
Comparing Unification Algorithms in First-Order
Theorem Proving

Kryštof Hoder and Andrei Voronkov

University of Manchester, Manchester, UK,
{hoderk,voronkov}@cs.man.ac.uk

Abstract. Unification is one of the key procedures in first-order theorem provers.
Most first-order theorem provers use the Robinson unification algorithm. Al-
though its complexity is in the worst case exponential, the algorithm is easy to
implement and examples where it may show exponential behaviour are believed
to be atypical. More sophisticated algorithms, such as the Martelli and Montanari
algorithm, offer polynomial complexity but are harder to implement.
Very little is known the practical perfomance of unificationalgorithms in the-
orem provers: previous case studies have been conducted on small numbers of
artificially chosen problem and compared term-to-term unification while the best
theorem provers perform set-of-terms-to-term unificationusing term indexing.
To evaluate the performance of unification in the context of term indexing, we
made large-scale experiments over the TPTP library containing thousands of
problems using the COMPIT methodology. Our results confirm that the Robin-
son algorithm is the most efficient one in practice. They alsoreveal main sources
of inefficiency in other algorithms. We present these results and discuss various
modification of unification algorithms.

1 Introduction

Unification is one of the key algorithms used in implementingtheorem provers. It is
used on atoms in the resolution and factoring inference rules and on terms in the equal-
ity resolution, equality factoring and superposition inference rules. The performance
of a theorem prover crucially depends on the efficient implementation of several key
algorithms, including unification.

To achieve efficiency, theorem provers normally implement unification and other
important operations usingterm indexing, see [14, 12]. Namely, given a setL of in-
dexed terms, a binary relationR over terms (called theretrieval condition) and a term
t (called thequery term), identify the subsetM of L that consists of the termsl such
thatR(l, t) holds. In the case of unification, the retrieval condition isunifiability. Terms
in M will be called thecandidate terms. Other typical retrieval conditions used in first-
order theorem proving are matching, generalisation and syntactic equality. Such a re-
trieval of candidate terms in theorem proving is interleaved with insertion of terms toL
and deletion of them fromL.

In order to support rapid retrieval of candidate terms, we need to process the indexed
set into a data structure called theindex. According to [12], indexing data structures
are well-known to be crucial for the efficiency of the currentstate-of-the-art theorem

2

provers. Indexes in theorem provers frequently store105–106 complex terms and are
highly dynamic since terms are frequently inserted in and deleted from indexes. In
this paper we evaluate several unification algorithm using the COMPIT methodology
introduced in [12].

The structure of this article is the following. Section 2 introduces the unification
problem, the notion of inline and post occurs checks and several unification algorithms.
Section 3 describes substitution tree indexing, includingsome points where our imple-
mentation differs from those described in the literature. Section 4 presents implemen-
tation details of terms and relevant algorithms in Vampire,and section 5 explains the
methodology we used to measure the performance of the unification retrieval.

In Section 6, we present and analyse results of comparison ofsubstitution tree in-
dexes that use the Robinson algorithm (ROB), the Martelli-Montanari algorithm (MM),
the Escalada-Ghallab algorithm (EG) and our polynomial modification unification of
the Robinson algorithm PROB.

Our aim is to investigate how unification algorithms behave in the term indexing
framework. To this end, we measured the performance of each algorithm on hundreds
of millions of term pairs obtained from the run of the theoremproved on the TPTP
problem library. Our results also show empirically that thesource of terms matters. For
example, the MM algorithm gives relatively better performance on the superposition
index, than it does on the resolution index (see Section 6). Other papers do not make
such a distinction, for example [4] just states “theorem proving” as the source of a group
of several benchmarked term pairs.

Section 7 discusses related work and Section 8 contains the summary of this work.

2 Unification Algorithms

A unifier of termss andt is a substitutionσ such thatsσ = tσ. A most general unifier
of two terms is their unifierσ such that for any other unifierτ of these two terms there
exist a substitutionρ such thatτ = ρσ.

It is well-known that if two terms have a unifier, they also have a most general
unifier, which is unique modulo variable renaming. We denotea most general unifier of
two termss andt by mgu(s, t). Theunification problemis the task of finding a most
general unifier of the two given terms.

For all existing unification algorithms, there are three possible outcomes of unifica-
tion of termss andt. It can either succeed, so that the terms are unifiable. It canfail
due to asymbol mismatch, which means that at some point we have to unify two terms
s′ = f(s1, . . . , sm) andt′ = g(t1, . . . , tn) such thatf andg are two different function
symbols. Lastly, it can fail on theoccurs check, when we have to unify a variablex with
a non-variable term containingx.

Unification algorithms can either perform occurs checks as soon as a variable has
to be unified with a non-variable term or postpone all occurs checks to the end. We call
occurs checks of the first kindinline and of the second kindpostoccurs checks.

When we perform unification term-to-term, the post occurs check seems to perform
well, also somehow confirmed by experimental results in [4].However, when we re-
trieve unifiers from an index, we do not build them at once. Instead, we build them

3

incrementally as we descend down the tree perfomingincremental unification. In this
case, we still have to ensure that there is no occurs check failure. It brings no additional
cost to algorithms performing inline occurs check, but for post occurs check algorithms
it means that the same occurs check routine may have to be performed more than once.
On the other hand, postponing occurs check may result on a (cheap) failure on compar-
ing function symbols. Our results in section 6 confirm that ROB and PROB (which both
use the inline occurs check) outperform MM and EG based on thepost occurs check.

