The Modelling We Do

Enrico Motta

Modelling
Primitives

Classes
Slots
Instances
Relations
Functions
Rules

AXIoms

Reasoning
Services

Query
Answering

(Ask)

Constraint
Checking
(Tell)

Class Modelling

"-l - Intensional vs Extensional Definitions

. Classes as ObjJects of Discourse

(def-class person)

(def-instance enrico person)

(def-class guideline-user-type () ?x
.iIff-def (or (subclass-of
?X generic-care-giver)
(= ?X patient)))

Constraints on Class Definitions

(def-class project (activity) ?x
((has-leading-organization :type organization)
(involves-organization :type organization :min-cardinality 1)
(has-project-leader :type person)
(has-project-member :type person :min-cardinality 1)
(funding-source :type organization)
(has-web-address :type URL)
(addresses-generic-area-of-interest :type generic-area-of-interest))

.constraint (and (forall ?y
(=> (has-leading-organization ?x ?y)
(involves-organization ?x ?y)))
(forall ?y
(=> (has-project-leader ?x ?y)
(has-project-member ?x ?y)))))

Relations (in addition to slots)

(def-relation PROJECT-INVOLVES-ORGANIZATION-UNIT (?p ?u)
"It is sufficient that somebody in unit ?u works in project ?p"
.constraint (and (project ?p)(organization-unit ?u))

:sufficient (and (project ?p)(organization-unit ?u)
(has-project-member ?p ?x)

(works-in-unit ?x ?u)))

Functions

\ (def-function filter (?I ?rel) -> ?sub-|

"Returns all the elements in ?I which
satisfy ?rel"

T :body (if (null ?I)
?l
(if (holds ?rel (first ?1))
(cons (first ?I)
(filter (rest ?1) ?rel))

(filter (rest ?1) ?rel))))

Holds

Holds (?rel ?argl.....?argn)
Iff

(?rel ?argl.....?argn)

Functions

| (def-function EXTENSION (?r) -> ?set
|

"The extension of a relation is the set of all tuples for which the
relation

e holds. This is a kind of operational definition, which retrieves
the set of all

tuples for which the relation is predicated in the current KB.
This function

IS restricted to defined relations only"
:constraint (defined-relation ?r)
:body (if (= (the-schema ?r) ?list)

(eval-setofall ?list (cons ?r ?list))))

Rules are also useful

~*Used for inferences (no constraint checking)
\ e Separate from ontological definitions
» Allow modular extensions of definitions

(def-rule rule-for-collaborating#1
((collaborates-or-collaborated-with ?pl ?p2)
1
(or (and (involved-in-projects ?pl ?project)
(or (has-project-leader ?project ?p2)
(has-project-member ?project ?p2)))
(and (or (technology ?d) (document ?d))
(has-author ?d ?pl)
(has-author ?d ?p2)))
(not (= ?pl ?p2))))))

AXIoms

Used for additional constraint checking

(def-axiom agrees-and-disagrees-are-mutually-inconsistent
(forall (?a ?y)
(not (exists (?x1 ?x2 ?z ?z2)
(and
(agrees ?x1 ?y ?z)
(disagrees ?x2 ?y ?z2)
(member ?a ?x1)
(member ?a ?x2))))))

Formulas as values

(def-class classification-task (goal-specification-task) ?task
((has-goal-expression

(:default-value
(kappa (?task ?sols)
(forall ?sol
(=> (member ?sol

(role-value ?task 'has-solutions))
(admissible-solution
?sol
(apply-match-criterion
(role-value ?task 'has-match-criterion)
(role-value ?task 'has-observables)
?sol)
(role-value ?task

‘has-solution-admissibility-criterion)))))))

Things we would also like to have

or |« Comprehensive meta-level
| — Clean way to annotate individual statements

i (def-relation criticises (?person ?statement)

- Mechanisms to define inference schemas
— E.g., new inheritance mechanisms for
different part-of relations

