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Abstract. Description Logics are a family of class based knowledge rep-
resentation formalisms characterised by the use of various constructors
to build complex classes from simpler ones, and by an emphasis on the
provision of sound, complete and (empirically) tractable reasoning ser-
vices. They have a wide range of applications, but their use as ontology
languages has been highlighted by the recent explosion of interest in the
“Semantic Web”, where ontologies are set to play a key role. DAML+OIL
is a description logic based ontology language specifically designed for
use on the Web. The logical basis of the language means that reasoning
services can be provided, both to support ontology design and to make
DAML+OIL described Web resources more accessible to automated pro-
cesses.

1 Introduction

Description Logics (DLs) are a family of class (concept) based knowledge repre-
sentation formalisms. They are characterised by the use of various constructors
to build complex concepts from simpler ones, an emphasis on the decidability of
key reasoning tasks, and by the provision of sound, complete and (empirically)
tractable reasoning services.

Description logics have been used in a range of applications, e.g., configu-
ration [42], and reasoning with database schemas and queries [14, 12, 36]. They
are also widely used as a formal basis for ontology languages and to provide
reasoning support for ontology design and deployment. This latter application
has been highlighted by the recent explosion of interest in the “Semantic Web”,
where ontologies are set to play a key role [30].

The current Web consists mainly of handwritten and machine generated
HTML pages primarily intended for direct human processing (reading, brows-
ing, form-filling, etc.). The aim of the so called semantic web is to make Web
resources (not just HTML pages, but a wide range of web accessible services)
more readily accessible to automated processes by adding meta-data annotations
that describe their content [7]. Ontologies will be used as a a source of shared
and precisely defined terms that can be used in such meta-data.



1.1 Ontologies

An ontology typically consists of a hierarchical description of important concepts
(classes) in a domain, along with descriptions of the properties of each concept.
The degree of formality employed in capturing these descriptions can be quite
variable, ranging from natural language to logical formalisms, but increased for-
mality and regularity clearly facilitates machine processing.

Examples of the use of ontologies could include:

– in e-commerce sites [39], where ontologies can facilitate machine-based com-
munication between buyer and seller, enable vertical integration of markets
(see, e.g., http://www.verticalnet.com/), and allow descriptions to be reused
in different marketplaces;

– in search engines [40], where ontologies can help searching to go beyond
the current keyword-based approach, and allow pages to be found that con-
tain syntactically different, but semantically similar words/phrases (see, e.g.,
http://www.hotbot.com/);

– in Web services [43], where ontologies can provide semantically richer service
descriptions that can be more flexibly interpreted by intelligent agents.

2 Ontology Languages

The recognition of the key role that ontologies are likely to play in the future
of the Web has led to the extension of Web markup languages in order to fa-
cilitate content description and the development of Web based ontologies, e.g.,
XML Schema,1 RDF2 (Resource Description Framework), and RDF Schema [16].
RDF Schema (RDFS) in particular is recognisable as an ontology/knowledge
representation language: it talks about classes and properties (binary relations),
range and domain constraints (on properties), and subclass and subproperty
(subsumption) relations.

RDFS is, however, a very primitive language (the above is an almost com-
plete description of its functionality), and more expressive power would clearly
be necessary/desirable in order to describe resources in sufficient detail. More-
over, such descriptions should be amenable to automated reasoning if they are
to be used effectively by automated processes, e.g., to determine the semantic
relationship between syntactically different terms.

A recognition of the limitations of RDFS led to the development of new web
ontology languages, in particular OIL [19, 20], a language developed by a group
of (largely) European researchers, several of whom were members of the On-
To-Knowledge consortium,3 and DAML-ONT [25], a language developed in the
DARPA Agent Markup Language (DAML) program.4 These two languages were

1 http://www.w3.org/XML/Schema/
2 http://www.w3c.org/RDF/
3 http://www.ontoknowledge.org/oil
4 http://www.daml.org/



subsequently merged to produce DAML+OIL, which has recently been submit-
ted to W3C5 and forms the basis of a proposed W3C Web ontology language.6.