In the rest of this paper,x, y will denote variables,f, g different function symbols,
ands, t, u, v terms. We normally consider constants as function symbols of arity 0. All
our algorithm will compute a substitutionσ that is atriangle formof the unifier. This
means that some powerθ = σn of σ is the unifier andθ◦σ = θ. When the most general
unifier of two terms is exponential, it has a polynomial-sizetriangle form.

2.1 Robinson Algorithm

The Robinson unification algorithm [16] is given in Figure 1.It uses an auxiliary func-
tion robOccursCheck which performs an occurs check. The function is called before
each variable binding, which makes ROB an inline occurs check algorithm.

2.2 Martelli-Montanari Algorithm

We call a set of terms amulti-equation. We say that two multi-equationsM1 andM2

can bemerged, if there is a variablex ∈ M1 ∩ M2. A set of multi-equations is said to
be insolved form, if every multi-equation in this set contains at most one non-variable
term and no multi-equations in the set can be merged.

We define apath as a finite sequence of positive integers. The set of all pathsis
ordered by the prefix relation. For a termt and a positionπ, the subterm oft at π,
denoted bytπ, is defioned as follows. Ifπ is the empty sequence, thentπ = t. If
tπ = f(u1, . . . , un), then for alli = 1, . . . , n we havetπ.i = ui. Using the notion of
paths, we can definedisagreement setof termss, t as the set of minimal pathsπ such
that bothsπ andtπ are defined and the top symbols ofsπ andtπ are different.

Let us inductively define the notion ofweakly unifiable termss, t with the disagree-
ment setE, whereE is a set of multi-equations.

1. If s = t thens andt are weakly unifiable with the empty disagreement set.
2. Otherwise, ifs is a variable ort is a variable, thens andt are weakly unifiable with

the disagreement set{{s, t}}.
3. Otherwise, ifs = f(s1, . . . , sn), t = f(t1, . . . , tn) and for alli = 1, . . . , n the

termssi andti are weakly unifiable with the disagreement setEi, thens andt are
weakly unifiable with the disagreement setE1 ∪ . . . ∪ En.

4. In all other casess andt are not weakly unifiable.

It is not hard to argue that weak unifiability is a necessary condition for unifiability.
The equivalence relationRM on variables is defined as follows: two variables be-

long to the same class if they occur in the same multi-equation inM. For an equivalence
relationR, denote by[x]R the equivalence class ofx.

4

FUNCTION robOccursCheck(x, t, σ)
INPUT:

Variablex, termt, substitutionσ
OUTPUT:

false (signalling thatx occurs intσ) or true
BEGIN

let S be a stack, initially containingt
while (S is non-empty)do

t := pop(S);
foreach variabley in t do

if x = y then
return false

if y is bound inσ then
pushyσ ontoS

od
od
return true

END

FUNCTION ROB(s, t)
INPUT:

Termss andt

OUTPUT:
Substitution or failure

BEGIN
let S be an empty stack of pairs of terms, initially containing(s, t)
let σ be the empty substitution
while (S is non-empty)do

(s, t) := pop(S);
while (s is a variable bound byσ) s := sσ;
while (t is a variable bound byσ) t := tσ;
if s 6= t then

case (s, t) of
(x, y) ⇒ addx 7→ y to σ

(x, u) ⇒ if robOccursCheck(x,u,σ)
then addx 7→ u to σ

else halt with failure
(u, x) ⇒ if robOccursCheck(x,u,σ)

then addx 7→ u to σ

else halt with failure
(f(s1, . . . , sn), f(t1, . . . , tn)) ⇒ push(s1, t1), . . . , (sn, tn) ontoS

(f(s1, . . . , sm), g(t1, . . . , tn)) with f 6= g ⇒ halt with failure
end

od
return σ

END

Fig. 1.The Robinson unification algorithm

5

The Martelli-Montanari algorithm is given in Figure 2. Whenthe algorithm termi-
nates with success, we return the substitution in the triangle form corresponding toM,
which is obtained as follows. The substitution binds all variables occurring inM. If a
variablex occurs in someM ∈ M such thatM contains a non-variable termt, then
the substitution contains the bindingx 7→ t. Otherwise the substitution contains the
bindingx 7→ y, wherey is some fixed representative of[x]R.

To implement the algorithm we maintainR using the union-find algorithm [21], and
checking that the graph is acyclic is done using the topological sort algorithm [10]. The
check (which stands for occurs check in this algorithm) is performed as the last step
of the algorithm. This makes the MM a post occurs check algorithm. For a proof of
correctness and termination in almost1 linear time, see [11].

FUNCTION MM(s, t)
INPUT:

Termss andt

OUTPUT:
Substitution in a triangle form or failure

BEGIN
let M be a set of multi-equations, initially{{s, t}}
while M is not in solved formdo
if M contains two multi-equationsM1, M2 that can be merged
then remove bothM1 andM2 from M;

addM1 ∪ M2 toM
else take a multi-equationM ∈ M containing two different non-variable termss, t

if s andt are weakly unifiable with a disagreement setE
then removet from M ;

M := M∪ E
else halt with failure

od
let R be the equivalence relationRM

let G be an empty directed graph
forall M ∈ M such thatM contains a non-variable termt do
let x be an arbitrary variable such thatx ∈ M

forall variablesy occurring int do
add the edge ([x]R, [y]R) to G

od
od
if G contains a cycle
then halt with failure
return the substitution corresponding toM

END

Fig. 2.The Martelli-Montanari unification algorithm

1 The “almost” comes from the union-find structure used to maintain the equivalence relationR
and is equal to the inverse Ackermann’s function (see [21]).

