Technical detail: the tableau algorithm

- works on a tree (semantics through viewing tree as an ABox):
 - **nodes** represent elements of Δ^T, labelled with sub-concepts of C_0
 - **edges** represent role-successorships between elements of Δ^T
- works on concepts in negation normal form: push negation inside using de Morgan’ laws and

 $\neg(\exists R. C) \leadsto \forall R. \neg C$
 $\neg(\forall R. C) \leadsto \exists R. \neg C$
 $\neg(\leq n R) \leadsto (\geq (n + 1) R)$
 $\neg(\geq n R) \leadsto (\leq (n - 1) R)$ (n ≥ 0)
 $\neg(\geq 0 R) \leadsto A \sqcap \neg A$
- is initialised with a tree consisting of a single (root) node x_0 with $\mathcal{L}(x_0) = \{ C_0 \}$:

 $x_0 \bullet \{ C_0 \}$
- a tree T contains a clash if, for a node x in T,

 $\{ A, \neg A \} \subseteq \mathcal{L}(x)$ or

 $\{ (\geq m R), (\leq n R) \} \subseteq \mathcal{L}(x)$ for $n < m$
Reasoning Procedures: \mathcal{ALC} Tableau Rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \bullet {C_1 \sqcap C_2, \ldots}$</td>
<td>$\rightarrow \sqcap$</td>
<td>$x \bullet {C_1 \sqcap C_2, C_1, C_2, \ldots}$</td>
</tr>
<tr>
<td>$x \bullet {C_1 \sqcup C_2, \ldots}$</td>
<td>$\rightarrow \sqcup$</td>
<td>$x \bullet {C_1 \sqcap C_2, C, \ldots}$ for $C \in {C_1, C_2}$</td>
</tr>
<tr>
<td>$x \bullet {\exists R.C, \ldots}$</td>
<td>$\rightarrow \exists$</td>
<td>$x \bullet {\exists R.C, \ldots}$</td>
</tr>
<tr>
<td>$\rightarrow \forall$</td>
<td>$x \bullet {\forall R.C, \ldots}$</td>
<td></td>
</tr>
<tr>
<td>$x \bullet {C}$</td>
<td>$\rightarrow \exists$</td>
<td>$x \bullet {\exists R.C, \ldots}$</td>
</tr>
<tr>
<td>$y \bullet {C}$</td>
<td>$\rightarrow \forall$</td>
<td>$y \bullet {C, \ldots}$</td>
</tr>
</tbody>
</table>
Reasoning Procedures: \mathcal{N} Tableau Rules

$x \cdot \{ (\geq n \ R), \ldots \}$

x has no R-succ.

$x \cdot \{ (\leq n \ R), \ldots \}$

R

$y \bullet \{ \}$

merge two R-succs.
Lemma

Let C_0 be an \mathcal{ALCN} concept and T obtained by applying the tableau rules to C_0. Then

1. the rule application terminates,
2. if T is consistent and \rightarrow is applicable to T, then \rightarrow can be applied such that it yields consistent T',
3. if T contains a clash, then T has no model, and
4. if no more rules apply to T, then T defines (canonical) model for C_0.

Corollary

(1) The tableau algorithm is a PSpace decision procedure for consistency (and subsumption) of \mathcal{ALCN} concepts

(2) \mathcal{ALCN} has the tree model property
Proof of the Lemma

1. (Termination) The algorithm “monotonically” constructs a tree whose
 depth is linear in $|C_0|$: quantifier depth decreases from node to succs.
 breadth is linear in $|C_0|$ (even if number in NRs are coded binarily)

2. (Local Consistency) Easy to prove (by definition of the semantics) that
 if \mathcal{I} is a model of T, then \rightarrow can be applied to T such that
 \mathcal{I} is a model of $T' := \rightarrow(T)$

3. Obvious: T with a clash has no model—recall definition of a clash:
 \[
 \{A, \neg A\} \subseteq L(x) \text{ or }
 \{(\geq m \cdot R), (\leq n \cdot R)\} \subseteq L(x) \text{ for } n < m
 \]
Proof of the Lemma (ctd.)

4. (Canonical model) “Complete” tree T defines a (tree) pre-model I:
 - nodes correspond to elements of Δ^I
 - edges define role-relationship
 - $x \in A^I$ iff $A \in \mathcal{L}(x)$ for concept names A

 Check that $C \in \mathcal{L}(x)$ implies $x \in C^I$—if C is no number restriction.

For NRs, if $(\geq n \ R) \in \mathcal{L}(x)$ and x has less than $n \ R$-successors,
 copy some $\ R$-successors (including sub-trees) to obtain $n \ R$-successors

\implies canonical tree model for input concept
To make the tableau algorithm run in PSpace:

Recall Savitch: \(\text{PSPACE} = \text{NPSPACE} \)

① observe that branches are independent from each other
② observe that each node (label) requires linear space only
③ recall that paths are of length \(\leq |C_0| \)
 \(\sim \) each path can be stored in \(\mathcal{O}(|C_0|^2) \)
④ construct/search the tree \textbf{depth first}
⑤ re-use space from already constructed branches
This tableau algorithm can be modified to a PSpace decision procedure for

- \mathcal{ALC} with qualifying number restrictions $(\geq n \ R \ C)$ and $(\leq n \ R \ C)$
- \mathcal{ALC} with inverse roles (e.g. has-child^-)
- \mathcal{ALC} with role conjunction
 $\exists (R \sqcap S).C$ and $\forall (R \sqcap S).C$
- TBoxes with acyclic concept definitions $A \equiv C$:
 unfolding (macro expansion) is easy, but suboptimal: may yield exponential blow-up
 lazy unfolding (unfolding on demand) is optimal, consistency in PSpace decidable
Language extensions that require more elaborate techniques include

- **TBoxes with general axioms** $C_i \sqsubseteq D_i$:
 - each node must be labelled with $\neg C_i \sqcup D_i$
 - quantifier depth no longer decreases
 - \leadsto termination not guaranteed

- **Transitive closure of roles**:
 - node labels $(\forall R^*.C)$ yields C in all R^n-successor labels
 - quantifier depth no longer decreases
 - \leadsto termination not guaranteed

Use **blocking** (cycle detection) to ensure termination
(but the right blocking to not destroy soundness or completeness)