2.1 DAML+OIL

DAML+OIL describes the structure of a domain in terms of classes and prop-
erties. A DAML+OIL ontology consists of a set of axioms that assert, e.g., sub-
sumption relationships between classes or properties. Instances of classes (prop-
erties) are assumed to be RDF resources7 (pairs of RDF resources). Asserting
that a given resource (pair of resources) is an instance of a given DAML+OIL
class (property) is left to RDF, a task for which it is well suited.

From a formal point of view, DAML+OIL can be seen to be equivalent to a
very expressive description logic, with a DAML+OIL ontology corresponding to
the Tbox, and RDF type and property assertions corresponding to the Abox. As
in a DL, DAML+OIL classes can be names (URIs) or expressions, and a variety
of constructors are provided for building class expressions; the expressive power
of the language is determined by the class (and property) constructors supported,
and by the kinds of axiom supported.

Constructor DL Syntax Example

intersectionOf C1 u . . . u Cn Human uMale
unionOf C1 t . . . t Cn Doctor t Lawyer
complementOf ¬C ¬Male
oneOf {x1 . . . xn} {john,mary}
toClass ∀P.C ∀hasChild.Doctor
hasClass ∃P.C ∃hasChild.Lawyer
hasValue ∃P.{x} ∃citizenOf.{USA}
minCardinalityQ >nP.C >2hasChild.Lawyer
maxCardinalityQ 6nP.C 61hasChild.Male
cardinalityQ =nP.C =1 hasParent.Female

Fig. 1. DAML+OIL class constructors

Figure 1 summarises the constructors supported by DAML+OIL, where C
(possibly subscripted) is a class, P is a property, x is an individual and n is a
non-negative integer. The standard DL syntax is used for compactness as the
RDF syntax is rather verbose. In the RDF syntax, for example, Human uMale
would be written as
5 http://www.w3.org/Submission/2001/12/
6 http://www.w3c.org/2001/sw/WebOnt/
7 Everything describable by RDF is called a resource. A resource could be Web accessi-

ble, e.g., a Web page or part of a Web page, but it could also be an object that is not
directly accessible via the Web, e.g., a person. Resources are named by URIs plus
optional anchor ids. See http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
for more details.



<daml:Class>
<daml:intersectionOf rdf:parseType="daml:collection">
<daml:Class rdf:about="#Human"/>
<daml:Class rdf:about="#Male"/>

</daml:intersectionOf>
</daml:Class>

while >2hasChild.Lawyer would be written as

<daml:Restriction daml:minCardinalityQ="2">
<daml:onProperty rdf:resource="#hasChild"/>
<daml:hasClassQ rdf:resource="#Lawyer"/>

</daml:Restriction>

DAML+OIL also supports the use of XML Schema datatypes in class ex-
pressions. These can be so called primitive datatypes, such as strings, decimal
or float, as well as more complex derived datatypes such as integer sub-ranges.
Datatypes can be used instead of classes in toClass and hasClass constructs
(e.g., hasClassageinteger), and data values can be used in the hasValue con-
struct (e.g., hasValueage(integer21)).

The meaning of the language is defined by DAML+OIL’s model-theoretic
semantics.8. The semantics is based on interpretations, where an interpretation
consists of a domain of discourse and an interpretation function. The domain
is divided into two disjoint sets, the “object domain” ∆I and the “datatype
domain” ∆D. The interpretation function I maps classes into subsets of the
object domain, individuals into elements of the object domain, datatypes into
subsets of the datatype domain and data values into elements of the datatype
domain. In addition, two disjoint sets of properties are distinguished: object
properties and datatype properties. The interpretation function maps the former
into subsets of ∆I ×∆I and the latter into subsets of ∆I ×∆D.

Figure 2 summarises the axioms supported by DAML+OIL, where C (pos-
sibly subscripted) is a class, P (possibly subscripted) is a property, P− is the
inverse of P , P+ is the transitive closure of P , x (possibly subscripted) is an
individual and > is an abbreviation for A t ¬A for some class A. These axioms
make it possible to assert subsumption or equivalence with respect to classes
or properties, the disjointness of classes, the equivalence or non-equivalence of
individuals, and various properties of properties.

A crucial feature of DAML+OIL is that subClassOf and sameClassAs axioms
can be applied to arbitrary class expressions. This provides greatly increased
expressive power with respect to standard frame-based languages where such
axioms are invariably restricted to so called definitions, where the left hand side
is an atomic name, there is only one such axiom per name, and there are no
definitional cycles (the class on the right hand side of an axiom cannot refer,
either directly or indirectly, to the class name on the left hand side).

