
Description Logic Reasoning

Reasoning with Expressive Description Logics – p. 1/27

Basic Inference Problems

☞ Subsumption — check knowledge is correct

• C vK D ? CI ⊆ DI in all models I of K

☞ Equivalence — check knowledge is minimally redundant

• C ≡K D ? CI = DI in all models I of K

☞ Consistency — check knowledge is meaningful

• C ≡ ⊥ CI 6= ∅ in some model I of K

☞ Instantiation — check if individual i instance of class C

• i ∈K C? i ∈ CI in all models I of K

☞ Problems all reducible to KB consistency (satisfiability):
• e.g., C vK D iff C u ¬D not consistent w.r.t. K

☞ KB consistency reducible to concept consistency via
internalisation
• For logics supporting, e.g., a transitive “top” role

Reasoning with Expressive Description Logics – p. 2/27

Basic Inference Problems

☞ Subsumption — check knowledge is correct

• C vK D ? CI ⊆ DI in all models I of K

☞ Equivalence — check knowledge is minimally redundant

• C ≡K D ? CI = DI in all models I of K

☞ Consistency — check knowledge is meaningful

• C ≡ ⊥ CI 6= ∅ in some model I of K

☞ Instantiation — check if individual i instance of class C

• i ∈K C? i ∈ CI in all models I of K

☞ Problems all reducible to KB consistency (satisfiability):
• e.g., C vK D iff C u ¬D not consistent w.r.t. K

☞ KB consistency reducible to concept consistency via
internalisation
• For logics supporting, e.g., a transitive “top” role

Reasoning with Expressive Description Logics – p. 2/27

Basic Inference Problems

☞ Subsumption — check knowledge is correct

• C vK D ? CI ⊆ DI in all models I of K

☞ Equivalence — check knowledge is minimally redundant

• C ≡K D ? CI = DI in all models I of K

☞ Consistency — check knowledge is meaningful

• C ≡ ⊥ CI 6= ∅ in some model I of K

☞ Instantiation — check if individual i instance of class C

• i ∈K C? i ∈ CI in all models I of K

☞ Problems all reducible to KB consistency (satisfiability):
• e.g., C vK D iff C u ¬D not consistent w.r.t. K

☞ KB consistency reducible to concept consistency via
internalisation
• For logics supporting, e.g., a transitive “top” role

Reasoning with Expressive Description Logics – p. 2/27

Basic Inference Problems

☞ Subsumption — check knowledge is correct

• C vK D ? CI ⊆ DI in all models I of K

☞ Equivalence — check knowledge is minimally redundant

• C ≡K D ? CI = DI in all models I of K

☞ Consistency — check knowledge is meaningful

• C ≡ ⊥ CI 6= ∅ in some model I of K

☞ Instantiation — check if individual i instance of class C

• i ∈K C? i ∈ CI in all models I of K

☞ Problems all reducible to KB consistency (satisfiability):
• e.g., C vK D iff C u ¬D not consistent w.r.t. K

☞ KB consistency reducible to concept consistency via
internalisation
• For logics supporting, e.g., a transitive “top” role

Reasoning with Expressive Description Logics – p. 2/27

Basic Inference Problems

☞ Subsumption — check knowledge is correct

• C vK D ? CI ⊆ DI in all models I of K

☞ Equivalence — check knowledge is minimally redundant

• C ≡K D ? CI = DI in all models I of K

☞ Consistency — check knowledge is meaningful

• C ≡ ⊥ CI 6= ∅ in some model I of K

☞ Instantiation — check if individual i instance of class C

• i ∈K C? i ∈ CI in all models I of K

☞ Problems all reducible to KB consistency (satisfiability):
• e.g., C vK D iff C u ¬D not consistent w.r.t. K

☞ KB consistency reducible to concept consistency via
internalisation
• For logics supporting, e.g., a transitive “top” role

Reasoning with Expressive Description Logics – p. 2/27

Basic Inference Problems

☞ Subsumption — check knowledge is correct

• C vK D ? CI ⊆ DI in all models I of K

☞ Equivalence — check knowledge is minimally redundant

• C ≡K D ? CI = DI in all models I of K

☞ Consistency — check knowledge is meaningful

• C ≡ ⊥ CI 6= ∅ in some model I of K

☞ Instantiation — check if individual i instance of class C

• i ∈K C? i ∈ CI in all models I of K

☞ Problems all reducible to KB consistency (satisfiability):
• e.g., C vK D iff C u ¬D not consistent w.r.t. K

☞ KB consistency reducible to concept consistency via
internalisation
• For logics supporting, e.g., a transitive “top” role

Reasoning with Expressive Description Logics – p. 2/27

Basic Inference Problems

☞ Subsumption — check knowledge is correct

• C vK D ? CI ⊆ DI in all models I of K

☞ Equivalence — check knowledge is minimally redundant

• C ≡K D ? CI = DI in all models I of K

☞ Consistency — check knowledge is meaningful

• C ≡ ⊥ CI 6= ∅ in some model I of K

☞ Instantiation — check if individual i instance of class C

• i ∈K C? i ∈ CI in all models I of K

☞ Problems all reducible to KB consistency (satisfiability):
• e.g., C vK D iff C u ¬D not consistent w.r.t. K

☞ KB consistency reducible to concept consistency via
internalisation
• For logics supporting, e.g., a transitive “top” role

Reasoning with Expressive Description Logics – p. 2/27

Tableaux Algorithms — Basics

☞ Tableaux algorithms used to test satisfiability

☞ Try to build tree-like model I of input concept C

☞ Work on concepts in negation normal form
• Push in negation using de Morgan’s, ¬∃R.C ∀R.¬C etc.

☞ Break down C syntactically, inferring constraints on elements of I

☞ Decomposition uses tableau rules corresponding to constructors in
logic (e.g., u, ∃)
• Some rules are nondeterministic (e.g., t, 6)
• In practice, this means search

☞ Stop when clash occurs or when no rules are applicable

☞ Blocking (cycle check) used to guarantee termination

☞ Return “C is consistent” iff C is consistent
• Tree model property

Reasoning with Expressive Description Logics – p. 3/27

Tableaux Algorithms — Basics

☞ Tableaux algorithms used to test satisfiability

☞ Try to build tree-like model I of input concept C

☞ Work on concepts in negation normal form
• Push in negation using de Morgan’s, ¬∃R.C ∀R.¬C etc.

☞ Break down C syntactically, inferring constraints on elements of I

☞ Decomposition uses tableau rules corresponding to constructors in
logic (e.g., u, ∃)
• Some rules are nondeterministic (e.g., t, 6)
• In practice, this means search

☞ Stop when clash occurs or when no rules are applicable

☞ Blocking (cycle check) used to guarantee termination

☞ Return “C is consistent” iff C is consistent
• Tree model property

Reasoning with Expressive Description Logics – p. 3/27

Tableaux Algorithms — Basics

☞ Tableaux algorithms used to test satisfiability

☞ Try to build tree-like model I of input concept C

☞ Work on concepts in negation normal form
• Push in negation using de Morgan’s, ¬∃R.C ∀R.¬C etc.

☞ Break down C syntactically, inferring constraints on elements of I

☞ Decomposition uses tableau rules corresponding to constructors in
logic (e.g., u, ∃)
• Some rules are nondeterministic (e.g., t, 6)
• In practice, this means search

☞ Stop when clash occurs or when no rules are applicable

☞ Blocking (cycle check) used to guarantee termination

☞ Return “C is consistent” iff C is consistent
• Tree model property

Reasoning with Expressive Description Logics – p. 3/27

Tableaux Algorithms — Basics

☞ Tableaux algorithms used to test satisfiability

☞ Try to build tree-like model I of input concept C

☞ Work on concepts in negation normal form
• Push in negation using de Morgan’s, ¬∃R.C ∀R.¬C etc.

☞ Break down C syntactically, inferring constraints on elements of I

☞ Decomposition uses tableau rules corresponding to constructors in
logic (e.g., u, ∃)
• Some rules are nondeterministic (e.g., t, 6)
• In practice, this means search

☞ Stop when clash occurs or when no rules are applicable

☞ Blocking (cycle check) used to guarantee termination

☞ Return “C is consistent” iff C is consistent
• Tree model property

Reasoning with Expressive Description Logics – p. 3/27

Tableaux Algorithms — Basics

☞ Tableaux algorithms used to test satisfiability

☞ Try to build tree-like model I of input concept C

☞ Work on concepts in negation normal form
• Push in negation using de Morgan’s, ¬∃R.C ∀R.¬C etc.

☞ Break down C syntactically, inferring constraints on elements of I

☞ Decomposition uses tableau rules corresponding to constructors in
logic (e.g., u, ∃)
• Some rules are nondeterministic (e.g., t, 6)
• In practice, this means search

☞ Stop when clash occurs or when no rules are applicable

☞ Blocking (cycle check) used to guarantee termination

☞ Return “C is consistent” iff C is consistent
• Tree model property

Reasoning with Expressive Description Logics – p. 3/27

Tableaux Algorithms — Basics

☞ Tableaux algorithms used to test satisfiability

☞ Try to build tree-like model I of input concept C

☞ Work on concepts in negation normal form
• Push in negation using de Morgan’s, ¬∃R.C ∀R.¬C etc.

☞ Break down C syntactically, inferring constraints on elements of I

☞ Decomposition uses tableau rules corresponding to constructors in
logic (e.g., u, ∃)
• Some rules are nondeterministic (e.g., t, 6)
• In practice, this means search

☞ Stop when clash occurs or when no rules are applicable

☞ Blocking (cycle check) used to guarantee termination

☞ Return “C is consistent” iff C is consistent
• Tree model property

Reasoning with Expressive Description Logics – p. 3/27

Tableaux Algorithms — Basics

☞ Tableaux algorithms used to test satisfiability

☞ Try to build tree-like model I of input concept C

☞ Work on concepts in negation normal form
• Push in negation using de Morgan’s, ¬∃R.C ∀R.¬C etc.

