance Solutions (Maybe)

☞ Excessive memory usage
• Problem exacerbated by over-cautious double blocking condition

(e.g., root node can never block)
• Promising results from more precise blocking condition [Sattler

& Horrocks]

☞ Qualified number restrictions
• Problem exacerbated by naive expansion rules
• Promising results from optimised expansion using Algebraic

Methods [Haarslev & Möller]

☞ Caching and merging
• Can still work in some situations (work in progress)

☞ Reasoning with very large KBs
• DL systems shown to work with ≈100k concept KB [Haarslev &

Möller]
• But KB only exploited small part of DL language
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Other Reasoning Tasks

☞ Querying
• Retrieval and instantiation wont be sufficient
• Minimum requirement will be DB style query language
• May also need “what can I say about x?” style of query

☞ Explanation
• To support ontology design
• Justifications and proofs (e.g., of query results)

☞ “Non-Standard Inferences”, e.g., LCS, matching
• To support ontology integration
• To support “bottom up” design of ontologies
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Summary

☞ Description Logics are family of logical KR formalisms

☞ Applications of DLs include DataBases and Semantic Web
• Ontologies will provide vocabulary for semantic markup
• OWL web ontology language based on SHIQ DL
• Set to become W3C standard (OWL) & already widely adopted
• Use of DL provides formal foundations and reasoning support

☞ DL Reasoning based on tableau algorithms

☞ Highly Optimised implementations used in DL systems

☞ Challenges remain
• Reasoning with full OWL language
• (Convincing) demonstration(s) of scalability
• New reasoning tasks
• Development of (high quality) tools and infrastructure
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Resources

Slides from this talk

http://www.cs.man.ac.uk/~horrocks/Slides/Innsbruck-tutorial/

FaCT system (open source)

http://www.cs.man.ac.uk/FaCT/

OilEd (open source)

http://oiled.man.ac.uk/

OIL

http://www.ontoknowledge.org/oil/

W3C Web-Ontology (WebOnt) working group (OWL)

http://www.w3.org/2001/sw/WebOnt/

DL Handbook, Cambridge University Press

http://books.cambridge.org/0521781760.htm
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