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Abstract

Many description logics (DLs) combine knowledge representation on an abstract, logical
level with an interface to “concrete” domains like numbers and strings with built-in pred-
icates such as <, +, and prefix-of. These hybrid DLs have turned out to be useful in
several application areas, such as providing the basis for expressive ontology languages.
We propose to further extend such DLs with key constraints that allow the expression of
statements like “US citizens are uniquely identified by their social security number”. Based
on this idea, we introduce a number of natural description logics and perform a detailed
analysis of their decidability and computational complexity. It turns out that naive exten-
sions with key constraints easily lead to undecidability, whereas more careful extensions
yield NExpTime-complete DLs for a variety of useful concrete domains.

1. Motivation

Description logics (DLs) are a family of formalisms that allow the representation of and
reasoning about conceptual knowledge in a structured and semantically well-understood
manner (Baader, McGuiness, Nardi, & Patel-Schneider, 2003). The central entities for
representing such knowledge are concepts, which are constructed from atomic concept names
(unary predicates) and role names (binary relations) by means of the concept and role
constructors offered by a particular DL. For example, in the basic propositionally closed
description logic ALC (Schmidt-Schauß & Smolka, 1991), we can describe a company that
has part-time employees but only full-time managers using the concept

Company u ∃employee.Parttime u ∀employee.(¬Manager t ¬Parttime).

In this example, all uppercase words denote concept names while the lowercase employee
denotes a role name.
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Rather than being viewed only as conceptual entities in a knowledge base, concepts
can, more generally, be understood as the central notion in various kinds of class-centered
formalisms. In the last decade, this observation has given rise to various new and excit-
ing applications of description logics such as reasoning about database conceptual models
expressed in entity-relationship diagrams or object-oriented schemas, and reasoning about
ontologies for use in the semantic web, see (Calvanese, Lenzerini, & Nardi, 1998; Calvanese,
De Giacomo, & Lenzerini, 1998) and (Baader, Horrocks, & Sattler, 2002a; Horrocks, 2002;
Horrocks, Patel-Schneider, & van Harmelen, 2002), respectively. These new applications
have, in turn, stimulated research in description logics since the expressive power of existing
DLs was insufficient for the new tasks. One important extension of “classical” description
logics is with expressive means that allow the integration of numbers and other datatypes:
assume, e.g., that we want to continue our example from above by equipping companies
with a founding year and employees with a hiring year. Then, we may want to describe
companies that were founded before 1970 and state that the hiring year of employees is not
prior to the founding year of the employing company. To do this, we obviously need a way
to talk about natural numbers (such as 1970) and comparisons between natural numbers.

Nowadays, the standard approach to integrate datatypes into description logics is to
extend DLs with concrete domains as first proposed by Baader and Hanschke (1991a), see
also the survey (Lutz, 2003). More precisely, a concrete domain D consists of a set (such as
the natural numbers) and predicates which are associated with a fixed extension over this
set1 (such as the unary =0, the binary <, and the ternary +). The integration of concrete
domains into, say, the description logic ALC is achieved by adding

1. abstract features, i.e. functional roles;

2. concrete features, i.e. (partial) functions associating values from the concrete domain
(e.g., natural numbers) with logical objects;

3. a concrete domain-based concept constructor.

The DL obtained by extending ALC in this way is called ALC(D), where D denotes a
concrete domain that can be viewed as a parameter to the logic. For example, using a
suitable concrete domain D we can describe the constraints formulated above: the concept

Employee u ∃employer.(∃foundingyear.<1970) u ∃hiringyear, employer foundingyear.≥

describes the set of employees who are employed by a company founded before 1970 and
who have a hiring year not prior to the company’s founding year. Here, the term inside
parenthesis and the third conjunct are instances of the concrete domain concept constructor
(not to be confused with the existential value restriction as in ∃employee.Parttime), employer
is an abstract feature, and foundingyear and hiringyear are concrete features.

Concrete domains are rather important in the applications of DLs mentioned above:

• The standard way of using description logics for reasoning about conceptual database
models is to translate a given model into a DL representation and then use a descrip-
tion logic reasoning procedure for detecting inconsistencies and inferring consequences

1. This fixed extension is why these predicates are often called “built-in”.
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of the information provided explicitly in the model such as additional, implicit con-
tainments between entities/classes (Calvanese et al., 1998). Since most databases
store “concrete” data like numbers and strings, constraints concerning such data are
usually part of the conceptual model and should thus also be captured by the descrip-
tion logic used for reasoning. Indeed, the above example concepts can be viewed as
the DL encoding of constraints from a database about companies and their employees.
As discussed in (Lutz, 2002c), description logics with concrete domains are well-suited
for conceptual modeling applications involving concrete datatypes.

• In the construction of ontologies for the semantic web, so-called concrete datatypes
play a prominent role (Horrocks et al., 2002). Say, for example, that we want to con-
struct an ontology which can be used for describing car dealers’ web pages and web
services. In such an ontology, concrete datatypes such as prices, manufacturing years,
and names of car models will doubtlessly be very important. To formulate this ontol-
ogy using a DL, we need a way to represent these concrete datatypes. Consequently,
almost all DLs that have been proposed as an ontology language for the semantic web
are equipped with some form of concrete domain (Fensel, van Harmelen, Horrocks,
McGuinness, & Patel-Schneider, 2001; Horrocks et al., 2002; Dean, Connolly, van
Harmelen, Hendler, Horrocks, McGuinness, Patel-Schneider, & Stein, 2002).

In this paper, we propose to further extend the expressive power of description logics with
concrete domains in a way that is useful both for knowledge representation and the two
applications sketched above. Let us describe the basic idea — which is to use concrete
features for defining “key constraints”— using three examples:

1. Suppose that, in a knowledge representation application, we represent nationalities
by concept names such as US and German and, for US citizens, we store the social
security number using a concrete feature ssn. Then it would be natural to state that
US citizens are uniquely identified by their social security number, i.e. any two distinct
instances of

Human u ∃nationality.US

must have different values for the ssn feature. In our extension of DLs with concrete
domains, this can be expressed by using the key definition

(ssn keyfor Human u ∃nationality.US).

2. Returning to our database about companies and employees, it could be useful to equip
every employee with (i) a concrete feature branch storing the branch-ID in which she
is working and (ii) a concrete feature id storing her personnel-ID. It would then be
natural to enforce that even though personnel-IDs are not unique, the branch-ID
together with the personnel-ID uniquely identifies employees. We can do this by
using the composite key definition

(branch, id keyfor Employee).
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3. In the car dealers’ ontology, we may assume that cars as well as manufacturers are
equipped with identification numbers and that every car is uniquely identified by the
combination of its own identification number and its manufacturers one. To express
this, we could employ a composite key definition referring to sequences of features:

(id, manufacturer id keyfor Car).

More formally, we propose to extend DLs to provide for concrete domains with key boxes,
which are sets of key definitions of the form

(u1, . . . , un keyfor C),

where each ui is a sequence f1 · · · fng of abstract features fj followed by a single concrete
feature g, and C is a concept. As the above examples illustrate, the idea of key constraints is
very natural. Since, moreover, keys play an important role in databases and, as mentioned
above, reasoning about database conceptual models is an important, challenging application
of description logics, several approaches to extend description logics with keys have already
been investigated (Borgida & Weddell, 1997; Calvanese, De Giacomo, & Lenzerini, 2000;
Khizder, Toman, & Weddell, 2001). What distinguishes our approach from existing ones,
however, is the idea to use concrete domains for constructing key constraints, rather than
defining keys on an abstract, logical level.

The goal of this paper is to provide a comprehensive analysis of the effects on decid-
ability and computational complexity of adding key boxes to description logics with concrete
domains. To this end, we extend the two description logics ALC(D) and SHOQ(D) with
key boxes, in this way obtaining ALCK(D) and SHOQK(D), respectively. While the ba-
sic DL with concrete domains ALC(D) has already been discussed above, SHOQ(D) was
proposed as an ontology language in (Horrocks & Sattler, 2001). It provides a wealth of ex-
pressive possibilities such as general concept inclusion axioms (GCIs), transitive roles, role
hierarchies, nominals, and qualifying number restrictions. Moreover, it offers a restricted
variant of the concrete domain constructor that disallows the use of sequences of features
in order to avoid undecidability of reasoning.

The main outcome of our investigations is that key constraints can have a dramatic
impact on the decidability and complexity of reasoning: for example, whereas satisfiability
of ALC(D)-concepts is known to be PSpace-complete (Lutz, 2002b), we will show that
satisfiability of ALCK(D)-concepts w.r.t. key boxes is, in general, undecidable. Decidability
can be regained if we restrict the concepts used in key boxes to Boolean combinations of
concept names (Boolean key boxes). Interestingly, satisfiability of ALCK(D)-concepts w.r.t.
Boolean key boxes is still NExpTime-complete even for very simple concrete domains. In
the case of SHOQ(D) and SHOQK(D), the leap in complexity is somewhat less dramatic
since SHOQ(D)-concept satisfiability is already ExpTime-complete: again, the addition
of key boxes results in NExpTime-complete reasoning problems.

It is interesting to note that there exists a close connection between key definitions
and so-called nominals, i.e. concept names that can have at most one instance, such as
Pope. Nominals are a standard means of expressivity in description logics and sometimes
appear in disguise as the “one-of” operator (Borgida & Patel-Schneider, 1994; Horrocks
et al., 2002). It is not hard to see that key boxes can “simulate” nominals: if, for example,
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we use a concrete domain based on the natural numbers and providing unary predicates
=n for equality with n ∈ � , then the key definition (g keyfor >), where > stands for
logical truth, obviously makes the concept ∃g.=n behave like a nominal, for each n ∈
� . For this reason, we also consider ALCO(D), the extension of ALC(D) with nominals,
and ALCOK(D), the extension of ALCK(D) with nominals.2 Our main result concerning
nominals is that, although in general being of lower expressive power than key boxes, they
already make reasoning NExpTime-hard if combined with concrete domains: there exist
concrete domains D such that ALCO(D)-concept satisfiability is NExpTime-complete. We
should like to stress that all NExpTime-hardness results obtained in this paper are in
accordance with the observation made in (Lutz, 2004), namely that the PSpace-upper
bound for reasoning with ALC(D) is not robust w.r.t. extensions of the logic: there exist
several “seemingly harmless” extensions of ALC(D) (for example with acyclic TBoxes and
with inverse roles) which make the complexity of reasoning leap from PSpace-completeness
to NExpTime-completeness for many natural concrete domains.

The remainder of this paper is organized as follows: in Section 2, we formally introduce
concrete domains, key boxes, and the DL ALCOK(D) together with its fragments ALCK(D)
and ALCO(D). Moreover, we define Boolean key boxes and some other important properties
of key boxes: path-free key boxes prohibit the use of sequences of features in key definitions;
in unary key boxes, each key definition involves exactly one sequence of features; and
composite key boxes are simply non-unary ones.

Section 3 is devoted to establishing lower bounds for extensions of ALC(D) with key
boxes or nominals. In Section 3.1, we use a reduction of the Post Correspondence Problem
to prove that ALCK(D)-concept satisfiability w.r.t. (non-Boolean) key boxes is undecidable
if the concrete domain D includes the natural numbers, a unary predicate for equality with
zero, binary equality and inequality, and a binary incrementation predicate. We then shift
our attention towards Boolean key boxes since, in Section 4, we show that this restriction
restores decidability. In Section 3.2, we introduce a NExpTime-complete variant of the
domino problem and three concrete domains that are useful for the reduction of this problem
to concept satisfiability in DLs with Boolean key boxes or nominals. In Section 3.3, we use
these concrete domains to prove that ALCK(D)-concept satisfiability w.r.t. Boolean and
path-free key boxes is NExpTime-hard if D includes two unary predicates denoting disjoint
singleton sets. We then strengthen this result to unary key boxes, but, to compensate for
the weaker key box formalism, we use more expressive concrete domains. For example, it
suffices that the concrete domain D includes the natural numbers, a unary predicate =n

for each n ∈ � , and ternary addition. In Section 3.4, we prove that there exists concrete
domains D such that ALCO(D)-concept satisfiability without reference to key boxes is
already NExpTime-hard. For this result, we use rather powerful concrete domains, e.g., one
with predicates for multiplication and exponentiation. However, we are able to show that
there exist concrete domains D that are computationally very simple (PTime) if considered
in isolation, but lead to NExpTime-hardness of ALCO(D).

The purpose of Section 4 is to develop reasoning procedures for description logics with
key boxes and to prove upper complexity bounds matching the NExpTime lower bounds
established in the previous section. We start in Section 4.1 with a tableau algorithm that

2. Note that the logic SHOQ(D) already provides for nominals.
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decides ALCOK(D)-concept satisfiability w.r.t. Boolean key boxes, provided that the con-
crete domain D is key-admissible. Intuitively, a concrete domain D is key-admissible if there
exists an algorithm that takes a finite conjunction c of predicates from D over some set of
variables, decides whether this conjunction is satisfiable and, if c is satisfiable, chooses
a solution of c and returns the information on which variables take the same values in
it. We call such an algorithm a D-tester. We have chosen a tableau algorithm since this
type of reasoning procedure has the potential to be implemented in efficient reasoners and
has been shown to behave well in practice (Horrocks, Sattler, & Tobies, 2000; Haarslev &
Möller, 2001). Our algorithm implies the following upper complexity bound: if D is a key-
admissible concrete domain for which a non-deterministic polynomial time D-tester exists,
then ALCO(D)-concept satisfiability w.r.t. Boolean key boxes is in NExpTime.

In Section 4.2, we devise a tableau algorithm for SHOQK(D)-concept satisfiability w.r.t.
path-free key boxes which might involve non-Boolean concepts. The restriction to Boolean
concepts in key boxes was necessary for ALCOK(D) in order to avoid undecidability. For
SHOQK(D), this restriction is not necessary since SHOQK(D)’s concrete domain construc-
tor is weaker than the one provided by ALCOK(D): it does not admit the use of sequences
of features as arguments. As a by-product of the correctness proof of the algorithm, we
obtain a bounded model property for SHOQK(D), which implies that SHOQK(D)-concept
satisfiability w.r.t. path-free key boxes is in NExpTime if D is a key-admissible concrete
domain for which a non-deterministic polynomial time D-tester exists.

In Section 5, we summarize the results obtained and give an outlook to possible future
research.

2. Description Logics with Concrete Domains

In the following, we introduce the description logic ALCOK(D). Let us start with defining
concrete domains:

Definition 2.1 (Concrete Domain). A concrete domain D is a pair (∆D, ΦD), where
∆D is a set and ΦD a set of predicate names. Each predicate name P ∈ ΦD is associated
with an arity n and an n-ary predicate PD ⊆ ∆n

D.

Based on concrete domains, we can now define ALCOK(D)-concepts and key boxes.

Definition 2.2 (ALCOK(D) Syntax). Let NC, NO, NR, NcF be pairwise disjoint and
countably infinite sets of concept names, nominals, role names, and concrete features. Fur-
thermore, we assume that NR contains a countably infinite subset NaF of abstract features.
A path u is a composition f1 · · · fng of n abstract features f1, . . . , fn (n ≥ 0) and a concrete
feature g. Let D be a concrete domain. The set of ALCOK(D)-concepts is the smallest set
such that

• every concept name and every nominal is a concept, and

• if C and D are concepts, R is a role name, g is a concrete feature, u1, . . . , un are paths,
and P ∈ ΦD is a predicate of arity n, then the following expressions are also concepts:

¬C, C u D, C t D, ∃R.C, ∀R.C, ∃u1, . . . , un.P, and g↑.

6
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A key definition is an expression

(u1, . . . , uk keyfor C),

where u1, . . . , uk (k ≥ 1) are paths and C is a concept. A finite set of key definitions is
called key box.

As usual, we use > as abbreviation for an arbitrary propositional tautology, ⊥ as abbre-
viation for ¬>, C → D as abbreviation for ¬C t D, and C ↔ D as abbreviation for
(C → D) u (D → C). Throughout this paper, we will also consider several fragments of
the description logic ALCOK(D). The DL ALCO(D) is obtained from ALCOK(D) by ad-
mitting only empty key boxes. In particular, the set of ALCO(D)-concepts is just the set
of ALCOK(D)-concepts. Furthermore, by disallowing the use of nominals, we obtain the
fragment ALC(D) of ALCO(D) and ALCK(D) of ALCOK(D).

The description logic ALCOK(D) is equipped with a Tarski-style set-theoretic semantics.
Along with the semantics, we introduce the two standard inference problems: concept
satisfiability and concept subsumption.

Definition 2.3 (ALCOK(D) Semantics). An interpretation I is a pair (∆I , ·I), where
∆I is a non-empty set, called the domain, and ·I is the interpretation function. The
interpretation function maps

• each concept name C to a subset CI of ∆I ,

• each nominal N to a singleton subset NI of ∆I ,

• each role name R to a subset RI of ∆I × ∆I ,

• each abstract feature f to a partial function f I from ∆I to ∆I , and

• each concrete feature g to a partial function gI from ∆I to ∆D.

If u = f1 · · · fng is a path, then uI(d) is defined as gI(fI
n · · · (fI

1 (d)) · · · ). The interpretation
function is extended to arbitrary concepts as follows:

(¬C)I := ∆I \ CI

(C u D)I := CI ∩ DI

(C t D)I := CI ∪ DI

(∃R.C)I := {d ∈ ∆I | There is e ∈ ∆I with (d, e) ∈ RI and e ∈ CI}

(∀R.C)I := {d ∈ ∆I | For all e ∈ ∆I , if (d, e) ∈ RI , then e ∈ CI}

(∃u1, . . . , un.P )I := {d ∈ ∆I | ∃x1, . . . , xn ∈ ∆D : uI
i (d) = xi and (x1, . . . , xn) ∈ PD}

(g↑)I := {d ∈ ∆I | gI(d) undefined}.

Let I be an interpretation. Then I is a model of a concept C iff CI 6= ∅. Moreover, I
satisfies a key definition (u1, . . . , un keyfor C) if, for any a, b ∈ CI ,

if, for all 1 ≤ i ≤ n, uI
i (a) = uI

i (b), then a = b.

7



Lutz, Areces, Horrocks, & Sattler

I is a model of a key box K iff I satisfies all key definitions in K. A concept C is satisfiable
w.r.t. a key box K iff C and K have a common model. C is subsumed by a concept D w.r.t.
a key box K (written C vK D) iff CI ⊆ DI for all models I of K.

It is well-known that, in description logics providing for all Boolean operators, subsumption
can be reduced to (un)satisfiability and vice versa: C vK D iff C u ¬D is unsatisfiable
w.r.t. K and C is satisfiable w.r.t. K iff C 6vK ⊥. This allows us to concentrate on concept
satisfiability when devising complexity bounds for reasoning with description logics: lower
and upper complexity bounds for concept satisfiability imply corresponding bounds for
concept subsumption—only for the complementary complexity class.

If decision procedures for description logics with concrete domains are to be devised
without committing to a particular concrete domain, then a well-defined interface between
the decision procedure and a concrete domain reasoner is needed. Usually, this interface
is based on the assumption that the concrete domain is admissible (Baader & Hanschke,
1991a; Lutz, 2002a, 2003):

Definition 2.4 (D-conjunction, Admissibility). Let D be a concrete domain and V a
set of variables. A D-conjunction is a (finite) predicate conjunction of the form

c =
∧

i<k

(x
(i)
0 , . . . , x(i)

ni
) : Pi,

where Pi is an ni-ary predicate for i < k and the x
(i)
j are variables from V. A D-conjunction

c is satisfiable iff there exists a function δ mapping the variables in c to elements of ∆D such

that (δ(x
(i)
0 ), . . . , δ(x

(i)
ni )) ∈ PD

i for each i < k. Such a function is called a solution for c.
We say that the concrete domain D is admissible iff

1. ΦD contains a name >D for ∆D;

2. ΦD is closed under negation, i.e., for each n-ary predicate P ∈ ΦD, there is a predicate

P ∈ ΦD of arity n such that P
D

= ∆n
D \ PD;

3. satisfiability of D-conjunctions is decidable.

We refer to the satisfiability of D-conjunctions as D-satisfiability.

As we shall see, it sometimes makes a considerable difference w.r.t. complexity and decid-
ability to restrict key boxes in various ways, for example to admit only the concept > on the
right-hand side of key definitions or to disallow paths of length greater than one. Therefore,
we introduce some useful notions.