☞ Break down C syntactically, inferring constraints on elements of I

☞ Decomposition uses tableau rules corresponding to constructors in
logic (e.g., u, ∃)
• Some rules are nondeterministic (e.g., t, 6)
• In practice, this means search

☞ Stop when clash occurs or when no rules are applicable

☞ Blocking (cycle check) used to guarantee termination

☞ Return “C is consistent” iff C is consistent
• Tree model property

Reasoning with Expressive Description Logics – p. 3/27

Tableaux Algorithms — Basics

☞ Tableaux algorithms used to test satisfiability

☞ Try to build tree-like model I of input concept C

☞ Work on concepts in negation normal form
• Push in negation using de Morgan’s, ¬∃R.C ∀R.¬C etc.

☞ Break down C syntactically, inferring constraints on elements of I

☞ Decomposition uses tableau rules corresponding to constructors in
logic (e.g., u, ∃)
• Some rules are nondeterministic (e.g., t, 6)
• In practice, this means search

☞ Stop when clash occurs or when no rules are applicable

☞ Blocking (cycle check) used to guarantee termination

☞ Return “C is consistent” iff C is consistent
• Tree model property

Reasoning with Expressive Description Logics – p. 3/27

Tableaux Algorithms — Basics

☞ Tableaux algorithms used to test satisfiability

☞ Try to build tree-like model I of input concept C

☞ Work on concepts in negation normal form
• Push in negation using de Morgan’s, ¬∃R.C ∀R.¬C etc.

☞ Break down C syntactically, inferring constraints on elements of I

☞ Decomposition uses tableau rules corresponding to constructors in
logic (e.g., u, ∃)
• Some rules are nondeterministic (e.g., t, 6)
• In practice, this means search

☞ Stop when clash occurs or when no rules are applicable

☞ Blocking (cycle check) used to guarantee termination

☞ Return “C is consistent” iff C is consistent
• Tree model property

Reasoning with Expressive Description Logics – p. 3/27

Tableaux Algorithms — Details

☞ Work on tree T representing model I of concept C

• Nodes represent elements of ∆I ; labeled with subconcepts of C

• Edges represent role-successorships between elements of ∆I

☞ T initialised with single root node labeled {C}

☞ Tableau rules repeatedly applied to node labels
• Extend labels or extend/modify T structure
• Rules can be blocked, e.g, if predecessor has superset label
• Nondeterministic rules −→ search possible extensions

☞ T contains Clash if obvious contradiction in some node label
• E.g., {A,¬A} ⊆ L(x) for some concept A and node x

☞ T fully expanded if no rules are applicable

☞ C satisfiable iff fully expanded clash free T found
• Trivial correspondence between such a T and a model of C

Reasoning with Expressive Description Logics – p. 4/27

Tableaux Algorithms — Details

☞ Work on tree T representing model I of concept C

• Nodes represent elements of ∆I ; labeled with subconcepts of C

• Edges represent role-successorships between elements of ∆I

☞ T initialised with single root node labeled {C}

☞ Tableau rules repeatedly applied to node labels
• Extend labels or extend/modify T structure
• Rules can be blocked, e.g, if predecessor has superset label
• Nondeterministic rules −→ search possible extensions

☞ T contains Clash if obvious contradiction in some node label
• E.g., {A,¬A} ⊆ L(x) for some concept A and node x

☞ T fully expanded if no rules are applicable

☞ C satisfiable iff fully expanded clash free T found
• Trivial correspondence between such a T and a model of C

Reasoning with Expressive Description Logics – p. 4/27

Tableaux Algorithms — Details

☞ Work on tree T representing model I of concept C

• Nodes represent elements of ∆I ; labeled with subconcepts of C

• Edges represent role-successorships between elements of ∆I

☞ T initialised with single root node labeled {C}

☞ Tableau rules repeatedly applied to node labels
• Extend labels or extend/modify T structure
• Rules can be blocked, e.g, if predecessor has superset label
• Nondeterministic rules −→ search possible extensions

☞ T contains Clash if obvious contradiction in some node label
• E.g., {A,¬A} ⊆ L(x) for some concept A and node x

☞ T fully expanded if no rules are applicable

☞ C satisfiable iff fully expanded clash free T found
• Trivial correspondence between such a T and a model of C

Reasoning with Expressive Description Logics – p. 4/27

Tableaux Algorithms — Details

☞ Work on tree T representing model I of concept C

• Nodes represent elements of ∆I ; labeled with subconcepts of C

• Edges represent role-successorships between elements of ∆I

☞ T initialised with single root node labeled {C}

☞ Tableau rules repeatedly applied to node labels
• Extend labels or extend/modify T structure
• Rules can be blocked, e.g, if predecessor has superset label
• Nondeterministic rules −→ search possible extensions

☞ T contains Clash if obvious contradiction in some node label
• E.g., {A,¬A} ⊆ L(x) for some concept A and node x

☞ T fully expanded if no rules are applicable

☞ C satisfiable iff fully expanded clash free T found
• Trivial correspondence between such a T and a model of C

Reasoning with Expressive Description Logics – p. 4/27

Tableaux Algorithms — Details

☞ Work on tree T representing model I of concept C

• Nodes represent elements of ∆I ; labeled with subconcepts of C

• Edges represent role-successorships between elements of ∆I

☞ T initialised with single root node labeled {C}

☞ Tableau rules repeatedly applied to node labels
• Extend labels or extend/modify T structure
• Rules can be blocked, e.g, if predecessor has superset label
• Nondeterministic rules −→ search possible extensions

☞ T contains Clash if obvious contradiction in some node label
• E.g., {A,¬A} ⊆ L(x) for some concept A and node x

☞ T fully expanded if no rules are applicable

☞ C satisfiable iff fully expanded clash free T found
• Trivial correspondence between such a T and a model of C

Reasoning with Expressive Description Logics – p. 4/27

Tableaux Algorithms — Details

☞ Work on tree T representing model I of concept C

• Nodes represent elements of ∆I ; labeled with subconcepts of C

• Edges represent role-successorships between elements of ∆I

☞ T initialised with single root node labeled {C}

☞ Tableau rules repeatedly applied to node labels
• Extend labels or extend/modify T structure
• Rules can be blocked, e.g, if predecessor has superset label
• Nondeterministic rules −→ search possible extensions

☞ T contains Clash if obvious contradiction in some node label
• E.g., {A,¬A} ⊆ L(x) for some concept A and node x

☞ T fully expanded if no rules are applicable

☞ C satisfiable iff fully expanded clash free T found
• Trivial correspondence between such a T and a model of C

Reasoning with Expressive Description Logics – p. 4/27

Tableaux Algorithms — Details

☞ Work on tree T representing model I of concept C

• Nodes represent elements of ∆I ; labeled with subconcepts of C

• Edges represent role-successorships between elements of ∆I

☞ T initialised with single root node labeled {C}

☞ Tableau rules repeatedly applied to node labels
• Extend labels or extend/modify T structure
• Rules can be blocked, e.g, if predecessor has superset label
• Nondeterministic rules −→ search possible extensions

☞ T contains Clash if obvious contradiction in some node label
• E.g., {A,¬A} ⊆ L(x) for some concept A and node x

☞ T fully expanded if no rules are applicable

☞ C satisfiable iff fully expanded clash free T found
• Trivial correspondence between such a T and a model of C

Reasoning with Expressive Description Logics – p. 4/27

Tableaux Rules for ALC

→u

x {∃R.C, . . .} x

{C}

{∃R.C, . . .}
R

y

x

R

y {C, . . .}y

R

x {∀R.C, . . .}

{. . .}

{∀R.C, . . .}

→∃

→∀

→t

for C ∈ {C1, C2}

x {C1 u C2, C, . . .}

x {C1 u C2, C1, C2, . . .}

x {C1 t C2, . . .}

x {C1 u C2, . . .}

Reasoning with Expressive Description Logics – p. 5/27

Tableaux Rules for ALC

� �� � � �� �
� �� �

� �� �
� �

� �
	 	

� �

� �

� �� �
� �� �

� �� �
� �� �

� �� �

� �� �

� ��
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

� �

→u

x {∃R.C, . . .} x

{C}

{∃R.C, . . .}
R

y

x

R

y {C, . . .}y

R

x {∀R.C, . . .}

{. . .}

{∀R.C, . . .}

→∃

→∀

→t

for C ∈ {C1, C2}

x {C1 u C2, C, . . .}

x {C1 u C2, C1, C2, . . .}

x {C1 t C2, . . .}

x {C1 u C2, . . .}

Reasoning with Expressive Description Logics – p. 5/27

Tableaux Rule for Transitive Roles

x

R

yy

R

x {∀R.C, . . .}

{. . .}

{∀R.C, . . .}

{∀R.C, . . .}

→∀+

Where R is a transitive role (i.e., (RI)+ = RI)

☞ No longer naturally terminating (e.g., if C = ∃R.>)

☞ Need blocking
• Simple blocking suffices for ALC plus transitive roles
• I.e., do not expand node label if ancestor has superset label
• More expressive logics (e.g., with inverse roles) need more

sophisticated blocking strategies

Reasoning with Expressive Description Logics – p. 6/27

Tableaux Rule for Transitive Roles

� �� �
� � ! !" "

#$ $

% %

&
&

&
&

&
&

&
&

&
&

&
&

' '(()
)

)
)

)
)

)
)

)
)

)
)

*
*

*
*

*x

R

yy

R

x {∀R.C, . . .}

{. . .}

{∀R.C, . . .}

{∀R.C, . . .}

→∀+

Where R is a transitive role (i.e., (RI)+ = RI)

☞ No longer naturally terminating (e.g., if C = ∃R.>)

☞ Need blocking
• Simple blocking suffices for ALC plus transitive roles
• I.e., do not expand node label if ancestor has superset label
• More expressive logics (e.g., with inverse roles) need more

sophisticated blocking strategies

Reasoning with Expressive Description Logics – p. 6/27

Tableaux Rule for Transitive Roles

+ +, ,
- -. ./ /0 0

1 12 2

3 3

4
4

4
4

4
4

4
4

4
4

4
4

5 56 67
7

7
7

7
7

7
7

7
7

7
7

8
8

8
8

8x

R

yy

R

x {∀R.C, . . .}

{. . .}

{∀R.C, . . .}

{∀R.C, . . .}

→∀+

Where R is a transitive role (i.e., (RI)+ = RI)

☞ No longer naturally terminating (e.g., if C = ∃R.>)

