
The Modelling We DoThe Modelling We Do

Enrico Motta

Modelling
Primitives
Classes
Slots
Instances
Relations
Functions
Rules
Axioms

Reasoning
Services
Query
Answering
(Ask)

Constraint
Checking
(Tell)

Class ModellingClass Modelling

• Intensional vs Extensional Definitions
• Classes as Objects of Discourse

(def-class person)

(def-instance enrico person)

(def-class guideline-user-type () ?x
:iff-def (or (subclass-of

?x generic-care-giver)
(= ?x patient)))

Constraints on Class DefinitionsConstraints on Class Definitions

(def-class project (activity) ?x
((has-leading-organization :type organization)
(involves-organization :type organization :min-cardinality 1)

(has-project-leader :type person)
(has-project-member :type person :min-cardinality 1)
(funding-source :type organization)
(has-web-address :type URL)
(addresses-generic-area-of-interest :type generic-area-of-interest))

:constraint (and (forall ?y
(=> (has-leading-organization ?x ?y)

(involves-organization ?x ?y)))
(forall ?y

(=> (has-project-leader ?x ?y)
(has-project-member ?x ?y)))))

Relations (in addition to slots)Relations (in addition to slots)

(def-relation PROJECT-INVOLVES-ORGANIZATION-UNIT (?p ?u)
"It is sufficient that somebody in unit ?u works in project ?p"
:constraint (and (project ?p)(organization-unit ?u))
:sufficient (and (project ?p)(organization-unit ?u)

(has-project-member ?p ?x)
(works-in-unit ?x ?u)))

FunctionsFunctions

(def-function filter (?l ?rel) -> ?sub-l
"Returns all the elements in ?l which

satisfy ?rel"
:body (if (null ?l)

?l
(if (holds ?rel (first ?l))

(cons (first ?l)
(filter (rest ?l) ?rel))

(filter (rest ?l) ?rel))))

Holds (?rel ?arg1…..?argn)
iff

(?rel ?arg1…..?argn)

Holds

FunctionsFunctions

(def-function EXTENSION (?r) -> ?set
"The extension of a relation is the set of all tuples for which the

relation
holds. This is a kind of operational definition, which retrieves
the set of all

tuples for which the relation is predicated in the current KB.
This function

is restricted to defined relations only"
:constraint (defined-relation ?r)
:body (if (= (the-schema ?r) ?list)

(eval-setofall ?list (cons ?r ?list))))

Rules are also usefulRules are also useful

(def-rule rule-for-collaborating#1
((collaborates-or-collaborated-with ?p1 ?p2)
if
(or (and (involved-in-projects ?p1 ?project)

(or (has-project-leader ?project ?p2)
(has-project-member ?project ?p2)))

(and (or (technology ?d) (document ?d))
(has-author ?d ?p1)
(has-author ?d ?p2)))
(not (= ?p1 ?p2))))))

•Used for inferences (no constraint checking)
•Separate from ontological definitions
•Allow modular extensions of definitions

AxiomsAxioms

(def-axiom agrees-and-disagrees-are-mutually-inconsistent
(forall (?a ?y)

(not (exists (?x1 ?x2 ?z ?z2)
(and
(agrees ?x1 ?y ?z)
(disagrees ?x2 ?y ?z2)
(member ?a ?x1)
(member ?a ?x2))))))

Used for additional constraint checking

Formulas as valuesFormulas as values

(def-class classification-task (goal-specification-task) ?task
((has-goal-expression

(:default-value
(kappa (?task ?sols)

(forall ?sol
(=> (member ?sol

(role-value ?task 'has-solutions))
(admissible-solution
?sol
(apply-match-criterion
(role-value ?task 'has-match-criterion)
(role-value ?task 'has-observables)
?sol)

(role-value ?task
'has-solution-admissibility-criterion)))))))

Things we would also like to haveThings we would also like to have

• Comprehensive meta-level
— Clean way to annotate individual statements

(def-relation criticises (?person ?statement)

• Mechanisms to define inference schemas
— E.g., new inheritance mechanisms for

different part-of relations

