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Abstract. Recent research has shown that RDF Schema, as a schema layer Semantic Web language,
has a non-standard metamodeling architecture. As a result, it is difficult to understand and lacks
clear semantics. This paper1 proposes RDFS(FA) (RDFS with Fixed metamodeling Architecture) and
demonstrates how the problems of RDF Schema can be solved under RDFS(FA). Based on the fixed
metamodeling architecture, a clear model-theoretic semantics of RDFS(FA) is given. Interestingly,
RDFS(FA) also benefits DAML+OIL by offering a firm semantic basis and by solving the “layer mis-
take” problem.

1 Introduction

The Semantic Web, with its vision stated by Berners-lee [1], aims at developing languages for express-
ing information in a machine understandable form. The recent explosion of interest in the World Wide
Web has also fuelled interest in ontologies. It has been predicted (Broekstra et al. [3]) that ontologies
will play a pivotal role in the Semantic Web since ontologies can provide shared domain models, which
are understandable to both human being and machines.

Ontology (Uschold and Gruninger [21]) is, in general, a representation of a shared conceptuali-
sation of a specific domain. It provides a shared and common understanding of a domain that can be
communicated between people and heterogeneous and distributed application systems. An ontology
necessarily entails or embodies some sort of world view with respect to a given domain. The world
view is usually conceived as a hierarchical description of important concepts (is-a hierarchy), a set of
crucial properties, and their inter-relationships.

Berners-lee [1] outlined the architecture of Semantic Web. We would like to call it a functional
architecture because the expressive primitives are incrementally introduced from languages in the
lowest layer (i.e. metadata layer) to those in the higher layer (e.g. logical layer), so that the languages
in each layer can satisfy the requirements of different kinds (or levels) of applications:

1. In the metadata layer, a simple and general model of semantic assertions of the Web is introduced.
The simple model contains just the concepts of resource and property, which are used to express the
meta information and will be needed by languages in the upper layers. The Resource Description
Framework (RDF) (Lassila and R.Swick [14]) is believed to be the general model in metadata
layer.

1Also available at http://img.cs.man.ac.uk/jpan/Zhilin/download/Paper/Pan-Horrocks-rdfsfa-2001.pdf



2. In the schema layer, simple Web ontology languages are introduced, which will define a hierarchi-
cal description of concepts (is-a hierarchy) and properties. These languages use the general model
in metadata layer to define the basic metamodeling architecture of Web ontology languages. RDF
Schema (RDFS) (Brickley and Guha [2]) is a candidate schema layer language.

3. In the logical layer, more powerful Web ontology languages are introduced. These languages are
based on the basic metamodeling architecture defined in schema layer, and defines a much richer set
of modelling primitives that can e.g. be mapped to very expressive Description Logics (Horrocks
et al. [11], Horrocks [10]) to supply reasoning services for the Semantic Web. OIL (Horocks et al.
[9]) and DAML+OIL (van Harmelen et al. [23]) are well known logical layer languages.

This paper will focus on the metamodeling architecture other than the functional architecture. We
should point out that “metamodeling” and the “metadata layer” in the functional architecture are not the
same. Metadata means data about data. Metamodeling concerns the definition of the modelling prim-
itives (vocabulary) used in a modelling language. Many software engineering modelling languages,
including UML, are based on metamodels. Among the Semantic Web languages, the schema layer
languages are responsible to build the metamodeling architecture.

In this paper, we argue that RDFS, as a schema layer language, has a non-standard and non-fixed
layer metamodeling architecture, which makes some elements in the model have dual roles in the
RDFS specification (Nejdl et al. [17]). Therefore, it makes the RDFS specification itself quite difficult
to understand by the modellers. The even worse thing is that since the logical layer languages (e.g.
OIL, DAML+OIL) are all based on the metamodeling architecture defined by schema layer languages
(RDFS), these languages therefore have the similar problems, e.g. the “layer mistake” discussed in
Section 2.3.

We propose RDFS(FA) (RDFS with Fixed metamodeling Architecture), which has a metamodeling
architecture similar to that of UML. We analyse the problems of the non-fixed metamodeling architec-
ture of RDFS and demonstrate how these problems can be solved under RDFS(FA). Furthermore, We
give a clear model theoretic semantics to RDFS(FA).

The rest of the paper is organized as follows. In Section 2 we explain the data model of RDF, RDFS
and DAML+OIL, the languages belonging to the metadata level, schema level and logical level of the
Semantic Web Architecture respectively. We will focus on the metamodeling architecture of RDFS
and locate what the problems are and where they come from. In Section 3 we discuss the advantages
and disadvantages of fixed and non-fixed layer metamodeling architecture and then briefly explain the
metamodeling architecture of UML. In Section 4 we propose RDFS(FA), and give a clear semantics
to RDFS(FA). We also demonstrate how the “layer mistake” problem with DAML+OIL is solved in
RDFS(FA). Section 5 briefly discuss the advantages of RDFS(FA) and our attitudes on how to make
use of UML in the Web ontology languages.

2 Current Data Models of Semantic Web Languages

2.1 RDF Data Model

As a Semantic Web language in the metadata layer of the functional architecture, RDF is a founda-
tion for processing metadata. It provides interoperability between applications that exchange machine-
understandable information on the Web. The foundation of RDF is a model for representing named
properties and property values. The RDF data model provides an abstract, conceptual framework for
defining and using metadata. The basic data model consists of three object types:

Resources: All things being described by RDF expressions are called resources. A resource may be
an entire Web page, a part of a Web page, a whole collection of pages (Web site); or an object that
is not directly accessible via the Web, e.g. a printed book. Resources are always named by URIs.



Properties: A property is a specific aspect, characteristic, attribute, or relation used to describe a
resource.