8 http://www.w3.org/TR/daml+oil-model



Axiom DL Syntax Example

subClassOf C1 v C2 Human v Animal u Biped
sameClassAs C1 ≡ C2 Man ≡ Human uMale
subPropertyOf P1 v P2 hasDaughter v hasChild
samePropertyAs P1 ≡ P2 cost ≡ price
disjointWith C1 v ¬C2 Male v ¬Female
sameIndividualAs {x1} ≡ {x2} {President Bush} ≡ {G W Bush}
differentIndividualFrom {x1} v ¬{x2} {john} v ¬{peter}
inverseOf P1 ≡ P−2 hasChild ≡ hasParent−

transitiveProperty P+ v P ancestor+ v ancestor
uniqueProperty > v 61P > v 61hasMother
unambiguousProperty > v 61P− > v 61isMotherOf−

Fig. 2. DAML+OIL axioms

A consequence of the expressive power of DAML+OIL is that all of the class
and individual axioms, as well as the uniqueProperty and unambiguousProperty
axioms, can be reduced to subClassOf and sameClassAs axioms (as can be seen
from the DL syntax). In fact sameClassAs could also be reduced to subClassOf
as a sameClassAs axiom C ≡ D is trivially equivalent to a pair of subClassOf
axioms, C v D and D v C. Moreover, the distinction between Tbox and Abox
breaks down, as Abox assertions can be expressed using Tbox axioms. E.g., x ∈ C
can be expressed as {x} v C, and 〈x, y〉 ∈ P can be expressed as {x} v ∃P.{y}.

As far as property axioms are concerned, it is possible to assert that a given
property is unique (functional), unambiguous (inverse functional) or transitive
(i.e., that its interpretation must be closed under composition). It is also pos-
sible to assign a name to the inverse of a property, thus allowing inverse prop-
erties to be used in class expressions. Transitive properties are preferred over
transitive closure as this has been shown to facilitate the design of (efficient)
algorithms [33].

As usual, an interpretation is called a model of an ontology O if it satisfies
each of the axioms in O. An ontology O is said to be satisfiable if it has a model,
and a class C is said to be satisfiable w.r.t. O if there is a model of O in which
the interpretation of C is non-empty.

3 Inference Problems

As we have seen, DAML+OIL is equivalent to a very expressive description logic.
More precisely, DAML+OIL is equivalent to the SHIQDL [32] with the addition
of existentially defined classes (i.e., the oneOf constructor) and datatypes (often
called concrete domains in DLs [3]). This equivalence allows DAML+OIL to
exploit the considerable existing body of description logic research, e.g.:

– to define the semantics of the language and to understand its formal prop-
erties, in particular the decidability and complexity of key inference prob-
lems [18];



– as a source of sound and complete algorithms and optimised implementation
techniques for deciding key inference problems [32, 31];

– to use implemented DL systems in order to provide (partial) reasoning sup-
port [27, 46, 23].

Key inference problems (w.r.t. an ontology O) include:

Consistency Check if the knowledge is meaningful.
– Is O consistent? i.e., does there exists a model I of O?
– Is C consistent? i.e., CI 6= ∅ in some model I of O?

Subsumption Structure knowledge and compute a taxonomy.
– C v D w.r.t. O? i.e., does CI ⊆ DI hold in all models I of O?

Equivalence Check if two classes denote same set of instances.
– C ≡ D w.r.t. O? i.e., does CI = DI hold in all models I of O?

Instantiation Check if individual is an instance of a class.
– i ∈ C w.r.t. O? i.e., does iI ∈ CI hold in all models I of O?

Retrieval Retrieve the set of individuals that instantiate a class.
– Retrieve the set of i s.t. i ∈ C w.r.t. O.

In DAML+OIL, all of the above problems are recucible to class consistency
(satisfiability) w.r.t. an ontology. In particular, C v D w.r.t. O (written C vO
D) iff D u ¬C is not consistent w.r.t. O, and i ∈ C w.r.t. O (written i ∈O C)
iff {i} u ¬C is not consistent w.r.t. O. Moreover, by using a rewriting technique
called internalisation, satisfiability w.r.t. an ontology can be reduced to the
problem of determining the satisfiability of a single concept [32].