Definition 2.5 (Boolean, Path-free, Simple). A key box K is called

• Boolean if all concepts appearing in (key definitions in) K are Boolean combinations
of concept names;

• path-free if, for all key definitions (g1, . . . , gn keyfor C) in K, g1, . . . , gn ∈ NcF;

• simple if it is both path-free and Boolean;
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• unary if all key definitions in K are unary key definitions, i.e. of the form (u keyfor C).

A concept C is called path-free if, in all its subconcepts of the form ∃u1, . . . , un.P , u1, . . . , un

are concrete features.

To emphasize that a key box must not necessarily be Boolean or path-free, we sometimes
call such a key box general. Similarly, to emphasize that a key box is not necessarily a
unary key box, we sometimes call such a key box composite key box.

3. Lower Bounds

In this section, we prove lower complexity bounds for description logics with concrete do-
mains and key boxes and/or nominals. In Section 3.1, we start with showing that the
satisfiability of ALCK(D)-concepts w.r.t. (general) key boxes is undecidable for many in-
teresting concrete domains. This discouraging result is relativized by the fact that, in
Section 4.1, we shall prove that the restriction to Boolean key boxes restores decidability.
It is thus interesting to look for lower complexity bounds that apply under this restric-
tion. In preparation for this, we introduce in Section 3.2 a NExpTime-complete variant of
the domino problem and three concrete domains that are well-suited for reductions of this
problem.

In Section 3.3, we then prove that satisfiability of path-free ALCK(D)-concepts w.r.t.
simple key boxes is NExpTime-hard for a large class of concrete domains D and that, for
many concrete domains, this does hold even if we restrict key boxes to unary ones. Finally,
we consider the description logic ALCO(D) in Section 3.4 and identify several concrete
domains such that ALCO(D)-concept satisfiability (without key boxes!) is NExpTime-
hard. As we will explain, key boxes and nominals are closely related: key boxes can express
nominals, but are in general more powerful.

3.1 Undecidability of ALCK(D) with General Key Boxes

We prove that satisfiability of ALCK(D)-concepts w.r.t. key boxes is undecidable for a
large class of concrete domains if we allow complex ALCK(D)-concepts to occur in key
definitions. The proof is by a reduction of the well-known undecidable Post Correspondence
Problem (Post, 1946; Hopcroft & Ullman, 1979).

Definition 3.1 (PCP). An instance P of the Post Correspondence Problem (PCP) is given
by a finite, non-empty list (`1, r1), . . . , (`k, rk) of pairs of words over some alphabet Σ. A
sequence of integers i1, . . . , im, with m ≥ 1, is called a solution for P if `i1 · · · `im = ri1 · · · rim .
The PCP is to decide whether a given instance P has a solution.

For reducing the PCP to the satisfiability of our DLs, we need an appropriate concrete
domain. It is obviously natural to use a concrete domain based on words and concatenation.
We will later see that the results obtained for this concrete domain carry over to other
concrete domains based on numbers and arithmetics. The following concrete domain was
introduced in (Lutz, 2004). Its definition presupposes a fixed alphabet Σ that is at least
binary.

Definition 3.2 (Concrete domain W). The concrete domain W is defined by setting
∆W := Σ∗ and defining ΦW as the smallest set containing the following predicates:

9
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Step := u
1≤i≤k

∃fi.(¬A u ∃g.=ε u ∃`, r.6=)

u u
1≤i≤k

(∃`, fi`.conc`i
u ∃r, fir.concri

)

CP := ∃`.=ε u ∃r.=ε

u ∃R.(A u ∃g.=ε u ¬Step)

u Step

KP := {g keyfor ¬Step}

Figure 1: The ALCK(W) reduction concept CP and key box KP .

• unary predicates word and nword with wordW = ∆W and nwordW = ∅,

• unary predicates =ε and 6=ε with =W
ε = {ε} and 6=W

ε = Σ+,

• a binary equality predicate = and a binary inequality predicate 6= with the obvious
interpretation, and

• for each w ∈ Σ+, two binary predicates concw and nconcw with

concW
w = {(u, v) | v = uw} and nconcW

w = {(u, v) | v 6= uw}.

It is readily checked that W satisfies properties 1 and 2 of admissibility (see Definition 2.4).
Moreover, W-satisfiability is decidable:

Theorem 3.1 (Lutz, 2004). W-satisfiability is in PTime.

Thus, W is admissible and even of low complexity. This is important since our aim is
to demonstrate that the undecidability of ALCK(W)-concept satisfiability is due to the
presence of keys, and not due to the high complexity of W-satisfiability.

We can now discuss the reduction of the PCP. A given instance (`1, r1), . . . , (`k, rk) is
translated into an ALCK(D)-concept CP and key box KP as defined in Figure 1 such that
P has a solution iff CP is unsatisfiable w.r.t. KP . The idea behind the reduction is that a
common model of CP and KP encodes all potential solutions for P (i.e., sequences i1, . . . , in
of integers ij between 1 and k) and to make sure that none of them is indeed a solution. In
Figure 1, f1, . . . , fk denote abstract features while g, `, and r denote concrete features. The
definition of the concept Step just serves as an abbreviation and should not be confused
with so-called TBoxes (see Section 4.2 for the definition of TBoxes). Models of CP and KP ,
such as the one displayed in Figure 2, have the form of an infinite k-ary tree whose root is
connected to an “extra node” x via the role R. Intuitively, each node of the tree represents
one partial solution i1, . . . , in, its `-successor represents the corresponding left concatenation
`i1 · · · `in , and its r-successor the corresponding right concatenation ri1 · · · rin .

To enforce the existence of the infinite tree, we employ the key box KP : consider for
example the root node’s f1-successor in Figure 2—let us call this node y. Due to Line 3

10
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` r
=ε

concrk
f1 fk

` rr`

f1 f1fk fk

conc`k

conc`1

concr1

· · ·
· · · · · ·

· · · · · ·

=ε

R

x ∃g.=ε

A

Figure 2: An example model of CP and KP .

of CP and Line 1 of Step, we have y ∈ (∃g.=ε)
I . Due to Line 2 of CP , we also have

x ∈ (∃g.=ε)
I and x ∈ (¬Step)I , where x is the “extra node” mentioned above. In view of

the key box KP , this implies that either (i) x = y or (ii) y ∈ StepI . It is easy to see that
(i) is impossible since Line 2 of CP and Line 1 of Step imply that x ∈ AI and y ∈ (¬A)I .
Hence y ∈ StepI and, by Line 2 of Step, y has the appropriate fi-successors for 1 ≤ i ≤ n.
In the same way, the construction of the tree can be continued ad infinitum. The second
line in the definition of Step enforces that `I(z) = `i1 · · · `in and rI(z) = ri1 · · · rin for z an
fi1 · · · fin-successor of the root node. Finally, the concept ∃`, r.6= in Line 1 of Step implies
that `I(z) 6= rI(z) holds at all nodes z of the tree (except for the root), which implies that
no potential solution is a solution.

Since the size of CP and KP is clearly polynomial in k and the key box KP is a unary
key box, we obtain the following proposition.

Proposition 3.2. The satisfiability of ALCK(W)-concepts w.r.t. (non-Boolean) path-free
unary key boxes is undecidable.

To emphasize that this undecidability result was obtained using a very simple concrete
domain, let us combine Theorem 3.1 with Proposition 3.2.

Theorem 3.3. There exists a concrete domain D such that D-satisfiability is in PTime

and satisfiability of ALCK(D)-concepts w.r.t. (non-Boolean) path-free unary key boxes is
undecidable.

On first sight, the concrete domain W might look artificial and one may question the
relevance of lower bounds that have been obtained using W. However, it is straightforward
to encode words as natural numbers and to define concatenation of words as rather simple
operations on the natural numbers (Baader & Hanschke, 1992): a word w 6= ε over the
alphabet Σ of cardinality #Σ can be interpreted as a number written at base #Σ + 1 in
which the symbol that is the “0 digit” does not occur. Hence, we can use the corresponding
natural number (e.g. at base 10) to represent a word w, and the number 0 to represent

11



Lutz, Areces, Horrocks, & Sattler

the empty word. The concatenation of two words v and w can then be expressed as vw =
v·(#Σ+1)|w|+w, where |w| denotes the length of the word w. Moreover, exponentiation can
be expressed as multiple multiplications, multiplication as multiple additions, and addition
as multiple incrementation: this is shown in Section 5.6 of (Lutz, 2004) for the case of
ALC(D) extended with TBoxes (c.f. Section 4.2) and can easily be adapted to ALC(D)
with non-Boolean key boxes. This observation gives rise to the following theorem:

Theorem 3.4. Let D be a concrete domain such that � ⊆ ∆D, ΦD contains a unary predi-
cate =0 with (=0)

D = {0}, binary equality and inequality predicates, and a binary predicate
incr with incrD ∩ {(n, x) | n ∈ � and x ∈ ∆D} = {(k, k + 1) | k ∈ � }. Then satisfiability of
ALCK(D)-concepts w.r.t. (non-Boolean) path-free unary key boxes is undecidable.

3.2 Domino Problems and Concrete Domains

In this section, we introduce a NExpTime-complete variant of the well-known, undecidable
domino problem (Berger, 1966; Knuth, 1968), and then define three concrete domains D1,
D2, and D3. These concrete domains will be used in Sections 3.3 and 3.4 to establish
lower bounds for reasoning with ALCK(D) and Boolean key boxes, and for reasoning with
ALCO(D).

In general, a domino problem is given by a finite set of tile types. Intuitively, all tile
types are of the same size, each type having a square shape and colored edges. An unlimited
number of tiles of each type is available. In the NExpTime-hard variant of the domino
problem that we use, the task is to tile a 2n+1 × 2n+1-torus (i.e., a 2n+1 × 2n+1-rectangle
whose borders are “glued” together) where neighboring edges have the same color.

Definition 3.3 (Domino System). A domino system D is a triple (T, H, V ), where T ( �

is a finite set of tile types and H, V ⊆ T ×T represent the horizontal and vertical matching
conditions. Let D be a domino system and a = a0, . . . , an−1 an initial condition, i.e. an
n-tuple of tiles. A mapping τ : {0, . . . , 2n+1}× {0, . . . , 2n+1} → T is a solution for D and a
iff, for all x, y < 2n+1, the following holds:

• if τ(x, y) = t and τ(x ⊕2n+1 1, y) = t′, then (t, t′) ∈ H

• if τ(x, y) = t and τ(x, y ⊕2n+1 1) = t′, then (t, t′) ∈ V

• τ(i, 0) = ai for i < n.

where ⊕i denotes addition modulo i.

It follows from results in (Börger, Grädel, & Gurevich, 1997) that the above variant of the
domino problem is NExpTime-complete.

We define the concrete domain D1 to be used in the reduction of the NExpTime-
complete domino problem to ALCK(D1)-concept satisfiability w.r.t. Boolean key boxes.

Definition 3.4 (Concrete Domain D1). The concrete domain D1 is defined by setting
∆D1

:= {0, 1} and ΦD1
to the (smallest) set containing the following predicates:

• unary predicates >D1
with (>D1

)D1 = ∆D1
and ⊥D1

with (⊥D1
)D1 = ∅;

• unary predicates =0 and =1 with (=i)
D1 = {i}, i ∈ {0, 1}.

12
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The second concrete domain D2 will be used for a reduction of the NExpTime-complete
domino problem to ALCK(D2)-concept satisfiability w.r.t. Boolean unary key boxes. For
this reduction we need to “store” vectors of bits in single concrete domain elements.

Definition 3.5 (Concrete Domain D2). For every n ∈ � , a function v : {0, . . . , n−1} →
{0, 1} is called a bit vector of dimension n. We use BVn to denote the set of all bit vectors
of dimension n. The concrete domain D2 is defined by setting ∆D2

:=
⋃

i>0 BVi and ΦD2
to

the (smallest) set containing the following predicates:

• unary predicates >D2
with (>D2

)D2 = ∆D2
and ⊥D2

with (⊥D2
)D2 = ∅;

• for every k, i ∈ � with i < k, unary predicates bit0i
k and bit1i

k with

(bitni
k)

D2 = {v ∈ ∆D2
| v ∈ BVk and v(i) = n}.

Moreover, unary predicates bit0i
k and bit1i

k with (bitni
k)

D2 = ∆D2
\ (bitni

k)
D2 .

The last concrete domain D3 is used in the reduction of the NExpTime-complete domino
problem to ALCO(D3)-concept satisfiability. In this reduction, the concrete domain D3

contains two kinds of elements: firstly, there are elements of ∆D3
that can represent the

whole 2n+1 ×2n+1-torus, so-called domino arrays. Secondly, there are elements of ∆D3
that

represent positions in the torus. For technical reasons to be discussed later, these elements
are vectors of natural numbers rather than bit vectors, and in the following we shall just call
them vectors. A domino array is then a function mapping each pair of vectors (of certain
length) ato a natural number which represents a tile type.

Definition 3.6 (Concrete Domain D3). For every k ∈ � , a function v : {0, . . . , k −
1} → � is called a vector of dimension k. We use VEk to denote the set of all vectors
of dimension k. For every k ∈ � , a function k : VEk × VEk → � is called a domino array
of dimension k. We use DAk to denote the set of all domino arrays of dimension k. The
concrete domain D3 is defined by setting ∆D3

:=
⋃

i>0 VEi ∪
⋃

i>0 DAi and ΦD3
to the

(smallest) set containing the following predicates:

• unary predicates >D3
with (>D3

)D3 = ∆D3
and ⊥D3

with (⊥D3
)D3 = ∅;

• for every k, i ∈ � with i < k, unary predicates pos0i
k and pos1i

k with

(posni
k)

D3 = {v ∈ ∆D3
| v ∈ VEk and v(i) = n}

and unary predicates pos0i
k and pos1i

k with (posni
k)

D3 = ∆D3
\ (posni

k)
D3 ;

• for every k, i ∈ � , a predicate tilei
k of arity 3 with

(tilei
k)

D3 = {(vx, vy, d) | vx, vy ∈ VEk, d ∈ DAk, and d(vx, vy) = i}

and a predicate tilei
k of arity 3 with (tilei

k)
D3 = (∆D3

)3 \ (tilei
k)

D3 .
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The reason for using vectors of natural numbers rather than bit vectors in the definition of
D3 is that we want D3-satisfiability to be of low complexity, preferably in PTime: consider
the D3-conjunction

pos00
2(x) ∧ pos00

2(y) ∧ pos00
2(z) ∧

tile7
2(x, v, d) ∧ tile8

2(y, v, d) ∧ tile9
2(z, v, d).

If we use bit vectors rather than vectors of natural numbers, then the upper line enforces
that at least two out of the three variables x, y, and z must take the same value. Since
the value of v is fixed, the lower line makes the conjunction unsatisfiable: it tries to assign
the three different values 7,8,9 to two different positions in the domino array. It seems
unlikely that this kind of inconsistency can be detected in polynomial time. This problem
is circumvented by using vectors of natural numbers in the definition of D3 (but enforcing
them to be bit vectors in the reduction): in this case, the above conjunction is clearly
satisfiable.

Proposition 3.5. For each i ∈ {1, 2, 3}, the concrete domain Di is admissible and satisfi-
ability of Di-conjunctions is in PTime.

For D1, this is trivial. For D2, a proof can be found in Appendix A. And for D3, a proof
can be found in (Lutz, Areces, Horrocks, & Sattler, 2002).

3.3 NExpTime-hardness of ALCK(D) with Boolean Key Boxes

In this section, we prove two NExpTime-lower bounds for ALCK(D)-concept satisfiability
w.r.t. Boolean key boxes by reducing the NExpTime-complete domino problem introduced
in the previous section. The first reduction uses the very simple concrete domain D1, but
depends on composite key definitions. The second reduction uses the slightly more complex
concrete domain D2, but only needs unary key definitions. As we will see, the two reductions
yield different, incomparable results.

We first reduce the NExpTime-complete domino problem to ALCK(D1)-concept satisfi-
ability w.r.t. Boolean composite key boxes. Each domino system D = (T, H, V ) with initial
condition a = a0, . . . , an−1 is translated into an ALCK(D1)-concept CD,a as displayed in
Figure 3. Names such as TreeX and TreeY are used as abbreviations, only. We use ∀Ri.C
as an abbreviation for the n-fold nesting ∀R. · · · ∀R.C. The names xposi and yposi used in
the figure denote concrete features. In the definition of the Init concept, for each n ∈ � ,
biti(n) is supposed to denote the i’th bit of the binary representation of n. We claim that
CD,a is satisfiable w.r.t. the key box

{(xpos0, . . . , xposn, ypos0, . . . , yposn keyfor >)}

iff there exists a solution for D and a. To substantiate this claim, let us walk through
the reduction and explain the various parts of the concept CD,a. The first step towards
understanding the structure of models of CD,a (which is the key to understanding the
reduction itself) is to note that the purpose of the first line of CD,a is to enforce a tree
structure of depth 2(n + 1), whose leaves correspond to positions in the 2n+1 × 2n+1-torus.
More precisely, the TreeX concept guarantees that, in every model I of CD,a, there exists
a binary tree of depth n + 1. Moreover, the DistXk concepts (there exists one for each
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TreeX := ∃R.X0 u ∃R.¬X0 u u
i=1..n

∀Ri.(DistXi−1 u ∃R.Xi u ∃R.¬Xi)

TreeY := DistXn u ∃R.Y0 u ∃R.¬Y0u

u
i=1..n

∀Ri.(DistYi−1 u DistXn u ∃R.Yi u ∃R.¬Yi)

DistXk := u
i=0..k

((Xi → ∀R.Xi) u (¬Xi → ∀R.¬Xi))

DistYk := u
i=0..k

((Yi → ∀R.Yi) u (¬Yi → ∀R.¬Yi))

TransXPos := u
i=0..n

(Xi → ∃xposi. =1) u (¬Xi → ∃xposi. =0)

TransYPos := u
i=0..n

(Yi → ∃yposi. =1) u (¬Yi → ∃yposi. =0)

Succs := ∃Rx.(TransXPos u TransYPos) u ∃Ry.(TransXPos u TransYPos)

XSuccOk := u
i=0..n

(

(Yi → ∀Rx.Yi) u (¬Yi → ∀Rx.¬Yi)
)

u
k=0..n

( u
j=0..k

Xj

)

→
(

(Xk → ∀Rx.¬Xk) u (¬Xk → ∀Rx.Xk)
)

u
k=0..n

( t
j=0..k

¬Xj

)

→
(

(Xk → ∀Rx.Xk) u (¬Xk → ∀Rx.¬Xk)
)

YSuccOk := u
i=0..n

(

(Xi → ∀Ry.Xi) u (¬Xi → ∀Ry.¬Xi)
)

u
k=0..n

( u
j=0..k

Yj

)

→
(

(Yk → ∀Ry.¬Yk) u (¬Yk → ∀Ry.Yk)
)

u
k=0..n

( t
j=0..k

¬Yj

)

→
(

(Yk → ∀Ry.Yk) u (¬Yk → ∀Ry.¬Yk)
)

Label :=t
i∈T

Di u u
i,j∈T,i6=j

¬(Di u Dj)

CheckMatch := t
(i,j)∈H

(Di u ∀Rx.Dj) u t
(i,j)∈V

(Di u ∀Ry.Dj)

Init := u
i=0..n−1

(

( u
j=0..n,bitj(i)=0

¬Xj u u
j=0..n,bitj(i)=1

Xj u u
j=0..n

¬Yj

)

→ Dai

)

CD,a := TreeX u ∀Rn+1.TreeY

u ∀R2(n+1).(TransXPos u TransYPos u Succs u XSuccOk u YSuccOk)

u ∀R2(n+1).(Label u CheckMatch u Init)

Figure 3: The ALCK(D1) reduction concept CD,a.

k ∈ {0, . . . , n}) ensure that the leaves of this tree are binarily numbered (from 0 to 2n+1−1)
by the concept names X0, . . . , Xn. More precisely, for a domain object d ∈ ∆I , set

xpsn(d) = Σn
i=0αi(d) ∗ 2i where αi(d) =

{

1 if d ∈ XI
i

0 otherwise.
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The TreeX and DistX concepts ensure that there exist nodes d0, . . . , d2n+1−1 at level n + 1
of the tree such that xpsn(di) = i. Intuitively, this numbering represents the horizontal
positions in the 2n+1 × 2n+1-torus. The vertical positions are coded in a similar way by the
Y0, . . . , Yn concept names. More specifically, the concepts TreeY, DistX, and DistY ensure
that every di (i ≤ 2n+1 − 1) is the root of another tree, in which (i) every node has the
same “X0, . . . , Xn-configuration” as its root node, and (ii) the leaves are numbered binarily
using the concept names Y0, . . . , Yn (note that the TreeY concept appears in CD,a inside a
∀Rn+1 value restriction). Define

ypsn(d) = Σn
i=0βi(d) ∗ 2i where βi(d) =

{

1 if d ∈ Y I
i

0 otherwise.

