

Comparing Unification Algorithms in
First-Order Theorem Proving

Kryštof Hoder, Andrei Voronkov
University of Manchester

Saturation-based Theorem Provers

● Try to find a contradiction by generating new
clauses according to a set of rules

● Need to retrieve all atoms/terms that are
unifiable with a query atom/term
– Often 105 or more candidates

● Too much to try one by one, indexing structures
are used

● We compared the performance of several unification
algorithms inside an indexing structure

A \/ C ¬B \/ D
 (C \/ D)σ

σ is mgu of A and BBinary resolution:

Unification Algorithms

● For terms s and t, the algorithm either gives a
most general unifier σ (then sσ=tσ), or it fails

● Robinson algorithm (1965, simple, exponential)
● Martelli-Montanari algorithm (1982, almost

linear)
● Escalada-Ghallab (1988, almost linear, efficient)
● Paterson-Wegman (1976, inefficient, linear)

Occurs Check

● Cycle detection
– Avoids situations such as {x -> f(y), y->x}*

● Expensive, in Prolog usually omitted
● Inline occurs check (Robinson algorithm)

– The cycle detection is done immediately when a
variable is bound

– Only the relevant part is traversed

● Post occurs check (MM, EG)
– The cycle detection is performed on the whole

substitution after the binding part is over

PROB

● The Robinson algorithm's exponential
behaviour is rare

● p(x0, f(x
0
,x

0
), x

1
,...

p(f(y
0
,y

0
), y

1
, f(y

1
,y

1
),...

– The triangle form of the substitution is polynomial
● {x

0
->f(y

0
,y

0
), y

1
->f(x

0
,x

0
), x

1
->f(y

1
,y

1
),...}*

● (the non-triangle form is {x
0
->f(y

0
,y

0
), y

1
->f(f(y

0
,y

0
),f(y

0
,y

0
)),...})

● Without the repeated work during the occurs
check and unifying already unified terms, the
algorithm runs in polynomial time

Indexing Structures

● Their key role is in simplifying rules
– Keeping the collection of clauses small

– Just matching, not unification

● Some more suitable for the perfect unifier
retrieval
– Substitution trees (new Vampire, old Fiesta, Spass)

– Context trees (new Fiesta)

● Some are less
– Discrimination trees (Waldmeister)

– Path Indexing

Substitution Trees

● A substitution in each
node

● Indexed terms *0
σ in

the leafs
– σ is a composition of

substitutions on path
from the root to the leaf

● Downward subst. trees
– A newly inserted term

has a deterministic
position

(1) f(x
1
,x

1
)

(2) f(x
1
,x

2
)

(3) f(a,g(d))
(4) f(g(d),g(x

1
))

Regular:

Downward:

Unification in Substitution Trees

● Only a simple interface between a substitution
tree and a substitution object is necessary
– tryToExtendToUnify(queryTerm, indexTerm):bool

– undoLastUnification()

– getBoundTopSymbol(variable):fnSymbol?
● not necessary, just allows for an optimization in

downward substitution trees

Retrieval from Substitution Trees

(1) f(x
1
,x

1
)

(2) f(x
1
,x

2
)

(3) f(a,g(d))
(4) f(g(d),g(x

1
))

Retrieval of terms unifiable with f(f(a,y
1
),y

1
)

σ:

*0=f(f(a,y1),y1)

Checked by inline occurs check

Retrieval from Substitution Trees

(1) f(x
1
,x

1
)

(2) f(x
1
,x

2
)

(3) f(a,g(d))
(4) f(g(d),g(x

1
))

Retrieval of terms unifiable with f(f(a,y
1
),y

1
)

σ:

*0=f(f(a,y1),y1)

*1=y1

*2=f(a,y1)

Checked by inline occurs check

Retrieval from Substitution Trees

(1) f(x
1
,x

1
)

(2) f(x
1
,x

2
)

(3) f(a,g(d))
(4) f(g(d),g(x

1
))

Retrieval of terms unifiable with f(f(a,y
1
),y

1
)

σ:

*0=f(f(a,y1),y1)

*1=y1

*2=f(a,y1)

x1=f(a,y1)

Checked by inline occurs check

Retrieval from Substitution Trees

(1) f(x
1
,x

1
)

(2) f(x
1
,x

2
)

(3) f(a,g(d))
(4) f(g(d),g(x

1
))

Retrieval of terms unifiable with f(f(a,y
1
),y

1
)

σ:

*0=f(f(a,y1),y1)

*1=y1

*2=f(a,y1)

x1=f(a,y1)

y1=x1

occurs check failure

Checked by inline occurs check

Retrieval from Substitution Trees

(1) f(x
1
,x

1
)

(2) f(x
1
,x

2
)

(3) f(a,g(d))
(4) f(g(d),g(x

1
))

Retrieval of terms unifiable with f(f(a,y
1
),y

1
)

σ:

*0=f(f(a,y1),y1)

*1=y1

*2=f(a,y1)

x1=f(a,y1)

x2=y1

success

Checked by inline occurs check

Retrieval from Substitution Trees

(1) f(x
1
,x

1
)

(2) f(x
1
,x

2
)

(3) f(a,g(d))
(4) f(g(d),g(x

1
))

Retrieval of terms unifiable with f(f(a,y
1
),y

1
)

σ:

*0=f(f(a,y1),y1)

*1=y1

*2=f(a,y1)

*2=a
mismatch
In downward subst.
trees we can skip the
node based on top
symbols of the *2

bindings

Retrieval from Substitution Trees

(1) f(x
1
,x

1
)

(2) f(x
1
,x

2
)

(3) f(a,g(d))
(4) f(g(d),g(x

1
))

Retrieval of terms unifiable with f(f(a,y
1
),y

1
)

σ:

*0=f(f(a,y1),y1)

*1=y1

*2=f(a,y1)

*2=g(d)
mismatch
In downward subst.
trees we can skip the
node based on top
symbols of the *2

bindings

Our Experiments

● We created benchmarks from several prover
runs
– Operations on the unification index recorded (insertions,

deletions, queries)

– 765 benchmarks (about a half from the resolution index
and a half from the backward superposition index)

● ROB, MM, EG and PROB unification algorithms
implemented with the required interface

● The index operations performed on each
variant of the substitution trees and the time
measured

Results

● The inline occurs check algorithms appear to be
more suitable for the substitution trees
– Lots of unification requests on a single substitution

● Inline o. c. check just the relevant part of a big
substitution

● Post o. c. have to be performed after each unification
request, not just once per the result substitution

Algorithm
ROB 1.00 1.00
MM 6.96 6.00
EG 1.36 1.30
PROB 1.01 1.01

Rel. time
(resolution index)

Rel. time
(superposition index)

Questions...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