Statements: A specific resource together with a named property plus the value of that property for
that resource is an RDF statement.

http://img.cs.man.ac.uk/jpan/Zhilin

Home Page of Jeff Z. Pan

Creator

Homepage
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http://img.cs.man.ac.uk/memberlist#jpan

Figure 1: An Example of RDF in a Directed Labeled Graph

In a nutshell, the RDF data model is an object-property-value mechanism. The metadata infor-
mation is introduced by a set of statements in RDF. There are several ways to express RDF state-
ments. First, we can use the binary predicate form Property(object,value), e.g. Title(‘http://img.
cs.man.ac.uk/jpan/Zhilin’, “Home Page of Jeff Z. Pan”). Secondly, we can diagram an
RDF statement pictorially using directed labeled graphs: ‘[object ]-Property->[value]’ (see Figure 1).
Thirdly, RDF uses an Extensible Markup Language (XML) encoding as its interchange syntax:

<rdf:Description rdf:ID="http://img.cs.man.ac.uk/jpan/Zhilin">

<Title>Home Page of Jeff Z. Pan</Title>

</rdf:Description>

The RDF data model is so called “property-centric”. We can use the “about” attribute to add more
properties to the existing resource. Generally speaking, with the object-property-value mechanism,
RDF can be used to express:

• attributes of resources: in this case, the ‘value’ is a literal (e.g the “Title” property above);

• relationships between any two resources: in this case, the ‘value’ is a resource, and the involved
properties represent different roles of the two resources with this relationship; in the following ex-
ample, there exists a “creator-homepage” relationship between “http://img.cs.man.ac.uk/jpan/Zhilin”
and “http://img.cs.man.ac.uk/memberlist#jpan” (see also Figure 1):

<rdf:Description rdf:ID="http://img.cs.man.ac.uk/memberlist#jpan">

<Homepage rdf:resource="http://img.cs.man.ac.uk/jpan/Zhilin"/>

</rdf:Description>

<rdf:Description about="http://img.cs.man.ac.uk/jpan/Zhilin">

<Creator rdf:resource="http://img.cs.man.ac.uk/memberlist#jpan"/>

</rdf:Description>

• weak type of resources: the ‘type’ is weak because RDF itself has no standard way to define a
Class, so the type here is regarded only as a special attribute; for example,

<rdf:Description about="http://img.cs.man.ac.uk/memberlist#jpan">

<rdf:type rdf:resource="#Person"/>

</rdf:Description>

• statement about statement: RDF can be used for making statements about other RDF statements,
which are referred to as higher-order statements. This feature of RDF has yet to be clearly defined
and is beyond the scope of this paper.



2.2 RDF Schema Data Model

As we have seen, on the one hand, RDF data model is enough for defining and using metadata. On the
other hand, the modelling primitives offered by RDF are very basic. Although you can define “Class”
and “subClassOf” as resources in RDF (no one can stop you doing that), RDF provides no standard
mechanisms for declaring classes and (global) properties, nor does it provide any mechanisms for
defining the relationships between properties or between classes. That is the role of RDFS–a Semantic
Web language in the schema layer.

RDFS is expressed by using RDF data model. It extends RDF by giving an externally specified
semantics to specific resources. In RDFS, rdfs:Class is used to define concepts, i.e. every class must
be an instance of rdfs:Class. Resources that are described by RDF expressions are viewed to be in-
stances of the class rdfs:Resource. The class rdf:Property is the class of all properties used to char-
acterise instances rdfs:Resource. The rdfs:ConstraintResource defines the class of all constraints. The
rdfs:ConstraintProperty is a subset of rdfs:ConstraintResource and rdf:Property, all of its instances
are properties used to specify constraints, e.g. rdfs:domain and rdfs:range. For example, the following
RDFS expressions

<rdfs:Class rdf:ID="Animal">

<rdfs:comment>This class of animals is illustrative of a number of

ontological idioms.</rdfs:comment>

</rdfs:Class>

<rdfs:Class rdf:ID="Person">

<rdfs:subClassOf rdf:resource="#Animal"/>

</rdfs:Class>

<rdf:Description rdf:ID="John">

<rdf:type rdf:resource="#Person"/>

<rdfs:comment>John is a person.</rdfs:comment>

</rdf:Description>

<rdf:Description rdf:ID="Mary">

<rdf:type rdf:resource="#Person"/>

<rdfs:comment>Mary is a person.</rdfs:comment>

</rdf:Description>

define the classes “Animal” and “Person”, with the latter being the subclass of the former, and two
individuals “John” and “Mary”, which are instances of the class “Person”. Individual “John” can also
be defined in this way,

<Person rdf:ID="John">

<rdfs:comment>John is a person.</rdfs:comment>

</Person>

which is an implicit way to define rdf:type property. Note that here “Person” is a class.
Figure 2 pictures the subclass-of and instance-of hierarchy of RDFS: rdfs:Resource, rdfs:Class,

rdf:Property, rdfs:ConstraintResource and rdfs:ConstraintProperty are all instances of rdfs:Class, while
rdfs:Class, rdf:Property and rdfs:ConstraintResource are subclass of rdfs:Resource. It is confusing that
rdfs:Class is a sub-class of rdfs:Resource, while rdfs:Resource itself is an instance of rdfs:Class at the
same time. It is also strange that rdfs:Class is an instance of itself.

In RDFS, all properties are instances of rdf:Property. The rdf:type property models instance-of
relationships between resources and classes. The rdfs:subClassOf property models the subsumption
hierarchy between classes, and is transitive. The rdfs:subPropertyOf property models the subsumption
hierarchy between properties, and is also transitive. The rdfs:domain and rdfs:range properties are used
to restrict domain and range properties. For example, the following RDFS expressions

<rdf:Property rdf:ID="hasFriend">
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Figure 2: Directed Labeled Graph of RDF Schema
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Figure 3: A “Person–hasFriend” Example of RDF Schema

<rdfs:domain rdf:resource="#Person"/>

<rdfs:range rdf:resource="#Person"/>

</rdf:Property>

<rdf:Description about="#John">

<hasFriend rdf:resource="#Mary"/>

</rdf:Description>

define a property “hasFriend” between two “Person”s and 〈‘John’, ‘Mary’〉 is an instance of “has-
Friend” (see Figure 3).

In RDFS, properties are regarded as sets of binary relationships between instances of classes, e.g.
a property “hasFriend” is a set of binary tuples between two instances of the class “Person”. One
exception is the rdf:type, since it is just the instance-of relationship. In this sense, rdf:type is regarded
as a special predefined property.

Figure 2 also shows the range and domain constraints in RDFS–rdfs:domain and rdfs:range can
be used to specify the two classes that a certain property can associate with. So the rdfs:domain of
rdfs:domain and rdfs:range is the class rdf:Property, the rdfs:range of rdfs:domain and rdfs:range is
the class rdfs:Class. The rdfs:domain and rdfs:range of rdfs:subClassOf is rdfs:Class. The rdfs:domain
and rdfs:range of rdfs:subPropertyOf is rdf:Property. The rdfs:range of rdf:type is the class rdfs:Class.
The rdf:type property is regarded as a set of binary links between instances and classes (as mentioned
above), while the value of the rdfs:domain property should be a class, therefore rdf:type does not have
the rdfs:domain property (cf. Brickley and Guha [2]).