Reasoning can be useful at many stages during the design, maintenance and
deployment of ontologies.

– Reasoning can be used to support ontology design and to improve the quality
of the resulting ontology. For example, class consistency and subsumption
reasoning can be used to check for logically inconsistent classes and (possibly
unexpected) implicit subsumption relationships [6]. This kind of support has
been shown to be particularly important with large ontologies, which are of-
ten built and maintained over a long period by multiple authors. Other “non-
standard” reasoning tasks, such as approximation, matching, unification and
computing least common subsumers could also be used to support “bottom
up” ontology design, i.e., the identification and description of relevant classes
from sets of example instances [10].

– Like information integration [15], ontology integration can also be supported
by reasoning. For example, integration can be performed using inter-ontology
assertions specifying relationships between classes and properties, with rea-
soning being used to compute the integrated hierarchy and to highlight any
problems/inconsistencies. Unlike some other integration techniques (e.g.,
name reconciliation [41]), this method has the advantage of being non-
intrusive with respect to the original ontologies.



– Reasoning with respect to deployed ontologies will enhance the power of
“intelligent agents”, allowing them to determine if a set of facts is consistent
w.r.t. an ontology, to identify individuals that are implicitly members of a
given class etc. A suitable service ontology could, for example, allow an agent
seeking secure services to identify a service requiring a userid and password
as a possible candidate.

4 Reasoning with Datatypes

DAML+OIL supports arbitrary XML Schema datatypes. This is facilitated by
maintaining a clean separation between instances of “object” classes (defined
using the ontology language) and instances of datatypes (defined using the XML
Schema type system). In particular, as mentioned in Section 2.1, it is assumed
that that the domain of interpretation of object classes is disjoint from the
domain of interpretation of datatypes, so that an instance of an object class
(e.g., the individual “Italy”) can never have the same interpretation as a value
of a datatype (e.g., the integer 5), and that the set of object properties (which
map individuals to individuals) is disjoint from the set of datatype properties
(which map individuals to datatype values).

The disjointness of object and datatype domains and properties was moti-
vated by both philosophical and pragmatic considerations:

– Datatypes are considered to be already sufficiently structured by the built-
in predicates, and it is, therefore, not appropriate to form new classes of
datatype values using the ontology language [26].

– The simplicity and compactness of the ontology language are not compro-
mised: even enumerating all the XML Schema datatypes would add greatly
to its complexity, while adding a logical theory for each datatype, even if it
were possible, would lead to a language of monumental proportions.

– The semantic integrity of the language is not compromised—defining theories
for all the XML Schema datatypes would be difficult or impossible without
extending the language in directions whose semantics may be difficult to
capture within the existing framework.

– The “implementability” of the language is not compromised—a hybrid rea-
soner can easily be implemented by combining a reasoner for the “object”
language with one capable of deciding satisfiability questions with respect
to conjunctions of (possibly negated) datatypes [31].

From a theoretical point of view, this design means that the ontology lan-
guage can specify constraints on data values, but as data values can never be
instances of object classes they cannot apply additional constraints to elements
of the object domain. This allows the type system to be extended without hav-
ing any impact on the ontology language, and vice versa. Similarly, the formal
properties of hybrid reasoners are determined by those of the two components;
in particular, the combined reasoner will be sound and complete if both compo-
nents are sound and complete.



From a practical point of view, DAML+OIL implementations will probably
choose to support only a subset of the available XML Schema datatypes. For sup-
ported data types, they can either implement their own type checker/validater or
rely on some external component. The job of a type checker/validater is simply
to take zero or more (possibly negated) data values and one or more (possibly
negated) datatypes, and determine if there exists an element of ∆D that is (not)
equal to the interpretation of every one of the (negated) data values and (not)
in the interpretation of every one of the (negated) data types.

5 Practical Reasoning Services

The concept satisfiability problem for expressive DLs is known to be of high
complexity: at least Pspace-complete, and rising to Exptime-complete for very
expressive logics such as SHIQ [17]. Fortunately, the pathological cases that
lead to such high worst case complexity are rather artificial, and rarely occur in
practice [44, 24, 49, 28]; by employing a wide range of optimisations it has proved
possible to implement systems that exhibit good typical case performance in
realistic applications [2, 11, 28, 23, 47].