6

2.3 Escalada-Ghallab Algorithm

In order to examine a post occurs check algorithm that aims tobe practically efficient,
we have implemented the Escalada-Ghallab (EG) algorithm presented in [4]. The algo-
rithm first builds an equivalence relation on terms, such that each equivalence class can
contain several variables and at most one non-variable term. To maintain this relation,
a modified version of the union-find algorithm is being used. The post occurs check
is being performed using the depth first search acyclicity check algorithm [20] on the
resulting triangle-form substitution. For detailed description of the algorithm, see [4].

To make the algorithm competitive with inline occurs check algorithms on the in-
cremental unification problem, we have added an incrementality to the EG occurs check
code in the following way: during the equivalence class building phase, we keep track
of all equivalence classes that have been modified. Then, in the occurs check phase, we
run the DFS check only from those equivalence classes that have been modified.

2.4 PROB

Inspired by our experiments described below we implementeda modification PROB of
the Robinson algorithm having polynomial worst-case time complexity. It provides an
easy-to-implement polynomial-time alternative to the original Robinson algorithm.

In PROB, we keep track of pairs of terms that already occurredin any disagreement
set. When we encounter such a pair again, we simply skip it. Aswe do not create any
new terms in the unification process, so all terms are subterms of the existing ones, the
number of such pairs is quadratic. The size of the disagreement set is at most linear,
so the inner loop is executed at mostO(n3) times. In the occurs-check function, we
maintain a set of bindings that are already checked or scheduled for checking. Perform-
ing a check on one binding takesO(n) and there is at mostO(n) bindings (one per
variable), therefore the occurs-check takes at mostO(n2) time. Putting this all together,
we get that the complexity of PROB isO(n5). One can reduce it toO(n3) by a suitable
modification of anO(n3) transitive closure algorithm.

In the implementation we do not keep track of pairs that contain an unbound variable
at the top. Practical results have shown that this happens frequently and that the cost of
keeping track of such pairs does not pay off. It does not harm the asymptotic complexity,
as the number of distinct variables is bound by the size of theinput and we always bind
a variable at the moment it occurs at the top of the pair being processed.

3 Substitution Trees

To present the data structure ofsubstitution trees, we will use the description from [14]
appropriately shortened and modified to explain our implementation.

A substitution tree[5] stores substitutions in its nodes. Because of this, substitution
trees can be smaller in size than, say, discrimination trees. Compared to other indexing
techniques, substitution trees are especially convenientfor unification since other in-
dexing techniques, when used for unification, have to maintain bindings of two kinds:
to subterms of the query term and to nodes in the index.

7

To be able to handle terms modulo variable renaming, we will deal only withnor-
malised terms. To obtain a normalised term, one has to rename its variables, so that a
normalised variablexi denotes theith distinct variable in the term. For example, the
termf(y, g(y, z)) becomesf(x1, g(x1, x2)).

In addition to normalised term variablesx1, x2, . . ., we will use a sequence of vari-
ables∗0, ∗1, . . ., disjoint from the variables of indexed or query terms, to represent
substitutions in the tree. Substitution of a termt for a variable∗i will be denoted by an
equality∗i = t. In substitution trees, instead of storing a termt, we store a substitu-
tion ∗0 = t represented as a composition of substitutions for∗i. For example, the term
f(g(a, x1)) can be stored as a composition of such substitutions in several different
ways, including∗0 = f(g(a, x1)) and∗0 = f(g(∗1, x1)), ∗1 = a. Substitution trees
share common parts of substitutions, and every branch in thetree represents an indexed
term, obtained by composing substitutions on this branch and applying the resulting
substitution to∗0.

We will restrict the description to a version of substitution trees calledlinear sub-
stitution trees[6]. In a linear substitution tree, on any root-to-leaf path, each variable∗i

occurs at most once in right-hand sides of substitutions. For example, the substitution
∗0 = f(∗1, ∗1) cannot occur in a linear substitution tree. Likewise, two substitutions
∗1 = f(∗3) and∗2 = g(∗3) cannot occur on the same branch. However, the substitution
∗0 = f(x1, x1) is legal.

Example 1.We illustrate substitution tree indexing with an example set consisting of
four indexed terms

(1) f(x1, x1), (2) f(x1, x2),
(3) f(a, g(d)), (4) f(g(d), g(x1)).

in Figure 3. By composing the substitutions on, e.g., the rightmost branch:

∗0 = f(∗2, ∗1), ∗1 = g(∗3), ∗2 = g(d), ∗3 = x1,

we obtain the substitution off(g(d), g(x1)) for ∗0 representing indexed term4.