In the set of leaf nodes of all the trees enforced by the TreeY concept, there exists, for each
i, j < 2n+1, an3 object ei,j ∈ ∆I such that xpsn(ei,j) = i and ypsn(ei,j) = j, i.e., each ei,j

represents the position (i, j) in the 2n+1 × 2n+1-torus.
The next step is to translate the individual bits of the numbering of the ei,j-objects,

which are up to now represented by concept names, into concrete domain values. This is
done by the TransXPos and TransYPos concepts which ensure that, for all ` ≤ n, we have
xposI` (ei,j) = 0 if ei,j ∈ ¬X`, xposI` (ei,j) = 1 if ei,j ∈ X`, and similar for ypos` and Y`. Since
I is a model for the key box

{(xpos0, . . . , xposn, ypos0, . . . , yposn keyfor >)},

grid positions are uniquely represented by domain elements from (TransXPosuTransYPos)I ,
i.e., if d, e ∈ (TransXPosuTransYPos)I such that xpsn(d) = xpsn(e) and ypsn(d) = yxpsn(e),
then d = e. This fact is used in the concepts Succs, XSuccOk, and YSuccOk to enforce that,
for the two roles Rx and Ry and each i, j ≤ n, the following holds:

RI
x ∩ ({ei,j} × ∆I) = {(ei,j , e(i⊕

2n+11),j}

RI
y ∩ ({ei,j} × ∆I) = {(ei,j , ei,(j⊕

2n+11)}.
(∗)

The Succs concept ensures that, for each ei,j , there exists an Rx-successor and an Ry-
successor, and that both are in (TransXPosuTransYPos)I . Let d be an Rx-successor of ei,j .
Then the XSuccOk concept ensures that xpsn(d) = i ⊕2n+1 1 and ypsn(d) = j. Before we
explain how it does this, let us note that, since all ei,j are in (TransXPosuTransYPos)I and
the grid positions are uniquely represented by elements of (TransXPos u TransYPos)I , this
implies d = e(i⊕

2n+11),j which shows that the upper line of (∗) does indeed hold.
Let us now consider the XSuccOk concept in some more detail. It is essentially the

DL-formulation of the well-known propositional formula

n
∧

k=0

(
k−1
∧

j=0

xj = 1) → (xk = 1 ↔ x′
k = 0) ∧

n
∧

k=0

(
k−1
∨

j=0

xj = 0) → (xk = x′
k)

which encodes incrementation modulo 2n+1, i.e., if t is the number (binarily) encoded by
the propositional variables x0, . . . , xn and t′ is the number encoded by the propositional

3. It does not matter if there is more than one such object.
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variables x′
0, . . . , x

′
n, then we have t′ = t + 1 modulo 2n+1, see (Börger et al., 1997). Taking

into account the ∀Rx quantifiers in XSuccOk, it is readily checked that this concept has
just the desired effect: to ensure that, for every Rx-successor d of ei,j , we have xpsn(d) =
xpsn(e(i⊕

2n+11),j) = i ⊕2n+1 1. The explanation of YSuccOk and how it enforces the lower
line of (∗) is analogous to the XSuccOk case.

It remains to ensure that every grid position is labeled with precisely one tile and that
the initial condition as well as the horizontal and vertical matching conditions are satisfied.
The tiles are represented by concept names Di (where i is from the set of tiles T ) and
the described tasks are accomplished in the standard way by the concepts Label, Init, and
CheckMatch.

It is worth noting that the reduction concept is path-free and the key box is simple,
i.e., path-free and Boolean. Path-freeness of concepts is often used to tame the complexity
of description logics with concrete domains (although it largely sacrifices their expressive
power) (Lutz, 2003; Baader, Lutz, Sturm, & Wolter, 2002b; Haarslev, Möller, & Wessel,
2001; Horrocks & Sattler, 2001). For example, if ALC(D) is augmented with general TBoxes,
then reasoning with arbitrary concepts is undecidable while reasoning with path-free con-
cepts is ExpTime-complete if D is admissible and D-satisfiability is in ExpTime (Lutz,
2002a). This “taming approach” does not work in the presence of key boxes since, as we
have just seen, satisfiability of ALC(D)-concepts w.r.t. key boxes is (under some natural
assumptions) NExpTime-hard, even if both concept and key box are path-free.

Since the size of CD,a and of the used key box is clearly polynomial in n, we obtain the
following proposition.

Proposition 3.6. The satisfiability of path-free ALCK(D1)-concepts w.r.t. simple key boxes
is NExpTime-hard.

In (Lutz, 2002b), it is proved that (non path-free) ALC(D)-concept satisfiability is PSpace-
complete if D-satisfiability is in PSpace. In particular, it thus follows from Proposition 3.5
that ALC(D1)-concept satisfiability is PSpace-complete. Thus, there is a rather dramatic
increase of complexity if key boxes are added to ALC(D1). To stress that this increase is due
to the key boxes themselves and not to the complexity of D1-satisfiability, we reformulate
Proposition 3.6:

Theorem 3.7. There exists a concrete domain D such that D-satisfiability is in PTime and
satisfiability of path-free ALCK(D)-concepts w.r.t. simple key boxes is NExpTime-hard.

Although, due to its very low expressivity, the concrete domain D1 itself is not very natural
for knowledge representation, it is a fragment of many concrete domains that have been
proposed in the literature (Baader & Hanschke, 1992; Haarslev & Möller, 2001; Lutz, 2003,
2002b). Indeed, the presented reduction strategy can be adapted to quite many “standard”
concrete domains. Let us formulate a (very weak) condition that a concrete domain must
satisfy in order for the presented reduction strategy to be applicable.

Theorem 3.8. Let D be a concrete domain. If there exist a, b ∈ ∆D with a 6= b and P1, P2 ∈
ΦD such that PD

1 = {a} and PD
2 = {b}, then the satisfiability of path-free ALCK(D)-concepts

w.r.t. simple key boxes is NExpTime-hard.
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Succs2 := ∃Rx.TransPos u ∃Ry.TransPos

TransPos := u
i=0..n

(

(Xi → ∃bv.bit1i
2(n+1)) u ¬Xi → ∃bv.bit0i

2(n+1))
)

u

u
i=0..n

(

(Yi → ∃bv.bit1n+i+1
2(n+1)) u ¬Yi → ∃bv.bit0n+i+1

2(n+1))
)

CD,a := TreeX u ∀Rn+1.TreeY

u ∀R2(n+1).(TransPos u Succs2 u XSuccOk u YSuccOk)

u ∀R2(n+1).(Label u CheckMatch u Init)

Figure 4: The ALCK(D2) reduction concept CD,a.

We now present the second NExpTime-hardness result for ALCK(D)-concept satisfiability.
This time, we reduce the NExpTime-complete domino problem to the satisfiability of path-
free ALCK(D2)-concepts w.r.t. simple unary key boxes. The reduction is very similar to
the previous one and we only discuss the differences.

In the first reduction, we represented the individual bits of grid positions by individual
concrete features xposi and yposi and used a composite key box to ensure that each point
in the torus is represented by at most one element. In the second reduction, we use a single
concrete feature bv and represent an entire position (i, j) in the torus using a bit vector
from the concrete domain D2. This allows us to enforce the above mentioned uniqueness of
representations using a unary key box.

The modified reduction concept CD,a can be found in Figure 4, where the concepts
TreeX, TreeY, DistXk, DistYk, XSuccOk, YSuccOk, Label, CheckMatch, and Init are defined
as in Figure 3. The translation of the position in the torus encoded by X0, . . . , Xn, Y0, . . . , Yn

into a bit vector is done by the TransPos concept in a straightforward manner. Given what
was said about the first reduction, it is not hard to see that CD,a is satisfiable w.r.t. the key
box {(bv keyfor >)} iff there exists a solution for D and a. We thus obtain the following
proposition.

Proposition 3.9. The satisfiability of path-free ALCK(D2)-concepts w.r.t. simple unary
key boxes is NExpTime-hard.

Again, we relate the NExpTime lower bound to the complexity of D2-complexity, which is
determined in Proposition 3.5.

Theorem 3.10. There exists a concrete domain D such that D-satisfiability is in PTime

and the satisfiability of path-free ALCK(D)-concepts w.r.t. simple unary key boxes is NExp-

Time-hard.

Since the elements of ∆D2
are bit vectors, the concrete domain D2 cannot be considered a

natural choice for many application areas. But, in the reduction, D2 can be replaced by
several natural concrete domains.

The central observation is that we use bit vectors only to injectively translate sequences
of bits into values of the concrete domain, i.e., we translate sequences of 2(n + 1) bits
(represented by the concept names X0, . . . , Xn and Y0, . . . , Yn) into elements of ∆D2

such
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that, for distinct sequences, the results of the translation are also distinct. Due to this
restricted use of bit vectors, there are several ways to replace them by natural numbers.
For example, we can replace TransPos with the following concept TransPos′ which ensures
that, for each d ∈ TransPos′I , sI2n+1(d) = xpsn(d) + 2n+1 · ypsn(d):

TransPos′ := ∃zero.=0 u u
i=1...2n+1

(

∃ti.=2i

)

u (¬X0 → ∃s0.=0) u (X0 → ∃s0.=1) u

u
i=1..n

(

(

¬Xi → ∃(si−1, zero, si).+
)

u
(

Xi → ∃(si−1, ti, si).+
)

)

u

u
i=n+1..2n+1

(

(

¬Yi → ∃(si−1, zero, si).+
)

u (Yi → ∃(si−1, ti, si).+
)

)

where zero, si, and ti are concrete features, =k (with k ∈ � ) denotes a unary predicate
with the obvious extension, and + denotes a ternary addition predicate.

It is easy to check that, whenever two objects d, e ∈ TransPos′
I

do not agree on the
interpretation of the X0, . . . , Xn, Y0, . . . , Yn, then sI2n+1(d) 6= sI2n+1(e), and thus the key
box {(s2n+1 keyfor >)} can be used for the reduction. The size of TransPos′ is obviously
polynomial in n if the numbers k appearing in =k predicates are coded in binary. We thus
obtain the following theorem:

Theorem 3.11. Let D be a concrete domain such that

1. � ⊆ ∆D,

2. ΦD contains, for each k ∈ � , a predicate =k with (=k)
D = {k} where the size of (the

representation of) =k is logarithmic in k, and

3. ΦD contains a predicate + with (+)D ∩ {(k1, k2, x) | k1, k2 ∈ � and x ∈ ∆D} =
{(k1, k2, k1 + k2) | k1, k2 ∈ � }.

Then the satisfiability of path-free ALCK(D)-concepts w.r.t. simple unary key boxes is
NExpTime-hard.

For example, this theorem yields NExpTime-lower bounds for ALCK(D) instantiated with
the concrete domains proposed in (Baader & Hanschke, 1992; Haarslev & Möller, 2001; Lutz,
2003, 2002b). An alternative to the addition predicate is to use multiplication to injectively
translate sequences of bits into natural numbers. More precisely, let p1, . . . , p2n+1 be the
first n + 1 prime numbes and define another version of TransPos as follows:

TransPos′′ := ∃one.=1 u u
i=1...2n+1

(

∃ti.=pi

)

u (¬X0 → ∃s0.=0) u (X0 → ∃s0.=1) u

u
i=1..n

(

(

¬Xi → ∃(si−1, one, si).∗
)

u
(

Xi → ∃(si−1, ti, si).∗
)

)

u

u
i=n+1..2n+1

(

(

¬Yi → ∃(si−1, one, si).∗
)

u
(

Yi → ∃(si−1, ti, si).∗
)

)

where ∗ is a ternary multiplication predicate.
Since the factorization of natural numbers into prime numbers is unique, we can again

use the key box {(s2n+1 keyfor >)} for the reduction. Moreover, it is well-known that the
k’th prime is polynomial in k (Graham, Knuth, & Patashnik, 1990), and thus the size of
the concept TransPos′′ is polynomial in n even if the numbers k in =k predicates are coded
unarily. We thus obtain another theorem concerning quite natural concrete domains:
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Theorem 3.12. Let D be a concrete domain such that

1. � ⊆ ∆D,

2. ΦD contains, for each k ∈ � , a predicate =k with (=k)
D = {k}, and

3. ΦD contains a predicate ∗ with (∗)D ∩ {(k1, k2, x) | k1, k2 ∈ � and x ∈ ∆D} =
{(k1, k2, k1 · k2) | k1, k2 ∈ � }.

Then the satisfiability of path-free ALCK(D)-concepts w.r.t. simple unary key boxes is
NExpTime-hard.

3.4 NExpTime-hardness of ALCO(D)

As we already pointed out in Section 1, the relationship between key boxes and nominals
is rather close: the latter can be “simulated” by the former if the concrete domain provides
predicates that can be used to uniquely describe elements of ∆D. For example, in ALCK(D1)
the concept ∃g.=0 behaves as a nominal if we use the key definition (g keyfor >). We can
even define n nominals using n single concrete features in unary-key definitions. In the
logics ALCK(D2) and ALCK(D3), a single concrete feature and unary key definitions are
sufficient to simulate an arbitrary number of nominals: for example, in ALCK(D2) the
concept C = ∃g.bit00

2 u ∃g.bit11
2 uniquely describes the bit vector (0, 1) ∈ BV2 ⊆ ∆D2

, i.e.,
a ∈ CI implies gI(a) = (0, 1). Obviously, any other bit vector (of any length!) can be
described in a similar way.

This illustrates that, for most non-trivial concrete domains D, the logic ALCK(D) is
(at least) as expressive as ALCO(D). Although the converse does not hold, the expressive
power of ALCO(D) is still sufficient to prove NExpTime-hardness of concept satisfiabil-
ity, provided that a suitable concrete domain D is used. In this section, we reduce the
NExpTime-complete domino-problem to ALCO(D3)-concept satisfiability.

Again, let D = (T, H, V ) be a domino system and a = a0, . . . , an−1 an initial condition.
Then the reduction concept CD,a is defined in Figure 5, where bvx, bvy, bvxs, bvys, and darr
denote concrete features, N denotes a nominal, and the concepts TreeX, TreeY, DistXk, and
DistYk are defined as in Figure 3. As in the previous reductions, we now give a detailed
explanation of the reduction strategy to show that CD,a is satisfiable iff there exists a solution
for D and a. Formal details can then easily be worked out by the interested reader.a

Let I be a model for CD,a. To explain the structure of I, it is convenient to start
with the first line of CD,a. As in the previous reductions, the TreeX and TreeY concepts
are used to ensure that I contains a tree-shaped substructure of depth n + 1 whose leaf
nodes are the roots of additional trees of depth n + 1 such that the set of the leafs of the
latter trees correspond to the positions in the 2n+1 × 2n+1-torus, i.e., for each position,
there is a leaf node representing it. The torus positions are binarily encoded by the concept
names X0, . . . , Xn and Y0, . . . , Yn and we use ei,j to refer to the leaf with xpsn(ei,j) = i and
ypsn(ei,j) = j (see Section 3.3).

As in the previous reductions, the numbers coded by X0, . . . , Xn and Y0, . . . , Yn are
translated into concrete domain values, which is done by the TransXPos and TransYPos
concepts. Note that, in contrast to the ALCK(D2)-reduction, the x-position and the y-
position are not stored in the same bit vector, but rather in the two distinct ones bvx
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Nominal := ∃f.N

XSucc := u
k=0..n

( u
j=0..k

Xj

)

→ (Xk ↔ ¬X ′
k) u u

k=0..n

( t
j=0..k

¬Xj

)

→ (Xk ↔ X ′
k)

YSucc := u
k=0..n

( u
j=0..k

Yj

)

→ (Yk ↔ ¬Y ′
k) u u

k=0..n

( t
j=0..k

¬Yj

)

→ (Yk ↔ Y ′
k)

TransXPos := u
i=0..n

(

(Xi → ∃bvx.pos1i
n+1) u (¬Xi → ∃bvx.pos0i

n+1)
)

TransYPos := u
i=0..n

(

(Yi → ∃bvy.pos1i
n+1) u (¬Yi → ∃bvy.pos0i

n+1)
)

TransXSucc := u
i=0..n

(

(X ′
i → ∃bvxs.pos1i

n+1) u (¬X ′
i → ∃bvxs.pos0i

n+1)
)

TransYSucc := u
i=0..n

(

(Y ′
i → ∃bvys.pos1i

n+1) u (¬Y ′
i → ∃bvys.pos0i

n+1)
)

CheckHMatch := t
i,j∈H

(∃(bvx, bvy, f ◦ darr).tilei
n+1 u ∃(bvxs, bvy, f ◦ darr).tilej

n+1)

CheckVMatch := t
i,j∈V

(∃(bvx, bvy, f ◦ darr).tilei
n+1 u ∃(bvx, bvys, f ◦ darr).tilej

n+1)

Init2 := u
i=0..n−1

(

( u
j=0..n,bitj(i)=0

¬Xj u u
j=0..n,bitj(i)=1

Xj u u
j=0..n

¬Yj

)

→ ∃(bvx, bvy, f ◦ darr).tileai

n+1

)

CD,a := TreeX u ∀Rn+1.TreeY u ∀R2(n+1).Nominal u

∀R2(n+1).(TransXPos u TransYPos u

XSucc u YSucc u TransXSucc u TransYSucc u

Init2 u CheckHMatch u CheckVMatch)

Figure 5: The ALCO(D3) reduction concept CD,a.

and bvy. Also in contrast to the previous reduction, the actual tiling of the torus is not
represented by the leaf nodes ei,j , but rather by a domino array: the last conjunct in the
first line of CD,a ensures that every leaf ei,j is connected via the abstract feature f to the
(unique) element w ∈ NI .

The domain element w is associated with a domino array via the concrete feature darr (as
we shall see later, this is guaranteed by the CheckHMatch and CheckVMatch concepts). This
domino array represents the tiling of the 2n+1 × 2n+1-torus. Summing up, the structure of
I is roughly as shown in Figure 6.

Since the tiling is stored in a domino array, we need to explain the purpose of the leaf
nodes ei,j : these nodes are used to enforce the initial condition and the horizontal and
vertical matching condition. Let us discuss the horizontal matching condition (the vertical
matching condition is enforced analogously): the XSucc concept is the DL reformulation
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TreeY

TreeX

...

... ... ...
TreeY TreeY

f f

N

f

darr

Figure 6: The structure of models of CD,a.

of the propositional logic formula for incrementation modulo 2n+1 and ensures that, for
each ei,j , the concept names X ′

0, . . . , X
′
n encode the number i ⊕2n+1 1, i.e., the horizontal

position of ei,j ’s horizontal neighbor. In addition to the storage of the horizontal and vertical
position of ei,j in bvx(ei,j) and bvy(ei,j), we also store the horizontal position i ⊕2n+1 1 of
ei,j ’s horizontal successor in bvxs(ei,j). Finally, CheckHMatch verifies that the tiles of the
positions (i, j) and (i⊕2n+1 1, j), which are both stored in the domino array, are compatible
with the horizontal matching condition.

Note that CheckHMatch also ensures that the domain element w (with {w} = N I) has
a domino array attached via the concrete feature darr and that, for each position (i, j), the
(unique!) tile stored in the domino array is from the set T . The initial condition is ensured
via the Init2 concept in a similar way. We (again) use bitj(i) to denote the j’th bit of the
binary encoding of the natural number i.

Using the above considerations, the correctness of the reduction is readily checked.
Moreover, the size of CD,a is at most polynomial in n. Note that CD,a is not path-free:
paths of length two appear in the concepts CheckHMatch, CheckVMatch, and Init2. Summing
up, the reduction described yields the following result:

Proposition 3.13. The satisfiability of ALCO(D3)-concepts is NExpTime-hard.

