uZz
Fix-point engine in

Krystof Hoder
Nikolaj Bjorner
Leonardo de Moura



Fixed Points

* Fixed point of function f is an a such that
fla)=a

 Minimal fixed point a wrt. (partial) ordering <
for each fixed point @’ it holds that
a<a’

* For us the fis a monotonous relation transformer
and a is a relation

* We can iterate f on an empty relation and when
we reach f*(2)="(2), (<) is a minimal fixed
point



Fixed Points

Alternative view:
e Datalog program

e relation transformer is one iteration of
bottom-up evaluation

* relation is represented by the set of derived
facts

r(0,0,1).

r(x,y,z):-r(y,z,x). {1, {r(0,0,1)}, {r(0,0,1), r(0,1,0)},
{r(0,0,1), r(0,1,0), r(1,0,0)}

f(r)={(x,y,2) | (x,y,2)=(0,0,1) \/ r(y,z,x)}



Motivation

Horn EPR applications (Datalog)

— Points-to analysis

— Security analysis

— Deductive data-bases and knowledge bases (Yago)
Many areas of software analysis use fixed points

— Model-checking
* Set of reachable states is minimal fixed point

— Abstract interpreters
* Fixed points using approximations on infinite latices

— Using first-order engines here requires an extra layer

VA
Efficient Datalog engine
Encapsulates SMT solving using Z3

Extensible



Architecture

PointsTo(v2, h2) :-
Rule transformations Load(v2, v1, f),
PointsTo(v1, h1),

HeapPointsTo(h1, f, h2).
Load("b", "global", "Function").

Prototype(”f2::N.js:33", h1) :- GlobalFunctionPrototype(h1).
Prototype(”f6::N.js:37", h1) :- GlobalFunctionPrototype(h1).

Early Rule Late
preprocessing  normalization  preprocessing

A 4

Compilation

g * Evaluation using relation

— join, project, select, union

* Prolog without functions

* Finite domains




Architecture ST

* Rule transformations
* Tail contains at most two predicates

e Corresponds to join planning in databases
Rule transformations * |dentifies common subexpressions
— Preprocessing
* Add tracing columns if we want proofs

Early Rule Late
preprocessing  normalization  preprocessing

* Magic Sets for goal orientation

* Equivalent transformations of rules to
improve performance

— Inlining (non-growing)
— Elimination of redundant arguments
— Restarts

* There is often little information about the
relations at the beginning

* We may restart and redo the transformations

A 4

Compilation

T

when we know more
Results ) .
— e.g. sizes of relations




Rule transformations

Early Rule Late
preprocessing  normalization  preprocessing

| Compilation |

Results

Architecture /w

 Compilation
— Into register machine

— Straightforward for non-recursive
rules

— Recursive rules stratified and
compiled using delta relations

— Compile each SCC separately

* Split SCCinto core and acyclic part

* Compile the acyclic part like non-
recursive



Architecture
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m * Execution
— Profiling data for each instruction

and rule are collected

* Profile guided rule transformations

* Feedback to the user

Early Rule Late
preprocessing  normalization  preprocessing

A 4

Compilation

Restarts

| Execution |
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Architecture ==

o oty
m e Results of execution
— Fixed point

prepfgzgssing normzlfilzeation prep:_c?;[Zssing —_— POSSibly With an derivation tree
* For each tuple in Finite Datalog

:f@\ 2 (D¢

Compilation

©

— — &

* For each relation in Abstract Datalog

Execution



Relation representation

* Plugin architecture

Plugins need to provide basic relation
operations

Hash-table
<-

Bltvecto rs

— Optional specialized operations for better
performance
* join-project, select-project, intersection,...

External

IIIHHHHHHHIII
Abstractions <

Bounds
Finite
product

Relatlon
product



Relation representation

Hash -table ° Ta b I eS

- — Represent finite domains

Bitvectors — H as h-ta b | es

— for joins, selects

* With indexes on subsets of columns

External

Abstractions <
Bounds
<

— Bitvectors

* Small domain relations

— BDDs

* Good for low entropy relations

Finite
product

Relation
product



Relation representation

Hash -table ® Relations

- — Represent arbitrary domains

— SMT relation
B'We“mrs * Relation operations implemented using SMT

solver
* r(1,2)<>r=1&r,;=2
* union <-> disjunction
* is_empty <->is unsatisfiable

External

— Explanations
* Lightweight relation for building proof trees

— External relations

* User can provide their own relations using
extended Z3 API

Abstractions <
Bounds
<

Relation
product




Relation representation

Hash-table

e Abstract domains
— Relations do not need to be precise

— Widening operations

<

External

<

* Guarantee convergence of infinite domains

» Specialized compilation mode to improve
precision

— Interval relation

e upper and lower bound for each column

Abstractions <
Finite
<

— Bounds relation

* inequalities between columns

product

Relation
product



Relation representation

* Compositions

— Finite product: Table x Relation
* Precise operations
* Use
— explanations for Finite Datalog
— (possibly) context sensitivity in points-to analysis
— — — Relation product: Relation x Relation
EXte”‘a' * May be imprecise
— relation implementations can be aware of each
other to increase precision

<
<

Bounds b Use

— — explanations for Abstract Datalog
— combining abstract domains

Reladtlon — intervals + bounds = pentagons
pro uct

U3

+ =7




Goal

orientation

Removing
unbound head
variables

Coalescing
similar rules

Rule preprocessing

 Goal orientation

— Magic Sets
* 1980’s Datalog optimization technique

1<2
2<3

99<100
X<Z :- X<y, y<z

* Query:
q(x) :- x<4
 We only need part of the ‘<’ relation
* Introduce auxiliary ‘r’ (reachable) relation:

r(4).