☞ Need blocking
• Simple blocking suffices for ALC plus transitive roles
• I.e., do not expand node label if ancestor has superset label
• More expressive logics (e.g., with inverse roles) need more

sophisticated blocking strategies

Reasoning with Expressive Description Logics – p. 6/27

Tableaux Rule for Transitive Roles

9 9: :
; ;< <= => >

? ?@ @

A A

B
B

B
B

B
B

B
B

B
B

B
B

C CD DE
E

E
E

E
E

E
E

E
E

E
E

F
F

F
F

Fx

R

yy

R

x {∀R.C, . . .}

{. . .}

{∀R.C, . . .}

{∀R.C, . . .}

→∀+

Where R is a transitive role (i.e., (RI)+ = RI)

☞ No longer naturally terminating (e.g., if C = ∃R.>)

☞ Need blocking
• Simple blocking suffices for ALC plus transitive roles
• I.e., do not expand node label if ancestor has superset label
• More expressive logics (e.g., with inverse roles) need more

sophisticated blocking strategies

Reasoning with Expressive Description Logics – p. 6/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

L(w) = {∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

L(w) = {∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

L(x) = {C} x

S

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

L(w) = {∃S.C, ∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

L(x) = {C} x

S

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

L(x) = {C,¬C t ¬D} x

S

L(w) = {∃S.C, ∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

L(x) = {C,¬C t ¬D} x

S

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x

S

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

L(x) = {C, (¬C t ¬D),¬C}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x

S

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

clashL(x) = {C, (¬C t ¬D),¬C}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

L(x) = {C,¬C t ¬D} x

S

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x

S

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

L(x) = {C, (¬C t ¬D),¬D}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

xL(x) = {C, (¬C t ¬D),¬D}

S

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C, ∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C}L(x) = {C, (¬C t ¬D),¬D}

RS

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C, ∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C}L(x) = {C, (¬C t ¬D),¬D}

RS

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C, ∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C, ∃R.C,∀R.(∃R.C)}L(x) = {C, (¬C t ¬D),¬D}

RS

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C, ∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C, ∃R.C, ∀R.(∃R.C)}L(x) = {C, (¬C t ¬D),¬D}

RS

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C, ∃R.C, ∀R.(∃R.C)}L(x) = {C, (¬C t ¬D),¬D}

z L(z) = {C}

RS

R

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C, ∃R.C, ∀R.(∃R.C)}L(x) = {C, (¬C t ¬D),¬D}

z L(z) = {C}

RS

R

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C, ∃R.C, ∀R.(∃R.C)}L(x) = {C, (¬C t ¬D),¬D}

z L(z) = {C, ∃R.C,∀R.(∃R.C)}

RS

R

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C, ∃R.C,∀R.(∃R.C)}L(x) = {C, (¬C t ¬D),¬D}

z L(z) = {C, ∃R.C,∀R.(∃R.C)}

RS

R

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

blocked

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C, ∃R.C,∀R.(∃R.C)}L(x) = {C, (¬C t ¬D),¬D}

z L(z) = {C, ∃R.C,∀R.(∃R.C)}

RS

R

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

blocked

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of ∃S.C u ∀S.(¬C t ¬D) u ∃R.C u ∀R.(∃R.C)} where R is
a transitive role

w

x y L(y) = {C, ∃R.C,∀R.(∃R.C)}L(x) = {C, (¬C t ¬D),¬D}

RS

L(w) = {∃S.C,∀S.(¬C t ¬D), ∃R.C,∀R.(∃R.C)}

R

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics – p. 7/27

More Advanced Techniques

Satisfiability w.r.t. a Terminology
☞ For each axiom C v D ∈ T , add ¬C t D to every node label

More expressive DLs
☞ Basic technique can be extended to deal with

• Role inclusion axioms (role hierarchy)
• Number restrictions
• Inverse roles
• Concrete domains and datatypes
• Aboxes
• etc.

☞ Extend expansion rules and use more sophisticated blocking
strategy

☞ Forest instead of Tree (for Aboxes)
• Root nodes correspond to individuals in Abox

Reasoning with Expressive Description Logics – p. 8/27

More Advanced Techniques

Satisfiability w.r.t. a Terminology
☞ For each axiom C v D ∈ T , add ¬C t D to every node label

More expressive DLs
☞ Basic technique can be extended to deal with

• Role inclusion axioms (role hierarchy)
• Number restrictions
• Inverse roles
• Concrete domains and datatypes
• Aboxes
• etc.

☞ Extend expansion rules and use more sophisticated blocking
strategy

☞ Forest instead of Tree (for Aboxes)
• Root nodes correspond to individuals in Abox

Reasoning with Expressive Description Logics – p. 8/27

More Advanced Techniques

Satisfiability w.r.t. a Terminology
☞ For each axiom C v D ∈ T , add ¬C t D to every node label

More expressive DLs

☞ Basic technique can be extended to deal with
• Role inclusion axioms (role hierarchy)
• Number restrictions
• Inverse roles
• Concrete domains and datatypes
• Aboxes
• etc.

☞ Extend expansion rules and use more sophisticated blocking
strategy

☞ Forest instead of Tree (for Aboxes)
• Root nodes correspond to individuals in Abox

Reasoning with Expressive Description Logics – p. 8/27

More Advanced Techniques

Satisfiability w.r.t. a Terminology
☞ For each axiom C v D ∈ T , add ¬C t D to every node label

More expressive DLs
☞ Basic technique can be extended to deal with

• Role inclusion axioms (role hierarchy)
• Number restrictions
• Inverse roles
• Concrete domains and datatypes
• Aboxes
• etc.

☞ Extend expansion rules and use more sophisticated blocking
strategy

☞ Forest instead of Tree (for Aboxes)
• Root nodes correspond to individuals in Abox

Reasoning with Expressive Description Logics – p. 8/27

More Advanced Techniques

Satisfiability w.r.t. a Terminology
☞ For each axiom C v D ∈ T , add ¬C t D to every node label

More expressive DLs
☞ Basic technique can be extended to deal with

• Role inclusion axioms (role hierarchy)
• Number restrictions
• Inverse roles
• Concrete domains and datatypes
• Aboxes
• etc.

☞ Extend expansion rules and use more sophisticated blocking
strategy

☞ Forest instead of Tree (for Aboxes)
• Root nodes correspond to individuals in Abox

Reasoning with Expressive Description Logics – p. 8/27

More Advanced Techniques

Satisfiability w.r.t. a Terminology
☞ For each axiom C v D ∈ T , add ¬C t D to every node label

More expressive DLs
☞ Basic technique can be extended to deal with

• Role inclusion axioms (role hierarchy)
• Number restrictions
• Inverse roles
• Concrete domains and datatypes
• Aboxes
• etc.

☞ Extend expansion rules and use more sophisticated blocking
strategy

☞ Forest instead of Tree (for Aboxes)
• Root nodes correspond to individuals in Abox

Reasoning with Expressive Description Logics – p. 8/27

Implementing DL Systems

Reasoning with Expressive Description Logics – p. 9/27

Naive Implementations

Problems include:

☞ Space usage
• Storage required for tableaux datastructures
• Rarely a serious problem in practice
• But problems can arise with inverse roles and cyclical KBs

☞ Time usage
• Search required due to non-deterministic expansion
• Serious problem in practice
• Mitigated by:

– Careful choice of algorithm
– Highly optimised implementation

Reasoning with Expressive Description Logics – p. 10/27

Naive Implementations

Problems include:

☞ Space usage

• Storage required for tableaux datastructures
• Rarely a serious problem in practice
• But problems can arise with inverse roles and cyclical KBs

☞ Time usage
• Search required due to non-deterministic expansion
• Serious problem in practice
• Mitigated by:

– Careful choice of algorithm
– Highly optimised implementation

Reasoning with Expressive Description Logics – p. 10/27

Naive Implementations

Problems include:

☞ Space usage
• Storage required for tableaux datastructures

• Rarely a serious problem in practice
• But problems can arise with inverse roles and cyclical KBs

☞ Time usage
• Search required due to non-deterministic expansion
• Serious problem in practice
• Mitigated by:

– Careful choice of algorithm
– Highly optimised implementation

Reasoning with Expressive Description Logics – p. 10/27

Naive Implementations

Problems include:

☞ Space usage
• Storage required for tableaux datastructures
• Rarely a serious problem in practice

• But problems can arise with inverse roles and cyclical KBs

☞ Time usage
• Search required due to non-deterministic expansion
• Serious problem in practice
• Mitigated by:

– Careful choice of algorithm
– Highly optimised implementation

Reasoning with Expressive Description Logics – p. 10/27

Naive Implementations

Problems include:

☞ Space usage
• Storage required for tableaux datastructures
• Rarely a serious problem in practice
• But problems can arise with inverse roles and cyclical KBs

☞ Time usage
• Search required due to non-deterministic expansion
• Serious problem in practice
• Mitigated by:

– Careful choice of algorithm
– Highly optimised implementation

Reasoning with Expressive Description Logics – p. 10/27

Naive Implementations

Problems include:

☞ Space usage
• Storage required for tableaux datastructures
• Rarely a serious problem in practice
• But problems can arise with inverse roles and cyclical KBs

☞ Time usage

• Search required due to non-deterministic expansion
• Serious problem in practice
• Mitigated by:

– Careful choice of algorithm
– Highly optimised implementation

Reasoning with Expressive Description Logics – p. 10/27

Naive Implementations

Problems include:

☞ Space usage
• Storage required for tableaux datastructures
• Rarely a serious problem in practice
• But problems can arise with inverse roles and cyclical KBs

☞ Time usage
• Search required due to non-deterministic expansion

• Serious problem in practice
• Mitigated by:

– Careful choice of algorithm
– Highly optimised implementation

Reasoning with Expressive Description Logics – p. 10/27

Naive Implementations

Problems include:

☞ Space usage
• Storage required for tableaux datastructures
• Rarely a serious problem in practice
• But problems can arise with inverse roles and cyclical KBs

☞ Time usage
• Search required due to non-deterministic expansion
• Serious problem in practice

• Mitigated by:
– Careful choice of algorithm
– Highly optimised implementation

Reasoning with Expressive Description Logics – p. 10/27

Naive Implementations

Problems include:

☞ Space usage
• Storage required for tableaux datastructures
• Rarely a serious problem in practice
• But problems can arise with inverse roles and cyclical KBs

☞ Time usage
• Search required due to non-deterministic expansion
• Serious problem in practice
• Mitigated by:

– Careful choice of algorithm
– Highly optimised implementation

Reasoning with Expressive Description Logics – p. 10/27

Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure
• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions
• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings
• GCI axioms can be used to “encode” additional

operators/axioms
• Powerful technique, particularly when used with FL closure
• Can encode cardinality constraints, inverse roles, range/domain,

. . .
– E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms
• BUT even simple domain encoding is disastrous with large

numbers of roles

Reasoning with Expressive Description Logics – p. 11/27

Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure

• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions
• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings
• GCI axioms can be used to “encode” additional

operators/axioms
• Powerful technique, particularly when used with FL closure
• Can encode cardinality constraints, inverse roles, range/domain,

. . .
– E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms
• BUT even simple domain encoding is disastrous with large

numbers of roles

Reasoning with Expressive Description Logics – p. 11/27

Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure
• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions
• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings
• GCI axioms can be used to “encode” additional

operators/axioms
• Powerful technique, particularly when used with FL closure
• Can encode cardinality constraints, inverse roles, range/domain,

. . .
– E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms
• BUT even simple domain encoding is disastrous with large

numbers of roles

Reasoning with Expressive Description Logics – p. 11/27

Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure
• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions

• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings
• GCI axioms can be used to “encode” additional

operators/axioms
• Powerful technique, particularly when used with FL closure
• Can encode cardinality constraints, inverse roles, range/domain,

. . .
– E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms
• BUT even simple domain encoding is disastrous with large

numbers of roles

Reasoning with Expressive Description Logics – p. 11/27

Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure
• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions
• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings
• GCI axioms can be used to “encode” additional

operators/axioms
• Powerful technique, particularly when used with FL closure
• Can encode cardinality constraints, inverse roles, range/domain,

. . .
– E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms
• BUT even simple domain encoding is disastrous with large

numbers of roles

Reasoning with Expressive Description Logics – p. 11/27

Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure
• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions
• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings

• GCI axioms can be used to “encode” additional
operators/axioms

• Powerful technique, particularly when used with FL closure
• Can encode cardinality constraints, inverse roles, range/domain,

. . .
– E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms
• BUT even simple domain encoding is disastrous with large

numbers of roles

Reasoning with Expressive Description Logics – p. 11/27

Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure
• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions
• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings
• GCI axioms can be used to “encode” additional

operators/axioms

• Powerful technique, particularly when used with FL closure
• Can encode cardinality constraints, inverse roles, range/domain,

. . .
– E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms
• BUT even simple domain encoding is disastrous with large

numbers of roles

Reasoning with Expressive Description Logics – p. 11/27

Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure
• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions
• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings
• GCI axioms can be used to “encode” additional

operators/axioms
• Powerful technique, particularly when used with FL closure

• Can encode cardinality constraints, inverse roles, range/domain,
. . .
– E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms
• BUT even simple domain encoding is disastrous with large

numbers of roles

Reasoning with Expressive Description Logics – p. 11/27

Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure
• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions
• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings
• GCI axioms can be used to “encode” additional

operators/axioms
• Powerful technique, particularly when used with FL closure
• Can encode cardinality constraints, inverse roles, range/domain,

. . .

– E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms
• BUT even simple domain encoding is disastrous with large

numbers of roles

Reasoning with Expressive Description Logics – p. 11/27

Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure
• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions
• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings
• GCI axioms can be used to “encode” additional

operators/axioms
• Powerful technique, particularly when used with FL closure
• Can encode cardinality constraints, inverse roles, range/domain,

. . .
– E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms
• BUT even simple domain encoding is disastrous with large

numbers of roles

Reasoning with Expressive Description Logics – p. 11/27

Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure
• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions
• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings
• GCI axioms can be used to “encode” additional

operators/axioms
• Powerful technique, particularly when used with FL closure
• Can encode cardinality constraints, inverse roles, range/domain,

. . .
– E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms

• BUT even simple domain encoding is disastrous with large
numbers of roles

Reasoning with Expressive Description Logics – p. 11/27

Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure
• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions
• Cycles always represent (part of) valid cyclical models

☞ Direct algorithm/implementation instead of encodings
• GCI axioms can be used to “encode” additional

operators/axioms
• Powerful technique, particularly when used with FL closure
• Can encode cardinality constraints, inverse roles, range/domain,

. . .
– E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms
• BUT even simple domain encoding is disastrous with large

numbers of roles

Reasoning with Expressive Description Logics – p. 11/27

Highly Optimised Implementation

☞ Naive implementation −→ effective non-termination

☞ Modern systems include MANY optimisations

☞ Optimised classification (compute partial ordering)
• Use enhanced traversal (exploit information from previous tests)
• Use structural information to select classification order

☞ Optimised subsumption testing (search for models)
• Normalisation and simplification of concepts
• Absorption (rewriting) of general axioms
• Davis-Putnam style semantic branching search
• Dependency directed backtracking
• Caching of satisfiability results and (partial) models
• Heuristic ordering of propositional and modal expansion
• . . .

Reasoning with Expressive Description Logics – p. 12/27

Highly Optimised Implementation

☞ Naive implementation −→ effective non-termination

☞ Modern systems include MANY optimisations

☞ Optimised classification (compute partial ordering)
• Use enhanced traversal (exploit information from previous tests)
• Use structural information to select classification order

☞ Optimised subsumption testing (search for models)
• Normalisation and simplification of concepts
• Absorption (rewriting) of general axioms
• Davis-Putnam style semantic branching search
• Dependency directed backtracking
• Caching of satisfiability results and (partial) models
• Heuristic ordering of propositional and modal expansion
• . . .

Reasoning with Expressive Description Logics – p. 12/27

Highly Optimised Implementation

☞ Naive implementation −→ effective non-termination

☞ Modern systems include MANY optimisations

☞ Optimised classification (compute partial ordering)
• Use enhanced traversal (exploit information from previous tests)
• Use structural information to select classification order

☞ Optimised subsumption testing (search for models)
• Normalisation and simplification of concepts
• Absorption (rewriting) of general axioms
• Davis-Putnam style semantic branching search
• Dependency directed backtracking
• Caching of satisfiability results and (partial) models
• Heuristic ordering of propositional and modal expansion
• . . .

Reasoning with Expressive Description Logics – p. 12/27

Highly Optimised Implementation

☞ Naive implementation −→ effective non-termination

☞ Modern systems include MANY optimisations

☞ Optimised classification (compute partial ordering)
• Use enhanced traversal (exploit information from previous tests)
• Use structural information to select classification order

☞ Optimised subsumption testing (search for models)
• Normalisation and simplification of concepts
• Absorption (rewriting) of general axioms
• Davis-Putnam style semantic branching search
• Dependency directed backtracking
• Caching of satisfiability results and (partial) models
• Heuristic ordering of propositional and modal expansion
• . . .

Reasoning with Expressive Description Logics – p. 12/27

Highly Optimised Implementation

☞ Naive implementation −→ effective non-termination

☞ Modern systems include MANY optimisations

☞ Optimised classification (compute partial ordering)
• Use enhanced traversal (exploit information from previous tests)
• Use structural information to select classification order

☞ Optimised subsumption testing (search for models)
• Normalisation and simplification of concepts
• Absorption (rewriting) of general axioms
• Davis-Putnam style semantic branching search
• Dependency directed backtracking
• Caching of satisfiability results and (partial) models
• Heuristic ordering of propositional and modal expansion
• . . .

Reasoning with Expressive Description Logics – p. 12/27

Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping
• Tag concepts introduced at branch points (e.g., when

expanding disjunctions)
• Expansion rules combine and propagate tags
• On discovering a clash, identify most recently introduced

concepts involved
• Jump back to relevant branch points without exploring

alternative branches
• Effect is to prune away part of the search space

☞ Highly effective — essential for usable system
• E.g., GALEN KB, 30s (with) −→ months++ (without)

Reasoning with Expressive Description Logics – p. 13/27

Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping
• Tag concepts introduced at branch points (e.g., when

expanding disjunctions)
• Expansion rules combine and propagate tags
• On discovering a clash, identify most recently introduced

concepts involved
• Jump back to relevant branch points without exploring

alternative branches
• Effect is to prune away part of the search space

☞ Highly effective — essential for usable system
• E.g., GALEN KB, 30s (with) −→ months++ (without)

Reasoning with Expressive Description Logics – p. 13/27

Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping

• Tag concepts introduced at branch points (e.g., when
expanding disjunctions)

• Expansion rules combine and propagate tags
• On discovering a clash, identify most recently introduced

concepts involved
• Jump back to relevant branch points without exploring

alternative branches
• Effect is to prune away part of the search space

☞ Highly effective — essential for usable system
• E.g., GALEN KB, 30s (with) −→ months++ (without)

Reasoning with Expressive Description Logics – p. 13/27

Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping
• Tag concepts introduced at branch points (e.g., when

expanding disjunctions)

• Expansion rules combine and propagate tags
• On discovering a clash, identify most recently introduced

concepts involved
• Jump back to relevant branch points without exploring

alternative branches
• Effect is to prune away part of the search space

☞ Highly effective — essential for usable system
• E.g., GALEN KB, 30s (with) −→ months++ (without)

Reasoning with Expressive Description Logics – p. 13/27

Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping
• Tag concepts introduced at branch points (e.g., when

expanding disjunctions)
• Expansion rules combine and propagate tags

• On discovering a clash, identify most recently introduced
concepts involved

• Jump back to relevant branch points without exploring
alternative branches

• Effect is to prune away part of the search space

☞ Highly effective — essential for usable system
• E.g., GALEN KB, 30s (with) −→ months++ (without)

Reasoning with Expressive Description Logics – p. 13/27

Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping
• Tag concepts introduced at branch points (e.g., when

expanding disjunctions)
• Expansion rules combine and propagate tags
• On discovering a clash, identify most recently introduced

concepts involved

• Jump back to relevant branch points without exploring
alternative branches

• Effect is to prune away part of the search space

☞ Highly effective — essential for usable system
• E.g., GALEN KB, 30s (with) −→ months++ (without)

Reasoning with Expressive Description Logics – p. 13/27

Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping
• Tag concepts introduced at branch points (e.g., when

expanding disjunctions)
• Expansion rules combine and propagate tags
• On discovering a clash, identify most recently introduced

concepts involved
• Jump back to relevant branch points without exploring

alternative branches

• Effect is to prune away part of the search space

☞ Highly effective — essential for usable system
• E.g., GALEN KB, 30s (with) −→ months++ (without)