Most modern DL systems use tableaux algorithms to test concept satisfiabil-
ity. These algorithms work by trying to construct (a tree representation of) a
model of the concept, starting from an individual instance. Tableaux expansion
rules decompose concept expressions, add new individuals (e.g., as required by
∃R.C terms),9 and merge existing individuals (e.g., as reqired by 6nR.C terms).
Nondeterminism (e.g., resulting from the expansion of disjunctions) is dealt with
by searching the various possible models. For an unsatisfiable concept, all possi-
ble expansions will lead to the discovery of an obvious contradiction known as a
clash (e.g., an individual that must be an instance of both A and ¬A for some
concept A), and for a satisfiable concept, a complete and clash-free model will
be constructed [33].

Tableaux algorithms have many advantages. It is relatively easy to design
provably sound, complete and terminating algorithms, and the basic technique
can be extended to deal with a wide range of class and role constructors. More-
over, although many algorithms have a higher worst case complexity than that of
the underlying problem, they are usually quite efficient at solving the relatively
easy problems that are typical of realistic applications.

Even in realistic applications, however, problems can occur that are much
too hard to be solved by naive implementations of theoretical algorithms. Mod-
ern DL systems, therefore, include a wide range of optimisation techniques, the
use of which has been shown to improve typical case performance by several
orders of magnitude [29]. These techniques include lazy unfolding, absorption
and dependency directed backtracking.

9 Cycle detection techniques known as blocking may be required in order to guarantee
termination.



5.1 Lazy Unfolding

In an ontology, or DL Tbox, large and complex concepts are seldom described
monolithically, but are built up from a hierarchy of named concepts whose de-
scriptions are less complex. The tableaux algorithm can take advantage of this
structure by trying to find contradictions between concept names before adding
expressions derived from Tbox axioms. This strategy is known as lazy unfold-
ing [1, 28].

The benefits of lazy unfolding can be maximised by lexically normalising
and naming all concept expressions and, recursively, their sub-expressions. An
expression C is normalised by rewritting it in a standard form (e.g., disjunctions
are rewritten as negated conjunctions), and named by substituting it with a
new concept name A, with an axiom A ≡ C being added to the Tbox. The
normalisation step allows lexically equivalent expressions to be recognised and
identically named, and can even detect syntactiacally “obvious” satisfiability
and unsatisfiability.

5.2 Absorption

Not all axioms are amenable to lazy unfolding. In particular, so called general
concept incusions (GCIs), axioms of the form C v D where C is non-atomic,
must be dealt with by explicitly making every individual in the model an instance
ofDt¬C. Large numbers of GCIs result in a very high degree of non-determinism
and catastrophic performance degredation [28].

Absorption is another rewriting technique that tries to reduce the number
of GCIs in the Tbox by absorbing them into axioms of the form A v C, where
A is a concept name. The basic idea is that an axiom of the form A uD v D′

can be rewritten as A v D′ t ¬D and absorbed into an existing A v C axiom
to give A v C u (D′ t ¬D) [37]. Although the disjunction is still present, lazy
unfolding ensures that it is only applied to individuals that are already known
to be instances of A.

5.3 Dependency Directed Backtracking

Inherent unsatisfiability concealed in sub-expressions can lead to large amounts
of unproductive backtracking search known as thrashing. For example, expand-
ing the expression (C1tD1)u . . .u(CntDn)u∃R.(AuB)u∀R.¬A could lead to
the fruitless exploration of 2n possible expansions of (C1 tD1)u . . .u (Cn tDn)
before the inherent unsatisfiability of ∃R.(A u B) u ∀R.¬A is discovered. This
problem is addressed by adapting a form of dependency directed backtracking
called backjumping, which has been used in solving constraint satisfiability prob-
lems [5].

Backjumping works by labeling concepts with a dependency set indicating
the non-deterministic expansion choices on which they depend. When a clash is
discovered, the dependency sets of the clashing concepts can be used to identify
the most recent non-deterministic expansion where an alternative choice might



alleviate the cause of the clash. The algorithm can then jump back over inter-
vening non-deterministic expansions without exploring any alternative choices.
Similar techinques have been used in first order theorem provers, e.g., the “proof
condensation” technique employed in the HARP theorem prover [45].

