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Saturation-based Theorem Provers

● Try to find a contradiction by generating new 
clauses according to a set of rules

● Need to retrieve all atoms/terms that are 
unifiable with a query atom/term
– Often 105 or more candidates

● Too much to try one by one, indexing structures 
are used

● We compared the performance of several unification 
algorithms inside an indexing structure

A \/ C            ¬B \/ D
         (C \/ D)σ

σ is mgu of A and BBinary resolution:



  

Unification Algorithms

● For terms s and t, the algorithm either gives a 
most general unifier σ (then sσ=tσ), or it fails

● Robinson algorithm (1965, simple, exponential)
● Martelli-Montanari algorithm (1982, almost 

linear)
● Escalada-Ghallab (1988, almost linear, efficient)
● Paterson-Wegman (1976, inefficient, linear)



  

Occurs Check

● Cycle detection
– Avoids situations such as {x -> f(y), y->x}*

● Expensive, in Prolog usually omitted
● Inline occurs check (Robinson algorithm)

– The cycle detection is done immediately when a 
variable is bound 

– Only the relevant part is traversed

● Post occurs check (MM, EG)
– The cycle detection is performed on the whole 

substitution after the binding part is over



  

PROB

● The Robinson algorithm's exponential 
behaviour is rare
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– The triangle form of the substitution is polynomial
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● Without the repeated work during the occurs 
check and unifying already unified terms, the 
algorithm runs in polynomial time



  

Indexing Structures

● Their key role is in simplifying rules
– Keeping the collection of clauses small

– Just matching, not unification

● Some more suitable for the perfect unifier 
retrieval
– Substitution trees (new Vampire, old Fiesta, Spass)

– Context trees (new Fiesta)

● Some are less
– Discrimination trees (Waldmeister)

– Path Indexing



  

Substitution Trees

● A substitution in each 
node

● Indexed terms *0
σ in 

the leafs
– σ is a composition of 

substitutions on path 
from the root to the leaf

● Downward subst. trees
– A newly inserted term 

has a deterministic 
position
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Unification in Substitution Trees

● Only a simple interface between a substitution 
tree and a substitution object is necessary
– tryToExtendToUnify(queryTerm, indexTerm):bool

– undoLastUnification()

– getBoundTopSymbol(variable):fnSymbol?
● not necessary, just allows for an optimization in 

downward substitution trees



  

Retrieval from Substitution Trees
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*0=f(f(a,y1),y1)

Checked by inline occurs check
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Our Experiments

● We created benchmarks from several prover 
runs
– Operations on the unification index recorded (insertions, 

deletions, queries)

– 765 benchmarks (about a half from the resolution index 
and a half from the backward superposition index)

● ROB, MM, EG and PROB unification algorithms 
implemented with the required interface

● The index operations performed on each 
variant of the substitution trees and the time 
measured



  

Results

● The inline occurs check algorithms appear to be 
more suitable for the substitution trees
– Lots of unification requests on a single substitution

● Inline o. c. check just the relevant part of a big 
substitution

● Post o. c. have to be performed after each unification 
request, not just once per the result substitution

Algorithm
ROB 1.00 1.00
MM 6.96 6.00
EG 1.36 1.30
PROB 1.01 1.01

Rel. time 
(resolution index)

Rel. time 
(superposition index)



  

Questions...
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