Reasoning with Expressive Description Logics – p. 13/27

Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping
• Tag concepts introduced at branch points (e.g., when

expanding disjunctions)
• Expansion rules combine and propagate tags
• On discovering a clash, identify most recently introduced

concepts involved
• Jump back to relevant branch points without exploring

alternative branches
• Effect is to prune away part of the search space

☞ Highly effective — essential for usable system
• E.g., GALEN KB, 30s (with) −→ months++ (without)

Reasoning with Expressive Description Logics – p. 13/27

Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping
• Tag concepts introduced at branch points (e.g., when

expanding disjunctions)
• Expansion rules combine and propagate tags
• On discovering a clash, identify most recently introduced

concepts involved
• Jump back to relevant branch points without exploring

alternative branches
• Effect is to prune away part of the search space

☞ Highly effective — essential for usable system
• E.g., GALEN KB, 30s (with) −→ months++ (without)

Reasoning with Expressive Description Logics – p. 13/27

Backjumping

E.g., if ∃R.¬A u ∀R.(A u B) u (C1 t D1) u . . . u (Cn t Dn) ⊆ L(x)

Reasoning with Expressive Description Logics – p. 14/27

Backjumping

E.g., if ∃R.¬A u ∀R.(A u B) u (C1 t D1) u . . . u (Cn t Dn) ⊆ L(x)

x

Reasoning with Expressive Description Logics – p. 14/27

Backjumping

E.g., if ∃R.¬A u ∀R.(A u B) u (C1 t D1) u . . . u (Cn t Dn) ⊆ L(x)

t

L(x) ∪ {C1}

x

x

Reasoning with Expressive Description Logics – p. 14/27

Backjumping

E.g., if ∃R.¬A u ∀R.(A u B) u (C1 t D1) u . . . u (Cn t Dn) ⊆ L(x)

t

L(x) ∪ {C1}

x

x

x

t

L(x) ∪ {Cn-1}

Reasoning with Expressive Description Logics – p. 14/27

Backjumping

E.g., if ∃R.¬A u ∀R.(A u B) u (C1 t D1) u . . . u (Cn t Dn) ⊆ L(x)

t

L(x) ∪ {C1}

L(x) ∪ {Cn}

x

x

x

x
t

t

L(x) ∪ {Cn-1}

Reasoning with Expressive Description Logics – p. 14/27

Backjumping

E.g., if ∃R.¬A u ∀R.(A u B) u (C1 t D1) u . . . u (Cn t Dn) ⊆ L(x)

clash

t

R

L(x) ∪ {C1}

L(x) ∪ {Cn}

L(y) = {(A u B),¬A, A, B}

x

x

x

y

x
t

t

L(x) ∪ {Cn-1}

Reasoning with Expressive Description Logics – p. 14/27

Backjumping

E.g., if ∃R.¬A u ∀R.(A u B) u (C1 t D1) u . . . u (Cn t Dn) ⊆ L(x)

clashclash

t

R

L(x) ∪ {C1}

L(x) ∪ {Cn}

L(y) = {(A u B),¬A, A, B}

x

x

x

y

x

x L(x) ∪ {¬Cn, Dn}

y L(y) = {(A u B),¬A, A, B}

R

t

t

t

L(x) ∪ {Cn-1}

Reasoning with Expressive Description Logics – p. 14/27

Backjumping

E.g., if ∃R.¬A u ∀R.(A u B) u (C1 t D1) u . . . u (Cn t Dn) ⊆ L(x)

clashclash

t

t

t

R

L(x) ∪ {C1} L(x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

L(x) ∪ {Cn}

L(y) = {(A u B),¬A, A, B}

x

x

x

y

x

x L(x) ∪ {¬Cn, Dn}

y L(y) = {(A u B),¬A, A, B}

R

t

t

t

L(x) ∪ {Cn-1}

Reasoning with Expressive Description Logics – p. 14/27

Backjumping

E.g., if ∃R.¬A u ∀R.(A u B) u (C1 t D1) u . . . u (Cn t Dn) ⊆ L(x)

PruningBackjump

clashclash . . .

t

t

t

R

L(x) ∪ {C1} L(x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

L(x) ∪ {Cn}

L(y) = {(A u B),¬A, A, B}

x

x

x

y

x

x L(x) ∪ {¬Cn, Dn}

y L(y) = {(A u B),¬A, A, B}

R

t

t

t

L(x) ∪ {Cn-1}

. . .

Reasoning with Expressive Description Logics – p. 14/27

Research Challenges

Reasoning with Expressive Description Logics – p. 15/27

Challenges

☞ Increased expressive power
• Existing DL systems implement (at most) SHIQ

• OWL extends SHIQ with datatypes and nominals

☞ Scalability
• Very large KBs
• Reasoning with (very large numbers of) individuals

☞ Other reasoning tasks
• Querying
• Matching
• Least common subsumer
• . . .

☞ Tools and Infrastructure
• Support for large scale ontological engineering and deployment

Reasoning with Expressive Description Logics – p. 16/27

Challenges

☞ Increased expressive power
• Existing DL systems implement (at most) SHIQ

• OWL extends SHIQ with datatypes and nominals

☞ Scalability
• Very large KBs
• Reasoning with (very large numbers of) individuals

☞ Other reasoning tasks
• Querying
• Matching
• Least common subsumer
• . . .

☞ Tools and Infrastructure
• Support for large scale ontological engineering and deployment

Reasoning with Expressive Description Logics – p. 16/27

Challenges

☞ Increased expressive power
• Existing DL systems implement (at most) SHIQ

• OWL extends SHIQ with datatypes and nominals

☞ Scalability
• Very large KBs
• Reasoning with (very large numbers of) individuals

☞ Other reasoning tasks
• Querying
• Matching
• Least common subsumer
• . . .

☞ Tools and Infrastructure
• Support for large scale ontological engineering and deployment

Reasoning with Expressive Description Logics – p. 16/27

Challenges

☞ Increased expressive power
• Existing DL systems implement (at most) SHIQ

• OWL extends SHIQ with datatypes and nominals

☞ Scalability
• Very large KBs
• Reasoning with (very large numbers of) individuals

☞ Other reasoning tasks
• Querying
• Matching
• Least common subsumer
• . . .

☞ Tools and Infrastructure
• Support for large scale ontological engineering and deployment

Reasoning with Expressive Description Logics – p. 16/27

Challenges

☞ Increased expressive power
• Existing DL systems implement (at most) SHIQ

• OWL extends SHIQ with datatypes and nominals

☞ Scalability
• Very large KBs
• Reasoning with (very large numbers of) individuals

☞ Other reasoning tasks
• Querying
• Matching
• Least common subsumer
• . . .

☞ Tools and Infrastructure
• Support for large scale ontological engineering and deployment

Reasoning with Expressive Description Logics – p. 16/27

Increased Expressive Power: Datatypes

☞ OWL has simple form of datatypes
• Unary predicates plus disjoint object-class/datatype domains

☞ Well understood theoretically
• Existing work on concrete domains [Baader & Hanschke, Lutz]
• Algorithm already known for SHOQ(D) [Horrocks & Sattler]
• Can use hybrid reasoning (DL reasoner + datatype “oracle”)

☞ May be practically challenging
• All XMLS datatypes supported (?)

☞ Already seeing some (partial) implementations
• Cerebra system (Network Inference), Racer system (Hamburg)

Reasoning with Expressive Description Logics – p. 17/27

Increased Expressive Power: Datatypes

☞ OWL has simple form of datatypes
• Unary predicates plus disjoint object-class/datatype domains

☞ Well understood theoretically
• Existing work on concrete domains [Baader & Hanschke, Lutz]
• Algorithm already known for SHOQ(D) [Horrocks & Sattler]
• Can use hybrid reasoning (DL reasoner + datatype “oracle”)

☞ May be practically challenging
• All XMLS datatypes supported (?)

☞ Already seeing some (partial) implementations
• Cerebra system (Network Inference), Racer system (Hamburg)

Reasoning with Expressive Description Logics – p. 17/27

Increased Expressive Power: Datatypes

☞ OWL has simple form of datatypes
• Unary predicates plus disjoint object-class/datatype domains

☞ Well understood theoretically
• Existing work on concrete domains [Baader & Hanschke, Lutz]
• Algorithm already known for SHOQ(D) [Horrocks & Sattler]
• Can use hybrid reasoning (DL reasoner + datatype “oracle”)

☞ May be practically challenging
• All XMLS datatypes supported (?)

☞ Already seeing some (partial) implementations
• Cerebra system (Network Inference), Racer system (Hamburg)

Reasoning with Expressive Description Logics – p. 17/27

Increased Expressive Power: Datatypes

☞ OWL has simple form of datatypes
• Unary predicates plus disjoint object-class/datatype domains

☞ Well understood theoretically
• Existing work on concrete domains [Baader & Hanschke, Lutz]
• Algorithm already known for SHOQ(D) [Horrocks & Sattler]
• Can use hybrid reasoning (DL reasoner + datatype “oracle”)

☞ May be practically challenging
• All XMLS datatypes supported (?)

☞ Already seeing some (partial) implementations
• Cerebra system (Network Inference), Racer system (Hamburg)

Reasoning with Expressive Description Logics – p. 17/27

Increased Expressive Power: Datatypes

☞ OWL has simple form of datatypes
• Unary predicates plus disjoint object-class/datatype domains

☞ Well understood theoretically
• Existing work on concrete domains [Baader & Hanschke, Lutz]
• Algorithm already known for SHOQ(D) [Horrocks & Sattler]
• Can use hybrid reasoning (DL reasoner + datatype “oracle”)

☞ May be practically challenging
• All XMLS datatypes supported (?)