Again, we relate the NExpTime lower bound to the complexity of D3-complexity, which is
determined in Proposition 3.5.

Theorem 3.14. There exists a concrete domain D such that D-satisfiability is in PTime

and the satisfiability of ALCO(D)-concepts is NExpTime-hard.

Note that the reduction uses only a single nominal N . This is a dramatic increase of
complexity since it was shown in (Lutz, 2002b) that satisfiability of ALC(D)-concepts (i.e.,
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without nominals and key boxes) is PSpace-complete provided that D is admissible and
D-satisfiability is in PSpace.

As in previous sections, we note that D3 can be replaced by more natural concrete
domains in the NExpTime-hardness proof presented. The idea is to represent the whole
domino array by a single natural number and then to use arithmetic operations to access the
individual positions: a natural number k can be viewed as a domino array by partitioning
its binary representation into 2n+1 · 2n+1 = 22(n+1) “sections” of length dlog(#T )e, where
#T denotes the cardinality of the set of tile types T . Each such section describes the tile
of a single position in the torus. The sections can be accessed by using integer division
and reminder operations: if k is the natural number representing the torus, then the tile of
posisition i is computed by

(k div 2i·dlog(#T )e) mod 2dlog(#T )e + 1.

Thus, we introduce ternary predicates div for integer division and mod for computing the
remainder of a division, and a binary predicate 2x expressing exponentiation with basis 2.
Then we modify the reduction as follows: we replace TransXPos and TransYPos by the
TransPos′ concept from Section 3.3 to translate the two numbers encoded by X1, . . . , Xn

and Y1, . . . , Yn into a single natural number that is stored in the concrete feature s2n+1. We
then devise a new concept Tile[i] (for each i ∈ T ) enforcing that the position identified by
the feature s2n+1 is labeled with tile i:

Tile[i] := ∃r.=dlog(#T )e u ∃s2n+1, r, r
′.∗ u ∃r′, r′′.2x u ∃one.=1 u ∃r, one, t.+ u ∃t, t′.2x

u ∃ftorus, r′′, u.div u ∃u, t′′, tile.mod u ∃tile.=i.

Here, r, r′, r′′, t, t′, u, one, torus, and tile are concrete features. The torus feature is the coun-
terpart of the darr feature in the original reduction, i.e., it stores the natural number that
represents the tiling array. We can use the Tile[i] concept in the obvious way inside the
CheckHMatch, CheckVMatch, and Init2 concepts. The size of the resulting reduction concept
is polynomial in n if the numbers k appearing in =k predicates are coded in binary. We
thus obtain the following theorem:

Theorem 3.15. Let D be a concrete domain such that

1. � ⊆ ∆D,

2. ΦD contains the predicates a predicate =k (for each k ∈ � ), 2x, +, ∗, div, mod with
the following extensions

(=k)
D = {k}

(2x)D ∩ {(k, x) | k ∈ � and x ∈ ∆D} = {(k, 2k) | k ∈ � }
(+)D ∩ {(k1, k2, x) | k1, k2 ∈ � and x ∈ ∆D} = {(k1, k2, k1 + k2) | k1, k2 ∈ � }
(∗)D ∩ {(k1, k2, x) | k1, k2 ∈ � and x ∈ ∆D} = {(k1, k2, k1 · k2) | k1, k2 ∈ � }

(div)D ∩ {(k1, k2, x) | k1, k2 ∈ � and x ∈ ∆D} = {(k1, k2, k1 div k2) | k1, k2 ∈ � }
(mod)D ∩ {(k1, k2, x) | k1, k2 ∈ � and x ∈ ∆D} = {(k1, k2, k1 mod k2) | k1, k2 ∈ � }

Then the satisfiability of ALCO(D)-concepts is NExpTime-hard.
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4. Reasoning Procedures

This section is devoted to developing reasoning procedures for DLs with concrete domains,
nominals, and keys. We start with devising a tableau algorithm that decides the satisfiability
of ALCOK(D)-concepts w.r.t. Boolean key boxes. This algorithm yields a NExpTime upper
complexity bound matching the lower bounds established in Section 3.3.

Then we consider the rather powerful description logic SHOQK(D). This DL, which
is an extension of SHOQ(D) as introduced in (Horrocks & Sattler, 2001; Pan & Hor-
rocks, 2002), provides a wealth of expressive means such as transitive roles, role hierarchies,
nominals, and qualifying number restrictions. Moreover, SHOQK(D) is equipped with a
restricted variant of the concrete domain constructor and with key boxes. We develop a
tableau algorithm for deciding the satisfiability of SHOQK(D)-concepts w.r.t. path-free
key boxes. Due to the restrictedness of SHOQK(D)’s concrete domain constructor, we can
even admit general rather than only Boolean key boxes. Again, the algorithm yields a tight
NExpTime upper complexity bound.

4.1 A Tableau Algorithm for ALCOK(D) with Boolean Key Boxes

Tableau algorithms decide the satisfiability of the input concept (in our case w.r.t. the input
key box) by attempting to construct a model for it. More precisely, a tableau algorithm
starts with an initial data structure induced by the input concept and then repeatedly ap-
plies so-called completion rules to it. This rule application can be thought of as attempting
to construct a model for the input concept. Finally, either the algorithm will find an obvi-
ous contradiction or it will encounter a situation that is contradiction-free and in which no
more completion rules are applicable. In the former case, the input concept is unsatisfiable,
while it is satisfiable in the latter.

When devising a tableau algorithm for a description logic with concrete domains but
without committing to a particular concrete domain, it is commonly assumed that the
concrete domain is admissible, which in particular implies decidability of the satisfiability
of D-conjunctions. In the presence of keys, however, this is not enough: if a D-conjunction is
satisfiable, we also want to know which of its variables take the same values in an arbitrary
but fixed solution. As an example, consider the concrete domain N = ( � , {<n| n ∈ � })
and the N-conjunction

c = <2(v1) ∧ <2(v2) ∧ <2(v3).

Obviously, one solution δ for c satisfies δ(v1) = δ(v2), another satisfies δ(v1) = δ(v3), and so
on. Our tableau algorithm uses such identity information passed from the concrete domain
reasoner since, in the presence of key boxes, it can have an impact on the structure of the
constructed model. For example, this information reveals the unsatisfiability of

∃R.A u ∃R.(¬A u B) u ∃R.(¬A u ¬B) u ∀R.∃g.<2 w.r.t. (g keyfor >).

To formalize this requirement, we strengthen the notion of admissibility into key-admissibility.
Since the tableau algorithm developed in this section is non-deterministic, we formulate key-
admissibility in a non-deterministic way.

Definition 4.1 (Key-admissible). A concrete domain D is key-admissible iff it satisfies
the following properties:
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1. ΦD contains a name >D for ∆D;

2. ΦD is closed under negation;

3. there exists an algorithm that takes as input a D-conjunction c, returns clash if c is
unsatisfiable, and otherwise non-deterministically outputs an equivalence relation ∼
on the set of variables V used in c such that there exists a solution δ for c with the
following property: for all v, v′ ∈ V

δ(v) = δ(v′) iff v ∼ v′.

An algorithm showing the behaviour described in item 3 above is called a D-tester, and
the equivalence relations ∼ are called concrete equivalences. We say that extended D-
satisfiability is in NP if there exists a D-tester running in polynomial time.

Please note that key-admissibility is less esoteric than it might seem: any concrete domain
that is admissible and provides for an equality predicate is also key-admissible. Due to
admissibility, the presence of an equality predicate implies that an inequality predicate is
also available. We can thus construct a D-tester from an algorithm for D-satisfiability:
when presented with a predicate conjunction c, we simply “guess” an equivalence relation
∼ on the set of variables used in c. Then we decide the (non-extended) satisfiability of
the conjunction c ∧

∧

v∼v′ =(v, v′) ∧
∧

v 6∼v′ 6=(v, v′), return clash if it is unsatisfiable and
∼ otherwise. The rather weak condition that an equality predicate should be present is
satisfied by almost all concrete domains proposed in the literature, see e.g. (Lutz, 2003;
Baader & Hanschke, 1991b; Kamp & Wache, 1996; Haarslev, Lutz, & Möller, 1998; Baader
& Sattler, 1998).

Throughout this chapter, we assume that any concrete domain is equipped with an
equality predicate. This assumption is w.l.o.g. since any D-conjunction using equality can
be translated into an equivalent one without equality by identifying variables according to
the stated equalities. This assumption must not be confused with what was discussed in the
previous paragraph: even if the concrete domain D is admissible and its set of predicates is
thus closed under negation, this assumption does not imply the presence of an inequality
predicate.

We need some more prerequisites before we can start the presentation of the tableau
algorithm: a concept is in negation normal form (NNF) if negation occurs only in front of
concept names and nominals. It is easily seen that, if the concrete domain D is admissible,
then every ALCOK(D)-concept can be converted into an equivalent one in NNF by exhaus-
tively applying the rewrite rules displayed in Figure 7. We use ¬̇C to denote the result of
converting ¬C to NNF. A key box is in NNF if all concepts occurring in key definitions are
in NNF. In what follows, we generally assume input concepts and key boxes to be in NNF.
Let C be an ALCOK(D)-concept and K a key box. We use sub(C) to denote the set of
subconcepts of C (including C itself) and con(K) to denote the set of concepts appearing
on the right-hand side of key definitions in K. For a set of concepts Γ, sub(Γ) denotes the
set

⋃

C∈Γ sub(C). Moreover, we write cl(C,K) as abbreviation for the set

sub(C) ∪ sub(con(K)) ∪ {¬̇D | D ∈ sub(con(K))}.
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¬(C u D)  ¬C t ¬D ¬(C t D)  ¬C u ¬D ¬¬C  C
¬(∃R.C)  ∀R.¬C ¬(∀R.C)  ∃R.¬C

¬(∃u1, . . . , un.P )  ∃u1, . . . , un.P t u1↑ t · · · t un↑
¬(g↑)  ∃g.>D

Figure 7: The NNF rewrite rules.

We now start the presentation of the tableau algorithm by introducing the underlying data
structure.

Definition 4.2 (Completion System). Let Oa and Oc be disjoint and countably infinite
sets of abstract and concrete nodes. A completion tree for an ALCOK(D)-concept C and a
key box K is a finite, labeled tree T = (Va, Vc, E,L) with nodes Va ∪ Vc such that Va ⊆ Oa,
Vc ⊆ Oc, and all nodes from Vc are leaves. The tree is labeled as follows:

• each node a ∈ Va is labeled with a subset L(a) of cl(C,K);

• each edge (a, b) ∈ E with a, b ∈ Va is labeled with a role name L(a, b) occurring in C
or K;

• each edge (a, x) ∈ E with a ∈ Va and x ∈ Vc is labeled with a concrete feature L(a, x)
occurring in C or K.

For a ∈ Va, we use levT(a) to denote the depth on which a occurs in T (starting with the
root node on depth 0). A completion system for an ALCOK(D)-concept C and a key box
K is a tuple (T,P,≺,∼), where

• T = (Va, Vc, E,L) is a completion tree for C and K,

• P is a function mapping each P ∈ ΦD of arity n in C to a subset of V n
c ,

• ≺ is a linear ordering of Va such that levT(a) ≤ levT(b) implies a ≺ b, and

• ∼ is an equivalence relation on Vc.

Let (Va, Vc, E,L) be a completion tree. A node b ∈ Va is an R-successor of a node a ∈ Va

if (a, b) ∈ E and L(a, b) = R, while a node x ∈ Vc is a g-successor of a if (a, x) ∈ E and
L(a, x) = g. For a path u, the notion u-successor is defined in the obvious way.

Intuitively, the relation ∼ records equalities between concrete nodes found during the
(non-deterministic) model construction process. The recording is necessary since equali-
ties between concrete nodes can induce equalities between abstract nodes which, in turn,
can imply more equalities between concrete nodes. This can be seen in the following ex-
ample: assume the completion tree contains, for i ∈ {1, 2}, an abstract node ai with a
concrete g-successor xi and a concrete g′-successor yi. Now assume that the key box con-
tains (g keyfor >), and that the D-tester returns x1 ∼ x2. As a consequence, a1 and a2

represent the same element and thus functionality of g′ implies that also y1 and y2 represent
the same (concrete) element. To deal with such effects, we define an equivalence relation
≈a on abstract nodes and a second equivalence relation ≈c on concrete nodes.
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Definition 4.3 (≈a and ≈c Relations). Let S = (T,P,≺,∼) be a completion system for
a concept C and a key box K with T = (Va, Vc, E,L), and let ≈ be an equivalence relation
on Va. For each R ∈ NR, a node b ∈ Va is an R/≈-neighbor of a node a ∈ Va if there exists
a node c ∈ Va such that a ≈ c and b is an R-successor of c. Similarly, for each g ∈ NcF, a
node x ∈ Vc is a g/≈-neighbor of a if there exists a node c ∈ Va such that a ≈ c and x is a
g-successor of c. For paths u, the notion u/≈-neighbor is defined in the obvious way.

We define a sequence of equivalence relations ≈0
a ⊆ ≈1

a ⊆ · · · on Va as follows:

≈0
a = {(a, a) ∈ V 2

a } ∪

{(a, b) ∈ V 2
a | there is an N ∈ NO such that N ∈ L(a) ∩ L(b)}

≈i+1
a = ≈i

a ∪

{(a, b) ∈ V 2
a | there is a c ∈ Va and an f ∈ NaF such that

a and b are f/≈i
a-neighbors of c} ∪

{(a, b) ∈ V 2
a | there is a (u1, . . . , un keyfor C) ∈ K,

ui/≈
i
a-neighbors xi of a for 1 ≤ i ≤ n, and

ui/≈
i
a-neighbors yi of b for 1 ≤ i ≤ n

such that C ∈ L(a) ∩ L(b) and xi ∼ yi for 1 ≤ i ≤ n}

Finally, set ≈a =
⋃

i≥0 ≈
i
a. Then define

≈c = ∼ ∪ {(x, y) ∈ V 2
c | there is an a ∈ Va and a g ∈ NcF such that

x and y are g/≈a-neighbors of a}.

This definition reflects the above mentioned tight coupling between the concrete and ab-
stract equalities: if the D-tester finds (or guesses) that two concrete nodes are equal, the
tableau algorithm may use this to deduce (via the computation of ≈a and ≈c) even more
equalities between concrete nodes.

Let D be a key-admissible concrete domain. To decide the satisfiability of an ALCOK(D)-
concept C0 w.r.t. a Boolean key box K (both in NNF), the tableau algorithm is started with
the initial completion tree

TC0
= ({a0}, ∅, ∅, {a0 7→ {C0}})

in the initial completion system

SC0
= (TC0

,P∅, ∅, ∅),

where P∅ maps each P ∈ ΦD occurring in C0 to ∅. We now introduce an operation that is
used by the completion rules to add new nodes to completion trees.

Definition 4.4 (“+” Operation). An abstract or concrete node is called fresh in a
completion tree T if it does not appear in T. Let S = (T,P,≺,∼) be a completion system
with T = (Va, Vc, E,L). We use the following notions:

• Let a ∈ Va, b ∈ Oa fresh in T, and R ∈ NR. We write S+aRb to denote the completion
system S′ that can be obtained from S by adding b to Va and (a, b) to E and setting
L(a, b) = R and L(b) = ∅. Moreover, b is inserted into ≺ such that b ≺ c implies
levT(b) ≤ levT(c).
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Ru if C1 u C2 ∈ L(a) and {C1, C2} 6⊆ L(a)
then L(a) := L(a) ∪ {C1, C2}

Rt if C1 t C2 ∈ L(a) and {C1, C2} ∩ L(a) = ∅
then L(a) := L(a) ∪ {C} for some C ∈ {C1, C2}

R∃ if ∃R.C ∈ L(a) and there is no R/≈a-neighbor b of a such that C ∈ L(b),
then set S := S + aRb for a fresh b ∈ Oa and L(b) := {C}

R∀ if ∀R.C ∈ L(a), b is an R/≈a-neighbor of a, and C /∈ L(b)
then set L(b) := L(b) ∪ {C}

R∃c if ∃u1, . . . , un.P ∈ L(a) and there exist no x1, . . . , xn ∈ Vc such that
xi is ui/≈a-neighbor of a for 1 ≤ i ≤ n and (x1, . . . , xn) ∈ P(P )

then set S := (S + au1x1 + · · · + aunxn) with x1, . . . , xn ∈ Oc fresh
and P(P ) := P(P ) ∪ {(x1, . . . , xn)}

Rch if (u1, . . . , un keyfor C) ∈ K and there exist x1, . . . , xn ∈ Vc such that
xi is ui/≈a-neighbor of a for 1 ≤ i ≤ n and {C, ¬̇C} ∩ L(a) = ∅

then set L(a) := L(a) ∪ {D} for some D ∈ {C, ¬̇C}

Rp if L(b) 6⊆ L(a) and a ∈ Va is minimal w.r.t. ≺ such that a ≈a b
then set L(a) := L(a) ∪ L(b)

Figure 8: Completion rules for ALCOK(D).

• Let a ∈ Va, x ∈ Oc fresh in T and g ∈ NcF. We write S+agx to denote the completion
system S′ that can be obtained from S by adding x to Vc and (a, x) to E and setting
L(a, x) = g.

When nesting the + operation, we omit brackets writing, e.g., S + aR1b + bR2c for (S +
aR1b)+ bR2c. Let u = f1 · · · fng be a path. With S +aux, where a ∈ Va and x ∈ Oc is fresh
in T, we denote the completion system S ′ that can be obtained from S by taking distinct
nodes b1, . . . , bn ∈ Oa which are fresh in T and setting

S′ := S + af1b1 + · · · + bn−1fnbn + bngx.

Strictly speaking, the S + aRb operation is non-deterministic since we did not specify how
precisely the node b is inserted into ≺. However, since this is don’t care non-determinism,
we will view the “+” operation as being deterministic.

The completion rules can be found in Figure 8. Note that the Rt and Rch rules are
non-deterministic, i.e., they have more than one possible outcome (this is true don’t know
non-determinism). Some further remarks on the completion rules are in order: the upper
five rules are well-known from existing tableau algorithms for ALC(D)-concept satisfiability,
see for example (Lutz, 2002a). Only the use of R/ ≈a-neighbors and u/ ≈a-neighbors in
the rules R∀, R∃, and R∃c deserves a comment. Take for example R∀: intuitively, if we have
a ≈a b for two abstract nodes a and b of the completion tree, then a and b describe the
same domain element of the constructed model (and similarly for the ≈c relation on concrete
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nodes). Thus if a ≈a b and c is an R-successor of a, then c should also be an R-successor
of b. However, since we want the completion tree to be a tree, we do not make the latter
successorship explicit. To compensate for this, the R∀ rule talks about R/≈a-neighbors
rather than about R-successors.

The lower two rules are necessary for dealing with key boxes. The Rch rule is a so-
called “choose rule” (Hollunder & Baader, 1991; Horrocks et al., 2000): intuitively, it
guesses whether or not an abstract node a satisfies C if there exists a key definition
(u1, . . . , un keyfor C) ∈ K such that there are neighbors of a for all the paths ui. This
is necessary since both possibilities may have ramifications: if a satisfies C, then it must be
taken into account in the construction of the relation ≈a; if a does not satisfy C, then we
must deal with the consequences of it satisfying ¬̇C (e.g. in case that C is >).

The Rp rule is dealing with equalities between abstract nodes as recorded by the ≈a

relation: since a ≈a b means that a and b describe the same node in the constructed model,
their node labels should be identical. It suffices, however, to choose one representative for
each equivalence class of ≈a and make sure that this representative’s node label contains
the labels of all its ≈a-equivalent nodes. As representative, we use the node that is minimal
w.r.t. the ordering ≺, which has been introduced for solely this reason. The Rp rule does
the appropriate copying of node labels.

Let us now formalize what it means for a completion system to contain a contradiction.

