μΖ

Fix-point engine in **23**

Krystof Hoder Nikolaj Bjorner Leonardo de Moura

Fixed Points

- Fixed point of function f is an a such that f(a)=a
- Minimal fixed point a wrt. (partial) ordering
 for each fixed point a' it holds that
 a≤a'
- For us the f is a monotonous relation transformer and a is a relation
- We can iterate f on an empty relation and when we reach $f^{n+1}(\emptyset)=f^n(\emptyset)$, $f^n(\emptyset)$ is a minimal fixed point

Fixed Points

Alternative view:

- Datalog program
- relation transformer is one iteration of bottom-up evaluation
- relation is represented by the set of derived facts

r(0,0,1).
$$f(r)=\{(x,y,z) \mid (x,y,z)=(0,0,1) \setminus r(y,z,x)\}$$
$$r(x,y,z):-r(y,z,x). \qquad \{\}, \{r(0,0,1)\}, \{r(0,0,1), r(0,1,0)\}, \{r(0,0,1), r(0,1,0), r(1,0,0)\}$$

Motivation

- Horn EPR applications (Datalog)
 - Points-to analysis
 - Security analysis
 - Deductive data-bases and knowledge bases (Yago)
- Many areas of software analysis use fixed points
 - Model-checking
 - Set of reachable states is minimal fixed point
 - Abstract interpreters
 - Fixed points using approximations on infinite latices
 - Using first-order engines here requires an extra layer

μΖ

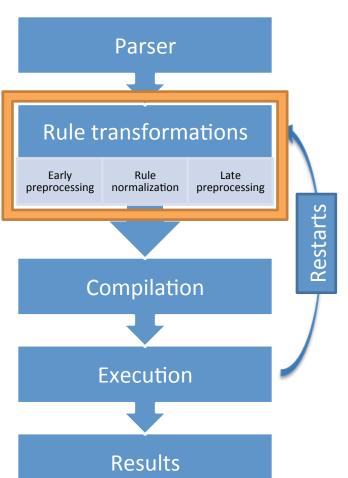
- Efficient Datalog engine
- Encapsulates SMT solving using Z3
- Extensible



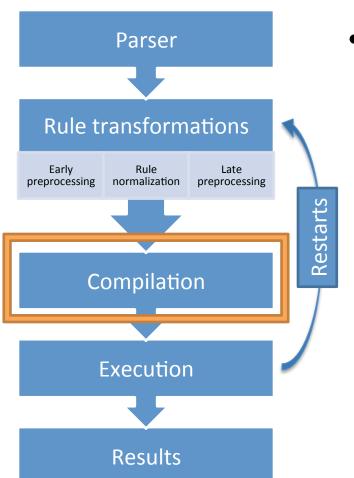
Datalog

```
PointsTo(v2, h2):-
Load(v2, v1, f),
PointsTo(v1, h1),
HeapPointsTo(h1, f, h2).
Load("b", "global", "Function").
Prototype("f2::N.js:33", h1):- GlobalFunctionPrototype(h1).
Prototype("f6::N.js:37", h1):- GlobalFunctionPrototype(h1).
```

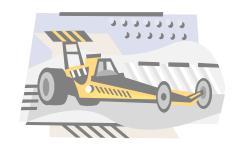
- Prolog without functions
- Finite domains
- Evaluation using relation algebra
 - join, project, select, union

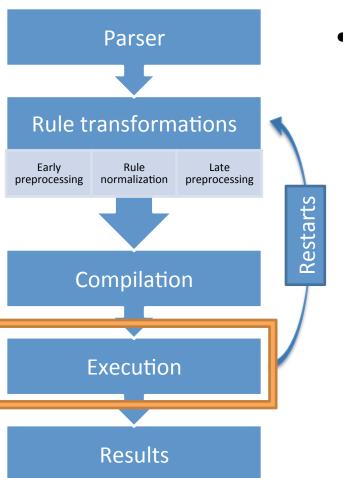


- Rule transformations
 - Normalization
 - Tail contains at most two predicates
 - Corresponds to join planning in databases
 - Identifies common subexpressions
 - Preprocessing
 - Add tracing columns if we want proofs
 - Magic Sets for goal orientation
 - Equivalent transformations of rules to improve performance
 - Inlining (non-growing)
 - Elimination of redundant arguments
 - Restarts
 - There is often little information about the relations at the beginning
 - We may restart and redo the transformations when we know more
 - e.g. sizes of relations



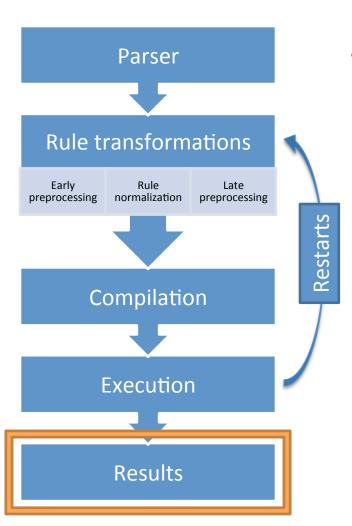
- Compilation
 - Into register machine
 - Straightforward for non-recursive rules
 - Recursive rules stratified and compiled using delta relations
 - Compile each SCC separately
 - Split SCC into core and acyclic part
 - Compile the acyclic part like nonrecursive