As we have seen, RDFS use some primitive modelling primitives to define other modelling prim-



itives (e.g. rdf:type, rdfs:domain, rdfs:range, rdf:type and rdfs:subClassOf). At the same time, these
primitives can be used to define ontologies as well, which makes it rather unique when compared to
conventional model and metamodeling approaches, and makes the RDFS specification very difficult to
read and to formalise (Nejdl et al. [17], Broekstra et al. [3]). For example, in Figure 3, it is confusing
that although rdfs:Class is the rdf:type of “Animal”, both “Animal” and rdfs:Class are rdfs:subClassOf
rdfs:Resource, where rdfs:Class is a modelling primitive and “Animal” is an user-defined ontology
class.

2.3 DAML+OIL Data Model

DAML+OIL is an expressive Web ontology language in the logical layer. It builds on earlier W3C
standards such as RDF and RDFS, and extends these languages with much richer modelling primitives.
DAML+OIL inherits many aspects from OIL, and provides modelling primitives commonly found in
frame-based languages. It has a clean and well defined semantics based on description logics.

A complete description of the data model of DAML+OIL is beyond the scope of this paper.
However, we will illustrate how DAML+OIL extends RDFS by introducing some new subclasses
of rdfs:Class and rdf:Property. One of the most important classes that DAML+OIL introduces is
daml:Datatype. DAML+OIL divides the universe into two disjoint parts, the object domain and the
datatype domain. The object domain consist of objects that are members of classes described in
DAML+OIL. The datatype domain consists of the values that belong to XML Schema datatypes. Both
daml:Class (object class) and daml:Datatype are rdfs:subClassOf rdfs:Class. Accordingly, properties
in DAML+OIL should be either object properties, which relate objects to objects and are instances of
daml:ObjectProperty; or datatype property, which relate objects to datatype values and are instances of
daml:Datatype- Property. Both daml:ObjectProperty and daml:DatatypeProperty are rdfs:subClassOf
rdf:Pro- perty. For example, we can define a datatype property called “birthday”:

<daml:DatatypeProperty rdf:ID="birthday">

<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProp-

erty"/>

<rdfs:domain rdf:resource="#Animal"/>

<rdfs:range rdf:resource="http://www.w3.org/2000/10/XMLSchema#date"/>

</daml:DatatypeProperty>

Besides being an instance of daml:DatatypeProperty, the “birthday” property is also an instance of
daml:UniqueProperty, which means that “birthday” can only have one (unique) value for each instance
of the “Animal” class. In fact, daml:UniqueProperty is so useful that some people even want to use it
to refine DAML+OIL predefined properties, e.g. daml:maxCardinality:

<rdf:Property rdf:about="#maxCardinality">

<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProp-

erty"/>

</rdf:Property>

This statement seems obviously right, however, it is wrong because the semantics of daml:UniqueProp-
erty requires that only the ontology properties can be regarded as its instances (cf. van Harmelen et al.
[22]). This is the so called “layer mistake”. The reason that people can easily make the above “layer
mistake” lies in the fact that the schema layer language RDFS doesn’t distinguish the modelling in-
formation in the ontology level and that in the language level. Another example is what we had men-
tioned before in Figure 3, it is not appropriate that both rdfs:Class and “Animal” are rdfs:subClassOf
rdfs:Resource.

It is the existence of the dual roles of some RDFS modelling elements, e.g. rdfs:subClassOf, that
makes RDFS have unclear semantics. This partially explains why Brickley and Guha [2] didn’t define
the semantics of RDFS. We should stress that DAML+OIL is built on top of the syntax of RDFS, but



not the semantics of RDFS. On the contrary, RDFS relies on DAML+OIL to give semantics to its
modelling primitives. In other words, DAML+OIL not only defines the semantics of its newly intro-
duced modelling primitives, e.g. daml:UniqueProperty, daml:maxCardinality etc., but also the mod-
elling primitives of RDFS, e.g. rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain, rdfs:range etc (van
Harmelen et al. [22]). This breaks the dependency between logical layer languages and schema layer
languages and indicates that RDFS is not yet a fully qualified schema layer Semantic Web language.

3 Fixed or Non-fixed Metamodeling Architecture?

3.1 The Advantages and Disadvantages of Non-fixed Metamodeling Architecture

The dual roles of some RDFS modelling elements indicate that something might be wrong with the
metamodeling architecture of RDFS. The RDFS has a non-fixed metamodeling architecture, which
means that it can have possibly infinite layers of classes. The advantage is that it makes itself compact.
However, it has at least the following three disadvantages or problems:

1. The class rdfs:Class is an instance of itself. Usually, a class is regarded as a set, and an instance of
the class is a member of the set. A Class of classes can be interpreted as a set of sets, which means
its members are sets. In RDFS, all classes (including rdfs:Class) are instances of rdfs:Class, which
is suspicious by close to Russell paradox. The paradox arises when considering the set of all sets
that are not members of themselves. Such a set appears to be a member of itself if and only if it is
not a member of itself, hence the paradox.

2. The class rdfs:Resource is a superclass and instance of rdfs:Class at the same time, which means
that the super set (rdfs:Resource) is a member of the subset (rdfs:Class).

3. The properties rdfs:subClassOf, rdf:type, rdfs:range and rdfs:domain are used to define both the
other RDFS modelling primitives and the ontology, which makes their semantics unclear and
makes it very difficult to formalise RDFS. E.g. it is not clear that the semantic of rdfs:subClassOf
is a set of binary relationships between two sets of objects or a set of binary relationships between
two sets of sets of objects, or else.

As a result, RDFS has no clear semantics, it even rely on DAML+OIL to give itself semantics,
which makes RDFS a not so satisfactory schema layer semantic Web language.

3.2 The Advantages and Disadvantages of Fixed Metamodeling Architecture

We can demonstrate the advantages of fixed metamodeling architecture by showing how the problems
of RDF Schema mentioned in Section 3.1 are solved under the fixed metamodeling architecture.