Definition 4.5 (Clash). Let S = (T,P,≺,∼) be a completion system for a concept C
and a key box K with T = (Va, Vc,≺,∼). We say that the completion system S is concrete
domain satisfiable iff the conjunction

ζS =
∧

P used in C

∧

(x1,...,xn)∈P(P )

P (x1, . . . , xn) ∧
∧

x≈cy

=(x, y)

is satisfiable. S is said to contain a clash iff

1. there is an a ∈ Va and an A ∈ NC such that {A,¬A} ⊆ L(a),

2. there are a ∈ Va and x ∈ Vc such that g↑ ∈ L(a) and x is g/≈a-neighbor of a,

3. S is not concrete domain satisfiable.

If S does not contain a clash, S is called clash-free. S is called complete iff no completion
rule is applicable to S.

The tableau algorithm is described in Figure 9 in pseudo-code notation. In this figure, test
calls a D-tester as specified in Definition 4.1. Let us spend a few words on the while loop.
There obviously exist close relationships between the relations ∼ and ≈c and the predicate
conjunction ζS :

• ∼ ⊆ ≈c (note that both ≈a and ≈c depend on ∼ and are thus recomputed in each
step of the while loop);

• by definition of ζS and D-tester, the result of test(ζS) yields a relation containing ≈c

(and thus also ∼).
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define procedure sat(S)
do

if S contains a clash then
return unsatisfiable

∼ := test(ζS)
compute ≈a

compute ≈c

while ∼ 6= ≈c

if S contains a clash then
return unsatisfiable

if S is complete then
return satisfiable

S′ := the application of a completion rule to S
return sat(S ′)

Figure 9: The ALCOK(D) tableau algorithm.

Using these facts, one may check that, in each step of the while loop, new tuples are added
to the ∼ relation, but none are deleted (see the proof of Lemma B.2 in the appendix). The
while loop is due to the facts that (i) ≈a is defined using ∼, (ii), ≈c is defined using ≈a,
and (iii) new concrete equalities in ≈c may then imply even more concrete and/or abstract
equalities, and so on.

A similar concrete-abstract interplay takes place in the course of several recursion steps:
equalities between concrete nodes provided by the D-tester may make new rules applicable
(for example Rp and R∃c) which changes P and thus also ζS . This may subsequently lead to
the detection of more equalities between concrete nodes by the D-tester, and so forth. These
considerations show that, in the presence of keys, there exists a close interplay between the
concrete domain reasoner and the tableau algorithm, which is not needed if keys are not
present: without keys, it suffices to apply the concrete domain satisfiability check only once
after the completion rules have been exhaustively applied (Baader & Hanschke, 1991a).

The detailed proof of termination, soundness, and completeness together with a com-
plexity analysis of the tableau algorithm defined in this section is given in Appendix B.

Theorem 4.1. Let D be a key-admissible concrete domain. If extended D-satisfiability is
in NP, then ALCOK(D)-concept satisfiability w.r.t. Boolean key boxes is in NExpTime.

We should note that, in the way it is presented here, the algorithm leaves quite some room
for optimizations. One possible optimization concerns the “re-use” of f -successors (for
abstract features f): for example, when applying the R∃ rule to a concept ∃f.C ∈ L(a),
where a already has an f -successor b, we could simply add C to L(b) instead of adding a
new f -successor c and recording that b ≈a c.

Another candidate for optimizations is the test function. Recall that this function takes a
predicate conjunction c with set of variables V and non-deterministically returns a concrete
equivalence, i.e., a relation ∼ such that there exists a solution δ for c with vi ∼ vj iff
δ(vi) = δ(vj) (see Definition 4.1). It is not hard to devise an ALC(D)-concept that enforces
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completion systems to have exponentially many concrete nodes by slightly adapting well-
known ALC-concepts that enforce models of exponential size (Halpern & Moses, 1992).
Hence, the size of input conjunctions c to test can be exponential in the size of the input
concept. Now note that, even for trivial D-conjunctions

c = >D(v1) ∧ · · · ∧ >D(vk)

we have an exponential number of distinct concrete equivalences ∼. Thus, the number of
possible outcomes of a call to the test function may be double exponential in the size of the
input concept. Considering the above example, a natural approach to attack this problem
is to require test to return only minimal concrete equivalences: intuitively, an equivalence is
minimal if only those variables are equivalent whose equality is enforced by the conjunction.

More precisely, ∼ is called minimal if there exists no concrete equivalence ∼′ such that
(i) x ∼′ y implies x ∼ y and (ii) there are x, y with x ∼ y and x 6∼′ y. We conjecture
that restricting test in this way does not destroy soundness and completeness of the tableau
algorithm. However, although this definitely is a worthwhile optimization, it does not help
to overcome the existence of double exponentially many outcomes of test in the worst case—
at least not for all concrete domains D: consider the concrete domain N from Page 24 and
conjunctions of the form

ci = <i(v1) ∧ · · · ∧ <i(v2i).

It is readily checked that, for each i ≥ 1, the number of minimal concrete equivalences for
ci is exponential in i. Moreover, it is not hard to devise a concept Ci of size logarithmic
in i that enforces completion systems S such that ζS = ci. Hence, there are still double
exponentially many outcomes of the test function.

In the example just discussed, the exponential branching of test is clearly due to the
discreteness of the natural numbers. Indeed, if we use a dense structure for defining concrete
domains, it seems that the restriction to minimal concrete equivalences can have the desired
effect, namely that the number of test’s possible outcomes becomes polynomial in the size
of its input and thus exponential in the size of the input concept. For example, consider
the concrete domain Q, which is defined as follows:

• ∆Q is the set � of rational numbers;

• ΦQ contains unary predicates >Q and its negation ⊥Q, unary predicates =q and 6=q

for each q ∈ � , binary comparison predicates {<,≤, =, 6=,≥, >}, a ternary addition
predicate +, and its negation + (all with the obvious semantics).

It is readily checked that Q is key-admissible (note that it provides a binary equality pred-
icate) and thus falls into our framework. We conjecture that there exists only one minimal
concrete equivalence for every Q-predicate conjunction c: intuitively, it seems possible to
(inductively) determine a relation ∼ on the set of variables V used in c such that (i) x ∼ y
implies that δ(x) = δ(y) for every solution δ for c and (ii) there exists a solution δ for c such
that v 6∼ v′ implies δ(v) 6= δ(v′). Clearly, ∼ is a minimal concrete equivalence. Moreover,
due to (i) it is the only one.
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4.2 A Tableau Algorithm for SHOQK(D)

Although ALCOK(D) is a quite powerful DL, it lacks several expressive means that can be
found in most state-of-the-art description logic systems such as FaCT and RACER (Horrocks,
1998; Horrocks et al., 2000; Haarslev & Möller, 2001). In this section, we consider the
very expressive description logic SHOQK(D) which provides for concrete domains, key
boxes, and nominals, but also for many other means of expressivity such as transitive
roles, role hierarchies, qualifying number restrictions, and general TBoxes. Modulo some
details, SHOQK(D) can be viewed as the extension of the DL SHOQ(D) with key boxes.
SHOQK(D) was proposed in (Horrocks & Sattler, 2001) and extended in (Pan & Horrocks,
2002) as a tool for ontology reasoning in the context of the semantic web (Berners-Lee,
Hendler, & Lassila, 2001; Baader et al., 2002a).

One very important feature of SHOQK(D) are so-called TBoxes, i.e. concept equations
of the form C

.
= D that are used as a “background theory” in reasoning. Since it is well-

known that combining general TBoxes and the concrete domain constructor easily leads to
undecidability (Baader & Hanschke, 1992; Lutz, 2004), SHOQK(D) only offers a path-free
variant of the concrete domain constructor—i.e. only concrete features are admitted inside
this constructor rather than paths of arbitrary length. (Haarslev et al., 2001; Horrocks &
Sattler, 2001) show that this restriction regains decidability. Path-freeness of the concrete
domain constructor obviously renders abstract features unnecessary, and thus this syntactic
type is not available in SHOQK(D).

4.2.1 The Description Logic SHOQK(D)

Let us now define SHOQK(D) in a formal way, starting with the syntax.

Definition 4.6 (SHOQK(D) Syntax). A role axiom is either a role inclusion, which is
of the form R v S with R, S ∈ NR, or a transitivity axiom Trans(R) where R ∈ NR. A role
box R is a finite set of role axioms. Let v* be the reflexive-transitive closure of the role
inclusions in R. A role name R is called simple if S v* R implies Trans(S) /∈ R for all role
names S. Let D be a concrete domain. The set of SHOQK(D)-concepts is the smallest set
such that

• every concept name and every nominal is a concept, and

• if C and D are concepts, R is a role name, S a simple role name, n and k are natural
numbers, g1, . . . , gn are concrete features, and P ∈ ΦD is a predicate of arity n, then
the following expressions are also concepts:

¬C, C u D, C t D, ∃R.C, ∀R.C, (> k S C), (6 k S C), ∃g1, . . . , gn.P, and g1↑.

A concept equation is an expression C
.
= D with C and D concepts. A TBox is a finite set

of concept equations.

For SHOQK(D), we consider key boxes that differ in two aspects from the ones we consid-
ered for ALCOK(D): in the following, we assume key boxes to be path-free, but we admit
complex concepts to occur in key definitions. Note that abstract features and paths do
not occur in the syntax of SHOQK(D)—as will become clear after the semantics has been
defined, the former can be “simulated” by the more general number restrictions (6 n R C).
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As usual in description logics of the SHIQ/SHOQ family, we require role names in
number restrictions to be simple since admitting arbitrary roles yields undecidability of
reasoning (Horrocks et al., 2000; Horrocks & Sattler, 2001). If the role box R is clear from
the context, we will usually write Trans(R) instead of Trans(R) ∈ R. We now introduce the
semantics of SHOQK(D) and the relevant reasoning problems.

Definition 4.7 (SHOQK(D) Semantics). Interpretations I = (∆I , ·I) are defined as
in Definition 2.3, where the function ·I is extended to the novel SHOQK(D)-concepts as
follows:

(6 k R C)I := {d ∈ ∆I | ]{e | (d, e) ∈ RI} ≤ k} and

(> k R C)I := {d ∈ ∆I | ]{e | (d, e) ∈ RI} ≥ k}.

Let I be an interpretation. Then I satisfies a concept equation C
.
= D if CI = DI . I is

a model of a TBox T if I satisfies all concept equations in T . Similarly, I satisfies a role
inclusion R v S if RI ⊆ SI and a transitivity axiom Trans(R) if RI is a transitive relation.
I is a model of a role box R if I satisfies all role inclusions and transitivity axioms in R.

Let T be a TBox, R a role box, and K a key box. A concept C is satisfiable w.r.t. T ,
R, and K iff C, T , R, and K have a common model. C is subsumed by a concept D w.r.t.
T , R, and K (written C vT ,R,K D) iff CI ⊆ DI for all common models I of T , R, and K.

Note that, due to the requirement that role names used inside number restrictions should
be simple, existential and universal value restrictions are no syntactic sugar: in contrast to
number restrictions, they can be used on all roles.

It is well-known that, in many expressive description logics, reasoning with TBoxes
can be reduced to reasoning without them (Schild, 1991; Horrocks & Sattler, 2001): for
SHOQK(D), a concept C is satisfiable w.r.t. T , R, and K iff the concept

∃R.C u ∀R.
( u

D
.
=E∈T

D ↔ E
)

u u
nominal N used

in C, T , or K

(

∃R.N
)

is satisfiable w.r.t. to R′, K, and the empty TBox, where R is a fresh role not appearing in
C, R, and T , and

R′ := R∪ {Trans(R)} ∪
⋃

role name S used

in C, T , R, or K

{S v R}.

Since subsumption can be reduced to satisfiability as described in Section 2, in the following
we will only consider satisfiability of concepts w.r.t. role boxes and key boxes, but without
TBoxes. We will also generally assume role boxes R to be acyclic, i.e. to satisfy the following
condition: for each role name R, there are no role names R1, . . . , Rk such that R = R1 = Rk

and Ri v Ri+1 ∈ R for 1 ≤ i < k. It is not hard to see that this is no restriction since
cycles can be eliminated: if R1, . . . , Rk is a cycle in R, then we have RI

1 = · · · = RI
k

for all interpretations I. Thus we can simply remove the cycle from R and replace every
occurrence of R2, . . . , Rk in C, R, and K with R1. Moreover, we have to possibly add
Trans(R1) if, before the cycle elimination, we had Trans(Ri) for some i with 1 ≤ i ≤ n.
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¬(> n R C)  (6 (n − 1) R C) if n ≥ 1
¬(> 0 R C)  ⊥
¬(6 n R C)  (> (n + 1) R C)

Figure 10: The SHOQK(D) NNF rewrite rules.

Before we turn our attention to the construction of a tableau algorithm for SHOQK(D),
let us comment on a few minor differences between SHOQK(D) as introduced here and
the original version of SHOQ(D) as described in (Horrocks & Sattler, 2001). The main
difference is that our logic, like the extensions investigated in (Haarslev et al., 2001; Pan &
Horrocks, 2002), allows n-ary predicates while Horrocks and Sattler restrict themselves to
unary predicates. Moreover, SHOQ(D) as introduced in (Horrocks & Sattler, 2001) uses
concrete roles rather than concrete features, the difference being that concrete roles are not
necessarily functional. Due to this non-functionality, the original SHOQ(D) admits two
variants ∃T.P and ∀T.P of the concrete domain constructor (where T is a concrete role and
P a unary predicate). In SHOQK(D), we can simulate the universal variant by writing
∃g.P t g↑ since concrete features g are interpreted as partial functions and, in contrast to
Horrocks and Sattler, we have the undefinedness constructor g↑ available. Except for the n-
ary predicates which provide important additional expressivity, we view these deviations as
minor ones since they are easily seen to not affect decidability and complexity of reasoning.

4.2.2 A Tableau Algorithm for SHOQK(D)

The basic intuitions of the SHOQK(D) tableau algorithm are similar to the ALCOK(D)
algorithm, with one exception: to deal with the various expressive means of SHOQK(D),
it is convenient to introduce a certain abstraction of models, so-called tableaux. The main
difference between tableaux and models is that, in tableaux, roles declared to be transitive
must not necessarily be described by transitive relations. We show that there exists a
tableau for a given concept, key box, and TBox if and only if they have a common model.
The aim of the SHOQK(D) algorithm is then to construct a tableau for its input rather
than trying to construct a model. To do this, the algorithm employs completion forests as
its underlying data structure.

We first introduce tableaux. Let us start with discussing some preliminaries. As for
ALCOK(D), we assume all concepts and key boxes to be in NNF, i.e. negation occurs only
in front of concept names and nominals. We again use ¬̇C to denote the NNF of ¬C. The
additional NNF rewrite rules for SHOQK(D) can be found in Figure 10 and complete those
given for ALCOK(D) in Figure 7.

For a concept D, role box R, and key box K, we define

cl(D,K) := sub(D) ∪ sub(con(K)) ∪ {¬̇C | C ∈ sub(D) ∪ sub(con(K))}

cl(D,R,K) := cl(D,K) ∪ {∀R.C | R v* S and ∀S.C ∈ cl(D,K)},

Obviously, the cardinality of cl(D,R,K) is linear in the size of D, R, and K. In what
follows, we write ND,R,K

R
to denote the set of role names occurring in D, R, or K, and ND,K

cF

to denote the sets of concrete features occurring in D or K. We are now ready to define
tableaux.
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Definition 4.8 (Tableau). Let D be a SHOQK(D)-concept in NNF, R a role box, and K
a path-free key box in NNF. A tableau T for D w.r.t. R and K is a tuple (Sa,Sc,L, E, e,P)
such that

• Sa, Sc are sets of abstract and concrete individuals,

• L : Sa → 2cl(D,R,K) maps each abstract individual to a subset of cl(D,R,K),

• E : Sa × Sa → 2N
D,R,K
R maps pairs of abstract individuals to sets of roles,

• e : Sa×ND,K
cF

→ Sc maps pairs of abstract individuals and concrete features to concrete
individuals,

• P maps each n-ary concrete predicate in cl(D,R,K) to a set of n-tuples over Sc,

• there is an abstract individual s0 ∈ Sa such that D ∈ L(s0), and

for all s, t ∈ Sa, C, C1, C2 ∈ cl(D,R,K), R, S ∈ ND,R,K
R

, and for

ST (s, C) := {t ∈ Sa | S ∈ E(s, t) and C ∈ L(t)},

it holds that:

(T1) if C ∈ L(s), then ¬C /∈ L(s),

(T2) if C1 u C2 ∈ L(s), then C1 ∈ L(s) and C2 ∈ L(s),

(T3) if C1 t C2 ∈ L(s), then C1 ∈ L(s) or C2 ∈ L(s),

(T4) if R ∈ E(s, t) and R v* S, then S ∈ E(s, t),

(T5) if ∀R.C ∈ L(s) and R ∈ E(s, t), then C ∈ L(t),

(T6) if ∃R.C ∈ L(s), then there is some t ∈ Sa such that R ∈ E(s, t) and C ∈ L(t),

(T7) if ∀S.C ∈ L(s) and R ∈ E(s, t) for some R v* S with Trans(R), then ∀R.C ∈ L(t),

(T8) if (> n S C) ∈ L(s), then ]ST (s, C) > n,

(T9) if (6 n S C) ∈ L(s), then ]ST (s, C) 6 n,

(T10) if either (6 n S C) ∈ L(s) and S ∈ E(s, t) or (g1, . . . , gn keyfor C) ∈ K and e(t, gi)
is defined for all 1 ≤ i ≤ n, then {C, ¬̇C} ∩ L(t) 6= ∅,

(T11) if N ∈ L(s) ∩ L(t), then s = t,

(T12) if ∃g1, . . . , gn.P ∈ L(s), then there are x1, . . . , xn ∈ Sc with e(s, gi) = xi and
(x1, . . . , xn) ∈ P(P ),

(T13)
∧

P used in D,K

∧

(x1,...,xn)∈P(P ) P (x1, . . . , xn) ∧
∧

x6=y x 6= y is satisfiable,

(T14) if (g1, . . . , gn keyfor C) ∈ K, C ∈ L(s)∩L(t), and e(s, gi) = e(t, gi) for all 1 ≤ i ≤ n,
then s = t,
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(T15) if g↑ ∈ L(s), then e(s, g) is undefined.

Note that the predicate conjunction in (T13) uses a binary inequality predicate. In general,
we do not require the concrete domain D to be equipped with such a predicate and thus this
predicate conjunction is not necessarily a D-conjunction. However, it is nevertheless “safe”
to use (T13) in the given form since tableaux are only used in proofs and we do not need
a concrete domain reasoner that is capable of deciding the satisfiability of this conjunction.
The following lemma, whose proof is provided in Appendix C, shows that our definition of
tableaux provides an adequate abstraction of models.

Lemma 4.2. Let D be a SHOQK(D)-concept in NNF, R a role box, and K a key box in
NNF. Then D is satisfiable w.r.t. R and K iff D has a tableau w.r.t. R and K.

Given Lemma 4.2, in order to decide satisfiability of SHOQK(D)-concepts w.r.t. role and
key boxes, we may use a (tableau) algorithm that tries to construct a tableau for the input.
In the following, we will describe such an algorithm in detail.

As in the previous section, the algorithm works on completion systems. However, in the
case of SHOQK(D) the core component of completion systems is a completion forest rather
than a completion tree. The reason for this is that some completion rules remove nodes
from the completion system and in this way can disconnect one tree into two subtrees.

Definition 4.9 (Completion System). Let D be a SHOQK(D)-concept in NNF, R a
role box, and K a path-free key box in NNF. For each concept (> n R C) ∈ cl(D,R,K)
and 1 ≤ i ≤ n, we reserve a concept name AnRC

i not appearing in cl(D,R,K) and define
an extended closure

cl+(D,R,K) := cl(D,R,K) ∪ {AnRc
1 , . . . , AnRc

n | (> n R C) ∈ cl(D,R,K)},

Let Oa and Oc be disjoint and countably infinite sets of abstract and concrete nodes. A
completion forest for D, R, and K is a finite forest F = (Va, Vc, E,L) with nodes Va ∪ Vc

such that Va ⊆ Oa, Vc ⊆ Oc, and all nodes from Vc are leaves. The forest is labelled as
follows:

• each node a ∈ Va is labelled with a subset L(a) of cl+(D,R,K),

• each edge (a, b) ∈ E with a, b ∈ Va is labeled with a non-empty set of role names
L(a, b) occurring in D, R, or K, and

• each edge (a, x) ∈ E with a ∈ Va and x ∈ Vc is labeled with a concrete feature L(a, x)
occurring in D, R, or K.