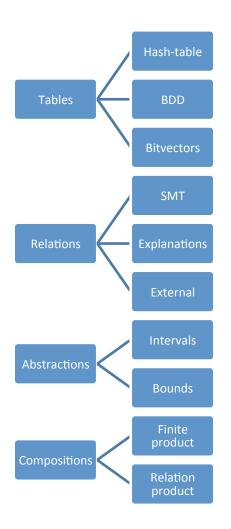


Execution

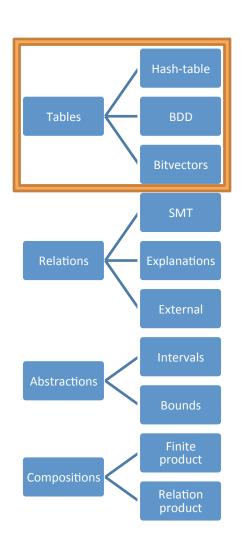
- Profiling data for each instruction and rule are collected
 - Profile guided rule transformations
 - Feedback to the user



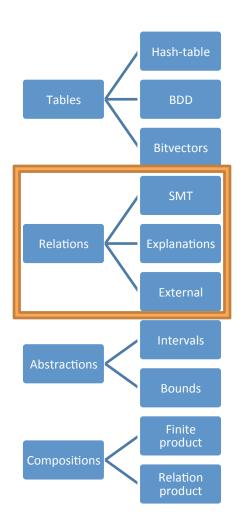
- Results of execution
 - Fixed point
 - Answers to a query
 - Possibly with an derivation tree
 - For each tuple in Finite Datalog
 - For each relation in Abstract Datalog



- Plugin architecture
- Plugins need to provide basic relation operations
 - Optional specialized operations for better performance
 - join-project, select-project, intersection,...

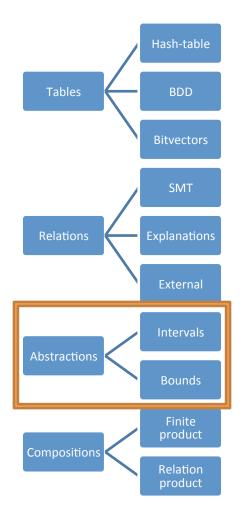


- Tables
 - Represent finite domains
 - Hash-tables
 - With indexes on subsets of columns
 - for joins, selects
 - Bitvectors
 - Small domain relations
 - BDDs
 - Good for low entropy relations



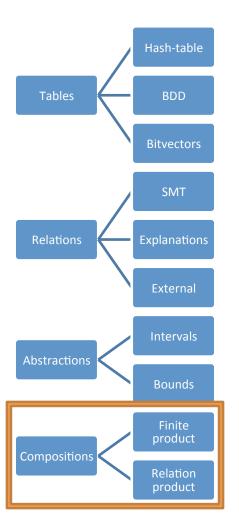
Relations

- Represent arbitrary domains
- SMT relation
 - Relation operations implemented using SMT solver
 - $r(1,2) <-> r_0 = 1 \& r_1 = 2$
 - union <-> disjunction
 - is_empty <-> is unsatisfiable
 - ...
- Explanations
 - Lightweight relation for building proof trees
- External relations
 - User can provide their own relations using extended Z3 API



- Abstract domains
 - Relations do not need to be precise
 - Widening operations
 - Guarantee convergence of infinite domains
 - Specialized compilation mode to improve precision
 - Interval relation
 - upper and lower bound for each column

- Bounds relation
 - inequalities between columns



- Compositions
 - Finite product: Table x Relation
 - Precise operations
 - Use
 - explanations for Finite Datalog
 - (possibly) context sensitivity in points-to analysis
 - Relation product: Relation x Relation
 - May be imprecise
 - relation implementations can be aware of each other to increase precision
 - Use
 - explanations for Abstract Datalog
 - combining abstract domains
 - intervals + bounds = pentagons

Goal orientation

Removing unbound head variables

Coalescing similar rules

Inlining

Goal orientation

- Magic Sets
 - 1980's Datalog optimization technique

```
1<2
2<3
...
99<100
x<z :- x<y, y<z
```

```
Query:
q(x):-x<4</li>
```

- We only need part of the '<' relation
- Introduce auxiliary 'r' (reachable) relation:

```
r(4).
r(x) :- r(y), x<y
x<z :- r(y), x<y, y<z
```

 Now evaluation of '<' is restricted only to tuples that may influence the result

Goal orientation

Removing unbound head variables

Coalescing similar rules

Inlining

Removing unbound head variables

```
Load("vtmp1176", "vtmp1173", x).
Check(x) :- Load("vtmp1176", x, y).
```

=>

Load₃("vtmp1176", "vtmp1173").

Check(x) :- Load("vtmp1176", x, y).

Check(x) :- Load₃("vtmp1176", x).