To see the motivation for our modified version of substitution trees, let us note one
feature of substitution trees as defined so far: the order of term traversal is not fixed in
advance. For example, in the substitution tree of Figure 3, the substitution for the first
argument off is done before the substitution for its second argument in indexed terms
1, 2, but it is done after in indexed terms3, 4. So when we traverse indexed terms1, 2,
we traverse the arguments off left-to-right, while for indexed terms3, 4 we traverse
them right-to-left. This feature may lead to more compact substitution trees, but it also
has some consequences for the indexing algorithms:

1. There may be several different ways toinsert a term in a substitution tree. For
example, if we insertf(x1, g(x2)) in the substitution tree on Figure 3, we may
follow down any of the transitions coming out from∗0 = f(∗1, ∗2). If we follow
the left one, we share the substitution∗1 = x1; if we follow the right one, we share
∗2 = g(x3). This property can be used to find an optimal way of inserting aterm
and lead to even more compact substitution trees, but optimal insertion requires
more complex algorithms and will slow down insertion.

8

∗0 = f(∗2, ∗1)

∗2 = x1 ∗1 = g(∗3)

∗1 = x1

{1}
∗1 = x2

{2}
∗2 = a

∗3 = d

{3}

∗2 = g(d)
∗3 = x1

{4}

Fig. 3. A substitution tree

2. When wedeletea termt from a substitution tree, if there are several transitions
coming out from a node, we cannot decide which transition corresponds tot by
simply looking at the children of this node. Therefore, algorithms for deletion of a
term from a substitution tree use some kind of backtracking and deletion is in the
worst case linear in the size of the tree, not just in the size of the term.

3. Retrievalmay result in a larger amount of backtracking steps comparedto other
indexing techniques. For example, if all of the indexed terms and the query term
are ground, retrieval using indexing techniques such as discrimination trees will be
deterministic, but retrieval using substitution trees mayrequire backtracking even
in this case.

This is why we introducedownward substitution trees, which impose two extra condi-
tions on substitutions in tree nodes. These conditions guarantee that the deletion linear
in the size of the term.

1. For each intermediate node of the tree, there must be a special variable that is bound
by each of its children. Let us call it aselected variableof the node.

2. Each of the terms bound to the selected variable by a child must have a distinct top.
I.e. there cannot be two same variables, or two terms with thesame top functor.

It is easy to see that, for finding a term in a downward substitution tree, in each non-leaf
node we decide which child to descend into based on the top of the current term. This
makes both the insertion and the deletion of terms deterministic and gives downward
substitution trees some flavour of discrimination trees.

A downward substitution tree containing terms mentioned inthe Example 1 is given
in Figure 4. We do not discuss insertion and deletion operations in this paper any more;
the reader is referred to [14, 5] for details.

There is an open question whether downward substitution trees are in practice less
compact than the standard substitution trees, however we believe that this question is
orthogonal to the subject of our study here.

9

∗0 = f(∗2, ∗1)

∗2 = x1 ∗2 = a

∗1 = g(d)
{3}

∗2 = g(d)
∗1 = g(x1)

{4}

∗1 = x1

{1}
∗1 = x2

{2}

Fig. 4. A downward substitution tree

3.1 Retrieval of unifiable terms

When an indexing technique is used as a perfect filter, some retrieval conditions may be
more difficult to handle than others. E.g. for discrimination trees, retrieval of generali-
sations is straightforward, but retrieval of unifiable terms of instances is more difficult
to implement because of embedded variables.

Substitution trees differ from other indexing techniques in this aspect: all retrieval
operations have quite a straightforward implementation onsubstitution trees. As a re-
sult, some provers (SPASS and FIESTA) use substitution trees as a single indexing
data structure. This feature is due to storing substitutions rather than symbols at nodes.
The price to pay is that an operation performed at visiting a node is not a simple com-
parison of symbols, but may involve complex operations suchas unification. In order
for a term-to-term algorithm to be used also as a base for a set-to-term algorithm, the
term-to-term algorithm should beincremental, in some sense. In the case of unification,
it should be possible to make it into an algorithm on sequences of pairs of terms, so that
on a sequence(si, ti), wherei = 1, . . . , n, having a simultaneous unifier, it behaves as
follows:

1. Compute a triangle representationσ1 of an mgu of(s1, t1);
2. For all i = 1, . . . , n − 1, changeσi it into a triangle representationσi+1 of a

simultaneous mgu of(s1, t1), . . . , (si+1, ti+1). In this case we say that weextend
σi to σi+1.

Both ROB and MM in this paper are formulated in an incrementalway. Namely, when
ROB succeeds on(s1, t1), we simply push(s2, t2) on the stackS and run the main
while-loop again. Likewise, when MM succeeds on(s1, t1), we add the multi-equation
{{s2, t2}} to M and run the main while-loop again. In the case of MM, we have to
perform the occurs check after each step unifying(si, ti).

These incremental algorithms can be implemented to retrieve unifiable terms from
a substitution tree as follows. We traverse the tree depth-first, left-to-right. When we
move down the tree to a node∗i = t, we extend the currently computed substitution to
be also a unifier of(∗i, t). When we return to a previously visited node, we restore the
previous substitution and, in the case of MM, the previous value ofM.