A completion system for D, R, and K is a tuple S = (F,P,∼c,≺) such that

• F = (Va, Vc, E,L) is a completion forest for D, R, and K,

• P maps each n-ary concrete predicate in cl(D,R,K) to a set of n-tuples in Vc,

• ∼c is an equivalence relation on Vc, and

• ≺ is a linear ordering on Va.
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A node t ∈ Va is called an R-successor of a node s ∈ Va if, for some R′ with R′ v* R, we have
R′ ∈ L(s, t). A node x ∈ Vc is called a g-successor of a node s ∈ Va if L(s, x) = g. Finally,
we write s 6

.
= t if s and t are R-successors of the same node and there is some AnRC

i ∈ L(s)
and AnRC

j ∈ L(t) with i 6= j.

Some remarks are in order here. Firstly, in contrast to the ALCOK(D) case, the relation
≺ is no longer required to respect the level of a node. This is due to the fact that (a) we
have to enforce termination artificially anyway, and this property of ≺ is not used to prove
termination, and (b) the level of a node might change anyway since a node might become
a root node because some completion rules will remove edges.

Secondly, the relation ∼c will be returned by a D-tester, and is used to compute a
relation ≈a which is then used by the tableau algorithm. However, we do not need to
compute the relation ≈c from ≈a since, in contrast to the ALCOK(D) case, all concepts
and key boxes are assumed to be path-free.

Thirdly, the new concept names AnRC
i will be used to ensure that successors of a node

x generated for some (> n R C) ∈ L(x) will not be merged later due to a concept (6
n′ R C ′) ∈ L(x): each generated successor is labelled with a different concept AnRC

i ;
since merging two nodes means unifying their node labels, it then suffices to disallow the
occurrence of distinct concepts AnRC

i in the same node label through a suitable definition
of “clash”.

Since SHOQK(D) provides for transitive roles, we need some cycle-detection mechanism
in order to guarantee termination of our algorithm: roughly spoken, if we encounter a node
which is “similar” to an already existing one, then this node does not need to be further
explored. Speaking in terms of (Horrocks et al., 2000; Baader & Sattler, 2000), we employ
a mechanism called subset blocking.

Definition 4.10 (Blocked). Let � be the reflexive closure of ≺. A node t ∈ Va is blocked
by a node s ∈ Va if L(t) ⊆ L(s), and s � s′, for all s′ with L(t) ⊆ L(s′).

Note that, unlike to what is done, e.g., in (Horrocks et al., 2000), the blocking node is not
necessarily an ancestor of the blocked node, but can be anywhere in the forest. It may even
be that blocked nodes have unblocked successors. This modification is used later to obtain
a NExpTime upper bound.

To decide the satisfiability of an ALCOK(D)-concept D w.r.t. a role box R and a path-
free key box K (where D and K are in NNF), the tableau algorithm is started with the
initial completion system

SD = (FD,P∅, ∅, ∅), where
FD = ({s0}, ∅, ∅, {s0 7→ {D}}) and
P∅ maps each P ∈ ΦD occurring in D and K to ∅.

Then the algorithm repeatedly applies completion rules. Before the actual rules are given,
we introduce some new notions: firstly, we define the equivalence relation ≈a over Va as
follows: s ≈a t if one of the following conditions is satisfied:

• N ∈ L(s) ∩ L(t) for some nominal N or
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• (g1 . . . , gn keyfor C) ∈ K, C ∈ L(s)∩L(t), and there are xi, yi such that gi ∈ E(s, xi)∩
E(t, yi) and xi ∼c yi for 1 ≤ i ≤ n.

Intuitively, two abstract nodes related via the ≈a relation describe the same individual in
a tableau.

Secondly, we use the following abbreviations in the formulation of the rules (written in
italic):

• To remove an abstract node s and all its incoming and outgoing edges, remove s from
Va and each (s, t) and (t, s) from E for all t ∈ Va ∪ Vc.

• Adding a g-successor of an abstract node s means doing nothing if there exists a
g-successor x ∈ Vc of s and, otherwise, adding E(s, x) = g for some x ∈ Oc that does
not yet occur in the completion forest.

• To update the relation ∼c, a D-tester is asked to decide the satisfiability of the D-
conjunction

ζS :=
∧

P used inD,K
(x1,...,xn)∈P(P )

P (x1, . . . , xn) ∧
∧

x∼cy

x = y

and returns, in case that this conjunction is satisfiable, an “updated” concrete equiv-
alence ∼c as defined in Definition 4.1.

Concerning the predicate conjunction used in updates, recall that we can w.l.o.g. assume
the concrete domain to contain an equality predicate as discussed after Definition 4.1.

The completion rules are given in Figure 11. We generally assume that new nodes x
are introduced into the completion forest such that y ≺ x for all already existing nodes y.
Before further describing the tableau algorithm, we comment on the completion rules. The
rules Rt, R6, R∃c, and Rch are non-deterministic, i.e., their application has more than one
possible outcome. For the R∃c rule, this is due to the update operation performed on ∼c

using the D-tester: as discussed at the end of Section 4.1, computing a concrete equivalence
for a given D-conjunction may result in a high degree of non-determinism. Please note that,
in contrast to ALCOK(D), we now only need to call the D-tester in this rule—and not after
each rule application.

Next, the R≈a rule takes care of abstract nodes related via ≈a. Since all the nodes from
a ≈a-equivalent class denote the same individual, we choose only one representative whose
node label contains the labels of all other nodes in the class. This representative simply
is the ≺-minimal node of the equivalence class and the R≈a rule performs the appropriate
copying of node labels.

The R6 rule is the only rule to remove nodes: it removes a surplus R-successor t of a
node s with (6 n R C) ∈ L(s). Since the subtree below t is not removed, t’s successors
are new, additional root nodes. This behavior is the reason why we work on a completion
forest.

As in the ALCOK(D) case, the tableau algorithm stops applying rules if it finds an
obvious contradiction, a “clash”, or if no more completion rules are applicable.

Definition 4.11 (Clash). Let S = (F,P,∼c,≺) be a completion system for D, R, and K
and F = (Va, Vc, E,L). Then S is said to contain a clash if one of the following conditions
applies:
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Ru if C1 u C2 ∈ L(s), s is not blocked, and {C1, C2} 6⊆ L(s),
then L(s) := L(s) ∪ {C1, C2}

Rt if C1 t C2 ∈ L(s), s is not blocked, and {C1, C2} ∩ L(s) = ∅,
then L(s) := L(s) ∪ {C} for some C ∈ {C1, C2}

R∃ if ∃R.C ∈ L(s), s is not blocked, and s has no R-successor t with C ∈ L(t)
then create a new node t such that t′ ≺ t for all t′ ∈ Va

and set E(s, t) := {R} and L(t) := {C}

R> if (> n S C) ∈ L(s), s is not blocked, and there are no n S-successors
t1, . . . , tn of s with C ∈ L(ti) and ti 6

.
= tj for 1 ≤ i < j ≤ n,

then create n new nodes t1, . . . , tn s.t. t′ ≺ ti for 1 ≤ i ≤ n and all t′ ∈ Va,
and set E(s, ti) := {S} and L(ti) := {C, AnSC

i } for 1 ≤ i ≤ n

R6 if (6 n S C) ∈ L(s), s is not blocked, s has n + 1 S-successors t0, . . . , tn
with C ∈ L(ti) for 0 ≤ i ≤ n,

then choose i, j such that ti ≺ tj , set L(ti) := L(ti) ∪ L(tj),
L(s, ti) := L(s, ti) ∪ L(s, tj), and remove tj and all its incoming
and outgoing edges

R∃c if ∃g1, . . . , gn.P ∈ L(s), s is not blocked, and
there are no gi-successors xi with (x1, . . . , xn) ∈ P(P )

then add a gi-successor of s for each 1 ≤ i ≤ n,
for yi the gi-successor of s, add (y1, . . . , yn) to P(P ), and
update ∼c

R∀ if ∀R.C ∈ L(s), s is not blocked, and
there is an R-successor t of s with C /∈ L(t),

then L(t) := L(t) ∪ {C}

R∀+ if ∀S.C ∈ L(s), s is not blocked, there is some R with
Trans(R) and R v* S, and an R-successor t of s with ∀R.C /∈ L(t),

then L(t) := L(t) ∪ {∀R.C}

Rch if s is an S-successor of s′ and (6 n S C) ∈ L(s′) or
s has gi-successors xi for all 1 ≤ i ≤ n and (g1, . . . gn keyfor C) ∈ K and
s is not blocked and {C, ¬̇C} ∩ L(s) = ∅,

then L(s) := L(s) ∪ {E} for some E ∈ {C, ¬̇C}

R≈a if s ≈a t, L(t) 6⊆ L(s), s ≺ t, and s is not blocked,
then set L(s) := L(s) ∪ L(t)

Figure 11: The completion rules for SHOQK(D).
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(C1) for some concept name A ∈ NC and some node s ∈ Va, {A,¬A} ⊆ L(s);

(C2) the D-conjunction ζS defined above is not satisfiable;

(C3) s 6
.
= s for some s ∈ Va;

(C4) for some s ∈ Va and g ∈ NcF, we have g↑ ∈ L(s) and s has a g-successor.

A completion system not containing a clash is called clash-free. The completion system is
complete if none of the completion rules is applicable.

Due to the simplicity of the algorithm, we refrain from describing it in pseudo-code nota-
tion: the algorithm starts with the initial completion system and then repeatedly applies
the completion rules, checking for clashes after each rule application. If a clash is de-
tected, it returns unsatisfiable. If a complete and clash-free completion system is found,
then the algorithm returns satisfiable. Note that, since some of the completion rules are
non-deterministic, the algorithm is also non-deterministic.

Details of the proof of termination, soundness, and completeness are given in Ap-
pendix C. Unfortunately, we have to leave the complexity of the algorithm as an open
problem: it is not hard to prove that it runs in double exponential time, but it is not clear
whether exponential time also suffices. However, we can still use the algorithm to obtain a
tight complexity bound for SHOQK(D): the following corollary is an easy by-product of
the correctness proofs, for a proof see again Appendix C.

Corollary 4.3. If a SHOQK(D)-concept D is satisfiable w.r.t. a role box R and a path-free
key box K, then D is satisfiable w.r.t. R and K in a model of size at most |∆I | ≤ 2m for
m = # cl+(D,R,K).

Thus the following is an alternative algorithm for deciding satisfiability of a SHOQK(D)-
concept D w.r.t. a role box R and a path-free key box K: first, guess an interpretation
I with cardinality of ∆I bounded by 2m, using placeholder variables from Oc instead of
concrete values in the interpretation of concrete features. Let Vc be the set of variables
from Oc occuring in I. Additionally guess an “interpretation” P for the concrete domain
predicates: just as in completion forests, P maps each n-ary concrete predicate used in D or
K to an n-ary relation on Vc. Then perform standard (polynomial-time) model checking to
ensure that I is a model of D. In doing this, treat concepts of the form ∃g1, . . . , gn.P using
the interpretation of predicates P. It is easily checked in polynomial time that I is also a
model of R and K—for the latter, assume that all placeholder variables stand for different
values. Finally, use the concrete domain D-tester to check whether the conjunction

∧

P used inD,K
(x1,...,xn)∈P(P )

P (x1, . . . , xn)

is satisfiable. Answer “yes” if it is and “no” otherwise. Since this algorithm can clearly be
implemented in NExpTime provided that there is a D-tester running in non-deterministic
polynomial time, we obtain the following:

Theorem 4.4. Let D be a key-admissible concrete domain such that extended D-satisfiability
is in NP, then SHOQK(D)-concept satisfiability w.r.t. TBoxes, role boxes, and path-free
key boxes is in NExpTime.
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5. Conclusion

In this paper, we have identified key constraints as an interesting extension of description
logics with concrete domains. Starting from this observation, we introduced a number of
natural description logics and provided a comprehensive analysis of the decidability and
complexity of reasoning. The main observation of our investigations is that key boxes can
have dramatic consequences on the complexity of reasoning: for example, the PSpace-
complete DL ALC(D) becomes NExpTime-complete if extended with path-free, unary,
Boolean key boxes and undecidable if extended with path-free, unary, non-Boolean key
boxes. We show that the restriction to Boolean key boxes (in the ALCOK(D) case) and to
path-free key boxes (in the SHOQK(D) case) yielda decidabile and NExpTime-completene
reasoning problems.

We selected ALC(D) and SHOQ(D) as the basis for our analysis since, in our opinion,
these are the most fundamental description logics with concrete domains. Going one step
further, it would be interesting to combine key boxes with other extensions of concrete
domains, such as the ones presented in (Lutz, 2003) and (Lutz, 2004). To name only one
possibility, the extension of both ALCOK(D) and SHOQ(D) with inverse roles seems to
be a natural idea. Note that inverse roles interact with several of the available means of
expressivity: while ALC with inverse roles is PSpace complete (Horrocks, Sattler, & Tobies,
1999), ALCO with inverse roles is ExpTime-complete (Areces, Blackburn, & Marx, 1999)
and ALC(D) with inverse roles even NExpTime-complete (Lutz, 2004).

Other options for future research are more closely related to the material presented in
this paper. For example, is SHOQK(D)-concept satisfiability still decidable if we drop
the requirement of key boxes to be path-free? Moreover, we had to leave the exact time
requirements of our tableau algorithm as an open problem. If this algorithm runs in (non-
deterministic) exponential time, it directly yields Theorem 4.4 rather than via a bounded
model property.
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Appendix A. Proofs of Section 3.2

We prove that D2-satisfiability can be decided in PTime.

Proposition A.1. D2-satisfiability is in PTime.

Proof. Let c be a D2-conjunction. We show that c is satisfiable iff none of the following
conditions applies:

1. c contains a conjunct ⊥D2
(x);

2. c contains conjuncts bit0i
k(x) and bit1i

k(x);

3. c contains conjuncts bitni
k(x) and bitmj

`(x) with k 6= `;

4. c contains conjuncts bitni
k(x) and bitni

k(x);

5. c contains conjuncts bitni
k(x), bit0j

k(x), and bit1j
k(x).

It is easily seen that c is unsatisfiable if one of the conditions applies. Assume now that
Conditions 1 to 5 do not apply to c and let X be the set of variables used in c. For each
x ∈ X, set t(x) = k if bitni

k(x) ∈ c for some n, i ∈ � .4 If bitni
k(x) /∈ c for all n, i, k ∈ � , then

set t(x) = r for some r not appearing as an index ·r to a predicate in c. The mapping t is
well-defined since c is finite, Condition 3 does not apply, and the only predicates available
are bitni

k(·), ⊥D2
(·), and >D2

(·). We define a solution δ for c as follows: for each x ∈ X, set

δ(x) to the bit vector v ∈ BVt(x) in which the i’th bit is 1 if bit1i
t(x)(x) ∈ c or bit0i

t(x)(x) ∈ c,
and 0 otherwise. It remains to prove that δ is indeed a solution for c:

• Let bit0i
k(x) ∈ c. Then t(x) = k and thus δ(x) ∈ BVk. Since Condition 2 does

not apply, we have bit1i
k(x) /∈ c. Moreover, non-applicability of Condition 4 implies

bit0i
k(x) /∈ c. By definition of δ, the i’th bit of δ(x) is thus 0.

• Let bit1i
k(x) ∈ c. Then t(x) = k and δ(x) ∈ BVk. By definition of δ, the i’th bit of

δ(x) is 1.

• Let bit0i
k(x) ∈ c. If t(x) 6= k, then δ(x) /∈ BVk. Thus δ(x) ∈ (bit0i

k)
D2 and we are

done. If t(x) = k, then the i’th bit of δ(x) is 1 by definition of δ and thus again

δ(x) ∈ (bit0i
k)

D2 .

• Let bit1i
k(x) ∈ c. If t(x) 6= k, then δ(x) /∈ BVk and we are done. If t(x) = k, then

bitnj
k(x) ∈ c for some n, j ∈ � . Since Condition 5 does not apply, we thus have

bit0i
k(x) /∈ c. Moreover, non-applicability of Condition 4 yields bit1i

k(x) /∈ c. Thus, by
definition of δ, the i’th bit of δ(x) is 0.

It is obvious that the listed properties can be checked in polynomial time.

4. We use “P (x) ∈ c” as an abbreviation for “P (x) is a conjunct in c”.
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Appendix B. Proofs of Section 4.1

We prove termination, soundness, and completeness of the ALCOK(D) tableau algorithm
presented in Section 4.1, starting with termination. We start with establishing a few notions
and technical lemmas.

Let C be a concept and K a key box. We use |C| to denote the length of C, i.e. the
number of symbols used to write it down, and |K| to denote

∑

(u1,...,uk keyfor C)∈K |C|. For
a path u = f1 · · · fkg, we use |u| to denote k + 1. The role depth of concepts is defined
inductively as follows:

rd(A) = rd(N) = rd(g↑) = 0
rd(∃u1, . . . , un.P ) = max{|ui| | 1 ≤ i ≤ n} − 1

rd(C u D) = rd(C t D) = max{rd(C), rd(D)}

rd(∃R.C) = rd(∀R.C) = rd(C) + 1

The following series of lemmas will eventually allow us to prove termination.

Lemma B.1. There is a constant k such that, if the tableau algorithm is started on input
C0,K and T = (Va, Vc, E,L) is a completion tree constructed during the run of the algorithm,

then #Va ≤ 2|C0|k and #Vc ≤ 2|C0|k .

Proof. Using induction on the number of rule applications and a case distinction according
to the applied rule, it is straightforward to show that

C ∈ L(a) implies rd(C) ≤ |C0| − levT(a) (∗)

for all constructed completion trees T. We omit the details but note that, (1) for treating
the Rch rule, one needs to employ the fact that K is Boolean and thus only adds concepts
of role depth 0 to node labels, and (2) for treating the Rp rule, we use that a ≺ b implies
levT(a) ≤ levT(b).

This implies an upper bound on the depth of constructed completion trees: first, only
the R∃ and R∃c rules generate new nodes, and an application of either rule to a node
a ∈ Va implies L(a) 6= ∅ and thus levT(a) ≤ |C0| by (∗). Second, each new (abstract or
concrete) node b generated by an application of these rules to a node a ∈ Va clearly satisfies
levT(b) ≤ levT(a) + max(1, mpl(C0)), where mpl(C0) denotes the maximum length of paths
in C0 (note that concepts in K may not contain any paths since it is Boolean). Since
mpl(C0) ≤ |C0|, the above observations imply that the depth of constructed completion
trees is bounded by 2 · |C0|.

Now for the out-degree. If a node a is generated, then this is due to the application of
a rule R∃ or R∃c and, initially, a has at most one successor. Let us analyze the number
of successors generated by later applications of the rules R∃ and R∃c to a: these rules
can be applied at most once for each concept of the form ∃R.C or ∃u1, . . . , un.P in L(a).
By definition of cl(C0,K) and since K is Boolean, the number of such concepts per node
label is bounded by #sub(C0) ≤ |C0|. Moreover, each rule application creates at most |C0|
successors. Hence, the out-degree of constructed completion trees is bounded by |C0|

2 + 1.
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Lemma B.2. There is a constant k such that, if the tableau algorithm is started with C0,K,
then, in every recursion step, the while loop terminates after at most 2|C0|k steps.

Proof. Fix an argument S = (T,P,≺,∼) with T = (Va, Vc, E,L) passed to the sat function,
let ∼1,∼2, . . . be the sequence of concrete equivalences computed in the while loop, and let
≈1

c ,≈
2
c , . . . be the corresponding ≈c relations. Since test(ζS) calls a D-tester, each of these

calls indeed terminates.
We show that

∼1 ( ∼2 ( · · · , (∗)

which implies Lemma B.2: by Lemma B.1, there exists a constant k such that #Vc ≤ 2|C0|k .
Hence, we have #∼i ≤ 22·|C0|k which, together with (∗), implies that the number of steps

performed by the while loop is also bounded by 22·|C0|k .
Now for the proof of (∗). If the while loop reaches the i-th step, then we had ∼i−1 6= ≈i−1

c

after step i − 1. Since ∼i−1 ⊆ ≈i−1
c by definition, this implies ∼i−1 ( ≈i−1

c . By definition
of ζS , it is easy to see that ≈i−1

c ⊆ ∼i for i ≥ 0. Hence ∼i−1 ( ∼i.