- Unbound variables in head
 - Expensive for some table representations
 - Hash-table must store a tuple for each element in the domain
- Possible exponential increase of number of rules
 - · Exponential with arity of relations

Benchmark	Size [statements/kb]	Untransformed	Transformed
alert_01.js	1827/390	90ms	90ms
settings.js	2636/515	130ms	100ms
prototype.js	25862/5460	2175ms	650ms

Goal orientation

Removing unbound head variables

Coalescing similar rules

Inlining

Coalescing similar rules

```
Prototype("f163::N.js:335", h1):- GlobalFunctionPrototype(h1).
Prototype("f164::N.js:373", h1):- GlobalFunctionPrototype(h1).

=>
Prototype(x, h1):- GlobalFunctionPrototype(h1), Aux(x).
Aux("f163::N.js:335").
Aux("f164::N.js:373").
```

Replace several simpler rules with one more complex

Goal orientation

Removing unbound head variables

Coalescing similar rules

Inlining

Inlining

```
p(x):-q(x).
q(x):-r(x).
r("a").
=>
p("a").
```

- Eliminate relations by replacing their occurrences by their definitions
- Need to be careful to avoid blow-up
- We inline only if it does not increase problem size
- Often reveals unreachable rules:

```
p(x):-q("b").
q(x):-r(x).
r("a").
=>
all eliminated
```

How PDR works

```
(init (C 1 0 0 0 1 0))
(pdr-rule (=> (C a1 a2 a3 a4 b1 b2)
(C a2 a3 a4 a1 b2 b1)))
(query (C 1 0 0 0 0 1))
```

- Builds over-approximations for states reachable up to 1, 2, ... steps
 - Over-approximations represented by lemmas
 - Refinement (lemma addition) guided by counter-example search
 - When step k and k+1 have same approximations, we have inductive invariant

```
Final lemmas:
0 steps:
a1 & ~a2 & b1
1 step:
(a1 & ~a2 & b1) |
  (~a1 &
    b2 &
    a4)
2 steps:
(a1 & ~a2 & b1) |
  ( (~a1 | b1) &
    ( b2 | a3) &
    (a4 | b1)
3 steps:
(a1 & ~a2 & b1) |
  ( (~a1 | a2 | b1) &
    ( b2 |
           a3) &
           b1 | a2) )
4 steps:
(a1 & ~a2 & b1) |
  ( (~a1 | a2 | b1) &
    ( b2 | a3 | a1) &
    ( a4 | b1 | a2) )
5 steps:
(a1 & ~a2 & b1) |
  ( ( b2 | a3 | a1) &
    ( a4 | b1 | a2) )
6 steps:
(a1 & ~a2 & b1) |
  ( ( b2 | a3 | a1) &
    ( a4 | b1 | a2) )
```

Learning Lemmas

100010

010001

001010

000101

100001

010010

001001

000110

```
(init (C 1 0 0 0 1 0))
(pdr-rule (=> (C a1 a2 a3 a4 b1 b2)
(C a2 a3 a4 a1 b2 b1)))
(query (C 1 0 0 0 0 1))
```

- Elementary query in PDR:
 - Is state reachable in k steps?
- How to answer it?
 - If violates lemmas for k steps, unreachable
 - Check the initial set, if found, then reachable
 - If k>0, try to find predecessor state and ask"Is reachable in k-1 steps?"
- When is unreachable in k steps, we may add as new lemma for k, k-1,...,0 steps
- is not very strong, we try to strengthen it
 - Find such that and is over-approximation of states reachable in k steps
 - Dropping literals, unreachability proof analysis

```
0 steps:
a1 & ~a2 & b1
1 step:
(a1 & ~a2 & b1) |
  (~a1 &
    b2 &
    a4)
2 steps:
(a1 & ~a2 & b1) |
  ( (~a1 | b1) &
    ( b2 | a3) &
    (a4 | b1)
3 steps:
(a1 & ~a2 & b1) |
  ( (~a1 | a2 | b1) &
           a3) &
    ( b2 |
    ( a4 |
           b1 | a2) )
4 steps:
(a1 & ~a2 & b1) |
  ( (~a1 | a2 | b1) &
    ( b2 | a3 | a1) &
    ( a4 | b1 | a2) )
5 steps:
(a1 & ~a2 & b1) |
  ( ( b2 | a3 | a1) &
    ( a4 | b1 | a2) )
6 steps:
(a1 & ~a2 & b1) |
  ( ( b2 | a3 | a1) &
    ( a4 | b1 | a2) )
```

Final lemmas:

Generalizations

- PDR works for *linear* Transformers
 - Generalize to non-linear

$$\mathscr{F}(R)(\vec{x}) = \exists \vec{y}, \vec{z} . I(\vec{x}) \lor R(\vec{y}) \land R(\vec{z}) \land T(\vec{y}, \vec{z}, \vec{x})$$

- PDR works with a single Transformer
 - Work with multiple transformers.
 - ⇒ A Solver for Datalog/Boolean Programs
- PDR is for *propositional* logic
 - Search Modulo Theories

Summary