☞ Already seeing some (partial) implementations
• Cerebra system (Network Inference), Racer system (Hamburg)

Reasoning with Expressive Description Logics – p. 17/27

Increased Expressive Power: Nominals

☞ OWL oneOf constructor equivalent to hybrid logic nominals
• Extensionally defined concepts, e.g., EU ≡ {France, Italy, . . .}

☞ Theoretically very challenging
• Resulting logic has known high complexity (NExpTime)
• No known “practical” algorithm
• Not obvious how to extend tableaux techniques in this direction

– Loss of tree model property
– Spy-points: > v ∃R.{Spy}

– Finite domains: {Spy} v 6nR−

☞ Standard solution is weaker semantics for nominals
• Treat nominals as (disjoint) primitive classes
• Loss of completeness/soundness

Reasoning with Expressive Description Logics – p. 18/27

Increased Expressive Power: Nominals

☞ OWL oneOf constructor equivalent to hybrid logic nominals
• Extensionally defined concepts, e.g., EU ≡ {France, Italy, . . .}

☞ Theoretically very challenging
• Resulting logic has known high complexity (NExpTime)
• No known “practical” algorithm
• Not obvious how to extend tableaux techniques in this direction

– Loss of tree model property
– Spy-points: > v ∃R.{Spy}

– Finite domains: {Spy} v 6nR−

☞ Standard solution is weaker semantics for nominals
• Treat nominals as (disjoint) primitive classes
• Loss of completeness/soundness

Reasoning with Expressive Description Logics – p. 18/27

Increased Expressive Power: Nominals

☞ OWL oneOf constructor equivalent to hybrid logic nominals
• Extensionally defined concepts, e.g., EU ≡ {France, Italy, . . .}

☞ Theoretically very challenging
• Resulting logic has known high complexity (NExpTime)
• No known “practical” algorithm
• Not obvious how to extend tableaux techniques in this direction

– Loss of tree model property
– Spy-points: > v ∃R.{Spy}

– Finite domains: {Spy} v 6nR−

☞ Standard solution is weaker semantics for nominals
• Treat nominals as (disjoint) primitive classes
• Loss of completeness/soundness

Reasoning with Expressive Description Logics – p. 18/27

Increased Expressive Power: Nominals

☞ OWL oneOf constructor equivalent to hybrid logic nominals
• Extensionally defined concepts, e.g., EU ≡ {France, Italy, . . .}

☞ Theoretically very challenging
• Resulting logic has known high complexity (NExpTime)
• No known “practical” algorithm
• Not obvious how to extend tableaux techniques in this direction

– Loss of tree model property
– Spy-points: > v ∃R.{Spy}

– Finite domains: {Spy} v 6nR−

☞ Standard solution is weaker semantics for nominals
• Treat nominals as (disjoint) primitive classes
• Loss of completeness/soundness

Reasoning with Expressive Description Logics – p. 18/27

Increased Expressive Power: Extensions

☞ OWL not expressive enough for all applications

☞ Extensions wish list includes:
• Feature chain (path) agreement, e.g., output of component of

composite process equals input of subsequent process
• Complex roles/role inclusions, e.g., a city located in part of a

country is located in that country
• Rules—proposal(s) already exist for “datalog/LP style rules”
• Temporal and spatial reasoning
• . . .

☞ May be impossible/undesirable to resist such extensions

☞ Extended language sure to be undecidable

☞ How can extensions best be integrated with OWL?

☞ How can reasoners be developed/adapted for extended languages
• Some existing work on language fusions and hybrid reasoners

Reasoning with Expressive Description Logics – p. 19/27

Increased Expressive Power: Extensions

☞ OWL not expressive enough for all applications

☞ Extensions wish list includes:
• Feature chain (path) agreement, e.g., output of component of

composite process equals input of subsequent process
• Complex roles/role inclusions, e.g., a city located in part of a

country is located in that country
• Rules—proposal(s) already exist for “datalog/LP style rules”
• Temporal and spatial reasoning
• . . .

☞ May be impossible/undesirable to resist such extensions

☞ Extended language sure to be undecidable

☞ How can extensions best be integrated with OWL?

☞ How can reasoners be developed/adapted for extended languages
• Some existing work on language fusions and hybrid reasoners

Reasoning with Expressive Description Logics – p. 19/27

Increased Expressive Power: Extensions

☞ OWL not expressive enough for all applications

☞ Extensions wish list includes:
• Feature chain (path) agreement, e.g., output of component of

composite process equals input of subsequent process
• Complex roles/role inclusions, e.g., a city located in part of a

country is located in that country
• Rules—proposal(s) already exist for “datalog/LP style rules”
• Temporal and spatial reasoning
• . . .

☞ May be impossible/undesirable to resist such extensions

☞ Extended language sure to be undecidable

☞ How can extensions best be integrated with OWL?

☞ How can reasoners be developed/adapted for extended languages
• Some existing work on language fusions and hybrid reasoners

Reasoning with Expressive Description Logics – p. 19/27

Increased Expressive Power: Extensions

☞ OWL not expressive enough for all applications

☞ Extensions wish list includes:
• Feature chain (path) agreement, e.g., output of component of

composite process equals input of subsequent process
• Complex roles/role inclusions, e.g., a city located in part of a

country is located in that country
• Rules—proposal(s) already exist for “datalog/LP style rules”
• Temporal and spatial reasoning
• . . .

☞ May be impossible/undesirable to resist such extensions

☞ Extended language sure to be undecidable

☞ How can extensions best be integrated with OWL?

☞ How can reasoners be developed/adapted for extended languages
• Some existing work on language fusions and hybrid reasoners

Reasoning with Expressive Description Logics – p. 19/27

Increased Expressive Power: Extensions

☞ OWL not expressive enough for all applications

☞ Extensions wish list includes:
• Feature chain (path) agreement, e.g., output of component of

composite process equals input of subsequent process
• Complex roles/role inclusions, e.g., a city located in part of a

country is located in that country
• Rules—proposal(s) already exist for “datalog/LP style rules”
• Temporal and spatial reasoning
• . . .

☞ May be impossible/undesirable to resist such extensions

☞ Extended language sure to be undecidable

☞ How can extensions best be integrated with OWL?

☞ How can reasoners be developed/adapted for extended languages
• Some existing work on language fusions and hybrid reasoners

Reasoning with Expressive Description Logics – p. 19/27

Increased Expressive Power: Extensions

☞ OWL not expressive enough for all applications

☞ Extensions wish list includes:
• Feature chain (path) agreement, e.g., output of component of

composite process equals input of subsequent process
• Complex roles/role inclusions, e.g., a city located in part of a

country is located in that country
• Rules—proposal(s) already exist for “datalog/LP style rules”
• Temporal and spatial reasoning
• . . .

☞ May be impossible/undesirable to resist such extensions

☞ Extended language sure to be undecidable

☞ How can extensions best be integrated with OWL?

☞ How can reasoners be developed/adapted for extended languages
• Some existing work on language fusions and hybrid reasoners

Reasoning with Expressive Description Logics – p. 19/27

Scalability

☞ Reasoning hard (ExpTime) even without nominals (i.e., SHIQ)

☞ Web ontologies may grow very large

☞ Good empirical evidence of scalability/tractability for DL systems
• E.g., 5,000 (complex) classes; 100,000+ (simple) classes

☞ But evidence mostly w.r.t. SHF (no inverse)

☞ Problems can arise when SHF extended to SHIQ

• Important optimisations no longer (fully) work

☞ Reasoning with individuals
• Deployment of web ontologies will mean reasoning with

(possibly very large numbers of) individuals/tuples
• Unlikely that standard Abox techniques will be able to cope

Reasoning with Expressive Description Logics – p. 20/27

Scalability

☞ Reasoning hard (ExpTime) even without nominals (i.e., SHIQ)

☞ Web ontologies may grow very large

☞ Good empirical evidence of scalability/tractability for DL systems
• E.g., 5,000 (complex) classes; 100,000+ (simple) classes

☞ But evidence mostly w.r.t. SHF (no inverse)

☞ Problems can arise when SHF extended to SHIQ

• Important optimisations no longer (fully) work

☞ Reasoning with individuals
• Deployment of web ontologies will mean reasoning with

(possibly very large numbers of) individuals/tuples
• Unlikely that standard Abox techniques will be able to cope

Reasoning with Expressive Description Logics – p. 20/27

Scalability

☞ Reasoning hard (ExpTime) even without nominals (i.e., SHIQ)

☞ Web ontologies may grow very large

☞ Good empirical evidence of scalability/tractability for DL systems
• E.g., 5,000 (complex) classes; 100,000+ (simple) classes

☞ But evidence mostly w.r.t. SHF (no inverse)

☞ Problems can arise when SHF extended to SHIQ

• Important optimisations no longer (fully) work

☞ Reasoning with individuals
• Deployment of web ontologies will mean reasoning with

(possibly very large numbers of) individuals/tuples
• Unlikely that standard Abox techniques will be able to cope

Reasoning with Expressive Description Logics – p. 20/27

Scalability

☞ Reasoning hard (ExpTime) even without nominals (i.e., SHIQ)

☞ Web ontologies may grow very large

☞ Good empirical evidence of scalability/tractability for DL systems
• E.g., 5,000 (complex) classes; 100,000+ (simple) classes

☞ But evidence mostly w.r.t. SHF (no inverse)

☞ Problems can arise when SHF extended to SHIQ

• Important optimisations no longer (fully) work

☞ Reasoning with individuals
• Deployment of web ontologies will mean reasoning with

(possibly very large numbers of) individuals/tuples
• Unlikely that standard Abox techniques will be able to cope

Reasoning with Expressive Description Logics – p. 20/27

Scalability

☞ Reasoning hard (ExpTime) even without nominals (i.e., SHIQ)

☞ Web ontologies may grow very large

☞ Good empirical evidence of scalability/tractability for DL systems
• E.g., 5,000 (complex) classes; 100,000+ (simple) classes

☞ But evidence mostly w.r.t. SHF (no inverse)

☞ Problems can arise when SHF extended to SHIQ

• Important optimisations no longer (fully) work

☞ Reasoning with individuals
• Deployment of web ontologies will mean reasoning with

(possibly very large numbers of) individuals/tuples
• Unlikely that standard Abox techniques will be able to cope

Reasoning with Expressive Description Logics – p. 20/27

Scalability

☞ Reasoning hard (ExpTime) even without nominals (i.e., SHIQ)

☞ Web ontologies may grow very large

☞ Good empirical evidence of scalability/tractability for DL systems
• E.g., 5,000 (complex) classes; 100,000+ (simple) classes

☞ But evidence mostly w.r.t. SHF (no inverse)

☞ Problems can arise when SHF extended to SHIQ

• Important optimisations no longer (fully) work

☞ Reasoning with individuals
• Deployment of web ontologies will mean reasoning with

