uZz
Fix-point engine in

Krystof Hoder
Nikolaj Bjorner
Leonardo de Moura



Motivation

Horn EPR applications (Datalog)

— Points-to analysis

— Security analysis

— Deductive data-bases and knowledge bases (Yago)
Many areas of software analysis use fixed points

— Model-checking
* Set of reachable states is minimal fixed point

— Abstract interpreters
* Fixed points using approximations on infinite latices

— Using first-order engines here requires an extra layer

VA
Efficient Datalog engine
Encapsulates SMT solving using Z3

Extensible



Architecture

PointsTo(v2, h2) :-
Rule transformations Load(v2, v1, f),
PointsTo(v1, h1),

HeapPointsTo(h1, f, h2).
Load("b", "global", "Function").

Prototype(”f2::N.js:33", h1) :- GlobalFunctionPrototype(h1).
Prototype(”f6::N.js:37", h1) :- GlobalFunctionPrototype(h1).

Early Rule Late
preprocessing  normalization  preprocessing

A 4

Compilation

g * Evaluation using relation

— join, project, select, union

* Prolog without functions

* Finite domains




Architecture =,

 Rule transformations
— Normalization

* Tail contains at most two predicates
Rule transformations * Corresponds to join planning in

databases
* |dentifies common subexpressions

Early Rule Late
preprocessing  normalization  preprocessing

— Preprocessing
e Add tracing columns if we want proofs
* Magic Sets for goal orientation

* Equivalent transformations of rules to
improve performance

— Restarts
 There is often little information about the

A 4

Compilation

i relations at the beginning
* We may restart and redo the
transformations when we know more

— e.g. sizes of relations




Rule transformations

|

Early Rule Late
preprocessing  normalization  preprocessing

Compilation

Results

i

Architecture s

 Compilation

Into register machine
Straightforward for non-recursive rules

Recursive rules stratified and compiled
using delta relations

Compile each SCC separately
* Split SCCinto core and acyclic part

* Deltas of the acyclic part are local inside
the loop
— Speeds up new fact propagation
— Reduces amount of emptiness checks
— In the loop condition we check only for
core delta relations

Specialized compilation modes
e Abstract interpretation
* Bounded mode checking (not implemented yet)



Architecture

)\\\\\\\\

m * Execution
— Profiling data for each instruction

and rule are collected

* Profile guided rule transformations

* Feedback to the user

Early Rule Late
preprocessing  normalization  preprocessing

A 4

Compilation

Restarts

| Execution |



\\ =

Architecture ==

o oty
m e Results of execution
— Fixed point

prepfgzgssing normzlfilzeation prep:_c?;[Zssing —_— POSSibly With an derivation tree
* For each tuple in Finite Datalog

:f@\ 2 (D¢

Compilation

©

— — &

* For each relation in Abstract Datalog

Execution



Relation representation

* Plugin architecture

Plugins need to provide basic relation
operations

Hash-table
<-

Bltvecto rs

— Optional specialized operations for better
performance
* join-project, select-project, intersection,...

External

IIIHHHHHHHIII
Abstractions <

Bounds
Finite
product

Relatlon
product



Relation representation

Hash -table ° Ta b I eS

-

— Represent finite domains

S — Hash-tables
* Indexes on subsets of columns (for joins,
selections)
| — Bitvectors
— * Small domain relations
< — BDDs

Bounds

Finite
product

* Good for low entropy relations

- —

Relation
product



Relation representation

Hash -table ° Relaﬁons

-

Bltvecto rs

— Represent arbitrary domains
— SMT relation

* Relation operations implemented using SMT
solver

* union <-> disjunction

* is_empty <->is unsatisfiable

External °

— Explanations

* Lightweight relation for building proof trees

— External relations

Finite . . . .
* User can provide their own relations using
Relation extended Z3 API

<
<

Bounds

product



Relation representation

Hash-table

e Abstract domains
— Relations do not need to be precise

— Widening operations

<

External

<

* Guarantee convergence of infinite domains

» Specialized compilation mode to improve
precision

— Interval relation

e upper and lower bound for each column

Abstractions <
Finite
<

— Bounds relation

* inequalities between columns

product

Relation
product



Relation representation

* Compositions

— Finite product: Table x Relation
* Precise operations
* Use
— explanations for Finite Datalog
— (possibly) context sensitivity in points-to analysis
— — — Relation product: Relation x Relation
EXte”‘a' * May be imprecise
— relation implementations can be aware of each
other to increase precision

<
<

Bounds b Use

— — explanations for Abstract Datalog
— combining abstract domains

Reladtlon — intervals + bounds = pentagons
pro uct

U3

+ =7




Rule preprocessing

 Goal orientation

Goal :
orientation Maglc Sets
* 1980’s Datalog optimization technique
Removing 1<2 :
. ery:
unbound head 2<3 Qu y'
: q(x) :- x<4
variables . _
 We only need part of the ‘<’ relation
99<100 * Introduce auxiliary ‘r’ (reachable) relation:
Coalescing X<Z - X<y, y<z (4)

similar rules

r(x) :- r(y), x<y
X<z :- r(y), X<y, y<z

* Now evaluation of ‘< is restricted only to tuples
that may influence the result



Rule preprocessing

* Removing unbound head variables

anl . Load("vtmp1176", "vtmp1173", x). | _ Unbound variables in head
orientation ChECk(X) - Load("Vtmp1176"; X, y)- * Expensive for some table
=S representations
" non " * Hash-table must store a tuple for each
Removing Load3( vtmp11767, "vtmp1173 ) element in the domain

unbound head Check(x) :- Load("vtmp1176", x,y). | _ Possible exponential increase of
variables Check(x) :- Load;("vtmp1176", x). number of rules

Exponential with arity of relations

Coalescing Benchmark S U formed | Transformed
0 0 encnmar ize ntransforme ranstorme

alert_01.js 1827/390 90ms 90ms

settings.js 2636/515 130ms 100ms

prototype.js 25862/5460  2175ms 650ms



Rule preprocessing

* Coalescing similar rules

Goal Prototype("f163::N.js:335", hl) :- GlobalFunctionPrototype(h1l).
orientation Prototype("f164::N.js:373", hl) :- GlobalFunctionPrototype(h1).
=>
Prototype(x, h1) :- GlobalFunctionPrototype(h1), Aux(x).
Removing Aux("f163::N.js:335").
unbounciead Aux("f164::N.js:373").

variables

— Replace several simpler rules with one more

, complex
Coalescing

similar rules




Conclusion

Managed API C API SMT?2 Bddbddb Tuples

Interface

Domains

Finite SMT domain Abstract Composition

Rules

Optimizations Goal orientation Explanations SMT constraints

Compilation mode

Datalog Abstract interpretation BMC