r(x) :- r(y), x<y
X<z :- r(y), X<y, y<z

* Now evaluation of ‘< is restricted only to tuples
that may influence the result



Rule preprocessing

Goal * Removing unbound head variables
orientation
Load("vtmp1176", "vtmp1173", x). | _ ynpound variables in head
] Check(x) :- Load("vtmp1176", x, y). - Expensive for some table
Removing _s representations

unbound head Hash-table must store a tuple for each

variables LoadS("Vtmp1176"' "Vtmp1173")' element in the domain
Check(x) :- Load("vtmp1176", x,y). = _ Possible exponential increase of
CheCk(X) - Load3("Vtmp1176”, X). number of rules

Coalescing
similar rules

Exponential with arity of relations

Benchmark Size Untransformed | Transformed
[statements/kb]

alert_01.js 1827/390 90ms 90ms

settings.js 2636/515 130ms 100ms

prototype.js 25862/5460  2175ms 650ms



Rule preprocessing

s * Coalescing similar rules

orientation Prototype("f163::N.js:335", h1) :- GlobalFunctionPrototype(h1).
Prototype("f164::N.js:373", hl) :- GlobalFunctionPrototype(h1).
Removing =>

unbound head Prototype(x, h1) :- GlobalFunctionPrototype(h1), Aux(x).
variables Aux("f163::N.js:335").

Aux("f164::N.js:373").

Coalescing
similar rules

— Replace several simpler rules with one more
complex




Rule preprocessing

°
- Inlining
orientation p(x):-q(x).
q(x):-r(x).
Removing r("a").
unbound head =>
variables p("a").

_ — Eliminate relations by replacing their occurrences by
C.oa.llescmig their definitions
sl rElEs — Need to be careful to avoid blow-up
[ Y |

— We inline only if it does not increase problem size
— Often reveals unreachable rules:

p(x):-a("b").
a(x):-r(x).
r(llall)'

=>
all eliminated




How PDR works

(init(C100010))

(pdr-rule (=>(Cala2a3ad4blb2)
(Ca2a3ad4alb2bl)))

(query (C100001))

* Builds over-approximations for states
reachable up to 1, 2, ... steps

— Over-approximations represented by
lemmas

— Refinement (lemma addition) guided by
counter-example search

— When step k and k+1 have same
approximations, we have inductive
invariant

Final lemmas:
0 steps:
al & ~a2 & bl

1 step:
(al & ~a2 & bl) |
(~al &
b2 &
a4)

2 steps:
(al & ~a2 & bl) |
( (~a1l | b)) &

(b2 | a3) &
(a4 | bl) )
3 steps:

(al & ~a2 & bl) |
( (~al | a2 | bl)

( b2 | a3) &
(a4 | bl | a2)

4 steps:
(al & ~a2 & bl) |
( (~al | a2 | bl)
( b2 | a3 | al)
(a4 | bl | a2)

5 steps:
(al & ~a2 & bl) |
( (b2 | a3 | al)
(a4 | bl | a2)

6 steps:
(al & ~a2 & bl) |
( (b2 ] a3 | al)
(a4 | bl | a2)

R0 Qo



(init (C100010))

(pdr-rule (=>(Cala2a3ad4blb2)
(Ca2a3ad4alb2bl)))
(query (C100001))
Elementary query in PDR:
— Is state reachable in k steps?

How to answer it?

Learning Lemmas

100010
010001
001010
000101

100001
010010
001001
000110

— If violates lemmas for k steps, unreachable
— Check the initial set, if found, then reachable
— If k>0, try to find predecessor state and ask

“Is reachable in k-1 steps?”

When is unreachable in k steps, we may add as

new lemma for k, k-1,...,0 steps
is not very strong, we try to strengthen it

— Find such that and is over-approximation of states

reachable in k steps

— Dropping literals, unreachability proof analysis

Final lemmas:
0 steps:
al & ~a2 & bl

1 step:
(al & ~a2 & bl) |
(~al &
b2 &
a4)

2 steps:
(al & ~a2 & bl) |
( (~a1l | b)) &

(b2 | a3) &
(a4 | bl) )
3 steps:

(al & ~a2 & bl) |
( (~al | a2 | bl)

( b2 | a3) &
(a4 | bl | a2)

4 steps:
(al & ~a2 & bl) |
( (~al | a2 | bl)
( b2 | a3 | al)
(a4 | bl | a2)

5 steps:
(al & ~a2 & bl) |
( (b2 | a3 | al)
(a4 | bl | a2)

6 steps:
(al & ~a2 & bl) |
( (b2 ] a3 | al)
(a4 | bl | a2)

R0 Qo



Generalizations

e PDR works for linear Transformers
— Generalize to non-linear

F(R)(X) = FZ.IX)VRY)ARZ)NT(Y,Z,X)

 PDR works with a single Transformer
— Work with multiple transformers.
=> A Solver for Datalog/Boolean Programs

 PDRis for propositional logic
— Search Modulo Theories



Summary

Managed API C API SMT2 Bddbddb Tuples

Interface

Domains

Finite SMT domain Abstract Composition

Rules

Optimizations Goal orientation Explanations SMT constraints

Evaluation

Datalog Abstract interpretation PDR