10

For example, if we are retrieving terms unifiable withf(f(a, y1), y1) from the sub-
stitution tree on Figure 4, we start withσ0 = {∗0 7→ f(f(a, y1), y1)}. In the root,
we extend the substitution to unify also∗0 andf(∗2, ∗1), so we get the substitution
σ1 = σ0 ∪ {∗1 7→ y1, ∗2 7→ f(a, y1)}. In the leftmost child, we get the substitution
σ2 = σ1∪{x1 7→ f(a, y1)}. Finally, in the leaf labelled{1} and containing the indexed
termf(x1, x1) we fail, as unifyingx1 andy1 would lead to the bindingy1 7→ f(a, y1),
on which the occurs check fails. Now we backtrack to the parent and try to enter the
child {2} that contains the substitution{∗1 7→ x2}. Here we are successful and obtain
σ3 = σ2 ∪ {x2 7→ y1, }. This substitution unifies the indexed termf(f(a, y1), y1) and
the query termf(x1, x2). After retrieving this substitution, we can backtrack again to
retrieve all other substitutions.

Unification retrieval in downward substitution trees also takes advantage of the facts
that all children of an intermediate node bind the same variable and that for each func-
tion symbol there is at most one child that has it as its top functor. In the aforementioned
retrieval of unifiers of the termf(f(a, y1), y1), in the node∗0 we can immediately rule
out its children{3} and{4}, as the top functors of their variable bindings differ from
f , which is the top functor of the term bound to∗2 in σ1.

More generally, when the query term relevant to the current node is not a variable,
we can immediately rule out all its children that bind the node variable to a non-variable
term with a top functor different from that of the query term.This could be particularly
useful in problems with large signatures, such as CyC and SUMO problems in the CSR
category of the TPTP [19].

4 Implementation Details

We implemented three algorithms for retrieval of unifiers, corresponding to the uni-
fication algorithms of Section 2. In this section we describethe data structures and
algorithms are used in the new version of Vampire [15].

We use shared Prolog terms to implement terms and literals. In Prolog, non-variable
terms are normally implemented as a contiguous piece of memory consisting of some
representation of the top symbol followed by a sequence of pointers to its subterms
(actually, in the reverse order). We add to this representation sharingso that the same
term is never stored twice. Besides conserving memory, thisrepresentation allows for
constant-time equality checking. Another difference withProlog terms is that, when
an argument is a variable, Prolog stores a pointer pointing to itself, while we store the
variable number.

4.1 Variable banks and substitutions

When performing an inference on two different clauses (or insome cases2 even on the
same clause), we must consider their variables as disjoint,although some variable may
be the same, that is, have the same number. To deal with this, we use the idea of variable
banks used in several theorem provers, including Waldmeister [9], E [18] and Vampire
[15].

2 Such as superposition of a clause with itself.

11

Terms whose variables should be disjunct are assigned different bank indexes. One
could imagine it as adding a subscript to all variables in a term — instead of terms
f(x, y) and f(y, a), we will work with termsf(x0, y0) and f(y1, a). In practice it
means that when it is unclear from which clause a term origins, we store a pair of the
term and a bank index instead of just the term. This happens tobe the case in unification
algorithms and in inference rules that make use of the resulting unifiers.

Substitutions that store unifiers are stored as maps from pairs (variable number, bank
index) to pairs (term pointer, bank index). Those maps are implemented as double hash
tables[7] with fill-up coefficient 0.7 using two hash functions. The first one is a trivial
function that just returns the variable number increased bya multiple of the bank index.
This function does not give randomly distributed results (which is usually a requirement
for a hash function), but is very cheap to evaluate. The second hash function is a variant
of FNV. It gives much more uniformly distributed outputs, but it is also more expensive
to evaluate. This function, however, does not need to be evaluated unless there is a
collision on the position retrieved by the first function.

The union-find data structures of EG and MM are implemented ontop of these
maps. In EG, we use path compression as described in [4]. In MM, it turned out that the
path compression led to lower performance, so it was omitted.

In EG we use timestamps on equivalence classes to determine what needs to be
occur-checked after the current unification step. These timestamps are being stored also
in a double hashed map mapping pairs (variable number, bank index) to integers.

5 Benchmarking Methodology

Our benchmarking method is COMPIT [12]. First, we log all index-related operations
(insertion, deletion and retrieval) in a first-order theorem prover. This way we obtain a
description of all interactions of the prover with the indexand it is possible to reproduce
the indexing process without having to run the prover itself. Moreover, benchmarks
generated this way can be used by other implementations, including those not based on
substitution trees, and we welcome comparing our implementation of unification with
other implementations.

To keep results from being distorted by the input-output operations and parsing of
terms used in the benchmark, we buffer terms and index operations—the benchmark
evaluator first reads and parses a sequence of index operations (in the order of tens of
thousands) and then feeds these operations to the index. This repeats for the following
operation sequences until the end of the benchmark is reached.

The main difference of our benchmarking is that instead of just query success/failure,
we record the number of terms unifiable with the query term. This reflects the use of
unification in theorem provers, since it is used for generating inferences, and all gener-
ating inferences with a given clause must normally be performed.

Another difference from [12] is the format of the benchmark files. Initially, we
aimed for a maximum compatibility, so it would require only minimum efforts from
other index implementers to adapt their COMPIT interface towork with our bench-
marks. One of the problems was that the original file format imposed limitations on
indexed terms. Namely, terms were represented as sequencesof characters, where each

12

character represented either a variable or a functor. This means that a term could contain
at most 35 distinct variables and (more importantly) the signature could not use more
than 158 function symbols. The limit on the number of function symbols becomes even
more problematic, when we want to store atoms instead of justterms. Then we have
to use two functors per a predicate symbol (to store positiveand negative atoms sepa-
rately) which disqualifies common for TPTP larger signatureproblems. This led us to a
new benchmark format that uses a 4-byte word as its basic structure and reverse polish
notation [8] for serialising terms, which makes the file easyto parse.