The reason that problem 1 exists is that RDFS uses a single primitive rdfs:Class to implicitly
represent possibly infinite layers of classes. But do we really need infinite layers of classes? In practice,
rdfs:Class usually acts as a modelling primitive in the ontology language and is used to define ontology
classes (e.g. “Person”). One reasonable solution is to explicitly specify a certain number of layers of
class primitives, with one being an instance of another, and the class primitives in the top layer having
no type at all, which means that it is not an instance of anything. It isn’t because it can’t have a type,
but because it doesn’t have to have a type. From the pragmatic point of view, we are only interested
in the several layers on the ground and it is very important that the modelling primitives in these
layers have clear semantics. This is the main difference between the fixed and non-fixed metamodeling
architecture.

So how many class primitives do we really need? Problem 2 indicates that we need at least two
class primitives in different metamodeling layers — one as the type of rdfs:Resource, the other as a
subclass of rdfs:Resource. In fact, in the four-layer metamodeling architecture of UML, there exist two



class primitives in different metamodeling layers, which are Class in metamodel layer and MetaClass
in meta-metamodel layer (see Section 3.3). In practice, it has not been found useful to have more than
two class primitives in the metamodeling architecture (technology Inc. [20, pg. 298]). Therefore, it is
reasonable to explicitly define two class primitives in different metamodeling layers of RDF Schema,
one is MClass in Metalanguage Layer and the other is LClass in Ontology Language Layer2 (see
Section 4.1). This makes RDFS have a similar metamodeling architecture to that of the well known
UML, so that it is easy for the modellers to understand.

Problem 3 is mainly about predefined properties. It can be solved by specifying which level of
class we intend to refer to when we use these predefined properties. (see Section 4.1).

From the discussion above, we believe that although the schema layer language won’t be as com-
pact as it is, there will be several advantages if it has a fixed metamodeling architecture:

1. We don’t have to worry about Russell’s Paradox.

2. It has clear formalised semantics.

3. DAML+OIL and other logical layer Semantic Web languages can be built on top of both the syntax
and semantics of the RDFS with fixed metamodeling architecture.

4. It is similar to the metamodeling architecture of UML, easy to understand and use.

3.3 UML Metamodeling Architecture

The Unified Modelling Language (OMG [18]) is a general-purpose visual modelling language that
is designed to specify, visualise, construct and document the artifacts of a software system. It is a
standard object-oriented design language that has gained virtually global acceptance. UML has a four-
layer metamodeling architecture.

1) The Meta-metamodel Layer forms the foundation for the metamodeling architecture. The primary
responsibility of this layer is to define the language for specifying a metamodel. A meta-metamodel
can define multiple metamodels, and there can be multiple meta-metamodels associated with each
metamodel. Examples of meta-objects in the metamodeling layer are: MetaClass, MetaAttribute.

2) A Metamodel is an instance of a Meta-metamodel. The primary responsibility of the Metamodel
layer is to define a language for specifying models. Examples of meta-objects in the metamodeling
layer are: Class, Attribute.

3) A Model is an instance of a Metamodel. The primary responsibility of the Model Layer is to define
a language that describes an information domain. Examples in Model layer are class “Person” and
property “hasFriend”.

4) User Objects are an instance of a Model. The primary responsibility of the User Objects Layer is
to describe a specific information domain. Examples in User Objects Layer are “John”, “Mary”
and 〈‘John’, ’Mary’〉.

The four-layer metamodel architecture is a proven methodology for defining the structure of com-
plex models that need to be reliably stored, shared, manipulated and exchanged (Kobryn [13]). In the
next section, we will use the metamodeling methods of UML to build a fixed layer metamodeling
architecture for RDFS.

2In this sense, there are three kinds of classes: meta classes in the Metalanguage Layer, language classes in the Language
Layer and ontology classes, which are instance of LClass, in Ontology Layer.



4 Web Ontology Language Data Model with Fixed Metamodeling Architecture

We will now illustrate what the data model of an RDF-based Web ontology language will look like
under the fixed metamodeling architecture.

4.1 RDF Schema Data Model with Fixed Metamodeling Architecture

Firstly, we will map the original RDFS into RDFS with Fixed metamodeling Architecture (or RDFS(FA)
for short). One principle during this mapping is that we try to minimise the changes we make to RDFS.

As we discussed in Section 3.2, we believe it is reasonable to define a four-layer metamodeling
architecture for RDFS(FA). These four metamodeling layers are:

1. The Metalanguage Layer (M Layer, corresponding to the Meta-metamodel Layer in UML) forms
the foundation for the metamodeling architecture. Its primary responsibility is to define the lan-
guage layer. All the modelling primitives in this layer have no types (see Section 3.2). Examples
of modelling primitives in this layer are rdfsfa:MClass and rdfsfa:MProperty.

2. The Language Layer (L Layer, corresponding to the Metamodel Layer in UML), or Ontology Lan-
guage Layer, is an instance of the Metalanguage Layer. Its primary responsibility is to define a lan-
guage for specifying ontologies. Examples of modelling primitives in this layer are rdfsfa:LClass,
rdfsfa:LProperty. Both of them are instances of rdfsfa:MClass.

3. The Ontology Layer (O Layer, corresponding to the Model Layer in UML) is an instance of Lan-
guage Layer. Its primary responsibility is to define a language that describes a specific domain,
i.e. an ontology. Examples of modelling primitives in this layer are “Person” and “Car”, which are
instances of rdfsfa:LClass, and “hasFriend”, which is an instance of rdfsfa:LProperty.

4. The Instance Layer (I Layer, corresponding to the User Objects Layer in UML) is an instance
of Ontology Layer. Its primary responsibility is to describe a specific domain, in terms of the
ontology defined in the Ontology Layer. Examples in this layer are “Mary”, “John” and hasFriend〈
‘John’,‘Mary’〉.

RDFS(FA) is illustrated in Figure 4. We map the modelling primitives of RDFS to the primitives
in corresponding metamodeling layers of RDFS(FA), so that no modelling primitives will have dual
roles in the metamodeling architecture of RDFS(FA).

First, we map rdfs:Class and its instance primitives in RDFS to the metamodeling architecture of
RDFS(FA) as follows:

1. rdfs:Class is mapped to rdfsfa:MClass in Metalanguage Layer and rdfsfa:LClass in Language
Layer, so that rdfsfa:LClass is an instance of rdfsfa:MClass.

<rdf:Description rdf:ID="MClass">

<rdfs:comment>The concept of class in the Metalanguage Layer.