(possibly very large numbers of) individuals/tuples
• Unlikely that standard Abox techniques will be able to cope

Reasoning with Expressive Description Logics – p. 20/27

Scalability

☞ Reasoning hard (ExpTime) even without nominals (i.e., SHIQ)

☞ Web ontologies may grow very large

☞ Good empirical evidence of scalability/tractability for DL systems
• E.g., 5,000 (complex) classes; 100,000+ (simple) classes

☞ But evidence mostly w.r.t. SHF (no inverse)

☞ Problems can arise when SHF extended to SHIQ

• Important optimisations no longer (fully) work

☞ Reasoning with individuals
• Deployment of web ontologies will mean reasoning with

(possibly very large numbers of) individuals/tuples
• Unlikely that standard Abox techniques will be able to cope

Reasoning with Expressive Description Logics – p. 20/27

Performance Solutions (Maybe)

☞ Excessive memory usage
• Problem exacerbated by over-cautious double blocking condition

(e.g., root node can never block)
• Promising results from more precise blocking condition [Sattler

& Horrocks]

☞ Qualified number restrictions
• Problem exacerbated by naive expansion rules
• Promising results from optimised expansion using Algebraic

Methods [Haarslev & Möller]

☞ Caching and merging
• Can still work in some situations (work in progress)

☞ Reasoning with very large KBs
• DL systems shown to work with ≈100k concept KB [Haarslev &

Möller]
• But KB only exploited small part of DL language

Reasoning with Expressive Description Logics – p. 21/27

Performance Solutions (Maybe)

☞ Excessive memory usage

• Problem exacerbated by over-cautious double blocking condition
(e.g., root node can never block)

• Promising results from more precise blocking condition [Sattler
& Horrocks]

☞ Qualified number restrictions
• Problem exacerbated by naive expansion rules
• Promising results from optimised expansion using Algebraic

Methods [Haarslev & Möller]

☞ Caching and merging
• Can still work in some situations (work in progress)

☞ Reasoning with very large KBs
• DL systems shown to work with ≈100k concept KB [Haarslev &

Möller]
• But KB only exploited small part of DL language

Reasoning with Expressive Description Logics – p. 21/27

Performance Solutions (Maybe)

☞ Excessive memory usage
• Problem exacerbated by over-cautious double blocking condition

(e.g., root node can never block)
• Promising results from more precise blocking condition [Sattler

& Horrocks]

☞ Qualified number restrictions
• Problem exacerbated by naive expansion rules
• Promising results from optimised expansion using Algebraic

Methods [Haarslev & Möller]

☞ Caching and merging
• Can still work in some situations (work in progress)

☞ Reasoning with very large KBs
• DL systems shown to work with ≈100k concept KB [Haarslev &

Möller]
• But KB only exploited small part of DL language

Reasoning with Expressive Description Logics – p. 21/27

Performance Solutions (Maybe)

☞ Excessive memory usage
• Problem exacerbated by over-cautious double blocking condition

(e.g., root node can never block)
• Promising results from more precise blocking condition [Sattler

& Horrocks]

☞ Qualified number restrictions

• Problem exacerbated by naive expansion rules
• Promising results from optimised expansion using Algebraic

Methods [Haarslev & Möller]

☞ Caching and merging
• Can still work in some situations (work in progress)

☞ Reasoning with very large KBs
• DL systems shown to work with ≈100k concept KB [Haarslev &

Möller]
• But KB only exploited small part of DL language

Reasoning with Expressive Description Logics – p. 21/27

Performance Solutions (Maybe)

☞ Excessive memory usage
• Problem exacerbated by over-cautious double blocking condition

(e.g., root node can never block)
• Promising results from more precise blocking condition [Sattler

& Horrocks]

☞ Qualified number restrictions
• Problem exacerbated by naive expansion rules
• Promising results from optimised expansion using Algebraic

Methods [Haarslev & Möller]

☞ Caching and merging
• Can still work in some situations (work in progress)

☞ Reasoning with very large KBs
• DL systems shown to work with ≈100k concept KB [Haarslev &

Möller]
• But KB only exploited small part of DL language

Reasoning with Expressive Description Logics – p. 21/27

Performance Solutions (Maybe)

☞ Excessive memory usage
• Problem exacerbated by over-cautious double blocking condition

(e.g., root node can never block)
• Promising results from more precise blocking condition [Sattler

& Horrocks]

☞ Qualified number restrictions
• Problem exacerbated by naive expansion rules
• Promising results from optimised expansion using Algebraic

Methods [Haarslev & Möller]

☞ Caching and merging

• Can still work in some situations (work in progress)

☞ Reasoning with very large KBs
• DL systems shown to work with ≈100k concept KB [Haarslev &

Möller]
• But KB only exploited small part of DL language

Reasoning with Expressive Description Logics – p. 21/27

Performance Solutions (Maybe)

☞ Excessive memory usage
• Problem exacerbated by over-cautious double blocking condition

(e.g., root node can never block)
• Promising results from more precise blocking condition [Sattler

& Horrocks]

☞ Qualified number restrictions
• Problem exacerbated by naive expansion rules
• Promising results from optimised expansion using Algebraic

Methods [Haarslev & Möller]

☞ Caching and merging
• Can still work in some situations (work in progress)

☞ Reasoning with very large KBs
• DL systems shown to work with ≈100k concept KB [Haarslev &

Möller]
• But KB only exploited small part of DL language

Reasoning with Expressive Description Logics – p. 21/27

Performance Solutions (Maybe)

☞ Excessive memory usage
• Problem exacerbated by over-cautious double blocking condition

(e.g., root node can never block)
• Promising results from more precise blocking condition [Sattler

& Horrocks]

☞ Qualified number restrictions
• Problem exacerbated by naive expansion rules
• Promising results from optimised expansion using Algebraic

Methods [Haarslev & Möller]

☞ Caching and merging
• Can still work in some situations (work in progress)

☞ Reasoning with very large KBs

• DL systems shown to work with ≈100k concept KB [Haarslev &
Möller]

• But KB only exploited small part of DL language

Reasoning with Expressive Description Logics – p. 21/27

Performance Solutions (Maybe)

☞ Excessive memory usage
• Problem exacerbated by over-cautious double blocking condition

(e.g., root node can never block)
• Promising results from more precise blocking condition [Sattler

& Horrocks]

☞ Qualified number restrictions
• Problem exacerbated by naive expansion rules
• Promising results from optimised expansion using Algebraic

Methods [Haarslev & Möller]

☞ Caching and merging
• Can still work in some situations (work in progress)

☞ Reasoning with very large KBs
• DL systems shown to work with ≈100k concept KB [Haarslev &

Möller]
• But KB only exploited small part of DL language

Reasoning with Expressive Description Logics – p. 21/27

Other Reasoning Tasks

☞ Querying
• Retrieval and instantiation wont be sufficient
• Minimum requirement will be DB style query language
• May also need “what can I say about x?” style of query

☞ Explanation
• To support ontology design
• Justifications and proofs (e.g., of query results)

☞ “Non-Standard Inferences”, e.g., LCS, matching
• To support ontology integration
• To support “bottom up” design of ontologies

Reasoning with Expressive Description Logics – p. 22/27

Other Reasoning Tasks

☞ Querying
• Retrieval and instantiation wont be sufficient
• Minimum requirement will be DB style query language
• May also need “what can I say about x?” style of query

☞ Explanation
• To support ontology design
• Justifications and proofs (e.g., of query results)

☞ “Non-Standard Inferences”, e.g., LCS, matching
• To support ontology integration
• To support “bottom up” design of ontologies

Reasoning with Expressive Description Logics – p. 22/27

Other Reasoning Tasks

☞ Querying
• Retrieval and instantiation wont be sufficient
• Minimum requirement will be DB style query language
• May also need “what can I say about x?” style of query

☞ Explanation
• To support ontology design
• Justifications and proofs (e.g., of query results)

☞ “Non-Standard Inferences”, e.g., LCS, matching
• To support ontology integration
• To support “bottom up” design of ontologies

Reasoning with Expressive Description Logics – p. 22/27

Other Reasoning Tasks

☞ Querying
• Retrieval and instantiation wont be sufficient
• Minimum requirement will be DB style query language
• May also need “what can I say about x?” style of query

☞ Explanation
• To support ontology design
• Justifications and proofs (e.g., of query results)

☞ “Non-Standard Inferences”, e.g., LCS, matching
• To support ontology integration
• To support “bottom up” design of ontologies

Reasoning with Expressive Description Logics – p. 22/27

Summary

☞ Description Logics are family of logical KR formalisms

☞ Applications of DLs include DataBases and Semantic Web
• Ontologies will provide vocabulary for semantic markup
• OWL web ontology language based on SHIQ DL
• Set to become W3C standard (OWL) & already widely adopted
• Use of DL provides formal foundations and reasoning support

☞ DL Reasoning based on tableau algorithms

☞ Highly Optimised implementations used in DL systems

☞ Challenges remain
• Reasoning with full OWL language
• (Convincing) demonstration(s) of scalability
• New reasoning tasks
• Development of (high quality) tools and infrastructure

Reasoning with Expressive Description Logics – p. 23/27

Summary

☞ Description Logics are family of logical KR formalisms

☞ Applications of DLs include DataBases and Semantic Web
• Ontologies will provide vocabulary for semantic markup
• OWL web ontology language based on SHIQ DL
• Set to become W3C standard (OWL) & already widely adopted
• Use of DL provides formal foundations and reasoning support

☞ DL Reasoning based on tableau algorithms

☞ Highly Optimised implementations used in DL systems

☞ Challenges remain
• Reasoning with full OWL language
• (Convincing) demonstration(s) of scalability
• New reasoning tasks
• Development of (high quality) tools and infrastructure

Reasoning with Expressive Description Logics – p. 23/27

Summary

☞ Description Logics are family of logical KR formalisms

☞ Applications of DLs include DataBases and Semantic Web
• Ontologies will provide vocabulary for semantic markup
• OWL web ontology language based on SHIQ DL
• Set to become W3C standard (OWL) & already widely adopted
• Use of DL provides formal foundations and reasoning support

☞ DL Reasoning based on tableau algorithms

☞ Highly Optimised implementations used in DL systems

☞ Challenges remain
• Reasoning with full OWL language
• (Convincing) demonstration(s) of scalability
• New reasoning tasks
• Development of (high quality) tools and infrastructure

