Reasoning Procedures I

Technical detail: the tableau algorithm

- works on a tree (semantics through viewing tree as an ABox): nodes represent elements of $\Delta^{\mathcal{I}}$, labelled with sub-concepts of C_0 edges represent role-successorships between elements of $\Delta^{\mathcal{I}}$
- works on concepts in negation normal form: push negation inside using de Morgan' laws and

$$\begin{array}{ll} \neg(\exists R.C) \rightsquigarrow \forall R.\neg C & \neg(\forall R.C) \rightsquigarrow \exists R.\neg C \\ \neg(\leq n \ R) \rightsquigarrow (\geq (n+1)R) & \neg(\geq n \ R) \rightsquigarrow (\leq (n-1)R) & (n \geq 0) \\ \neg(\geq 0 \ R) \rightsquigarrow A \sqcap \neg A \end{array}$$

• is initialised with a tree consisting of a single (root) node x_0 with $\mathcal{L}(x_0) = \{C_0\}$:

 $x_0 \bullet \{C_0\}$

ullet a tree ${f T}$ contains a clash if, for a node x in ${f T}$,

$$\{A,
eg A\} \subseteq \mathcal{L}(x) ext{ or } \{(\geq m \ R), (\leq n \ R)\} \subseteq \mathcal{L}(x) ext{ for } n < m$$

RWTH Aachen Germany

Reasoning Procedures: *ALC* Tableau Rules

$$\begin{aligned} x \bullet \{C_1 \sqcap C_2, \ldots\} & \to_{\sqcap} & x \bullet \{C_1 \sqcap C_2, C_1, C_2, \ldots\} \\ x \bullet \{C_1 \sqcup C_2, \ldots\} & \to_{\sqcup} & x \bullet \{C_1 \sqcap C_2, C, \ldots\} \\ & \text{for } C \in \{C_1, C_2\} \\ x \bullet \{\exists R.C, \ldots\} & \to_{\exists} & x \bullet \{\exists R.C, \ldots\} \\ & & y \bullet \{C\} \\ \end{aligned}$$

RWTH Aachen Germany

Reasoning Procedures: \mathcal{N} Tableau Rules

Lemma

Let C_0 be an \mathcal{ALCN} concept and T obtained by applying the tableau rules to C_0 . Then

- 1. the rule application terminates,
- 2. if T is consistent and \rightarrow is applicable to T, then \rightarrow can be applied such that it yields consistent T',
- 3. if ${\bf T}$ contains a clash, then ${\bf T}$ has no model, and
- 4. if no more rules apply to T, then T defines (canonical) model for C_0 .

Corollary

- (1) The tableau algorithm is a PSpace decision procedure for consistency (and subsumption) of ALCN concepts
- (2) \mathcal{ALCN} has the tree model property

Proof of the Lemma

- 1. (Termination) The algorithm "monotonically" constructs a tree whose depth is linear in $|C_0|$: quantifier depth decreases from node to succs. breadth is linear in $|C_0|$ (even if number in NRs are coded binarily)
- 2. (Local Consistency) Easy to prove (by definition of the semantics) that if \mathcal{I} is a model of T, then \rightarrow can be applied to T such that \mathcal{I} is a model of T' := \rightarrow (T)
- 3. Obvious: ${\bf T}$ with a clash has no model—recall definition of a clash:

 $\{A,
eg A\} \subseteq \mathcal{L}(x) ext{ or } \{(\geq m \ R), (\leq n \ R)\} \subseteq \mathcal{L}(x) ext{ for } n < m$

Proof of the Lemma (ctd.)

4. (Canonical model) "Complete" tree T defines a (tree) pre-model \mathcal{I} : nodes correspond to elements of $\Delta^{\mathcal{I}}$ edges define role-relationship $x \in A^{\mathcal{I}}$ iff $A \in \mathcal{L}(x)$ for concept names A

Check that $C \in \mathcal{L}(x)$ implies $x \in C^{\mathcal{I}}$ —if C is no number restriction.

For NRs, if $(\geq n R) \in \mathcal{L}(x)$ and x has less than n R-successors, copy some R-successors (including sub-trees) to obtain n R-successors

 \rightsquigarrow canonical tree model for input concept

To make the tableau algorithm run in PSpace:

```
Recall Savitch: PSpace = NPSpace
```

1 observe that branches are independent from each other

② observe that each node (label) requires linear space only

- ${}^{\textcircled{3}}$ recall that paths are of length $\leq |C_0|$
 - \rightsquigarrow each path can be stored in $\mathcal{O}(|C_0|^2)$

4 construct/search the tree depth first

⑤ re-use space from already constructed branches

This tableau algorithm can be modified to a PSpace decision procedure for

- ✓ ALC with qualifying number restrictions (≥ $n \ R \ C$) and (≤ $n \ R \ C$)
- ✓ ALC with inverse roles (e.g. has-child⁻)
- $\checkmark \mathcal{ALC} \text{ with role conjunction} \\ \exists (R \sqcap S).C \text{ and } \forall (R \sqcap S).C \end{cases}$
- ✓ TBoxes with acyclic concept definitions $A \doteq C$:

unfolding(macro expansion) is easy, but suboptimal:
may yield exponential blow-up

lazy unfolding (unfolding on demand) is optimal, consistency in PSpace decidable

Language extensions that require more elaborate techniques include

- **TBoxes with general axioms** $C_i \sqsubseteq D_i$: each node must be labelled with $\neg C_i \sqcup D_i$ quantifier depth no longer decreases \sim termination not guaranteed
- **Transitive closure of roles:**

node labels $(\forall R^*.C)$ yields C in all R^n -successor labels quantifier depth no longer decreases \rightsquigarrow termination not guaranteed

> Use **blocking** (cycle detection) to ensure termination (but the right blocking to not destroy soundness or completeness)