</rdfs:comment>

<rdfsfa:msubClassOf rdf:resource="#MResource"/>

</rdf:Description>

<rdfsfa:MClass rdf:ID="LClass">

<rdfs:comment>The concept of class in the Language Layer.</rdfs:comment>

<rdfsfa:lsubClassOf rdf:resource="#LResource"/>

</rdfsfa:MClass>

2. rdfs:Resource is mapped to rdfsfa:MResource in the Metalanguage Layer and rdfsfa:LResource in
Language Layer, so that rdfsfa:MResource is the super class of all the modelling primitives in the
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Metalanguage Layer, while rdfsfa:LResource is an instance of rdfsfa:MClass and the superclass of
rdfsfa:LClass.

<rdf:Description rdf:ID="MResource">

<rdfs:comment>The most general resource in the Metalanguage Layer.

</rdfs:comment>

</rdf:Description>

<rdfsfa:MClass rdf:ID="LResource">

<rdfs:comment>The most general resource in the Language Layer.

</rdfs:comment>

</rdfsfa:MClass>

3. The rdfs:Property is mapped to rdfsfa:MProperty in the Metalanguage Layer and rdfsfa:LProperty
in the Language Layer.

<rdf:Description rdf:ID="MProperty">

<rdfs:comment>The concept of property in the Metalanguage Layer.

</rdfs:comment>

<rdfsfa:msubClassOf rdf:resource="#MResource"/>

</rdf:Description>

<rdfsfa:MClass rdf:ID="LProperty">

<rdfs:comment>The concept of property in the Language Layer.

</rdfs:comment>

<rdfsfa:lsubClassOf rdf:resource="#LResource"/>

</rdfsfa:MClass>

4. The rdfs:ConstraintResource is in the Metalanguage Layer, where it is rdfsfa:msubClassOf rdfsfa:
MResource.

<rdf:Description rdf:ID="ConstraintResource">



<rdfsfa:msubClassOf rdf:resource="#MResource"/>

</rdf:Description>

5. The rdfs:ConstraintProperty is in the Metalanguage Layer, where it is rdfsfa:msubClassOf rdfsfa:
MProperty and rdfs:ConstraintResource.

<rdf:Description rdf:ID="ConstraintProperty">

<rdfsfa:msubClassOf rdf:resource="#MProperty"/>

<rdfsfa:msubClassOf rdf:resource="#ConstraintResource"/>

</rdf:Description>

As shown in Figure 4, modelling primitives are divided into three groups in the Metalanguage
Layer, Language Layer and Ontology Layer. rdfsfa:LClass is not an instance of itself, but an instance
of rdfsfa:MClass. rdfsfa:LResource is an instance of rdfsfa:MClass and a super class of rdfsfa:LClass.
In general, there are three kinds of “classes” in the metamodeling architecture of RDFS(FA)3: meta
classes in the Metalanguage Layer (e.g. rdfsfa:MClass, rdfsfa:MProperty), language classes in the
Language Layer (instances of rdfsfa:MClass, e.g. rdfsfa:LClass, rdfsfa:LProperty) and ontology class
in the Ontology Layer (instance of rdfsfa:LClass, e.g. “Person”, “Car”).

In order to solve problem 3 mentioned in Section 3.1, we need to be able to specify which kind of
class (out of the three kinds of “classes” mentioned above) we want to refer to. In RDFS(FA), we add
the layer prefix (e.g. m- for Metalanguage Layer, l- for Language Layer etc.) on the properties when
we use the predefined property primitives. Based on the above principle, we can map the property
primitives in RDFS to the metamodeling architecture of RDFS(FA) as follows:

1. rdfs:domain is a set of binary relationships between instances of rdf:Property and rdfs:Class. As
classes and properties occur in three different layers of RDFS(FA), rdfs:domain is mapped to three
different properties in RDFS(FA): rdfsfa:odomain, rdfsfa:ldomain and rdfsfa:mdomain. As shown
in Figure 4, the rdfsfa:ldomain is defined in the Metalanguage Layer and used in the Language
Layer, while rdfsfa:odomain is defined in the Language Layer and used in the Ontology Layer (see
Figure 5).

<rdfs:ConstraintProperty rdf:ID="odomain">

<rdfs:comment>This is how we specify that all instances of a particular

ontology property describes instances of a particular ontology class.

</rdfs:comment>

</rdfs:ConstraintProperty>

<rdf:Description rdf:ID="ldomain">

<rdfs:comment>This is how we specify that all instances of a particular

language property describes instances of a particular language class.

</rdfs:comment>

</rdf:Description>

<rdf:Description rdf:ID="mdomain">

<rdfs:comment>This is how we specify that all instances of a particular

meta property describes instances of a particular meta class.

</rdfs:comment>

</rdf:Description>

2. Similarly, rdfs:range is mapped to rdfsfa:orange, rdfsfa:lrange and rdfsfa:mrange.

<rdfs:ConstraintProperty rdf:ID="orange">

<rdfs:comment>This is how we specify that all instances of a particular

ontology property have values that are instances of a particular ontolo-

gy class.</rdfs:comment>

3Accordingly, there are three kinds of “properties” as well.



</rdfs:ConstraintProperty>

<rdf:Description rdf:ID="lrange">

<rdfs:comment>This is how we specify the values of an instance of a

particular language property have values that are instances of a

particular language class. </rdfs:comment>

</rdf:Description>

<rdfsfa:MProperty rdf:ID="mrange">

<rdfs:comment>This is how we specify the values of an instance of a

particular meta property should be instances of a particular meta class.

</rdfs:comment>

</rdfsfa:MProperty>

3. rdf:type is a set of binary relationship between resource and rdfs:Class. As RDFS(FA) has meta
classes, language classes and ontology classes, rdf:type is mapped to rdfsfa:otype, rdfsfa:ltype
and rdfsfa:mtype. E.g. in Figure 4, rdfsfa:MClass is the rdfsfa:mtype of rdfsfa:LResource and
rdfsfa:LClass.

<rdfsfa:MProperty rdf:ID="otype">

<rdfs:comment>Indicates membership of an instance of rdfsfa:LClass

</rdfs:comment>

<rdfsfa:lrange rdf:resource="#LClass"/>

</rdfsfa:MProperty>

<rdf:Description rdf:ID="ltype">

<rdfs:comment>Indicates membership of rdfsfa:LClass or rdfsfa:LProperty

</rdfs:comment>

<rdfsfa:mrange rdf:resource="#MClass"/>

</rdf:Description>

<rdf:Description rdf:ID="mtype">

<rdfs:comment>Indicates membership of rdfsfa:MClass or rdfsfa:MProperty.