Reasoning with Expressive Description Logics – p. 23/27

Summary

☞ Description Logics are family of logical KR formalisms

☞ Applications of DLs include DataBases and Semantic Web
• Ontologies will provide vocabulary for semantic markup
• OWL web ontology language based on SHIQ DL
• Set to become W3C standard (OWL) & already widely adopted
• Use of DL provides formal foundations and reasoning support

☞ DL Reasoning based on tableau algorithms

☞ Highly Optimised implementations used in DL systems

☞ Challenges remain
• Reasoning with full OWL language
• (Convincing) demonstration(s) of scalability
• New reasoning tasks
• Development of (high quality) tools and infrastructure

Reasoning with Expressive Description Logics – p. 23/27

Summary

☞ Description Logics are family of logical KR formalisms

☞ Applications of DLs include DataBases and Semantic Web
• Ontologies will provide vocabulary for semantic markup
• OWL web ontology language based on SHIQ DL
• Set to become W3C standard (OWL) & already widely adopted
• Use of DL provides formal foundations and reasoning support

☞ DL Reasoning based on tableau algorithms

☞ Highly Optimised implementations used in DL systems

☞ Challenges remain
• Reasoning with full OWL language
• (Convincing) demonstration(s) of scalability
• New reasoning tasks
• Development of (high quality) tools and infrastructure

Reasoning with Expressive Description Logics – p. 23/27

Summary

☞ Description Logics are family of logical KR formalisms

☞ Applications of DLs include DataBases and Semantic Web
• Ontologies will provide vocabulary for semantic markup
• OWL web ontology language based on SHIQ DL
• Set to become W3C standard (OWL) & already widely adopted
• Use of DL provides formal foundations and reasoning support

☞ DL Reasoning based on tableau algorithms

☞ Highly Optimised implementations used in DL systems

☞ Challenges remain
• Reasoning with full OWL language
• (Convincing) demonstration(s) of scalability
• New reasoning tasks
• Development of (high quality) tools and infrastructure

Reasoning with Expressive Description Logics – p. 23/27

Acknowledgements

☞ Members of the OIL, DAML+OIL and OWL development teams, in
particular Dieter Fensel (DERI), Frank van Harmelen (Amsterdam)
and Peter Patel-Schneider (Bell Labs)

☞ Franz Baader and Stefan Tobies (Dresden)

☞ Uli Sattler, Carole Goble and other Members of the Information
Management, Medical Informatics and Formal Methods Groups at
the University of Manchester

Reasoning with Expressive Description Logics – p. 24/27

Acknowledgements

☞ Members of the OIL, DAML+OIL and OWL development teams, in
particular Dieter Fensel (DERI), Frank van Harmelen (Amsterdam)
and Peter Patel-Schneider (Bell Labs)

☞ Franz Baader and Stefan Tobies (Dresden)

☞ Uli Sattler, Carole Goble and other Members of the Information
Management, Medical Informatics and Formal Methods Groups at
the University of Manchester

Reasoning with Expressive Description Logics – p. 24/27

Acknowledgements

☞ Members of the OIL, DAML+OIL and OWL development teams, in
particular Dieter Fensel (DERI), Frank van Harmelen (Amsterdam)
and Peter Patel-Schneider (Bell Labs)

☞ Franz Baader and Stefan Tobies (Dresden)

☞ Uli Sattler, Carole Goble and other Members of the Information
Management, Medical Informatics and Formal Methods Groups at
the University of Manchester

Reasoning with Expressive Description Logics – p. 24/27

Acknowledgements

☞ Members of the OIL, DAML+OIL and OWL development teams, in
particular Dieter Fensel (DERI), Frank van Harmelen (Amsterdam)
and Peter Patel-Schneider (Bell Labs)

☞ Franz Baader and Stefan Tobies (Dresden)

☞ Uli Sattler, Carole Goble and other Members of the Information
Management, Medical Informatics and Formal Methods Groups at
the University of Manchester

Reasoning with Expressive Description Logics – p. 24/27

Resources

Slides from this talk

http://www.cs.man.ac.uk/~horrocks/Slides/Innsbruck-tutorial/

FaCT system (open source)

http://www.cs.man.ac.uk/FaCT/

OilEd (open source)

http://oiled.man.ac.uk/

OIL

http://www.ontoknowledge.org/oil/

W3C Web-Ontology (WebOnt) working group (OWL)

http://www.w3.org/2001/sw/WebOnt/

DL Handbook, Cambridge University Press

http://books.cambridge.org/0521781760.htm

Reasoning with Expressive Description Logics – p. 25/27

http://www.cs.man.ac.uk/~horrocks/Slides/Innsbruck-tutorial/
http://www.cs.man.ac.uk/FaCT/
http://oiled.man.ac.uk/
http://www.ontoknowledge.org/oil/
http://www.w3.org/2001/sw/WebOnt/
http://books.cambridge.org/0521781760.htm

Select Bibliography

I. Horrocks. DAML+OIL: a reason-able web ontology language. In Proc. of
EDBT 2002, number 2287 in Lecture Notes in Computer Science, pages
2–13. Springer-Verlag, Mar. 2002.

I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. Reviewing the
design of DAML+OIL: An ontology language for the semantic web. In Proc.
of AAAI 2002, 2002. To appear.

I. Horrocks and S. Tessaris. Querying the semantic web: a formal
approach. In I. Horrocks and J. Hendler, editors, Proc. of the 2002
International Semantic Web Conference (ISWC 2002), number 2342 in
Lecture Notes in Computer Science. Springer-Verlag, 2002.

C. Lutz. The Complexity of Reasoning with Concrete Domains. PhD
thesis, Teaching and Research Area for Theoretical Computer Science,
RWTH Aachen, 2001.

Reasoning with Expressive Description Logics – p. 26/27

Select Bibliography

I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ(D)
description logic. In B. Nebel, editor, Proc. of IJCAI-01, pages 199–204.
Morgan Kaufmann, 2001.

F. Baader, S. Brandt, and R. Küsters. Matching under side conditions in
description logics. In B. Nebel, editor, Proc. of IJCAI-01, pages 213–218,
Seattle, Washington, 2001. Morgan Kaufmann.

A. Borgida, E. Franconi, and I. Horrocks. Explaining ALC subsumption. In
Proc. of ECAI 2000, pages 209–213. IOS Press, 2000.

D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. A
principled approach to data integration and reconciliation in data
warehousing. In Proceedings of the International Workshop on Design
and Management of Data Warehouses (DWDM’99), 1999.

Reasoning with Expressive Description Logics – p. 27/27

	Description Logic Reasoning
	Basic Inference Problems
	Basic Inference Problems
	Basic Inference Problems
	Basic Inference Problems
	Basic Inference Problems
	Basic Inference Problems
	Basic Inference Problems

	Tableaux Algorithms --- Basics
	Tableaux Algorithms --- Basics
	Tableaux Algorithms --- Basics
	Tableaux Algorithms --- Basics
	Tableaux Algorithms --- Basics
	Tableaux Algorithms --- Basics
	Tableaux Algorithms --- Basics
	Tableaux Algorithms --- Basics
	Tableaux Algorithms --- Basics

	Tableaux Algorithms --- Details
	Tableaux Algorithms --- Details
	Tableaux Algorithms --- Details
	Tableaux Algorithms --- Details
	Tableaux Algorithms --- Details
	Tableaux Algorithms --- Details
	Tableaux Algorithms --- Details

	Tableaux Rules for alc
	Tableaux Rules for alc

	Tableaux Rule for Transitive Roles
	Tableaux Rule for Transitive Roles
	Tableaux Rule for Transitive Roles
	Tableaux Rule for Transitive Roles

	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example
	Tableaux Algorithm --- Example

	More Advanced Techniques
	More Advanced Techniques
	More Advanced Techniques
	More Advanced Techniques
	More Advanced Techniques
	More Advanced Techniques

	Implementing DL Systems
	Naive Implementations
	Naive Implementations
	Naive Implementations
	Naive Implementations
	Naive Implementations
	Naive Implementations
	Naive Implementations
	Naive Implementations
	Naive Implementations

	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm
	Careful Choice of Algorithm

	Highly Optimised Implementation
	Highly Optimised Implementation
	Highly Optimised Implementation
	Highly Optimised Implementation
	Highly Optimised Implementation

	Dependency Directed Backtracking
	Dependency Directed Backtracking
	Dependency Directed Backtracking
	Dependency Directed Backtracking
	Dependency Directed Backtracking
	Dependency Directed Backtracking
	Dependency Directed Backtracking
	Dependency Directed Backtracking
	Dependency Directed Backtracking

	Backjumping
	Backjumping
	Backjumping
	Backjumping
	Backjumping
	Backjumping
	Backjumping
	Backjumping
	Backjumping

	Research Challenges
	Challenges
	Challenges
	Challenges
	Challenges
	Challenges

	Increased Expressive Power: Datatypes
	Increased Expressive Power: Datatypes
	Increased Expressive Power: Datatypes
	Increased Expressive Power: Datatypes
	Increased Expressive Power: Datatypes

	Increased Expressive Power: Nominals
	Increased Expressive Power: Nominals
	Increased Expressive Power: Nominals
	Increased Expressive Power: Nominals

	Increased Expressive Power: Extensions
	Increased Expressive Power: Extensions
	Increased Expressive Power: Extensions
	Increased Expressive Power: Extensions
	Increased Expressive Power: Extensions
	Increased Expressive Power: Extensions

	Scalability
	Scalability
	Scalability
	Scalability
	Scalability
	Scalability
	Scalability

	Performance Solutions (Maybe)
	Performance Solutions (Maybe)
	Performance Solutions (Maybe)
	Performance Solutions (Maybe)
	Performance Solutions (Maybe)
	Performance Solutions (Maybe)
	Performance Solutions (Maybe)
	Performance Solutions (Maybe)
	Performance Solutions (Maybe)

	Other Reasoning Tasks
	Other Reasoning Tasks
	Other Reasoning Tasks
	Other Reasoning Tasks

	Summary
	Summary
	Summary
	Summary
	Summary
	Summary

	Acknowledgements
	Acknowledgements
	Acknowledgements
	Acknowledgements

	Resources
	Select Bibliography
	Select Bibliography