We created two different instrumentations of the development version of the Vam-
pire prover, which used the DISCOUNT [2] saturation algorithm. The first instrumen-
tation recorded operations on the unification index of selected literals of active clauses
(the resolution index). The second one recorded operations on the unification index of
all non-variable subterms of selected literals of active clauses (thesuperposition index).

Both of these instrumentations were run on several hundred randomly selected
TPTP problems with the time limit of 300s to gain benchmark data.3 In the end we
evaluated indexing algorithms on all of these benchmarks, and then eliminated bench-
marks where the faster prover took less than 50 ms, as such data can be overly affected
by noise and are hardly interesting in general. This elimination left us with about 40
percent of the original number of benchmarks4 which was 377 resolution index bench-
marks and 388 superposition index benchmarks.

6 Results and Analysis

We have benchmarked four indexing structures; all of them based on our implementa-
tion of downward substitution trees. They used the four unification algorithms described
above. Our original conjecture was that MM would perform comparably to ROB on
most problems and be significantly better on some problems, due to its linear complex-
ity. When this conjecture showed to be false, we added the PROB and EG algorithms,
in order to find a well-performing polynomial algorithm.

On a small number of problems (about 15% of the superpositionbenchmarks and
none of the resolution ones) the performance of ROB and MM wasapproximately the
same (±10%), but on most of the problems MM was significantly slower. Onthe aver-
age, it was almost 6 times slower on the superposition benchmarks and about 7 times
slower on the resolution benchmarks. On 3% of the superposition benchmarks and 5%
of the resolution benchmarks, MM was more than 20 times slower.

The only case where MM was superior was in a handcrafted problem designed to
make ROB behave exponentially containing the following twoclauses:

p(x0, f(x1, x1), x1, f(x2, x2), x2, . . . , x9, f(x10, x10));
¬p(f(y0, y0), y0, f(y1, y1), y1, . . . , y9, f(y10, y10), y11).

3 Recording could terminate earlier in the case the problem was proved. We did not make any
distinction between benchmarks from successful and unsuccessful runs.

4 This number does not seem to be that small, when we realise that many problems are proved in
no more than a few seconds. Also note that in problems withoutequality there are no queries
to the superposition index at all.

13

This problem was solved in no time using MM and PROB, but took about 15 seconds
to solve using ROB.

In general, PROB had about the same performance as ROB. ROB was on the av-
erage 1% faster than PROB as measured on about 700 benchmarks. Therefore, PROB
can provide a good alternative to ROB if we want to avoid the exponential worst-case
complexity of the ROB. EG did not perform as bad results as MM,but it was still on
the average over 30% slower than ROB.

Table 1 summarises the performance of the algorithms on resolution and superpo-
sition benchmarks. The first two benchmarks in each group arethose on which MM
performed best (respectively, worst) relatively to ROB, others are benchmarks from
randomly selected problems. In the table,term sizemeans the number of symbols in the
term; average result countis the average number of results retrieved by a query, and
query fail rateis the ratio of queries that retrieved no results. The last three numbers
show the use of substitutions in our indexing structure—thenumber of successful unifi-
cation attempts, unification attempts that failed due to mismatch of function or predicate
symbols, and unification attempts that failed due to the occurs check. The last two num-
bers are given for ROB, since in MM the occurs check is performed at the end, so on
some problems a unification attempt would fail on the occurs-check in ROB and on the
symbol mismatch in MM.

To determine the reason for the poor performance of MM, we used a code profiler on
benchmarks displaying its worst performance as compared toROB. This led us to find-
ing that over 90% of the measured time is being spent on performing the occurs-checks,
most of it actually on traversing the oriented graph to be checked for acyclicity. It also
showed that the vast majority of unification requests were just unifying an unbound
variable with a term. Based on this, we tested a modified algorithm that performed the
PROB occurs checks instead of the MM ones after such unifications. This caused the
worst-case complexity to beO(n2),5 but improved the average performance of MM
from about 600% worse than ROB to just about 30% worse.

We have also evaluated EG modified so that the occurs check wasperformed only
on the part of the substitution where a cycle could have appeared due to new bindings.
This, however, was not very helpful either, as the performance of this algorithm was
still about 30% worse than ROB and PROB algorithms.

7 Related Work

There is another comparison of the ROB and MM in [1], which presents a proof that on a
certain random distribution of terms the expected average (according to some measure)
number of steps of ROB is constant, while the expected numberof MM steps is linear in
the size of terms. They, however, compare the two techniquesbased on random terms,
which is hardly relevant to the practice of theorem proving.A practical comparison of
ROB, MM and EG is undertaken in [4], but this comparison is notof much use for us
since it is only done on a small set of examples, many of them being artificial, and uses

5 We, however, believe that it is possible to make the PROB occurs checks linear, exploiting the
shared term representation.