</rdfs:comment>

</rdf:Description>

4. rdfs:subClassOf is a set of binary relationship between two instances of rdfs:Class, so rdfs:subClassOf
is mapped to rdfsfa:osubClassOf and rdfsfa:lsubClassOf . E.g. in Figure 4, rdfsfa:LClass is an
rdfsfa:lsubClassOf rdfsfa:LResource and rdfsfa:MClass is an rdfsfa:msubClassOf rdfs:MResource.

<rdfsfa:MProperty rdf:ID="osubClassOf">

<rdfs:comment>Binary relationship between two ontology classes.

</rdfs:comment>

<rdfsfa:ldomain rdf:resource="#LClass"/>

<rdfsfa:lrange rdf:resource="#LClass"/>

</rdfsfa:MProperty>

<rdf:Description rdf:ID="lsubClassOf">

<rdfs:comment>Binary relationship between two language classes.

</rdfs:comment>

<rdfsfa:mdomain rdf:resource="#MClass"/>

<rdfsfa:mrange rdf:resource="#MClass"/>

</rdf:Description>

<rdf:Description rdf:ID="msubClassOf">

<rdfs:comment>Binary relationship between two meta classes.

</rdfs:comment>

</rdf:Description>



5. Similarly, rdfs:subPropertyOf is a set of binary relationships between instances of rdf:Property, so
it is mapped to rdfsfa:osubPropertyOf, rdfsfa:lsubPropertyOf and rdfsfa:msubPropertyOf .

<rdfsfa:MProperty rdf:ID="osubPropertyOf">

<rdfs:comment>Binary relationship between two ontology properties.

</rdfs:comment>

<rdfsfa:ldomain rdf:resource="#LProperty"/>

<rdfsfa:lrange rdf:resource="#LProperty"/>

</rdfsfa:MProperty>

<rdf:Description rdf:ID="lsubPropertyOf">

<rdfs:comment>Binary relationship between two language properties.

</rdfs:comment>

<rdfsfa:mdomain rdf:resource="#MProperty"/>

<rdfsfa:mrange rdf:resource="#MProperty"/>

</rdf:Description>

<rdf:Description rdf:ID="msubPropertyOf">

<rdfs:comment>Binary relationship between two meta properties.

</rdfs:comment>

</rdf:Description>

6. The rdfs:comment, rdfs:label, rdfs:seeAlso and rdfs:isDefinedBy are treated as documentation in
RDFS, and are not related to the semantics of RDFS(FA), so we are not going to discuss them in
this paper.

Below is an RDFS(FA) version of the “Person–hasFriend” example. As with other Web ontology
languages, these statements describe resources in the Ontology Layer and the Instance Layer.

<rdfsfa:LClass rdf:ID="Animal">

<rdfs:comment>This class of animals is illustrative of a number of

ontological idioms.</rdfs:comment>

</rdfsfa:LClass>

<rdfsfa:LClass rdf:ID="Person">

<rdfs:osubClassOf rdf:resource="#Animal"/>

</rdfsfa:LClass>

<rdfsfa:LProperty rdf:ID="hasFriend">

<rdfsfa:odomain rdf:resource="#Person"/>

<rdfsfa:orange rdf:resource="#Person"/>

</rdfsfa:LProperty>

<rdf:Description rdf:ID="John">

<rdfsfa:otype rdf:resource="#Person"/>

<rdfs:comment>John is a person.</rdfs:comment>

</rdf:Description>

<rdf:Description rdf:ID="Mary">

<rdfsfa:otype rdf:resource="#Person"/>

<rdfs:comment>Mary is a person.</rdfs:comment>

</rdf:Description>

<rdf:Description about="#John">

<hasFriend rdf:resource="#Mary"/>

</rdf:Description>

In the Ontology Layer, “Animal” and “Person” are ontology classes, so they are instances of rdfsfa:L-
Class. The ontology class “Person” is the rdfsfa:odomain and rdfsfa:orange of the property “has-
Friend”, so both the values of and resource described by instances of “hasFriend” are instances of
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Figure 5: A “Person–hasFriend” example in RDFS(FA)

“Person”. In the Instance Layer, the rdfsfa:otype of individuals such as “John” and “Mary” is the on-
tology class “Person”. Figure 5 is a directed labeled graph of the above RDFS(FA) statements. Here
the rdfsfa:mtype of rdfsfa:LClass is the meta class rdfsfa:MClass, the rdfsfa:ltype of “Person” is the
language class rdfsfa:LClass and the rdfsfa:otype of “John” is the ontology class “Person”. The lan-
guage class rdf:Property is rdfsfa:lsubClassOf the language class rdfs:Resource while the ontology
class “Person” is rdfsfa:osubClassOf the ontology class “Animal”. This example clearly shows that the
modelling primitives in RDFS(FA) no longer have dual roles. Thus a clear semantics can be given to
them.

Note that, as in RDFS (see Section2.2), we can define rdfsfa:otype, rdfsfa:ltype and rdfsfa:mtype
properties within RDFS(FA) in an implicit way as well. E.g., individual “John” can also be defined as

<Person rdf:ID="John">

<rdfs:comment>John is a person.</rdfs:comment>

</Person>

Here “Person” is an ontology class, so the above expressions use an implicit way to define rdfsfa:otype
property.

4.2 Data Model Semantics of RDFS(FA)

In this section, we use a Tarski style ([19]) model theoretic semantics to interpret the data model of
RDFS(FA). Classes and properties are taken to refer to sets of objects in the domain of interests and
sets of binary relationships (or tuples) between these objects.

In RDFS(FA), the meaning of individuals, pairs of individuals, ontology classes and properties is
given by an interpretation I, which is a pair(∆I , ·I), where ∆I is the domain (a set) and ·I is an
interpretation function, which maps every individual name x to an object in the domain ∆I :

xI ∈ ∆I

every pair of individual names x, y to a pair of objects in ∆I × ∆I :

〈xI , yI〉 ∈ ∆I × ∆I

every ontology class name OC to a subset of ∆I :

OCI ⊆ ∆I

every ontology property name OP to a subset of ∆I × ∆I :

OP I ⊆ ∆I × ∆I .