6 Research Challenges for DAML+OIL

Class consistency/subsumption reasoning in DAML+OIL is know to be decid-
able (as it is contained in the C2 fragment of first order logic [21]), but many
challenges remain for implementors of “practical” reasoning systems, i.e., sys-
tems that perform well with the kinds of reasoning problem generated by realistic
applications.

6.1 Individuals

The OIL language was designed so that it could be mapped to the SHIQ DL,
thereby providing a implementation path for reasoning services. This mapping is
made possible by a very weak treatment of individuals occurring in existentially
defined classes, which are treated not as single elements but as the extensions of
corresponding primitive classes. This is a well known technique for avoiding the
reasoning problems that arise with existentially defined classes (such as classes
defined using DAML+OIL’s oneOf constructor) and is also used, e.g., in the
Classic knowledge representation system [8].

In contrast, DAML+OIL gives a standard semantics to such individuals, i.e.,
they are interpreted as single elements in the domain of discourse. This treatment
of individuals is very powerful, and justifies intuitive inferences that would not
be valid for OIL, e.g., that persons all of whose countries of residence are (oneOf)
Italy are kinds of person that have at most one country of residence:

Person u ∀residence.{Italy} v 61residence

Unfortunately, the combination of such individuals with inverse properties
is so powerful that it pushes the worst case complexity of the class consistency
problem from ExpTime (for SHIQ/OIL) to NExpTime [31]. No “practical”
decision procedure is currently known for this logic, and there is no imple-
mented system that can provide sound and complete reasoning for the whole
DAML+OIL language. In the absence of inverse properties, however, a tableaux
algorithm has been devised [31], and in the absence of individuals (in existen-
tially defined classes), DAML+OIL can exploit implemented DL systems via a
translation into SHIQ (extended with datatypes) similar to the one used by
OIL. It would, of course, also be possible to translate DAML+OIL ontologies
into SHIQ using OIL’s weak treatment of individuals,10 but in this case rea-
soning with individuals would not be sound and complete with respect to the
semantics of the language.
10 This approach is taken by some existing applications, e.g., OilEd [6].



6.2 Scalability

Even without the oneOf constructor, class consistency reasoning is still a hard
problem. Moreover, Web ontologies can be expected to grow very large, and with
deployed ontologies it may also be desirable to reason w.r.t. a large numbers of
class/property instances.

There is good evidence of empirical tractability and scalability for imple-
mented DL systems [28, 22], but this is mostly w.r.t. logics that do not include
inverse properties (e.g., SHF 11). Adding inverse properties makes practical im-
plementations more problematical as several important optimisation techniques
become much less effective. Work is required in order to develop more highly op-
timised implementations supporting inverse properties, and to demonstrate that
they can scale as well as SHF implementations. It is also unclear if existing tech-
niques will be able to cope with large numbers of class/property instances [34].

Finally, it is an inevitable consequence of the high worst case complexity that
some problems will be intractable, even for highly optimised implementations.
It is conjectured that such problems rarely arise in practice, but the evidence
for this conjecture is drawn from a relatively small number of applications, and
it remains to be seen if a much wider range of Web application domains will
demonstrate similar characteristics.

6.3 New Reasoning Tasks

So far we have mainly discussed class consistency/subsumption reasoning, but
this may not be the only reasoning problem that is of interest. Other tasks could
include querying, explanation, approximation, matching, unification, comput-
ing least common subsumers, etc. Querying in particular may be important in
Semantic Web applications. Some work on query languages for description log-
ics has already been done [48, 13, 35], and work is underway on the design of a
DAML+OIL query language, but the computational properties of such a lan-
guage, either theoretical or empirical, have yet to be determined.

Explanation may also be an important problem, e.g., to help an ontology
designer to rectify problems identified by reasoning support, or to explain to
a user why an application behaved in an unexpected manner. As discussed in
Section 3, so called “non-standard inferences” such as approximation, matching,
unification and computing least common subsumers could also be important in
ontology design. Non-standard inferences are the subject of ongoing research [4,
10, 38, 9], but it is not clear if they can be extended to deal with languages as
expressive as DAML+OIL.