Lemma B.3. There is a constant k such that, if the tableau algorithm is started with C0,K,
then the number of recursion calls is bounded by 2(|C0|+|K|)k

.

Proof. It obviously suffices to establish an appropriate upper bound on the number of rule
applications. The Ru, Rt, R∃, and R∃c rules can be applied at most once for each concept
in a node label. By Lemma B.1, the number of nodes is at most exponential in |C0| + |K|.
Since neither nodes nor concepts in node labels are ever deleted, the fact that node labels
are subsets of cl(C0,K) thus implies that the number of applications of these rules is at most
exponential in |C0| + |K|. The same holds for the rules R∀ and Rp, which can be applied
at most once for every concept C ∈ cl(C0,K) and every pair of (abstract) nodes. Finally,
the number of Rch applications is at most exponential in |C0| + |K| since this rule can be
applied at most once for every abstract node and every key definition in K.

Termination is now an obvious consequence of Lemmas B.2 and B.3.

Corollary B.4 (Termination). The tableau algorithm terminates on any input.

Let us now prove soundness of the algorithm.

Lemma B.5 (Soundness). If the tableau algorithm returns satisfiable, then the input
concept C0 is satisfiable w.r.t. the input key box K.

Proof. If the tableau algorithm returns satisfiable, then there exists a complete and clash-
free completion system S = (T,P,≺,∼) for C0. Let T = (Va, Vc, E,L). By definition of
the tableau algorithm, there is a completion system S ′ = (T,P,≺,∼′) such that a call to
test(ζS′) returned ∼. Moreover, we have ∼ = ≈c in S. Thus, there exists a solution δ for
ζS′ such that

δ(x) = δ(y) iff x ≈c y. (†)

Clearly, δ is also a solution for ζS : since the second component P is the same in S and S ′,

δ is a solution for the first part
∧

P used in C

∧

(x1,...,xn)∈P(P )

P (x1, . . . , xn) of ζS . Moreover, for
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each conjunct =(x, y) from the second part of ζS , we have x ≈c y by definition of ζS and
thus δ(x) = δ(y) by (†).

We now use S and δ to construct an interpretation I by setting

∆I = {a ∈ Va | there is no b ∈ Va such that a ≈a b and b ≺ a} ∪ {w}

AI = {a ∈ ∆I | A ∈ L(a)}

NI =

{

{a ∈ ∆I | N ∈ L(a)} if there is an a ∈ ∆I such that N ∈ L(a)
{w} otherwise

RI = {(a, b) ∈ ∆I × ∆I | there are a′, b′ ∈ Va such that a ≈a a′, b ≈a b′, and

b′ is an R-successor of a′}

gI = {(a, δ(x)) ∈ ∆I × ∆D | x is a g/≈a-neighbor of a}

for all A ∈ NC, N ∈ NO, R ∈ NR, and g ∈ NcF. We first show that I is well-defined:

• NI is a singleton for each N ∈ NO. For assume that there exist a, b ∈ ∆I such that
a 6= b and N ∈ L(a) ∩ L(b). By definition of ≈a (Definition 4.3), N ∈ L(a) ∩ L(b)
implies a ≈a b. This, together with a, b ∈ ∆I , yields a ≺ b and b ≺ a, contradicting ≺
being a linear ordering.

• fI is functional for each f ∈ NaF. For assume that there exist a, b, c ∈ ∆I such
that {(a, b), (a, c)} ⊆ fI and b 6= c. Then there exist a1, a2, b

′, c′ ∈ Va such that
a ≈a a1 ≈a a2, b ≈a b′, c ≈a c′, b′ is an f -successor of a1, and c′ is an f -successor of
a2. By definition of ≈a, we thus have b′ ≈a c′ implying b ≈a c. Since b, c ∈ ∆I , this
yields b ≺ c and c ≺ b, a contradiction.

• gI is functional for each g ∈ NcF. For assume that there exist an a ∈ ∆I and x, y ∈ Vc

such that {(a, δ(x)), (a, δ(y))} ⊆ fI and δ(x) 6= δ(y). Then x and y are both g/≈a-
neighbors of a. By definition of ≈c, we thus have x ≈c y implying δ(x) = δ(y) by (†),
a contradiction.

Now we show the following claim. In the proof, we use the notion of f1 · · · fk/≈a-neighbors
(with f1, . . . fk abstract features), which is defined analogous to u/≈a-neighbors for paths u.

Claim 1: For all a ∈ ∆I and all paths u, we have uI(a) = α iff there is a ui/ ≈a-neighbor
x of a with δ(x) = α.

Proof: Let u = f1 · · · fkg. Using induction on i it is easily proved that, for all i and all
b ∈ ∆I , we have fI

i (· · · (fI
1 (a)) · · · ) = b iff there is a f1 · · · fi/≈a-neighbor b′ of a with

b ≈a b′. Thus we have in particular that fI
k (· · · (fI

1 (a)) · · · ) = b iff there is a f1 · · · fk/≈a-
neighbor b′ of a with b ≈a b′. To prove the claim, it hence remains to use the definition
of gI together with (†).

The following claim is central for showing that I is a model for C0 and K.

Claim 2: For all a ∈ ∆I and C ∈ cl(C0,K), if C ∈ L(a), then a ∈ CI .

Since C0 is in the label of the root node, Claim 2 clearly implies that I is a model for C0.
Moreover, we can use it to prove that I satisfies all key definitions (u1, . . . , un keyfor C) in
K: fix a, b ∈ CI such that uI

i (a) = uI
i (b) for 1 ≤ i ≤ n. Non-applicability of Rch yields
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{C, ¬̇C} ∩ L(a) 6= ∅. If ¬̇C ∈ L(a), then Claim 2 implies a ∈ (¬̇C)I in contradiction to
a ∈ CI . Thus we obtain C ∈ L(a). In an analogous way, we can argue that C ∈ L(b). Since
uI

i (a) and uI
i (b) are defined for 1 ≤ i ≤ n, Claim 1 yields that a has an ui/≈a-neighbor xi

with δ(xi) = uI
i (a) and b an ui/≈a-neighbor yi with δ(yi) = uI

i (b) for 1 ≤ i ≤ n. Thus the
fact that uI

i (a) = uI
i (b) yields δ(xi) = δ(yi) for 1 ≤ i ≤ n. By (†) we obtain xi ≈c yi and

thus xi ∼ yi for 1 ≤ i ≤ n. By definition of ≈a, we thus get a ≈a b. Since a, b ∈ ∆I , we
obtain a 6≺ b and b 6≺ a by definition of ∆I and thus a = b.

It remains to prove Claim 2, which we do using structural induction:

• C is a concept name or a nominal. Easy by construction of I.

• C = ¬D. Since C ∈ cl(C0,K), C is in NNF and D is a concept name. Since S is
clash-free, C ∈ L(a) implies D /∈ L(a). Thus, a /∈ DI by construction of I, which
yields a ∈ (¬D)I .

• C = ∃u1, . . . , un.P . Since the R∃c rule is not applicable, there exist x1, . . . , xn ∈ Vc

such that xi is a ui/≈a-neighbor of a for 1 ≤ i ≤ n and (x1, . . . , xn) ∈ P(P ). Claim 1
yields uI

i (a) = δ(xi) for 1 ≤ i ≤ n. Since (x1, . . . , xn) ∈ P(P ) and δ is a solution for
ζS , we have (δ(x1), . . . , δ(xn)) ∈ PD and thus a ∈ CI .

• C = g↑. Since S is clash-free, there exists no x ∈ Vc such that x is g/≈a-neighbor of
a. Thus by Claim 1 there is no α such that (a, α) ∈ gI .

• C = D u E or C = D t E. Straightforward using completeness and the induction
hypothesis.

• C = ∃R.D. Since the R∃ rule is not applicable, a has an R/≈a-neighbor b such that
D ∈ L(b). Let b′ be minimal w.r.t. ≺ such that b ≈a b′. By definition of I, we have
(a, b′) ∈ RI . Non-applicability of the Rp rule yields D ∈ L(b′). By induction, we get
b′ ∈ DI and thus a ∈ CI .

• C = ∀R.D. Let (a, b) ∈ RI . By definition of I, this implies that there exist a′, b′ ∈ Va

such that a is minimal w.r.t. ≺ and a ≈a a′, b is minimal w.r.t. ≺ and b ≈a b′, and b′

is an R-successor of a′. Since b′ is clearly an R/≈a-neighbor of a, non-applicability of
R∀ yields D ∈ L(b′), which implies D ∈ L(b) due to the non-applicability of Rp. By
induction, we get b ∈ DI . Since this holds independently of the choice of b, we obtain
a ∈ (∀R.D)I .

Lemma B.6 (Completeness). If the input concept C0 is satisfiable w.r.t. the input key
box K, then the tableau algorithm returns satisfiable.

Proof. Let I be a model of C0 and K. We use I to “guide” the (non-deterministic parts
of) the algorithm such that it constructs a complete and clash-free completion system. A
completion system S = (T,P,≺,∼) with T = (Va, Vc, E,L) is called I-compatible if there
exist mappings π : Va → ∆I and τ : Vc → ∆D such that

(Ca) C ∈ L(a) ⇒ π(a) ∈ CI
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(Cb) b is an R-successor of a ⇒ (π(a), π(b)) ∈ RI

(Cc) x is a g-successor of a ⇒ gI(π(a)) = τ(x)

(Cd) (x1, . . . , xn) ∈ P(P ) ⇒ (τ(x1), . . . , τ(xn)) ∈ PD

(Ce) x ∼ y ⇒ τ(x) = τ(y)

We first establish the following claim:

Claim 1: If a completion system S is I-compatible, then (i) a ≈a b implies π(a) = π(b)
and (ii) x ≈c y implies τ(x) = τ(y).

Proof: We show by induction on i that a ≈i
a b implies π(a) = π(b) (see Definition 4.3),

which yields (i).

• Start. If a ≈0
a b, then there exists a nominal N such that N ∈ L(a) ∩ L(b). By (Ca)

we obtain π(a) ∈ NI and π(b) ∈ NI , which yields π(a) = π(b) by definition of the
semantics.

• Step. For a ≈i
a b, we distinguish three cases:

1. If a ≈i−1
a b, then π(a) = π(b) by induction.

2. There is a c ∈ Va and an f ∈ NaF such that both a and b are f/≈i−1
a -neighbors of

c. Hence, there exist c1, c2 ∈ Va such that c ≈i−1
a c1 ≈i−1

a c2, a is an f -successor
of c1, and b is an f -successor of c2. By induction, we have π(c) = π(c1) = π(c2).
Thus (Cb) yields {(π(c), π(a)), (π(c), π(b))} ⊆ fI , which implies π(a) = π(b) by
definition of the semantics.

3. There exist (u1, . . . , un keyfor C) ∈ K, ui/≈
i−1
a -neighbors xi of a and ui/≈

i−1
a -

neighbors yi of b for 1 ≤ i ≤ n such that C ∈ L(a)∩L(b) and xi ∼ yi for 1 ≤ i ≤ n.
(Ca) yields a, b ∈ CI . Using induction, (Cb), and (Cc), it is straightforward to
show that uI

i (π(a)) = τ(xi) and uI
i (π(b)) = τ(yi) for 1 ≤ i ≤ n. By (Ce), this

implies uI
i (π(a)) = uI

i (π(b)) for 1 ≤ i ≤ k. Since I is a model of the key box K,
this yields π(a) = π(b) by definition of the semantics.

Now for Part (ii) of Claim 1. If x ≈c y, then either x ∼ y or there is an a ∈ Va and a g ∈ NcF

such that both x and y are g/≈a-neighbors of a. In the former case, (Ce) yields τ(x) = τ(y).
In the latter case, Part (i) of the claim and (Cc) yields {(π(a), τ(x)), (π(a), τ(y))} ⊆ gI which
implies τ(x) = τ(y). This finishes the proof of Claim 1.

We can now show that the completion rules can be applied such that I-compatibility is
preserved.

Claim 2: If a completion system S is I-compatible and a rule R is applicable to S, then R
can be applied such that an I-compatible completion system S ′ is obtained.

Proof: Let S be an I-compatible completion system, let π and τ be functions satisfying
(Ca) to (Ce), and let R be a completion rule applicable to S. We make a case distinction
according to the type of R.
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Ru The rule is applied to a concept C1 u C2 ∈ L(a). By (Ca), C1 u C2 ∈ L(a) implies
π(a) ∈ (C1 u C2)

I and hence π(a) ∈ CI
1 and π(a) ∈ CI

2 . Since the rule adds C1 and
C2 to L(a), it yields a completion system that is I-compatible via the same π and τ .

Rt The rule is applied to C1tC2 ∈ L(a). C1tC2 ∈ L(a) implies π(a) ∈ CI
1 or π(a) ∈ CI

2 .
Since the rule adds either C1 or C2 to L(a), it can be applied such that it yields a
completion system that is I-compatible via the same π and τ .

R∃ The rule is applied to a concept ∃R.C ∈ L(a), generates a new R-successor b of a and
sets L(b) = {C}. By (Ca), we have π(a) ∈ (∃R.C)I and, hence, there exists a d ∈ ∆I

such that (π(a), d) ∈ RI and d ∈ CI . Set π′ := π ∪ {b 7→ d}. It is readily checked
that the resulting completion system is I-compatible via π′ and τ .

R∀ The rule is applied to a concept ∀R.C ∈ L(a) and adds C to L(b) of an existing
R/≈a-neighbor b of a. Hence, there exists an a′ such that a ≈a a′ and b is an R-
successor of a′. By Part (i) of Claim 1, we have π(a) = π(a′). Thus, by (Ca) we have
π(a′) ∈ (∀R.C)I while (Cb) yields ((π(a′), π(b)) ∈ RI . By definition of the semantics,
π(b) ∈ CI and thus the resulting completion system is I-compatible via π and τ .

R∃c The rule is applied to a concept ∃u1, . . . , un.P ∈ L(a) with ui = f
(i)
1 · · · f

(i)
ki

gi for

1 ≤ i ≤ n. The rule application generates new abstract nodes b
(i)
j and xj for 1 ≤ i ≤ n

and 1 ≤ j ≤ ki such that

– b
(i)
1 is an f

(i)
1 -successor of a for 1 ≤ i ≤ n,

– b
(i)
j is an f

(i)
j -successor of b

(i)
j−1 for 1 ≤ i ≤ n and 2 < j ≤ ki,

– xi is gi-successor of b
(i)
ki

for 1 ≤ i ≤ n, and

– (x1, . . . , xn) ∈ P(P ).

By (Ca), we have π(a) ∈ (∃u1, . . . , un.P )I . Hence, there exist d
(i)
j ∈ ∆I for 1 ≤ i ≤ n

and 1 ≤ j ≤ ki and α1, . . . , αn ∈ ∆D such that

– (π(a), d
(i)
1 ) ∈ (f

(i)
1 )I for 1 ≤ i ≤ n,

– (d
(i)
j−1, d

(i)
j ) ∈ (f

(i)
j )I for 1 ≤ i ≤ n and 2 < j ≤ ki,

– gIi (d
(i)
ki

) = αi for 1 ≤ i ≤ n, and

– (α1, . . . , αn) ∈ PD.

Set π′ := π ∪
⋃

1≤i≤n and 1≤j≤ki
{b

(i)
j 7→ d

(i)
j } and τ ′ := τ ∪

⋃

1≤i≤n{xi 7→ αi}.

The resulting completion system is I-compatible via π′ and τ ′.

Rch The rule is applied to an abstract node a and a key definition (u1, . . . , un keyfor C)
∈ K and non-deterministically adds either C or ¬̇C. By definition of the semantics,
π(a) ∈ CI or π(a) ∈ (¬̇C)I . Hence, Rch can be applied such that the resulting
completion system is I-compatible via π and τ .
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Rp The rule is applied to a concept C ∈ L(a) and adds C to the label L(b) of a node b
with a ≈a b. By (Ca), we have π(a) ∈ CI . Since Claim 1 yields π(a) = π(b), it follows
that the resulting completion system is I-compatible via π and τ .

Finally, we show that I-compatibility implies clash-freeness.

Claim 3: Every I-compatible completion system is clash-free.

Proof: Let S = (T,P,≺,∼) be an I-compatible completion system. Consider the three
kinds of a clash:

• Due to (Ca), a clash of the form {A,¬A} ∈ L(a) clearly contradicts the semantics.

• Assume that there are a ∈ Va and x ∈ Vc such that g↑ ∈ L(a) and x is g/≈a-neighbor
of a. Then there exists a b ∈ Va such that a ≈a b and x is g-successor of b. By Claim 1,
a ≈a b implies π(a) = π(b). Thus, g↑ ∈ L(a) and (Ca) give π(b) ∈ (g↑)I . We obtain a
contradiction since (Cc) yields (π(b), τ(x)) ∈ gI .

• Properties (Cd) and (Ce) and Part (ii) of Claim 1 imply that τ is a solution for ζS .
Thus, S is concrete domain satisfiable.

We can now describe the “guidance” of the tableau algorithm by the model I in detail: we
ensure that, at all times, the considered completion systems are I-compatible. This does
obviously hold for the initial completion system

SC0
= (TC0

,P∅, ∅, ∅) with TC0
= ({a0}, ∅, ∅, {a0 7→ {C}}).

We guide the non-deterministic test function such that, when given a predicate conjunction
ζS with set of variables Vc ⊆ Oc as input, it returns the relation ∼ defined by setting x ∼ y
iff τ(x) = τ(y) for all x, y ∈ V . The relation ∼ is a concrete equivalence since τ is a solution
for ζS (see above). With this guidance, (Ce) is obviously satisfied after each call to test, and
the other properties are not affected by such a call. According to Claim 2, we can apply the
completion rules such that I-compatibility is preserved. By Corollary B.4, the algorithm
terminates always, hence also when guided in this way. Since, by Claim 3, we will not find
a clash, the algorithm returns satisfiable.

The tableau algorithm yields decidability and a tight upper complexity bound for ALCOK(D)-
concept satisfiability w.r.t. key boxes.

Theorem B.7 (Theorem 4.1 of Section 4.1). Let D be a key-admissible concrete do-
main. If extended D-satisfiability is in NP, then ALCOK(D)-concept satisfiability w.r.t.
Boolean key boxes is in NExpTime.

Proof. Corollary B.4 and Lemmas B.5 and B.6 yield decidability of ALCOK(D)-concept
satisfiability w.r.t. Boolean key boxes. For complexity, Lemma B.3 provides an exponential
bound on the number of recursion calls. Hence, it remains to show that each single recursion
step needs at most exponential time. By Lemma B.2, the while loop terminates after at most
exponentially many steps. In each such step, we compute the relations ≈a and ≈c, which
are used in the construction of the predicate conjunction ζS and for checking termination
of the while loop. Since, by Lemma B.1, there exists an exponential bound on the number
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of abstract and concrete nodes in the completion system S, this can obviously be done in
exponential time. Moreover, Lemma B.1 implies that the size of ζS is at most exponential.
This together with the fact that extended D-satisfiability is in NP implies that the call to
test needs at most exponential time. All remaining tasks (checking for clashes, completeness,
and rule applicability) can clearly also be performed in exponential time.

Appendix C. Proofs of Section 4.2

We first provide the proof of Lemma 4.2 which shows that the notion of tableaux introduced
in Section 4.2 is an adequate abstraction of models.

Lemma C.1 (Lemma 4.2 in Section 4.2). Let D be a SHOQK(D)-concept in NNF, R
a role box, and K a path-free key box in NNF. Then D is satisfiable w.r.t. R and K iff D
has a tableau w.r.t. R and K.

Proof. For the “only-if” direction, we construct a tableau T from a common model I of D,
R, and K as follows:

Sa := ∆I

Sc := {x ∈ ∆D | gI(s) = x for some s ∈ Sa}

L(s) := {C ∈ cl(D,R,K) | s ∈ CI}

E(s, t) := {S ∈ ND,R,K
R

| (s, t) ∈ SI}

e(s, g) := gI(s) if gI(s) is defined

P(P ) := {(x1, . . . , xn) ∈ Sn
c | (x1, . . . , xn) ∈ PD}.