In the Language Layer, the interpretation function ·I maps rdfsfa:LClass (LC) to 2∆I

:

LCI = 2∆I

rdfsfa:LProperty (LP) to 2∆I
×∆I

:
LP I = 2∆I

×∆I

rdfsfa:LResource (LR) to LCI ∪ LP I :

LRI = LCI ∪ LP I

so that the interpretation of every possible ontology class (OCI) is an element of the interpretation of
rdfsfa:LClass (LCI), the interpretation of every possible ontology property (OPI) is an element of the
interpretation of rdf:Property (LPI). Note that LRI is interpreted as the union of LCI and LPI , and not
as 2∆I

∪(∆I
×∆I), so instances of rdfsfa:LResource must be either ontology classes (sets of objects),

or ontology properties (sets of tuples), and can’t be interpreted as a “mixture” of sets of objects and
tuples.

In the Metalanguage Layer, interpretation function ·I maps rdfsfa:MClass (MC) to 2LR
I

:

MCI = 2LR
I

rdfsfa:MProperty (MP) to 2LC
I
×LC

I

∪ 2LC
I
×LP

I

∪ 2LP
I
×LC

I

∪ 2LP
I
×LP

I

:

MP I = 2LC
I
×LC

I

∪ 2LC
I
×LP

I

∪ 2LP
I
×LC

I

∪ 2LP
I
×LP

I

rdfsfa:MResource (MR) to MCI ∪ MP I :

MRI = MCI ∪ MP I

Predefined Property Interpretation Semantic Constraint
osubClassOf (OSC) OSCI ⊆ LCI × LCI 〈CI

1 , CI

2 〉 ∈ OSCI iff. CI

1 , CI

2 ∈ LCI and CI

1 ⊆ CI

2

lsubClassOf (LSC) LSCI ⊆ MCI × MCI 〈CI

1 , CI

2 〉 ∈ LSCI iff. CI

1 , CI

2 ∈ MCI and CI

1 ⊆ CI

2

msubClassOf (MSC) MSCI ⊆ 2
MR

I

× 2
MR

I

〈CI

1 , CI

2 〉 ∈ MSCI iff. CI

1 , CI

2 ∈ 2
MR

I

and CI

1 ⊆ CI

2

osubPropertyOf (OSP) OSP I ⊆ LP I × LP I 〈P I

1 , P I

2 〉 ∈ OSP I iff. P I

1 , P I

2 ∈ LP I and P I

1 ⊆ P I

2

lsubPropertyOf (LSP) LSP I ⊆ MP I × MP I 〈P I

1 , P I

2 〉 ∈ LSP I iff. P I

1 , P I

2 ∈ MP I and P I

1 ⊆ P I

2

msubPropertyOf (MSP) MSP I ⊆ Φ × Φ 〈P I

1 , P I

2 〉 ∈ LSP I iff. P I

1 , P I

2 ∈ Φ and P I

1 ⊆ P I

2

odomain (OD) ODI ⊆ LP I × LCI 〈P I , CI〉 ∈ ODI iff. P I ∈ LP I , CI ∈ LCI and
∀x. 〈xI , yI〉 ∈ P I → xI ∈ CI

ldomain (LD) LDI ⊆ MP I × MCI 〈P I , CI〉 ∈ LDI iff. P I ∈ MP I , CI ∈ MCI and
∀x. 〈xI , yI〉 ∈ P I → xI ∈ CI

mdomain (MD) MDI ⊆ Φ × 2
MR

I 〈P I , CI〉 ∈ MDI iff. P I ∈ Φ, CI ∈ 2
MR

I

and
∀x. 〈xI , yI〉 ∈ P I → xI ∈ CI

orange (ORG) ORGI ⊆ LP I × LCI 〈P I , CI〉 ∈ ORGI iff. P I ∈ LP I , CI ∈ LCI and
∀x. 〈xI , yI〉 ∈ P I → xI ∈ CI

lrange (LRG) LRGI ⊆ MP I × MCI 〈P I , CI〉 ∈ LRGI iff. P I ∈ MP I , CI ∈ MCI and
∀x. 〈xI , yI〉 ∈ P I → xI ∈ CI

mrange (MRG) MRGI ⊆ Φ × 2
MR

I 〈P I , CI〉 ∈ MRGI iff. P I ∈ Φ, CI ∈ 2
MR

I

and
∀x. 〈xI , yI〉 ∈ P I → xI ∈ CI

otype (OT) OT I ⊆ ∆
I × LCI 〈xI , CI〉 ∈ OT I iff. xI ∈ ∆

I , CI ∈ LCI and xI ∈ CI

ltype (LT) LT I ⊆ LRI × MCI 〈RI , CI〉 ∈ LT I iff. RI ∈ LRI , CI ∈ MCI and xI ∈ CI

mtype (MT) MT I ⊆ MRI × 2
MR

I

〈RI , CI〉 ∈ MT I iff. RI ∈ MRI , CI ∈ 2
MR

I

and xI ∈ CI

Figure 6: Semantics of Predefined Properties in RDFS(FA)



rdfs:ConstraintResource (CR) to subset of MRI :

CRI ⊆ MRI

rdfs:ConstraintProperty (CP) to subset of both CRI and MP I :

CP I ⊆ CRI ∩ MP I

so that the interpretations of rdfsfa:LClass (LCI), rdfsfa:LProperty (LPI) and rdfsfa:LResource (LRI)
are all elements of the interpretation of rdfsfa:MClass (MCI), and all the possible pairs of subsets of
LCI and subsets of LPI are elements of MPI .

Unlike rdfs:Class in RDFS, classes in RDFS(FA) have clear semantics. Clean semantics can also
be given to the predefined properties of RDFS(FA) as shown in Figure 6, where

Φ = 2MC
I
×MC

I

∪ 2MC
I
×MP

I

∪ 2MP
I
×MC

I

∪ 2MP
I
×MP

I

As mentioned above, in order to specify which kind of class we want to refer to when we use the
predefined properties, we add the layer prefixes to these properties. Subclass-of and subproperty-of are
the subset relationship between the classes or properties within the same layer. Domain and range are
foundation modelling primitives of RDFS(FA) properties, which can be used to specify two classes
that a certain property can describe/use in descriptions in a certain layer. Type is a special cross-layer
property, which is used to link instances to classes.

4.3 DAML+OIL Data Model with Fixed Metamodeling Architecture

With a fixed metamodeling architecture, RDFS(FA) has its own semantics and makes itself a fully qual-
ified schema layer Semantic Web language. Thus, DAML+OIL (or any other logical layer Semantic
Web language) can be built on both its syntax and semantics.