7 Summary

Description Logics are a family of class based knowledge representation for-
malisms characterised by the use of various constructors to build complex classes
11 SHF is equivalent to SHIQ without inverse properties and with only functional

properties instead of qualified number restrictions [32].



from simpler ones, and by an emphasis on the provision of sound, complete and
(empirically) tractable reasoning services. They have been used in a wide range
of applications, but perhaps most notably (at least in recent times) in providing a
formal basis and reasoning support for ontology languages such as DAML+OIL.

DAML+OIL can be seen as a very expressive DL with an XML/RDF syntax.
One of the key advantages of basing the language on a DL is that it is possible
to provide reasoning services, both to support ontology design and to make
DAML+OIL described Web resources more accessible to automated processes.
This combination of features has proved very popular: DAML+OIL is already
being widely used, and some major efforts are committed to encoding their
ontologies in the language. This has been particularly evident in the bio-ontology
domain, where the Bio-Ontology Consortium has specified DAML+OIL as their
ontology exchange language, and the Gene Ontology [50] is being migrated to
DAML+OIL in a project partially funded by GlaxoSmithKline Pharmaceuticals
in cooperation with the Gene Ontology Consortium.12

What of the future? The development of the semantic Web, and of Web
ontology languages, presents many opportunities and challenges. Even for less
expressive languages, acceptable performance can only be achieved by using a
wide range of optimisation techniques. A “practical” (satisfiability/subsumption)
algorithm for the full DAML+OIL language has yet to be developed, and it is
not yet clear that sound and complete reasoners will be able to provide adequate
performance for typical Web applications. Finding answers to these questions is
the subject of ongoing research.
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9. S. Brandt, R. Küsters, and A.-Y. Turhan. Approximation and difference in descrip-
tion logics. In Proc. of the 8th Int. Conf. on Principles of Knowledge Representation
and Reasoning (KR’2002), pages 203–214, 2002.

10. S. Brandt and A.-Y. Turhan. Using non-standard inferences in description logics —
what does it buy me? In Proc. of KI-2001 Workshop on Applications of Description
Logics (KIDLWS’01), volume 44 of CEUR (http://ceur-ws.org/), 2001.

11. P. Bresciani, E. Franconi, and S. Tessaris. Implementing and testing expressive
description logics: Preliminary report. In Proc. of the 1995 Description Logic
Workshop (DL’95), pages 131–139, 1995.

12. D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query
containment under constraints. In Proc. of the 17th ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems (PODS’98), pages 149–158,
1998.

13. D. Calvanese, G. De Giacomo, and M. Lenzerini. Answering queries using views
in description logics. In Proc. of the 1999 Description Logic Workshop (DL’99),
pages 9–13. CEUR Electronic Workshop Proceedings, http://ceur-ws.org/Vol-22/,
1999.

14. D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Description
logic framework for information integration. In Proc. of the 6th Int. Conf. on
Principles of Knowledge Representation and Reasoning (KR’98), pages 2–13, 1998.

15. D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Information
integration: Conceptual modeling and reasoning support. In Proc. of the 6th Int.
Conf. on Cooperative Information Systems (CoopIS’98), pages 280–291, 1998.

16. S. Decker, F. van Harmelen, J. Broekstra, M. Erdmann, D. Fensel, I. Horrocks,
M. Klein, and S. Melnik. The semantic web: The roles of XML and RDF. IEEE
Internet Computing, 4(5), 2000.

17. F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept
languages. In J. Allen, R. Fikes, and E. Sandewall, editors, Proc. of the 2nd
Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR’91),
pages 151–162. Morgan Kaufmann, Los Altos, 1991.

18. F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept
languages. Information and Computation, 134:1–58, 1997.

19. D. Fensel, I. Horrocks, F. van Harmelen, S. Decker, M. Erdmann, and M. Klein.
OIL in a nutshell. In R. Dieng, editor, Proc. of the 12th European Workshop on
Knowledge Acquisition, Modeling, and Management (EKAW’00), number 1937 in
Lecture Notes in Artificial Intelligence, pages 1–16. Springer-Verlag, 2000.

20. D. Fensel, F. van Harmelen, I. Horrocks, D. L. McGuinness, and P. F. Patel-
Schneider. OIL: An ontology infrastructure for the semantic web. IEEE Intelligent
Systems, 16(2):38–45, 2001.
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