14

Time [ms] Relative All Maximal Avg. term size Avg Query Unification outcomes
Problem MM EG ROB PROB MM EG ops Ins Dels index sizeindexedqueryres cntfail rate successmism.o.c. fail
Resolution index benchmarks
AGT022+2 292128312285 2303 1.3 1.2 17534687673 0 87673 3.2 3.2 134.7 0.2 127542016392 0
SET317-6 5199726001958 1915 26.6 1.3 68338334401458 31982 10.6 10.6 52.2 0.0 2025401 5079 63
ALG229+1 1853 720 474 497 3.9 1.5 2386111447 967 10480 7.8 7.8 54.8 0.5 420047 461 15128
ALG230+3 14901046 752 711 2.0 1.4 4802523912 201 23711 2.9 2.9 40.3 0.4 768620 380 1569
CAT028+2 675 399 295 306 2.3 1.4 17989 8752 485 8267 3.6 3.6 47.5 0.2 302026 185 899
CAT029+1 3065 520 400 417 7.7 1.3 12897 6426 45 6381 11.6 11.6 114.1 0.3 498626 3 155
FLD003-1 60581210 941 949 6.4 1.3 14384 7187 9 7178 7.2 7.2 312.2 0.0 1247011 187 0
FLD091-3 4626 890 690 736 6.7 1.3 2303711505 26 11479 7.7 7.7 239.4 0.0 798127 97 0
LAT289+2 1331 850 625 629 2.1 1.4 3244716076 295 15781 3.2 3.2 36.2 0.3 608904 2678 1585
LAT335+3 14821002 730 742 2.0 1.4 4233021044 242 20802 3.0 3.0 44.1 0.3 756292 252 1930
LCL563+1 4972 564 445 431 11.2 1.3 5899 2868 163 2705 14.3 14.3 135.2 0.2 441681 470 7
NUM060-1 965814801098 1104 8.8 1.3 101608491383331 45807 9.8 9.8 38.4 0.0 100131716940 242
SET170-6 4815224951864 1830 25.8 1.3 7139635332 731 34601 10.6 10.6 49.8 0.0 1915322 5694 63
SET254-6 1380717591259 1260 11.0 1.4 78914387291455 37274 10.6 10.6 44.0 0.0 1244861 9979 63
SET273-6 1383317521261 1268 11.0 1.4 78680386431393 37250 10.7 10.7 44.0 0.0 1243272 9605 63
SET288-6 5115126061946 1924 26.3 1.4 68348334451458 31987 10.6 10.6 52.2 0.0 2025514 5079 63
SEU388+1 3641 821 610 603 6.0 1.3 2789513911 73 13838 6.4 6.4 103.9 0.1 683318 10 2792
TOP031+3 16641089 821 831 2.0 1.3 4277121273 225 21048 3.0 3.0 43.2 0.3 823743 3809 1808
Superposition index benchmarks
SEU388+1 55 54 57 53 0.96 0.9 6341063194 200 62994 2.7 4.2 2.9 0.4 38 0 0
SET288-6 4871724841808 182426.95 1.4 7122835279 669 34610 10.6 10.6 49.8 0.0 1913644 5336 63
ALG229+1 80 75 71 72 1.13 1.1 63466564666673 49819 4.2 10.0 4.1 0.7 1916 127 0
ALG230+3 14891058 764 765 1.95 1.4 4978724780 227 24553 2.9 2.9 37.0 0.4 744009 391 1639
CAT028+2 719 432 314 321 2.29 1.4 18885 9368 149 9219 3.6 3.6 47.2 0.2 322684 238 872
CAT029+1 3073 523 387 419 7.94 1.4 12917 6436 45 6391 11.6 11.6 114.3 0.3 498651 3 155
FLD003-1 615711811010 983 6.10 1.2 14384 7187 9 7178 7.2 7.2 312.2 0.0 1246881 187 0
FLD091-3 4655 890 733 718 6.35 1.2 2300311488 26 11462 7.7 7.7 239.7 0.0 798205 105 0
LAT289+2 1334 851 619 642 2.16 1.4 3235216106 140 15966 3.2 3.2 36.2 0.3 605700 2753 1583
LAT335+3 17281150 855 862 2.02 1.3 4390421829 246 21583 3.0 3.0 42.3 0.3 842139 4522 1797
LCL563+1 5711 636 489 503 11.68 1.3 6158 3005 148 2857 14.5 14.5 142.5 0.2 496902 497 7
NUM060-1 882014571098 1077 8.03 1.3 118475575743326 54248 9.6 9.6 31.1 0.0 95038623750 244
SET170-6 1370017091255 125610.92 1.4 78669386421385 37257 10.7 10.7 44.0 0.0 1243409 9604 63
SET254-6 1380917251279 126210.80 1.3 78904387241455 37269 10.6 10.6 44.0 0.0 1245069 9980 63
SET273-6 5108125691909 193226.76 1.3 68156333801396 31984 10.6 10.6 52.3 0.0 2023900 4718 63

Table 1.ROB and MM comparison on selected benchmarks

15

no term indexing. Moreover, in [4] unification was repeatedly run on the same pairs of
terms.

There still are many unification algorithms overviewed here, which we have not
evaluated for the reasons explained below. The Paterson algorithm [13], for example,
offers linear asymptotic time complexity, which is superior to the one of all aforemen-
tioned algorithms, but according to [4], this benefit is redeemed by the use of complex
data structures to the extent that it is mainly of theoretical interest. The Corbin-Bidoit
algorithm [3] might look promising, as it uses an inline occurs check, but it requires in-
put terms to be presented in the form of dags, which are being modified during the run
of the algorithm. While Vampire terms are represented as dags, they are shared so they
would first need to be copied (and the copies later destroyed)which makes us believe
that this algorithm will not outperform the ROB and PROB ones. The Ruzicka-Privara
algorithm, presented in [17] as an improvement of the Corbin-Bidoit one, suffers from
the same problem, and moreover uses a post occurs check, which suggests even worse
results on the incremental unification task.