From the point of view of metamodeling architecture, the modelling primitives that DAML+ OIL
introduces are mainly located in the Language Layer (a complete description of the DAML+OIL
data model with fixed metamodeling architecture will be given in a forthcoming paper). daml:Class
is rdfsfa:lsubClassOf rdfsfa:LClass and daml:ObjectProperty is rdfsfa:lsubClassOf rdfsfa:LProperty;
both daml:Datatype and daml:DatatypeProperty are rdfsfa:lsubClassOf rdfsfa:LResource. The above
four are disjoint with each other. The “birthday” property lies in the Ontology Layer and can be defined
in the following way:

<daml:DatatypeProperty rdf:ID="birthday">

<rdfsfa:ltype rdf:resource="http://www.daml.org/2001/03/daml+oil#Unique-

Property"/>

<damlfa:odatadomain rdf:resource="#Animal"/>

<damlfa:odatarange rdf:resource="http://www.w3.org/2000/10/XMLSchema#da-

te"/>

</daml:DatatypeProperty>

where damlfa:odatadomain is a set of binary relationships between instances of daml:DatatypeProperty
and daml:Class, and damlfa:odatarange is a set of binary relationships between instances of daml:Data-
typeProperty and daml:Datatype.

On the other hand, it is clear that Language Layer primitives can’t be used to define/modify other
Language Layer primitives, e.g. UniqueProperty can not be used to restrict the numbers of values of
the maxCardinality as follows:

<rdfsfa:MProperty rdf:about="#maxCardinality">

<rdfsfa:ltype rdf:resource="http://www.daml.org/2001/03/daml+oil#Unique-

Property"/>



</rdfsfa:MProperty>

In RDFS(FA), Language Layer properties can only be defined using Metalanguage Layer primitives,
for which DAML+OIL doesn’t provide any semantics. This is not clear in RDFS, where modellers
might be tempted to think that they can modify DAML+OIL in the above manner, exploiting the
semantics of DAML+OIL itself. To solve the above problem, one can define MUniqueProperty in the
Metalanguage Layer and then set daml:maxCardinality as its instance.

In short, RDFS(FA) not only provides a firm semantic basis for DAML+OIL, it also eradicates the
possibility of the “layer mistake” mentioned above.

5 Discussion

As we have seen, RDFS has at least the following problems:

1. Some elements of RDFS have dule roles, i.e. they have more than one semantics:

(a) rdfs:Class is the type of both language classes, e.g. rdfs:Resource, and ontology classes, e.g.
“Animal”;

(b) rdfs:Resource is the super-class of both language classes, e.g. rdfs:Class, and ontology classes,
e.g. “Animal”;

(c) rdfs:subClassOf is used to express the sub-class/super-class relationship between both lan-
guage classes, e.g. rdfs:Class is rdfs:subClassOf rdfs:Resource, and ontology classes. e.g.
“Person” is rdfs:subClassOf “Animal”.

2. Because of dule roles, RDFS doesn’t have its semantics. DALM+OIL is only built on top of the
syntax of RDFS. RDFS relies on DAML+OIL to give semantics to its modelling primitives. This
indicates that RDFS is not yet a fully qualified schema layer Semantic Web language.

3. The even worse thing is that since the logical layer languages, e.g. DAML+OIL, are built on top of
RDFS, affected by the dule roles problem of RDFS, people often make the “layer mistake” when
using DAML+OIL.

A fixed layer metamodeling architecture for RDFS is proposed in this paper. We demonstrate how
to map the original RDFS to RDFS(FA) (RDFS with Fixed metamodeling Architecture) and give
a clear model-theoretic semantics to RDFS(FA). We believe that although RDFS(FA) won’t be as
compact as RDFS, there will be several advantages if RDFS has a fixed metamodeling architecture:

1. We don’t have to worry about Russell’s Paradox. (Other ways of thinking may include non well-
founded sets.)

2. RDFS(FA) has a clear model theoretic semantics and there are no dule roles with its elements.
RDFS(FA) eradicates the possibility of the “layer mistake”.

3. DAML+OIL and other logical layer Semantic Web languages can be built on top of both the syntax
and semantics of RDFS(FA).

4. The metamodeling architecture of RDFS(FA) is similar to that of UML, so it is easy for people to
understand and use.

Some other papers have also talked about UML and the Web ontology language. Chang [4] sum-
marised the relationship between RDF-Schema and UML. Melnik [15] tried to make UML “RDF-
compatible”, which allows mixing and extending UML models and the language elements of UML
itself on the Web in an open manner. Cranefield and Purvis [7] investigated the use of UML and OCL
(Object Constraint Language) for the representation of information system ontologies. Cranefield [5]



proposed UML as a Web ontology language. Cranefield [6] described technology that facilitates the
application of object-oriented modelling, and UML in particular, to the Semantic Web. However, none
of these works address the problem of the metamodeling architecture of RDFS itself.

It is well known that UML has a well-defined metamodeling architecture (Kobryn [13]). It refines
the semantic constructs at each layer, provides an infrastructure for defining metamodel extensions,
and aligns the UML metamodel with other standards based on a four-layer metamodeling architecture,
such as the Case Data Interchange Format (EIA [8]), Meta Object Facility (MOF-Parners [16]) and
XMI Facility for model interchange (XMI-Parners [24]).

However, We believe Semantic Web languages and UML have different motivation and applica-
tion domain. Besides the metamodeling architecture, Semantic Web languages also have a functional
architecture. Within this functional architecture, RDF is a good candidate for the metadata layer lan-
guage, while UML is obviously not designed as a metadata language. The schema layer languages
must support global properties (anyone can say anything about anything) rather than the local ones,
while the considerations of UML mainly focus on the local properties. The modelling primitives of
logical layer languages, e.g. OIL and DAML+OIL, are carefully selected so that they can be mapped
onto very expressive description logics (DLs), so as to facilitate the provision of reasoning support; on
the UML side, reasoning over OCL is still under research.

Therefore, we prefer to enhance Web ontology languages by using the methodologies in UML,
rather than making UML a component in Web ontology languages. Accordingly, we have used the
metamodeling methods of UML to build a fixed layer metamodeling architecture for RDFS in this
paper. And a similar approach can be found in Kampman and van Harmelen [12]. Further research
will include a detailed study of the data model of DAML+OIL based on RDFS(FA) and the reasoning
support provided by corresponding Description Logics.
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