It can be easily verified that T is a tableau for D w.r.t. R and K: the proof that T satisfies
(T1) – (T9) is identical to the corresponding cases in (Horrocks et al., 2000; Horrocks &
Sattler, 2001); (T10) holds by definition of L; (T11) by definition of L and the fact that
nominals are interpreted as singleton sets; (T12) by definition of L, e, and P together with
the semantics of concepts ∃g1, . . . , gn.P ; (T13) since the identity function on Sc is clearly a
solution for the listed predicate conjunction; (T14) by definition of L and e together with
the semantics of key constraints; and finally (T15) by definition of L and e together with
the semantics of concepts g↑.

For the “if” direction, let T = (Sa,Sc,L, E, e,P) be a tableau for D w.r.t. R and K and
let δ be a solution for the predicate conjunction in (T13). We construct a model I for D
as follows:

∆I := Sa

AI := {s ∈ ∆I | A ∈ L(s)} for concept names A

NI := {s ∈ ∆I | N ∈ L(s)} for nominals N

RI :=

{
⋃

S v* R
S 6=R

SI ∪ {(s, t) | R ∈ E(s, t)} for R ∈ NR \ NcF with not Trans(R)

{(s, t) | R ∈ E(s, t)}+ for R ∈ NR \ NcF with Trans(R)

gI(s) :=

{

δ(x) if e(s, g) = x
undefined if e(s, g) is undefined

for g ∈ NcF.
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Due to (T11), the interpretation of nominals is a singleton. Moreover, the interpretation of
roles is well-defined since role boxes are acyclic. The following claim is central for proving
that I is indeed a model for D, R, and K:

Claim: For each C ∈ cl(D,R,K), C ∈ L(s) implies s ∈ CI .

Proof: We proceed by induction on the norm ||C|| of C, which is defined as follows:

||A|| := ||¬A|| := 0 for A concept name
||g↑|| := ||∃u1, . . . , un.P || := 0

||C1 u C2|| := ||C1 t C2|| := 1 + ||C1|| + ||C2||
||(> n R C)|| := ||(6 n R C)|| := 1 + ||C||

For concept names A and nominals N , the claim follows by definition of AI and NI . For the
negation of concept names A and nominals N (note that C is in NNF), the claim follows by
definition of AI and NI together with (T1). Concepts C of the form C1 uC2 and C1 tC2

can be treated using (T2) and (T3) together with the induction hypothesis. For existential,
universal, and number restrictions, the proof is analogous to the one for SHIQ in (Horrocks
et al., 2000). For concepts of the form C = ∃g1, . . . gn.P ∈ L(s), s ∈ CI is an immediate
consequence of (T12), the definition of gIi , and the fact that (x1, . . . , xn) ∈ P(P ) implies
(δ(x1), . . . , δ(xn)) ∈ PD by (T13). Finally, for concepts C = g↑, s ∈ CI is an immediate
consequence of the definition of gI together with (T15). This finishes the proof of the
claim.

By definition of tableaux, there exists an s0 ∈ Sa such that C ∈ L(s0). By the claim,
s0 ∈ CI and thus I is a model of C.

Next, we show that I is a model of R. By definition of RI , it is obvious that Trans(R) ∈
R implies that RI is a transitive relation. Now let S v R ∈ R. If Trans(R) /∈ R, then we
have SI ⊆ RI by definition of RI . Now let Trans(R) ∈ R and (s, t) ∈ SI . If S ∈ E(s, t),
then (T4) implies R ∈ E(s, t), and thus (s, t) ∈ RI . Otherwise, there is an S ′ v* S with
Trans(S′) ∈ R and (s, t) ∈ {(u, v) | S ′ ∈ E(u, v)}+. Now (T4) together with S ′ v* R implies
that {(u, v) | S ′ ∈ E(u, v)} ⊆ {(u, v) | R ∈ E(u, v)}, and thus Trans(R) ∈ R implies that
(s, t) ∈ RI .

It remains to show that I is a model of K. To this end, let (g1, . . . , gn keyfor C) ∈ K
and s, t ∈ CI such that gIi (s) = gIi (t) for 1 ≤ i ≤ n. Since the predicate conjunction in
(T13) contains explicit inequalities for all distinct concrete individuals, this implies that
e(s, gi) = e(t, gi) for 1 ≤ i ≤ n. (T10) implies {C, ¬̇C}∩L(s) 6= ∅ and {C, ¬̇C} ∩ L(t) 6= ∅.
If ¬̇C ∈ L(s), then the claim yields s ∈ (¬̇C)I contradicting s ∈ CI . Thus we obtain
C ∈ L(s) and, in a similar way, C ∈ L(t). Finally, (T14) implies that s = t, and thus I
satisfies K.

We now proceed to prove termination, soundness, and completeness of the tableau algorithm
presented in Section 4.2, starting with termination. In the following, we use |D,R,K| to
denote | cl+(D,R,K)|. Recall that this number is polynomial in the size of D, R, K.

Lemma C.2 (Termination). Let D be a key-admissible concrete domain. When started
with a SHOQK(D) concept D in NNF, a role box R, and a path-free key box K in NNF,
the tableau algorithm terminates.
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Proof. Assume that there are D, R, and K such that the tableau algorithm does not ter-
minate. Since D is key-admissible, this means that there is an infinite sequence S0, S1, . . .
of completion systems such that (a) S0 is the initial completion system SD and (b) Si+1 is
the result of applying a completion rule to Si.

This is only possible if the R∃ or the R> rules are applied infinitely often: it is easily seen
that the rules Ru, Rt, R6, R∃c, R∀, R∀+, Rch, and R≈a can only be applied finitely often
to completion systems whose set of abstract nodes Va does not increase since they either
add concepts into node labels (whose size is bounded), or they add concrete nodes (whose
number is bounded linearly by the number of abstract nodes), or they remove abstract
nodes from the forest. Hence there is a sub-sequence Si1 , Si2 , . . . of S0, S1, . . . such that
Sij is the result of applying the R∃ or the R> rule to Sij−1. Let si` be the abstract node
to which the R∃ or the R> rule was applied in Si`−1. Since s ≺ t implies that t was not
generated before s, the linear ordering ≺ is well-founded. Thus, we find an infinite sub-
sequence Sj1 , Sj2 , . . . of Si1 , Si2 , . . . such that either sj`

= sj`+1
for each ` ≥ 1 or sj`

≺ sj`+1

for each ` ≥ 1. The former, however, is not possible since the R∃ and the R> rules are
applied at most once per node and concept in cl(D,R,K): even if a node is removed, the
label copying performed by the R6 rule together with clashes of type (C3) ensures that
the R> rule is not re-applied to the same concept and node. Thus only the second option
remains: there is a subsequence Sj1 , Sj2 , . . . of Si1 , Si2 , . . . such that sj`

≺ sj`+1
for each

` ≥ 1. Let Lj be the labeling function in Sj . Since each abstract node is labeled with a
subset Lj of cl+(D,R,K), there are nodes sjk

≺ sj`
with k � ` and Ljk

(sjk
) = Lj`

(sj`
).

Now node labels can only increase and, if a node t is removed, its label is conjoined to the
label of a node t̂ with t̂ ≺ t. Thus there is a node t in the completion system Sj`

with
t ≺ sj`

and Lj`
(sj`

) ⊆ Lj`
(t). By definition, sj`

is thus blocked in Sj`
, contradicting the

assumption that the R∃ or the R> rule is applied to sj`
in Sj`

.

Lemma C.3 (Soundness). If the expansion rules can be applied to a SHOQK(D) concept
D in NNF, a role box R, and a path-free key box K such that they yield a complete and
clash-free completion forest, then D has a tableau w.r.t. R and K.

Proof. Let S = ((Va, Vc, E,L),P,∼c,≺) be a complete and clash-free completion system.
We can find a solution δ for ζS such that δ(x) = δ(y) iff x ∼c y: only the R∃c rule updates
the predicate conjunction ζS , and after each rule application the ∼c relation is updated
using the concrete equivalence that a D-tester returns for ζS (note that ζS is satisfiable due
to clash-freeness). According to Definition 4.1, we can thus find a solution δ as required.
From S and δ, we define a finite tableau T = (Sa,Sc, Ê, L̂, P̂) as follows:

Sa := {s ∈ Va | s occurs in S and is not blocked}

Sc := {δ(x) | (s, x) ∈ E(g) for some s ∈ Sa and some g}

L̂(s) := L(s) ∩ cl(D,R,K) (the intersection is due to the auxiliary concepts AnRC
i ),

Ê(s, t) := {R | t is an R-successor of s or t blocks an R-successor t′ of s}

e(s, g) :=

{

δ(x) if x is a g-successor of s
undefined if x has no g-successor

P̂ := the restriction of P to Sc.
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Note that the function e is well-defined due to the definition of adding g-successors. It
remains to show that T satisfies (T1)–(T14), which is basically a consequence of S being
clash-free and complete.

• (T1) is satisfied since S does not contain a clash (C1).

• (T2) is satisfied since the Ru rule cannot be applied, and thus C1uC2 ∈ L̂(s) implies
C1, C2 ∈ L̂(s).

• (T3) is satisfied since the Rt rule cannot be applied, and thus C1tC2 ∈ L̂(s) implies
{C1, C2} ∩ L̂(s) 6= ∅.

• For (T4), consider s, t ∈ Sa with R ∈ Ê(s, t) and R v* R′. Then R ∈ Ê(s, t) implies
that t is or blocks an R-successor of s. By definition of “successor”, t is or blocks an
R′-successor of s, and thus R′ ∈ Ê(s, t).

• For (T5), let ∀R.C ∈ L̂(s) and R ∈ Ê(s, t). If t is an R-successor of s, then s not
being blocked implies C ∈ L(t) since the R∀ rule cannot be applied. If t blocks an
R-successor t′ of s, then s not being blocked and the fact that the R∀ rule cannot be
applied yields C ∈ L(t′), and the blocking condition implies C ∈ L(t).

In both cases, we thus have C ∈ L̂(t).

• (T6) and (T7) are satisfied for the same reasons as (T5) with R∀ replaced with R∃
and R∀+.

• For (T8), consider s with (> n R C) ∈ L̂(s). Hence (> n R C) ∈ L(s) and
completeness of S implies the existence of R-successors t1, . . . , tn of s with C ∈ L(ti)
and ti 6

.
= tj for i 6= j. The latter implies, for each i 6= j, the existence of integers k, `

such that k 6= `, AnRC
k ∈ L(ti), and AnRC

` ∈ L(tj). For (T8) to be satisfied, it remains
to verify that

– no ti can block a tj : if this was the case, the blocking condition would imply that
{AnRC

k , AnRC
` } ⊆ L(ti).

– no t can block both ti and tj with i 6= j: similarly, this would imply that
{AnRC

k , AnRC
` } ⊆ L(t).

In each case, we would have a clash (C3), in contradiction to S being clash-free.

• For (T9), consider s with (6 n R C) ∈ L̂(s). Hence (6 n R C) ∈ L(s) and, since
the R6 rule cannot be applied, there are at most n R-successors ti of s. Since each
ti is either not blocked or blocked by exactly one other node (due to ≺ being a linear
ordering), there are at most n ui ∈ Sa with R ∈ Ê(s, ui) and C ∈ L̂(ui).

• For (T10), let (6 n R C) ∈ L̂(s) and R ∈ Ê(s, t). Hence (6 n R C) ∈ L(s) and
t either is an R-successor of s or blocks an R-successor of s. In the first case, non-
applicability of the Rch rule implies that {C, ¬̇C} ∩ L(t) 6= ∅. In the second case,
{C, ¬̇C} ∩ L(t′) 6= ∅ for t′ the R-successor of s blocked by t, and thus the blocking
condition yields {C, ¬̇C} ∩ L(t) 6= ∅. In both cases, this implies {C, ¬̇C} ∩ L̂(t) 6= ∅.
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Next, consider (g1, . . . , gn keyfor C) ∈ K and s such that e(s, gi) is defined for each
i. Hence s has a gi-successor for each i, and thus s not being blocked and the non-
applicability of the Rch rule imply that {C, ¬̇C} ∩ L̂(t) 6= ∅.

• For (T11), consider N ∈ L̂(s)∩ L̂(t). By definition, N ∈ L(s)∩L(t) and thus s ≈a t.
Moreover, totality of ≺ implies that we can assume without loss of generality that
s ≺ t or s = t. Thus non-applicability of the R≈a rule implies that L(t) ⊆ L(s), and
thus t not being blocked implies s = t.

• (T12) is satisfied since the rule R∃c cannot be applied.

• For (T13), clash-freeness implies the satisfiability of

∧

P used in D,K

∧

(x1,...,xn)∈P(P )

P (x1, . . . , xn). (1)

By choice of δ, δ(x) = δ(y) iff x ∼c y, and thus (T13) is satisfied.

• For (T14), let (g1, . . . , gn keyfor C) ∈ K, C ∈ L̂(s) ∩ L̂(t), and e(s, gi) = e(t, gi), for
all 1 ≤ i ≤ n. Thus C ∈ L(s) ∩ L(t) and, by choice of e and δ, we have xi ∼c yi

for gi ∈ E(s, xi) ∩ E(t, yi). Hence s ≈a t. Without loss of generality, we assume that
s ≺ t or s = t. Thus non-applicability of the R≈a rule implies that L(t) ⊆ L(s), and
thus t not being blocked implies s = t.

• (T15) is satisfied by definition of T and since S does not contain a clash (C4).

Lemma C.4 (Completeness). If a SHOQK(D)-concept D in NNF has a tableau w.r.t.
a role box R and a path-free key box K, then the expansion rules can be applied to D, R,
and K such that they yield a complete and clash-free completion forest.

Proof. Given a tableau T = (Sa,Sc, L̂, Ê, e, P̂) for D w.r.t. R and K, we can “guide” the
non-deterministic rules Rt, Rch, and R≈a in such a way that each rule application preserves
clash-freeness. This together with termination from Lemma C.2 finishes the proof.

Along with rule application, we perform a stepwise construction of a total mapping π
that takes abstract nodes of the completion forest to elements of Sa and concrete nodes of
the completion forest to elements of Sc.

• L(s) ∩ cl(D,R,K) ⊆ L̂(π(s)) for each s ∈ Va,

• if t is an R-successor of s, then R ∈ Ê(π(s), π(t)),

• if x is a g-successor of s, then e(π(s), g) = π(x),

• x ∼c y iff π(x) = π(y), and

• if s 6
.
= t, then π(s) 6= π(t).
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A mapping satisfying these four conditions is called correct in the following. Note that a
completion system for which there exists a correct mapping does not contain a clash: due to
(T1) and the first property, we do not encounter a clash (C1). A clash (C3) cannot occur
due to the last property. The first and the third property together with (T15) ensure that
a clash (C4) does not occur. Finally, Clashes (C2) cannot occur for the following reason:
by construction of P and since edges labelled with abstract features are never removed, for
each tuple (x1, . . . , xn) ∈ P(P ), we find an abstract node s and paths u1, . . . , un such that
∃u1, . . . , un.P ∈ L(s) and xi is a ui-successor of s for 1 ≤ i ≤ n. Thus, the first, second,
and third property together with (T12) and (T13) ensure that the conjunction

∧

P used inD,K
(x1,...,xn)∈P(P )

P (π(x1), . . . , π(xn)) (∗)

has a solution δ with δ(π(x)) 6= δ(π(x)) iff π(x) 6= π(y). By the fourth property, setting
δ′(x) := δ(π(x)) for all x ∈ Vc thus yields a solution δ′ for ζS .

The total mapping π is inductively defined as follows: let δ be a solution for the equation
in (T13). Choose a node ŝ0 with D ∈ L̂(ŝ0), and set π(s0) := ŝ0 for s0 the (only) node of the
initial completion forest. Obviously, π is correct. We will now show that each completion
rule can be applied in such a way that π either is still correct or that π can be extended to
a correct mapping.

• An application of the rule Ru preserves correctness of π due to (T2).

• Due to (T3), the rule Rt can be applied such that correctness is preserved.

• If the rule R∃ adds a new node t for ∃R.C ∈ L(s), then correctness implies ∃R.C ∈
L̂(π(s)), and thus (T6) implies the existence of some t̂ ∈ Sa with R ∈ E(π(s), t̂) and
C ∈ L̂(t̂). Thus extending π with π(t) := t̂ obviously yields a correct mapping.

• If the rule R> adds n nodes ti for (> n R C) ∈ L(s), then correctness implies
(> n R C) ∈ L̂(π(s)), and thus (T8) implies the existence of t̂1, . . . , t̂n ∈ Ŝa with
t̂i 6= t̂j for i 6= j, R ∈ E(π(s), t̂i), and C ∈ L̂(t̂i). Thus extending π with π(ti) := t̂i
obviously yields a correct mapping.

• Assume that the R6 rule is applicable to a node s with (6 n R C) ∈ L(s) and more
than n R-successors ti with C ∈ L(ti). Then correctness implies that (6 n R C) ∈
L̂(π(s)), R ∈ Ê(π(s), π(ti)), and C ∈ L̂(ti). Thus, by (T9), there are i 6= j with
π(ti) = π(tj). Again, correctness implies that not ti 6

.
= tj and, without loss of general-

ity, we can assume that ti ≺ tj . Hence applying the rule and thereby merging L(tj)
into L(ti) preserves correctness.

• For the rule R∃c, π can be extended in a similar way as for R∃: if a new gi-successor xi

of s is added, then extending π with π(xi) := e(π(s), gi) yields a correct π. Moreover,
(T13) ensures that ∼c can be updated in such a way that the fourth condition is
preserved.

• For the R∀ rule, π does not need to be extended, and (T5), (T4), and the definition
of R-successors imply that correctness is preserved.
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• The R∀+ rule is similar, with the only difference that (T7) takes the place of (T5).

• Due to (T10), the rule Rch can be applied without violating correctness.

• For R≈a, we consider two reasons for R≈a to be applicable:

– N ∈ L(s) ∩ L(t). Then correctness of π and (T11) imply that π(s) = π(t).

– (g1, . . . , gn keyfor C) ∈ K, C ∈ L(s) ∩ L(t), and gi ∈ E(s, xi) ∩ E(t, yi) and
xi ∼c yi for 1 ≤ i ≤ n. Then correctness implies that ê(π(s), gi) = e(π(t), gi), and
thus (T14) together with the first property of correctness imply that π(s) = π(t).

In both cases, applying R≈a to s and t preserves correctness.

As an immediate consequence of Lemmas 4.2, C.2, C.3, and C.4, the tableau algorithm
always terminates and answers “D is satisfiable w.r.t. R and K” if and only if the input
concept D is satisfiable w.r.t. the input role box R and the input key box K. Since concept
satisfiability w.r.t. TBoxes can be reduced to concept satisfiability without TBoxes, we
obtain the following result:

Proposition C.5. Let D be a key-admissible concrete domain. The tableau algorithm
decides satisfiability of SHOQK(D) concepts w.r.t. TBoxes, role boxes, and path-free key
boxes.

It is not hard to verify that the proof of Lemma C.4 together with Lemmas 4.2 and C.2
yield a bounded model property for SHOQK(D), where the bound is exponential.

Corollary C.6. If a SHOQK(D)-concept D is satisfiable w.r.t. a role box R and a path-
free key box K, then D is satisfiable w.r.t. R and K in a model of size at most |∆I | ≤ 2m

for m = # cl+(D,R,K).

Proof. If a SHOQK(D)-concept D is satisfiable w.r.t. a role box R and a path-free key
box K, Lemma C.4 implies that the tableau algorithm constructs a complete and clash-free
completion forest for D, R, and K. By the definition of blocking, the number of abstract
nodes in a completion forest that are not blocked is bounded by 2m, where m is defined as
in the corollary: if s 6= t ∈ Va are abstract nodes in a completion forest and L(s) = L(t),
then either s blocks t, t blocks s, or they are both blocked by another node u. Moreover,
it is easily seen that the number of concrete successors per abstract node is bounded by
the number of concrete features in C, R, and K. Now, in the proof of Lemma C.4, the
abstract nodes in the tableau constructed from a complete and clash-free completion forest
coincide with the nodes that are not blocked in the completion forest. Finally, in the proof of
Lemma 4.2 the interpretation domain of a model constructed from a tableau coincides with
the abstract nodes in the tableau. Summing up, a SHOQK(D)-concept that is satisfiable
w.r.t. R and K has a model of size |∆I | ≤ 2m.
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