8 Summary

We studied the behaviour, in the framework of term indexing,of four different uni-
fication algorithms: the exponential time Robinson algorithm, the almost linear time
Martelli-Montanari and Escalada-Ghallab algorithms, anda polynomial-time modifica-
tion of the Robinson algorithm. To this end, used the appropriately modified COMPIT
method [12] on a modification of substitution trees called downward substitution trees.
Downward substitution trees reduce non-determinism during the term insertion, dele-
tion and, in some cases, retrieval. The modification of COMPIT allows one to handle
essentially unlimited signatures and large numbers of variables.

We evaluated the four indexing algorithms on downward substitution trees. The
evaluation has shown that the Martelli-Montanari and Escalada-Ghallab algorithms, al-
though asymptotically superior in the worst case, in practice behave significantly worse
than the other two. The main cause of this behaviour was the occurs-check that verified
acyclicity of the substitution. On the other hand, the PROB algorithm turned out to per-
form comparably to the Robinson one, while having the advantage of being polynomial
in the worst case.

The benchmarks are available at http://www.cs.man.ac.uk/˜hoderk/.

References

1. Luc Albert, Rafael Casas, François Fages, A. Torrecillas, and Paul Zimmermann. Average
case analysis of unification algorithms. In Christian Choffrut and Matthias Jantzen, editors,
STACS, volume 480 ofLecture Notes in Computer Science, pages 196–213. Springer, 1991.

2. Jürgen Avenhaus, Jörg Denzinger, and Matthias Fuchs. Discount: A system for distributed
equational deduction. InRTA ’95: Proceedings of the 6th International Conference on
Rewriting Techniques and Applications, pages 397–402, London, UK, 1995. Springer-
Verlag.

3. Jacques Corbin and Michel Bidoit. A rehabilitation of robinson’s unification algorithm. In
IFIP Congress, pages 909–914, 1983.

16

4. Gonzalo Escalada-Imaz and Malik Ghallab. A practically efficient and almost linear unifica-
tion algorithm.Artif. Intell., 36(2):249–263, 1988.

5. P. Graf. Substitution tree indexing. In J. Hsiang, editor, Rewriting Techniques and Applica-
tions, volume 914 ofLecture Notes in Computer Science, pages 117–131, 1995.

6. P. Graf.Term Indexing, volume 1053 ofLecture Notes in Computer Science. Springer Verlag,
1996.

7. Leonidas J. Guibas and Endre Szemerédi. The analysis of double hashing.J. Comput. Syst.
Sci., 16(2):226–274, 1978.

8. C. L. Hamblin. Translation to and from Polish Notation.The Computer Journal, 5(3):210–
213, 1962.

9. T. Hillenbrand, A. Buch, R. Vogt, and B. Löchner. Waldmeister: High-performance equa-
tional deduction.Journal of Automated Reasoning, 18(2):265–270, 1997.

10. A. B. Kahn. Topological sorting of large networks.Commun. ACM, 5(11):558–562, 1962.
11. Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACM Trans. Pro-

gram. Lang. Syst., 4(2):258–282, 1982.
12. Robert Nieuwenhuis, Thomas Hillenbrand, Alexandre Riazanov, and Andrei Voronkov. On

the evaluation of indexing techniques for theorem proving.In Rajeev Goré, Alexander
Leitsch, and Tobias Nipkow, editors,IJCAR, volume 2083 ofLecture Notes in Computer
Science, pages 257–271. Springer, 2001.

13. M. S. Paterson and M. N. Wegman. Linear unification. InSTOC ’76: Proceedings of the
eighth annual ACM symposium on Theory of computing, pages 181–186, New York, NY,
USA, 1976. ACM.

14. I. V. Ramakrishnan, R. C. Sekar, and Andrei Voronkov. Term indexing. In John Alan Robin-
son and Andrei Voronkov, editors,Handbook of Automated Reasoning, pages 1853–1964.
Elsevier and MIT Press, 2001.

15. A. Riazanov and A. Voronkov. The design and implementation of Vampire. 15(2-3):91–110,
2002.

16. John Alan Robinson. A machine-oriented logic based on the resolution principle.J. ACM,
12(1):23–41, 1965.

17. Peter Ruzicka and Igor Prı́vara. An almost linear robinson unification algorithm. In Michal
Chytil, Ladislav Janiga, and Václav Koubek, editors,MFCS, volume 324 ofLecture Notes in
Computer Science, pages 501–511. Springer, 1988.

18. S. Schulz. E — a brainiac theorem prover. 15(2-3):111–126, 2002.
19. G. Sutcliffe and C. Suttner. The TPTP problem library — CNF release v. 1.2.1.Journal of

Automated Reasoning, 21(2), 1998.
20. Robert Endre Tarjan. Depth-first search and linear graphalgorithms. SIAM J. Comput.,

1(2):146–160, 1972.
21. Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM,

22(2):215–225, 1975.

